WO2023214760A1 - 유체 혼합 장치 - Google Patents

유체 혼합 장치 Download PDF

Info

Publication number
WO2023214760A1
WO2023214760A1 PCT/KR2023/005934 KR2023005934W WO2023214760A1 WO 2023214760 A1 WO2023214760 A1 WO 2023214760A1 KR 2023005934 W KR2023005934 W KR 2023005934W WO 2023214760 A1 WO2023214760 A1 WO 2023214760A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
space
fluid
mixed fluid
chamber
Prior art date
Application number
PCT/KR2023/005934
Other languages
English (en)
French (fr)
Inventor
성원기
Original Assignee
성원기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성원기 filed Critical 성원기
Publication of WO2023214760A1 publication Critical patent/WO2023214760A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/453Mixing liquids with liquids; Emulsifying using flow mixing by moving the liquids in countercurrent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/181Preventing generation of dust or dirt; Sieves; Filters
    • B01F35/187Preventing generation of dust or dirt; Sieves; Filters using filters in mixers, e.g. during venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/52Receptacles with two or more compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/915Reverse flow, i.e. flow changing substantially 180° in direction

Definitions

  • the present invention relates to a fluid mixing device capable of mixing and supplying different types of fluids.
  • a fluid mixing device capable of mixing and supplying different types of fluids.
  • it is configured to mix different types of fluids in one space and measure the properties of the mixed fluids. It relates to a fluid mixing device.
  • Fluid mixing devices that mix different types of fluids are applied to various industrial fields. For example, in order to produce urea water used in the semiconductor manufacturing process, a mixing device that mixes urea and ultrapure water is required.
  • the papermaking process involves adding chemicals such as liquid maintenance aids to a liquid fluid such as fiber suspension and mixing them homogeneously.
  • a mixing device is used for this fixation.
  • a mixing device that uniformly mixes hydrochloric acid and water is used to supply diluted hydrochloric acid to a non-diaphragm electrolyzer.
  • the existing fluid mixing device does not have a measurement configuration to check whether the mixed fluid satisfies the physical properties required by the user, such as concentration, conductivity, temperature, dissolved oxygen, etc., before supplying the mixed fluid to the user. Therefore, the manufacturing process of the mixed fluid takes a long time and is inconvenient.
  • the present applicant proposed the present invention to solve the above problems, and related prior art documents include 'Chemical Liquid Mixing Apparatus and Method' of Republic of Korea Patent No. 10-0727851.
  • the present invention is intended to solve the above problems, and its purpose is to provide a fluid mixing device that can mix different types of liquids and immediately measure the physical properties of the mixed fluid.
  • the purpose of the present invention is to provide a fluid mixing device configured to monitor the physical properties of the mixed fluid in real time and immediately respond to the needs of the user.
  • the purpose of the present invention is to provide a fluid mixing device configured to enable a user to easily perform a calibration process of a measuring unit that measures the physical properties of the mixed fluid.
  • the present invention includes: a chamber providing a mixing space where different types of fluids are introduced and mixed, and a storage space where the fluid mixed in the mixing space is stored; a mixing unit provided in the mixing space formed in the chamber to discharge and mix different types of fluids; a measuring unit provided inside the chamber to measure physical properties of the mixed fluid stored in the storage space; and a discharge unit that discharges the mixed fluid stored in the storage space to the outside based on the measurement value measured by the measurement unit.
  • the mixing space and the storage space are partitioned by a partition wall that protrudes from the bottom surface of the chamber toward the ceiling surface of the chamber, and the mixed fluid mixed in the mixing space flows between the top of the partition wall and the chamber. It may flow into the storage space through a passage formed between the ceiling surfaces.
  • the mixing unit includes an injection port through which different types of fluids are injected at the upper end, and the remaining longitudinal portion is a discharge pipe inserted into the mixing space to discharge the different types of fluids. and a plurality of mixing plates provided at predetermined intervals along the longitudinal direction of the discharge pipe, through which the heterogeneous fluid discharged from the lower end of the discharge pipe flows back.
  • the plurality of mixing plates may include a plurality of guide passages through which fluid discharged from the lower end of the discharge pipe and flowing to the upper part of the chamber passes.
  • the guide passage may have the shape of a groove cut into a portion of the area formed by the mixing plate, or may have the shape of a through hole.
  • each of the plurality of mixing plates can be arranged to be staggered so as to increase the retention time of the mixed fluid flowing from the bottom to the top of the mixing space and to change the flow direction of the mixed fluid.
  • the measuring unit measures the physical properties of the mixed fluid while disposed in the measuring space provided in the chamber, and the measuring space and the storage space are partitioned by a vertical wall, and the mixed fluid stored in the storage space is on the vertical wall.
  • An inlet hole may be provided to guide the measurement space.
  • the vertical wall may be provided with a circulation hole that guides the mixed fluid stored in the measurement space to the storage space when the mixed fluid flowing into the measurement space is stored at a constant level in the measurement space.
  • the chamber may further include a calibration vent provided, and the calibration vent may be connected to communicate with the measurement space, but may be formed at a lower position than the formation position of the inlet hole.
  • the filter further includes a filter through which the mixed fluid flowing from the mixing space to the storage space passes, wherein the filter is disposed at a position lower than the passage formed between the top of the partition and the ceiling surface of the chamber. It can be supported by a partition wall and the vertical wall.
  • it further includes a temperature detection sensor that measures the temperature of the mixed fluid stored in the storage space, and monitors the temperature value detected by the temperature detection sensor and the measurement value measured by the measuring unit in real time to determine whether the mixed fluid is discharged. can be decided.
  • the discharge unit may include a first outlet that discharges the mixed fluid stored in the storage space to the outside when the measurement value measured by the measurement unit does not satisfy a preset measurement value; a second outlet that delivers the mixed fluid stored in the storage space to a large-capacity storage member when the measurement value measured by the measurement unit satisfies a preset measurement value; And when the measurement value measured by the measuring unit satisfies a preset measurement value, a third outlet that delivers the mixed fluid stored in the storage space to a large-capacity or small-capacity storage member.
  • the fluid mixing device provides a configuration in which the space for mixing different fluids and the space for measuring physical properties are formed in one chamber, so the operator monitors the physical properties of the mixed fluid in real time and depends on the results.
  • the process of appropriately adjusting the mixing ratio of the mixed fluid or supplying it to the point of use can be performed immediately.
  • the fluid mixing device provides a configuration that mixes different types of fluids while counterflowing, so that a mixed fluid having physical properties desired by the user can be easily manufactured by increasing the miscibility.
  • the fluid mixing device can easily calibrate the measuring part using a calibration vent, and thus can measure the physical properties of the mixed fluid with high accuracy.
  • the fluid mixing device can discharge the mixed fluid stored in the storage space according to the intended use by using a plurality of outlets communicably connected to the storage space.
  • FIG. 1 is a perspective view of a fluid mixing device according to an embodiment of the present invention.
  • FIG. 2 is a view showing the internal appearance of a fluid mixing device according to an embodiment of the present invention.
  • Figure 3 is a perspective view of a mixing section according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing a mixing plate according to another embodiment of the present invention.
  • Figure 5 is a perspective view of a measuring unit according to an embodiment of the present invention.
  • Figure 6 is a perspective view of a filter and a vertical wall according to one embodiment of the present invention.
  • Figure 7 is a diagram showing the flow process of mixed fluid.
  • Figure 1 is a perspective view of a fluid mixing device according to an embodiment of the present invention
  • Figure 2 is a view showing the internal appearance of a fluid mixing device according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention.
  • Figure 4 is a perspective view of a mixing plate according to another embodiment of the present invention
  • Figure 5 is a perspective view of a measuring part according to an embodiment of the present invention
  • Figure 6 is a perspective view of a mixing plate according to an embodiment of the present invention. It is a perspective view of the filter and the vertical wall
  • Figure 7 is a diagram showing the flow process of the mixed fluid.
  • the fluid mixing device is characterized in that it is configured to mix, store and discharge, measure and monitor heterogeneous fluids within one space.
  • the fluid mixing device 100 includes a mixing space (S1) into which different types of fluids are introduced and mixed, and mixing in the mixing space (S1).
  • a chamber (200) providing a storage space (S2) in which the liquid is stored;
  • a mixing unit 300 provided in the mixing space S1 formed in the chamber 200 to discharge and mix different types of fluids;
  • a measuring unit 400 provided inside the chamber 200 to measure physical properties of the mixed fluid stored in the storage space S2; and a discharge unit 500 that discharges the mixed fluid stored in the storage space S2 to the outside based on the measurement value measured by the measurement unit 400.
  • the chamber 200 includes a main body 210 that provides a space where different types of fluids can be mixed and stored, and a cover that covers the open top of the main body 210. It may include (220).
  • the internal space formed by the main body 210 can be divided into a mixing space (S1), a storage space (S2), and a measurement space (S3), and the spaces are connected to the partition wall 211 and the vertical wall 212, which will be described later. can be divided by
  • the cover 220 may be coupled to the top of the main body 210 to block the open upper part of the main body 210.
  • the upper end of the mixing unit 200 and the measuring unit 300 which will be described later, are coupled to the cover 220.
  • the mixing space S1 and the storage space S2 are partitioned by a partition wall 211 protruding from the bottom surface of the main body 210 toward the cover 220.
  • a passage through which the mixed fluid mixed in the mixing space (S1) can pass is provided between the partition wall 211 and the cover 220. That is, a gap is provided between the top of the partition wall 211 and the cover 220, and this gap serves as a passage through which the mixed fluid can flow. Accordingly, the mixed fluid mixed in the mixing space (S1) may flow into the storage space (S2) through the passage formed between the top of the partition wall 211 and the cover 220.
  • the mixing unit 300 is provided with an injection port 311 through which heterogeneous fluids are injected at the upper end, and the remaining longitudinal portion is inserted into the mixing space (S1) to mix heterogeneous fluids.
  • a discharge pipe 310 that discharges the fluid; and a plurality of mixing plates 320 provided at predetermined intervals along the longitudinal direction of the discharge pipe 310, through which the heterogeneous fluid discharged from the lower end of the discharge pipe 310 flows back. can do.
  • the injection port 311 provided at the top of the discharge pipe 310 may be branched corresponding to the number of fluids to be mixed.
  • the injection port 311 provided at the top of the discharge pipe 310 is exposed to the top of the cover 220. Additionally, as shown in FIG. 1, a plurality of fluids may be provided corresponding to the number of fluids to be mixed. In one embodiment of the present invention, two injection ports 311 are shown to be in communication with the discharge pipe 310, and different types of fluids can be injected through each injection port 311. For example, in order to produce sterilizing water of a certain concentration, low-concentration water may be injected into one inlet 311, and high-concentration sterilizing water may be injected into the other inlet 311. Then, the physical property of the mixed fluid measured by the measuring unit 400 becomes concentration.
  • the fluid that has passed through the injection port 311 and the discharge pipe 310 is discharged toward the bottom of the mixing space (S1) through the lower end of the discharge pipe 310. Then, heterogeneous fluids can be filled from the bottom of the mixing space (S1).
  • Heterogeneous fluids filled from the bottom of the mixing space (S1) pass through a plurality of mixing plates 320, and at this time, they can be mixed while remaining in the space formed between the plurality of mixing plates 320 for a predetermined period of time.
  • the heterogeneous fluid discharged to the bottom of the mixing space (S1) fills from the bottom to the top of the mixing space (S1), it is blocked by the mixing plate 320 provided in the discharge pipe 310 and fills to the top. This becomes stagnant, and during this process, heterogeneous fluids can be mixed. Since this process takes place in the space between the plurality of mixing plates 320, the mixing efficiency of the mixed fluid can be further increased from the bottom to the top of the mixing space (S1).
  • the mixing plate 320 may have a shape corresponding to the flat cross-sectional shape of the mixing space S1, and in one embodiment of the present invention, is shown in the drawing as having an overall disk shape.
  • the peripheral surface of the mixing plate 320 and the inner wall and partition wall 211 of the main body 210 that partitions the mixing space S1 it is preferable that a gap of a predetermined distance is formed to allow the mixed fluid to pass. . That is, the peripheral surface of the mixing plate 320 is arranged to be in non-contact with the inner wall and partition wall 211 of the main body 210 inside the mixing space S1 to form a predetermined gap through which the mixed fluid can pass. .
  • the mixing plate 320 is provided with a plurality of guide passages 321 through which the fluid discharged from the lower end of the discharge pipe 310 and flowing to the upper part of the chamber passes.
  • the guide passage 321 may be formed in the shape of an oval groove on the periphery of the mixing plate 320.
  • the mixed fluid flowing into the space between the plurality of mixing plates 320 may pass through the guide passage 321 and flow upward.
  • the guide passages 321 provided in each of the plurality of mixing plates 320 may be arranged to correspond to each other. That is, when viewed from a plane, the guide passages 321 formed in each mixing plate 320 may coincide with each other.
  • the guide passages 321 provided in each of the plurality of mixing plates 320 may be arranged so as to not correspond to each other. That is, when viewed from a plane, the guide passages 321 formed in each mixing plate 320 may be misaligned with each other.
  • the flow speed of the mixed fluid can be increased.
  • the plurality of mixing plates 320 are connected to the discharge pipe 310 so that the user can selectively arrange the guide passages 321 provided in each mixing plate 320 to correspond to each other or to arrange them non-correspondingly. ) can be rotatably mounted on the outer surface.
  • the guide passage 321 may be formed in the mixing plate 320 in the shape of a circular hole, as shown in FIG. 4.
  • the guide passage 321 having a hole shape may also be placed in various positions on the mixing plate 320 according to the user's intention.
  • the hole-shaped guide passages 321 formed in each of the plurality of mixing plates 320 may be arranged to correspond or not correspond to each other.
  • the measurement unit 400 is a component that measures the physical properties of the mixed fluid flowing from the storage space S2 to the measurement space S3, and as shown in FIGS. 2, 5, and 7, the chamber 200 It can be placed in the measurement space (S3) provided in .
  • the measuring unit 400 may measure the concentration, conductivity, dissolved oxygen amount, etc. of the mixed fluid flowing from the storage space S2 to the measurement space S3.
  • the measuring unit 400 is described as measuring the concentration of the mixed fluid.
  • the measurement space S3 in which the measuring unit 400 is placed and the storage space S2 in which the mixed fluid is stored are partitioned by the vertical wall 212.
  • the vertical wall 212 may have a lower end connected to the bottom of the main body 210 and an upper end connected to the bottom of the cover 220 .
  • an inlet hole (H1) is provided in the vertical wall 212 to guide the mixed fluid stored in the storage space (S2) to the measurement space (S3).
  • a guiding circulation hole (H2) may be provided.
  • the inlet hole H1 may be provided at the bottom of the vertical wall 212. Accordingly, the mixed fluid flowing into the storage space (S2) may flow into the bottom of the measurement space (S3) through the inlet hole (H1). Then, the measurement probe provided at the bottom of the measurement unit 400 can measure the concentration of the mixed fluid stored in the lower part of the measurement space (S3) through the inlet hole (H1).
  • the inlet hole (H1) is higher than the formation position of the calibration vent (213) to prevent the test solution injected into the measurement space (S3) through the calibration vent (213), which will be described later, from flowing into the storage space (S2). It is desirable to be placed on location.
  • the mixed fluid whose concentration is measured by the measuring unit 400 is stored at a constant level in the mixing space (S3), and when it reaches the position where the circulation hole (H2) is provided, it is stored through the circulation hole (H2). It can flow back into space (S2).
  • the fluid mixing device 100 may further include a calibration vent 213, as shown in FIG. 1 .
  • the calibration vent 213 can be said to be a component used to correct the accuracy of the measurement unit 400 before the measurement unit 400 measures the physical properties of the mixed solution. To be precise, it is a component used to correct the accuracy of the measurement unit 400, where the measurement probe is placed. It can be said to be a component used to inject a test solution with a certain concentration into the lower part of the space (S3) or to inhale the injected test solution.
  • the calibration vent 213 is provided in the main body 210 of the chamber 200, and, for example, a needle of a syringe for delivering fluid, a hose for delivering fluid, or a catheter can be inserted.
  • the user uses the calibration vent 213 to measure a certain concentration inside the measuring space S3.
  • a test solution containing can be injected.
  • the user may inhale the solution injected into the measurement space S3 through the calibration vent 213.
  • the calibration vent 213 is preferably provided at a position lower than the bottom of the measurement probe, and is also preferably provided at a position lower than the formation position of the inlet hole H1 provided at the bottom of the vertical wall 212. do.
  • the filter (F) is disposed at a position lower than the passage formed between the top of the partition wall 211 and the ceiling surface of the chamber 200 and is supported by the partition wall 211 and the vertical wall 212. You can.
  • the filter (F) may be implemented as a known pre-filter, carbon filter, medium filter, or HEPA filter, and may be configured to include a plurality of filtration holes through which fluid can pass. And, of course, the filtering holes can be formed in various sizes and patterns.
  • the discharge unit 500 may include a first discharge port 510, a second discharge port 520, and a third discharge port 530.
  • the first outlet 510, the second outlet 520, and the third outlet 530 are provided in the main body 210 of the chamber 200 and are connected in communication with the storage space S2 to allow the mixed fluid to be discharged to the outside. It plays a role in conveying.
  • the first outlet 510 may be used to discharge the mixed fluid stored in the storage space S2 to the outside when the measurement value measured by the measuring unit 400 does not satisfy the preset measurement value.
  • the second outlet 520 may be used to deliver the mixed fluid stored in the storage space S2 to the large-capacity storage member when the measurement value measured by the measuring unit 400 satisfies a preset measurement value.
  • the third outlet 530 may be used to deliver the mixed fluid stored in the storage space S2 to the large-capacity storage member when the measurement value measured by the measuring unit 400 satisfies a preset measurement value.
  • the first outlet 510 is a component used to discard the mixed fluid stored in the storage space (S2) when the mixed fluid stored in the storage space (S2) does not satisfy preset physical properties.
  • the second outlet 520 and the third outlet 520 are components used to supply the mixed fluid to a place where it is needed when the mixed fluid satisfies preset physical properties.
  • the first outlet 510, the second outlet 520, and the third outlet 530 are connected to a hose or pipe for fluid transmission (not shown), and of course can be opened and closed by operating a valve. Therefore, the user can monitor the concentration of the mixed fluid measured in the measuring unit 400 in real time and then operate the valve according to the user's request to discharge the mixed fluid to the outside.
  • the fluid mixing device 100 may further include a temperature detection sensor that measures the temperature of the mixed fluid stored in the storage space (S2).
  • the temperature sensor may be separately provided in the storage space S2, or the measuring unit 400 may be configured to also function as a temperature sensor.
  • the user may determine whether to discharge the mixed fluid by monitoring the temperature value detected by the temperature sensor and the measurement value measured by the measuring unit 400 in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

본 발명은, 이종의 유체가 유입되어 혼합되는 혼합 공간과, 상기 혼합 공간에서 혼합된 유체가 저장되는 저장 공간을 제공하는 챔버; 상기 챔버에 형성된 혼합 공간에 마련되어 이종의 유체를 토출 및 혼합하는 혼합부; 상기 챔버에 마련된 저장 공간에 마련되며, 상기 저장 공간에 저장된 혼합 유체의 물성치를 측정하는 측정부; 및 상기 측정부에서 측정된 측정값을 기준으로 상기 저장 공간에 저장된 혼합 유체를 외부로 배출하는 배출부;를 특징으로 한다.

Description

유체 혼합 장치
본 발명은, 서로 다른 이종의 유체를 혼합하여 공급할 수 있는 유체 혼합 장치에 관한 것으로서, 상세하게는, 하나의 공간상에서 이종의 유체를 혼합하고, 더불어, 혼합된 유체의 특성도 측정할 수 있도록 구성된 유체 혼합 장치에 관한 것이다.
서로 다른 이종의 유체를 혼합하는 유체 혼합 장치는 다양한 산업분야에 적용되고 있다. 예컨대, 반도체 제조 공정에서 사용되는 요소수를 생산하기 위해서는 요소와 초순수를 혼합 하는 혼합 장치가 요구된다.
또 다른 예로, 제지(製紙) 공정에서는 섬유질 현탄액과 같은 액체유동물에 액상의 유지보조제와 같은 화학약품을 첨가하고 이들을 균질하게 혼합하는 공정을 수반하게 되는데 이 고정에서 혼합 장치가 사용된다.
또한, 최근 산업용 세척수 또는 살균수로 각광을 받고 있는 차아염소산수 경우에도 무격막 전해조에 희염산을 공급하기 위하여 염산과 물을 균일하게 혼합하는 혼합 장치가 사용된다.
*이와 같이 이종의 유체를 서로 혼합하는 유체 혼합 장치는 다양한 산업 분야에 사용되고 있다.
그러나, 기존의 유체 혼합 장치는, 혼합 유체를 사용처로 공급하기 이전에 혼합 유체가 사용처에서 요구하는 물성치, 예컨대, 농도, 전도도, 온도, 용존 산소량 등을 만족하는지 확인하기 위한 측정 구성이 마련되어 있지 않기 때문에, 혼합 유체의 제조 과정이 오래 걸리고 불편한 문제점이 있다.
다시 말해, 기존에는 이종의 유체를 혼합하는 혼합 과정 및 혼합 과정에서 제조된 혼합 유체의 물성치를 측정하는 측정 과정이 별도로 수행되었기 때문에, 사용처에서 요구하는 혼합 유체의 물성치에 대응하여 혼합 유체를 제때 공급하는 것이 어렵다. 또한, 기존의 유체 혼합 장치는, 혼합 유체의 물성치를 실시간으로 모니터링할 수 없기 때문에 사용처에서 요구하는 기준치에 혼합 유체의 물성치를 맞추는 작업이 오래 걸리고 불편한 문제점이 있다.
따라서, 본 출원인은 상기와 같은 문제점을 해결하기 위하여 본 발명을 제안하게 되었으며, 이와 관련된 선행기술문헌으로는, 대한민국 등록특허 제10-0727851호의 '약액 혼합 장치 및 방법'이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 서로 다른 이종의 액체를 혼합하고, 혼합 유체의 물성치를 즉각 측정할 수 있는 유체 혼합 장치를 제공하는데 목적이 있다.
또한, 본 발명은, 혼합 유체의 물성치를 실시간으로 모니터링하여 사용처의 요구에 즉각적으로 대응할 수 있도록 구성된 유체 혼합 장치를 제공하는데 목적이 있다.
또한, 본 발명은, 혼합 유체의 물성치를 측정하는 측정부의 보정 과정을 사용자가 용이하게 수행할 수 있도록 구성된 유체 혼합 장치를 제공하는데 목적이 있다.
본 발명은, 이종의 유체가 유입되어 혼합되는 혼합 공간과, 상기 혼합 공간에서 혼합된 유체가 저장되는 저장 공간을 제공하는 챔버; 상기 챔버에 형성된 혼합 공간에 마련되어 이종의 유체를 토출 및 혼합하는 혼합부; 상기 챔버의 내부에 마련되어 상기 저장 공간에 저장된 혼합 유체의 물성치를 측정하는 측정부; 및 상기 측정부에서 측정된 측정값을 기준으로 상기 저장 공간에 저장된 혼합 유체를 외부로 배출하는 배출부;를 포함할 수 있다.
또한, 상기 혼합 공간과 상기 저장 공간은 상기 챔버의 바닥면에서부터 상기 챔버의 천장면을 향하여 돌출 되게 마련되는 격벽에 의해 구획되며, 상기 혼합 공간에서 혼합된 혼합 유체는 상기 격벽의 상단과 상기 챔버의 천장면 사이에 형성된 통로를 통하여 상기 저장 공간으로 유입될 수 있다.
또한, 상기 혼합부는, 이종의 유체가 주입되는 주입구가 상단부에 마련되고, 나머지 길이방향 부위는 상기 혼합 공간으로 삽입되어 이종의 유체를 토출하는 토출관; 및 상기 토출관의 길이방향을 따라 소정 간격을 두고서 다수개로 마련되며, 상기 토출관의 하단에서 배출된 이종의 유체가 역류되는 과정에서 경유하는 혼합 플레이트;를 포함할 수 있다.
또한, 상기 다수개의 혼합 플레이트는, 상기 토출관의 하단에서 배출되어 상기 챔버의 상부로 유동하는 유체가 통과되는 다수개의 가이드 유로를 포함할 수 있다.
또한, 상기 가이드 유로는 상기 혼합 플레이트가 형성하는 면적 일부를 절개한 홈의 형태를 가지거나, 또는, 관통 구멍의 형태를 가질 수 있다.
또한, 상기 다수개의 혼합 플레이트에 각각 마련된 가이드 유로는, 상기 혼합 공간의 하부에서부터 상부로 유동되는 혼합 유체의 저류 시간을 증가시키고, 또한, 혼합 유체의 유동 방향을 변경시킬 수 있도록 서로 엇갈리게 배치될 수 있다.
또한, 상기 측정부는 상기 챔버에 마련된 측정 공간에 배치된 상태에서 혼합 유체의 물성치를 측정하며, 상기 측정 공간과 상기 저장 공간은 수직벽에 의해 구획되고, 상기 수직벽에는 상기 저장 공간에 저장된 혼합 유체를 상기 측정 공간으로 안내하는 유입구멍이 마련될 수 있다.
또한, 상기 수직벽에는, 상기 측정 공간으로 유입된 혼합 유체가 상기 측정 공간 내에서 일정 수위가 되도록 저장되면, 상기 측정 공간에 저장된 혼합 유체를 상기 저장 공간으로 안내하는 순환구멍이 마련될 수 있다.
또한, 상기 챔버에는 캘리브레이션 벤트가 마련되는 것을 더 포함하며, 상기 캘리브레이션 벤트는 상기 측정 공간과 연통 가능하게 연결되되, 상기 유입구멍의 형성 위치보다는 낮은 위치상에 형성될 수 있다.
또한, 상기 혼합 공간에서 상기 저장 공간으로 유동되는 혼합 유체가 경유하는 필터;를 더 포함하며, 상기 필터는, 상기 격벽의 상단과 상기 챔버의 천장면 사이에 형성된 통로보다 낮은 위치상에 배치되되 상기 격벽과 상기 수직벽에 의해 지지될 수 있다.
또한, 상기 저장 공간에 저장된 혼합 유체의 온도를 측정하는 온도 감지 센서를 더 포함하며, 상기 온도 감지 센서에서 감지된 온도값과 상기 측정부에서 측정된 측정값을 실시간으로 모니터링하여 혼합 유체의 배출 여부를 결정할 수 있다.
또한, 상기 배출부는, 상기 측정부에서 측정된 측정값이 기설정된 측정값을 만족하지 못하 경우에, 상기 저장 공간에 저장된 혼합 유체를 외부로 배출시키는 제1배출구; 상기 측정부에서 측정된 측정값이 기설정된 측정값을 만족하였을 때, 상기 저장 공간에 저장된 혼합 유체를 대용량 저장부재로 전달하는 제2배출구; 및 상기 측정부에서 측정된 측정값이 기설정된 측정값을 만족하였을 때, 상기 저장 공간에 저장된 혼합 유체를 대용량 소용량 저장부재로 전달하는 제3배출구;를 포함할 수 있다.
본 발명에 따른 유체 혼합 장치는, 이종의 유체를 혼합하는 공간과 물성치를 측정하는 공간이 하나의 챔버 내에서 이루어지는 구성을 제공하므로, 작업자는 실시간으로 혼합 유체의 물성치를 모니터링하고, 그 결과에 따라서 혼합 유체의 혼합비를 적절하게 조절하거나 사용처로 공급하는 과정을 즉각적으로 수행할 수 있다.
또한, 본 발명에 따른 유체 혼합 장치는, 이종의 유체를 역류시키면서 혼합시키는 구성을 제공하므로, 혼합성을 높여 사용자가 원하는 물성치를 가지는 혼합 유체를 용이하게 제조할 수 있다.
또한, 본 발명에 따른 유체 혼합 장치는, 캘리브레이션 벤트를 이용하여 측정부의 보정 작업을 간편하게 실시할 수 있으므로, 혼합 유체의 물성치를 높은 정확도로 측정할 수 있다.
또한, 본 발명에 따른 유체 혼합 장치는, 저장 공간과 연통 가능하게 연결된 다수개의 배출구를 이용하여 저장 공간에 저장된 혼합 유체를 사용 용도에 맞게 배출시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 유체 혼합 장치의 사시도.
도 2는 본 발명의 일 실시예에 따른 유체 혼합 장치의 내부 모습을 보여주는 도면,
도 3은 본 발명의 일 실시예에 따른 혼합부의 사시도.
도 4는 본 발명의 다른 실시예에 따른 혼합 플레이트를 보여주는 사시도.
도 5는 본 발명의 일 실시예에 따른 측정부의 사시도.
도 6은 본 발명의 일 실시예에 따른 필터와 수직벽의 사시도.
도 7은 혼합 유체의 유동 과정을 보여주는 도면.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 도 1 내지 도 7을 참조하여 본 발명의 일 실시예에 따른 유체 혼합 장치가 상세하게 설명된다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 발명의 요지를 모호하지 않게 하기 위하여 생략된다.
도 1은 본 발명의 일 실시예에 따른 유체 혼합 장치의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 유체 혼합 장치의 내부 모습을 보여주는 도면이고, 도 3은 본 발명의 일 실시예에 따른 혼합부의 사시도이고, 도 4는 본 발명의 다른 실시예에 따른 혼합 플레이트를 보여주는 사시도이고, 도 5는 본 발명의 일 실시예에 따른 측정부의 사시도이고, 도 6은 본 발명의 일 실시예에 따른 필터와 수직벽의 사시도이고, 도 7은 혼합 유체의 유동 과정을 보여주는 도면이다.
본 발명의 일 실시예에 따른 유체 혼합 장치는, 이종의 유체를 하나의 공간 내에서 혼합, 저장 및 배출, 측정 및 모니터링 할 수 있도록 구성된 것에 특징이 있다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 유체 혼합 장치(100)는, 이종의 유체가 유입되어 혼합되는 혼합 공간(S1)과, 상기 혼합 공간(S1)에서 혼합된 유체가 저장되는 저장 공간(S2)을 제공하는 챔버(200); 상기 챔버(200)에 형성된 혼합 공간(S1)에 마련되어 이종의 유체를 토출 및 혼합하는 혼합부(300); 상기 챔버(200)의 내부에 마련되어 상기 저장 공간(S2)에 저장된 혼합 유체의 물성치를 측정하는 측정부(400); 및 상기 측정부(400)에서 측정된 측정값을 기준으로 상기 저장 공간(S2)에 저장된 혼합 유체를 외부로 배출하는 배출부(500);를 포함할 수 있다.
상기 챔버(200)는, 도 1 및 도 2에 도시된 바와 같이, 이종의 유체가 혼합 및 저장될 수 있는 공간을 제공하는 본체(210)와, 상기 본체(210)의 개방된 상부를 덮는 커버(220)를 포함할 수 있다.
본체(210)가 형성하는 내부 공간은, 혼합 공간(S1)과 저장 공간(S2) 및 측정 공간(S3)으로 나누어질 수 있으며, 상기 공간들은 후술할 격벽(211)과 수직벽(212)에 의해 구획될 수 있다.
커버(220)는 본체(210)의 상단과 결합되어 본체(210)의 개방된 상부를 차단할 수 있다. 또한, 커버(220)에는 후술할 혼합부(200)와 측정부(300)의 상단부가 결합된다.
전술한 바와 같이, 혼합 공간(S1)과 저장 공간(S2)은 본체(210)의 바닥면에서부터 커버(220)를 향해 돌출 형성된 격벽(211)에 의해 구획된다.
이때, 격벽(211)과 커버(220) 사이에는 혼합 공간(S1)에서 혼합된 혼합 유체가 통과될 수 있는 통로가 마련된다. 즉, 격벽(211)의 상단과 커버(220) 사이에는 간격이 마련되며, 이 간격이 혼합 유체가 유동될 수 있는 통로 역할을 한다. 따라서, 혼합 공간(S1)에서 혼합된 혼합 유체는 격벽(211)의 상단과 커버(220) 사이에 형성된 통로를 통하여 저장공간(S2)으로 유입될 수 있다.
상기 혼합부(300)는, 도 2 내지 도 4에 도시된 바와 같이, 이종의 유체가 주입되는 주입구(311)가 상단부에 마련되고, 나머지 길이방향 부위는 상기 혼합 공간(S1)으로 삽입되어 이종의 유체를 토출하는 토출관(310); 및 상기 토출관(310)의 길이방향을 따라 소정 간격을 두고서 다수개로 마련되며, 상기 토출관(310)의 하단에서 배출된 이종의 유체가 역류되는 과정에서 경유하는 혼합 플레이트(320);를 포함할 수 있다.
토출관(310)의 상단에 마련되는 주입구(311)는, 도 1에 도시된 바와 같이, 혼합 하고자 하는 유체의 개수에 대응하여 분기될 수 있다.
토출관(310)의 상단에 마련되는 주입구(311)는, 커버(220)의 상부로 노출된다. 또한, 도 1에 도시된 바와 같이, 혼합하고자 하는 유체의 개수에 대응하여 다수개로 마련될 수 있다. 본 발명의 일 실시예에서는 두 개의 주입구(311)가 토출관(310)과 연통 가능하게 마련되는 것으로 도시되어 있으며, 각각의 주입구(311)를 통하여 서로 다른 종류의 유체가 주입될 수 있다. 예컨대, 일정 농도의 살균수를 제조하기 위하여 일측 주입구(311)에는 저농도의 물이 주입되고, 타측 주입구(311)에는 고농도의 살균수가 주입될 수 있다. 그러면, 측정부(400)가 측정되는 혼합 유체의 물성치는 농도가 된다.
주입구(311)와 토출관(310)을 경유한 유체는 토출관(310)을 하단을 통하여 혼합 공간(S1)의 바닥을 향해 토출된다. 그러면, 이종의 유체가 혼합 공간(S1)의 바닥에서부터 채워질 수 있다.
*혼합 공간(S1)의 바닥에서부터 채워지는 이종의 유체는 다수개의 혼합 플레이트(320)를 경유하게 되는데, 이때, 다수개의 혼합 플레이트(320) 사이에 형성된 공간에서 소정 시간 저류되면서 혼합될 수 있다.
즉, 혼합 공간(S1)의 바닥으로 토출되는 이종의 유체가 혼합 공간(S1)의 바닥에서부터 상부로 채워질 때, 토출관(310)에 마련된 혼합 플레이트(320)에 의해 차단되어 상부로 채워지는 시간이 정체가 되며, 이 과정에서 이종의 유체가 혼합될 수 있다. 이러한 과정이 다수개의 혼합 플레이트(320) 사이의 공간에서 이루이지기 때문에, 혼합 공간(S1)의 바닥에서부터 상부로 갈수록 혼합 유체의 혼합 효율이 더욱 높아 질수 있다.
혼합 플레이트(320)는, 혼합 공간(S1)의 평단면 형태와 대응되는 형태를 가질 수 있으며, 본 발명의 일 실시예에서는 전체적으로 원판 형태를 가지는 것으로 도면상에 도시되어 있다.
또한, 혼합 플레이트(320)의 둘레면과 혼합 공간(S1)을 구획하는 본체(210)의 내벽 및 격벽(211) 사이에는, 혼합 유체가 통과될 수 있도록 소정 간격의 틈이 형성되는 것이 바람직하다. 즉, 혼합 플레이트(320)의 둘레면은 혼합 공간(S1)의 내부에서 본체(210)의 내벽 및 격벽(211)과 비접촉 되도록 배치되어 혼합 유체가 통과될 수 있는 소정의 틈을 형성할 수 있다.
또한, 혼합 플레이트(320)에는, 도 3에 도시된 바와 같이, 상기 토출관(310)의 하단에서 배출되어 상기 챔버의 상부로 유동하는 유체가 통과되는 다수개의 가이드 유로(321)가 마련된다.
상기 가이드 유로(321)는, 혼합 플레이트(320)의 둘레부에서 타원형의 홈 형태로 형성될 수 있다.
다수개의 혼합 플레이트(320) 사이의 공간으로 유입된 혼합 유체는 상기 가이드 유로(321)를 통과하여 상부로 유동될 수 있다.
*또한, 다수개의 혼합 플레이트(320)에 각각 마련되는 가이드 유로(321)는, 서로 대응되도록 배치될 수 있다. 즉, 평면에서 바라보았을 때, 각각의 혼합 플레이트(320)에 형성되는 가이드 유로(321)는 서로 일치될 수 있다.
또 다른 예로, 다수개의 혼합 플레이트(320)에 각각 마련되는 가이드 유로(321)는, 서로 비대응되도록 배치될 수 있다. 즉, 평면에서 바라보았을 대, 각각의 혼합 플레이트(320)에 형성되는 가이드 유로(321)는 서로 어긋날 수 있다.
다수개의 혼합 플레이트(320)에 각각 마련되는 가이드 유로(321)를 서로 대응되게 배치시켰을 경우에는, 혼합 유체의 유동 속도를 증가시킬 수 있다.
반면에, 다수개의 혼합 플레이트(320)에 각각 마련되는 가이드 유로(321)를 서로 비대응되게 배치시켰을 경우에는, 혼합 유체의 유동 방향을 변경시켜 혼합 유체의 저류 시간을 증가시키고, 와류를 발생시켜 혼합 유체의 혼합성을 높일 수 있다.
따라서, 사용자가 선택적으로 혼합 플레이트(320)에 각각 마련된 가이드 유로(321)를 서로 대응되게 배치시키거나, 또는, 비대응되게 배치시킬 수 있도록, 상기 다수개의 혼합 플레이트(320)는 토출관(310)의 외면에 회전 가능하게 장착될 수 있다.
한편, 상기 가이드 유로(321)는, 도 4에 도시된 바와 같이, 원형의 구멍 형태로 혼합 플레이트(320)에 형성될 수 있다. 구멍 형태를 가지는 가이드 유로(321)도 사용자의 의도에 따라서 혼합 플레이트(320)상에 다양한 위치에 배치될 수 있다. 예컨대, 다수개의 혼합 플레이트(320)에 각각 형성되는 구멍 형태의 가이드 유로(321)도 서로 대응되거나 비대응되도록 배치될 수 있다.
도 7에 도시된 바와 같이, 상기와 같이 구성된 혼합부(300)에 의하여 혼합 공간(S1)으로 토출된 이종의 유체는 서로 혼합된 채 저장 공간(S2)으로 유입될 수 있다.
측정부(400)는, 저장 공간(S2)에서 측정 공간(S3)으로 유입되는 혼합 유체의 물성치를 측정하는 구성요소로서, 도 2와 도 5 및 도 7에 도시된 바와 같이, 챔버(200)에 마련된 측정 공간(S3)에 배치될 수 있다.
예컨대, 측정부(400)는 저장 공간(S2)에서 측정 공간(S3)으로 유입된 혼합 유체의 농도나 전도도, 용존 산소량 등을 측정할 수 있다. 본 발명의 일 실시예에서는 측정부(400)가 혼합 유체의 농도를 측정하는 것으로 설명된다.
한편, 측정부(400)가 배치되는 측정 공간(S3)과 혼합 유체가 저장되는 저장 공간(S2)은 수직벽(212)에 의회 구획된다.
수직벽(212)은, 도 2 및 도 6에 도시된 바와 같이, 하단이 본체(210)의 바닥면에 연결되고 상단은 커버(220)에 저면에 연결될 수 있다.
그리고, 수직벽(212)에는, 저장 공간(S2)에 저장된 혼합 유체를 측정 공간(S3)으로 안내하는 유입구멍(H1)이 마련된다.
또한, 수직벽(212)에는 상기 측정 공간(S3)으로 유입된 혼합 유체가 상기 측정 공간(S3) 내에서 일정 수위가 되도록 저장되면, 상기 측정 공간(S3)에 저장된 혼합 유체를 상기 저장 공간으로 안내하는 순환구멍(H2)이 마련될 수 있다.
먼저, 유입구멍(H1)은 수직벽(212)의 하단측에 마련될 수 있다. 따라서, 저장 공간(S2)으로 유입된 혼합 유체는 유입구멍(H1)을 통하여 측정 공간(S3)의 바닥측으로 유입될 수 있다. 그러면, 측정부(400)의 하단에 마련된 측정 프로브가 유입 구멍(H1)을 통하여 측정 공간(S3)의 하부에 저장된 혼합 유체의 농도를 측정할 수 있다. 참고로, 유입구멍(H1)은, 후술할 캘리브레이션 벤트(213)를 통하여 측정 공간(S3)으로 주입되는 테스트 용액이 저장 공간(S2)으로 유입되지 않도록 상기 캘리브레이션 벤트(213)의 형성 위치보다 높은 위치상에 배치되는 것이 바람직하다.
그리고, 측정부(400)에 의하여 농도가 측정된 혼합 유체는 혼합 공간(S3) 내에서 일정 수위가 되도록 저장되다가 상기 순환구멍(H2)이 마련된 위치에 도달하면, 순환구멍(H2)을 통하여 저장 공간(S2)으로 다시 유입될 수 있다.
또한, 본 발명의 일 실시예에 따른 유체 혼합 장치(100)는, 도 1에 도시된 바와 같이, 캘리브레이션 벤트(213)를 더 포함할 수 있다.
캘리브레이션 벤트(213)는, 측정부(400)가 혼합 용액의 물성치를 측정하기 이전에 측정부(400)의 정확도를 바로잡는데 사용하는 구성요소라 할 수 있으며, 정확하게는, 측정 프로브가 배치된 측정 공간(S3)의 하부로 일정 농도를 가지는 테스트용 용액을 주입하거나, 주입된 테스트 용액을 흡입하는데 사용되는 구성요소라 할 수 있다.
캘리브레이션 벤트(213)는, 챔버(200)의 본체(210)에 마련되며, 예컨대, 유체를 전달하는 주사기의 바늘이나, 유체 전달용 호스, 카테터 등이 삽입될 수 있다.
따라서, 측정부(400)가 혼합 유체의 물성치를 측정하기 이전에, 측정부(400)의 정확성을 시험하기 위하여, 사용자는 캘리브레이션 벤트(213)를 이용하여 측정 공간(S3)의 내부에 일정 농도를 가지는 테스트용 용액을 주입할 수 있다.
측정부(400)의 보정 작업이 완료되면, 사용자는 캘리브레이션 벤트(213)를 통하여 측정 공간(S3)으로 주입된 용액을 흡입할 수도 있다.
캘리브레이션 벤트(213)는 측정 프로브의 하단보다 낮은 위치상에 마련되는 것이 바람직하고, 아울러, 수직벽(212)의 하단측에 마련된 유입구멍(H1)의 형성 위치보다도 낮은 위치상에 마련되는 것이 바람직하다.
상기 필터(F)는, 상기 격벽(211)의 상단과 상기 챔버(200)의 천장면 사이에 형성된 통로보다 낮은 위치상에 배치되되 상기 격벽(211)과 상기 수직벽(212)에 의해 지지될 수 있다.
상기 필터(F)는 공지의 프리필터, 카본필터, 미디엄 필터, HEPA 필터로 구현될 수 있으며, 유체가 통과될 수 있는 다수개의 여과 구멍을 포함하여 구성될 수 있다. 그리고, 여과 구멍은, 다양한 크기와 패턴으로 형성될 수 있음은 물론이다.
따라서, 혼합 공간(S1)에서 저장 공간(S2)으로 유동되는 혼합 유체는 필터(F)에 의해 이물질이 걸러지기 때문에, 저장 공간(S2)에는 순수한 혼합 유체가 저장될 수 있다.
상기 배출부(500)는, 도 1에 도시된 바와 같이, 제1배출구(510)와 제2배출구(520) 및 제3배출구(530)를 포함할 수 있다.
제1배출구(510)와 제2배출구(520) 및 제3배출구(530)는 챔버(200)의 본체(210)에 마련되며, 저장 공간(S2)과 연통 가능하게 연결되어 혼합 유체를 외부로 전달하는 역할을 한다.
제1배출구(510)는, 상기 측정부(400)에서 측정된 측정값이 기설정된 측정값을 만족하지 못하 경우에, 상기 저장 공간(S2)에 저장된 혼합 유체를 외부로 배출시키는데 사용될 수 있다.
제2배출구(520)는, 상기 측정부(400)에서 측정된 측정값이 기설정된 측정값을 만족하였을 때, 상기 저장 공간(S2)에 저장된 혼합 유체를 대용량 저장부재로 전달하는데 사용될 수 있다.
제3배출구(530)는, 상기 측정부(400)에서 측정된 측정값이 기설정된 측정값을 만족하였을 때, 상기 저장 공간(S2)에 저장된 혼합 유체를 대용량 저장부재로 전달하는데 사용될 수 있다.
제1배출구(510)는, 저장 공간(S2)에 저장된 혼합 유체가 기설정된 물성치를 만족하지 못할 경우에, 저장 공간(S2)에 저장된 혼합 유체를 버리기 위하여 사용되는 구성요소이다.
제2배출구(520)와 제3배출구(520)는 혼합 유체가 기설정된 물성치를 만족하였을 때, 혼합 유체를 필요로 하는 사용처로 공급하기 위하여 사용되는 구성요소이다.
제1배출구(510)와 제2배출구(520) 및 제3배출구(530)는, 도시되지 않은 유체 전달용 호스나 파이프와 연결되며, 밸브의 작동에 의해 개폐될 수 있음은 물론이다. 따라서, 사용자는 측정부(400)에서 측정되는 혼합 유체의 농도를 실시간으로 모니터링 한 뒤, 사용처의 요구에 따라서 밸브를 작동시켜 혼합 유체를 외부로 배출시킬 수 있다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다.
예컨대, 본 발명의 일 실시예에 따른 유체 혼합 장치(100)는, 저장 공간(S2)에 저장된 혼합 유체의 온도를 측정하는 온도 감지 센서를 더 포함할 수 있다.
온도 감지 센서는, 저장 공간(S2)에 별도로 마련될 수도 있고, 또는, 측정부(400)가 온도 감지 센서의 역할도 수행하도록 구성될 수 있다.
따라서, 사용자는 온도 감지 센서에서 감지된 온도값과 상기 측정부(400)에서 측정된 측정값을 실시간으로 모니터링하여 혼합 유체의 배출 여부를 결정할 수도 있다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (10)

  1. 이종의 유체가 유입되어 혼합되는 혼합 공간과, 상기 혼합 공간에서 혼합된 유체가 저장되는 저장 공간을 제공하는 챔버;
    상기 챔버에 형성된 혼합 공간에 마련되어 이종의 유체를 토출 및 혼합하는 혼합부;
    상기 챔버의 내부에 마련되어 상기 저장 공간에 저장된 혼합 유체의 물성치를 측정하는 측정부; 및
    상기 측정부에서 측정된 측정값을 기준으로 상기 저장 공간에 저장된 혼합 유체를 외부로 배출하는 배출부;를 포함하는 것을 특징으로 하는 유체 혼합 장치.
  2. 제 1 항에 있어서,
    상기 혼합 공간과 상기 저장 공간은 상기 챔버의 바닥면에서부터 상기 챔버의 천장면을 향하여 돌출 되게 마련되는 격벽에 의해 구획되며,
    상기 혼합 공간에서 혼합된 혼합 유체는 상기 격벽의 상단과 상기 챔버의 천장면 사이에 형성된 통로를 통하여 상기 저장 공간으로 유입되는 것을 특징으로 하는 유체 혼합 장치.
  3. 제 2 항에 있어서,
    상기 혼합부는,
    이종의 유체가 주입되는 주입구가 상단부에 마련되고, 나머지 길이방향 부위는 상기 혼합 공간으로 삽입되어 이종의 유체를 토출하는 토출관; 및
    상기 토출관의 길이방향을 따라 소정 간격을 두고서 다수개로 마련되며, 상기 토출관의 하단에서 배출된 이종의 유체가 역류되는 과정에서 경유하는 혼합 플레이트;를 포함하는 것을 특징으로 하는 유체 혼합 장치.
  4. 제 3 항에 있어서,
    상기 다수개의 혼합 플레이트는, 상기 토출관의 하단에서 배출되어 상기 챔버의 상부로 유동하는 유체가 통과되는 다수개의 가이드 유로를 포함하는 것을 특징으로 하는 유체 혼합 장치.
  5. 제 3 항에 있어서,
    상기 가이드 유로는 상기 혼합 플레이트가 형성하는 면적 일부를 절개한 홈의 형태를 가지거나, 또는, 관통 구멍의 형태를 가지는 것을 특징으로 하는 유체 혼합 장치.
  6. 제 5 항에 있어서,
    상기 다수개의 혼합 플레이트에 각각 마련된 가이드 유로는,
    상기 혼합 공간의 하부에서부터 상부로 유동되는 혼합 유체의 저류 시간을 증가시키고, 또한, 혼합 유체의 유동 방향을 변경시킬수 있도록 서로 엇갈리게 배치되는 것을 특징으로 하는 유체 혼합 장치.
  7. 제 2 항에 있어서,
    상기 측정부는 상기 챔버에 마련된 측정 공간에 배치된 상태에서 혼합 유체의 물성치를 측정하며,
    상기 측정 공간과 상기 저장 공간은 수직벽에 의해 구획되고, 상기 수직벽에는 상기 저장 공간에 저장된 혼합 유체를 상기 측정 공간으로 안내하는 유입구멍이 마련되는 것을 특징으로 하는 유체 혼합 장치.
  8. 제 7 항에 있어서,
    상기 수직벽에는, 상기 측정 공간으로 유입된 혼합 유체가 상기 측정 공간 내에서 일정 수위가 되도록 저장되면, 상기 측정 공간에 저장된 혼합 유체를 상기 저장 공간으로 안내하는 순환구멍이 마련되는 것을 특징으로 하는 유체 혼합 장치.
  9. 제 7 항에 있어서,
    상기 챔버에는 캘리브레이션 벤트가 마련되는 것을 더 포함하며,
    상기 캘리브레이션 벤트는 상기 측정 공간과 연통 가능하게 연결되되, 상기 유입구멍의 형성 위치보다는 낮은 위치상에 형성되는 것을 특징으로 하는 유체 혼합 장치.
  10. 제 7 항에 있어서,
    상기 혼합 공간에서 상기 저장 공간으로 유동되는 혼합 유체가 경유하는 필터;를 더 포함하며,
    상기 필터는, 상기 격벽의 상단과 상기 챔버의 천장면 사이에 형성된 통로보다 낮은 위치상에 배치되되 상기 격벽과 상기 수직벽에 의해 지지되는 것을 특징으로 하는 유체 혼합 장치.
PCT/KR2023/005934 2022-05-02 2023-05-02 유체 혼합 장치 WO2023214760A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220054396A KR102622194B1 (ko) 2022-05-02 2022-05-02 유체 혼합 장치
KR10-2022-0054396 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214760A1 true WO2023214760A1 (ko) 2023-11-09

Family

ID=88646665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005934 WO2023214760A1 (ko) 2022-05-02 2023-05-02 유체 혼합 장치

Country Status (2)

Country Link
KR (1) KR102622194B1 (ko)
WO (1) WO2023214760A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110027419A (ko) * 2009-09-10 2011-03-16 삼성전자주식회사 유체 수용 챔버, 유체 수용 챔버를 구비한 미세 유동 장치, 및 유체 혼합 방법
KR20120091135A (ko) * 2009-10-01 2012-08-17 엑센 홀딩스, 엘엘씨 균질화 연료 강화 시스템
KR20160011358A (ko) * 2014-07-22 2016-02-01 한국표준과학연구원 집속 초음파에 의한 유체 분산을 위한 유체 공급 장치
JP2016019669A (ja) * 2014-07-15 2016-02-04 日機装株式会社 溶解装置
KR20170089098A (ko) * 2016-01-25 2017-08-03 충북대학교 산학협력단 이종 유체의 혼합장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110027419A (ko) * 2009-09-10 2011-03-16 삼성전자주식회사 유체 수용 챔버, 유체 수용 챔버를 구비한 미세 유동 장치, 및 유체 혼합 방법
KR20120091135A (ko) * 2009-10-01 2012-08-17 엑센 홀딩스, 엘엘씨 균질화 연료 강화 시스템
JP2016019669A (ja) * 2014-07-15 2016-02-04 日機装株式会社 溶解装置
KR20160011358A (ko) * 2014-07-22 2016-02-01 한국표준과학연구원 집속 초음파에 의한 유체 분산을 위한 유체 공급 장치
KR20170089098A (ko) * 2016-01-25 2017-08-03 충북대학교 산학협력단 이종 유체의 혼합장치

Also Published As

Publication number Publication date
KR102622194B1 (ko) 2024-01-08
KR20230154683A (ko) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2015167248A1 (en) Water filter assembly
WO2009151198A1 (ko) 뱃치형 화학분석장치
WO2015060664A1 (en) Multi sampling port monitoring apparatus for measuring pollution level and monitoring method using the same
WO2017090817A1 (ko) 주사기용 필터 구조체 및 이를 구비한 주사기
WO2023214760A1 (ko) 유체 혼합 장치
WO2016076547A1 (ko) 기액을 이용한 나노기포 다용도 혼합 용해기
WO2020145499A1 (ko) 유량 균등분배를 위한 이중배관
WO2014088212A1 (ko) 수처리장치
WO2015034162A1 (ko) 저류층 조건의 이산화탄소 거품 생성 및 분석 장치
WO2019009614A1 (ko) 누수 방지가 가능한 공기청정기용 무전원 가습 모듈
WO2020231019A1 (ko) 호흡 측정 장치
WO2023096219A1 (ko) 멀티 바이알 어댑터
WO2023113131A1 (ko) 미세 기포 제거 기능을 포함하는 정유량 조절 장치
WO2018012790A1 (ko) 슬러리 제조용 믹서 냉각장치
WO2012036536A2 (ko) 산소용해장치
WO2009125979A2 (ko) 정수기용 필터탱크 및 이를 이용한 정수기
CN210613019U (zh) 净水装置
WO2020184877A2 (ko) 흡입 실험을 위한 기체 순환 장치
CN220049225U (zh) 清洗拭子
WO2010114184A1 (ko) 연속식 추출장치
WO2023068636A1 (en) Device for generating aerosol
CN208627927U (zh) 样本针清洗装置
WO2024090676A1 (ko) 수액 정밀 감지용 오토 클램프
WO2017196120A1 (ko) 누수감지수단을 구비한 워터필터
CN219273931U (zh) 一种穿刺针清洗装置和凝血分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799641

Country of ref document: EP

Kind code of ref document: A1