WO2023216151A1 - 一种温控自毁型的光子晶体标签 - Google Patents

一种温控自毁型的光子晶体标签 Download PDF

Info

Publication number
WO2023216151A1
WO2023216151A1 PCT/CN2022/092248 CN2022092248W WO2023216151A1 WO 2023216151 A1 WO2023216151 A1 WO 2023216151A1 CN 2022092248 W CN2022092248 W CN 2022092248W WO 2023216151 A1 WO2023216151 A1 WO 2023216151A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
methylimidazole
crystal material
material according
colloidal particles
Prior art date
Application number
PCT/CN2022/092248
Other languages
English (en)
French (fr)
Inventor
杜学敏
黄超
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/092248 priority Critical patent/WO2023216151A1/zh
Publication of WO2023216151A1 publication Critical patent/WO2023216151A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Definitions

  • the invention relates to the technical field of information recording materials, and in particular to a temperature-controlled self-destruction photonic crystal tag.
  • Time and temperature tags can monitor environmental heat accumulation through the color change of irreversible change indicators under temperature stimulation. When used in cold chain management, they can quickly and reliably mark temperature abnormalities and help users accurately and efficiently track temperature. , to achieve accurate and effective cold chain management.
  • existing time and temperature tags use chemical chromophore groups for indication, and there are two challenges: First, the chemical chromophore group changes color by changing the molecular conformation or polymerization reaction, and its reaction rate is slow.
  • Colloidal photonic crystal refers to a periodically arranged ordered microstructure formed by micro- and nanoscale colloidal particles. It is characterized by strong reflection of light of specific wavelengths and bright structural colors. Studies have shown that filling the gaps between colloidal particles with temperature-sensitive polymers can change the distance between colloidal particles or the refractive index of colloidal photonic crystals and achieve rapid response to temperature [Non-patent document 1].
  • Non-patent literature 1 Duplex
  • the present invention provides a temperature-controlled self-destruction photonic crystal tag whose trigger temperature and discoloration time are flexibly adjustable, and whose structural color is irreversibly responsive to environmental heat accumulation.
  • the photonic crystal tag provided by the invention is simple to prepare, has accurate and reliable detection results and is easy to identify, has adjustable monitoring temperature and discoloration time, and has a wide adjustment range.
  • the present invention provides a photonic crystal material with irreversible temperature responsiveness.
  • the photonic crystal material is composed of a liquid photonic crystal assembly with a regular arrangement structure and a phase change that destroys the regular arrangement structure under heating conditions.
  • the second material is prepared;
  • the liquid photonic crystal assembly with a regularly arranged structure is composed of monodispersed micron/nano colloidal particles with a regularly arranged structure and a first material filled in the gaps between the micron/nano colloidal particles;
  • the phase transition temperature of the phase transition is any one of melting point, crystal transition temperature, glass transition temperature, softening point, gel-sol transition temperature and minimum/high critical temperature.
  • the maximum critical temperature refers to the fact that when the temperature of a polymer with temperature-sensitive characteristics is reduced to a certain temperature, it will change from the original swelling (dissolving) state to a shrinking (insoluble) state.
  • Temperature the lowest critical temperature refers to two liquids that form a partially miscible system. As the temperature decreases, the mutual solubility of the two liquids increases. The compositions of the two liquid phases that are balancing each other gradually approach each other. When lowered to a certain temperature, the two liquid phases have the same composition and the interface between the two liquid phases disappears. Below this temperature, there is only one uniform liquid phase.
  • the monodispersed micron/nano colloidal particles with a regularly arranged structure and the first material filled in the gaps between the micron/nano colloidal particles have a structural color because of the regularly arranged structure, and the second material
  • the second material As a thixotropic agent, when the ambient temperature exceeds its phase change point, the second material undergoes a phase change and mixes with the first material.
  • the two-phase materials form a new blending system through new intermolecular forces. In this process, The colloidal particles gradually redisperse or diffuse in the blend system, and the regularly arranged structure is destroyed, changing from order to disorder.
  • the volume ratio of the liquid photonic crystal assembly with a regular arrangement to the second material is 0.0001:1 to 10000:1; in the technical solution of the present invention, the liquid photonic crystal assembly The greater the volume ratio to the second material, the longer it takes for the photonic crystal structure color to disappear.
  • the phase change temperature of the second material is -80°C to 100°C; for example, -70°C, -20°C, 2°C, 8°C, 15°C, 25°C, 35°C, 45°C, 55°C, 65°C, 75°C, 85°C, 95°C, etc.
  • the particle size of the micro/nano colloidal particles is 10 nm to 5000 nm, more preferably 50 nm to 3000 nm;
  • the regularly arranged micron/nano colloidal particles have a two-dimensional or three-dimensional structure
  • the gap between the micron/nano colloidal particles is 0.1 nm to 5000 nm.
  • the micron/nano colloidal particles are selected from micron/nano colloidal particles or modified colloidal particles of any one of polymers, inorganic compounds and metals, or any of several micron/nano colloidal particles.
  • the polymer is selected from the group consisting of polystyrene, polylactic acid, polyacrylic acid, polyacrylate, polyacrylamide, polyN-isopropylacrylamide, polymethylmethacrylate, polyisobutylacrylate, and Allyl acrylate, polyethyl acrylate, polyhydroxyethyl acrylate, 1,4-butanediol diacrylate, rhodamine B methacrylamide, polydopamine, polyvinyl acetate, polystyrene-b- at least one of vinylpyridine, cellulose, and polymethacrylic acid;
  • the inorganic compound is selected from the group consisting of silicon dioxide, silicon carbide, silicon nitride, titanium dioxide, zinc oxide, aluminum oxide, barium titanate, borate, cadmium sulfide, cadmium selenide, silver chloride, and cadmium telluride. , at least one of barium sulfate, iron oxide, ferric oxide, and ferric oxide;
  • the metal is selected from at least one of gold, silver, copper, nickel, platinum and chromium.
  • the first material and the second material are each independently selected from any one or more of small molecule compound solvents, ionic liquids, fluid polymer compounds and liquid metals.
  • the small molecule compound solvent is selected from at least one of organic compound solvents and inorganic compound solvents;
  • the inorganic compound solvent is selected from at least one of water, crystalline hydrated salts, liquid ammonia, liquid sulfur dioxide and carbon disulfide;
  • the organic compound solvent is selected from aromatic hydrocarbons and halogenated aromatic hydrocarbons, aliphatic hydrocarbons and halogenated aliphatic hydrocarbons, alicyclic hydrocarbons, alcohol compounds, phenolic compounds, ether compounds, and aldehyde compounds. , at least one of ketone compounds, acid compounds, acid anhydride compounds, ester compounds, amine compounds, amide compounds and small molecule organic compound solvents.
  • the aromatic hydrocarbons and halogenated aromatic hydrocarbon compounds are selected from at least one selected from benzene, toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, and dichlorobenzene;
  • the aliphatic hydrocarbons and halogenated aliphatic hydrocarbon compounds are selected from the group consisting of pentane, hexane, heptane, octane, dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2- At least one of dichloroethane, 1,1,1-trichloroethane and trichloroethylene.
  • the alicyclic hydrocarbon compound is cyclohexane.
  • the alcohol compound is selected from the group consisting of methanol, ethanol, isopropyl alcohol, butanol, cyclohexanol, pentanol, ethylene glycol, diethylene glycol, 1,2-propanediol, glycerin and benzyl alcohol. at least one of them.
  • the phenolic compound is selected from at least one selected from the group consisting of phenol, cresol, o-cresol, m-cresol and p-cresol.
  • the ether compound is selected from the group consisting of petroleum ether, diethyl ether, propylene oxide, tetrahydrofuran, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monoethyl ether. At least one of butyl ether, diphenyl ether, anisole and ethylene glycol dimethyl ether.
  • the aldehyde compound is furfural.
  • the ketone compound is selected from the group consisting of acetone, butanone, methyl butanone, methyl isobutyl ketone, 4-methyl-2-pentanone, cyclohexanone, acetophenone and toluenecyclohexanone. At least one of the ketones.
  • the acid compound is selected from at least one of acetic acid and trifluoroacetic acid.
  • the acid anhydride compound is acetic anhydride.
  • the ester compound is selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, butyl acetate, trimethyl alcohol propane ethoxylate triacrylate, amyl butyrate and ethylene glycol. At least one kind of carbonate.
  • the amine compound is selected from at least one selected from the group consisting of methylamine, dimethylamine, triethylamine, ethylenediamine, aniline and N,N-dimethylaniline.
  • the amide compound is selected from formamide, acetamide, hexamethylphosphate triamide, N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl At least one formamide.
  • the small molecule organic compound solvent is selected from the group consisting of acetonitrile, propionitrile, succinonitrile, pyridine, quinoline, morpholine, nitrobenzene, dimethyl sulfoxide, N-methylpyrrolidone, nitro At least one of methane, nitroethane and naphtha.
  • the ionic liquid is selected from at least one of imidazole ionic liquids, pyridine ionic liquids, quaternary ammonium salt ionic liquids and quaternary phosphorus salt ionic liquids;
  • the imidazole ionic liquid is selected from the group consisting of 1,3-dimethylimidazole iodide, 1,3-dimethylimidazole methyl sulfate, 1,3-dimethylimidazole dimethyl phosphate, bromine 1-ethyl-3-methylimidazole, 1-ethyl-3-methylimidazole iodide, 1-ethyl-3-methylimidazole sulfate ethyl ester salt, 1-ethyl-3-methylimidazole Methyl sulfate salt, 1-ethyl-3-methylimidazole phosphate diethyl ester salt, 1-ethyl-3-methylimidazole phosphate dimethyl ester salt, 1-ethyl-3-methylimidazole tetrafluoroborate acid salt, 1-ethyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-methylimidazole tri
  • the pyridine ionic liquid is selected from N-ethylpyridine bromide, N-ethylpyridine iodide, N-ethylpyridine tetrafluoroborate, N-ethylpyridine hexafluorophosphate, chlorinated N-butylpyridine, N-butylpyridine bromide, N-butylpyridine tetrafluoroborate, N-butylpyridine hexafluorophosphate, N-octylpyridine chloride, N-octylpyridine bromide , at least one of N-octylpyridine tetrafluoroborate and N-octylpyridine hexafluorophosphate.
  • the fluid polymer material is selected from the group consisting of agar, pectin, xanthan gum, glucomannan gum, gum arabic, guar gum, alginate, albumin, soybean protein, starch, and silk.
  • the wax is selected from one or more of paraffin wax, ozokerite wax, beeswax, insect wax, Sichuan wax, spermaceti wax, palm wax, coconut wax and synthetic wax.
  • the liquid metal is selected from any one or an alloy of several of gallium, bismuth, indium, tin, mercury, nickel, pickaxe, titanium, cesium, rubidium and francium.
  • the regularly arranged monodispersed micron/nano colloidal particles are obtained by at least one method selected from the group consisting of solvent evaporation, centrifugal sedimentation, gravity deposition, vertical deposition, pulling and spin coating.
  • the method for preparing a liquid photonic crystal assembly with a regularly arranged structure includes the following steps:
  • the boiling point of the solvent is lower than the phase transition point of the first material; the phase transition point is any one of the melting point, crystal transition temperature, glass transition temperature, softening point and gel-sol transition temperature. kind.
  • the solvent volatilizes, causing the micron/nano colloidal particles to become saturated in the solution system.
  • the degree gradually increases.
  • the micro/nano colloidal particles precipitate from the solution system and self-assemble to form a regularly arranged ordered structure, which together with the first material filled between the monodispersed micro/nano colloidal particles An ordered structure is formed to form a liquid photonic crystal assembly, which has structural color.
  • the solvent volatilizes completely or partially
  • the micron/nano colloidal particles account for 5% to 90% of the total volume of the micron/nano colloidal particles and the first material after the solvent evaporates; in the technical solution of the present invention, the micron/nano colloidal particles
  • the volume fraction of nanocolloidal particles is less than 5%, the colloidal particles appear disorderly and dispersed without structural color.
  • it exceeds 90% the colloidal particles appear in a solid state and lack the ability to change structural color.
  • the boiling point of the solvent is ⁇ 100°C, specifically selected from: methyl ether, isopropyl acetate, water, methyl formate, methylene chloride, diethyl ether, methyl propionate, isobutyl formate, chlorine Butane, propyl ether, ethyl propionate, dichloroethane, chloroisopentane, methanol, methyl carbonate, trichloroethane, carbon tetrachloride, ethanol, acetone, dichloroethylene, carbon disulfide, propylene At least one of alcohol, 3-pentanone, dichloropropane, benzene, isopropyl alcohol, butanone, ethyl bromide, cyclohexane, ethyl acetate, 2-pentanone and dimethyl carbonate.
  • the present invention provides that the above-mentioned photonic crystal material with irreversible temperature responsiveness can be used to prepare photonic crystal tags, smart wearable devices, vaccine temperature monitoring, and abnormal monitoring of storage temperatures of isolated organs, food, and medicines.
  • the present invention provides a temperature-controlled self-destructible photonic crystal tag prepared from the above-mentioned photonic crystal material with irreversible temperature responsiveness.
  • the temperature-controlled self-destruction type means that when the ambient temperature exceeds the critical temperature of the photonic crystal tag, its structural color will disappear and is irreversible, that is, the structural color will not recover as the temperature recovers.
  • the photonic crystal with irreversible temperature responsiveness is encapsulated in a substrate to form a specific pattern with structural color.
  • the specific pattern changes and is recognized by the cup smart device.
  • the base material used for packaging can be selected from any one of silicone rubber, plastic, glass, metal and alloy.
  • the second material when the ambient temperature is higher than the phase transition temperature of the second material, the second material slowly melts and comes into contact with the first material in the liquid photonic crystal assembly, and exchange occurs. , gradually destroying the ordered structure of the liquid photonic crystal assembly, and then irreversibly changing the structural color.
  • This process does not require external instruments, and it can be judged only by the change of the structural color whether there is an over-temperature phenomenon in the environment of the photonic crystal material and whether the heat accumulation in the over-temperature state exceeds the set value. It has the characteristics of simple preparation, high monitoring accuracy, easy operation and low cost.
  • SiO 2 particles are laboratory passed The law is self-made.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) and the polyethylene glycol-aqueous solution (the mass fraction of polyethylene glycol is 66.0wt%, the second material, the melting point is 2°C) according to a volume ratio of 3: 2. Mix and find that the structural color disappears after 12 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is 2°C.
  • the second material When the ambient temperature is lower than 2°C, the second material is in a solid state. When the ambient temperature is higher than 2°C, the second material melts and interacts with the liquid photonic crystal.
  • the assemblies merge with each other and gradually form a new mixed system. SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure changes into a disordered structure, so that the structural color disappears, and the photonic crystal material in this embodiment has a structural change. After the color disappears, the structural color does not recover when the ambient temperature is restored to less than 2°C. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) with the bismuth indium tin liquid metal (the second material, the melting point is 37°C, the mass percentage of bismuth indium tin is 60%:30%:10%), the photonic crystal
  • the volume ratio to liquid metal is 3:1, and its structural color disappears after 10 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is 37°C.
  • the second material When the ambient temperature is lower than 37°C, the second material is in a solidified state.
  • the solidified second material melts and interacts with liquid photons.
  • the crystal assemblies fuse with each other to form a new mixed system.
  • SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes to a disordered structure, so that the structural color disappears.
  • the ambient temperature is restored to below 37°C, Its structural color has not been restored, so the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) with the ethylene glycol-water mixed solvent (second material, melting point -70°C, volume ratio of ethylene glycol and water is 68:32) according to a volume ratio of 10,000 :1 Mix, the structural color disappears after 100 days.
  • the ethylene glycol-water mixed solvent second material, melting point -70°C, volume ratio of ethylene glycol and water is 68:32
  • the critical temperature of the photonic crystal material provided in this embodiment is -70°C.
  • the second material When the ambient temperature is lower than -70°C, the second material is in a solid state. When the ambient temperature is higher than -70°C, the second material melts and merges with the liquid state.
  • Photonic crystal assemblies fuse with each other and gradually form a new mixed system. SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes to a disordered structure, so that the structural color disappears and the ambient temperature is restored to below -70 °C, its structural color does not recover. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) and the polyethylene glycol-aqueous solution (the mass fraction of polyethylene glycol is 64.5wt%, the second material, the melting point is -20°C) according to a volume ratio of 10: 1 Mix, the structural color disappears after 36 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is -20°C.
  • the second material When the ambient temperature is lower than -20°C, the second material is in a solid state. When the ambient temperature is higher than -20°C, the second material melts and merges with the liquid state.
  • the photonic crystal assemblies fuse with each other and gradually form a new mixed system. SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes to a disordered structure, so that the structural color disappears and the ambient temperature is restored to below -20 °C, its structural color does not recover. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Mix the liquid photonic crystal assembly obtained in step (1) with a methanol-water mixed solvent (second material, melting point is -80°C, mass fraction of methanol is 68wt%) at a volume ratio of 1000:1, 10 Its structural color disappears after seconds.
  • a methanol-water mixed solvent second material, melting point is -80°C, mass fraction of methanol is 68wt%
  • the critical temperature of the photonic crystal material provided in this embodiment is -80°C.
  • the second material When the ambient temperature is lower than -80°C, the second material is in a solid state. When the ambient temperature is higher than -80°C, the second material melts and merges with the liquid state.
  • the photonic crystal assemblies fuse with each other and gradually form a new mixed system. SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes to a disordered structure, so that the structural color disappears and the ambient temperature is restored to below -20 °C, its structural color does not recover. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) and the polyethylene glycol-aqueous solution (the mass fraction of polyethylene glycol is 87.5wt%, the second material, the melting point is 25°C) according to a volume ratio of 2: 1 for mixing, the structural color disappears after 2 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is 25°C.
  • the second material When the ambient temperature is lower than 25°C, the second material is in a solid state. When the ambient temperature is higher than 25°C, the second material melts and is assembled with the liquid photonic crystal.
  • the bodies merge with each other and gradually form a new mixed system. SiO 2 colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes into a disordered structure, so that the structural color disappears, and the ambient temperature is restored to below 25°C. Its structure The color is not restored, so the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • the preparation process of the photonic crystal material with irreversible temperature responsiveness in this embodiment is the same as that in Embodiment 6, except that in step (2), the liquid photonic crystal assembly and the polyethylene glycol-aqueous solution (polyethylene glycol When the mass fraction is 87.5wt% and the volume ratio of the second material (melting point is 25°C) is 1:4, the time for the structural color to disappear is shortened to 30 minutes.
  • the preparation process of the photonic crystal material with irreversible temperature responsiveness in this embodiment is the same as that in Embodiment 6, except that in step (2), the liquid photonic crystal assembly and the polyethylene glycol-aqueous solution (polyethylene glycol When the mass fraction is 87.5wt% and the volume ratio of the second material (melting point is 25°C) is 1:10000, the time for the structural color to disappear is shortened to 10 seconds.
  • the preparation process of the photonic crystal material with irreversible temperature responsiveness in this embodiment is the same as that in Embodiment 6, except that in step (2), the liquid photonic crystal assembly and the polyethylene glycol-aqueous solution (polyethylene glycol When the mass fraction is 87.5wt% and the volume ratio of the second material (melting point is 25°C) is 10000:1, the time for the structural color to disappear is extended to 100 days.
  • step (2) Mix the liquid photonic crystal assembly obtained in step (1) and poly-N-isopropylacrylamide (the second material, the lowest critical temperature is 32°C) at a volume ratio of 8:2. After 200 hours, the structure The color disappears.
  • poly-N-isopropylacrylamide the second material, the lowest critical temperature is 32°C
  • the critical temperature of the photonic crystal material provided in this embodiment is 32°C.
  • the second material When the ambient temperature is lower than 32°C, the second material is in a hydrophilic state. When the ambient temperature is higher than 32°C, the second material changes to a hydrophobic state to expel water. And merge with the liquid photonic crystal assembly to form a new mixed system.
  • the cadmium sulfide colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes into a disordered structure, so that the structural color disappears and the ambient temperature is restored to below At 32°C, its structural color does not recover. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Combine the liquid photonic crystal assembly obtained in step (1) and the polyethylene glycol-aqueous solution (second material, melting point -20°C, mass fraction of polyethylene glycol is 64.5wt%) according to a volume ratio of 9: 1 Mix, the structural color disappears after 120 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is -20°C.
  • the second material When the ambient temperature is lower than -20°C, the second material is in a solid state. When the ambient temperature is higher than -20°C, the second material melts and merges with the liquid state.
  • the photonic crystal assemblies fuse with each other and gradually form a new mixed system.
  • the polystyrene colloidal particles diffuse in the new mixed system, and their ordered structure gradually changes into a disordered structure, so that the structural color disappears and the ambient temperature is restored to below - At 20°C, its structural color does not recover. Therefore, the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.
  • step (2) Mix the liquid photonic crystal assembly obtained in step (1) and polypropylene wax (second material, melting point 100°C) at a volume ratio of 3:1. The structural color disappears after 20 hours.
  • the critical temperature of the photonic crystal material provided in this embodiment is 100°C.
  • the second material is solid.
  • the second material melts and assembles with the liquid photonic crystal.
  • the mutual fusion gradually forms a new mixed system.
  • the polystyrene colloidal particles diffuse in the new mixed system, and its ordered structure gradually changes into a disordered structure, so that the structural color disappears.
  • the ambient temperature is restored to less than 100°C, its structure The color is not restored, so the liquid photonic crystal material provided in this embodiment can identify the environmental heat accumulation amount through irreversible regulation of structural color.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种温控自毁型的光子晶体标签,由具有不可逆温度响应性的光子晶体材料制备得到,光子晶体材料由具有规则排布结构的液态光子晶体组装体以及加热条件下发生相变破坏规则排布结构的第二材料制备得到;其中,具有规则排布结构的液态光子晶体组装体由规则排布结构的单分散的微米/纳米胶体颗粒和填充在微米/纳米胶体颗粒间隙的第一材料构成;相变的相变温度为熔点、晶型转变温度、玻璃化转变温度、软化点、凝胶-溶胶转变温度和最低/高临界温度中的任意一种。提供的光子晶体标签制备简单、检测结果准确可靠且易识别,监测温度和变色时间可调,调节范围广。

Description

一种温控自毁型的光子晶体标签 技术领域
本发明涉及信息记录材料技术领域,尤其涉及一种温控自毁型的光子晶体标签。
背景技术
冷链运输是保障具有温度敏感性的食品、疫苗等生物药品品质的重要手段。现有监测技术中,电子测温需要人工记录实时温度,存在高检测成本以及人工篡改数据的隐患。时间温度标签在温度刺激下能够以不可逆变化指示剂的颜色变化实现对环境热累积的监测,应用于冷链管理中,能够快速、可靠地标记温度异常现象,帮助用户精确、高效地进行温度跟踪,实现准确和有效的冷链管理。然而,现有的时间温度标签采用化学生色基团进行指示,存在如下两个方面的挑战:一是化学生色基团通过改变分子构象或发生聚合反应发生颜色的改变,其反应速率较慢,难以适应温度高敏感性的监测对象,如疫苗、离体器官等;二是化学色在长期存储过程中存在褪色的隐患(如紫外线光照导致异构化或降解),导致监测结果不准确。因此,需要开发出高效且可靠的时间温度标签。
胶体光子晶体是指微纳米尺度的胶体颗粒形成的周期排列的有序微结构,其特点是,对特定波长的光具有强烈的反射,具有鲜艳的结构色。研究表明,将温敏型的高分子填充至胶体颗粒间隙能够改变胶体光子晶体胶体颗粒间距或折射率,实现对温度的快速响应[非专利文献1]。现有的温敏高分子光子晶体材料,如聚异丙基丙烯酰胺,由于高分子链段间的高度缠结,难以实现低温环境下对温度的监测和精准变色温度和时间的调控;与之相比,将小分子溶剂填充在胶体颗粒间隙得到的液态光子晶体,由于小分子溶剂热运动更加剧烈,环境的微小刺激即可引起胶体颗粒间距的巨大变化,宏观表现为结构色的灵敏变化。 而目前的液态光子晶体在微小刺激下无法打破原有的有序结构,即无法实现结构色的不可逆变化,在制备时间温度标签的应用中存在较大挑战。
参考文献
非专利文献1:Du X,Cui H,Xu T,et al.Reconfiguration,camouflage,and color‐shifting for bioinspired adaptive hydrogel-based millirobots[J].Advanced Functional Materials,2020,30(10):1909202.
发明内容
针对上述技术问题,本发明提供了一种温控自毁型的光子晶体标签,其触发温度、变色时间灵活可调,且结构色对环境热累积具有不可逆响应性。本发明提供的光子晶体标签制备简单、检测结果准确可靠且易识别,监测温度和变色时间可调,调节范围广。
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提供一种具有不可逆温度响应性的光子晶体材料,所述光子晶体材料由具有规则排布结构的液态光子晶体组装体以及加热条件下发生相变破坏所述规则排布结构的第二材料制备得到;
其中,所述具有规则排布结构的液态光子晶体组装体由规则排布结构的单分散的微米/纳米胶体颗粒和填充在所述微米/纳米胶体颗粒间隙的第一材料构成;
所述相变的相变温度为熔点、晶型转变温度、玻璃化转变温度、软化点、凝胶-溶胶转变温度和最低/高临界温度中的任意一种。
在本发明的技术方案中,所述最高临界温度指:具备温敏特性的聚合物在温度降低至某一特定温度时,会由原来的溶胀(溶解)状态,变为收缩(不溶)状态的温度;最低临界温度指:形成部分互溶物系的两种液体,随着温度的降低,两种液体的相互溶解度增加。互相平衡的二液相的组成逐渐接近,当降低 至某一温度时,二液相组成相同,二液相间的界面消失,在该温度以下,只有一个均匀液相。
在本发明的技术方案中,规则排布结构的单分散的微米/纳米胶体颗粒和填充在所述微米/纳米胶体颗粒间隙的第一材料因为规则排布的结构而具有结构色,第二材料作为触变剂,当环境温度超过其相变点时,第二材料发生相变与第一材料发生混合,两相材料通过新的分子间作用力形成新的共混体系,在此过程中,胶体颗粒逐渐在共混体系中重新分散或扩散,规则排布的结构遭到破坏,从有序变为无序,其结构色在一定时间内逐渐消失,且这种颜色的消失不可逆,即结构色不会随着温度的恢复而恢复;本发明提供的光子晶体结构色消失的时间为10s~100天。
作为优选地实施方式,所述具有规则排布结构的液态光子晶体组装体与第二材料的体积比为0.0001:1~10000:1;在本发明的技术方案中,所述液态光子晶体组装体和第二材料的体积比越大,所述光子晶体结构色消失的时间越长。
作为优选地实施方式,所述第二材料的相变温度为-80℃~100℃;例如-70℃、-20℃、2℃、8℃、15℃、25℃、35℃、45℃、55℃、65℃、75℃、85℃、95℃等。
作为优选地实施方式,所述微米/纳米胶体颗粒的粒径为10nm~5000nm,进一步优选为50nm~3000nm;
优选地,所述规则排布的微米/纳米胶体颗粒为二维或三维结构;
优选地,所述微米/纳米胶体颗粒间隙为0.1nm~5000nm。
作为优选地实施方式,所述微米/纳米胶体颗粒选自聚合物、无机化合物和金属中的任意一种的微米/纳米胶体颗粒或改性胶体颗粒,或任意几种的微米/纳米胶体颗粒的混合或改性胶体颗粒的混合,或任意几种形成的微米/纳米复合胶体颗粒或改性复合胶体颗粒;
优选地,所述聚合物选自聚苯乙烯、聚乳酸、聚丙烯酸、聚丙烯酸酯、聚丙烯酰胺、聚N-异丙基丙烯酰胺、聚甲基丙烯酸甲酯、聚丙烯酸异丁酯、甲基 丙烯酸烯丙酯、聚丙烯酸乙酯、聚丙烯酸羟乙酯、1,4-丁二醇二丙烯酸酯、罗丹明B甲基丙烯酰胺、聚多巴胺、聚醋酸乙烯酯、聚苯乙烯-b-乙烯基吡啶、纤维素和聚甲基丙烯酸中的至少一种;
优选地,所述无机化合物选自二氧化硅、碳化硅、氮化硅、二氧化钛、氧化锌、氧化铝、钛酸钡、硼酸盐、硫化镉、硒化镉、氯化银、碲化镉、硫酸钡、氧化铁、四氧化三铁、三氧化二铁中的至少一种;
优选地,所述金属选自金、银、铜、镍、铂和铬中的至少一种。
作为优选地实施方式,所述第一材料和第二材料各独立地选自小分子化合物溶剂、离子液体、具有流动性的高分子化合物与液态金属中的的任意一种或几种。
作为优选地实施方式,所述小分子化合物溶剂选自有机化合物溶剂和无机化合物溶剂中的至少一种;
所述无机化合物溶剂选自水、结晶水合盐、液氨、液态二氧化硫和二硫化碳中的至少一种;
所述有机化合物溶剂选自芳香烃类及卤代芳香烃类化合物、脂肪烃类及卤代脂肪烃类化合物、脂环烃类化合物、醇类化合物、酚类化合物、醚类化合物、醛类化合物、酮类化合物、酸类化合物、酸酐类化合物、酯类化合物、胺类化合物、酰胺类化合物以及小分子有机化合物溶剂中的至少一种。
作为优选地实施方式,所述芳香烃类及卤代芳香烃类化合物选自苯、甲苯、邻二甲苯、间二甲苯、对二甲苯、氯苯、和二氯苯中的至少一种;
所述脂肪烃类及卤代脂肪烃类化合物选自戊烷、己烷、庚烷、辛烷、二氯甲烷、氯仿、四氯化碳、1,1-二氯乙烷、1,2-二氯乙烷、1,1,1-三氯乙烷和三氯乙烯中的至少一种。
作为优选地实施方式,所述脂环烃类化合物为环己烷。
作为优选地实施方式,所述醇类化合物选自甲醇、乙醇、异丙醇、丁醇、环己醇、戊醇、乙二醇、二甘醇、1,2-丙二醇、丙三醇和苯甲醇中的至少一种。
作为优选地实施方式,所述酚类化合物选自苯酚、甲酚、邻甲酚、间甲酚和对甲酚中的至少一种。
作为优选地实施方式,所述醚类化合物选自石油醚、乙醚、环氧丙烷、四氢呋喃、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、二苯醚、苯甲醚和乙二醇二甲醚中的至少一种。
作为优选地实施方式,所述醛类化合物为糠醛。
作为优选地实施方式,所述酮类化合物选自丙酮、丁酮、甲基丁酮、甲基异丁酮、4-甲基-2-戊酮、环己酮、苯乙酮和甲苯环己酮中的至少一种。
作为优选地实施方式,所述酸类化合物选自乙酸和三氟代乙酸中的至少一种。
作为优选地实施方式,所述酸酐类化合物为醋酸酐。
作为优选地实施方式,所述酯类化合物选自醋酸甲酯、醋酸乙酯、醋酸丙酯、醋酸丁酯、三甲基醇丙烷乙氧基酸三丙烯酸酯、丁酸戊酯和乙二醇碳酸酯中的至少一种。
作为优选地实施方式,所述胺类化合物选自甲胺、二甲胺、三乙胺、乙二胺、苯胺和N,N-二甲基苯胺中的至少一种。
作为优选地实施方式,所述酰胺类化合物选自甲酰胺、乙酰胺、六甲基磷酸三酰胺、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基甲酰胺中的至少一种。
作为优选地实施方式,所述小分子有机化合物溶剂选自如乙腈、丙腈、丁二腈、吡啶、喹啉、吗啉、硝基苯、二甲基亚砜、N-甲基吡咯烷酮、硝基甲烷、硝基乙烷和石脑油中的至少一种。
作为优选地实施方式,所述离子液体选自咪唑类离子液体、吡啶类离子液体、季铵盐类离子液体和季磷盐类离子液体中的至少一种;
优选地,所述咪唑类离子液体选自碘化1,3-二甲基咪唑、1,3-二甲基咪唑硫酸甲酯盐、1,3-二甲基咪唑磷酸二甲酯盐、溴化1-乙基-3-甲基咪唑、碘化1-乙 基-3-甲基咪唑、1-乙基-3-甲基咪唑硫酸乙酯盐、1-乙基-3-甲基咪唑硫酸甲酯盐、1-乙基-3-甲基咪唑磷酸二乙酯盐、1-乙基-3-甲基咪唑磷酸二甲酯盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑三氟甲磺酸盐、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-乙基-3-甲基咪唑乙酸盐、1-乙基-3-甲基咪唑双氰胺盐、氯化1-己基-3-甲基咪唑、溴化1-己基-3-甲基咪唑、碘化1-己基-3-甲基咪唑、1-己基-3-甲基咪唑四氟硼酸盐、1-己基-3-甲基咪唑六氟磷酸盐、氯化1-辛基-3-甲基咪唑、溴化1-辛基-3-甲基咪唑、1-辛基-3-甲基咪唑四氟硼酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑三氟甲磺酸盐、1-辛基-3-甲基咪唑双三氟甲磺酰亚胺盐、溴化1-癸基-3-甲基咪唑、1-癸基-3-甲基咪唑四氟硼酸盐、1-癸基-3-甲基咪唑六氟磷酸盐、溴化1-十二烷基-3-甲基咪唑、1-十二烷基-3-甲基咪唑四氟硼酸盐、氯化1-十六烷基-3-甲基咪唑、溴化1-十六烷基-3-甲基咪唑、氯化1-苄基-3-甲基咪唑、溴化1-苄基-3-甲基咪唑、1-苄基-3-甲基咪唑四氟硼酸盐、1-苄基-3-甲基咪唑六氟磷酸盐、氯化1-烯丙基-3-甲基咪唑、溴化1-烯丙基-3-甲基咪唑、碘化1-烯丙基-3-甲基咪唑、1-烯丙基-3-甲基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑双三氟甲酰亚胺盐、碘化1-乙基-2,3-二甲基咪唑、1-乙基-2,3-二甲基咪唑四氟硼酸盐、1-乙基-2,3-二甲基咪唑六氟磷酸盐、溴化1-丁基-2,3-二甲基咪唑、氯化1-丁基-2,3-二甲基咪唑、碘化1-丁基-2,3-二甲基咪唑、1-丁基-2,3-二甲基咪唑四氟硼酸盐和1-丁基-2,3-二甲基咪唑六氟磷酸盐中的至少一种;
优选地,所述吡啶类离子液体选自溴化N-乙基吡啶、碘化N-乙基吡啶、N-乙基吡啶四氟硼酸盐、N-乙基吡啶六氟磷酸盐、氯化N-丁基吡啶、溴化N-丁基吡啶、N-丁基吡啶四氟硼酸盐、N-丁基吡啶六氟磷酸盐、氯化N-辛基吡啶、溴化N-辛基吡啶、N-辛基吡啶四氟硼酸盐和N-辛基吡啶六氟磷酸盐中的至少一种。
作为优选地实施方式,所述具有流动性的高分子材料选自琼脂、果胶、黄原胶、葡甘露胶、阿拉伯胶、瓜尔胶、海藻酸盐、白蛋白、豆蛋白、淀粉、蚕 丝、酪素、聚异丙基丙烯酰胺、聚乙烯醇、聚乙二醇、聚乙二醇甲基丙烯酸酯、聚甲基丙烯酸甲酯、蜡、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚甲基丙烯酸缩水甘油酯、硅胶、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胶原、明胶、瓜胶、聚磷腈、壳聚糖、透明质酸、海藻酸、纤维素、聚葡萄糖、聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯磺酸、聚乙烯磷酸、胆碱、聚氧乙烯、聚乙烯亚胺、聚乙烯胺、聚乙烯吡啶、聚磷酸盐、聚硅酸盐、聚氨基酸和纤维蛋白或其改性物中的一种或多种。
作为优选地实施方式,所述蜡选自石蜡、地蜡、蜂蜡、虫蜡、川蜡、鲸蜡、棕榈蜡、椰子蜡和合成蜡中的一种或多种。
作为优选地实施方式,所述液态金属选自镓、铋、铟、锡、汞、镍、镐、钛、铯、铷和钫中的任意一种或几种形成的合金。
作为优选地实施方式,所述规则排布的单分散的微米/纳米胶体颗粒的获取方式选自溶剂挥发、离心沉降、重力沉积、垂直沉积、提拉和旋涂中的至少一种。
作为优选地实施方式,所述具有规则排布结构的液态光子晶体组装体的制备方法包括以下步骤:
加热单分散的微米/纳米胶体颗粒、第一材料和溶剂的混合物使所述溶剂挥发,所述微米/纳米胶体颗粒过饱和析出;
其中,所述溶剂的沸点低于所述第一材料的相变点;所述相变点为熔点、晶型转变温度、玻璃化转变温度、软化点和凝胶-溶胶转变温度中的任意一种。
在本发明的技术方案中,加热所述单分散的微米/纳米胶体颗粒、第一材料 和溶剂的混合物时,随着温度的升高,溶剂挥发使微米/纳米胶体颗粒在溶液体系中的饱和度逐渐提高,微米/纳米胶体颗粒处于过饱和状态时,从溶液体系中析出并进行自组装形成规则排布的有序结构,与填充在单分散的微米/纳米胶体颗粒间的第一材料共同形成有序结构构成液态光子晶体组装体,从而具有结构色。
作为优选地实施方式,所述溶剂挥发为完全挥发或部分挥发;
优选地,所述微米/纳米胶体颗粒在所述溶剂挥发后占所述微米/纳米胶体颗粒和第一材料的总体积的5%~90%;在本发明的技术方案中,所述微米/纳米胶体颗粒的体积分数低于5%时,胶体颗粒呈现无序分散,无结构色,超过90%时,胶体颗粒呈现固体状态,缺乏结构色变化能力。
作为优选地实施方式,所述溶剂的沸点≤100℃,具体选自:甲醚、乙酸异丙酯、水、甲酸甲酯、二氯甲烷、乙醚、丙酸甲酯、甲酸异丁酯、氯代丁烷、丙醚、丙酸乙酯、二氯乙烷、氯代异戊烷、甲醇、碳酸甲酯、三氯乙烷、四氯化碳、乙醇、丙酮、二氯乙烯、二硫化碳、丙醇、3-戊酮、二氯丙烷、苯、异丙醇、丁酮、溴乙烷、环己烷、乙酸乙酯、2-戊酮和碳酸二甲酯中的至少一种。
又一方面,本发明提供上述具有不可逆温度响应性的光子晶体材料可用于制备光子晶体标签、智能穿戴设备、疫苗温度监控、离体器官、食品、药品存储温度异常监控。
又一方面,本发明提供一种温控自毁型光子晶体标签,由上述具有不可逆温度响应性的光子晶体材料制备得到。
在本发明的技术方案中,所述温控自毁型指:当环境温度超过光子晶体标签的临界温度后,其结构色会消失且不可逆,即结构色不会随着温度的恢复而恢复。
在某些具体的实施方式中,所述具有不可逆温度响应性的光子晶体封装在基底中形成具有结构色的特异性图案,在环境温度的改变下,特异性图案发生变化从而杯智能设备所识别,用于封装的基底材料可选自硅橡胶、塑料、玻璃、 金属及合金中的任意一种。
上述技术方案具有如下优点或者有益效果:
本发明提供的具有不可逆温度响应性的光子晶体材料,当环境温度高于第二材料的相变温度时,第二材料发生缓慢熔化并与液态光子晶体组装体中的第一材料接触,发生交换,逐渐破坏液态光子晶体组装体的有序排列结构,进而不可逆地改变结构色。该过程无需外加仪器,仅通过结构色颜色的变化即可判断光子晶体材料所处环境是否存在超温现象以及超温状态下的热累积是否超过设定值。具有制备简单、监测精准度高、易于操作、成本低廉的特点。
具体实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
下述实施例中,SiO 2颗粒为实验室通过
Figure PCTCN2022092248-appb-000001
法自制得到。
实施例1
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为190nm的SiO 2颗粒分散在体积比为1:10的乙醇-丙三醇混合溶剂中形成SiO 2胶体颗粒质量分数为20wt%的溶液,加热使溶剂挥发,SiO 2胶体颗粒过饱和析出,随着乙醇溶剂的挥发,SiO 2胶体颗粒逐渐析出并自组装形成规则排布结构,乙醇完全挥发后,丙三醇填充于SiO 2胶体颗粒的间隙(间隙为10nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚乙二醇-水溶液(聚乙二 醇的质量分数为66.0wt%,第二材料,熔点为2℃)按照体积比为3:2混合,发现12小时后结构色消失。
本实施例提供的光子晶体材料的临界温度为2℃,当环境温度低于2℃时,第二材料为凝固态,当环境温度高于2℃时,第二材料熔化,并与液态光子晶体组装体相互融合逐渐形成新的混合体系,SiO 2胶体颗粒在新的混合体系中进行扩散,其有序结构变为无序结构,从而结构色消失,且本实施例中的光子晶体材料在结构色消失后,将环境温度恢复至低于2℃时,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例2
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为210nm的SiO 2颗粒分散在体积比为10:1的甲醇-丙三醇混合溶剂中形成SiO 2胶体颗粒质量分数为15wt%的溶液,加热使溶剂挥发,SiO 2胶体颗粒过饱和析出,随着甲醇的挥发,SiO 2胶体颗粒逐渐析出并自组装规则排布结构,甲醇完全挥发后,丙三醇填充于SiO 2胶体颗粒的间隙(间隙为100nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与铋铟锡液态金属(第二材料,熔点为37℃,铋铟锡的质量百分比为60%:30%:10%),光子晶体与液态金属的体积比为3:1,10小时后其结构色消失。
本实施例提供的光子晶体材料的临界温度为37℃,当环境温度低于37℃时,第二材料为凝固态,当环境温度高于37℃,凝固态的第二材料熔化并与液态光子晶体组装体相互融合形成新的混合体系,SiO 2胶体颗粒在新混合体系中发生扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于37℃时,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例3
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为180nm的SiO 2颗粒分散在体积比为1:1的水-二氧六环混合溶剂中形成SiO 2胶体颗粒质量分数为15wt%的溶液,加热使溶剂挥发,SiO 2颗粒过饱和析出,随着水的挥发,SiO 2胶体颗粒逐渐析出并自组装形成规则排布结构,二氧六环和水共同填充于SiO 2胶体颗粒的间隙(间隙为1000nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与乙二醇-水混合溶剂(第二材料,熔点-70℃,乙二醇和水的体积比为68:32)按照体积比为10000:1混合,100天后结构色消失。
本实施例提供的光子晶体材料的临界温度为-70℃,当环境温度低于-70℃时,第二材料为凝固态,当环境温度高于-70℃时,第二材料熔化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,SiO 2胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于-70℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例4
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为190nm的SiO 2颗粒分散在体积比为1:100的乙醇-丁二醇混合溶剂中形成SiO 2胶体颗粒质量分数为5wt%的溶液,加热使溶剂挥发,SiO 2颗粒过饱和析出,随着乙醇的挥发,SiO 2颗粒逐渐析出并自组装形成规则排布结构,乙醇完全挥发后,丁二醇填充于SiO 2胶体颗粒的间隙(间隙为10nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚乙二醇-水溶液(聚乙二醇的质量分数为64.5wt%,第二材料,熔点-20℃)按照体积比为10:1混合,36小时后结构色消失。
本实施例提供的光子晶体材料的临界温度为-20℃,当环境温度低于-20℃ 时,第二材料为凝固态,当环境温度高于-20℃时,第二材料熔化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,SiO 2胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于-20℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例5
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为190nm的SiO 2颗粒分散在体积比为7:3的乙醇-二甲基亚砜混合溶剂中形成SiO 2胶体颗粒质量分数为70%的溶液,加热使溶剂挥发,SiO 2颗粒过饱和析出,随着乙醇的挥发,SiO 2颗粒逐渐析出并自组装形成规则排布结构,乙醇完全挥发后,二甲基亚砜填充于SiO 2胶体颗粒的间隙(间隙为5000nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与甲醇-水混合溶剂(第二材料,熔点为-80℃,甲醇的质量分数为68wt%)按照体积比为1000:1混合,10秒钟后其结构色消失。
本实施例提供的光子晶体材料的临界温度为-80℃,当环境温度低于-80℃时,第二材料为凝固态,当环境温度高于-80℃时,第二材料熔化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,SiO 2胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于-20℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例6
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为190nm的的SiO 2颗粒分散在体积比为3:7的乙醇-丙三醇混合溶剂中形成SiO 2胶体颗粒质量分数为30%的溶液,加热使溶剂挥发,SiO 2颗粒过饱和析出,随着乙醇的挥发,SiO 2颗粒逐渐析出并自组装形成规则排布 结构,乙醇完全挥发后,丙三醇填充于SiO 2胶体颗粒的间隙(间隙为20nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚乙二醇-水溶液(聚乙二醇的质量分数为87.5wt%,第二材料,熔点为25℃)按照体积比为2:1进行混合,2小时后结构色消失。
本实施例提供的光子晶体材料的临界温度为25℃,当环境温度低于25℃时,第二材料为凝固态,当环境温度高于25℃时,第二材料熔化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,SiO 2胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于25℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例7
本实施例中的具有不可逆温度响应性的光子晶体材料的制备过程同实施例6,不同之处在于:步骤(2)中,液态光子晶体组装体与聚乙二醇-水溶液(聚乙二醇的质量分数为87.5wt%,第二材料,熔点为25℃)的体积比为1:4时,结构色消失的时间缩短为30分钟。
实施例8
本实施例中的具有不可逆温度响应性的光子晶体材料的制备过程同实施例6,不同之处在于:步骤(2)中,液态光子晶体组装体与聚乙二醇-水溶液(聚乙二醇的质量分数为87.5wt%,第二材料,熔点为25℃)的体积比为1:10000时,结构色消失的的时间缩短为10秒。
实施例9
本实施例中的具有不可逆温度响应性的光子晶体材料的制备过程同实施例6,不同之处在于:步骤(2)中,液态光子晶体组装体与聚乙二醇-水溶液(聚乙二醇的质量分数为87.5wt%,第二材料,熔点为25℃)的体积比为10000:1时,结构色消失的时间延长至100天。
实施例10
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为10nm的硫化镉颗粒分散在体积比为4:10的乙醇-二甲基亚砜混合溶剂中形成硫化镉胶体颗粒质量分数为10wt%的溶液,加热使溶剂挥发,硫化镉胶体颗粒过饱和析出,随着乙醇的挥发,硫化镉胶体颗粒逐渐析出并自组装形成规则排布结构,乙醇完全挥发后,二甲基亚砜填充于硫化镉胶体颗粒的间隙(间隙为0.1nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚N-异丙基丙烯酰胺(第二材料,最低临界温度为32℃)按照体积比为8:2混合,200小时后其结构色消失。
本实施例提供的光子晶体材料的临界温度为32℃,当环境温度低于32℃时,第二材料为亲水状态,当环境温度高于32℃,第二材料转变为疏水态排出水份并与液态光子晶体组装体相互融合形成新的混合体系,硫化镉胶体颗粒在新混合体系中发生扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于32℃时,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例11
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为5000nm的聚苯乙烯颗粒分散在体积比为10:3的水-二甲基亚砜混合溶剂中形成聚苯乙烯胶体颗粒质量分数为30wt%的溶液,加热使溶剂挥发,聚苯乙烯胶体颗粒过饱和析出,随着水的挥发,聚苯乙烯胶体颗粒逐渐析出并自组装形成规则排布结构,水完全挥发后,二甲基亚砜填充于聚苯乙烯胶体颗粒的间隙(间隙为3000nm),形成液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚乙二醇-水溶液(第二材料,熔点-20℃,聚乙二醇的质量分数为64.5wt%)按照体积比为9:1混合, 120小时后结构色消失。
本实施例提供的光子晶体材料的临界温度为-20℃,当环境温度低于-20℃时,第二材料为凝固态,当环境温度高于-20℃时,第二材料熔化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,聚苯乙烯胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于-20℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
实施例12
本实施例提供的具有不可逆温度响应性的光子晶体材料的制备过程如下:
(1)将粒径为280nm的聚苯乙烯胶体颗粒分散在体积比为19:1的水-二甲基亚砜混合溶剂中形成聚苯乙烯胶体颗粒质量分数为50wt%的溶液,加热使溶剂挥发,聚苯乙烯胶体颗粒过饱和析出,随着水的挥发,聚苯乙烯胶体颗粒逐渐析出并自组装形成规则排布结构,水完全挥发后,二甲基亚砜填充于聚苯乙烯胶体颗粒,形成间隙为60nm的液态光子晶体组装体,并显现出结构色;
(2)将步骤(1)得到的液态光子晶体组装体与聚丙烯蜡(第二材料,熔点100℃)按照体积比为3:1混合,20小时后结构色消失。
本实施例提供的光子晶体材料的临界温度为100℃,当环境温度低于100℃时,第二材料为固态,当环境温度高于100℃时,第二材料融化并与液态光子晶体组装体相互融合逐渐形成新的混合体系,聚苯乙烯胶体颗粒在新混合体系中进行扩散,其有序结构逐渐变为无序结构,从而结构色消失,将环境温度恢复至低于100℃,其结构色没有恢复,因此本实施例提供的液态光子晶体材料可通过结构色不可逆的调控识别环境热累积量。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (30)

  1. 一种具有不可逆温度响应性的光子晶体材料,其特征在于,所述光子晶体材料由具有规则排布结构的液态光子晶体组装体以及加热条件下发生相变破坏所述规则排布结构的第二材料制备得到;
    其中,所述具有规则排布结构的液态光子晶体组装体由规则排布结构的单分散的微米/纳米胶体颗粒和填充在所述微米/纳米胶体颗粒间隙的第一材料构成;
    所述相变的相变温度为熔点、晶型转变温度、玻璃化转变温度、软化点、凝胶-溶胶转变温度和最低/高临界温度中的任意一种。
  2. 根据权利要求1所述的光子晶体材料,其特征在于,所述具有规则排布结构的液态光子晶体组装体与第二材料的体积比为0.0001:1~10000:1。
  3. 根据权利要求1所述的光子晶体材料,其特征在于,所述第二材料的相变温度为-80℃~100℃。
  4. 根据权利要求1所述的光子晶体材料,其特征在于,所述微米/纳米胶体颗粒的粒径为10nm~5000nm,优选为50nm~3000nm;
    优选地,所述规则排布的微米/纳米胶体颗粒为二维或三维结构;
    优选地,所述微米/纳米胶体颗粒间隙为0.1nm~5000nm。
  5. 根据权利要求1所述的光子晶体材料,其特征在于,所述微米/纳米胶体颗粒选自聚合物、无机化合物和金属中的任意一种的微米/纳米胶体颗粒或改性胶体颗粒,或任意几种的微米/纳米胶体颗粒的混合或改性胶体颗粒的混合,或任意几种形成的微米/纳米复合胶体颗粒或改性复合胶体颗粒;
    优选地,所述聚合物选自聚苯乙烯、聚乳酸、聚丙烯酸、聚丙烯酸酯、聚丙烯酰胺、聚N-异丙基丙烯酰胺、聚甲基丙烯酸甲酯、聚丙烯酸异丁酯、甲基丙烯酸烯丙酯、聚丙烯酸乙酯、聚丙烯酸羟乙酯、1,4-丁二醇二丙烯酸酯、罗丹明B甲基丙烯酰胺、聚多巴胺、聚醋酸乙烯酯、聚苯乙烯-b-乙烯基吡啶、纤维素和聚甲基丙烯酸中的至少一种;
    优选地,所述无机化合物选自二氧化硅、碳化硅、氮化硅、二氧化钛、氧 化锌、氧化铝、钛酸钡、硼酸盐、硫化镉、硒化镉、氯化银、碲化镉、硫酸钡、氧化铁、四氧化三铁和三氧化二铁中的至少一种;
    所述金属选自金、银、铜、镍、铂和铬中的至少一种。
  6. 根据权利要求1所述的光子晶体材料,其特征在于,所述第一材料和第二材料各独立地选自液态金属及合金、离子液体、小分子化合物溶剂与具有流动性的高分子化合物中的任意一种或几种。
  7. 根据权利要求6所述的光子晶体材料,其特征在于,所述小分子化合物溶剂选自有机化合物溶剂和无机化合物溶剂中的至少一种;
    所述无机化合物溶剂选自水、结晶水合盐、液氨、液态二氧化硫和二硫化碳中的至少一种;
    所述有机化合物溶剂选自芳香烃类及卤代芳香烃类化合物、脂肪烃类及卤代脂肪烃类化合物、脂环烃类化合物、醇类化合物、酚类化合物、醚类化合物、醛类化合物、酮类化合物、酸类化合物、酸酐类化合物、酯类化合物、胺类化合物、酰胺类化合物以及小分子有机化合物溶剂中的至少一种。
  8. 根据权利要求7所述的光子晶体材料,其特征在于,所述芳香烃类及卤代芳香烃类化合物选自苯、甲苯、邻二甲苯、间二甲苯、对二甲苯、氯苯、和二氯苯中的至少一种;
    所述脂肪烃类及卤代脂肪烃类化合物选自戊烷、己烷、庚烷、辛烷、二氯甲烷、氯仿、四氯化碳、1,1-二氯乙烷、1,2-二氯乙烷、1,1,1-三氯乙烷和三氯乙烯中的至少一种。
  9. 根据权利要求7所述的光子晶体材料,其特征在于,所述脂环烃类化合物为环己烷。
  10. 根据权利要求7所述的光子晶体材料,其特征在于,所述醇类化合物选自甲醇、乙醇、异丙醇、丁醇、环己醇、戊醇、乙二醇、二甘醇、1,2-丙二醇、丙三醇和苯甲醇中的至少一种。
  11. 根据权利要求7所述的光子晶体材料,其特征在于,所述酚类化合物选 自苯酚、甲酚、邻甲酚、间甲酚和对甲酚中的至少一种。
  12. 根据权利要求7所述的光子晶体材料,其特征在于,所述醚类化合物选自石油醚、乙醚、环氧丙烷、四氢呋喃、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、二苯醚、苯甲醚和乙二醇二甲醚中的至少一种。
  13. 根据权利要求7所述的光子晶体材料,其特征在于,所述醛类化合物为糠醛。
  14. 根据权利要求7所述的光子晶体材料,其特征在于,所述酮类化合物选自丙酮、丁酮、甲基丁酮、甲基异丁酮、4-甲基-2-戊酮、环己酮、苯乙酮和甲苯环己酮中的至少一种。
  15. 根据权利要求7所述的光子晶体材料,其特征在于,所述酸类化合物选自乙酸和三氟代乙酸中的至少一种。
  16. 根据权利要求7所述的光子晶体材料,其特征在于,所述酸酐类化合物为醋酸酐。
  17. 根据权利要求7所述的光子晶体材料,其特征在于,所述酯类化合物选自醋酸甲酯、醋酸乙酯、醋酸丙酯、醋酸丁酯、三甲基醇丙烷乙氧基酸三丙烯酸酯、丁酸戊酯和乙二醇碳酸酯中的至少一种。
  18. 根据权利要求7所述的光子晶体材料,其特征在于,所述胺类化合物选自甲胺、二甲胺、三乙胺、乙二胺、苯胺和N,N-二甲基苯胺中的至少一种。
  19. 根据权利要求7所述的光子晶体材料,其特征在于,所述酰胺类化合物选自甲酰胺、乙酰胺、六甲基磷酸三酰胺、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基甲酰胺中的至少一种。
  20. 根据权利要求7所述的光子晶体材料,其特征在于,所述小分子有机化合物溶剂选自如乙腈、丙腈、丁二腈、吡啶、喹啉、吗啉、硝基苯、二甲基亚砜、N-甲基吡咯烷酮、硝基甲烷、硝基乙烷和石脑油中的至少一种。
  21. 根据权利要求6所述的的光子晶体材料,其特征在于,所述离子液体选自咪唑类离子液体、吡啶类离子液体、季铵盐类离子液体和季磷盐类离子液体 中的至少一种;
    优选地,所述咪唑类离子液体选自碘化1,3-二甲基咪唑、1,3-二甲基咪唑硫酸甲酯盐、1,3-二甲基咪唑磷酸二甲酯盐、溴化1-乙基-3-甲基咪唑、碘化1-乙基-3-甲基咪唑、1-乙基-3-甲基咪唑硫酸乙酯盐、1-乙基-3-甲基咪唑硫酸甲酯盐、1-乙基-3-甲基咪唑磷酸二乙酯盐、1-乙基-3-甲基咪唑磷酸二甲酯盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑三氟甲磺酸盐、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐、1-乙基-3-甲基咪唑乙酸盐、1-乙基-3-甲基咪唑双氰胺盐、氯化1-己基-3-甲基咪唑、溴化1-己基-3-甲基咪唑、碘化1-己基-3-甲基咪唑、1-己基-3-甲基咪唑四氟硼酸盐、1-己基-3-甲基咪唑六氟磷酸盐、氯化1-辛基-3-甲基咪唑、溴化1-辛基-3-甲基咪唑、1-辛基-3-甲基咪唑四氟硼酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑三氟甲磺酸盐、1-辛基-3-甲基咪唑双三氟甲磺酰亚胺盐、溴化1-癸基-3-甲基咪唑、1-癸基-3-甲基咪唑四氟硼酸盐、1-癸基-3-甲基咪唑六氟磷酸盐、溴化1-十二烷基-3-甲基咪唑、1-十二烷基-3-甲基咪唑四氟硼酸盐、氯化1-十六烷基-3-甲基咪唑、溴化1-十六烷基-3-甲基咪唑、氯化1-苄基-3-甲基咪唑、溴化1-苄基-3-甲基咪唑、1-苄基-3-甲基咪唑四氟硼酸盐、1-苄基-3-甲基咪唑六氟磷酸盐、氯化1-烯丙基-3-甲基咪唑、溴化1-烯丙基-3-甲基咪唑、碘化1-烯丙基-3-甲基咪唑、1-烯丙基-3-甲基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑双三氟甲酰亚胺盐、碘化1-乙基-2,3-二甲基咪唑、1-乙基-2,3-二甲基咪唑四氟硼酸盐、1-乙基-2,3-二甲基咪唑六氟磷酸盐、溴化1-丁基-2,3-二甲基咪唑、氯化1-丁基-2,3-二甲基咪唑、碘化1-丁基-2,3-二甲基咪唑、1-丁基-2,3-二甲基咪唑四氟硼酸盐和1-丁基-2,3-二甲基咪唑六氟磷酸盐中的至少一种;
    优选地,所述吡啶类离子液体选自溴化N-乙基吡啶、碘化N-乙基吡啶、N-乙基吡啶四氟硼酸盐、N-乙基吡啶六氟磷酸盐、氯化N-丁基吡啶、溴化N-丁基吡啶、N-丁基吡啶四氟硼酸盐、N-丁基吡啶六氟磷酸盐、氯化N-辛基吡啶、溴化N-辛基吡啶、N-辛基吡啶四氟硼酸盐和N-辛基吡啶六氟磷酸盐中的至少一种。
  22. 根据权利要求6所述的光子晶体材料,其特征在于,所述具有流动性的高分子材料选自琼脂、果胶、黄原胶、葡甘露胶、阿拉伯胶、瓜尔胶、海藻酸盐、白蛋白、豆蛋白、淀粉、蚕丝、酪素、聚异丙基丙烯酰胺、聚乙烯醇、聚乙二醇、聚乙二醇甲基丙烯酸酯、聚甲基丙烯酸甲酯、蜡、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚甲基丙烯酸缩水甘油酯、硅胶、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胶原、明胶、瓜胶、聚磷腈、壳聚糖、透明质酸、海藻酸、纤维素、聚葡萄糖、聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯磺酸、聚乙烯磷酸、胆碱、聚氧乙烯、聚乙烯亚胺、聚乙烯胺、聚乙烯吡啶、聚磷酸盐、聚硅酸盐、聚氨基酸和纤维蛋白或其改性物中的一种或多种。
  23. 根据权利要求22所述的光子晶体材料,其特征在于,所述蜡选自石蜡、地蜡、蜂蜡、虫蜡、川蜡、鲸蜡、棕榈蜡、椰子蜡和合成蜡中的一种或多种。
  24. 根据权利要求6所述的光子晶体材料,其特征在于,所述液态金属选自镓、铋、铟、锡、汞、镍、镐、钛、铯、铷和钫中的任意一种或几种形成的合金。
  25. 根据权利要求1所述的光子晶体材料,其特征在于,所述规则排布的单分散的微米/纳米胶体颗粒的获取方式选自溶剂挥发、离心沉降、重力沉积、垂直沉积、提拉和旋涂中的至少一种。
  26. 根据权利要求1所述的光子晶体材料,其特征在于,所述具有规则排布结构的液态光子晶体组装体的制备方法包括以下步骤:
    加热单分散的微米/纳米胶体颗粒、第一材料和溶剂的混合物使所述溶剂挥发,所述微米/纳米胶体颗粒过饱和析出;
    其中,所述溶剂的沸点低于所述第一材料的相变点;所述相变点为熔点、晶型转变温度、玻璃化转变温度、软化点和凝胶-溶胶转变温度中的任意一种。
  27. 根据权利要求26所述的光子晶体材料,其特征在于,所述溶剂挥发为完全挥发或部分挥发;
    优选地,所述微米/纳米胶体颗粒在所述溶剂挥发后占所述微米/纳米胶体颗粒和第一材料的总体积的比为5%~90%。
  28. 根据权利要求26所述的光子晶体材料,其特征在于,所述溶剂的沸点≤100℃。
  29. 权利要求1-28任一所述的光子晶体材料可用于制备光子晶体标签、智能穿戴设备、疫苗温度监控、离体器官、食品、药品存储温度异常监控。
  30. 一种温控自毁型光子晶体标签,其特征在于,由权利要求1-28任一所述的光子晶体材料制备得到。
PCT/CN2022/092248 2022-05-11 2022-05-11 一种温控自毁型的光子晶体标签 WO2023216151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092248 WO2023216151A1 (zh) 2022-05-11 2022-05-11 一种温控自毁型的光子晶体标签

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092248 WO2023216151A1 (zh) 2022-05-11 2022-05-11 一种温控自毁型的光子晶体标签

Publications (1)

Publication Number Publication Date
WO2023216151A1 true WO2023216151A1 (zh) 2023-11-16

Family

ID=88729333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092248 WO2023216151A1 (zh) 2022-05-11 2022-05-11 一种温控自毁型的光子晶体标签

Country Status (1)

Country Link
WO (1) WO2023216151A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665677A (zh) * 2009-09-01 2010-03-10 苏州纳米技术与纳米仿生研究所 一种热敏变色材料及其制法和用途
US20120044970A1 (en) * 2009-02-25 2012-02-23 Opalux Incorporated Temperature-Responsive Photonic Crystal Device
CN109377860A (zh) * 2018-12-06 2019-02-22 陕西科技大学 一种不可逆变色的冷链储运监控标签及其制备方法
CN110908145A (zh) * 2019-12-13 2020-03-24 中国科学院深圳先进技术研究院 一种具有不可逆温度响应性的光子晶体材料及其制备方法
US20200191758A1 (en) * 2018-12-17 2020-06-18 Renato BONOMI Device for a product temperature variation detection below a threshold value
CN114353991A (zh) * 2021-12-23 2022-04-15 江苏集萃智能液晶科技有限公司 一种温敏变色指示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044970A1 (en) * 2009-02-25 2012-02-23 Opalux Incorporated Temperature-Responsive Photonic Crystal Device
CN101665677A (zh) * 2009-09-01 2010-03-10 苏州纳米技术与纳米仿生研究所 一种热敏变色材料及其制法和用途
CN109377860A (zh) * 2018-12-06 2019-02-22 陕西科技大学 一种不可逆变色的冷链储运监控标签及其制备方法
US20200191758A1 (en) * 2018-12-17 2020-06-18 Renato BONOMI Device for a product temperature variation detection below a threshold value
CN110908145A (zh) * 2019-12-13 2020-03-24 中国科学院深圳先进技术研究院 一种具有不可逆温度响应性的光子晶体材料及其制备方法
CN114353991A (zh) * 2021-12-23 2022-04-15 江苏集萃智能液晶科技有限公司 一种温敏变色指示器

Similar Documents

Publication Publication Date Title
Yu et al. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites
CN101611117B (zh) 制备聚合物分散的液晶的方法
Zhang et al. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials
Hyun et al. Emerging applications of phase‐change materials (PCMs): teaching an old dog new tricks
BR112020025373A2 (pt) deposição de electrospray limitada por espessura
Jampani et al. Micrometer‐scale porous buckling shell actuators based on liquid crystal networks
Zhao et al. Positive temperature coefficient (PTC) evolution of segregated structural conductive polypropylene nanocomposites with visually traceable carbon black conductive network
Kanaya et al. Structure and dynamics of poly (vinyl alcohol) gels in mixtures of dimethyl sulfoxide and water
Konuklu Microencapsulation of phase change material with poly (ethylacrylate) shell for thermal energy storage
Liang et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals
Khan et al. Microencapsulation of phase change material in water dispersible polymeric particles for thermoregulating rubber composites—a holistic approach
Merabia et al. Heterogeneous dynamics at the glass transition in van der Waals liquids: Determination of the characteristic scale
CN114924335A (zh) 一种温控自毁型的光子晶体标签
Lai et al. Studies on the self‐assembly of neat DBS and DBS/PPG organogels
Rogers et al. Rheological assessment of the sol–gel transition for self-assembling low molecular weight gelators
Makuta et al. Synthesis of cyanoacrylate-covered xylitol microcapsules for thermal storage
Liu et al. Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters
WO2023216151A1 (zh) 一种温控自毁型的光子晶体标签
Ram et al. Microencapsulated dimethyl terephthalate phase change material for heat transfer fluid performance enhancement
Liu et al. Polymer composites containing phase‐change microcapsules displaying deep undercooling exhibit thermal history‐dependent mechanical properties
Wang et al. Relation between charge transport and the number of interconnected lamellar poly (3-hexylthiophene) crystals
Dogu et al. Tough organogels based on polyisobutylene with aligned porous structures
Martínez‐Tong et al. Does the glass transition of polymers change upon 3D confinement?
Zhang et al. Facile route to improve the crystalline memory effect: Electrospun composite fiber and annealing
Chatterjee et al. How to select phase change materials for tuning condensation and frosting?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941109

Country of ref document: EP

Kind code of ref document: A1