WO2023216184A1 - 一种核酸扩增用卡盒 - Google Patents

一种核酸扩增用卡盒 Download PDF

Info

Publication number
WO2023216184A1
WO2023216184A1 PCT/CN2022/092433 CN2022092433W WO2023216184A1 WO 2023216184 A1 WO2023216184 A1 WO 2023216184A1 CN 2022092433 W CN2022092433 W CN 2022092433W WO 2023216184 A1 WO2023216184 A1 WO 2023216184A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
plunger
cartridge
nucleic acid
acid amplification
Prior art date
Application number
PCT/CN2022/092433
Other languages
English (en)
French (fr)
Inventor
蒋太交
耿鹏
李胜光
张辉
梁松松
马然
Original Assignee
广州国家实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州国家实验室 filed Critical 广州国家实验室
Priority to PCT/CN2022/092433 priority Critical patent/WO2023216184A1/zh
Publication of WO2023216184A1 publication Critical patent/WO2023216184A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • the present disclosure relates to the technical field of biomedical instruments, and specifically to a cartridge for nucleic acid amplification.
  • PCR reaction also known as polymerase chain reaction, is a molecular biology technology that amplifies specific nucleic acid fragments.
  • PCR technology is widely used in life science fields, such as genome cloning, DNA sequencing, gene expression, medicine, etc.
  • the biggest feature of PCR is that it uses polymerase and primers to use trace amounts of nucleic acids in the instrument to amplify nucleic acids in almost unlimited amounts. Almost all current nucleic acid tests use this method. It is fast and accurate, and it takes no more than two hours from getting the sample to getting the result. Since the outbreak of the new coronavirus, PCR has become the most important method for detecting coronavirus.
  • cartridges or kits used for nucleic acid amplification.
  • the existing technology provides a plunger-type nucleic acid amplification cartridge, but it can only achieve a single nucleic acid elution, and it is difficult to quantify, and the liquid needs to be transferred. There are many problems in the process such as difficulty in accurately transferring air.
  • the present disclosure provides a cartridge for nucleic acid amplification.
  • the cartridge in the present disclosure includes: a cartridge body and a chamber air pressure balancing device; the cartridge body includes a plurality of first chambers and a cartridge base; the plurality of first chambers are arranged on the cartridge base; A first plunger chamber is provided on the cartridge base, each of the plurality of first chambers is connected to the first plunger chamber through an independent first chamber liquid path; and a first plunger assembly,
  • the first plunger assembly includes a first plunger barrel and a first plunger.
  • the first plunger barrel is provided with a first plunger barrel liquid path.
  • the first plunger barrel can be configured along the first plunger chamber. Move in the direction of the longitudinal axis; the chamber air pressure balancing device balances the air pressure in the plurality of first chambers.
  • nucleic acid amplification cartridge provided by the present disclosure, multiple nucleic acid elutions can be achieved, which avoids the loss of magnetic beads during the transfer process. At the same time, it can avoid cross-talk between pre-stored liquids in each chamber during transportation. Liquid phenomenon, in addition, the chamber air pressure balance device can achieve air pressure balance between each chamber to facilitate the transfer of liquid.
  • the plurality of first chambers include a sample loading chamber, a waste liquid chamber, a lysis liquid chamber, at least one washing liquid chamber, an eluate liquid chamber, and a mixing chamber.
  • a magnetic element accommodation space is provided between the mixing chamber and the first plunger chamber.
  • the chamber air pressure balancing device includes a gas path plate and a puncture plate.
  • the gas path plate is provided with a gas path channel and a puncture chamber.
  • the gas path channel is connected with the puncture chamber to form a gas path.
  • Channel, the piercing member on the piercing plate can move up and down along the piercing cavity.
  • an isolation seal is provided between the first chamber and the puncture chamber; the puncture member moves downward through the puncture chamber to pierce the isolation seal to connect the chamber and the puncture chamber.
  • the gas channel is provided between the first chamber and the puncture chamber; the puncture member moves downward through the puncture chamber to pierce the isolation seal to connect the chamber and the puncture chamber.
  • the isolation seal is disposed on the top of the first chamber or the bottom surface of the manifold plate.
  • the piercing member is further provided with a sealing member.
  • the sealing member includes an annular member, the piercing member is provided with grooves matching the number of the annular members, and the annular member is adapted in the groove.
  • the chamber air pressure balancing device includes a gas path plate, and a gas path channel is provided on the top surface of the gas path plate.
  • the chamber gas pressure balancing device further includes a gas switch valve to control the transfer of gas from one chamber to another chamber through the gas path channel.
  • the gas switching valve includes a plunger and a sealing ring.
  • the plunger is disposed below the gas circuit plate.
  • the sealing ring is disposed at the top of the first chamber.
  • the plunger gas flow path includes a through hole provided on the side wall of the plunger and a blind hole provided on the plunger, wherein the through hole communicates with the blind hole to form a gas flow path.
  • the cartridge further includes a stroke control element to control the movement of the plunger.
  • the stroke control element includes a cylinder provided on the cartridge body, and a through hole is provided on the air circuit board to cooperate with the cylinder.
  • the column includes a first column and a second column, and there is a gap between the first column and the second column.
  • a first stroke control element and a second stroke control element are provided on the cylinder.
  • the stroke control element includes a ""-shaped raised structure provided on the bottom surface of the manifold plate.
  • the raised structure includes a first flange and a second flange.
  • the first flange There is a gap between the first chamber and the second flange, and a cavity is provided between at least two adjacent chambers among the plurality of chambers of the first chamber.
  • At least one set of flange receiving grooves is provided on the inner wall of the cavity.
  • a sealing cover is provided on the gas circuit board to seal the sample loading chamber.
  • an air inlet channel is provided on the cartridge body, and the air inlet channel is connected with the first plunger chamber.
  • the cartridge further includes a collection device that is connected to the first plunger chamber through a collection device liquid path.
  • a sealing shell is provided on the outer surface of the first plunger barrel.
  • the cartridge body further includes a plurality of second chambers and a second plunger chamber, wherein each of the second chambers communicates with the second column through an independent second chamber liquid path.
  • the plug chamber is connected; a second plunger assembly, wherein the second plunger assembly includes a second plunger barrel and a second plunger, and the second plunger barrel can move relative to the longitudinal axis direction of the second plunger chamber;
  • a second plunger barrel liquid path is provided on the wall of the second plunger barrel.
  • a quantitative cell is provided on the second plunger barrel, and the first plunger chamber and the second plunger chamber are connected through a transition liquid path provided on the cartridge base.
  • the plurality of second chambers include secondary reagent chambers and sealed reagent chambers.
  • a sealing reagent is prestored in the sealing reagent chamber, and the sealing reagent is at least one of mineral oil, silicone oil, fluorocarbon oil, vegetable oil, and liquid paraffin.
  • the second plunger barrel is provided with a second plunger barrel liquid path, and the second plunger chamber is provided with an overflow channel.
  • the first plunger and the second plunger may move synchronously.
  • an exhaust channel may also be provided on the cartridge base, one end of the exhaust channel is connected to the first plunger chamber, and the other end is connected to the collection device.
  • the cartridge base is also provided with a push-back liquid path, and the push-back fluid path is connected to the first plunger chamber and the second plunger chamber respectively.
  • a secondary reagent loading tube is provided on the side wall of the secondary reagent chamber, and a sealing plug is connected to the secondary reagent loading tube.
  • Figure 1 shows a schematic structural diagram of a cartridge for nucleic acid amplification according to the present disclosure.
  • Figure 2 shows an axial view of a cartridge for nucleic acid amplification according to the present disclosure.
  • Figure 3A shows a schematic structural diagram of the first plunger barrel of the nucleic acid amplification cartridge according to the present disclosure.
  • FIG. 3B shows another embodiment structural diagram of the first plunger barrel of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 4 shows a schematic structural diagram of a chamber air pressure balancing device of a nucleic acid amplification cartridge according to the present disclosure.
  • Figure 5 shows a schematic structural detail of a chamber air pressure balancing device of a nucleic acid amplification cartridge according to the present disclosure.
  • Figure 6 shows a puncture diagram of the chamber air pressure balancing device of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 7 shows a schematic structural diagram of yet another embodiment of a chamber air pressure balancing device of a nucleic acid amplification cartridge according to the present disclosure.
  • Figure 8 shows a schematic structural diagram of a stroke element of a chamber air pressure balancing device of a nucleic acid amplification cartridge according to the present disclosure.
  • Figure 9 shows a schematic structural diagram of the cylinder of the chamber pressure balancing device of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 10 shows yet another structural schematic diagram of the cylinder of the chamber pressure balancing device of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 11 shows another structural schematic diagram of the stroke element of the chamber air pressure balancing device of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 12 shows a schematic assembly diagram of yet another structure of the stroke element of the chamber air pressure balancing device of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 13 shows a schematic structural diagram of yet another embodiment of a cartridge for nucleic acid amplification according to the present disclosure.
  • Figure 14 shows a schematic diagram of the assembly structure of yet another embodiment of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 15 shows a schematic structural diagram of the second plunger assembly of the nucleic acid amplification cartridge according to the present disclosure.
  • Figure 16 shows a schematic structural diagram of a quantitative state of yet another embodiment of the cartridge for nucleic acid amplification of the present disclosure.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
  • the present disclosure is made to address, at least in part, problems in the prior art identified by the inventors.
  • the nucleic acid amplification device of the prior art can only achieve a single elution of nucleic acid, and is difficult to quantify. It is difficult to accurately transfer air during the liquid transfer process. Therefore, the present disclosure provides a nucleic acid amplification device. Add a card cassette to solve the above problems.
  • the nucleic acid amplification cartridge includes: a cartridge body and a chamber pressure balance device; the cartridge body includes a plurality of first chambers and a cartridge base; A plurality of first chambers are provided on the cartridge base, and a first plunger chamber is provided on the cartridge base. Each of the plurality of first chambers communicates with the said cartridge through an independent first chamber liquid path.
  • the first plunger chamber is connected; and the first plunger assembly, wherein the first plunger assembly includes a first plunger barrel and a first plunger, and a first plunger barrel liquid path is provided on the first plunger barrel,
  • the first plunger barrel can move along the longitudinal axis direction of the first plunger chamber; the chamber air pressure balancing device balances the air pressure in the plurality of first chambers.
  • the chamber air pressure balance device can achieve air pressure balance between each chamber to facilitate the transfer of liquid.
  • a cartridge 100 for nucleic acid amplification is provided.
  • the cartridge 100 includes a cartridge body 1 and a chamber pressure balance device 2, wherein the cartridge body 1 includes a plurality of third A chamber 10 and a cartridge base 11.
  • a plurality of first chambers 10 are provided on the cartridge base 11.
  • a first plunger chamber 111 is provided on the cartridge base 11.
  • the plurality of first chambers 10 are Each is communicated with the first plunger chamber 111 through an independent first chamber liquid path; and the first plunger assembly 3.
  • the first plunger assembly 3 includes a first plunger barrel 31 and a first plunger 32.
  • the plunger barrel 31 is provided with a first plunger barrel liquid path, and the first plunger barrel 31 can move along the longitudinal axis 1111 of the first plunger chamber 111; wherein the chamber air pressure balancing device 2 balances multiple first chambers air pressure in room 10.
  • the plurality of first chambers 10 include a sample loading chamber 101, a waste liquid chamber 102, a lysate chamber 103, at least one washing liquid chamber 104, an eluent chamber 105 and a mixing chamber 106.
  • a sample loading chamber 101 a waste liquid chamber 102
  • a lysate chamber 103 at least one washing liquid chamber 104
  • an eluent chamber 105 and a mixing chamber 106.
  • the lysis solution chamber 103, at least one washing solution chamber 104, and the eluent chamber 105 respectively store lysis solution, washing solution, and eluent for nucleic acid extraction
  • the mixing chamber 106 stores a magnetic bead solution in advance.
  • the cartridge body 1 is provided with a plurality of independent liquid paths corresponding to the sample loading chamber 101, the waste liquid chamber 102, the lysis liquid chamber 103, at least one washing liquid chamber 104, the eluent liquid chamber 105 and the mixing chamber 106. To communicate each of the aforementioned chambers with the first plunger chamber 111 .
  • the liquid path corresponding to the sample loading chamber 101 is the sample loading chamber liquid path 1011
  • the liquid path corresponding to the waste liquid chamber 102 is the waste liquid chamber liquid path 1021
  • the liquid path corresponding to the lysis liquid chamber 103 is The path is the lysis liquid chamber liquid path 1031
  • the liquid path corresponding to the first washing liquid chamber 1041 is the first washing liquid chamber liquid path 10411
  • the liquid path corresponding to the second washing liquid chamber 1042 is the second washing liquid chamber liquid path 10421.
  • the liquid path corresponding to the dehydration chamber 105 is the eluent chamber liquid path 1051
  • the liquid path corresponding to the mixing chamber 106 is the mixing chamber liquid path 1061.
  • each liquid path can be formed on the outer surface of the cartridge body 1 through micro-nano processing, and then can be formed by bonding a sealing film on the surface of the cartridge body 1 .
  • the ports of all the liquid paths of the first chamber on the cartridge body 1 are on a straight line, where the straight line is along the first plunger chamber 111
  • the longitudinal axis direction 1111 is determined.
  • all liquid channels are micron-level liquid channels and can be formed through micro-nano processing.
  • the first plunger barrel 31 is provided with a first plunger barrel liquid path 311.
  • the first plunger barrel liquid path 311 can be connected to the first plunger barrel by providing a gap on the side wall of the first plunger barrel. A through hole connecting the plunger barrel cavity is formed.
  • the first plunger cylinder liquid path 311 is not aligned with the fluid path of any first chamber.
  • the ports of all the liquid paths in the first chamber are sealed by the first plunger cylinder wall.
  • the liquid pre-existing in the first chamber is prevented from flowing out.
  • the first plunger barrel 31 can move back and forth along the direction of the longitudinal axis 1111 of the first plunger chamber 111 under the action of external force, so that the first plunger barrel liquid path 311 can be aligned with the port of the liquid path of any first chamber.
  • the first plunger 32 is pulled backward to suck the liquid in the aligned first chamber into the plunger barrel, and then the first plunger 32 is moved again.
  • Plunger barrel 31 align the first plunger barrel liquid path 311 with the port of the required liquid path of the first chamber, push the first plunger 32, and transfer the liquid in the first plunger barrel 311 to the desired chamber.
  • the sample solution in the sample loading chamber 101 is transferred to the mixing chamber 106 as an illustration.
  • the first plunger barrel 31 can move along the first plunger chamber under the action of an external force such as a motor.
  • the 111 moves its longitudinal axis so that the first plunger tube liquid path 311 is aligned with the liquid outlet of the sample loading chamber liquid path 1011, and then the first plunger 32 is pulled backward to aspirate the sample solution in the sample loading chamber 101 into the first plunger barrel 31.
  • the liquid outlets of the remaining liquid channels of the first chamber are sealed by the barrel wall of the first plunger barrel 31, and the liquid in the chamber cannot flow out.
  • the plug cylinder 31 aligns the first plunger cylinder liquid path 311 with the liquid outlet of the mixing chamber liquid path 1061.
  • the sample solution in the first plunger cylinder 31 can be transferred to the mixing chamber 106. . If repeated suction is required, repeat the above steps multiple times to achieve repeated suction.
  • a magnetic element accommodating space 12 can also be provided between the mixing chamber 106 and the first plunger chamber 111 so that the magnetic element can magnetically attract the magnetic beads in the mixing chamber 106 .
  • Figures 4-6 show a first embodiment of a chamber pressure balancing device.
  • the chamber air pressure balancing device 2 includes a gas path plate 21 and a puncture plate 22.
  • the gas path plate 21 is provided with a gas path channel 211 and a plurality of puncture cavities 212.
  • the gas path channel 211 is a micron-level channel, as For example, a gas path groove can be formed on the surface of the gas path plate 21 through micro-nano processing, and then a film is applied to seal the gas path groove to form a gas path channel.
  • Each puncture chamber 212 communicates with the air path channel 211. Specifically, as shown in FIG. 5, each puncture chamber 212 communicates with the air path channel 211 through an intermediate channel 2121.
  • the puncture member 221 on the puncture plate 22 can move up and down along the puncture cavity 212 driven by external force.
  • the chamber air pressure balance device 2 is installed on the cartridge. Specifically, with reference to Figure 4, the air circuit plate 21 is installed on the top of the cartridge body 1, and each puncture chamber 212 is connected to the sample removal chamber 101 in the first chamber.
  • Other chambers such as the waste liquid chamber 102, the lysis liquid chamber 103, at least one washing liquid chamber 104, the eluent liquid chamber 105 and the mixing chamber 106 correspond to each other.
  • isolation seals such as sealing films, etc. (not shown in the figure) are provided between the waste liquid chamber 102, the lysate chamber 103, at least one washing liquid chamber 104, the eluent chamber 105, the mixing chamber 106 and the puncture chamber 212.
  • the required liquid can be stored in each chamber in advance during production without cross-contamination.
  • the sealing isolator may be an aluminum film or a PP film.
  • the isolation seal may be disposed on the top of the first chamber, or the isolation seal may be disposed on the bottom surface of the manifold plate 21 .
  • the piercing member 221 on the piercing plate 22 can move up and down along the piercing cavity 212 when driven by external force.
  • the piercing member 221 moves downward along the piercing cavity 212, it can pierce the sealing isolator when it moves to a certain position.
  • the gaps can allow gas to pass through, thus connecting the first chamber to the gas channel 211, so that the gas in each chamber of the first chamber can flow from door to door, balancing the air pressure in each chamber, and facilitating the flow of liquid. transfer.
  • the puncture member is provided with at least one groove to facilitate gas transfer.
  • the piercing member 221 has a piercing rod 2211 and a piercing tip 2212 provided at the end of the piercing rod 2211.
  • the piercing tip 2212 may be tapered, and at least one groove is provided along the radial direction of the tapered piercing tip 2212 (in the figure). (not shown) to facilitate gas transfer from the first chamber to the gas path channel 211 through the groove during puncture.
  • each puncture member 221 is also provided with a sealing member 222.
  • the sealing member 222 can seal the puncture cavity 212 after the puncture member 221 enters the puncture cavity 212 to prevent gas from leaking from the puncture site.
  • FIG. 6 shows the state when the piercing member 221 pierces the isolation seal assembly.
  • the diameter of the sealing member 222 matches the diameter of the first chamber, so that the first chamber can be sealed.
  • the sealing member 222 may include annular members. Two annular members are shown in the figure, but those skilled in the art can understand that the number of annular members may also be Other numbers, such as 1, 3 or more.
  • the puncture rod 2211 is provided with grooves 22111 that match the number of ring members. Each ring member can fit in the groove 22111. When the ring member fits in the groove 22111, as shown in Figure 6 , its diameter is slightly larger than the diameter of the puncture rod to seal the first chamber.
  • Figures 7-9 illustrate a second embodiment of a chamber pressure balancing device.
  • the chamber air pressure balancing device 4 includes a gas path plate 41, and a gas path channel 411 is provided on the top surface of the gas path plate 41.
  • the chamber gas pressure balancing device also includes a gas switching valve to control the transfer of gas from one chamber to another chamber through the gas path channel 411.
  • the gas switching valve includes a plunger 42 and a sealing ring 43.
  • the plunger 42 is set on the bottom surface of the gas circuit plate 41, and the sealing ring 43 is set on the top of the first chamber. When the plunger 42 moves downward, it is embedded in the first chamber.
  • the sealing ring 43 at the top of the chamber moves to a designated position, the plunger gas flow path 421 of the plunger 42 is connected to the first chamber.
  • the plunger gas flow path 421 is connected to the gas path channel 411 through the intermediate flow path 412, whereby the gas path channel 411 can be connected to each chamber of the first chamber, realizing gas transfer between each chamber, and finally achieving Air pressure is balanced within each chamber to facilitate liquid transfer.
  • the plunger gas flow path 421 includes a plunger through hole 4211 provided on the side wall of the plunger and a blind hole 4212 provided on the plunger, wherein the plunger through hole 4211 is connected with the blind hole 4212 .
  • the holes 4212 are connected to form a plunger gas flow path 421, in which the open end of the blind hole 4212 is connected to the middle flow path 412.
  • the air passage 411 on the air passage plate 41 is not connected to each plunger 42.
  • the sample loading chamber 101 The corresponding plunger is not provided with a plunger gas flow path 421, but is provided with a second gas path 15 on the cartridge body 1 to connect the sample loading chamber 101 and the waste liquid chamber 102.
  • the sample adding chamber plunger corresponding to the sample adding chamber 101 is provided with a sample adding chamber plunger gas flow path 422, and the waste liquid chamber plunger corresponding to the waste liquid chamber 102 is provided with a waste liquid chamber plunger gas flow path 423.
  • the sample adding chamber plunger gas flow path 422 and the waste liquid chamber plunger gas flow path 423 can be formed by processing a through hole on the plunger that communicates with the plunger chamber, and the waste liquid chamber plunger gas flow path 423 is provided on the plunger. Above the through hole 4211, the sample loading chamber plunger gas flow path 422 and the waste liquid chamber plunger gas flow path 423 can connect the sample loading chamber 101 and the waste liquid chamber 102 through the second gas path 15 to maintain the two. air pressure balance between them. As mentioned above, when the plunger 42 moves downward to embed the sealing ring 43 at the top of the first chamber and moves to a designated position, the plunger gas flow path 421 of the plunger 42 is connected to the first chamber, and at this time the sample is added.
  • the sample chamber plunger gas flow path 422 and the waste liquid chamber plunger gas flow path 423 are respectively connected with the second gas path 15, so that the pressure between the sample loading chamber 101 and the waste liquid chamber 102 can be balanced.
  • this implementation has a simple process and lower cost.
  • the cartridge may also include a stroke control element to control the movement of the plunger, especially the formation of downward movement of the plunger.
  • Figures 8-9 illustrate a specific embodiment of the stroke control element.
  • the stroke control element includes a cylinder 13 provided on the cartridge body 1 .
  • a through hole 413 is provided on the air circuit plate 41 to cooperate with the cylinder 13 to control the downward movement stroke of the plunger 42 .
  • the through hole 413 is sleeved on the cylinder 13.
  • the diameter of the cylinder 13 is slightly larger than the diameter of the through hole 413, or the diameter of the cylinder 13 and the through hole 413 are adapted to each other, but the friction force between the two is larger than that of the through hole 413.
  • the manifold plate 41 when downward pressure is not exerted on the manifold plate 41, the manifold plate 41 is fixed on the cylinder 13. At this time, the plunger through hole 4211 of the plunger 42 is located at the sealing ring 43. Above the lowest end 431, the sealing ring 43 seals the plunger through hole 4211, thus sealing the first chamber, and the gas in the first chamber cannot be transferred.
  • the manifold plate 41 can move downward along the cylinder 13, so that the plunger through hole 4211 of the plunger 42 is located below the lowest end 431 of the sealing ring 43.
  • sample loading chamber plunger gas flow path 422 and the waste liquid chamber plunger gas flow path 423 are also connected to the second gas path 15 respectively, thereby realizing the connection between the first chamber and the gas path channel 411 and the sample loading chamber 101 It is connected to the waste liquid chamber 102, so that the gas can be transferred from one first chamber to another chamber, and finally the gas pressure balance can be achieved.
  • Figure 8 shows that a column 13 is provided between every two first chambers, those skilled in the art can understand that a column can be provided, such as in the middle position, or It is possible to set 2 or more cylinders evenly.
  • the column 13 in order to facilitate the installation of the manifold plate 41 on the column 13 through the through hole 413, the column 13 can be configured to include a first column 131 and a second column 132. , a gap 133 is provided between the first cylinder 131 and the second cylinder 132 , and an inward arc-shaped shrinking smooth surface 134 is provided at the top of the first cylinder 131 and the second cylinder 132 to facilitate the through hole 413 Set on the column 13. Specifically, the through hole 413 is aligned with the cylinder.
  • the tops of the first cylinder 131 and the second cylinder 132 are provided with inward arc-shaped shrinking smooth surfaces 134, the first cylinder 131 and the second cylinder 132 The top end can smoothly enter the through hole 413, and then apply pressure to the air circuit plate 41. Since there is a gap 133 between the first cylinder 131 and the second cylinder 132, the first cylinder 131 and the second cylinder 132 Being close to each other facilitates the downward movement of the air circuit plate 41 along the column 13 .
  • a first stroke control element 135 and a second stroke control element 136 can also be provided on the cylinder 13 to accurately control the manifold plate. 41 moves downward.
  • the first stroke control element 135 and the second stroke control element 136 can be annular members provided on the cylinder 13; in order to facilitate the through-hole embedding in the cylinder 13, the first stroke
  • the end surface of the control element 135 is provided with an inward arc-shaped shrinking smooth surface 1351.
  • the plunger through hole 4211 of the plunger 42 is located at the sealing ring 43. Above the lowest end 431, the sealing ring 43 seals the plunger through hole 4211, thus sealing the first chamber, and the gas in the first chamber cannot be transferred.
  • the manifold plate 41 can move downward along the column 13 until the through hole 413 is sleeved on the second stroke control element 136 , at which time the manifold plate 41 is fixed.
  • the plunger through hole 4211 of the plunger 42 is located below the lowest end 431 of the sealing ring 43, thereby achieving communication between the first chamber and the gas channel 411, thereby enabling gas to flow from a first chamber Transfer to another chamber and finally achieve air pressure equilibrium.
  • Figures 11-15 show yet another embodiment of the stroke control element.
  • the stroke control element includes a ""-shaped raised structure 414 provided on the bottom surface of the manifold plate 41.
  • the raised structure 414 includes a first flange 4141 and a second flange 4142. There is a gap between the edge 4141 and the second flange 4142, and a cavity is provided between at least two adjacent chambers among the plurality of chambers in the first chamber.
  • a cavity 14 is provided between any two chambers of the first chamber on the cartridge body 1 for receiving the protruding structure 414 on the air circuit plate 41.
  • the width of the protruding structure 414 is slightly larger than the width of the cavity 14, so that the protruding structure 414 can be buckled in the cavity 14, and the air circuit board 41 can be installed on the cartridge body 1 , at this time, the plunger through hole 4211 of the plunger 42 is located above the lowest end 431 of the sealing ring 43, and the sealing ring 43 seals the plunger through hole 4211, thereby sealing the first chamber, and the gas in the first chamber Transfer cannot be achieved; when downward pressure is applied to the manifold plate 41, the manifold plate 41 can move downward along the cavity 14, so that the plunger through hole 4211 of the plunger 42 is located at the lowest end 431 of the sealing ring 43 Next, the first chamber is connected to the gas channel 411, so that the gas can be transferred from one first chamber to another chamber, and finally the gas pressure balance is achieved.
  • the flange receiving grooves include a first set of flange receiving grooves. 141.
  • the first set of flange receiving grooves 141 includes two receiving grooves symmetrically arranged on both sides of the cavity 14 for receiving the first flange 4141 and the second flange 4142.
  • the plunger through hole 4211 of the plunger 42 is located above the lowest end 431 of the sealing ring 43.
  • the sealing ring 43 seals the plunger through hole 4211, thereby sealing the first chamber.
  • the gas cannot be transferred; when downward pressure is applied to the gas path plate 41, the gas path plate 41 can move downward along the cavity 14.
  • the first flange 4141 and the second flange 4142 move to the first set of flanges, When the flange receiving groove 141 is inserted into the flange receiving groove 141, due to the outward tension of the first flange 4141 and the second flange 4142, the first flange 4141 and the second flange 4142 can respectively snap into the first set of flange receiving grooves 141.
  • the air circuit plate 41 is stably installed on the cartridge body 1.
  • the plunger through hole 4211 of the plunger 42 is located below the lowest end 431 of the sealing ring 43, thereby realizing the first chamber.
  • the gas path 411 is connected to the gas path 411 so that the gas can be transferred from one first chamber to another chamber, and finally the gas pressure balance can be achieved.
  • the first set of flange receiving grooves 141 may also be continuously provided along the inner wall of the cavity 14 so that when the manifold plate is slightly deformed, the first set of flange receiving grooves 141 can still receive the first set of flange receiving grooves 141 smoothly.
  • the flange receiving grooves may be divided into two groups. Specifically, with reference to FIG. 12 , the first group of flange receiving grooves 141 and the second group of flange receiving grooves 142 are shown. The principle of the second group of flange receiving grooves 142 is the same as that of the flange receiving grooves 141 and 142 . The principle of the first set of flange receiving grooves is the same and will not be described again here. During use, the first flange 4141 and the second flange 4142 can be snapped into the first set of flange receiving grooves 141, so that the air circuit board 41 can be firmly installed on the cartridge body 1.
  • the plunger The plunger through hole 4211 of 42 is located above the lowest end 431 of the sealing ring 43.
  • the sealing ring 43 seals the plunger through hole 4211, thereby sealing the first chamber, and the gas in the first chamber cannot be transferred; when the sealing ring 43 seals the plunger through hole 4211, the first chamber is sealed.
  • the first flange 4141 and the second flange 4142 may deform, and the first flange 4141 and the second flange 4142 contact the first set of flange receiving grooves 141
  • the surfaces have a first flange inclined surface 41411 and a second flange inclined surface 41421 respectively, whereby the first flange 4141 and the second flange 4142 can exit from the first set of flange receiving grooves 141 and continue to move downward.
  • the first flange 4141 and the second flange 4142 can engage into the second set of flange receiving grooves 142, thereby stably installing the manifold plate 41 in the cartridge.
  • the plunger through hole 4211 of the plunger 42 is located below the lowest end 431 of the sealing ring 43, thereby achieving communication between the first chamber and the gas channel 411, so that the gas can be transferred from a first chamber Transfer to another chamber and finally achieve air pressure equilibrium.
  • a ""-shaped protruding structure 414 is provided between any two adjacent plungers 42, and a cavity 14 is provided between any two adjacent first chambers,
  • the number of the protruding structure 414 and the corresponding cavity 14 may be one or multiple.
  • a sealing cover is provided on the gas circuit board to seal the sample loading chamber.
  • a sealing plug 213 is provided on the gas circuit board 21
  • a sample loading chamber 214 is provided correspondingly on the gas circuit board 21 .
  • the sealing plug 213 seals the opening of the sample adding chamber 214.
  • the sample adding chamber 101 is sealed to prevent sample leakage.
  • the sealing plug 213 is provided with a filter element, which is a breathable and waterproof filter element, which can ensure that gas can pass through but liquid cannot pass through.
  • a sealing cover 415 is provided on the gas circuit plate 41.
  • the sample loading chamber is not provided on the gas circuit plate 41, but is directly opened from the opening of the sample loading chamber 101. After adding the sample, directly seal the opening of the sample adding chamber 101 with the sealing cover 415 .
  • the sealing cover 415 also has the same filter core structure as the sealing plug 213 .
  • the cartridge base 11 may also be provided with an air inlet channel 112 , and the air inlet channel 112 is connected to the air path channel 1121 provided on the cartridge base 11 .
  • air inlet channel 112 air can be introduced into the cartridge device to dry the mixing chamber 106. Specifically, when it is necessary to dry the mixing chamber 106 to eliminate the solvent in the chamber, the first plunger barrel 31 is pulled so that the first plunger barrel 31 moves along the longitudinal axis 1111 of the first plunger chamber 111.
  • the liquid channel 311 is aligned and connected with the gas channel 1121, and then the first plunger 32 is pulled backward to inhale clean gas into the first plunger barrel 31, and the first plunger barrel 31 is pulled again, so that the first plunger barrel is pulled
  • the first plunger cylinder liquid path 311 of 31 is aligned with the corresponding mixing chamber liquid path 1061 of the mixing chamber 106.
  • the plunger barrel liquid path 311 is aligned with the liquid outlet of the sample loading chamber liquid path 1011 (the sample loading chamber is an empty chamber at this time), and the first plunger 32 is pushed, so that the first plunger barrel 31 contains solvent gas. Enter the sample loading chamber 101.
  • the gas circuit plate 21 is provided with a sealing plug 213 to seal the sample adding chamber 214 and thereby seals the sample adding chamber 101, or the gas circuit plate 41 is provided with a sealing cover 415 to add the sample.
  • the chamber is sealed, and the sealing plug 213 and the sealing cover 415 are both provided with breathable and waterproof filter elements, so the gas containing solvent can be discharged from the filter element, and the non-polluted gas is filtered and discharged through the filter element.
  • FIG. 1 shows that the air inlet channel 112 and the air path channel 1121 are disposed below the first plunger chamber 111, those skilled in the art can understand that the air inlet channel 112 and the air path channel 1121 can also be disposed below the first plunger chamber 111. above the plunger cavity 111.
  • the air inlet channel 112 may also be provided with a filter element to ensure that clean gas enters the cartridge.
  • the cartridge also includes a collection device 17.
  • the collection device 17 can be a test tube or a PCR tube.
  • the collection device 17 is connected to the first plunger chamber 111 through the collection device liquid path 171, so that the card can be collected.
  • the eluate in the cassette is collected in a collection device. Specifically, the eluate is finally in the mixing chamber 106.
  • the first plunger barrel 31 can move along the first plunger chamber 111 under the action of an external force such as a motor.
  • the longitudinal axis of the plunger barrel moves so that the first plunger barrel liquid path 311 is aligned with the liquid outlet of the mixing chamber liquid path 1061, and then the first plunger 32 is pulled backward to suck the eluent in the mixing chamber 106 into the first In the plunger barrel 31, at this time, the liquid outlets of the remaining liquid paths of the first chamber are sealed by the barrel wall of the first plunger barrel 31, and the liquid in the chamber cannot flow out. Then move the first plunger barrel 31 backward. Align the first plunger barrel liquid path 311 with the collection device liquid path 171 and push the first plunger 32 to transfer the eluent in the first plunger barrel 31 to the collection device 17 .
  • a sealing shell 33 is provided on the outer surface of the first plunger barrel 31 .
  • the sealing shell 33 may be made of a deformed soft material, such as rubber.
  • the first plunger barrel 31 can be formed. The fitting effect between the first plunger barrel 31 and the first plunger chamber 111 is better to prevent liquid leakage.
  • the cartridge body 1 also includes a plurality of second chambers 16; the cartridge base 11 is provided with a second plunger chamber 116, wherein the second chamber 16 Each of them is connected to the second plunger chamber 116 through an independent second chamber liquid path;
  • a second plunger assembly 5 wherein the second plunger assembly 5 includes a second plunger barrel 51 and a second plunger 52, and the second plunger barrel 51 is movable relative to the longitudinal axis 1161 of the second plunger chamber 116;
  • a second plunger barrel liquid path 512 is provided on the wall of the second plunger barrel 51 .
  • the second plunger barrel liquid path 512 can be formed by providing a through hole on the side wall of the second plunger barrel that communicates with the second plunger barrel chamber.
  • the first chamber 10 and the second chamber 16 are in a Linear setting.
  • the first plunger assembly 3 and the second plunger assembly 5 are respectively disposed on both sides of the cartridge body 1.
  • the reagents in the second chamber 16 such as amplification reagents, sealing reagents, etc.
  • the second plunger barrel 51 aligns the second plunger barrel liquid path 512 with the collection device liquid path 171 to transfer amplification reagents, sealing reagents, etc. into the collection device 17 for amplification reactions and the like.
  • a quantitative tank 511 is also provided on the wall of the second plunger barrel 51.
  • the first plunger chamber 111 and the second plunger chamber 116 are connected through the transition liquid path 113 provided on the cartridge base 11.
  • the quantitative cell 511 is used for quantitative transfer of liquid.
  • a groove can be formed on the outer wall of the second plunger barrel 51 through micro-nano processing, wherein the inner wall of the second plunger barrel 51 forms the bottom of the groove, thereby forming the quantitative pool 511 .
  • the second plunger barrel 51 is similar to the first plunger barrel, and its outer surface can also be provided with a sealing shell.
  • the arrangement and function of the sealing shell are referred to the sealing shell of the first plunger barrel, which will not be discussed here. Repeat.
  • liquid can be transferred from one chamber of the first chamber to another.
  • the eluate containing nucleic acids ends up in the mixing chamber 106 of the first chamber.
  • the first plunger chamber 111 and the second plunger chamber 116 are connected through a transition fluid path 113 .
  • the nucleic acid eluate in the mixing chamber 106 can be introduced into the quantitative cell 511 through the transition liquid path 113 .
  • the first plunger barrel 31 is moved so that the first plunger barrel liquid path 311 is aligned with the mixing chamber liquid path 1061 corresponding to the mixing chamber 106, and then the first plunger 32 is pulled backward to remove the nucleic acid in the mixing chamber 106.
  • the eluent is sucked into the first plunger barrel 31.
  • the liquid outlets of the remaining liquid paths in the first chamber are sealed by the barrel wall of the first plunger barrel 31, and the liquid in the chamber cannot flow out, and then flows to the first plunger barrel 31.
  • the first plunger barrel 31 moves the first plunger barrel 31 so that the first plunger barrel liquid path 311 is aligned with the liquid inlet of the transition liquid path 113 (that is, the opening toward the first plunger chamber 111), and at the same time move the second plunger barrel 51 to quantitatively
  • the pool 511 is aligned with the outlet of the transition liquid path 113 (that is, toward the opening of the second plunger chamber 116), and then the first plunger 32 is pushed, so that the nucleic acid eluate in the first plunger barrel 31 enters the quantitative pool.
  • the distance pushed by the first plunger 32 can be accurately determined based on the inner diameter of the first plunger barrel 31 and the volume of the dosing cell 511 under the action of an external motor to ensure that the liquid fills the dosing cell.
  • the plurality of second chambers 16 include a secondary reagent chamber 161 and a sealed reagent chamber 162, and the plurality of second chamber liquid paths include a secondary reagent chamber liquid path 1611 and a sealed reagent chamber liquid path 1621.
  • the reagent chamber 161 and the sealed reagent chamber 162 are connected to the second plunger chamber 116 through the secondary reagent chamber liquid path 1611 and the sealed reagent chamber liquid path 1621 respectively, wherein the secondary reagent chamber liquid path 1611 and the sealed reagent chamber liquid path 1621 It is an independent liquid circuit.
  • the ports of the liquid path of the second chamber on the cartridge body 1 are all on a straight line, where the straight line is determined along the direction of the longitudinal axis 1161 of the second plunger chamber 116 .
  • the secondary reagent chamber 161 is used to add secondary reagents such as amplification reagents, etc., while the sealing reagent chamber 162 is pre-stored with sealing reagents.
  • the sealing reagents are mineral oil, silicone oil, fluoroalkane oil, vegetable oil, and liquid paraffin. At least one can be used to seal the liquid and push the liquid in the quantitative cell to drive the liquid transfer.
  • the sealing reagent is pre-stored and then sealed with a piston.
  • the nucleic acid eluate has been transferred to the quantitative pool 511 and needs to be further transferred to the collection device 17 mentioned above.
  • the collection device 17 is correspondingly configured to communicate with the second plunger chamber 116 through the collection device liquid path 171 to facilitate the transfer of liquid into the collection device.
  • an exhaust channel 114 can also be provided on the cartridge base 11.
  • One end of the exhaust channel 114 is connected to the first plunger chamber 111, and one end is connected to the collection device 17, whereby the nucleic acid is collected.
  • the gas in the collection device 17 can be transferred to the first plunger barrel 31 to facilitate the sealing reagent to push the nucleic acid eluate into the collection device.
  • the first plunger tube liquid path 311 of the first plunger tube 31 is aligned with the exhaust channel 114 in a synchronous operation, and then the first plunger tube liquid path 311 is synchronously pulled.
  • the plunger can thereby transfer the gas in the collection device 17 to the first plunger barrel 31 and reduce the air pressure in the collection device 17 to facilitate the entry of the eluent into the collection device 17 .
  • the second plunger chamber 116 is provided with an overflow channel 1162 , and the formation of the overflow channel 1162 may refer to the formation of the first chamber channel.
  • the length of the overflow channel 1162 is the same as L.
  • the eluent in the mixing chamber 106 can be transferred to the first plunger barrel 31 according to the method mentioned above, and then The first plunger barrel 31 moves to align the first plunger barrel liquid path 311 with the transition liquid path 113, and simultaneously moves the second plunger barrel 51 to align the dosing tank 511 with the transition liquid path 113.
  • the overflow channel 1162 One end is aligned with the quantitative cell 511, and the other end is aligned with the second plunger tube liquid path 512.
  • the first plunger 32 is pushed, and at the same time, the first plunger 32 is aligned with the first plunger 32.
  • the second plunger 52 is pulled at the same rate, causing the first plunger and the second plunger to move synchronously, causing the nucleic acid eluate to overflow the quantitative pool 511, and the overflowing nucleic acid eluent enters the second plunger tube liquid path 512.
  • the nucleic acid eluate completely fills the quantitative cell 511, so there is no need to precisely control the distance pushed by the first plunger.
  • synchronous push-pull movement means that when one plunger is pushed forward at a speed V, the other plunger is pulled backward at the same speed V. .
  • synchronous push-pull movement on the one hand, it can guide the liquid that needs to be transferred; on the other hand, because there is air in the plunger chamber, it is difficult to transfer the liquid simply by relying on the driving force or attraction of a single plunger. If it is clean, it will remain in the flow channel.
  • the liquid can be transferred more fully and will not remain in the pipetting channel.
  • the method of transferring the eluate in the quantitative cell 511 to the collection device 17 is the same as described above, and will not be described again.
  • the cartridge base 11 is also provided with a push-back liquid path 115 , and the push-back fluid path 115 is connected to the first plunger chamber 111 and the second plunger chamber 116 respectively.
  • the push-back fluid path 115 is connected to the first plunger chamber 111 and the second plunger chamber 116 respectively.
  • the first plunger barrel liquid path 311 and the second plunger barrel are respectively The plunger barrel liquid path 512 is aligned with the push-back liquid path 115, and then the second plunger 52 is pushed and the first plunger 32 is pulled simultaneously to transfer the eluent in the second plunger barrel 51 to the first column. inside the plug cylinder 31. Subsequently, the eluent in the first plunger barrel can be transferred to the mixing chamber 106 as needed.
  • the secondary reagent chamber 161 is used to add secondary reagents such as amplification reagents. It should be noted that after adding the amplification reagent, the secondary reagent chamber is sealed with a piston.
  • the eluate in the second plunger barrel 51 has been transferred to the first plunger barrel 31. At this time, the second plunger barrel 51 is empty and can be passed through the first plunger barrel 51. The two plunger barrels 51 transfer the amplification reagent added into the secondary reagent chamber 161 to the collection device 17 for amplification reaction.
  • the second plunger barrel 51 is moved so that the second plunger barrel liquid path 512 is connected with the secondary reagent chamber liquid path. 1611 is aligned, then push the piston sealing the secondary reagent chamber downward, and simultaneously pull the second plunger 52 to transfer the amplification reagent to the second plunger barrel 51, and then move the second plunger barrel 51 so that the second plunger The cylinder liquid path 512 is aligned with the collection device liquid path 171.
  • the first plunger cylinder 31 is moved to align the first plunger cylinder liquid path 311 with the exhaust channel 114, and then the second plunger 52 is pushed while simultaneously pulling the first cylinder.
  • the plug 32 allows the secondary amplification reagent to be transferred to the nucleic acid collection device 17 that collects the nucleic acid eluent for amplification. During this process, the gas in the collection device 17 can be transferred to the first plunger barrel. This reduces the air pressure in the collection device 17 to facilitate the entry of the amplification reagent into the collection device 17 . If multiple rounds of amplification are needed, repeat the previous steps to complete multiple rounds of amplification.
  • a secondary reagent adding tube 1612 is provided on the side wall of the secondary reagent chamber 161.
  • the secondary reagent adding tube 1612 is connected to a secondary reagent adding tube sealing plug 16121.
  • When adding the secondary reagent It can be added through the secondary reagent adding tube 1612. After the addition is completed, seal it with the secondary reagent adding tube sealing plug 16121.
  • the chamber air pressure balancing device is installed on the cartridge body, but the chambers are not connected through air paths, that is, the air pressure in each chamber remains independent and is balanced during use. Air pressure in each chamber.
  • the lysis solution chamber 103, at least one washing solution chamber 104, and the eluent chamber 105 respectively store lysis solution, washing solution, and eluent for nucleic acid extraction, and the mixing chamber 106 stores a magnetic bead solution in advance.
  • the usage principle of this disclosure is as follows:
  • S1 balances the air pressure of the first chamber: balances the air pressure in each first chamber through the chamber air pressure balancing device.
  • the specific balancing method please refer to the method described above;
  • S2 activates the magnetic beads: put the magnetic bead solution in the mixing chamber 106 into the first plunger barrel 31 according to the aforementioned liquid transfer method, and then push the first plunger 32 to return the magnetic bead solution to the mixing chamber 106, and carry out by repeatedly pumping. Magnetic bead activation;
  • S3 row of magnetic bead waste liquid after the magnetic beads are activated, move the magnetic element to the magnetic element accommodating space 12 to fix the magnetic beads in the mixing chamber 106, and then transfer all the solution to the first plunger barrel 31, and then Transfer the liquid in the first plunger barrel 31 to the waste liquid chamber 102;
  • S5 lysis reaction transfer the lysis solution pre-existing in the lysis solution chamber 103 to the first plunger cylinder 31, and then transfer the lysis solution in the first plunger cylinder 31 to the mixing chamber 106 to perform the lysis reaction; the solution to be lysed
  • the first plunger 32 can be repeatedly pushed and pulled to perform repeated suction to make the cleavage reaction complete; after the reaction is completed, the magnetic element is moved to the magnetic element accommodating space 12 to pair the magnetic element in the mixing chamber 106.
  • the magnetic beads are fixed, and then the waste lysate produced after the reaction is completed is transferred to the first plunger barrel 31, and then the waste lysate in the first plunger barrel 31 is transferred to the lysate chamber 103;
  • S6 washing transfer the washing liquid pre-existing in the washing liquid chamber 104 to the first plunger barrel 31, and then transfer the washing liquid in the first plunger barrel 31 to the mixing chamber 106. After the washing liquid is transferred to the mixing chamber 106 , you can perform repeated suction by repeatedly pushing and pulling the first plunger 32 to ensure sufficient washing. After sufficient washing, the magnetic element is moved to the magnetic element accommodating space 12 to fix the magnetic beads in the mixing chamber 106, and then the waste washing liquid is transferred to the first plunger barrel 31, and then the first plunger barrel is The washing liquid waste in 31 is transferred to the lysis liquid chamber 103;
  • S7 elution transfer the eluent pre-existing in the eluent chamber 105 to the first plunger cylinder 31, and then transfer the eluent in the first plunger cylinder 31 to the mixing chamber 106, and wait for the eluent to be transferred to After entering the mixing chamber 106, the first plunger 32 can be repeatedly pushed and pulled to perform repeated suction to ensure sufficient elution;
  • S8 collects the eluent: after the elution is completed, move the magnetic element to the magnetic element accommodating space 12 to fix the magnetic beads in the mixing chamber 106, and then transfer the eluent to the first plunger barrel 31, and then Transfer the eluent in the first plunger barrel 31 to a collection device such as a PCR tube.
  • the magnetic element is moved to the magnetic element accommodation space 12 to fix the magnetic beads in the mixing chamber 106, and then the eluent is transferred to the first plunger
  • the eluate in the first plunger barrel 31 is then transferred to the quantitative cell 511 , and then the sealing reagent is used to drive the eluate in the quantitative cell 511 to the collection device 17 .
  • the quantitative process refers to the previous description.
  • an overflow channel 1162 also includes transferring the eluent entering the second plunger barrel 51 through the overflow channel 1162 to the mixing chamber 106 through the pushback liquid path 115.
  • the specific process is Refer to the previous article.
  • a ventilation step S0 between steps S6 and S7 introduce clean gas into the mixing chamber 106 through the air inlet channel 112 (please refer to the above for the way of gas entering into the mixing chamber 106), and then The mixing chamber 106 is heated to ensure that the gas is heated to evaporate the remaining liquid in the mixing chamber to form a dry environment, and then the gas is discharged through the sample loading chamber 101 (refer to the above for the discharge method).
  • S8 sealing reagent sealing eluent transfer the sealing reagent pre-existing in the sealing reagent chamber 162 to the second plunger barrel 51, and then transfer the sealing reagent in the second plunger barrel 51 to the collection device 17 for elution liquid for sealing;
  • S8 amplification reaction add amplification reagent into the secondary reagent chamber 161, then transfer the amplification reagent into the second plunger cylinder 51, and then transfer the amplification reagent in the second plunger cylinder 51 to the collection device 17 Carry out amplification reaction.
  • the process of transferring the amplification reagent to the collection device 17 also includes transferring the gas from the collection device 17 into the second plunger barrel 51 .
  • the specific process refer to the above.

Abstract

核酸扩增用卡盒(100),包括:卡盒本体(1)和腔室气压平衡装置(2),卡盒本体(1)包括多个第一腔室(10)和卡盒基座(11),多个第一腔室(10)设置在卡盒基座(11)上,卡盒基座(11)上设置有第一柱塞腔(111),多个第一腔室(10)的每一个通过独立的第一腔室液路与所述第一柱塞腔(111)连通;以及第一柱塞组件(3),其中第一柱塞组件(3)包括第一柱塞筒(31)和第一柱塞(32),第一柱塞筒(31)上设置有第一柱塞筒液路,第一柱塞筒(31)可以沿着第一柱塞腔(111)的纵向轴线(1111)方向移动;腔室气压平衡装置(2)平衡多个第一腔室内(10)的气压。所述卡盒可实现多次核酸洗脱,避免了磁珠在转移过程中的损失,可以运输过程中避免各个腔室内预先储存的液体之间发生串液现象,通过腔室气压平衡装置可以实现气压平衡,方便液体的转移。

Description

一种核酸扩增用卡盒
相关申请的交叉引用
无。
技术领域
本公开涉及生物医药仪器技术领域,具体涉及一种核酸扩增用卡盒。
背景技术
PCR反应又称聚合酶链式反应,它是一种放大扩增特定核酸片段的分子生物学技术手段。PCR技术在生命科学领域广泛应用,如基因组克隆、DNA测序、基因表达,医学方面等。PCR最大的特点是,利用聚合酶和引物,在仪器中利用微量的核酸,几乎可以无限量的进行核酸扩增。现在的核酸检测几乎都用此种方法,它快速准确,从拿到样本到得出结果,不超过两个小时。新冠爆发以来,PCR已经成为检测冠状病毒最主要的手段。目前已有多种用于核酸扩增的卡盒或者试剂盒,如现有技术提供了柱塞式核酸扩增卡盒,但其只能实现单次核酸洗脱,同时难以定量,液体在转移过程中存在空气难以准确转移等诸多问题。
发明内容
为了解决相关技术中的问题,本公开提供了一种核酸扩增用卡盒。
本公开中的卡盒包括:卡盒本体和腔室气压平衡装置,所述卡盒本体包括多个第一腔室和卡盒基座,多个第一腔室设置在卡盒基座上,卡盒基座上设置有第一柱塞腔,所述多个第一腔室的每一个通过独立的第一腔室液路与所述第一柱塞腔连通;以及第一柱塞组件,其中第一柱塞组件包括第一柱塞筒和第一柱塞,第一柱塞筒上设置有第一柱塞筒液路,所述第一柱塞筒可以沿着第一柱塞腔的纵向轴线方向移动;所述腔室气压平衡装置平衡所述多个第一腔室内的气压。根据本公开提供的核酸扩增用卡盒,可以实现多次核酸洗脱,避免了磁珠在转移过程中的损失,同时可以实现在运输过程中避免各个腔室内预先储存的液体之间发生串液现象,此外各个腔室之间通过腔室气压平衡装置可以实现气压平衡,方便液体的转移。
作为示例性的,所述多个第一腔室包括样本加样室、废液室、裂解液室、至少一个洗液室、洗脱液室以及混合室。
作为示例性的,所述混合室与第一柱塞腔之间设置有磁性元件容置空间。
作为示例性的,所述腔室气压平衡装置包括气路板以及穿刺板,所述气路板上设置有气路通道以及穿刺腔,所述气路通道与所述穿刺腔连通以形成气路通道,所述穿刺板上的穿刺件可以沿着所述穿刺腔上下移动。
作为示例性的,所述第一腔室与穿刺腔室之间设置有隔离密封件;所述穿刺件经所述穿刺腔向下移动刺穿所述隔离密封件以导通所述腔室与所述气路通道。
作为示例性的,所述隔离密封件设置在第一腔室的顶部或气路板的底面。
作为示例性的,所述穿刺件上还设置有密封件。
作为示例性的,所述密封件包括环状件,所述穿刺件上设置有与环状件个数相匹配的凹槽, 所述环状件适配在所述凹槽内。
作为示例性的,所述腔室气压平衡装置包括气路板,所述气路板的顶面上设置有气路通道。
作为示例性的,所述腔室气压平衡装置还包括气体开关阀以控制气体通过所述气路通道从一个腔室转移至另一个腔室。
作为示例性的,所述气体开关阀包括柱塞以及密封圈,所述柱塞设置在所述气路板的下方,所述密封圈设置在所述第一腔室的顶端,其中当所述柱塞向下运动嵌入所述第一腔室顶端的所述密封圈时,所述柱塞的柱塞气体流路与所述腔室导通。
作为示例性的,所述柱塞气体流路包括设置在柱塞侧壁的通孔以及设置在柱塞上的盲孔,其中,所述通孔与所述盲孔连通形成气体流路。
作为示例性的,所述卡盒还包括行程控制元件以控制所述柱塞的移动。
作为示例性的,所述行程控制元件包括设置在卡盒本体上的柱体,所述气路板上设置有通孔以与所述柱体配合。
作为示例性的,所述柱体包括第一柱体和第二柱体,所述第一柱体与所述第二柱体之间有间隙。
作为示例性的,所述柱体上设置有第一行程控制元件和第二行程控制元件。
作为示例性的,所述行程控制元件包括设置在所述气路板底面的“”形的凸起结构,所述凸起结构包括第一凸缘和第二凸缘,所述第一凸缘和第二凸缘之间有间隙,所述第一腔室的多个腔室中至少有相邻的两个腔室之间设置有空腔。
作为示例性的,所述空腔的内壁上设置有至少一组凸缘接收槽。
作为示例性的,所述气路板上设置有密封盖,以对样本加样室进行密封。
作为示例性的,所述卡盒本体上设置进气通道,所述进气通道与所述第一柱塞腔连通。
作为示例性的,所述卡盒还包括收集装置,所述收集装置通过收集装置液路与第一柱塞腔室连通。
作为示例性的,所述第一柱塞筒的外表面设置有密封壳。
作为示例性的,所述卡盒本体还包括多个第二腔室、第二柱塞腔,其中所述第二腔室的每一个通过独立的第二腔室液路与所述第二柱塞腔连通;第二柱塞组件,其中第二柱塞组件包括第二柱塞筒和第二柱塞,所述第二柱塞筒可以相对于第二柱塞腔的纵向轴线方向移动;所述第二柱塞筒壁上设置有第二柱塞筒液路。
作为示例性的,所述第二柱塞筒上设置有定量池,所述第一柱塞腔和所述第二柱塞腔通过设置在卡盒基座上的过渡液路连通。
作为示例性的,所述多个第二腔室包括二次试剂室以及密封试剂室。
作为示例性的,所述密封试剂室内预先储存有密封试剂,所述密封试剂为矿物油、硅油、氟烷油、植物油、液体石蜡中的至少一种。
作为示例性的,所述第二柱塞筒上设置有第二柱塞筒液路,所述第二柱塞腔上设置有溢流流道。
作为示例性的,所述第一柱塞和所述第二柱塞可以同步移动。
作为示例性的,卡盒基座上还可以设置排气通道,排气通道的一端与第一柱塞腔连通,另一端与收集装置连通。
作为示例性的,卡盒基座还设置有回推液路,回推液路分别与第一柱塞腔、第二柱塞腔连通。
作为示例性的,所述二次试剂室的侧壁设置有二次试剂加样管,所述二次试剂加样管连接有密封塞。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对示例性实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些示例性实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出根据本公开的核酸扩增用卡盒的结构示意图。
图2示出根据本公开的核酸扩增用卡盒的轴视图。
图3A示出根据本公开的核酸扩增用卡盒的第一柱塞筒的结构示意图。
图3B示出根据本公开的核酸扩增用卡盒的第一柱塞筒的另一实施方式结构图。
图4示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的结构示意图。
图5示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的结构细节示意图。
图6示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的穿刺图。
图7示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的又一实施方式结构示意图。
图8示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的行程元件的结构示意图。
图9示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的柱体的结构示意图。
图10示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的柱体的又一结构示意图。
图11示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的行程元件的又一结构示意图。
图12示出根据本公开的核酸扩增用卡盒的腔室气压平衡装置的行程元件的又一结构的装配示意图。
图13示出根据本公开的核酸扩增用卡盒的又一实施方式结构示意图。
图14示出根据本公开的核酸扩增用卡盒的又一实施方式的装配结构示意图。
图15示出根据本公开的核酸扩增用卡盒的第二柱塞组件的结构示意图。
图16示出本公开的核酸扩增用卡盒的又一实施方式的定量状态结构示意图。
具体实施方式
下文中,将参考附图详细描述本公开的示例性实施例,以使本领域技术人员可容易地实现它们。此外,为了清楚起见,在附图中省略了与描述示例性实施例无关的部分。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则在说明书的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本公开的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
另外还需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
为至少部分地解决发明人发现的现有技术中的问题而提出本公开。
前文已提及,现有技术的核酸扩增装置存在只能实现单次核酸洗脱,同时难以定量,液体在转移过程中存在空气难以准确转移等诸多问题,因此本公开提供了一种核酸扩增用卡盒以解决上述问题。
根据本公开提供的核酸扩增用卡盒,所述核酸扩增用卡盒包括:卡盒本体和腔室气压平衡装置,所述卡盒本体包括多个第一腔室和卡盒基座,多个第一腔室设置在卡盒基座上,卡盒基座上设置有第一柱塞腔,所述多个第一腔室的每一个通过独立的第一腔室液路与所述第一柱塞腔连通;以及第一柱塞组件,其中第一柱塞组件包括第一柱塞筒和第一柱塞,第一柱塞筒上设置有第一柱塞筒液路,所述第一柱塞筒可以沿着第一柱塞腔的纵向轴线方向移动;所述腔室气压平衡装置平衡所述多个第一腔室内的气压。根据本公开提供的核酸扩增用卡盒,可以实现多次核酸洗脱,避免了磁珠在转移过程中的损失,同时可以实现在运输过程中避免各个腔室内预先储存的液体之间发生串液现象,此外各个腔室之间通过腔室气压平衡装置可以实现气压平衡,方便液体的转移。
如图1、图2、图3A所示,一种核酸扩增用的卡盒100,所述卡盒100包括卡盒本体1以及腔室气压平衡装置2,其中卡盒本体1包括多个第一腔室10以及卡盒基座11,多个第一腔室10设置在卡盒基座11上,卡盒基座11上设置有第一柱塞腔111,多个第一腔室10的每一个通过独立的第一腔室液路与第一柱塞腔111连通;以及第一柱塞组件3,第一柱塞组件3包括第一柱塞筒31和第一柱塞32,第一柱塞筒31上设置有第一柱塞筒液路,第一柱塞筒31可以沿着第一柱塞腔111的纵向轴线1111方向移动;其中腔室气压平衡装置2平衡多个第一腔室 10内的气压。
如图2所示,多个第一腔室10包括样本加样室101、废液室102、裂解液室103、至少一个洗液室104、洗脱液室105以及混合室106,作为示例性的,图1-2中显示的洗液室为两个,分别为第一洗液室1041和第二洗液室1042,当然,本领域技术人员也可以理解,可以为1个洗液室或者更多个洗液室。其中裂解液室103、至少一个洗液室104、洗脱液室105分别储存有核酸提取用的裂解液,洗涤液以及洗脱液,而混合室106内预先储存有磁珠溶液。卡盒本体1上设置有多条独立的液路分别与样本加样室101、废液室102、裂解液室103、至少一个洗液室104、洗脱液室105以及混合室106相对应,以将每个前述腔室与第一柱塞腔111连通。具体的,如图2所示,样本加样室101对应的液路为样本加样室液路1011,废液室102对应的液路为废液室液路1021,裂解液室103对应的液路为裂解液室液路1031,第一洗液室1041对应的液路为第一洗液室液路10411,第二洗液室1042对应的液路为第二洗液室液路10421,洗脱液室105对应的液路为洗脱液室液路1051,混合室106对应的液路为混合室液路1061。在本公开中,各液路可以在卡盒本体1的外表面上通过微纳加工形成,然后通过在卡盒本体1的表面键合封膜即可形成。
作为示例性的,如图2所示,在本公开中,所有第一腔室的液路在卡盒本体1上的端口都在一条直线上,其中直线是以沿着第一柱塞腔111的纵向轴线方向1111确定的。在本公开,所有的液路都是微米级别的液路,可以通过微纳加工形成。如图2-3A所示,第一柱塞筒31上设置有第一柱塞筒液路311,第一柱塞筒液路311可以通过在第一柱塞筒侧壁上设置一个与第一柱塞筒腔连通的通孔形成。在卡盒未被使用时,第一柱塞筒液路311不与任何一个第一腔室的液路对齐,此时第一腔室所有的液路的端口被第一柱塞筒壁密封,从而防止预存在第一腔室内的液体流出。在需要第一腔室内的液体进行转移时,第一柱塞筒31在外力作用下,可以沿着第一柱塞腔111的纵向轴线1111的方向前后移动,从而使得第一柱塞筒液路311可以与任何一个第一腔室的液路的端口对齐,对齐后再向后拉动第一柱塞32,将对齐的第一腔室内的液体抽吸到柱塞筒内,然后再次移动第一柱塞筒31,将第一柱塞筒液路311与所需的第一腔室的液路的端口对齐,推动第一柱塞32,将第一柱塞筒311内的液体转移至所需的腔室。作为示例性的,此处以将样本加样室101的样本溶液转移至混合室106内作为说明,首先,第一柱塞筒31在外力如电机作用下,沿着可以沿着第一柱塞腔111的纵向轴线移动,使得第一柱塞筒液路311与样本加样室液路1011的出液口对齐,然后向后拉动第一柱塞32,将样本加样室101的样本溶液抽吸到第一柱塞筒31内,此时其余的第一腔室的液路的出液口被第一柱塞筒31的筒壁密封,腔室内的液体无法流出,再向后移动第一柱塞筒31使得第一柱塞筒液路311与混合室液路1061的出液口对齐,推动第一柱塞32,即可将第一柱塞筒31内的样本溶液转移至混合室106内。如需要反复抽吸,可以多次重复前述步骤即可实现反复抽吸。
如图1-2所示,混合室106与第一柱塞腔111之间还可以设置有磁性元件容置空间12,以便于磁性元件对混合室106内的磁珠进行磁吸。通过混合室106与第一柱塞腔111之间设置磁性元件容置空间,充分利用了空间,减小了装置的结构。
图4-6示出了的腔室气压平衡装置的第一种实施方式。
参考图4,腔室气压平衡装置2包括气路板21以及穿刺板22,气路板21上设置有一条气路通道211以及多个穿刺腔212,气路通道211为微米级的通道,作为示例性的,可以通过微纳加工在气路板21的表面形成气路槽,然后贴合薄膜密封气路槽即可形成气路通道。每个穿刺腔212与气路通道211连通,具体的,如图5所示,每个穿刺腔212通过一个中间通道2121与气路通道211连通。穿刺板22上的穿刺件221在外力驱动下可以沿着穿刺腔212上下移动。
腔室气压平衡装置2安装在卡盒上,具体的,结合图4,气路板21安装在卡盒本体1的顶端,每个穿刺腔212与第一腔室中的除样本加样室101以外的腔室如废液室102、裂解液室103、至少一个洗液室104、洗脱液室105以及混合室106相对应。作为示例性的,废液室102、裂解液室103、至少一个洗液室104、洗脱液室105以及混合室106与穿刺腔212之间设置有隔离密封件如密封膜等(图中未示出),通过隔离密封件可以在生产时将所需的液体提前储存在各个腔室内,且不会交叉污染。作为示例性的,密封隔离件可以为铝膜或者PP薄膜。作为示例性的,隔离密封件可以设置在第一腔室的顶部,或者隔离密封件可以设置在气路板21的底面。
前文已提及,穿刺板22上的穿刺件221在外力驱动下可以沿着穿刺腔212上下移动。当穿刺件221沿着穿刺腔212向下移动时,当其移动到一定位置可以刺穿密封隔离件,此时密封隔离件围绕穿刺件221的尖端之间的部分与穿刺件221的尖端有细小的缝隙可以透过气体,由此将第一腔室与气路通道211导通,从而第一腔室的各个腔室内的气体可以实现户向户流动,平衡各个腔室内的气压,方便液体的转移。
作为示例性的,穿刺件上至少设置有一条沟槽以方便气体转移。具体的,穿刺件221具有穿刺杆2211以及设置在穿刺杆2211端部的穿刺尖端2212,穿刺尖端2212可以为锥形,沿着锥形穿刺尖端2212的径向设置有至少一条凹槽(图中未示出),以方便穿刺时气体通过凹槽从第一腔室内转移至气路通道211内。
作为示例性的,每个穿刺件221上还设置有密封件222,密封件222可以在穿刺件221进入穿刺腔212后对穿刺腔进行密封,防止气体从穿刺部位泄露。具体的,图6显示了穿刺件221刺穿隔离密封组件时的状态。密封件222的直径与第一腔室的直径相匹配,可以对第一腔室进行密封。作为示例性的,如图4-6所示,密封件222可以包括环状件,图中示出了2个环状件,但本领域技术人员可以理解,环状件的个数也可以为其他个数,如1个,3个或者更多个。穿刺杆2211上设置有与环状件个数匹配的凹槽22111,每个环状件可以适配在凹槽22111内,当环状件适配在凹槽22111内时,如图6所示,其直径比穿刺杆的直径略大从而能够对第一腔室进行密封。
图7-9示出了腔室气压平衡装置的第二种实施方式。
如图7-8所示,腔室气压平衡装置4包括气路板41,气路板41的顶面上设置有气路通道411。腔室气压平衡装置还包括气体开关阀以控制气体从通过气路通道411从一个腔室转移至另一个腔室。具体的,气体开关阀包括柱塞42以及密封圈43,柱塞42设置在气路板41的底面,密封圈43设置在第一腔室的顶端,当柱塞42向下运动嵌入第一腔室顶端的密封圈43并移动到指定位置时,柱塞42的柱塞气体流路421与第一腔室导通。柱塞气体流路421通过中 间流路412与气路通道411连通,由此可以将气路通道411与第一腔室的各个腔室导通,实现各个腔室之间的气体转移,最终达到各个腔室内的气压平衡,以方便液体转移。作为示例性的,如图7所示,柱塞气体流路421包括设置在柱塞侧壁的柱塞通孔4211以及设置在柱塞上的盲孔4212,其中,柱塞通孔4211与盲孔4212连通形成柱塞气体流路421,其中盲孔4212的开口端与中间流路412连通。
需要说明的是,与腔室气压平衡装置的第一种实施方式不同,在本实施方式中,气路板41上的气路通道411并不是与每一个柱塞42连通,样本加样室101对应的柱塞并不设置柱塞气体流路421,而是在卡盒本体1上设置有第二气路15将样本加样室101与废液室102连通起来,相应的,参考图7,样本加样室101对应的样本加样室柱塞设置有样本加样室柱塞气体流路422,废液室102对应的废液室柱塞设置有废液室柱塞气体流路423,样本加样室柱塞气体流路422和废液室柱塞气体流路423可以在柱塞上加工与柱塞腔连通的一个通孔形成,且废液室柱塞气体流路423设置在柱塞通孔4211的上方,样本加样室柱塞气体流路422和废液室柱塞气体流路423可以通过第二气路15将将样本加样室101与废液室102连通起来,保持二者之间的气压平衡。前文已提及,柱塞42向下运动嵌入第一腔室顶端的密封圈43并移动到指定位置时,柱塞42的柱塞气体流路421与第一腔室导通,此时样本加样室柱塞气体流路422以及废液室柱塞气体流路423分别与第二气路15连通,从而可以平衡样本加样室101与废液室102之间的压力。相对于腔室气压平衡装置的第一种实施方式,本实施方式工艺简单,成本更低。
作为示例性的,卡盒还可以包括行程控制元件以控制柱塞的移动,尤其是控制柱塞向下移动的形成。
图8-9示出了行程控制元件的一个具体实施方式。如图8所示,行程控制元件包括设置在卡盒本体1上的柱体13,气路板41上设置有通孔413以与柱体13配合来控制柱塞42向下移动的行程。具体的,通孔413套设在柱体13上,柱体13的直径略大于通孔413的直径或者是柱体13与通孔413的直径相适应,但二者之间的存在摩擦力大于气路板的重量,由此在未对气路板41施加向下的压力时,气路板41就固定在柱体13上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以上,密封圈43对柱塞通孔4211进行密封,从而对第一腔室实现密封,第一腔室内的气体无法实现转移。当对气路板41施加向下的压力时,气路板41可以沿着柱体13向下移动,从而使得柱塞42的柱塞通孔4211位于密封圈43的最低端431以下,此时样本加样室柱塞气体流路422以及废液室柱塞气体流路423也分别与第二气路15连通,从而实现第一腔室与气路通道411的导通以及样本加样室101与废液室102之间的导通,从而可以实现气体从一个第一腔室转移至另一个腔室,最终实现气压平衡。需要说明的是,虽然图8中示出的是每两个第一腔室之间均设置有柱体13,但本领域技术人员可以理解的是,可以设置一个柱体如在中间位置,或者是均匀设置2个或者更多个柱体都是可以的。
作为示例性的,如图8-9所示,为了方便将气路板41通过通孔413安装在柱体13上,可以将柱体13设置为包括第一柱体131和第二柱体132,第一柱体131和第二柱体132之间设置有间隙133,第一柱体131和第二柱体132的顶端设置有向内的圆弧形收缩平滑面134,以方便通孔413套设在柱体13上。具体的,通孔413对准柱体,由于第一柱体131和第二柱体132 的顶端设置有向内的圆弧形收缩平滑面134,因此第一柱体131和第二柱体132的顶端能够顺利的进入通孔413,然后对气路板41施加压力,由于第一柱体131和第二柱体132之间设置有间隙133,因此第一柱体131和第二柱体132彼此靠近,方便气路板41沿着柱体13向下移动。
作为示例性的,如图10所示,为了精准控制气路板41向下移动的距离,柱体13上还可以设置第一行程控制元件135和第二行程控制元件136以精准控制气路板41向下移动的距离,作为示例性的,第一行程控制元件135和第二行程控制元件136可以为设置在柱体13上的环状件;为了方便通孔嵌入柱体13,第一行程控制元件135的端面设置有向内的圆弧形收缩平滑面1351。具体的,结合图1-2、7-10,当气路板41上的通孔413套接在第一行程控制元件135上时,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以上,密封圈43对柱塞通孔4211进行密封,从而对第一腔室实现密封,第一腔室内的气体无法实现转移。当对气路板41施加向下的压力时,气路板41可以沿着柱体13向下移动,直到通孔413套接在第二行程控制元件136上时,此时气路板41固定在卡盒本体时,柱塞42的柱塞通孔4211位于密封圈43的最低端431以下,从而实现第一腔室与气路通道411的导通,从而可以实现气体从一个第一腔室转移至另一个腔室,最终实现气压平衡。
图11-15示出了行程控制元件的又一个具体实施方式。如图11所示,行程控制元件包括设置在气路板41底面的“”形的凸起结构414,具体的,凸起结构414包括第一凸缘4141和第二凸缘4142,第一凸缘4141和第二凸缘4142之间有间隙,第一腔室的多个腔室中至少有相邻的两个腔室之间设置有空腔。如图12所示,卡盒本体1上第一腔室的多个腔室的任两个腔室之间设置有空腔14,以用于接收气路板41上的凸起结构414,使用时,凸起结构414在未发生形变时的略宽度大于空腔14的宽度,由此可以将凸起结构414卡扣在空腔14内,即可将气路板41安装在卡盒本体1上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以上,密封圈43对柱塞通孔4211进行密封,从而对第一腔室实现密封,第一腔室内的气体无法实现转移;当对气路板41施加向下的压力时,气路板41可以沿着空腔14向下移动,从而使得柱塞42的柱塞通孔4211位于密封圈43的最低端431以下,从而实现第一腔室与气路通道411的导通,从而可以实现气体从一个第一腔室转移至另一个腔室,最终实现气压平衡。
作为示例性的,参考图12,为了精准控制气路板41向下移动的距离,空腔14的内壁上设置有至少一组凸缘接收槽,凸缘接收槽包括第一组凸缘接收槽141,作为示例性的,第一组凸缘接收槽141包括对称设置在空腔14两侧的两个接收槽,用于接收第一凸缘4141和第二凸缘4142。使用时,凸起结构414在未发生形变时的略宽度大于空腔14的宽度,由此可以将凸起结构414卡扣在空腔14内,即可将气路板41安装在卡盒本体1上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以上,密封圈43对柱塞通孔4211进行密封,从而对第一腔室实现密封,第一腔室内的气体无法实现转移;当对气路板41施加向下的压力时,气路板41可以沿着空腔14向下移动,当第一凸缘4141和第二凸缘4142移动至第一组凸缘接收槽141时,由于第一凸缘4141和第二凸缘4142的向外的张力作用,第一凸缘4141和第二凸缘4142可以分别卡扣进第一组凸缘接收槽141的两个接收槽内,由此将气路板41稳定的安装在卡盒本体1上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以下,从而实现第一腔 室与气路通道411的导通,从而可以实现气体从一个第一腔室转移至另一个腔室,最终实现气压平衡。
作为示例性的,第一组凸缘接收槽141也可以是沿着空腔14的内壁连续的设置以便于在气路板有稍微变形时仍可以使得第一组凸缘接收槽141顺利接收第一凸缘4141和第二凸缘4142,如空腔14为柱形腔时,第一组凸缘接收槽141和第二组凸缘接收槽142可以是沿着空腔14的壁连续设置形成环形槽,当为方形时,也可以形成方形槽。
作为示例性的,凸缘接收槽可以为两组,具体的,参考图12,第一组凸缘接收槽141和第二组凸缘接收槽142,第二组凸缘接收槽142的原理与第一组凸缘接收槽的原理相同,在此不做赘述。使用时,第一凸缘4141和第二凸缘4142可以卡扣进第一组凸缘接收槽141内,由此可以将气路板41稳固的安装在卡盒本体1上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以上,密封圈43对柱塞通孔4211进行密封,从而对第一腔室实现密封,第一腔室内的气体无法实现转移;当对气路板41施加向下的压力时,由于第一凸缘4141和第二凸缘4142可以发生形变,且第一凸缘4141和第二凸缘4142与第一组凸缘接收槽141的接触面分别具有第一凸缘倾斜面41411和第二凸缘倾斜面41421,由此第一凸缘4141和第二凸缘4142可以从第一组凸缘接收槽141退出来继续向下移动,当移动至第二组凸缘接收槽142时,第一凸缘4141和第二凸缘4142又可以卡合进入第二组凸缘接收槽142,由此将气路板41稳定的安装在卡盒本体1上,此时柱塞42的柱塞通孔4211位于密封圈43的最低端431以下,从而实现第一腔室与气路通道411的导通,从而可以实现气体从一个第一腔室转移至另一个腔室,最终实现气压平衡。
图10-11中虽然示出了任两个相邻的柱塞42之间设置有“”形的凸起结构414,以及任两个相邻的第一腔室之间设置有空腔14,但本领域技术人员也可以理解,凸起结构414以及对应的空腔14可以为一个,也可以为多个。
作为示例性的,气路板上设置有密封盖以对样本加样室进行密封。作为一个具体的实施方式,如图4所示,气路板21上设置有密封塞213,气路板21上对应设置有样本加样室腔214,当气路板21安装在卡盒本体1上时,样本加样室腔214与样本加样室101导通,通过样本加样室腔214的开口进行加样,加样完毕后,密封塞213对样本加样室腔214的开口进行密封从而对样本加样室101密封,防止样品泄漏。特别的,密封塞213上设置有滤芯,滤芯为可透气防水的滤芯,可以保证气体通过但液体不可以通过。
作为另外一个具体的实施方式,参考图11,气路板41上设置有密封盖415,此时气路板41上不设置样板加样室腔,而是直接从样本加样室101的开口进行加样,加样完毕后,直接将密封盖415密封样本加样室101的开口。密封盖415同样具有与密封塞213同样的滤芯结构。
作为示例性的,继续参考图1,卡盒基座11上设置还可以设置进气通道112,进气通道112与设置在卡盒基座11上的气路通道1121连通。通过设置进气通道112,可以向卡盒装置内通入气体以干燥混合室106。具体的,当需要干燥混合室106以排除室内的溶剂时,拉动第一柱塞筒31,使得第一柱塞筒31沿着第一柱塞腔111的纵向轴线1111移动,第一柱塞筒液路311与气路通道1121对准连通,然后向后拉动第一柱塞32吸入干净的气体到第一柱塞筒31中, 再次拉动第一柱塞筒31,使得拉动第一柱塞筒31的第一柱塞筒液路311与混合室106对应的混合室液路1061对齐,再次推动第一柱塞筒31,推动气体进入混合室106内,然后对混合室106进行加热,使得气体受热挥发混合室106内的残存的溶剂,持续一段时间后,向后拉动第一柱塞32,使得含有溶剂的气体进入第一柱塞筒31内,然后推动第一柱塞筒31使得第一柱塞筒液路311与样本加样室液路1011的出液口对齐(此时样本加样室为空室),推动第一柱塞32,使得第一柱塞筒31内含有溶剂的气体进入样本加样室101内。前文已提及,气路板21上设置有密封塞213对样本加样室腔214进行密封由此对样本加样室101密封,或者是气路板41上设置有密封盖415对样本加样室进行密封,密封塞213与密封盖415都设置有可透气防水的滤芯,因此带有溶剂的气体可以从滤芯排出,通过滤芯过滤排出没有受到污染的气体。虽然图1中示出了进气通道112以及气路通道1121设置在第一柱塞腔111的下方,但本领域技术人员可以理解,进气通道112以及气路通道1121也可以设置在第一柱塞腔111的上方。作为示例性的,进气通道112还可以设置滤芯,以保证干净的气体进入卡盒。
作为示例性的,参考图1,卡盒还包括收集装置17,收集装置17可以是试管或PCR管等,收集装置17通过收集装置液路171与第一柱塞腔111连通,从而可以将卡盒内的洗脱液收集在收集装置中。具体的,洗脱液最终在混合室106中,在将洗脱液收集在收集装置17中时,第一柱塞筒31在外力如电机作用下,沿着可以沿着第一柱塞腔111的纵向轴线移动,使得第一柱塞筒液路311与混合室液路1061的出液口对齐,然后向后拉动第一柱塞32,将混合室106内的洗脱液抽吸到第一柱塞筒31内,此时其余的第一腔室的液路的出液口被第一柱塞筒31的筒壁密封,腔室内的液体无法流出,再向后移动第一柱塞筒31使得第一柱塞筒液路311与收集装置液路171对齐,推动第一柱塞32,即可将第一柱塞筒31内的洗脱液转移至收集装置17内。
作为示例性的,参考图3B,第一柱塞筒31的外表面设置有密封壳33,密封壳33可以是发生形变的软材料制成,如橡胶等,通过设置密封壳33,可以使得第一柱塞筒31与第一柱塞腔111之间贴合效果更好,防止液体泄露。
为了实现核酸提取扩增一体化,参考图13-15,卡盒本体1还包括多个第二腔室16;卡盒基座11上设置有第二柱塞腔116,其中第二腔室16的每一个通过独立的第二腔室液路与第二柱塞腔116连通;
第二柱塞组件5,其中第二柱塞组件5包括第二柱塞筒51和第二柱塞52,第二柱塞筒51可以相对于第二柱塞腔116的纵向轴线1161方向移动;第二柱塞筒51的壁上设置有第二柱塞筒液路512。在公开中,第二柱塞筒液路512可以通过在第二柱塞筒侧壁上设置一个与第二柱塞筒腔连通的通孔形成,第一腔室10与第二腔室16呈线性设置。通过设置第二柱塞腔116,可以保证第二腔室16内的液体与第一腔室10内的液体不存在交叉,避免影响生化反应。作为示例性的,如图14-16所示,第一柱塞组件3和第二柱塞组件5分别设置在卡盒本体1的两侧。使用时,待洗脱液转移至收集装置后,可将第二腔室16内的试剂如扩增试剂、密封试剂等经过第二腔室液路转移至第二柱塞筒51内,然后移动第二柱塞筒51,使得第二柱塞筒液路512与收集装置液路171对齐,将扩增试剂、密封试剂等转移至收集装置17内进行扩增反应等。
作为示例性的,第二柱塞筒51的壁上还设置有定量池511,第一柱塞腔111和第二柱塞腔116通过设置在卡盒基座11上的过渡液路113连通,定量池511用于对液体进行定量转移。具体的,可以通过微纳加工在第二柱塞筒51的外壁上进行加工形成槽,其中第二柱塞筒51的内壁形成槽的底部,由此形成定量池511。
作为示例性的,第二柱塞筒51与第一柱塞筒类似,其外表面同样可以设置有密封壳,密封壳的设置方式以及作用参考第一柱塞筒的密封壳,在此不做赘述。
前文已提及,可将液体从第一腔室的一个腔室转移至另一个腔室。在核酸提取过程中,含有核酸的洗脱液最终在第一腔室的混合室106内。在本实施方式中,所述第一柱塞腔111和所述第二柱塞腔116通过过渡液路113连通。混合室106内的核酸洗脱液可以经过渡液路113导入到定量池511内。具体的,移动第一柱塞筒31,使得第一柱塞筒液路311与混合室106对应的混合室液路1061对齐,然后向后拉动第一柱塞32,将混合室106内的核酸洗脱液抽吸到第一柱塞筒31内,此时其余的第一腔室的液路的出液口被第一柱塞筒31的筒壁密封,腔室内的液体无法流出,再向后移动第一柱塞筒31使得第一柱塞筒液路311与过渡液路113的进液口(即朝向第一柱塞腔111的开口)对齐,同时移动第二柱塞筒51,定量池511对准过渡液路113的出液口(即朝向第二柱塞腔116的开口),然后推动第一柱塞32,使得第一柱塞筒31内的核酸洗脱液进入到定量池511内。需要说明的是,可以根据第一柱塞筒31的内径以及定量池511的体积,然后在外部电机的作用下精准确定第一柱塞32推动的距离来保证液体充满定量池。
作为示例性的,多个第二腔室16包括二次试剂室161以及密封试剂室162,多个第二腔室液路包括二次试剂室液路1611、密封试剂室液路1621,二次试剂室161、密封试剂室162二者分别通过二次试剂室液路1611、密封试剂室液路1621与第二柱塞腔116连通,其中二次试剂室液路1611与密封试剂室液路1621为独立液路。在本公开中,第二腔室的液路在卡盒本体1上的端口都在一条直线上,其中直线是以沿着第二柱塞腔116的纵向轴线1161方向确定的。二次试剂室161用于加入二次试剂如扩增试剂等,而密封试剂室162内则预先储存有密封试剂,所述密封试剂为矿物油、硅油、氟烷油、植物油、液体石蜡中的至少一种,可以用于对液体进行密封以及对定量池内的液体进行推动以驱使液体转移,密封试剂预储存后用活塞进行密封。具体的,前文已提及已将核酸洗脱液转移至定量池511中,需要进一步转移至前文提及的收集装置17中,本领域技术人员可以理解,在设置有第二柱塞筒的情况下,收集装置17相应的设置成通过收集装置液路171与第二柱塞腔116连通,以便于液体转移至收集装置内。在需要将定量池511内的核酸洗脱液转移至收集装置17内时,先移动第二柱塞筒51使得定量池511的一端与密封试剂室液路1621对齐,另一端与收集装置液路171对齐,然后控制密封试剂室162的活塞向下移动,如电机推动等,使得密封试剂通过密封试剂室液路1621转移至定量池511中,由此推动核酸洗脱液经收集装置液路171转移至收集装置17中。通过此种转移方式,可以避免核酸洗脱液的残留。
作为示例性的,参考图13,卡盒基座11上还可以设置排气通道114,排气通道114的一端与第一柱塞腔111连通,一端与收集装置17连通,由此在将核酸洗脱液从定量池511转移 至收集装置17的过程中,可以将收集装置17内的气体转移至第一柱塞筒31内,以方便密封试剂推着核酸洗脱液进入收集装置。具体的,在将核酸洗脱液从定量池511转移至收集装置17中时,同步操作将第一柱塞筒31的第一柱塞筒液路311对齐排气通道114,然后同步拉动第一柱塞,由此可以将收集装置17内的气体转移至第一柱塞筒31内,减小收集装置17内的气压,以方便洗脱液进入收集装置17内。
作为示例性的,继续参考图13-16,第二柱塞腔116上设置有溢流流道1162,溢流流道1162的形成可以参考第一腔室流道的形成。定量池511靠近第二柱塞筒液路512的端部与第二柱塞筒液路512之间存在距离L,溢流流道1162的长度与L相同。通过设置溢流流道1162,可以确保洗脱液能够充满定量池511从而准确定量,且不需要根据第一柱塞筒内径等计算第一柱塞推动的距离即可实现准确定量。具体的,参考图16,在将洗脱液从混合室106转入定量池511时,可按照前文述及的方法将混合室106的洗脱液转移至第一柱塞筒31内,然后将第一柱塞筒31移动使得第一柱塞筒液路311与过渡液路113对齐,同时移动第二柱塞筒51,使得定量池511与过渡液路113对齐,此时溢流流道1162的一端与定量池511对齐,另一端与第二柱塞筒液路512对齐,由此在将核酸洗脱液转移至定量池511时,推动第一柱塞32,同时以与第一柱塞相同的速率拉动第二柱塞52,使得第一柱塞和第二柱塞同步移动,使得核酸洗脱液溢出定量池511,溢出的核酸洗脱液经第二柱塞筒液路512进入到第二柱塞筒51内,此时核酸洗脱液完全充满定量池511,由此不需要精确的控制第一柱塞推动的距离。同时,将第一柱塞与第二柱塞同步的推拉移动,在本公开中,同步推拉移动是指一个柱塞以速率V向前推动时,另一个柱塞以相同的速率V向后拉动。通过同步推拉移动,一方面可以对需要转移的液体起到导流作用;另一方面,由于柱塞腔室内有空气存在,单纯靠单个柱塞的驱动力或者吸引力去转移液体,液体难以转移干净,会残留在流道内,通过同步推拉移动,可以使得液体转移更加充分,不会残留在移液流道内。此时定量池511内的洗脱液转移至收集装置17内的方法同前文所述,在此不做赘述。
作为示例性的,参考图13,卡盒基座11还设置有回推液路115,回推液路115分别与第一柱塞腔111、第二柱塞腔116连通。前文已提及,在将洗脱液转移至定量池511的过程中,溢出定量池的核酸被吸入到第二柱塞筒51内,通过回推液路115,可以将第二柱塞筒51内的核酸洗脱液回推到第一柱塞筒内,具体的,待定量池511内的洗脱液转移至收集装置17内后,分别将、第一柱塞筒液路311、第二柱塞筒液路512与回推液路115对齐,然后推动第二柱塞52,同时同步拉动第一柱塞32,即可将第二柱塞筒51内的洗脱液转移至第一柱塞筒31内。后续可以根据需要再将第一柱塞筒内的洗脱液转移至混合室106内。
前文已提及,参考图13-16,二次试剂室161用于加入二次试剂如扩增试剂,需要说明的是,加入扩增试剂后,以活塞对二次试剂室进行密封。在加入扩增试剂时,如前文所述,已将第二柱塞筒51内的洗脱液转移至第一柱塞筒31内,此时第二柱塞筒51为空筒,可以通过第二柱塞筒51将加入到二次试剂室161内的扩增试剂转移至收集装置17内进行扩增反应。具体的,待将第二柱塞筒51内的洗脱液转移至第一柱塞筒31后,移动第二柱塞筒51,使得第二柱塞筒液路512与二次试剂室液路1611对齐,然后向下推动密封二次试剂室的活塞,同时拉动 第二柱塞52,使得扩增试剂转移至第二柱塞筒51内,然后移动第二柱塞筒51使得第二柱塞筒液路512与收集装置液路171对齐,同时移动第一柱塞筒31使得第一柱塞筒液路311与排气通道114对齐,然后推动第二柱塞52,同时同步拉动第一柱塞32,即可以使得二次扩增试剂转移至收集有核酸洗脱液的核酸收集装置17中进行扩增,在此过程中可将收集装置17内的气体转移至第一柱塞筒内,由此减小收集装置17内的气压,以方便扩增试剂进入收集装置17内。如需多轮扩增,重复操作前述步骤即可完成多轮扩增。
作为示例性的,二次试剂室161的侧壁设置有二次试剂加样管1612,二次试剂加样管1612连接有二次试剂加样管密封塞16121,在加入二次试剂时,也可以通过二次试剂加样管1612加入,加入完成后,用二次试剂加样管密封塞16121进行密封。
需要说明的是,在生产时,腔室气压平衡装置安装在卡盒本体上,但各腔室之间并不通过气路连通,即各腔室内的气压分别保持独立,在使用过程中才平衡各腔室气压。
前文已提及,裂解液室103、至少一个洗液室104、洗脱液室105分别储存有核酸提取用的裂解液,洗涤液以及洗脱液,而混合室106内预先储存有磁珠溶液。本公开的使用原理如下:
在核酸提取时包括步骤:
S1平衡第一腔室的气压:通过腔室气压平衡装置平衡各第一腔室内的气压,具体平衡的方式参见前文所描述的方式;
S2活化磁珠:按照前述的液体转移方式将混合室106的磁珠溶液第一柱塞筒31内,然后推动第一柱塞32使得磁珠溶液返回到混合室106,通过反复抽吸,进行磁珠活化;
S3排磁珠废液:待磁珠活化后,将磁性元件移动到磁性元件容置空间12对混合室106内的磁珠进行固定,然后将溶液全部转移至第一柱塞筒31内,再将第一柱塞筒31内的液体转移至废液室102内;
S4加入样本:向样本加样室101加入样本,将样本溶液转移至第一柱塞筒31内,然后再将第一柱塞筒31内的样本溶液转移至混合室106内;
S5裂解反应:将预存在裂解液室103内的裂解液转移至第一柱塞筒31内,然后将第一柱塞筒31内的裂解液转移至混合室106内进行裂解反应;待裂解液转移至混合室106内后,可以通过反复推拉第一柱塞32进行反复的抽吸,使得裂解反应充分;待反应完成后,将磁性元件移动到磁性元件容置空间12对混合室106内的磁珠进行固定,然后将反应完全后产生的废裂解液转移至第一柱塞筒31内,然后将第一柱塞筒31内的废裂解液转移至裂解液室103内;
S6洗涤:将预存在洗液室104内洗涤液转移至第一柱塞筒31,然后将第一柱塞筒31内洗涤液转移至混合室106内,待洗涤液转移至混合室106内后,可以通过反复推拉第一柱塞32进行反复的抽吸,使得洗涤充分。待洗涤充分后,将磁性元件移动到磁性元件容置空间12对混合室106内的磁珠进行固定,然后将洗涤液废液转移至第一柱塞筒31内,然后将第一柱塞筒31内的洗涤液废液转移至裂解液室103内;
S7洗脱:将预存在洗脱液室105内洗脱液转移至第一柱塞筒31,然后将第一柱塞筒31内洗脱液转移至混合室106内,待洗脱液转移至混合室106内后,可以通过反复推拉第一柱塞32进行反复的抽吸,使得洗脱充分;
S8收集洗脱液:待洗脱完成后,将磁性元件移动到磁性元件容置空间12对混合室106内的磁珠进行固定,然后将洗脱液转移至第一柱塞筒31内,然后将第一柱塞筒31内的洗脱液转移至收集装置如PCR管内。
在设置有定量池511的情况下,待洗脱液完成后,将磁性元件移动到磁性元件容置空间12对混合室106内的磁珠进行固定,然后将洗脱液转移至第一柱塞筒31内,然后将第一柱塞筒31内的洗脱液转移至定量池511,然后利用密封试剂将定量池511内的洗脱液驱动至收集装置17中。定量过程参考前文描述。
在还设置有溢流流道1162的情况下,还包括将经溢流流道1162进入第二柱塞筒51内的洗脱液经回推液路115转移至混合室106内,具体的过程参考前文。
作为示例性的,在步骤S6以及S7之间还可以具有步骤S0通气:通过进气通道112通入干净的气体进入到混合室106内(气体进入到混合室106的方式请参考前文),然后对混合室106进行加热,以确保气体受热蒸发混合室残留液体,形成干燥环境,然后将气体通过样本加样室101排出(排出方式参考前文)。
在需要进行核酸扩增时,则可以结合图13-16进行如下操作:
S8密封试剂密封洗脱液:将预存在密封试剂室162内的密封试剂转移至第二柱塞筒51内,然后将第二柱塞筒51内的密封试剂转移至收集装置17内对洗脱液进行密封;
S8扩增反应:向二次试剂室161内加入扩增试剂,然后将扩增试剂转移至第二柱塞筒51内,然后将第二柱塞筒51内的扩增试剂转移至收集装置17进行扩增反应。
在设置有排气通道的情况下,在将扩增试剂转移转移至收集装置17的过程中,还包括将收集装置17的气体转移至第二柱塞筒51内,具体的过程参考前文。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (32)

  1. 一种核酸扩增用卡盒,其特征在于,包括:
    卡盒本体和腔室气压平衡装置,
    所述卡盒本体包括多个第一腔室和卡盒基座,多个第一腔室设置在卡盒基座上,卡盒基座上设置有第一柱塞腔,所述多个第一腔室的每一个通过独立的第一腔室液路与所述第一柱塞腔连通;以及第一柱塞组件,其中第一柱塞组件包括第一柱塞筒和第一柱塞,第一柱塞筒上设置有第一柱塞筒液路,所述第一柱塞筒可以沿着第一柱塞腔的纵向轴线方向移动;
    所述腔室气压平衡装置平衡所述多个第一腔室内的气压。
  2. 根据权利要求1所述的核酸扩增用卡盒,其特征在于,所述多个第一腔室包括样本加样室、废液室、裂解液室、至少一个洗液室、洗脱液室以及混合室。
  3. 根据权利要求2所述的核酸扩增用卡盒,其特征在于,所述混合室与第一柱塞腔之间设置有磁性元件容置空间。
  4. 根据权利要求1所述的核酸扩增用卡盒,其特征在于,所述腔室气压平衡装置包括气路板以及穿刺板,所述气路板上设置有气路通道以及穿刺腔,所述气路通道与所述穿刺腔连通以形成气路通道,所述穿刺板上的穿刺件可以沿着所述穿刺腔上下移动。
  5. 根据权利要求4所述的核酸扩增用卡盒,其特征在于,所述第一腔室与穿刺腔室之间设置有隔离密封件;所述穿刺件经所述穿刺腔向下移动刺穿所述隔离密封件以导通所述腔室与所述气路通道。
  6. 根据权利要求5所述的核酸扩增用卡盒,其特征在于,所述隔离密封件设置在第一腔室的顶部或气路板的底面。
  7. 根据权利要求4-6中任一项所述的核酸扩增用卡盒,其特征在于,所述穿刺件上还设置有密封件。
  8. 根据权利要求7所述的核酸扩增用卡盒,其特征在于,所述密封件包括环状件,所述穿刺件上设置有与环状件个数相匹配的凹槽,所述环状件适配在所述凹槽内。
  9. 根据权利要求1所述的核酸扩增用卡盒,其特征在于,所述腔室气压平衡装置包括气路板,所述气路板的顶面上设置有气路通道。
  10. 根据权利要求9所述的核酸扩增用卡盒,其特征在于,所述腔室气压平衡装置还包括气体开关阀以控制气体通过所述气路通道从一个腔室转移至另一个腔室。
  11. 根据权利要求10所述的核酸扩增用卡盒,其特征在于,所述气体开关阀包括柱塞以及密封圈,所述柱塞设置在所述气路板的下方,所述密封圈设置在所述第一腔室的顶端,其中当所述柱塞向下运动嵌入所述第一腔室顶端的所述密封圈时,所述柱塞的柱塞气体流路与所述腔室导通。
  12. 根据权利要求11所述的核酸扩增用卡盒,其特征在于,所述柱塞气体流路包括设置在柱塞侧壁的柱塞通孔以及设置在柱塞上的盲孔,其中,所述柱塞通孔与所述盲孔连通形成气体流路。
  13. 根据权利要求11或12所述的核酸扩增用卡盒,其特征在于,所述卡盒还包括行程控制元件以控制所述柱塞的移动。
  14. 根据权利要求13所述的核酸扩增用卡盒,其特征在于,所述行程控制元件包括设置在卡盒本体上的柱体,所述气路板上设置有通孔以与所述柱体配合。
  15. 根据权利要求14所述的核酸扩增用卡盒,其特征在于,所述柱体包括第一柱体和第二柱体,所述第一柱体与所述第二柱体之间有间隙。
  16. 根据权利要求14或15所述的核酸扩增用卡盒,其特征在于,所述柱体上设置有第一行程控制元件和第二行程控制元件。
  17. 根据权利要求13所述的核酸扩增用卡盒,其特征在于,所述行程控制元件包括设置在所述气路板底面的“”形的凸起结构,所述凸起结构包括第一凸缘和第二凸缘,所述第一凸缘和第二凸缘之间有间隙,所述第一腔室的多个腔室中至少有相邻的两个腔室之间设置有空腔。
  18. 根据权利要求17所述的核酸扩增用卡盒,其特征在于,所述空腔的内壁上设置有至少一组凸缘接收槽。
  19. 根据权利要求4-6、8-12、14-15、17-18任一项所述的核酸扩增用卡盒,其特征在于,所述气路板上设置有密封盖,以对样本加样室进行密封。
  20. 根据权利要求4-6、8-12、14-15、17-18中任一项所述的核酸扩增用卡盒,其特征在于,所述卡盒本体上设置进气通道,所述进气通道与所述第一柱塞腔连通。
  21. 根据权利要求4-6、8-12、14-15、17-18中任一项所述的核酸扩增用卡盒,其特征在于,所述卡盒还包括收集装置,所述收集装置通过收集装置液路与第一柱塞腔室连通。
  22. 根据权利要求4-6、8-12、14-15、17-18中任一项所述的核酸扩增用卡盒,其特征在于,所述第一柱塞筒的外表面设置有密封壳。
  23. 根据权利要求4-6、8-12、14-15、17-18任一项所述的核酸扩增用卡盒,其特征在于,所述卡盒本体还包括多个第二腔室、第二柱塞腔,其中所述第二腔室的每一个通过独立的第二腔室液路与所述第二柱塞腔连通;
    第二柱塞组件,其中第二柱塞组件包括第二柱塞筒和第二柱塞,所述第二柱塞筒可以相对于第二柱塞腔的纵向轴线方向移动;所述第二柱塞筒壁上设置有第二柱塞筒液路。
  24. 根据权利要求23所述的核酸扩增用卡盒,其特征在于,所述第二柱塞筒上设置有定量池,所述第一柱塞腔和所述第二柱塞腔通过设置在卡盒基座上的过渡液路连通。
  25. 根据权利要求24所述的核酸扩增用卡盒,其特征在于,所述多个第二腔室包括二次试剂室以及密封试剂室。
  26. 根据权利要求25所述的核酸扩增用卡盒,其特征在于,所述密封试剂室内预先储存有密封试剂,所述密封试剂为矿物油、硅油、氟烷油、植物油、液体石蜡中的至少一种。
  27. 根据权利要求24所述的核酸扩增用卡盒,其特征在于,所述第二柱塞筒上设置有第二柱塞筒液路,所述第二柱塞腔上设置有溢流流道。
  28. 根据权利要求27所述的核酸扩增用卡盒,其特征在于,所述第一柱塞和所述第二柱塞可以同步移动。
  29. 根据权利要求24-28中任一项所述的核酸扩增用卡盒,其特征在于,卡盒基座上还设置排气通道,排气通道的一端与第一柱塞腔连通,另一端与收集装置连通。
  30. 根据权利要求27所述的核酸扩增用卡盒,其特征在于,卡盒基座还设置有回推液路,回推液路分别与第一柱塞腔、第二柱塞腔连通。
  31. 根据权利要求28所述的核酸扩增用卡盒,其特征在于,卡盒基座还设置有回推液路,回推液路分别与第一柱塞腔、第二柱塞腔连通。
  32. 根据权利要求25或26中任一项所述的核酸扩增用卡盒,其特征在于,所述二次试剂室的侧壁设置有二次试剂加样管,所述二次试剂加样管连接有密封塞。
PCT/CN2022/092433 2022-05-12 2022-05-12 一种核酸扩增用卡盒 WO2023216184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092433 WO2023216184A1 (zh) 2022-05-12 2022-05-12 一种核酸扩增用卡盒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092433 WO2023216184A1 (zh) 2022-05-12 2022-05-12 一种核酸扩增用卡盒

Publications (1)

Publication Number Publication Date
WO2023216184A1 true WO2023216184A1 (zh) 2023-11-16

Family

ID=88729422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092433 WO2023216184A1 (zh) 2022-05-12 2022-05-12 一种核酸扩增用卡盒

Country Status (1)

Country Link
WO (1) WO2023216184A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160186240A1 (en) * 2014-12-31 2016-06-30 Click Diagnostics Devices and methods for molecular diagnostic testing
CN110075935A (zh) * 2019-04-23 2019-08-02 清华大学 多指标检测微流控卡盒及应用方法
CN111187714A (zh) * 2020-02-21 2020-05-22 厦门大学 微流控芯片组件及微流控芯片检测系统
CN112337516A (zh) * 2020-09-18 2021-02-09 东莞东阳光医疗智能器件研发有限公司 气压平衡微流控芯片及其控制方法
CN113275046A (zh) * 2020-02-20 2021-08-20 北京京东方健康科技有限公司 检测芯片及其使用方法、检测装置
CN113667582A (zh) * 2021-08-17 2021-11-19 圣湘生物科技股份有限公司 核酸检测装置及核酸检测方法
CN113684118A (zh) * 2021-07-14 2021-11-23 浙江大学 一种集成核酸分析芯片
CN114015567A (zh) * 2021-10-29 2022-02-08 杭州遂真生物技术有限公司 一种基于旋转柱塞的气动一体式pcr检测试剂盒及其检测方法
CN215947294U (zh) * 2021-01-15 2022-03-04 江苏汇先医药技术有限公司 环介导等温扩增芯片

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160186240A1 (en) * 2014-12-31 2016-06-30 Click Diagnostics Devices and methods for molecular diagnostic testing
CN110075935A (zh) * 2019-04-23 2019-08-02 清华大学 多指标检测微流控卡盒及应用方法
CN113275046A (zh) * 2020-02-20 2021-08-20 北京京东方健康科技有限公司 检测芯片及其使用方法、检测装置
CN111187714A (zh) * 2020-02-21 2020-05-22 厦门大学 微流控芯片组件及微流控芯片检测系统
CN112337516A (zh) * 2020-09-18 2021-02-09 东莞东阳光医疗智能器件研发有限公司 气压平衡微流控芯片及其控制方法
CN215947294U (zh) * 2021-01-15 2022-03-04 江苏汇先医药技术有限公司 环介导等温扩增芯片
CN113684118A (zh) * 2021-07-14 2021-11-23 浙江大学 一种集成核酸分析芯片
CN113667582A (zh) * 2021-08-17 2021-11-19 圣湘生物科技股份有限公司 核酸检测装置及核酸检测方法
CN114015567A (zh) * 2021-10-29 2022-02-08 杭州遂真生物技术有限公司 一种基于旋转柱塞的气动一体式pcr检测试剂盒及其检测方法

Similar Documents

Publication Publication Date Title
CN111644213B (zh) 一种流体操控装置及流体控制方法
CN111057638A (zh) 样本处理装置及方法,以及包括该处理装置的数字pcr系统
CN110075935B (zh) 多指标检测微流控卡盒及应用方法
US7094379B2 (en) Device for parallel and synchronous injection for sequential injection of different reagents
CN114657049B (zh) 一种核酸扩增用卡盒
US20040208794A1 (en) Microfluidic mixing and dispensing
WO2021237397A1 (zh) 一种流体操控装置及流体控制方法
US20190314777A1 (en) Methods for mixing fluids in microfluidic devices, and devices and systems therefor
CN113186098B (zh) 一种一体化下开口核酸快提试管、快提检测装置及方法
EP3683297A1 (en) Biological reaction device provided with microfluidic or nanofluidic structure
US20130330250A1 (en) Device
CN116298353A (zh) 一种用于微体积液体移液操作的装置
WO2023040477A1 (zh) 体外诊断分析装置及试剂卡盒
CN112871230A (zh) 一种核酸扩增用的立式微流控芯片
Xie et al. A hand-powered microfluidic system for portable and low-waste sample discretization
US11701664B2 (en) Analysis device and method
WO2023216184A1 (zh) 一种核酸扩增用卡盒
CN217479476U (zh) 一种核酸扩增用卡盒
CN218339833U (zh) 液体转移、多通道液体转移、液体自动提取转移及多通道液体自动提取转移的装置
TW202108110A (zh) 體外裝置用試劑盒
KR102055917B1 (ko) 반응액 저장 장치 및 이를 구비한 바이오 반응 장치
CN115400806A (zh) 一体化核酸提取微流控芯片盒和核酸提取及检测方法
WO2018006286A1 (zh) 一种流控机构及含有该机构的系统
CN214599114U (zh) 一种核酸扩增用的立式微流控芯片
CN113533263B (zh) 试剂释放装置及方法、微流控芯片装置和结核检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941141

Country of ref document: EP

Kind code of ref document: A1