WO2023216212A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023216212A1
WO2023216212A1 PCT/CN2022/092606 CN2022092606W WO2023216212A1 WO 2023216212 A1 WO2023216212 A1 WO 2023216212A1 CN 2022092606 W CN2022092606 W CN 2022092606W WO 2023216212 A1 WO2023216212 A1 WO 2023216212A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display area
line segment
transmitting
emitting devices
Prior art date
Application number
PCT/CN2022/092606
Other languages
English (en)
French (fr)
Inventor
徐元杰
黄炜赟
秦向东
张宇
闫卓然
杜丽丽
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/092606 priority Critical patent/WO2023216212A1/zh
Priority to CN202280001204.XA priority patent/CN117426154A/zh
Priority to PCT/CN2022/120574 priority patent/WO2023216492A1/zh
Priority to CN202280003256.0A priority patent/CN117413630A/zh
Publication of WO2023216212A1 publication Critical patent/WO2023216212A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/38Interconnections, e.g. terminals

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel and a display device.
  • display devices usually have light-sensitive sensors such as image sensors to implement camera functions or biometric recognition functions.
  • light-sensitive sensors such as image sensors to implement camera functions or biometric recognition functions.
  • one way is to place the image sensor in the display device below the display panel, so that the area facing the display panel and the image sensor can still display images on the premise that it has a light-transmitting function. picture.
  • Embodiments of the present application provide a display panel and a display device.
  • the technical solutions are as follows:
  • a display panel including:
  • a substrate having a light-transmissive display area and a conventional display area at least partially surrounding the light-transmissive display area;
  • a plurality of first light-emitting devices located in the light-transmitting display area, a plurality of first pixel driving circuits, a plurality of second pixel driving circuits and a plurality of second light-emitting devices located in the regular display area,
  • a plurality of first pixel driving circuits and the plurality of first light-emitting devices are coupled through a plurality of connection lines, and the plurality of first pixel driving circuits are configured to drive the plurality of first light-emitting devices to emit light
  • the A plurality of second pixel driving circuits coupled to the plurality of second light-emitting devices, the plurality of second pixel driving circuits configured to drive the plurality of second light-emitting devices to emit light;
  • the plurality of first light-emitting devices include a plurality of groups of first light-emitting devices extending along a first direction and arranged along a second direction, and at least one of the plurality of connection lines is located in the light-transmitting display area. There is an acute angle between the extension direction of at least part of the line segments and the first direction, and the first direction and the second direction intersect.
  • the at least one connection line includes a first line segment, the first line segment includes a first line segment located in the light-transmitting display area and a second line segment located in the conventional display area, so The first line segment is connected to the second line segment, the first line segment is coupled to the first light-emitting device, the second line segment is coupled to the first pixel driving circuit, and the first line segment
  • the angle between the segment and the first direction is greater than 0 degrees and less than 90 degrees.
  • the angle between the first line segment and the first direction is greater than 30 degrees and less than 70 degrees.
  • the angle between the first line segment and the first direction is 45 degrees.
  • the angle between the first line segment and the second line segment is greater than 90 degrees.
  • the first trace further includes a third line segment located in the light-transmitting display area, one end of the third line segment is coupled to the first line segment, and the other end of the third line segment coupled to the first light-emitting device;
  • the third line segment extends along the second direction, the second line segment extends along the first direction, and the first direction and the second direction intersect.
  • the length of a third line segment coupled to a plurality of first light-emitting devices in a group of the plurality of first light-emitting devices is equal to the length between the third line segment and an edge of the light-transmitting display area.
  • the shortest distance between them is positively correlated.
  • the at least one connection line includes a second wiring line, and at least part of the line segment of the second wiring line located in the light-transmissive display area is parallel to the first direction.
  • the light-transmitting display area has a plurality of light-transmitting partitions, the light-transmitting partitions include a plurality of the first light-emitting devices, the areas of the multiple light-transmitting partitions are the same, and the multiple light-transmitting partitions have the same area.
  • the light partition is arranged around the center of the light-transmitting display area;
  • At least one connection line in the light-transmitting partition coupled to the first light-emitting device extends from the center of the light-transmitting display area to an edge of the light-transmitting display area.
  • the light-transmitting partition includes a first sub-partition and a second sub-partition divided by a line connecting the center of the light-transmitting display area and the edge of the light-transmitting display area, located in the first sub-partition
  • the connecting lines of the light-emitting devices in the second sub-partition extend in different directions from the connecting lines of the light-emitting devices located in the second sub-partition.
  • a line connecting the center of the light-transmitting display area and the edge of the light-transmitting display area is the symmetry axis of the light-transmitting partition, and the symmetry axis is parallel or perpendicular to the first direction.
  • the light-transmitting partition includes a parallel connection area and an oblique connection area located on the side of the parallel connection area away from the center;
  • the at least one connection line also includes a second wiring line, at least part of the line segment of the second wiring line located in the light-transmitting display area is parallel to the first direction;
  • At least one first light-emitting device located in the parallel connection area is coupled to the second wiring, and at least one first light-emitting device located in the oblique connection area is coupled to the first wiring.
  • the plurality of first light-emitting devices include a plurality of groups of first light-emitting devices, each group of the first light-emitting devices of the plurality of groups of first light-emitting devices extends along a third direction, and the plurality of groups of first light-emitting devices The devices are arranged along a fourth direction, and the first direction, the second direction, the third direction and the fourth direction do not overlap;
  • One group of first light-emitting devices among the plurality of groups of first light-emitting devices may include at least two light-emitting units arranged along the third direction, the light-emitting units including at least one first light-emitting device, and the at least two The light-emitting units are respectively coupled to the connection lines located on different layers.
  • the at least one connection line includes a third line
  • the third line includes a fourth line segment, a fifth line segment and a sixth line segment located in the light-transmissive display area, and located in the conventional display area.
  • the seventh line segment in the area, the fourth line segment, the fifth line segment, the sixth line segment and the seventh line segment are connected in sequence, the fourth line segment is coupled to the first light-emitting device, the The seventh line segment is coupled to the first pixel driving circuit, the angle between the fourth line segment and the first direction is greater than 0 degrees and less than 90 degrees, and the angle between the fifth line segment and the first direction is The angle between them is greater than 0 degrees and less than 90 degrees.
  • the angle between the fourth line segment and the fifth line segment is greater than 45 degrees and less than 135 degrees.
  • the angle between the fourth line segment and the fifth line segment is 90 degrees.
  • the arrangement density of the plurality of second light-emitting devices located in the conventional display area is the same as the arrangement density of the plurality of first light-emitting devices located in the light-transmitting display area.
  • the plurality of first light-emitting devices are coupled to the plurality of first pixel driving circuits in a one-to-one correspondence through the plurality of connection lines.
  • At least two first light-emitting devices among the plurality of first light-emitting devices are coupled to one first pixel driving circuit among the plurality of first pixel driving circuits through at least two of the connection lines;
  • one first light-emitting device among the plurality of first light-emitting devices is coupled to at least two first pixel driving circuits among the plurality of first pixel driving circuits through at least two of the connection lines.
  • a display device includes: a photosensitive sensor and the above-mentioned display panel.
  • the orthographic projection of the light entrance surface of the photosensitive sensor on the substrate of the display panel is at least Part of it is located in the light-transmitting display area.
  • Figure 1 is a schematic structural diagram of a display panel
  • Figure 2 is a schematic diagram of the circuit connections between the light-transmitting display area and the conventional display area of the display panel shown in Figure 1;
  • Figure 3 is a top view of a display panel provided by an embodiment of the present application.
  • Figure 4 is a partial structural diagram of the display panel shown in Figure 3;
  • Figure 5 is a schematic diagram of the connection structure of the first light-emitting device and the first pixel driving circuit in the light-transmitting display area of the display panel shown in Figure 3;
  • Figure 6 is a schematic structural diagram of a connecting line of light-transmitting partitions provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a light-transmitting display area provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the first light-emitting device located in the light-transmitting display area of the display panel shown in Figure 7;
  • Figure 9 is a schematic structural diagram of a first light-emitting device
  • Figure 10 is a schematic diagram of a partition provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another light-transmitting display area provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another light-transmitting display area according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another light-transmitting display area according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another light-transmitting display area according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of the wiring of another light-transmitting display area provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the connection structure of the light-transmitting display area shown in Figure 15;
  • Figure 17 is a schematic connection diagram of another light-transmitting display area according to an embodiment of the present application.
  • Figure 18 is a schematic connection diagram of another light-transmitting display area according to an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a first light-emitting device in another display panel provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a first light-emitting device in another display panel according to an embodiment of the present application.
  • Figure 21 is a schematic diagram of the structure of each film layer of a first pixel circuit or a second pixel driving circuit provided by an embodiment of the present application;
  • Figure 22 is a schematic structural diagram of a first pixel circuit or a second pixel driving circuit provided by an embodiment of the present application.
  • FIG. 23 is a circuit schematic diagram of a first pixel circuit or a second pixel driving circuit provided by an embodiment of the present application.
  • the display panel in the display device can be designed as a partially transparent display panel.
  • the orthographic projection of the light-sensitive surface of the light-sensitive sensor in the display device on the display panel may be located in the partially transparent area, and the light-sensitive sensor in the display device is located on the side opposite to the display surface of the display panel.
  • the display panel has: a light-transmitting display area and a conventional display area.
  • This light-transmitting display area can also be called the under-screen camera (English: Full Display with Camera; abbreviation: FDC) area.
  • Multiple light-emitting devices are provided in both the conventional display area and the light-transmitting display area, so that both the conventional display area and the light-transmitting display area can display images.
  • a plurality of light-emitting devices located in the light-transmitting display area are coupled in a one-to-one correspondence with part of the multiple pixel driving circuits in the conventional display area located on both sides of the light-transmitting display area.
  • the part of the pixel driving circuit is used for Control the screen display of the light-transmitting display area.
  • multiple light-emitting devices located in the light-transmitting display area can be connected to multiple pixel driving circuits in the corresponding conventional display area through multiple connection lines, wherein a part of each connection line in the multiple connection lines is located in the transparent display area. In the light display area, the other part is located in the regular display area.
  • the light-transmitting display area has a plurality of outlet openings.
  • the outlet openings are positions where a plurality of connection lines connected to a plurality of light-emitting devices located in the light-transmitting display area extend from the light-transmitting display area to the conventional display area.
  • the multiple outlet openings are located at The light-transmitting display area is located close to the edges of the conventional display areas located on both sides of the light-transmitting display area.
  • the pixel driving circuits corresponding to the light-emitting devices in the light-transmitting display area of the above-mentioned display panel are located on both sides of the light-transmitting display area, resulting in a smaller number of outlet openings for connecting lines connected to the light-emitting devices in the light-transmitting display area. , which in turn leads to low space utilization of the conventional display area around the light-transmitting display area.
  • the display panel has: a display area and a peripheral area located at the periphery of the display area.
  • the display area includes a conventional display area and a light-transmitting display area.
  • the conventional display area has multiple pixel driving circuits and multiple light-emitting devices.
  • the pixel driving circuits of the conventional display area can drive the light-emitting devices in the conventional display area in one-to-one correspondence.
  • the light-transmitting display area has multiple light-emitting devices, but the transparent display area has multiple light-emitting devices.
  • the pixel driving circuit corresponding to the light-emitting device in the light display area is located in the peripheral area, and the pixel driving circuit in the peripheral area drives the light-emitting device in the light-transmitting display area. In this way, the pixel driving circuit can be prevented from blocking light, so that the light-transmitting display area can have a light-transmitting function.
  • the pixel driving circuit located in the peripheral area will make the frame of the display panel larger, resulting in a smaller screen-to-body ratio of the display panel and poorer display effect of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel.
  • the display panel 10 includes a light-transmissive display area 11 and a non-light-transmissive conventional display area 12 .
  • FIG. 2 is a schematic diagram of circuit connections between the light-transmitting display area and the conventional display area of the display panel shown in FIG. 1 .
  • a first light-emitting device 111 is provided in the light-transmitting display area 11 , and a first pixel driving circuit 121 coupled to the first light-emitting device may be provided in the conventional display area 12 .
  • each first light-emitting device 111 and the corresponding first pixel driving circuit 121 located on both sides of the light-transmitting display area 11 form a first pixel unit, and each first light-emitting device 111 can be connected with the corresponding first pixel driving circuit 121 located on both sides of the transparent display area 11 through the connecting line 13.
  • the first pixel driving circuits 121 on both sides of the light display area 11 are coupled correspondingly.
  • the conventional display area 12 not only includes a plurality of first pixel driving circuits 121 but also a plurality of second pixel units (not shown in the figure, the second pixel units include second light-emitting devices and second pixel circuits).
  • the light-transmitting display area 11 has a plurality of wire outlets A1.
  • a plurality of connection lines 13 connected to a row of first light-emitting devices 111 can extend out of the light-transmissive display area 11 through the same wire outlet A1 and extend to both sides of the light-transmissive display area 11. in the conventional display area 12 on the side.
  • the plurality of outlet openings A1 are located at positions of the light-transmitting display area 11 close to the edges of the conventional display areas 12 located on both sides of the light-transmitting display area.
  • the extending directions of the connecting lines 13 connected to the first light-emitting devices 111 located in the light-transmitting display area 11 are parallel to the row direction of the first light-emitting devices 111 .
  • the first light-emitting devices 111 located in the light-transmitting display area 11 The arrangement of the connection lines 13 corresponding to the light-emitting device 111 has low flexibility.
  • connection lines 13 since the number of connection lines 13 arranged in the light-transmitting display area 11 is limited by the perimeter of the edge of the light-transmitting display area 11, ideally, the connection lines 13 can be arranged evenly around the edge of the light-transmitting display area 11. There are connection lines 13 to maximize the utilization of the wiring arrangement space in the light-transmitting display area 11.
  • FIG. 2 when the first light-emitting device 111 in the light-transmitting display area 11 is connected to the connection lines 13, When only extending in the row direction parallel to the first light-emitting devices 111 , the A1 area on the edge of the light-transmitting display area 11 is not arranged with the connection lines 13 . This results in a poor utilization of the wiring space in the light-transmitting display area 11 . Low.
  • Figure 3 is a top view of a display panel provided by an embodiment of the present application.
  • Figure 4 is a partial 20A structural schematic diagram of the display panel shown in Figure 3.
  • Figure 5 is a third light-transmitting display area in the display panel shown in Figure 3.
  • the display panel 20 may include: a substrate 21 , a plurality of first light-emitting devices 22 , a plurality of first pixel driving circuits 23 , a plurality of connection lines 24 , a plurality of second pixel driving circuits 25 and a plurality of second light-emitting devices 26 .
  • the substrate 21 may have a light-transmitting display area 211 and a conventional display area 212 located at the periphery of the light-transmitting display area 211 .
  • the regular display area 212 may surround the light-transmitting display area 211 , that is, the light-transmitting display area 211 may be surrounded by the regular display area 212 .
  • the light-transmitting display area 211 can also be provided at other positions, and the location of the light-transmitting display area 211 can be determined according to needs.
  • the light-transmitting display area 211 may be located at the top middle position of the substrate 21 , or may be located at the upper left corner or the upper right corner of the substrate 21 .
  • Hardware such as photosensitive sensors (eg, cameras) may be disposed in the light-transmitting display area 211 of the display panel 20 .
  • the light-transmitting display area 211 may be circular as shown in FIG. 3 , or may be square, or may be hexagonal, trapezoidal, or other shapes, which are not limited in the embodiments of the present application.
  • a plurality of first light-emitting devices 22 may be located in the light-transmitting display area 211, a plurality of first pixel driving circuits 23 may be located in the conventional display area 212, a plurality of connection lines 24 may be located on the substrate 21, and a part of the connection lines 24 may Located in the light-transmitting display area 211, the other part may be located in the regular display area 212. That is, the plurality of connection lines 24 coupled to the plurality of light-emitting devices 22 located in the light-transmitting display area 211 can extend through the edge of the light-transmitting display area 211 out of the light-transmitting display area 211 and extend to the area located in the light-transmitting display area 211 .
  • the plurality of first pixel driving circuits 23 and the plurality of first light-emitting devices 22 are coupled through a plurality of connection lines 24 , and the plurality of first pixel driving circuits 23 are configured to drive the plurality of first light-emitting devices 22 to emit light.
  • the plurality of second light emitting devices 26 and the plurality of second pixel driving circuits 25 may be located within the regular display area 212 .
  • the plurality of second pixel driving circuits 25 are coupled to the plurality of second light-emitting devices 26, and the plurality of second pixel driving circuits 25 are configured to drive the plurality of second light-emitting devices 26 to emit light.
  • the plurality of first light-emitting devices 22 include a plurality of groups of first light-emitting devices 22a extending along the first direction f1 and arranged along the second direction f2. At least one of the plurality of connection lines 24 is located in the light-transmitting display area. There is an acute angle ⁇ between the extension direction of at least part of the line segments in 211 and the first direction f1, and the first direction f1 and the second direction f2 intersect.
  • the first direction f1 does not necessarily refer to a certain absolute direction. Since the conventional display area 212 can surround the light-transmitting display area 211 , the plurality of first pixel driving circuits 23 can be located in the light-transmitting area. Around the display area 211, a plurality of first pixel driving circuits 23 may also be located around a plurality of first light-emitting devices 22. The first direction f1 may refer to the row direction or the column direction of the plurality of first light-emitting devices 22 in Figure 4. . Exemplarily, the light-transmitting display area 211 shown in FIG.
  • the fifth includes four light-transmitting partitions 2111 arranged around the center of the light-transmitting display area 211 (the four light-transmitting partitions 2111 may be respectively: the first light-transmitting partition 211a, The second light-transmitting partition 211b, the third light-transmitting partition 211c and the fourth light-transmitting partition 211d), the connection lines 24 in the first light-transmitting partition 211a and the second light-transmitting partition 211b can be arranged along the light-transmitting display area.
  • 211 is symmetrical about the symmetry axis s1.
  • the angle between the symmetry axis s1 and the first direction f1 may be 45 degrees.
  • the first direction f1 in the first light-transmitting partition 211a and the second light-transmitting partition 211b may also be symmetrical along this axis. Axis s1 is symmetrical.
  • the first direction f1 in the first light-transmitting partition 211a may be the row direction of the plurality of first light-emitting devices 22, and the first direction f1 in the second light-transmitting partition 211b may be the column direction of the plurality of first light-emitting devices 22.
  • the embodiment of the present application takes the first light-transmitting partition 211a as an example for description.
  • the arrangement of the connecting lines 24 in other light-transmitting partitions can be the same as the arrangement of the connecting lines 24 in the first light-transmitting partition 211a along the light-transmitting direction.
  • the display area 211 is symmetrical about the symmetry axis.
  • connection direction of at least one connection line 24 can be flexibly adjusted, and multiple connection lines 24 can be flexibly arranged, so that the arrangement of the multiple connection lines 24 on the display panel 20 is consistent. Higher flexibility.
  • each connection line 24 located in the light-transmitting display area 211 may be made of light-transmitting conductive material.
  • the connecting wire 24 can be entirely made of light-transmitting conductive material.
  • the light-transmitting conductive material can be indium tin oxide (English: Indium tin oxide; abbreviation: ITO).
  • a display panel including: a substrate and a plurality of first light-emitting devices located on the substrate, a plurality of first pixel driving circuits, a plurality of connection lines, a plurality of second a light-emitting device and a plurality of second pixel driving circuits.
  • a plurality of first light-emitting devices located in the light-transmissive display area are coupled to a plurality of first pixel driving circuits located in the conventional display area through a plurality of connection lines.
  • at least one of the plurality of connecting lines is located in the light-transmitting display area and has an acute angle between the extending direction of at least part of the line segments and the first direction.
  • connection lines make the arrangement of multiple connection lines on the display panel more flexible. It can solve the problem in the related art that the flexibility of the arrangement of the connection lines corresponding to the first light-emitting device located in the light-transmitting display area is low, and can improve the arrangement of the connection lines corresponding to the first light-emitting device located in the light-transmitting display area. The effect of arrangement flexibility.
  • FIG. 4 and FIG. 5 only list some of the first light-emitting devices 22 located in the plurality of first light-emitting devices 22 in the light-transmitting display area 211 and the routing methods of the corresponding connecting lines 24 .
  • the connection line 24 corresponding to at least one other first light-emitting device 22 located in the light-transmitting display area 211 may be similar to this wiring method.
  • the first light-emitting device 22 and the second light-emitting device 26 may be organic light-emitting diode (English: Organic Light-Emitting Diode; abbreviation: OLED) light-emitting devices.
  • the light-emitting device 22 may include a first electrode, a light-emitting material layer and a second electrode stacked in a direction vertical and away from the substrate 21 .
  • the first electrode may be the anode of the light-emitting device 22
  • the second electrode may be the cathode of the light-emitting device 22
  • the cathode may be a whole-layer structure.
  • the first electrode in the first light-emitting device 22 may be coupled with the connection line 24 to be coupled with the corresponding pixel driving circuit through the connection line 24 .
  • the first light-emitting device 22 in FIG. 5 is represented by the connection position of the first light-emitting device 22 .
  • the connection position may refer to the connection position of the first electrode of the first light emitting device 22 and the connection line 24 .
  • FIG. 6 is a schematic structural diagram of a connection line of a light-transmitting partition provided by an embodiment of the present application.
  • FIG. 6 only one light-transmitting partition 2111 among the plurality of light-transmitting partitions 2111 is shown for convenience in showing the connection method of the plurality of first light-emitting devices 22 .
  • the connection methods of the other light-transmitting partitions 2111 are the same as those shown in FIG. 6
  • the light-transmitting partitions 2111 are connected in the same way.
  • the plurality of first light-emitting devices 22 may be coupled to the plurality of first pixel driving circuits 23 in one-to-one correspondence through a plurality of connection lines 24 .
  • each connection line 24 can be coupled to a first light-emitting device 22 located in the light-transmitting display area 211 , and the other end can be coupled to a first pixel driving circuit 23 located in the regular display area 212 .
  • each first light-emitting device 22 can be coupled to a first pixel driving circuit 23 through a connection line 24 .
  • At least two first light-emitting devices 22 of the plurality of first light-emitting devices 22 may be coupled to one first pixel driving circuit 23 of the plurality of first pixel driving circuits 23 through at least two connection lines 24 . That is, one end of the at least two connecting lines 24 can be coupled to at least two first light-emitting devices 22 located in the light-transmitting display area 211 in a one-to-one correspondence, and the other end of the at least two connecting lines 24 can be coupled to the light-emitting device located in the conventional display area.
  • a first pixel driving circuit 23 in 212 is coupled. In this way, a plurality of first light-emitting devices 22 can be coupled to a first pixel driving circuit 23 through a plurality of connection lines 24 .
  • One first pixel driving circuit 23 can drive multiple first light-emitting devices 22 .
  • one first light-emitting device 22 among the plurality of first light-emitting devices 22 may be coupled to at least two first pixel driving circuits 23 among the plurality of first pixel driving circuits 23 through at least two connection lines 24 .
  • the first light emitting device 22 can be coupled to the plurality of first pixel driving circuits 23 through the plurality of connection lines 24 .
  • a plurality of first pixel driving circuits 23 can drive one first light-emitting device 22 .
  • connection line 24 may include a first trace 241
  • the first trace 241 may include a first line segment 2411 located in the light-transmitting display area 211 and The second line segment 2412 located in the regular display area 212, the first line segment 2411 can be connected to the second line segment 2412, the first line segment 2411 can be coupled to the first light-emitting device 22, and the second line segment 2412 can be connected to the first pixel driver
  • the circuit 23 is coupled, and the angle ⁇ between the first line segment 2411 and the first direction f1 may be greater than 0 degrees and less than 90 degrees.
  • the angle between the first line segment 2411 and the first direction f1 is greater than 30 degrees and less than 70 degrees.
  • multiple first line segments 2411 can be flexibly arranged by setting the value of the angle ⁇ between the first line segment 2411 and the first direction f1, so that the multiple first line segments 2411 can be arranged on the display panel. More flexible.
  • the angle between the first line segment 2411 of the first trace 241 and the first direction f1 may be 45 degrees. This can make the wiring of the first line segments 2411 of the plurality of first wirings 241 located in the light-transmitting display 211 relatively uniform and regular.
  • the angle ⁇ between the first line segment 2411 of the first trace 241 and the second line segment 2412 of the first trace 241 may be greater than 90 degrees.
  • the angle ⁇ between the first line segment 2411 of the first trace 241 and the second line segment 2412 of the first trace 241 may be 145 degrees.
  • the second line segment 2412 located in the regular display area 212 can be extended in a direction away from the light-transmitting display area 211 to couple with the first pixel driving circuit 23 located in the regular display area 212 .
  • the first trace 241 may also include a third line segment 2413 located in the light-transmitting display area 211.
  • One end of the third line segment 2413 may be coupled to the first line segment 2411.
  • the third line segment 2413 may be coupled to the first line segment 2411.
  • the other end of 2413 is coupled to the first light emitting device 22 . Since the plurality of first line segments 2411 can be arranged in parallel in the direction perpendicular to the first line segments 2411 in the light-transmitting display area 211, and the plurality of first light-emitting devices 22 coupled to the plurality of first line segments 2411
  • the first line segments 2411 may be arranged in a row in the extending direction.
  • the plurality of first line segments 2411 and the plurality of first light-emitting devices 22 may be coupled in a one-to-one correspondence through a plurality of third line segments 2314 to prevent the plurality of first line segments 2411 from overlapping in a direction perpendicular to the substrate 21 .
  • the third line segment 2413 may extend along the second direction f2.
  • the second line segment 2412 may extend along the first direction f1, and the first direction f1 may cross the second direction f2. Furthermore, the first direction f1 may be perpendicular to the second direction f2.
  • the length of the third line segment 2413 coupled to the plurality of first light-emitting devices 22 in a group of the plurality of first light-emitting devices 22a is the same as the length of the third line segment 2413 and
  • the shortest distance from the edge of the light-transmitting display area 211 is positively correlated. That is, along the direction from the center of the light-transmitting display area 211 to the edge of the light-transmitting display area 211 , the length of the third line segment 2413 becomes shorter and shorter.
  • connection line 24 may also include a second trace 242 , and at least part of the line segment of the second trace 242 located in the light-transmitting display area 211 is parallel to the first direction f1 .
  • the plurality of connection lines 24 coupled to the plurality of first light-emitting devices 22 located in the light-transmitting display area 211 may include first traces 241 whose extension direction of at least part of the line segments has an acute angle ⁇ with the first direction f1, and also
  • the second trace 242 may include at least a part of the line segment extending in a direction parallel to the first direction f1.
  • connection lines 24 corresponding to the first light-emitting device 22 located in the light-transmitting display area 211 can be further improved, and the second wiring 242 can be arranged in the wiring space where the first wiring 241 is not arranged. It can be further The wiring space in the light-transmitting display area 211 on the display panel 20 is rationally utilized.
  • FIG. 7 is a schematic structural diagram of a light-transmitting display area provided by an embodiment of the present application.
  • a plurality of connection lines 24 corresponding to the plurality of first light-emitting devices 22 located in the light-transmitting display area 211 can extend from the edge of the light-transmitting display area 211.
  • the connecting wires 24 can be arranged all around the edge of the display area 211 , which can make the wiring space in the light-transmitting display area 211 more efficiently utilized.
  • FIG. 8 is a schematic structural diagram of the first light-emitting device located in the light-transmitting display area in the display panel shown in FIG. 7 .
  • the connection positions of at least two adjacent first light-emitting devices 22 and the connection lines 24 may have a specified distance in the second direction f2.
  • connection positions of two adjacent first light-emitting devices 22 and the connection wires 24 are the first connection position K1 and the second connection position K2 respectively.
  • the two adjacent first light-emitting devices 22 are adjacent to each other.
  • the connection position of one light-emitting device may be K3, the first connection position K1 and the second connection position K2 have a specified distance D1 in the second direction f2, and the third connection position K3 and the second connection position K2 are also in the second direction f2.
  • the routing space of the connection line 24 connecting two adjacent first light-emitting devices 22 may be the second connection position K2 and the third connection The distance D2 between positions K3.
  • Figure 9 is a schematic structural diagram of a first light-emitting device.
  • the distance between the connection positions of two adjacent first light-emitting devices 22 and the connecting wire 24 in the second direction f2 is zero, then the distance between the two adjacent first light-emitting devices 22 and the connecting wires 24 is zero.
  • the routing space of the connection lines 24 of two adjacent light-emitting devices 22 may be the distance D3 between the second connection position K2 and the third connection position K3.
  • D2 is larger than D3 , that is, the wiring space of the connection lines 24 between the light-emitting devices 22 in the embodiment of the present application is larger.
  • connection lines 24 when at least one of the plurality of connection lines 24 is located in the light-transmissive display area 211 and has an acute angle ⁇ between the extension direction of at least part of the line segment and the first direction f1, the light-transmitting display area 211 can be located in the light-transmissive display area 211.
  • the wiring space of the connecting wire 24 in the area 211 is larger.
  • Figure 10 is a schematic diagram of a partition provided by an embodiment of the present application.
  • the light-transmitting display area 211 may have multiple light-transmitting partitions 2111.
  • the light-transmitting partitions 2111 have multiple first light-emitting devices 22.
  • the multiple light-transmitting partitions 2111 have the same area, and the multiple light-transmitting partitions 2111 surround the light-transmitting display area. 211 center setting.
  • At least one connection line 24 in the light-transmitting partition 2111 coupled to the first light-emitting device 22 extends from the center of the light-transmitting display area 211 to the edge of the light-transmitting display area 211 .
  • the number of the first light-emitting devices 22 in the multiple light-transmitting partitions 2111 can be made substantially the same, so that the difference in length of the connecting lines 24 corresponding to the first light-emitting devices 22 in the multiple light-transmitting partitions 2111 can be made small. , thereby making the brightness of the first light-emitting device 22 in the plurality of light-transmitting partitions 2111 of the light-transmitting display area 211 uniform, so as to improve the display effect of the light-transmitting display area 211.
  • the light-transmitting display area 211 may have four light-transmitting partitions 2111, and the shape of the light-transmitting partitions 2111 may be triangular or fan-shaped.
  • the shape of the light-transmitting display area 211 is a rectangle
  • the shape of the light-transmitting partition 2111 may be a triangle
  • the shape of the light-transmitting partition 2111 may be a fan shape.
  • the plurality of light-transmitting partitions 2111 may be arranged around the center of the light-transmitting display area 211 , and the center may refer to the intersection of two diagonals or the center of a circle of the light-transmitting display area 211 .
  • the light-transmitting partition 2111 may include a first sub-partition 211x and a second sub-partition 211y divided by the connection line s2 between the center of the light-transmitting display area 211 and the edge of the light-transmitting display area 211, That is, the first sub-partition 211x and the second sub-partition 211y are adjacent.
  • connection lines 24 of the first light-emitting devices 22 located in the first sub-region 211x and the connection lines 24 of the first light-emitting devices 22 located in the second sub-region 211y are different.
  • connection line 24 of the light-emitting device 22 there is also an acute angle ⁇ between the connection line 24 of the light-emitting device 22 and the first direction f1 of at least one row of first light-emitting devices 22, then the connection line 24 of the first light-emitting device 22 located in the first sub-section 211x and the connection line 24 of the first light-emitting device 22 located in the second
  • the included angle between the connection lines 24 of the first light-emitting device 22 in the sub-region 211y may be 2 ⁇ .
  • connection line s2 between the center of the light-transmitting display area 211 and the edge of the light-transmitting display area 211 is the symmetry axis of the light-transmitting partition 2111.
  • the areas of 211x and the second sub-area 211y can be the same, so that the number of light-emitting devices 22 in the first sub-area 211x and the second sub-area 211y can be basically the same, so that the numbers of the light-emitting devices 22 in the first sub-area 211x and the second sub-area 211y can be
  • the difference in length of the connecting lines 24 corresponding to the light-emitting devices 22 is small, which can make the brightness of the light-emitting devices 22 in the first sub-region 211x and the second sub-region 211y of the light-transmitting display area 211 uniform, thereby improving light transmission.
  • the axis of symmetry is parallel or perpendicular to the first direction f1.
  • the light-transmitting display area 211 may have multiple light-transmitting partitions 2111, and the multiple symmetry axes of the multiple light-transmitting partitions 2111 may be parallel or perpendicular to each other. In this way, the layout of the traces 24 in the light-transmitting display area 211 can be more regular. .
  • the light-transmitting partition 2111 may include a parallel connection area C1 and an oblique connection area C2 located on a side of the parallel connection area C1 away from the center. At least one first light-emitting device 22 located in the parallel connection area C1 may be coupled with the second wiring 242, and at least one first light-emitting device 22 located in the oblique connection area C2 may be coupled with the first wiring 241.
  • the first light-emitting device 22 close to the center of the light-transmitting display area 211 among the plurality of first light-emitting devices 22 may be coupled with the second wiring.
  • the light-transmitting partition 2111 may include a first sub-partition 211x and a second sub-partition 211y, and the light-transmitting partition 2111 may include a parallel connection area C1 and an oblique connection area C2, which are two divisions of the light-transmitting area 2111 method, these two division methods can exist in the light-transmitting partition 2111 at the same time.
  • the first sub-region 211x may include a first parallel connection area and a first oblique connection area
  • the second sub-area 211y may include a second parallel connection area and a second oblique connection area.
  • the first wiring 241 connected to the first light-emitting device 22 located in the oblique connection area C2 extends from the center of the light-transmitting display area 211 to the edge of the light-transmitting display area 211 .
  • the light-transmitting partition 2111 There may be some areas near the symmetry axis where oblique connection lines are not arranged, such as the area E1 in FIG. 7 .
  • the area E1 may be used to arrange the second traces 242 connected to the first light-emitting device 22 in the parallel connection area C1. In this way, the wiring space in the light-transmitting display area 211 can be rationally utilized. Compared with wiring in a single direction, more connection lines 24 can be arranged under the same light-transmitting display area 211.
  • Figure 11 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Figures 12, 13 and 14 are schematic diagrams of a display panel provided by an embodiment of the present application. Schematic diagram of the structure of three other light-transmitting display areas. It should be noted that in Figures 12, 13 and 14, in order to facilitate the representation of the position of the first light-emitting device connected to the connection lines of each structural layer, the connection lines of different layers are divided into three schematic diagrams.
  • the plurality of first light-emitting devices 22 may include a plurality of groups of first light-emitting devices 22a, each of the plurality of first light-emitting devices 22a may extend along the third direction f3, and the plurality of groups of first light-emitting devices 22a may Arranged along the fourth direction f4, the first direction f1, the second direction f2, the third direction f3 and the fourth direction f4 may not overlap.
  • One group of first light-emitting devices 22a among the plurality of groups of first light-emitting devices 22a may include at least two light-emitting units arranged along the third direction f3.
  • the light-emitting units may include at least one first light-emitting device 22.
  • the at least two light-emitting units may They are respectively coupled to connection lines 24 located on different layers.
  • At least two light-emitting units including a first light-emitting unit 22a1, a second light-emitting unit 22a2, and a third light-emitting unit 22a3 are used as an example for description.
  • the at least two light-emitting units may also have other light-emitting units. unit, the embodiment of this application does not limit this.
  • the plurality of first wiring lines 241 connected to the first light-emitting unit 22a1, the second light-emitting unit 22a2 and the third light-emitting unit 22a3 may be a first connection line group 24a, a second connection line group 24b and a third connection line respectively.
  • the group 24c, the first connection line group 24a, the second connection line group 24b and the third connection line group 24c are respectively located on different layers on the substrate.
  • the corresponding first connection line group 24a, the second connection line group 24b and the third connection line group 24c can be respectively arranged in the order of the first light-emitting unit 22a1, the second light-emitting unit 22a2 and the third light-emitting unit 22a3.
  • the first The connecting wires in the connecting wire group 24a, the second connecting wire group 24b and the third connecting wire group 24c may be the first connecting wire 241.
  • the wiring space of the connecting lines 24 can be increased, so that the connecting lines 24 located on different layers can have their own wiring spaces. Compared with the single-layer wiring wiring method, more connecting lines can be written and arranged in a limited space. twenty four.
  • the area size of each of the above partial regions is: E2>E3>E4. In this way, more second traces 242 can be arranged in the partial area E2.
  • the first light-emitting devices 22 shown in FIG. 8 are eight of the plurality of first light-emitting devices 22 in the display panel shown in FIG. 7
  • the shape of the first light-emitting device 22 and the light-transmitting display area 211 may be circular, and the shape of the first light-emitting device 22 may be a rectangle, or the shape of the pixel unit where the first light-emitting device 22 is located is a rectangle, and the length of the rectangle
  • the width ratio can be 2:1, and the long side of the rectangle is perpendicular to the first direction f1.
  • the shape of the first light-emitting device 22 in the embodiment of the present application may also be at least one of a hexagon, a trapezoid, an ellipse, and a circle.
  • the shape of a pixel unit where the first light-emitting device 22 is located may be a rectangle.
  • the rectangle in FIG. 13 may represent the shape of the pixel unit where the first light-emitting device 22 is located, or may also represent the shape of the anode of the first light-emitting device 22.
  • the black circle Dots can be used to represent the connection positions of the first light-emitting device 22 and the connecting wire 24.
  • the first light-emitting device 22 is used to represent the connection position of the connecting wire 24.
  • the connection position of the device 22 and the connection line 24 (ie, the black dot) represents the first light-emitting device 22 .
  • the connection positions of two adjacent first light-emitting devices 22 and the connection line 24 may have a specified distance X in the second direction f2.
  • the connection positions of the two adjacent first light-emitting devices 22 and the connection line 24 are in the first direction.
  • connection distance between the connection positions of the two adjacent first light-emitting devices 22 and the connection wires 24 is Z, and Z is equal to the square root of the sum of X plus Y.
  • the wiring space of the connection line 24 coupled to the first light-emitting device 22 located in the oblique connection area C2 can be Z.
  • the wiring space of the connection line 24 can be The space is larger, and the plurality of connection lines 24 coupled to the plurality of first light-emitting devices 22 in the light-transmitting display area 211 can be located on different layers, which can further increase the routing space of the connection lines 24 .
  • the wiring space in the light-transmitting display area 211 will limit the number of connection lines 24, the number of light-emitting devices 22 corresponding to the connection lines 24 will be limited, which will further limit the area of the light-transmitting display area 211 (in the arrangement of the light-emitting devices 22).
  • the cloth density remains unchanged, the greater the number of light-emitting devices 22, the larger the area of the light-transmitting display area 211). Therefore, the above-mentioned arrangement of the connecting lines 24 in layers and the wiring method in which the connecting lines 24 extend in multiple directions can allow more wiring space in the light-transmitting display area 211, and a larger number of connecting lines 24 can be arranged, so that a larger number of connecting lines 24 can be arranged. More first light-emitting devices 22 are decompressed to make the area of the light-transmitting display area 211 larger.
  • the size of the light-emitting device is 27.675 ⁇ m ⁇ 55.35 ⁇ m
  • the connection line 24 parallel to the first direction f1.
  • 42 columns of first light-emitting devices 22 can be arranged in the first direction f1, and the corresponding diameter of the light-transmitting display area 211 is 2.325 mm.
  • connection lines 24 corresponding to the light-emitting devices 22 in the light-transmitting display area 211 include the first wiring 241 in the oblique connection area C2 and the second wiring 242 in the parallel connection area C1, it can be set along the first direction f1
  • the area of the light-transmitting display area in the embodiment of the present application is compared with the wiring that only uses the connecting lines 24 parallel to the first direction f1.
  • the area of the light-transmitting display area increases by 61.5%.
  • Figure 15 is a schematic diagram of the wiring of another light-transmissive display area provided by an embodiment of the present application
  • Figure 16 is a schematic diagram of the connection structure of the light-transmissive display area shown in Figure 15.
  • the shape of the light-transmitting display area 211 may be octagonal.
  • At least one connection line 24 also includes a third wiring 243.
  • the third wiring 243 may include a fourth line segment 2431, a fifth line segment 2432, and a sixth line segment 3433 located in the light-transmitting display area 211, and located in the conventional display area 212.
  • connection lines 24 in the light-transmitting display area 211 can be provided with more wiring methods, and the flexibility of the wiring of the connection lines 24 in the light-transmitting display area 211 can be improved.
  • the angle ⁇ 3 between the fourth line segment 2431 and the fifth line segment is greater than 45 degrees and less than 135 degrees. Further, the angle ⁇ 3 between the fourth line segment 2431 and the fifth line segment 2432 may be 90 degrees. In this way, the wiring of the third wiring 243 in the light-transmitting display area 211 can be made more regular.
  • FIG. 17 is a schematic connection diagram of another light-transmitting display area shown in an embodiment of the present application.
  • FIG. 18 is a diagram of another light-transmitting display area shown in an embodiment of the present application. Wiring diagram of the display area. It should be noted that in order to clearly illustrate the connection method of the plurality of first light-emitting devices 22 in Figures 16, 17 and 18, only the connection status of the connection lines 24 in some areas of the light-transmitting display area 211 is shown. The connection method of other areas is the same as that shown in the figure.
  • Figures 16, 17 and 18 the first light-emitting device 22 connecting the connection lines 24 of different layers is divided into three figures.
  • Figure 16 shows the coupling of multiple connection lines 24 located in the first structural layer 201.
  • a plurality of first light-emitting devices 22 FIG. 17 shows a plurality of first light-emitting devices 22 coupled by a plurality of connection lines 24 located in the second structural layer 202.
  • FIG. 18 shows a plurality of first light-emitting devices 22 located in the third structural layer 203.
  • a plurality of first light-emitting devices 22 are coupled with a plurality of connecting lines 24 .
  • the plurality of connection lines 24 located on the first structural layer 201 may include first traces 241 and third traces 243
  • the plurality of connection lines 24 located on the second structural layer 202 may include first traces 241 and third traces 243
  • the first light-emitting device 22 coupled to the first wiring 241 in the second structural layer 202 may be located close to the first light-emitting device 22 coupled to the first wiring 241 in the first structural layer 201.
  • the first light-emitting device 22 coupled to the third wiring 243 in the second structural layer 202 may be located away from the light-transmitting display area. 211 on one side of the center.
  • the plurality of connection lines 24 located in the third structural layer 203 may include first traces 241.
  • the first light-emitting device 22 coupled to the first traces 241 in the third structural layer 203 may be located in the second structural layer 202.
  • the first light-emitting device 22 coupled to the third wiring 243 is on a side away from the center of the light-transmitting display area 211 and is located on the first light-emitting device 22 coupled to the first wiring 241 in the second structural layer 202 The side close to the center of the light-transmitting display area 211.
  • the same structural layer of the display panel 20 can include a variety of wirings, which can improve the arrangement flexibility of the connection lines 24 coupled to the first light-emitting device in the light-transmitting display area 211 .
  • FIGS. 19 and 20 are schematic structural diagrams of first light-emitting devices in two other display panels provided by embodiments of the present application.
  • the connection positions K between at least two adjacent first light-emitting devices 22 and the connection lines may have a distance in the second direction f2 D4, the second direction f2 may be perpendicular to the first direction f1, and the connection positions K are located at the corners of the first light-emitting device 22.
  • FIG. 20 shows another arrangement of the connection positions K of the first light-emitting device 22 and the connection wire 24 .
  • the connection positions K may be located at the corners of the first light-emitting device 22 . In this way, the connection distance between two adjacent first light-emitting devices 22 can be made larger, thereby making the routing space of the connection lines between the two adjacent first light-emitting devices 22 larger.
  • the connection position K of the first light-emitting device 22 and the connection wire 24 in the embodiment of the present application is not limited to the arrangement of the connection position K shown in Figures 8, 19 and 20.
  • the connection position K is also Other setting methods are possible, and the embodiments of this application do not limit this.
  • the regular display area 212 may have a plurality of regular sub-areas 2121 distributed around the light-transmissive display area 211 and corresponding one-to-one to a plurality of light-transmissive partitions 2111 .
  • the regular sub-areas 2121 correspond to corresponding The light-transmitting partitions 2111 are adjacent.
  • At least part of the edge of the light-transmitting partition 2111 coincides with at least part of the edge of the corresponding regular sub-partition 2121.
  • the length of the connection line corresponding to the first light-emitting device in the plurality of light-transmitting partitions 2111 can be made shorter.
  • the arrangement density of the plurality of second light-emitting devices 26 located in the conventional display area 212 is the same as the arrangement density of the plurality of first light-emitting devices 22 located in the light-transmitting display area 211 .
  • the same arrangement density may mean that the number of second light-emitting devices 26 arranged per unit area of the conventional display area 212 is the same as the number of first light-emitting devices 22 arranged per unit area in the light-transmitting display area 211 .
  • the pixel density or image resolution of the conventional display area 212 and the light-transmitting display area 211 can be made the same.
  • the display effects of the conventional display area 212 and the light-transmitting display area 211 can be made close.
  • pixel density per inch (English: Pixel per inch; abbreviation: PPI) can also be called the pixel density unit, which represents the number of pixels per inch in the display area. Therefore, the higher the PPI value, the richer the details of the display screen will be.
  • Image resolution (English: Image Resolution) refers to the amount of information stored in the image. Can be measured in pixels per inch density (PPI). The higher the image resolution, the more pixels the image contains and the clearer the image.
  • the second pixel driving circuit may include an active layer pattern 341, a first conductive pattern 342, and the first conductive pattern 342 may include a first plate 3421 of a capacitive structure, a gate line 301 and a gate electrode.
  • the second conductive pattern 343 may include a second plate 3431 of a capacitive structure.
  • Dielectric layer 344 has via holes 3441 on the dielectric layer 344 .
  • the third conductive pattern 345 may include a power line, a source electrode, and a drain electrode.
  • the fourth conductive pattern 346 may include the data signal line 302 . It should be noted that the structures of the first pixel driving circuit and the second pixel driving circuit in the embodiments of the present application may be the same.
  • Figure 22 is a schematic structural diagram of a first pixel circuit or a second pixel driving circuit provided by an embodiment of the present application.
  • the second pixel driving circuit may include a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film transistor T4, a fifth thin film transistor T5, a sixth thin film transistor T6, a seventh thin film transistor T7, and a capacitor. StructureCst1.
  • the first thin film transistor T1 may be a first initial thin film transistor
  • the second thin film transistor T2 may be a compensation thin film transistor
  • the third thin film transistor T3 may be a driving thin film transistor
  • the fourth thin film transistor T4 may be a data writing transistor.
  • the fifth thin film transistor T5 may be an operation control thin film transistor
  • the sixth thin film transistor T6 may be an emission control thin film transistor
  • the seventh thin film transistor T7 may be a second initial thin film transistor.
  • T1 to T7 may include low temperature polysilicon thin film transistors (English: Low Temperature Poly-Silicon; abbreviation: LTPS) and/or oxide thin film transistors (English: oxide thin-film transistor; abbreviation: O-TFT).
  • T1 to T7 can also be other types of thin film transistors, which are not limited in the embodiments of the present application.
  • FIG. 23 is a circuit schematic diagram of a first pixel circuit or a second pixel driving circuit provided by an embodiment of the present application.
  • the gate of the third thin film transistor T3 is connected to the first node N1
  • the source of the third thin film transistor T3 is connected to the second node N2
  • the drain of the third thin film transistor T3 is connected to the third node N3.
  • the gate of the fourth thin film transistor T4 is connected to the gate line (Gate) 301, the source of the fourth thin film transistor T4 is connected to the data signal line (Data) 302, and the drain of the fourth thin film transistor T4 is connected to the second node N2.
  • the gate of the second thin film transistor T2 is connected to the gate line 301, the source of the second thin film transistor T2 is connected to the third node N3, and the drain of the second thin film transistor T2 is connected to the first node N1.
  • the gate of the first thin film transistor T1 is connected to the reset signal line (Reset) 303, the drain of the first thin film transistor T1 is connected to the first reference signal line (Vinit) 304-1, and the source of the first thin film transistor T1 is connected to the first node. N1.
  • the gate electrode of the fifth thin film transistor T5 and the gate electrode of the sixth thin film transistor T6 are connected to the light emitting signal line (EM) 305.
  • the source electrode of the fifth thin film transistor T5 is connected to the constant voltage high potential (VDD) 306.
  • the fifth thin film transistor T5 The drain of the sixth thin film transistor T6 is connected to the second node N2, the source of the sixth thin film transistor T6 is connected to the third node N3, the drain of the sixth thin film transistor T6 is connected to the anode of the light emitting device (OLED) 307, and the cathode of the light emitting device 307 is connected to the low potential ( VSS)308.
  • the gate of the seventh thin film transistor T7 is connected to the gate line 301 , the drain of the seventh thin film transistor T7 is connected to the second reference signal line 304 - 2 , and the source of the seventh thin film transistor T7 is connected to the anode of the light emitting device 307 .
  • One end of the capacitor structure Cst1 can be connected to the first node N1, and the other end of the capacitor structure Cst1 can be connected to the constant voltage high potential 306.
  • the voltage values of the first reference signal line 304-1 and the second reference signal line 304-2 may be different.
  • the voltage values of the first reference signal line 304-1 and the second reference signal line 304-2 differ by 1V to 5V.
  • first reference signal line 304-1 and the second reference signal line 304-2 may be connected to the same signal input terminal.
  • the compensation thin film transistor T2 may be electrically connected to the gate driving terminal, the first node N1 and the third node N3 respectively.
  • the compensation thin film transistor T2 may be used to adjust the potentials of the first node N1 and the third node N3 in response to the gate driving signal.
  • the gate drive terminal is used to provide gate drive signals.
  • the first node N1 may be connected to the gate of the third thin film transistor T3, the drain of the second thin film transistor T2, the drain of the first thin film transistor T1, and one end of the storage capacitor Cst1.
  • a display panel including: a substrate and a plurality of first light-emitting devices located on the substrate, a plurality of first pixel driving circuits, a plurality of connection lines, a plurality of second a light-emitting device and a plurality of second pixel driving circuits.
  • a plurality of first light-emitting devices located in the light-transmissive display area are coupled to a plurality of first pixel driving circuits located in the conventional display area through a plurality of connection lines.
  • at least one of the plurality of connecting lines is located in the light-transmitting display area and has an acute angle between the extending direction of at least part of the line segments and the first direction.
  • connection lines make the arrangement of multiple connection lines on the display panel more flexible. It can solve the problem in the related art that the flexibility of the arrangement of the connection lines corresponding to the first light-emitting device located in the light-transmitting display area is low, and can improve the arrangement of the connection lines corresponding to the first light-emitting device located in the light-transmitting display area. The effect of arrangement flexibility.
  • Embodiments of the present application also provide a display device, which may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or the like.
  • a display device which may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or the like.
  • the display device may include: a photosensitive sensor and the display panel in any of the above embodiments.
  • the photosensitive sensor may be an image sensor, a light sensor or a distance sensor in a camera, etc. Among them, the image sensor can be used for face recognition or fingerprint recognition.
  • the orthographic projection of the light entrance surface of the photosensitive sensor on the substrate of the display panel is at least partially located in the light-transmitting display area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(20)和显示装置。显示面板(20)包括:衬底(21)以及位于衬底(21)上的多个第一发光器件(22)、多个第一像素驱动电路(23)、多条连接线(24)、多个第二发光器件(26)以及多个第二像素驱动电路(25)。位于透光显示区(211)内的多个第一发光器件(22)通过多条连接线(24)与位于常规显示区(212)内多个第一像素驱动电路(23)耦接。其中,多条连接线(24)中至少一条连接线(24)位于透光显示区(211)内的至少部分线段的延伸方向与第一方向(f1)之间具有锐角夹角(α),可以通过设置该锐角夹角(α)的值,灵活排布多条连接线(24),使得显示面板(20)上的多条连接线(24)的排布方式较为灵活。

Description

显示面板和显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板和显示装置。
背景技术
目前,显示装置通常具有图像传感器等感光传感器,用以实现拍照功能或者生物识别功能等。为了提高显示装置的屏占比,一种方式是将显示装置中的图像传感器放置在显示面板的下方,且使显示面板与图像传感器正对的区域在具有透光功能的前提下,仍然可以显示画面。
发明内容
本申请实施例提供了一种显示面板和显示装置。所述技术方案如下:
根据本申请的一方面,提供了一种显示面板,所述显示面板包括:
衬底,所述衬底具有透光显示区以及至少部分围绕所述透光显示区的常规显示区;
位于所述透光显示区内的多个第一发光器件、位于所述常规显示区内的多个第一个像素驱动电路、多个第二像素驱动电路以及多个第二发光器件,所述多个第一个像素驱动电路与所述多个第一发光器件通过多条连接线耦接,所述多个第一像素驱动电路被配置为驱动所述多个第一发光器件发光,所述多个第二像素驱动电路与所述多个第二发光器件耦接,所述多个第二像素驱动电路被配置为驱动所述多个第二发光器件发光;
其中,所述多个第一发光器件包括沿第一方向延伸,且沿第二方向排布的多组第一发光器件,所述多条连接线中至少一条连接线位于所述透光显示区内的至少部分线段的延伸方向与所述第一方向之间具有锐角夹角,所述第一方向和所述第二方向交叉。
可选地,所述至少一条连接线包括第一走线,所述第一走线包括位于所述透光显示区内的第一线段和位于所述常规显示区内的第二线段,所述第一线段和所述第二线段连接,所述第一线段与所述第一发光器件耦接,所述第二线段 与所述第一像素驱动电路耦接,所述第一线段和所述第一方向之间的夹角大于0度且小于90度。
可选地,所述第一线段和所述第一方向之间的夹角大于30度且小于70度。
可选地,所述第一线段和所述第一方向之间的夹角为45度。
可选地,所述第一线段和所述第二线段之间的夹角大于90度。
可选地,所述第一走线还包括位于所述透光显示区内的第三线段,所述第三线段的一端与所述第一线段耦接,所述第三线段的另一端与所述第一发光器件耦接;
所述第三线段沿所述第二方向延伸,所述第二线段沿所述第一方向延伸,所述第一方向和所述第二方向交叉。
可选地,与所述多组第一发光器件中的一组发光器件中的多个第一发光器件耦接的第三线段的长度,与所述第三线段和透光显示区的边缘之间的最短距离正相关。
可选地,所述至少一条连接线包括第二走线,所述第二走线位于所述透光显示区中的至少部分线段与所述第一方向平行。
可选地,所述透光显示区具有多个透光分区,所述透光分区中具有多个所述第一发光器件,所述多个透光分区的面积相同,且所述多个透光分区围绕所述透光显示区的中心设置;
所述透光分区中与所述第一发光器件耦接的至少一条连接线由所述透光显示区的中心向所述透光显示区的边缘延伸。
可选地,所述透光分区包括由所述透光显示区的中心和所述透光显示区的边缘的连线划分的第一子分区和第二子分区,位于所述第一子分区中发光器件的连接线与位于所述第二子分区中的发光器件的连接线的延伸方向不同。
可选地,所述透光显示区的中心和所述透光显示区的边缘的连线为所述透光分区的对称轴,所述对称轴与所述第一方向平行或者垂直。
可选地,所述透光分区包括平行连接区和位于所述平行连接区远离所述中心一侧的斜向连接区;
所述至少一条连接线还包括第二走线,所述第二走线位于所述透光显示区中的至少部分线段与所述第一方向平行;
位于所述平行连接区内的至少一个第一发光器件与所述第二走线耦接,位于所述斜向连接区内的至少一个第一发光器件与所述第一走线耦接。
可选地,所述多个第一发光器件包括多组第一发光器件,所述多组第一发光器件中的每组第一发光器件沿第三方向延伸,且所述多组第一发光器件沿第四方向排布,所述第一方向、所述第二方向、所述第三方向和所述第四方向不重合;
所述多组第一发光器件中的一组第一发光器件可以包括沿所述第三方向排布的至少两个发光单元,所述发光单元包括至少一个第一发光器件,所述至少两个发光单元分别与位于不同层的所述连接线耦接。
可选地,所述至少一条连接线包括第三走线,所述第三走线包括位于所述透光显示区内的第四线段、第五线段和第六线段,以及位于所述常规显示区内的第七线段,所述第四线段、所述第五线段、所述第六线段和所述第七线段依次连接,所述第四线段与所述第一发光器件耦接,所述第七线段与所述第一像素驱动电路耦接,所述第四线段和所述第一方向之间的夹角大于0度且小于90度,所述第五线段和所述第一方向之间的夹角大于0度且小于90度。
可选地,所述第四线段和所述第五线段之间的夹角大于45度且小于135度。可选地,所述第四线段和所述第五线段之间的夹角为90度。
可选地,位于所述常规显示区中的多个第二发光器件的排布密度与位于所述透光显示区中的多个第一发光器件的排布密度相同。
可选地,所述多个第一发光器件通过所述多条连接线与所述多个第一像素驱动电路一一对应耦接。
可选地,所述多个第一发光器件中的至少两个第一发光器件通过至少两条所述连接线与所述多个第一像素驱动电路中的一个第一像素驱动电路耦接;
或者,所述多个第一发光器件中的一个第一发光器件通过至少两条所述连接线与所述多个第一像素驱动电路中的至少两个第一像素驱动电路耦接。
根据本申请的另一方面,提供了一种显示装置,所述显示装置包括:感光传感器和上述的显示面板,所述感光传感器的进光面在所述显示面板的衬底上的正投影至少部分位于所述透光显示区内。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图1是一种显示面板的结构示意图;
图2是图1示出的显示面板的透光显示区和常规显示区的线路连接示意图;
图3是本申请实施例提供的一种显示面板的俯视图;
图4是图3示出的显示面板的局部结构示意图;
图5是图3示出的显示面板中透光显示区中的第一发光器件和第一像素驱动电路的连接结构示意图;
图6是本申请实施例提供的一种透光分区的连接线结构示意图;
图7是本申请实施例提供的一种透光显示区的结构示意图;
图8是图7所示的显示面板中位于透光显示区的第一发光器件的结构示意图;
图9是一种第一发光器件的结构示意图;
图10是本申请实施例提供的一种分区示意图;
图11是本申请实施例提供的另一种透光显示区的结构示意图;
图12是本申请实施例示出的另一种透光显示区的结构示意图;
图13是本申请实施例示出的另一种透光显示区的结构示意图;
图14是本申请实施例示出的另一种透光显示区的结构示意图;
图15是本申请实施例提供的另一种透光显示区的布线示意图;
图16是图15所示的透光显示区的连接结构示意图;
图17是本申请实施例示出的另一种透光显示区的连线示意图;
图18是本申请实施例示出的另一种透光显示区的连线示意图;
图19是本申请实施例提供的另一种显示面板中的第一发光器件的结构示意图;
图20是本申请实施例另一种显示面板中的第一发光器件的结构示意图;
图21是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的各膜层结构示意图;
图22是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的结构示意图;
图23是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的电路示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。 这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前,为了提高显示装置的屏占比,可以将显示装置中的显示面板设计为局部透光的显示面板。显示装置中的感光传感器的感光面在显示面板上的正投影可以位于该局部透光的区域内,显示装置中的感光传感器位于与显示面板的显示面相对的一侧。示例性的,可以采用以下两种实施方式:
方式一,该显示面板具有:透光显示区和常规显示区。该透光显示区也可以称作屏下摄像头(英文:Full Display with Camera;简写:FDC)区域。常规显示区和透光显示区内均设置有多个发光器件,使得常规显示区和透光显示区均能够显示画面。
位于透光显示区中的多个发光器件,与位于透光显示区两侧的常规显示区中的多个像素驱动电路中的部分像素驱动电路一一对应耦接,该部分像素驱动电路用于控制透光显示区的画面显示。
其中,位于透光显示区中的多个发光器件可以通过多个连接线与对应的常规显示区中的多个像素驱动电路连接,其中,多个连接线中的每一条连接线的一部分位于透光显示区中,另一部分位于常规显示区中。
透光显示区具有多个出线口,该出线口为位于透光显示区中的多个发光器件连接的多个连接线从透光显示区延伸至常规显示区的位置,该多个出线口位于透光显示区靠近位于透光显示区两侧的常规显示区的边缘的位置处。
但是,上述的显示面板中的透光显示区中的发光器件对应的像素驱动电路位于透光显示区的两侧,导致透光显示区中的发光器件连接的连接线的出线口的数量较少,进而导致透光显示区周围的常规显示区的空间利用率较低。
方式二,该显示面板具有:显示区域以及位于所述显示区域外围的外围区域,该显示区域包括常规显示区和透光显示区。该常规显示区具有多个像素驱动电路以及多个发光器件,常规显示区的像素驱动电路可以一一对应的驱动常规显示区中的发光器件;透光显示区中具有多个发光器件,但透光显示区中的 发光器件对应的像素驱动电路位于外围区域中,由该外围区域中的像素驱动电路来驱动透光显示区中的发光器件。如此便可以避免像素驱动电路遮挡光线,使得透光显示区能够具有透光功能。
但是,位于外围区域中的像素驱动电路会使得显示面板的边框较大,使得显示面板的屏占比较小,显示面板的显示效果较差。
请参考图1,图1是一种显示面板的结构示意图。该显示面板10包括:透光显示区11和非透光的常规显示区12。
如图2所示,图2是图1示出的显示面板的透光显示区和常规显示区的线路连接示意图。透光显示区11内设置有第一发光器件111,常规显示区12内可以设置有与第一发光器件耦接的第一像素驱动电路121。其中,每个第一发光器件111与位于透光显示区11两侧的对应的第一像素驱动电路121组成一个第一像素单元,且每个第一发光器件111可以通过连接线13与位于透光显示区11两侧的第一像素驱动电路121对应耦接。
常规显示区12不仅包含了多个第一像素驱动电路121,还包含了多个第二像素单元(图中未示出,第二像素单元包括第二发光器件和第二像素电路)。
透光显示区11具有多个出线口A1,一行第一发光器件111连接的多条连接线13可以通过同一个出线口A1延伸出透光显示区11,并延伸至位于透光显示区11两侧的常规显示区12中。多个出线口A1位于透光显示区11靠近位于透光显示区两侧的常规显示区12的边缘的位置处。
但是,上述的显示面板10中位于透光显示区11的第一发光器件111连接的连接线13的延伸方向均平行于第一发光器件111的行方向,导致位于透光显示区11的第一发光器件111对应的连接线13的排布方式的灵活性较低。
并且,由于透光显示区11中的连接线13的排布数量受到透光显示区11的边缘的周长的限制,理想情况下,可以使得透光显示区11的边缘的一周上均排布有连接线13,以使得透光显示区11中的走线排布空间利用最大化,但是,如图2所示,当透光显示区11中的第一发光器件111连接的连接线13的仅以平行于第一发光器件111的行方向延伸时,透光显示区11的边缘上的A1区域并未排布连接线13,如此,导致透光显示区11中的布线空间的利用率较低。
图3是本申请实施例提供的一种显示面板的俯视图,图4是图3示出的显示面板的局部20A结构示意图,图5是图3示出的显示面板中透光显示区中的 第一发光器件和第一像素驱动电路的连接结构示意图。请参考图3、图4和图5。该显示面板20可以包括:衬底21,多个第一发光器件22、多个第一像素驱动电路23、多条连接线24、多个第二像素驱动电路25以及多个第二发光器件26。
衬底21可以具有透光显示区211,以及位于透光显示区211外围的常规显示区212。示例性的,常规显示区212可以围绕透光显示区211,即透光显示区211可以被常规显示区212包围。透光显示区211也可以设置在其他位置处,透光显示区211的设置位置可根据需要而定。例如,透光显示区211可以位于衬底21基板的顶部正中间位置处,也可以位于衬底21基板的左上角位置或右上角位置处。感光传感器(如,摄像头)等硬件可以设置于显示面板20的透光显示区211。透光显示区211可以为如图3所示的圆形,也可以为方形,还可以为六边形、梯形等其他形状,本申请实施例对此不作限制。
多个第一发光器件22可以位于透光显示区211内,多个第一像素驱动电路23可以位于常规显示区212内,多条连接线24可以位于衬底21上,连接线24的一部分可以位于透光显示区211内,另一部分可以位于常规显示区212内。即就是,位于透光显示区211中的多个发光器件22耦接的多条连接线24可以穿过透光显示区211的边缘处延伸出透光显示区211,并延伸至位于透光显示区211周围的常规显示区212中。多个第一个像素驱动电路23与多个第一发光器件22通过多条连接线24耦接,多个第一像素驱动电路23被配置为驱动多个第一发光器件22发光。
多个第二发光器件26和多个第二像素驱动电路25可以位于常规显示区212内。多个第二像素驱动电路25与多个第二发光器件26耦接,多个第二像素驱动电路25被配置为驱动多个第二发光器件26发光。
其中,多个第一发光器件22包括沿第一方向f1延伸,且沿第二方向f2排布的多组第一发光器件22a,多条连接线24中至少一条连接线24位于透光显示区211内的至少部分线段的延伸方向与第一方向f1之间具有锐角夹角α,第一方向f1和第二方向f2交叉。
需要说明的是,如图5所示,第一方向f1可以不特指某一个绝对方向,由于常规显示区212可以包围透光显示区211,因此多个第一像素驱动电路23可以位于透光显示区211的四周,多个第一像素驱动电路23也可以位于多个第一发光器件22的四周,第一方向f1可以指图4中的多个第一发光器件22的行方向或者列方向。示例性的,图5所示的透光显示区211包括围绕透光显示区211 的中心排布的四个透光分区2111(四个透光分区2111可以分别为:第一透光分区211a、第二透光分区211b、第三透光分区211c以及第四透光分区211d),第一透光分区211a和第二透光分区211b中的连接线24的排布方式可以沿透光显示区211的对称轴s1对称,该对称轴s1与第一方向f1之间的夹角可以为45度,第一透光分区211a和第二透光分区211b中的第一方向f1也可以沿该对称轴s1对称。如第一透光分区211a中的第一方向f1可以为多个第一发光器件22的行方向,第二透光分区211b中的第一方向f1可以为多个第一发光器件22的列方向。本申请实施例以第一透光分区211a为例进行说明,其他的透光分区中的连接线24的排布方式可以与第一透光分区211a中的连接线24的排布方式沿透光显示区211的对称轴对称。
如此,可以通过设置该锐角夹角α的值,灵活调节至少一条连接线24的延伸方向,可以灵活排布多条连接线24,使得显示面板20上的多条连接线24的排布方式的灵活性较高。
需要说明的是,图4和图5为了便于区分透光显示区211和常规显示区212,透光显示区211和常规显示区212的交界处的发光器件并未完全示出,在实际的显示面板中,透光显示区211和常规显示区212的交界处可以具有多个发光器件,且该多个发光器件可以属于透光显示区211或者常规显示区212。
示例的,每条连接线24中位于透光显示区211的部分可以由透光导电材料制成。这样,可以提高透光显示区211的透光率。为了简化该连接线24的制造工艺,该连接线24可以全部由透光导电材料制成。其中,该透光导电材料可以为氧化铟锡(英文:Indium tin oxide;简写:ITO)。
综上所述,本申请实施例提供了一种显示面板,包括:衬底以及位于衬底上的多个第一发光器件、多个第一像素驱动电路、多条连接线、多个第二发光器件以及多个第二像素驱动电路。位于透光显示区内的多个第一发光器件通过多条连接线与位于常规显示区内多个第一像素驱动电路耦接。其中,多条连接线中至少一条连接线位于透光显示区内的至少部分线段的延伸方向与第一方向之间具有锐角夹角,如此可以通过设置该锐角夹角的值,灵活排布多条连接线,使得显示面板上的多条连接线的排布方式较为灵活。可以解决相关技术中位于透光显示区的第一发光器件对应的连接线的排布方式的灵活性较低的问题,可以实现提高位于透光显示区中的第一发光器件对应的连接线的排布灵活性的效果。
需要说明的是,图4和图5中仅列出了位于透光显示区211中多个第一发光器件22中的部分第一发光器件22,对应的连接线24的走线方式。位于透光显示区211中其他的至少一个第一发光器件22对应的连接线24方式可以与这种走线方式相似。
其中,在本申请实施例中,第一发光器件22和第二发光器件26可以为有机发光二极管(英文:Organic Light-Emitting Diode;简写:OLED)发光器件。发光器件22可以包括:沿垂直且远离衬底21的方向层叠设置的第一电极、发光材料层和第二电极。第一电极可以为发光器件22的阳极,第二电极可以为发光器件22的阴极,阴极可以为整层结构。
第一发光器件22中的第一电极可以与连接线24耦接,以通过连接线24与对应的像素驱动电路耦接。图5中的第一发光器件22是以第一发光器件22的连接位置表示第一发光器件22。连接位置可以指第一发光器件22的第一电极和连接线24的连接位置。
可选地,如图6所示,图6是本申请实施例提供的一种透光分区的连接线结构示意图。图6中为了便于表示多个第一发光器件22的连接方式,仅示出了多个透光分区2111中的一个透光分区2111,其他的透光分区2111的连接方式与图6所示的透光分区2111的连接方式相同。多个第一发光器件22可以通过多条连接线24与多个第一像素驱动电路23一一对应耦接。即就是,每条连接线24的一端可以与位于透光显示区211内的一个第一发光器件22耦接,另一端可以与位于常规显示区212内的一个第一像素驱动电路23耦接。这样,每个第一发光器件22可以通过一条连接线24与一个第一像素驱动电路23耦接。
可选地,多个第一发光器件22中的至少两个第一发光器件22可以通过至少两条连接线24与多个第一像素驱动电路23中的一个第一像素驱动电路23耦接。即就是,至少两条连接线24的一端可以与位于透光显示区211内的至少两个第一发光器件22一一对应耦接,至少两条连接线24的另一端可以与位于常规显示区212内的一个第一像素驱动电路23耦接。这样,多个第一发光器件22可以通过多条连接线24与一个第一像素驱动电路23耦接。一个第一像素驱动电路23可以驱动多个第一发光器件22。
或者,多个第一发光器件22中的一个第一发光器件22可以通过至少两条连接线24与多个第一像素驱动电路23中的至少两个第一像素驱动电路23耦接。 这样,第一发光器件22可以通过多条连接线24与多个第一像素驱动电路23耦接。多个第一像素驱动电路23可以驱动一个第一发光器件22。
在一种可选地实施例中,如图6所示,至少一条连接线24可以包括第一走线241,第一走线241可以包括位于透光显示区211内的第一线段2411和位于常规显示区212内的第二线段2412,第一线段2411可以和第二线段2412连接,第一线段2411可以与第一发光器件22耦接,第二线段2412可以与第一像素驱动电路23耦接,第一线段2411和第一方向f1之间的夹角α可以大于0度且小于90度。或者,进一步的,第一线段2411和第一方向f1之间的夹角大于30度且小于70度。如此可以通过设置第一线段2411和第一方向f1之间的夹角α的值,灵活排布多条第一线段2411,使得显示面板上的多条第一线段2411的排布方式较为灵活。
可选地,第一走线241的第一线段2411和第一方向f1之间的夹角可以为45度。可以使得位于透光显示211中的多条第一走线241的第一线段2411的布线较为均匀且规整。
可选地,第一走线241的第一线段2411和第一走线241的第二线段2412之间的夹角β可以大于90度。示例性的,第一走线241的第一线段2411和第一走线241的第二线段2412之间的夹角β可以为145度。如此,可以使得位于常规显示区212中的第二线段2412能够沿远离透光显示区211的方向延伸,以与位于常规显示区212中的第一像素驱动电路23耦接。
在一种可选地实施例中,第一走线241还可以包括位于透光显示区211内的第三线段2413,第三线段2413的一端可以与第一线段2411耦接,第三线段2413的另一端与第一发光器件22耦接。由于多条第一线段2411可以在透光显示区211中沿垂直于第一线段2411的方向上平行排布,且与多条第一线段2411耦接的多个第一发光器件22在第一线段2411的延伸方向上可以排列为一行,因此,沿垂直于第一线段2411的方向上平行排布的多条第一线段2411与耦接的多个第一发光器件22之间的距离不同。可以通过多条第三线段2314将多条第一线段2411和多个第一发光器件22一一对应地耦接,以避免多条第一线段2411在垂直于衬底21的方向上重叠。其中,第三线段2413可以沿第二方向f2延伸。
其中,第二线段2412可以沿第一方向f1延伸,第一方向f1可以和第二方向f2交叉,进一步地,第一方向f1可以和第二方向f2垂直。
可选地,如图6所示,与多组第一发光器件22a中的一组发光器件22a中的多个第一发光器件22耦接的第三线段2413的长度,与第三线段2413和透光显示区211的边缘的最短距离正相关。即沿从透光显示区211的中心至透光显示区211的边缘的方向上,第三线段2413的长度越来越短。
可选地,如图6所示,至少一条连接线24还可以包括第二走线242,第二走线242位于透光显示区211中的至少部分线段与第一方向f1平行。即位于透光显示区211中的多个第一发光器件22耦接的多条连接线24可以包括至少部分线段的延伸方向与第一方向f1具有锐角夹角α的第一走线241,还可以包括至少部分线段的延伸方向与第一方向f1平行的第二走线242。可以进一步提高位于透光显示区211的第一发光器件22对应的连接线24布线的灵活性,并且,第二走线242可以布置在未布置第一走线241的走线空间中,可以进一步合理地利用显示面板20上透光显示区211中的走线空间。
示例性的,如图7所示,图7是本申请实施例提供的一种透光显示区的结构示意图。位于透光显示区211中的多个第一发光器件22对应的多条连接线24,可以从透光显示区211的边缘处延伸出透光显示区,由图7可知,透光显示区211的边缘的一周上均可以排布有连接线24,可以使得透光显示区211中的布线空间的利用率较高。
可选地,如图8所示,图8是图7所示的显示面板中位于透光显示区的第一发光器件的结构示意图。位于透光显示区211内的多个第一发光器件22中,至少两个相邻的第一发光器件22与连接线24的连接位置在第二方向f2上可以具有指定距离。
示例性的,两个相邻的第一发光器件22与连接线24的连接位置分别为第一连接位置K1和第二连接位置K2,与上述两个相邻的第一发光器件22相邻的一个发光器件的连接位置可以为K3,第一连接位置K1和第二连接位置K2在第二方向f2上具有指定距离D1,第三连接位置K3和第二连接位置K2在第二方向f2上也具有指定距离D1,其中,第二方向f2可以与第一方向f1垂直,则连接两个相邻的第一发光器件22的连接线24的走线空间可以为第二连接位置K2和第三连接位置K3之间的距离D2。
如图9所示,图9是一种第一发光器件的结构示意图,两个相邻的第一发光器件22与连接线24的连接位置在第二方向f2上的距离为零,则连接两个相邻的发光器件22的连接线24的走线空间可以为第二连接位置K2和第三连接位 置K3之间的距离D3。相较于图5中的发光器件对应的连接位置的设置情况,D2大于D3,即就是本申请实施例中的发光器件22之间的连接线24的走线空间较大。
如此,可以在多条连接线24中至少一条连接线24位于透光显示区211内的至少部分线段的延伸方向与第一方向f1之间具有锐角夹角α的情况下,使得位于透光显示区211中的连接线24的走线空间较大。
在一种可选地实施例中,如图10所示,图10是本申请实施例提供的一种分区示意图。透光显示区211可以具有多个透光分区2111,透光分区2111中具有多个第一发光器件22,多个透光分区2111的面积相同,且多个透光分区2111围绕透光显示区211的中心设置。透光分区2111中与第一发光器件22耦接的至少一条连接线24由透光显示区211的中心向透光显示区211的边缘延伸。
如此,可以使得多个透光分区2111中的第一发光器件22的数量基本一致,从而可以使得多个透光分区2111中的第一发光器件22对应的连接线24的长度的差值较小,进而可以使得透光显示区211的多个透光分区2111中的第一发光器件22的亮度均匀,以提高透光显示区211的显示效果。
示例性的,透光显示区211可以具有4个透光分区2111,透光分区2111的形状可以为三角形或扇形。当透光显示区211的形状为矩形时,透光分区2111的形状可以为三角形;当透光显示区211的形状为圆形时,透光分区2111的形状可以为扇形。多个透光分区2111可以围绕透光显示区211的中心设置,该中心可以指透光显示区211的两对角线交点或者圆心。
可选地,如图10所示,透光分区2111可以包括由透光显示区211的中心和透光显示区211的边缘的连线s2划分的第一子分区211x和第二子分区211y,即第一子分区211x和第二子分区211y相邻。
位于第一子分区211x中第一发光器件22的连接线24与位于第二子分区211y中的第一发光器件22的连接线24的延伸方向不同。示例性的,位于第一子分区211x中第一发光器件22的连接线24与至少一行第一发光器件22的第一方向f1之间具有锐角夹角α,位于第二子分区211y中第一发光器件22的连接线24与至少一行第一发光器件22的第一方向f1之间也具有锐角夹角α,则位于第一子分区211x中第一发光器件22的连接线24与位于第二子分区211y中的第一发光器件22的连接线24之间的夹角可以为2α。
可选地,如图10所示,透光显示区211的中心和透光显示区211的边缘的 连线s2为透光分区2111的对称轴,如此,透光分区2111中的第一子分区211x和第二子分区211y的面积可以相同,可以使得第一子分区211x和第二子分区211y中的发光器件22的数量基本一致,从而可以使得第一子分区211x和第二子分区211y中的发光器件22对应的连接线24的长度的差值较小,进而可以使得透光显示区211的第一子分区211x和第二子分区211y中的发光器件22的亮度均匀,以提高透光显示区211的显示效果。
对称轴与第一方向f1平行或者垂直。透光显示区211中可以具有多个透光分区2111,多个透光分区2111的多个对称轴可以相互平行或者垂直,如此,可以使得透光显示区211中的走线24的布局较为规整。
可选地,如图7所示,透光分区2111可以包括平行连接区C1和位于平行连接区C1远离中心一侧的斜向连接区C2。位于平行连接区C1内的至少一个第一发光器件22可以与第二走线242耦接,位于斜向连接区C2内的至少一个第一发光器件22可以与第一走线241耦接。多个第一发光器件22中靠近透光显示区211的中心的第一发光器件22可以与第二走线耦接。
可以理解的是,透光分区2111可以包括第一子分区211x和第二子分区211y,以及透光分区2111可以包括平行连接区C1和斜向连接区C2,为透光分区2111的两种划分方式,这两种划分方式可以同时存在透光分区2111中。示例性的,第一子分区211x可以包括第一平行连接区和第一斜向连接区,第二子分区211y可以包括第二平行连接区和第二斜向连接区。
由图7可知,位于斜向连接区C2中的第一发光器件22连接的第一走线241由透光显示区211的中心向透光显示区211的边缘延伸,如此,透光分区2111中的对称轴附近可以存在部分区域未布置斜向连接线,如图7中的区域E1,区域E1可以用于布置平行连接区C1中的第一发光器件22连接的第二走线242。如此,可以合理利用透光显示区211中的走线空间,相对于单一方向的走线,可以在相同的透光显示区的211下,排布更多的连接线24。
可选地,请参考图11、图12、图13和图14,图11是本申请实施例提供的另一种显示面板的结构示意图,图12、图13和图14是本申请实施例示出的另外三种透光显示区的结构示意图。需要说明的是,图12、图13和图14中为了便于表示每一个结构层的连接线连接的第一发光器件的位置,将不同层的连接线分为三幅示意图示出。多个第一发光器件22可以包括多组第一发光器件22a,多组第一发光器件22a中的每组第一发光器件22a可以沿第三方向f3延伸,且 多组第一发光器件22a可以沿第四方向f4排布,第一方向f1、第二方向f2、第三方向f3和第四方向f4可以不重合。
多组第一发光器件22a中的一组第一发光器件22a可以包括沿第三方向f3排布的至少两个发光单元,发光单元可以包括至少一个第一发光器件22,至少两个发光单元可以分别与位于不同层的连接线24耦接。
需要说明的是,本申请实施例中以至少两个发光单元包括第一发光单元22a1、第二发光单元22a2和第三发光单元22a3为例进行说明,至少两个发光单元还可以具有其他的发光单元,本申请实施例对此不进行限制。其中,第一发光单元22a1、第二发光单元22a2和第三发光单元22a3的连接的多条第一走线241可以分别为第一连接线组24a,第二连接线组24b以及第三连接线组24c,第一连接线组24a,第二连接线组24b以及第三连接线组24c分别位于衬底上的不同层。
可以按照第一发光单元22a1、第二发光单元22a2和第三发光单元22a3的顺序,分别布置其对应的第一连接线组24a,第二连接线组24b以及第三连接线组24c,第一连接线组24a,第二连接线组24b以及第三连接线组24c中的连接线可以为第一连接线241。如此,可以增加连接线24的走线空间,使位于不同层的连接线24可以具有各自的走线空间,相较于单层布线的布线方式,可以在有限的空间写布置较多的连接线24。
如图12所示,在布置有第一连接线组24a的一层布线空间中,透光分区2111中的对称轴s2附近可以存在部分区域E2未布置第一连接线组24a,该部分区域E2可以用于布置透光分区2111中的第二走线242。同理,如图13所示,在布置有第二连接线组24b的一层布线空间中,透光分区2111中的对称轴s2附近可以存在部分区域E3未布置第二连接线组24b,该部分区域E3可以用于布置透光分区2111中的第二走线242。如图14所示,在布置有第三连接线组24c的一层布线空间中,透光分区2111中的对称轴s2附近可以存在部分区域E4未布置第三连接线组24c,该部分区域E4可以用于布置透光分区2111中的第二走线242。
其中,上述各部分区域的面积大小为:E2>E3>E4。如此,部分区域E2中可以布置较多的第二走线242。
在一种可选地实施例中,如图7和图8所示,图8所示的第一发光器件22为图7所示的显示面板中的多个第一发光器件22中的8个第一发光器件22,透 光显示区211的形状可以为圆形,第一发光器件22的形状可以为矩形,或者说第一发光器件22所在的像素单元的形状为矩形,且该矩形的长宽比可以为2:1,矩形的长边垂直于第一方向f1。需要说明的是,本申请实施例中的第一发光器件22的形状还可以为六边形、梯形、椭圆以及圆形中的至少一种。一个第一发光器件22所在的像素单元的形状可以为矩形,图13中的矩形可以表示第一发光器件22所在的像素单元的形状,也可以表示第一发光器件22的阳极的形状,黑色圆点可以用于表示第一发光器件22和连接线24的连接位置,本申请实施例中为了便于表示第一发光器件22和连接线24的排布情况,在至少部分附图中以第一发光器件22和连接线24的连接位置(即黑色圆点)表示第一发光器件22。相邻的两个第一发光器件22与连接线24的连接位置在第二方向f2上可以具有指定距离X,相邻的两个第一发光器件22与连接线24的连接位置在第一方向f1上的距离为Y,则相邻的两个第一发光器件22分别与连接线24的连接位置之间的连线距离为Z,Z等于X加Y的和的平方根。如此,位于斜向连接区C2的第一发光器件22耦接的连接线24的走线空间可以为Z,相较于相关技术中走线空间为X或者Y,可以使得连接线24的走线空间较大,并且,透光显示区211中的多个第一发光器件22耦接的多条连接线24可以位于不同层,可以进一步增大连接线24的走线空间。
由于透光显示区211中的走线空间会限制连接线24的数量,从而会限制连接线24对应的发光器件22的数量,进一步会限制透光显示区211的面积(在发光器件22的排布密度不变的情况下,发光器件22的数量越多,透光显示区211的面积越大)。因此,上述连接线24分层设置以及连接线24沿多个方向延伸的布线方式可以使得透光显示区211中具有更多的布线空间,可以布置数量较多的连接线24,从而可以设置较多的第一发光器件22,进而解压使得透光显示区211的面积较大。
示例性的,在458ppi像素空间下(发光器件的尺寸为27.675μm×55.35μm),当透光显示区211中的第一发光器件22仅采用平行于第一方向f1的连接线24耦接位于透光显示区211两侧的第一像素驱动电路23时,可以在第一方向f1上设置42列第一发光器件22,其对应的透光显示区211的直径为2.325mm。当透光显示区211中的发光器件22对应的连接线24包括斜向连接区C2中的第一走线241以及平行连接区C1中的第二走线242时,沿第一方向f1可以设置48列第一发光器件22,对应的透光显示区211的直径为3.757mm,本申请实施 例中的透光显示区的面积相较于仅采用平行于第一方向f1的连接线24的布线方式中的透光显示区的面积增加了61.5%。
可选地,如图15和图16所示,图15是本申请实施例提供的另一种透光显示区的布线示意图,图16是图15所示的透光显示区的连接结构示意图。该透光显示区211的形状可以为八边形。至少一条连接线24还包括第三走线243,第三走线243可以包括位于透光显示区211内的第四线段2431、第五线段2432和第六线段3433,以及位于常规显示区内212的第七线段2434,第四线段2431、第五线段2432、第六线段2433和第七线段2434依次连接,第四线段2431与第一发光器件22耦接,第七线段2434与第一像素驱动电路23耦接,第四线段2431和第一方向f1之间的夹角θ1大于0度且小于90度,第五线段2432和第一方向f1之间的夹角θ2大于0度且小于90度。可以使得透光显示区211中的连接线24具有较多的布线方式,可以提高透光显示区211中连接线24的布线的灵活性。
可选地,第四线段2431和所述第五线段之间的夹角θ3大于45度且小于135度。进一步地,第四线段2431和第五线段2432之间的夹角θ3可以为90度。如此,可以使得透光显示区211中的第三走线243的布线较为规整。
示例性的,请参考图16、图17和图18,图17是本申请实施例示出的另一种透光显示区的连线示意图,图18是本申请实施例示出的另一种透光显示区的连线示意图。需要说明的是,图16、图17和图18中为了清楚的示出多个第一发光器件22的连接方式,仅示出了透光显示区211中部分区域的连接线24的连接情况,其他的区域的连接方式与图示的连接方式相同。
图16、图17和图18中,将连接不同层连接线24的第一发光器件22分为三幅图示出,图16示出了位于第一结构层201的多条连接线24耦接的多个第一发光器件22,图17示出了位于第二结构层202的多条连接线24耦接的多个第一发光器件22,图18示出了位于第三结构层203的多条连接线24耦接的多个第一发光器件22。位于第一结构层201的多条连接线24可以包括第一走线241和第三走线243,位于第二结构层202的多条连接线24可以包括第一走线241和第三走线243,且与第二结构层中202的第一走线241耦接的第一发光器件22,可以位于与第一结构层201中的第一走线241耦接的第一发光器件22靠近透光显示区211的中心的一侧。与第二结构层中202的第三走线243耦接的第一发光器件22,可以位于与第一结构层201中的第三走线243耦接的第一发光器件22远离透光显示区211的中心的一侧。
位于第三结构层203的多条连接线24可以包括第一走线241,与第三结构层中203的第一走线241耦接的第一发光器件22,可以位于与第二结构层202中的第三走线243耦接的第一发光器件22远离透光显示区211的中心的一侧,且位于与第二结构层202中的第一走线241耦接的第一发光器件22靠近透光显示区211的中心的一侧。
如此,显示面板20的同一个结构层中可以包括多种走线,可以提高透光显示区211中的第一发光器件耦接的连接线24的排布灵活性。
在一种可选地实施例中,请参考图19和图20,图19和图20是本申请实施例提供的另外两种显示面板中第一发光器件的结构示意图。如图19所示,位于透光显示区内一行的多个第一发光器件22中,至少两个相邻的第一发光器件22与连接线的连接位置K在第二方向f2上可以具有距离D4,第二方向f2可以垂直于第一方向f1,并且连接位置K均位于第一发光器件22的角部。
如图20所示,图20示出了第一发光器件22与连接线24的连接位置K的另一种设置方式,连接位置K可以均位于第一发光器件22的角部。如此,可以使得相邻的两个第一发光器件22之间的连线距离较大,进而使得相邻的两个第一发光器件22之间的连接线的走线空间较大。需要说明的是,本申请实施例中的第一发光器件22与连接线24的连接位置K并不仅限于图8、图19和图20中所示的连接位置K的设置方式,连接位置K还可以其他的设置方式,本申请实施例对此不做限制。
可选地,如图10所示,常规显示区212可以具有围绕透光显示区211分布的且与多个透光分区2111一一对应的多个常规子分区2121,常规子分区2121与对应的透光分区2111相邻。
透光分区2111的至少部分边缘与对应的常规子分区2121的至少部分边缘重合。可以使得多个透光分区2111中的第一发光器件对应的连接线的长度较短。
可选地,如图4所示,位于常规显示区212中的多个第二发光器件26的排布密度与位于透光显示区211中的多个第一发光器件22的排布密度相同。该排布密度相同可以指常规显示区212的单位面积内排布的第二发光器件26的数量,与透光显示区211中的单位面积内排布的第一发光器件22的数量相同。
如此,可以使得常规显示区212和透光显示区211的像素密度或者图像分辨率相同。可以使得常规显示区212和透光显示区211的显示效果接近。
其中,每英寸像素密度(英文:Pixel per inch;简写:PPI)也可以称作像 素密度单位,所表示的是显示区域中每英寸所拥有的像素数量。因此PPI的值越高,显示画面的细节就会越丰富。
图像分辨率(英文:Image Resolution)指图像中存储的信息量。可以以每英寸像素密度(PPI)来衡量。图像分辨率越高,该图像所包含的像素就越多,图像就越清晰。
请参考图21、图22和图23,在一种示例性的实现方式中,如图21所示,图21是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的各膜层结构示意图。第二像素驱动电路可以包括有源层图形341,第一导电图形342,第一导电图形342可以包括电容结构的第一极板3421,栅线301和栅极。第二导电图形343,第二导电图形343可以包括电容结构的第二极板3431。介质层344,介质层344上具有过孔3441。第三导电图形345,第三导电图形345可以包括电源线、源极和漏极。第四导电图案346,第四导电图案346可以包括数据信号线302。需要说明的是,本申请实施例中的第一像素驱动电路和第二像素驱动电路的结构可以相同。
在一种可选的实现方式中,如图22所示,图22是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的结构示意图。第二像素驱动电路可以包括第一薄膜晶体管T1,第二薄膜晶体管T2,第三薄膜晶体管T3,第四薄膜晶体管T4,第五薄膜晶体管T5,第六薄膜晶体管T6,第七薄膜晶体管T7以及电容结构Cst1。
其中,第一薄膜晶体管T1可以为第一初始薄膜晶体管,第二薄膜晶体管T2可以为补偿薄膜晶体管,第三薄膜晶体管T3可以为驱动薄膜晶体管,第四薄膜晶体管T4可以为数据写入晶体管,第五薄膜晶体管T5可以为操作控制薄膜晶体管,第六薄膜晶体管T6可以为发射控制薄膜晶体管,第七薄膜晶体管T7可以为第二初始薄膜晶体管。需要说明的是,T1~T7可以包括低温多晶硅薄膜晶体管(英文:Low Temperature Poly-Silicon;简写:LTPS)和/或氧化物薄膜晶体管(英文:oxide thin-film transistor;简写:O-TFT)。T1~T7也可以为其他类型的薄膜晶体管,本申请实施例在此不做限制。
如图23所示,图23是本申请实施例提供的一种第一像素电路或者第二像素驱动电路的电路示意图。第三薄膜晶体管T3的栅极连接第一节点N1,第三薄膜晶体管T3的源极连接第二节点N2,第三薄膜晶体管T3的漏极连接第三节点N3。
第四薄膜晶体管T4的栅极连接栅线(Gate)301,第四薄膜晶体管T4的源极连接数据信号线(Data)302,第四薄膜晶体管T4的漏极连接第二节点N2。
第二薄膜晶体管T2的栅极连接栅线301,第二薄膜晶体管T2的源极连接第三节点N3,第二薄膜晶体管T2的漏级连接第一节点N1。
第一薄膜晶体管T1的栅极连接复位信号线(Reset)303,第一薄膜晶体管T1的漏极连接第一参考信号线(Vinit)304-1,第一薄膜晶体管T1的源极连接第一节点N1。
第五薄膜晶体管T5的栅极和第六薄膜晶体管T6的栅极连接发光信号线(EM)305,第五薄膜晶体管T5的源极接入恒压高电位(VDD)306,第五薄膜晶体管T5的漏极连接第二节点N2,第六薄膜晶体管T6的源极连接第三节点N3,第六薄膜晶体管T6的漏极连接发光器件(OLED)307的阳极,发光器件307的阴极连接低电位(VSS)308。
第七薄膜晶体管T7的栅极连接栅线301,第七薄膜晶体管T7的漏级连接第二参考信号线304-2,第七薄膜晶体管T7的源级连接发光器件307的阳极。
电容结构Cst1的一端可以连接第一节点N1,电容结构Cst1的另一端可以连接恒压高电位306。
其中,第一参考信号线304-1和第二参考信号线304-2的电压值可以不同。示例性的,第一参考信号线304-1和第二参考信号线304-2的电压值相差1V~5V。
或者,第一参考信号线304-1和第二参考信号线304-2的可以连接同一个信号输入端。
需要说明的是,如在本说明书中,在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源极”及“漏极”的功能有时互相调换。因此,在本说明书中,“源极”和“漏极”可以互相调换。本申请实施例对此不做限制。
补偿薄膜晶体管T2可以分别与栅极驱动端、第一节点N1和第三节点N3电连接。补偿薄膜晶体管T2可以用于响应于栅极驱动信号,调节第一节点N1和第三节点N3的电位。栅极驱动端用于提供栅极驱动信号。
其中,第一节点N1可以与第三薄膜晶体管T3的栅极,第二薄膜晶体管T2的漏级,第一薄膜晶体管T1的漏极以及存储电容Cst1的一端连接。
综上所述,本申请实施例提供了一种显示面板,包括:衬底以及位于衬底 上的多个第一发光器件、多个第一像素驱动电路、多条连接线、多个第二发光器件以及多个第二像素驱动电路。位于透光显示区内的多个第一发光器件通过多条连接线与位于常规显示区内多个第一像素驱动电路耦接。其中,多条连接线中至少一条连接线位于透光显示区内的至少部分线段的延伸方向与第一方向之间具有锐角夹角,如此可以通过设置该锐角夹角的值,灵活排布多条连接线,使得显示面板上的多条连接线的排布方式较为灵活。可以解决相关技术中位于透光显示区的第一发光器件对应的连接线的排布方式的灵活性较低的问题,可以实现提高位于透光显示区中的第一发光器件对应的连接线的排布灵活性的效果。
本申请实施例还提供了一种显示装置,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置可以包括:感光传感器和上述任一实施例中的显示面板,该感光传感器可以为摄像头中的图像传感器、光线传感器或距离传感器等。其中,图像传感器可以用于人脸识别或者指纹识别等。感光传感器的进光面在显示面板的衬底上的正投影至少部分位于透光显示区内。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的 精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其特征在于,所述显示面板包括:
    衬底,所述衬底具有透光显示区以及至少部分围绕所述透光显示区的常规显示区;
    位于所述透光显示区内的多个第一发光器件、位于所述常规显示区内的多个第一个像素驱动电路、多个第二像素驱动电路以及多个第二发光器件,所述多个第一个像素驱动电路与所述多个第一发光器件通过多条连接线耦接,所述多个第一像素驱动电路被配置为驱动所述多个第一发光器件发光,所述多个第二像素驱动电路与所述多个第二发光器件耦接,所述多个第二像素驱动电路被配置为驱动所述多个第二发光器件发光;
    其中,所述多个第一发光器件包括沿第一方向延伸,且沿第二方向排布的多组第一发光器件,所述多条连接线中至少一条连接线位于所述透光显示区内的至少部分线段的延伸方向与所述第一方向之间具有锐角夹角,所述第一方向和所述第二方向交叉。
  2. 根据权利要求1所述的显示面板,其特征在于,所述至少一条连接线包括第一走线,所述第一走线包括位于所述透光显示区内的第一线段和位于所述常规显示区内的第二线段,所述第一线段和所述第二线段连接,所述第一线段与所述第一发光器件耦接,所述第二线段与所述第一像素驱动电路耦接,所述第一线段和所述第一方向之间的夹角大于0度且小于90度。
  3. 根据权利要求2所述的显示面板,其特征在于,所述第一线段和所述第一方向之间的夹角大于30度且小于70度。
  4. 根据权利要求2所述的显示面板,其特征在于,所述第一线段和所述第一方向之间的夹角为45度。
  5. 根据权利要求2所述的显示面板,其特征在于,所述第一线段和所述第二线段之间的夹角大于90度。
  6. 根据权利要求2所述的显示面板,其特征在于,所述第一走线还包括位于所述透光显示区内的第三线段,所述第三线段的一端与所述第一线段耦接,所述第三线段的另一端与所述第一发光器件耦接;
    所述第三线段沿所述第二方向延伸,所述第二线段沿所述第一方向延伸,所述第一方向和所述第二方向交叉。
  7. 根据权利要求6所述的显示面板,其特征在于,与所述多组第一发光器件中的一组发光器件中的多个第一发光器件耦接的第三线段的长度,与所述第三线段和透光显示区的边缘之间的最短距离正相关。
  8. 根据权利要求1所述的显示面板,其特征在于,所述至少一条连接线包括第二走线,所述第二走线位于所述透光显示区中的至少部分线段与所述第一方向平行。
  9. 根据权利要求1所述的显示面板,其特征在于,所述透光显示区具有多个透光分区,所述透光分区中具有多个所述第一发光器件,所述多个透光分区的面积相同,且所述多个透光分区围绕所述透光显示区的中心设置;
    所述透光分区中与所述第一发光器件耦接的至少一条连接线由所述透光显示区的中心向所述透光显示区的边缘延伸。
  10. 根据权利要求9所述的显示面板,其特征在于,所述透光分区包括由所述透光显示区的中心和所述透光显示区的边缘的连线划分的第一子分区和第二子分区,位于所述第一子分区中发光器件的连接线与位于所述第二子分区中的发光器件的连接线的延伸方向不同。
  11. 根据权利要求10所述的显示面板,其特征在于,所述透光显示区的中心和所述透光显示区的边缘的连线为所述透光分区的对称轴,所述对称轴与所述第一方向平行或者垂直。
  12. 根据权利要求9所述的显示面板,其特征在于,所述透光分区包括平行 连接区和位于所述平行连接区远离所述中心一侧的斜向连接区;
    所述至少一条连接线还包括第二走线,所述第二走线位于所述透光显示区中的至少部分线段与所述第一方向平行;
    位于所述平行连接区内的至少一个第一发光器件与所述第二走线耦接,位于所述斜向连接区内的至少一个第一发光器件与所述第一走线耦接。
  13. 根据权利要求1所述的显示面板,其特征在于,所述多个第一发光器件包括多组第一发光器件,所述多组第一发光器件中的每组第一发光器件沿第三方向延伸,且所述多组第一发光器件沿第四方向排布,所述第一方向、所述第二方向、所述第三方向和所述第四方向不重合;
    所述多组第一发光器件中的一组第一发光器件可以包括沿所述第三方向排布的至少两个发光单元,所述发光单元包括至少一个第一发光器件,所述至少两个发光单元分别与位于不同层的所述连接线耦接。
  14. 根据权利要求1所述的显示面板,其特征在于,所述至少一条连接线包括第三走线,所述第三走线包括位于所述透光显示区内的第四线段、第五线段和第六线段,以及位于所述常规显示区内的第七线段,所述第四线段、所述第五线段、所述第六线段和所述第七线段依次连接,所述第四线段与所述第一发光器件耦接,所述第七线段与所述第一像素驱动电路耦接,所述第四线段和所述第一方向之间的夹角大于0度且小于90度,所述第五线段和所述第一方向之间的夹角大于0度且小于90度。
  15. 根据权利要求14所述的显示面板,其特征在于,所述第四线段和所述第五线段之间的夹角大于45度且小于135度。
  16. 根据权利要求15所述的显示面板,其特征在于,所述第四线段和所述第五线段之间的夹角为90度。
  17. 根据权利要求1所述的显示面板,其特征在于,位于所述常规显示区中 的多个第二发光器件的排布密度与位于所述透光显示区中的多个第一发光器件的排布密度相同。
  18. 根据权利要求1所述的显示面板,其特征在于,所述多个第一发光器件通过所述多条连接线与所述多个第一像素驱动电路一一对应耦接。
  19. 根据权利要求1所述的显示面板,其特征在于,所述多个第一发光器件中的至少两个第一发光器件通过至少两条所述连接线与所述多个第一像素驱动电路中的一个第一像素驱动电路耦接;
    或者,所述多个第一发光器件中的一个第一发光器件通过至少两条所述连接线与所述多个第一像素驱动电路中的至少两个第一像素驱动电路耦接。
  20. 一种显示装置,其特征在于,所述显示装置包括:感光传感器和权利要求1至19任一所述的显示面板,所述感光传感器的进光面在所述显示面板的衬底上的正投影至少部分位于所述透光显示区内。
PCT/CN2022/092606 2022-05-13 2022-05-13 显示面板和显示装置 WO2023216212A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/092606 WO2023216212A1 (zh) 2022-05-13 2022-05-13 显示面板和显示装置
CN202280001204.XA CN117426154A (zh) 2022-05-13 2022-05-13 显示面板和显示装置
PCT/CN2022/120574 WO2023216492A1 (zh) 2022-05-13 2022-09-22 显示基板及显示装置
CN202280003256.0A CN117413630A (zh) 2022-05-13 2022-09-22 显示基板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092606 WO2023216212A1 (zh) 2022-05-13 2022-05-13 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023216212A1 true WO2023216212A1 (zh) 2023-11-16

Family

ID=88729438

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/092606 WO2023216212A1 (zh) 2022-05-13 2022-05-13 显示面板和显示装置
PCT/CN2022/120574 WO2023216492A1 (zh) 2022-05-13 2022-09-22 显示基板及显示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120574 WO2023216492A1 (zh) 2022-05-13 2022-09-22 显示基板及显示装置

Country Status (2)

Country Link
CN (2) CN117426154A (zh)
WO (2) WO2023216212A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785761A (zh) * 2020-07-20 2020-10-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN111834425A (zh) * 2020-07-02 2020-10-27 合肥维信诺科技有限公司 显示面板及显示装置
CN112186021A (zh) * 2020-09-30 2021-01-05 武汉天马微电子有限公司 显示面板及显示装置
CN112562586A (zh) * 2020-08-28 2021-03-26 京东方科技集团股份有限公司 显示面板及显示装置
CN113035131A (zh) * 2019-12-24 2021-06-25 乐金显示有限公司 有机发光显示装置
CN113035129A (zh) * 2019-12-24 2021-06-25 乐金显示有限公司 有机发光显示装置
CN113380196A (zh) * 2020-03-10 2021-09-10 三星显示有限公司 显示装置及驱动显示装置的方法
CN113380190A (zh) * 2021-06-07 2021-09-10 Oppo广东移动通信有限公司 显示面板和显示设备
CN113540175A (zh) * 2020-04-22 2021-10-22 三星显示有限公司 显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210516000U (zh) * 2019-09-26 2020-05-12 昆山国显光电有限公司 显示基板及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035131A (zh) * 2019-12-24 2021-06-25 乐金显示有限公司 有机发光显示装置
CN113035129A (zh) * 2019-12-24 2021-06-25 乐金显示有限公司 有机发光显示装置
CN113380196A (zh) * 2020-03-10 2021-09-10 三星显示有限公司 显示装置及驱动显示装置的方法
CN113540175A (zh) * 2020-04-22 2021-10-22 三星显示有限公司 显示装置
CN111834425A (zh) * 2020-07-02 2020-10-27 合肥维信诺科技有限公司 显示面板及显示装置
CN111785761A (zh) * 2020-07-20 2020-10-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN112562586A (zh) * 2020-08-28 2021-03-26 京东方科技集团股份有限公司 显示面板及显示装置
CN112186021A (zh) * 2020-09-30 2021-01-05 武汉天马微电子有限公司 显示面板及显示装置
CN113380190A (zh) * 2021-06-07 2021-09-10 Oppo广东移动通信有限公司 显示面板和显示设备

Also Published As

Publication number Publication date
CN117413630A (zh) 2024-01-16
CN117426154A (zh) 2024-01-19
WO2023216492A1 (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7329685B2 (ja) 表示パネル
US11943986B2 (en) Display substrate, display panel and display device
CN112151592B (zh) 显示面板及显示装置
US20230354656A1 (en) Display panel and display device
US20230337492A1 (en) Array substrate, display panel and display device
CN113410257B (zh) 阵列基板、显示面板及显示装置
US20230343794A1 (en) Array substrate, display panel, and display device
WO2022001435A1 (zh) 显示基板和显示装置
WO2021238490A1 (zh) 显示基板和显示装置
CN110085645B (zh) 显示装置
WO2023202419A1 (zh) 显示面板和显示装置
KR20230107379A (ko) 어레이 기판, 표시 패널 및 표시 장치
US20230337494A1 (en) Display panel and display apparatus
US20230402467A1 (en) Array substrate, display panel and display apparatus
EP3767682B1 (en) Display device and method of fabricating the same
WO2023065672A1 (zh) 显示面板及显示装置
CN113241031B (zh) 显示面板及显示装置
CN113764501A (zh) 显示面板及显示装置
WO2023216212A1 (zh) 显示面板和显示装置
JP2024517206A (ja) 表示パネル及び表示装置
WO2023123138A1 (zh) 显示面板及显示装置
WO2023240456A1 (zh) 显示基板和显示装置
WO2023178619A1 (zh) 显示面板和显示装置
WO2023142305A1 (zh) 显示面板和显示装置
WO2022252064A1 (zh) 显示基板和显示装置