WO2023214754A1 - Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치 - Google Patents

Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치 Download PDF

Info

Publication number
WO2023214754A1
WO2023214754A1 PCT/KR2023/005884 KR2023005884W WO2023214754A1 WO 2023214754 A1 WO2023214754 A1 WO 2023214754A1 KR 2023005884 W KR2023005884 W KR 2023005884W WO 2023214754 A1 WO2023214754 A1 WO 2023214754A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
reads
soft
clipped
ngs
Prior art date
Application number
PCT/KR2023/005884
Other languages
English (en)
French (fr)
Inventor
김명신
김용구
이종미
황인식
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2023214754A1 publication Critical patent/WO2023214754A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the disclosed embodiment of the present invention relates to a method and device for generating a seed sequence for deriving an ITD in NGS analysis. More specifically, a method for selecting a seed sequence to easily distinguish an ITD from a read sequence derived from NGS analysis, and It's about devices.
  • NGS NGS technologies used in precision medicine are diverse, including panel sequencing, exome sequencing, and whole genome sequencing.
  • the disclosed embodiment of the present invention is to provide a method and device for deriving a seed sequence to facilitate ITD analysis in order to quickly and accurately analyze ITD.
  • the present invention includes the steps of 1) acquiring leads by the NGS method;
  • step 2) in the step of selecting reads in step 2), if three or more reads have the same insertion sequence, the reads having the same insertion sequence may be selected. there is.
  • the reads in the step of selecting reads in step 2), if three or more reads have the same soft-clipped bases sequence, the reads may be selected.
  • the region containing the soft-clipped bases sequence includes the adjacent sequence from the 3′ or 5′ end of the soft-clipped base, but includes the 3′ or 5′ end of the soft-clipped base. It may be characterized as having a sequence length of 12bp to 20bp including the adjacent sequence from the 5' end.
  • the region containing the insertion sequence includes a sequence adjacent to the 3' or 5' end of the insertion sequence, and a region adjacent to the 3' or 5' end of the insertion sequence.
  • the length of the sequence including the sequence may be 12bp to 20bp.
  • the NGS method may be an amplicon-based NGS method.
  • a method of analyzing ITD (internal tandem duplication) in an NGS method comprising: commences.
  • the analysis in step 4) may be a step of counting the number of matching sequences.
  • a device for deriving a sequence for analyzing ITD (internal tandem duplication) in next generation sequence (NGS) analysis information on a read for an arbitrary sequence is obtained by an NGS analysis method, and , selecting a read having the same insertion sequence among the obtained reads based on a reference sequence; or/and b) selecting reads having the same soft-clipped bases, and selecting a region containing part or all of the soft-clipped bases sequence or/and insertion sequence of the selected reads as a seed sequence.
  • processor a memory storing information about the read, reference sequence, and seed sequence; and a display that displays information regarding the derived seed sequence.
  • the reads having the same insertion sequence may be selected.
  • the reads in the step of selecting the reads, may be selected when three or more reads have the same soft-clipped bases sequence.
  • the region containing the soft-clipped bases sequence includes adjacent sequences from the 3' or 5' end of the soft-clipped base, but includes the 3' or 5' end of the soft-clipped base. It may be characterized as having a sequence length of 12bp to 20bp, including adjacent sequences.
  • the region containing the insertion sequence includes a sequence adjacent to the 3' or 5' end of the insertion sequence, and includes a sequence adjacent to the 3' or 5' end of the insertion sequence. It may be characterized as having a length of 12bp to 20bp.
  • the method or device derives a seed sequence that can quickly and accurately analyze a specific ITD from a lead obtained by NGS, and quickly and accurately determines the ITD from the patient's NGS lead from the derived seed sequence. Status and number can be derived. Therefore, the patient's disease state can be monitored using the seed sequence.
  • Figure 1 is a conceptual diagram illustrating a method for deriving a seed sequence according to an embodiment.
  • Figure 2 is a diagram confirming the effect of ITD analysis using a seed sequence according to an example.
  • Figure 3 is a diagram showing an example of read analysis on IGV using the seed sequence derived in the present invention.
  • Figure 4 is a flowchart illustrating a method for deriving a seed sequence according to an embodiment.
  • FIG. 5 is a flowchart to explain in more detail the seed sequence derivation method according to one embodiment.
  • Figure 6 is a block diagram of a device according to one embodiment.
  • next generation sequencing technology or “NGS” or “next generation sequencing” in the present invention refers to the sequencing of individual nucleic acid molecules (e.g., in single molecule sequencing) or in a high-throughput manner (e.g., 10, 100 , refers to any sequencing method that determines the nucleotide sequence of one of the clonally expanded proxies for an individual nucleic acid molecule (more than 1000 molecules are sequenced simultaneously).
  • Next-generation sequencing methods are known in the art and described, for example, in Metzker, M. (2010) Nature Biotechnology Reviews 11:31-46. Next-generation sequencing can detect variants present in less than 5% of the nucleic acids in a sample.
  • amplicon-based NGS method refers to a technology that designs primers capable of amplifying the gene of interest, produces various short-length reads, and then sorts and analyzes them.
  • a representative technology is There is an emulstion PCR method, and devices based on it include Roche's 454 platform, Thermo FIsher's SOLid platform, and Ion Torrent platform.
  • the NGS of the amplicon method has the advantage of low library complexity and fast analysis speed compared to the probe-based hybridization method.
  • amplicon-type NGS data a primer sequence exists in the front sequence of the read. This primer sequence was designed to have the same sequence as the standard sequence.
  • the method for sequencing targets is usually as follows. To find the causative gene of a disease, the whole genome can be sequenced using next-generation sequencing, or only the exome region can be sequenced (targeted sequencing), or specific genes can be targeted. Sequencing only the exome region or specific target genes is advantageous in terms of cost and efficiency. In addition, since genetic changes often result in direct diseases such as cancer, detecting changes in the base sequence in the exome region or target gene can be said to be effective in finding the causative gene. To sequence only the exome or target gene, a library that can capture only the exome or target gene is required.
  • NGS Next Generation Sequencing
  • NGS systems produced by three companies are mainly used.
  • Roche's 454 GS FLX, launched in 2004, is the first NGS equipment introduced.
  • This device performs sequence confirmation using pyrosequencing method and emulsionpolymerase chain reaction.
  • a specific base can be identified depending on the intensity of light emitted in the final stage of the experiment.
  • approximately 100Mb of sequence can be confirmed, which shows much higher performance compared to the existing ABI 3730 device, which can confirm 440kb of sequence in the same time.
  • Illumina's Illimina Genome Analyzer introduces the concept of sequencing by synthesis. After attaching a single-stranded DNA fragment to a glass plate, these fragments undergo a polymerization reaction to form a cluster. achieve it. During this process, sequence analysis is performed while confirming the type of base attached to the DNA fragment to be tested. In about 4 days, 40 to 50 million fragments with a length of 32 to 40 bases are produced.
  • Life Technologies' SOLiD (Sequencing by Oligo Ligation) device attaches the DNA fragment to be tested to 1 ⁇ m-sized magnetic beads and then performs sequence confirmation using an emulsifier-polymerase chain reaction.
  • sequence confirmation using an emulsifier-polymerase chain reaction.
  • a method of repeatedly attaching 8-mer fragments is used, and the bases to be used for actual sequence confirmation are located at the 4th and 5th positions of this 8-mer.
  • a fluorescent substance is attached to the remaining region, indicating which base binds complementary to the DNA fragment being tested.
  • a feature of the SOLiD device is sequence confirmation using two-base encoding. This method confirms the same region through sequence confirmation twice when determining the sequence of one base. Sequence confirmation is performed by moving the sequence one base at a time for each binding cycle toward the adapter attached to the magnetic bead. This process has the advantage of eliminating errors that occur in sequence confirmation experiments.
  • mapping After identifying the differences between the individual and the reference genome through mapping, appropriate selection criteria are set to extract only reliable base sequence variation information (variant calling).
  • This mutation information includes structural variation (SV), including single nucleotide variation (SNV), short insertion/deletion (short indel), copy number variation (CNV), and fusion gene. am.
  • nucleotide sequence variation information is compared with the existing database to determine whether it is an already known mutation or a newly discovered mutation. Then, it is predicted whether the mutation will result in a change in the amino acid and what effect it will have on the protein structure. This process is called annotation.
  • Information on extracted single nucleotide sequence mutations and short insertions/deletions is registered in a database to further improve the quality of information, or research is conducted to find disease-causing mutations through genome wild association study (GWAS) and integrated research. It can also be done.
  • GWAS genome wild association study
  • the term “acquire” or “acquiring” refers to “directly acquiring” or “indirectly acquiring” a physical entity or value, such as a numerical value. It refers to acquiring possession of an enemy value. “Indirectly obtaining” means performing a process (e.g., performing a synthesis or analysis method) to obtain a physical entity or value. “Obtaining indirectly” refers to receiving a physical entity or value from another party or source (e.g., a third party laboratory that directly obtained the physical entity or value).
  • Obtaining a physical entity indirectly involves performing a process involving a physical change on a physical substance, for example a starting material. Typical changes include making a physical entity from two or more starting materials, shearing or fragmenting a material, isolating or purifying a material, combining two or more separate entities into a mixture, and covalently or non-covalently forming a physical entity. It involves carrying out a chemical reaction that involves breaking or forming bonds.
  • Obtaining a value indirectly means performing a process involving a physical change in a sample or other substance, e.g. performing an analytical process that involves a physical change in a substance, e.g.
  • a sample, analyte or reagent (sometimes referred to herein as “physical analysis”), which involves performing an analytical method, e.g., a method comprising one or more of the following: a substance, e.g., an analyte or a fragment or other derivative thereof, of another substance; isolating or purifying from; combining the analyte or fragment or other derivative thereof with other substances, such as buffers, solvents or reactants; or altering the structure of the analyte or a fragment or other derivative thereof, for example by breaking or forming a covalent or non-covalent bond between the first and second atoms of the analyte; or altering the structure of the reagent or a fragment or other derivative thereof, for example by breaking or forming a covalent or non-covalent bond between the first and second atoms of the reagent.
  • an analytical method e.g., a method comprising one or more of the following: a substance, e.g.
  • obtaining a sequence or “obtaining a lead” refers to the expression of a nucleotide sequence or amino acid sequence by "obtaining directly” or “indirectly” a sequence or read. It refers to acquiring possession.
  • Directly obtaining means performing a process to obtain the sequence (e.g., using a synthetic or analytical method), such as performing a sequencing method (e.g., a next-generation sequencing (NGS) method). means to carry out).
  • NGS next-generation sequencing
  • Indirectly obtaining” a sequence or read refers to receiving the sequence or information or knowledge of the sequence from another party or source (e.g., a third party laboratory that directly obtained the sequence).
  • sequence or read obtained need not be a complete sequence; obtaining information or knowledge identifying one or more of the alterations disclosed herein as present in a subject, for example, sequencing of at least one nucleotide, may be sufficient to obtain the sequence. constitutes what is done.
  • sequences or reads directly involves performing a process that involves physical changes in physical material, e.g. starting materials, e.g. tissue or cell samples, e.g. biopsies or isolated nucleic acid (e.g. DNA or RNA) samples. It includes doing. Representative changes include shearing or fragmenting two or more starting materials, such as making a physical entity from a genomic DNA fragment (e.g., isolating a nucleic acid sample from tissue); It involves combining two or more separate entities into a mixture, or performing a chemical reaction involving breaking or forming covalent or non-covalent bonds. Obtaining a value directly involves performing a process involving a physical change in a sample or other material as described above.
  • starting materials e.g. tissue or cell samples, e.g. biopsies or isolated nucleic acid (e.g. DNA or RNA) samples. It includes doing. Representative changes include shearing or fragmenting two or more starting materials, such as making a physical entity from a genomic DNA fragment (
  • nucleic acid or “polynucleotide” refers to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) and polymers thereof in single-stranded or double-stranded form. Unless specifically limited otherwise, the term includes nucleic acids containing known analogs of natural nucleotides that have similar binding properties as reference nucleic acids and are metabolized in a similar manner to natural nucleotides. Unless otherwise stated, a particular nucleic acid sequence also includes explicitly stated sequences as well as implicitly conservatively modified variants (e.g., degenerate codon substitutions), alleles, orthologs, SNPs and complementary sequences thereof. .
  • degenerate codon substitution can be achieved by creating a sequence in which position 3 of one or more selected (or all) codons is replaced with mixed bases and/or deoxyinosine residues.
  • nucleic acid is used interchangeably with genes, cDNA, mRNA, small non-coding RNA, micro RNA (miRNA), Piwi-interacting RNA, and short hairpin RNA (shRNA) encoded by a gene or locus. do.
  • paired-end read refers to both ends of the same DNA molecule.
  • 'paired-end reads' When one end is sequenced and then reversed and the other end is sequenced, these two end sequences whose base sequences have been identified are called 'paired-end reads'.
  • Illumina sequencing generates reads of about 500bps and reads 75bps of nucleotide sequence at both ends of these reads. At this time, the reading directions of the two leads (first lead and second lead) are reversed to 3' and 5', respectively, and they become paired-end reads.
  • soft-clip refers to a reference genome (only a portion of a read obtained from NGS). reference sequence), and the remaining reads are unmapped.
  • soft-clip base in the present invention refers to unmatched sequences that exist after matching a reference sequence in a soft-clip read and after the end of the matched portion.
  • the term “brick point” refers to the end of a sequence where only a portion of a “soft clipped read” is mapped to a reference genome (reference sequence).
  • insertion sequence in the present invention refers to a sequence additionally inserted into a read compared to a reference sequence (baseline sequence).
  • the term "disconcordant read pair” means that read pairs (first read, second read) obtained through paired-end read sequencing do not map to the same reference gene, but are located at different positions or from each other. Refers to a pair of reads that are mapped onto different chromosomes.
  • the term "concordant read pair” means that a read pair (first read, second read) obtained through paired-end read sequencing is mapped to the same gene, but the soft clip fragment portion of the read is different. This means that it contains information that maps to genes.
  • seed sequence in the present invention refers to a sequence derived in the present invention to perform ITD analysis quickly and accurately.
  • it is intended to provide a method of deriving a seed sequence for rapid and accurate ITD analysis in NGS analysis of a specific target sequence.
  • the method for deriving the seed sequence is to load the BAM file generated by the amplicon method into IGV (Integrative Genomincs Viewer), then set the maxium downsized read count to 10,000, Reads were sorted by insertion size (sort alignment by insertion size) to check whether insertions of the same sequence exist in three or more reads, and then reads were sorted by base (sort alignment by base). Check whether soft-clipped bases of the same sequence exist in three or more reads, and use the confirmed sequence to insert an insertion sequence or soft-clipped bases sequence of 8 to 30 bp, preferably about 12 to 20 bp. Seed sequence can be determined. Afterwards, the number of reads containing the determined seed sequence can be counted using the samtool command and divided by the total count to determine the variant allele frequency (VAF).
  • IGV Intelligent Genomincs Viewer
  • Figure 2 is a diagram comparing the results of analyzing the ITD using a seed sequence derived according to an example and analyzing the ITD using another method. Specifically, simulations were performed for each method based on 53 known NGS lead information and ITD information.
  • Figure 3 is an example of ITD analysis performed using a seed sequence derived according to an embodiment.
  • Figure 4 is a flowchart illustrating a method for deriving a seed sequence according to an embodiment.
  • a lead of the target region may be obtained from the object's genome or previously stored data.
  • various NGS methods may be available, but the amplicon NGS method may be preferred.
  • a read having the same insertion sequence can be selected among the obtained reads based on a reference sequence.
  • the reference sequence or/and reference sequence refers to a sequence for an existing well-known target region, and the reference sequence and the obtained reads can be arranged in various ways, and the reads are sorted by insertion size (sort alignment by insertion size).
  • reads having soft-clipped bases can be selected, and the meaning of soft-clipped bases has been described above.
  • reads can be sorted by base (sort alignment by base).
  • step S430 a region containing part or all of the soft-clipped bases sequence or/and insertion sequence of the selected reads can be selected as a seed sequence.
  • the ITD can be analyzed using the obtained seed sequence, the analysis can count the number of ITDs, and the VAF can be derived by dividing the number of ITDs by the total number of ITDs.
  • the patient's clinical condition can be predicted, for example, providing information on determining the patient's disease, predicting the prognosis of a specific patient, or providing information that can predict the patient's treatment response. can be provided.
  • FIG. 5 is a flowchart to explain in more detail the seed sequence derivation method according to one embodiment.
  • Step S510 is a method of acquiring leads using the NGS method, and more specifically, lead information can be acquired using the amplicon NGS method.
  • the S520 step is a step of selecting specific reads, in which case three or more reads have the same insertion sequence (S520-1) and/or three or more reads have the same soft-clipped bases sequence (S520-2). You can screen leads.
  • the steps may be performed independently or simultaneously.
  • the S530 step is a step of determining the seed sequence. Sequences around the soft-clipped bases of reads containing three or more identical soft-clipped base sequences can be determined as the seed sequence, and more specifically, soft-clipped segment sequences. The sequence adjacent to the brick point, that is, the 3' or 5' end of the soft-clipped base, can be determined as the seed sequence, and the seed sequence may include the adjacent sequence from the 3' or 5' end, and the seed sequence is It includes part or all of the soft-clipped base sequence, and the sequence length may be 12bp to 20bp.
  • sequences near the insertion sequence of reads containing three or more identical insertion sequences can be set as the seed sequence. More specifically, the single seed sequence is all or part of the insertion sequence, and 3′ or 5′ of the insertion sequence.
  • the sequence length, including the adjacent sequence from the end, but including the adjacent sequence from the 3′ or 5′ end of the insertion sequence, may be 12bp to 20bp. That is, it includes part or all of the insertion sequence, but also includes sequences adjacent to the insertion sequence.
  • Figure 6 is a block diagram of a seed sequence derivation device 600 according to an embodiment.
  • device 600 may include a processor 610, memory 620, and display 630.
  • the processor 610 may operate depending on the device 600.
  • the components of the seed deriving device 600 according to one embodiment are not limited to the above-described examples.
  • the seed sequence derivation device 600 may include more or fewer components than the above-described components.
  • the processor 610 acquires information on reads for an arbitrary sequence by an NGS analysis method, and selects reads having the same insertion sequence among the obtained reads based on a reference sequence; or/and b) selecting reads having the same soft-clipped bases, and selecting a region containing part or all of the soft-clipped bases sequence or/and insertion sequence of the selected reads as a seed sequence. You can.
  • the processor can select the reads having the same insertion sequence, and three or more reads having the same soft-clipped bases sequence. In this case, the leads can be selected.
  • the region containing the soft-clipped bases sequence includes the adjacent sequence from the 3' or 5' end of the soft-clipped base, and the sequence length including the adjacent sequence from the 3' or 5' end of the soft-clipped base is 12bp. It may be from 20 bp,
  • the region containing the insertion sequence includes an adjacent sequence from the 3' or 5' end of the insertion sequence, and the sequence length including the adjacent sequence from the 3' or 5' end of the insertion sequence may be 12bp to 20bp.
  • the memory 620 may store information about reads, reference sequences, and seed sequences.
  • the display 630 can display information about the seed sequence or ITD, disease prognosis, etc., and, as described above in FIG. 5, can also provide DB descriptive text about the seed sequence.
  • the device includes a processor, memory for storing and executing program data, permanent storage such as a disk drive, a communication port for communicating with an external device, and a user interface such as a touch panel, keys, buttons, etc. It may include devices, etc.
  • Methods implemented as software modules or algorithms may be stored on a computer-readable recording medium as computer-readable codes or program instructions executable on the processor.
  • computer-readable recording media include magnetic storage media (e.g., ROM (read-only memory), RAM (random-access memory), floppy disk, hard disk, etc.) and optical read media (e.g., CD-ROM). ), DVD (Digital Versatile Disc), etc.
  • the computer-readable recording medium is distributed among computer systems connected to a network, so that computer-readable code can be stored and executed in a distributed manner.
  • the media may be readable by a computer, stored in memory, and executed by a processor.
  • the invention may be represented by functional block configurations and various processing steps. These functional blocks may be implemented in various numbers of hardware or/and software configurations that execute specific functions.
  • the present invention provides integrated circuit components, such as memory, processing, logic, look-up tables, etc., that can execute various functions under the control of one or more microprocessors or other control devices. can be hired.
  • the components of the invention can be implemented as software programming or software elements
  • the invention also includes various algorithms implemented as combinations of data structures, processes, routines or other programming constructs, including C, C++, , may be implemented in a programming or scripting language such as Java, assembler, etc.
  • Functional aspects may be implemented as algorithms running on one or more processors.
  • the present invention can employ conventional technologies for electronic environment settings, signal processing, and/or data processing.
  • Terms such as “mechanism,” “element,” “means,” and “configuration” may be used broadly and are not limited to mechanical and physical configurations. The term may include the meaning of a series of software routines in connection with a processor, etc.
  • connections or connection members of lines between components shown in the drawings exemplify functional connections and/or physical or circuit connections, and in actual devices, various functional connections or physical connections may be replaced or added. Can be represented as connections, or circuit connections. Additionally, if there is no specific mention such as “essential,” “important,” etc., it may not be a necessary component for the application of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioethics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Microbiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Evolutionary Computation (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명의 일 실시예는 NGS 분석방법에 의하여 임의의 서열에 대한 리드에 대한 정보를 획득하고, 기준서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하고, 상기 선별된 리드들의 soft-clipped bases 서열 및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정하여, 상기 선정된 씨드 서열을 통하여 ITD를 정확하게 분석함으로써, 이를 통하여 ITD와 관련질환의 진단, 예후진단등을 할 수 있는 방법에 관한 것이다.

Description

NGS 분석에서의 ITD 분석을 위한 씨드 서열의 생성 방법 및 장치
본 발명의 개시된 실시예는 NGS 분석에서의 ITD 도출을 위한 씨드 서열 생성 방법 및 장치에 관한 것으로, 보다 구체적으로 NGS 분석에서 도출된 리드서열에서 ITD를 손쉽게 구분하기 위하여, 씨드 서열을 선별하는 방법 및 장치에 관한 것이다.
현재 세계적으로 의료현장에서 유전질환의 진단을 위한 NGS검사가 이루어지고 있고, 이를 통해 정밀의학(precision medicine)분야의 연구가 활발하게 이루어 지고 있는 실정이다. 정밀의학에서 사용되는 NGS기술은 패널 시퀀싱 (panel sequencing), 엑솜 시퀀싱 (exome sequencing), 전체 게놈 시퀀싱 (whole genome sequencing) 등으로 다양하다. NGS로 빠르고 정확하게 유전자의 시퀀싱이 가능하나, NGS로 ITD(internal tandem duplication)를 분석하는 경우에 NGS의 분석의 한계로 인하여, 정확하게 ITD 분석이 어려운 문제점이 있다.
NGS 분석시 ITD 분석의 문제점을 해결하기 위해 여러 상용 분석 프로그램들이 도입되고 있으나, ITD 분석에는 여전히 한계를 보이고 있으며, 상용 분석 프로그램의 문제점을 해결하기 위하여, 본 발명을 발명하게 되었다.
본 발명의 개시된 실시예는 ITD를 빠르고 정확하게 분석하기 위하여, ITD 분석을 용이하게 하기 위한 씨드 서열을 도출하는 방법 및 장치를 제공하기 위한 것이다.
따라서, 본 발명은 1)NGS 방법에 의하여 리드를 획득하는 단계;
2)a)기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하는 단계; 및 3)상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정하는 단계;를 포함하는 NGS 방법에서 ITD(internal tandem duplication)를 분석하기 위한 서열을 도출하는 하는 방법을 개시한다.
본 발명의 일 실시예에 따르면, 상기 2)단계의 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우, 상기 동일한 insertion 서열을 갖는 상기 리드들을 선별하는 것을 특징으로 할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 2)단계의 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우, 상기 리드들을 선별하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따르면, 3)단계에서 soft-clipped bases 서열을 포함하는 부위는 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp 인 것을 특징으로 할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 3)단계에서 insertion 서열을 포함하는 부위는 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp인 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따르면, 상기 NGS 방법은 앰플리콘(amplicon) 기반의 NGS 방법일 수 있다.
또한, 본 발명의 다른 측면에서는,
1)NGS 방법에 의하여 리드를 획득하는 단계;
2)a)기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하는 단계; 및
3)상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열로 선정하는 단계;
4)상기 선정된 씨드 서열을 쿼리로 임의의 NGS 방법에 의하여 획득된 리드들에 대하여 씨드 서열과 매칭되는 서열을 분석하는 단계;를 포함하는 하는 NGS 방법에서 ITD(internal tandem duplication)를 분석하는 방법을 개시한다.
본 발명의 일 실시예 따르면, 상기 4)단계의 분석은 매칭되는 서열의 숫자를 카운팅 하는 단계일 수 있다.
본 발명의 다른 측면에서는 NGS(next generation sequence) 분석에서의 ITD(internal tandem duplication)를 분석하기 위한 서열을 도출하는 장치에 있어서, NGS 분석방법에 의하여 임의의 서열에 대한 리드에 대한 정보를 획득하고, 기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하고, 상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정하는 프로세서; 상기 리드에 대한 정보, 기준 서열 및 씨드 서열에 대한 정보를 저장하는 메모리; 및 상기 도출된 씨드 서열에 관한 정보를 표시하는 디스플레이를 포함하는, 장치를 개시한다.
본 발명의 일 실시예에 따르면, 상기 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우, 상기 동일한 insertion 서열을 갖는 상기 리드들을 선별하는 것을 특징으로 할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우 상기 리드들을 선별하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따르면, 상기 soft-clipped bases 서열을 포함하는 부위는 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp 인 것을 특징으로 할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 insertion 서열을 포함하는 부위는 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp인 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 방법 또는 장치는 NGS 방식으로 획득한 리드로부터 특정 ITD 분석을 신속하고 정확하게 할 수 있는 씨드 서열을 도출하여, 상기 도출된 씨드 서열로부터 빠르고 정확하게 환자의 NGS 리드로부터 ITD의 상태 및 개수를 도출할 수 있다. 따라서, 상기 씨드 서열을 이용하여 환자의 질환의 상태를 모니터링할 수 있다.
도 1은 일 실시예에 따른 씨드 서열을 도출하기 위한 방법을 설명하기 위한 개념도이다.
도 2는 일 실시예에 따른 씨드 서열을 이용하여 ITD 분석한 효과를 확인한 도이다.
도 3은 IGV 상에서 본 발명에서 도출된 씨드 서열을 이용하여 리드를 분석한 예시를 나타낸 도이다.
도 4는 일 실시예에 따른 씨드 서열 도출 방법을 설명하기 위한 흐름도이다.
도 5는 일 실시예에 따른 씨드 서열 도출 방법을 보다 구체적으로 설명하기 위한 흐름도이다.
도 6은 일 실시예에 따른 장치의 블록도이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 해당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 발명에서의 용어 "차세대 염기서열 분석기법" 또는 "NGS" 또는 "차세대 염기서열 분석"은 개개의 핵산분자(예를 들어 단일 분자 시퀀싱에서) 또는 고속 대량 방식으로(예를 들어, 10, 100, 1000 이상의 분자가 동시에 시퀀싱됨) 개개의 핵산 분자에 대해 클론으로 확장된 프록시(proxy) 중 하나의 뉴클레오타이드 서열을 결정하는 임의의 시퀀싱 방법을 지칭한다. 차세대 시퀀싱 방법은 당업계에 공지되어 있으며, 예를 들어 Metzker, M. (2010) Nature Biotechnology Reviews11:31-46]에 기재된다. 차세대 시퀀싱은 샘플 내 핵산의 5% 미만으로 존재하는 변이체를 검출할 수 있다.
본 발명의 용어 "앰플리콘(amplicon) 기반의 NGS 방법"은 목적하는 유전자를 증폭시킬 수 있는 프라이머를 설계하여 짧은 길이의 리드를 다양하게 생산한 다음, 이를 정렬하여 분석하는 기술로서, 대표적인 기술은 Emulstion PCR 방법이 있고, 이를 바탕으로 하는 기기는 Roche의 454 platform, Thermo FIsher의 SOLid platform 및 Ion Torrent platform 등이 있다. 앰플리콘 방법의 NGS는 probe 기반의 hybridization 방식에 비해 library complexity가 낮은 데 비해, 분석 속도가 빠르다는 장점이 있다. 앰플리콘 방식의 NGS data 는 리드의 앞부분 서열에 프라이머 서열이 존재하게 된다. 이 프라이머 서열은 표준서열과 동일한 서열로 디자인된 것이다.
(1)타겟의 선정
타겟을 시컨싱하는 방법은 보통 하기와 같다. 질병의 원인 유전자를 찾기 위하여 차세대 염기서열 분석법을 이용해 전장유전체(Whole-genome)를 시퀀싱하거나, 엑솜 영역만을 목표로 하여 시퀀싱할 수 있으며(Targeted sequencing), 특정 유전자를 타겟으로 수행할 수도 있다. 엑솜 영역또는 특정 타겟 유전자만을 시퀀싱하는 경우에는 비용이나 효율성 측면에서 유리하다. 또한 유전자의 변화가 암과 같은 직접적인 질병으로 나타나는 경우가 많기 때문에 엑솜 영역 또는 타겟 유전자에서의 염기서열의 변화를 검출하는 것이 원인 유전자를 찾는데 효과적이라고 할 수 있다. 엑솜 또는 타겟 유전자만을 시퀀싱하기 위해서는 엑솜 또는 타겟 유전자만 포획할 수 있는 라이브러리가 필요하다.
(2) 대용량 병렬 DNA 시퀀싱
차세대 염기서열 분석기법(Next Generation Sequencing: NGS)은 기존의 모세관 서열확인법(capillary sequencing)에 비해서 빠르면서 한 번에 더 많은 양의 서열확인을 수행할 수 있고, 기존의 모세관 서열확인법에 사용하는 벡터를 이용한 시료의 증폭 과정이 생략되기 때문에 이 과정에서 발생하는 실험적인 오류를 피할 수있다는 장점이 있다.
3곳의 회사에서 제작한 NGS 시스템이 주로 사용되고 있다. 2004년에 출시된 로슈(Roche)사의 454 GS FLX는 처음 소개된 NGS 장비로, 이 장치는 피로시퀀싱(pyrosequencing) 방법과 유화제-중합효소반응(emulsionpolymerase chain reaction)을 사용하여 서열확인을 수행하고, 실험의 최종단계에서 나오는 빛의 세기에 따라서 특정 염기를 확인할 수 있다. 7시간 가동시켰을 때 100Mb 정도의 서열을 확인할 수 있는데, 기존의 ABI 3730 기기가 같은 시간에 440kb의 서열을 확인할 수 있는 것에 비해서 월등히 높은 성능을 나타낸다.
일루미나(Illumina)사의 Illimina Genome Analyzer는 합성에 의한 서열확인(sequencing by synthesis)이라는 개념을 도입한 것으로, 유리판 위에 한 가닥만으로 이루어진 DNA 조각을 부착한 후에, 이 조각들을 중합반응을 거쳐서 군집(cluster)을 이루게 한다. 이 과정을 거칠 때 검사하려는 DNA 조각에 붙은 염기의 종류를 확인하면서 서열 분석을 수행하는데, 약 4 일 정도의 작업으로 32-40 개의 염기길이를 가지는 단편이 4-5천만 개가 생산이 된다.
라이프 테크놀로지(Life Technologies)사의 SOLiD (Sequencing by Oligo Ligation) 기기는 1 μm 크기의 자성구슬에 검사하려는 DNA 조각을 부착시킨 후에 유화제-중합효소연쇄반응을 이용하여 서열확인을 수행한다. 서열확인을 할 때는 8-mer의 단편들을 반복해서 붙이는 방식을 사용하는데, 이 8-mer의 4, 5번째에 실제 서열확인에 사용될 염기가 위치하고 있다. 그 뒤에 붙은 나머지 부위에는 형광물질이 연결되어 있어서 어느 염기가 검사하려는 DNA 조각에 상보적으로 결합하는 지를 표시해 준다. 한 번의 결합 주기마다 8-mer를 모두 5번 붙이고, 같은 작업을 5번 시행하면 총 25염기로 이루어진 DNA 조각의 서열을 확인할 수 있다. SOLiD 기기의 특징은 두 개의 염기를 이용한(two-base encoding) 서열확인으로, 이 방법은 하나의 염기의 서열을 결정할 때 같은 부위를 두 번의 서열확인을 통해서 확인하는 것이다. 자성구슬에 부착된 부착제(adaptor)쪽으로 한 번의 결합 주기마다 한 염기씩 서열을 이동시키면서 서열확인을 수행한다. 이 과정을 통해서 서열확인 실험에서 발생하는 오류를 제거할 수 있는 장점이 있다.
(3) 염기서열 데이터의 분석
질병의 원인 유전자를 찾기 위해서는 기존의 유전자 염기서열로부터 어떤 변화가 일어났는지 조사해야 하기 때문에 개인(환자)의 염기서열 데이터(sequence reads)를 참조 유전체(reference Genome) 또는 참조 서열(또는 기준 서열, reference sequence)과 비교하는 작업을 하게 된다. 이 작업을 맵핑(Mapping)이라고 한다. 맵핑을 통해 개인과 참조 유전체의 차이를 알아낸 후 이를 적당한 선택 기준을 정해 신뢰할 수 있는 염기서열 변이 정보만 추출(Variant Calling)하게 된다. 이 변이 정보는 단일염기서열변이(SNV: Single Nucleotide Variation), 짧은 삽입/결실(Short Indel), 복제수 변이(copy number varation, CNV) 및 융합 유전자 등을 포함하는 구조변이(structural variation, SV)이다. 그런 다음 염기서열 변이 정보를 기존 데이터베이스와 비교하여 이미 밝혀진 변이인지 새롭게 발견된 변이인지 판단한다. 그리고 그 변이가 아미노산의 변화를 가져올 것인지 아닌지, 또한 단백질 구조에 있어서 어떤 영향을 줄 것인지 예측하게 된다. 이 과정을 주석달기(Annotation)라고 한다. 추출한 단일염기서열변이와 짧은 삽입/결실에 관한 정보는 정보의 품질을 더 높이기 위하여 데이터베이스에 등재하거나 전장유전체연관분석(Genome Wild Association Study; GWAS)과 통합 연구를 통해 질병의 원인 변이를 찾는 연구를 수행할 수도 있다.
본 발명에서의 용어 "획득하다" 또는 "획득하는"이 본 명세서에서 사용되며, 물리적 독립체 또는 값을 "직접적으로 획득하거나" 또는 "간접적으로 획득함으로써" 물리적 독립체 또는 값, 예를 들어 수치적 값의 소유를 얻는 것을 지칭한다. "간접적으로 획득하는"은 물리적 독립체 또는 값을 얻기 위한 처리를 수행하는 것(예를 들어, 합성 또는 분석 방법을 수행하는 것)을 의미한다. "간접적으로 획득하는 것"은 다른 관계자 또는 공급원(예를들어 물리적 독립체 또는 값을 직접적으로 획득한 제3자 연구소)으로부터 물리적 독립체 또는 값을 수용하는 것을 지칭한다.
물리적 독립체를 간접적으로 획득하는 것은 물리적 물질, 예를 들어 출발 물질에서 물리적 변화를 포함하는 처리를 수행하는 것을 포함한다. 대표적인 변화는 2 이상의 출발 물질로부터 물리적 독립체를 만드는 것, 물질을 전단(shearing) 또는 단편화하는 것, 물질을 분리시키거나 정제하는 것, 2 이상의 별개의 독립체를 혼합물로 합하는 것, 공유 또는 비공유 결합을 파괴하거나 또는 형성하는 것을 포함하는 화학 반응을 수행하는 것을 포함한다. 값을 간접적으로 획득하는 것은 샘플 또는 다른 물질에서 물리적 변화를 포함하는 처리를 수행하는 것, 예를 들어 물질, 예를 들어 샘플, 분석물 또는 시약에서 물리적 변화를 포함하는 분석 과정을 수행하는 것(때때로, 본 명세서에서 "물리적 분석"으로서 지칭됨), 분석 방법, 예를 들어 다음 중 하나 이상을 포함하는 방법을 수행하는 것: 물질, 예를 들어 분석물 또는 이것의 단편 또는 다른 유도체를 다른 물질로부터 분리시키거나 또는 정제하는 것; 분석물 또는 이것의 단편 또는 다른 유도체를 다른 물질, 예를 들어 완충제, 용매 또는 반응물과 합하는 것; 또는, 예를 들어 분석물의 제1 원자와 제2 원자 사이의 공유 또는 비공유 결합을 파괴하거나 또는 형성함으로써 분석물 또는 이것의 단편 또는 다른 유도체의 구조를 변화시키는 것; 또는, 예를 들어 시약의 제1과 제2 원자 사이의 공유 또는 비공유 결합을 파괴하거나 형성함으로써 시약 또는 이것의 단편 또는 다른 유도체의 구조를 변화시키는 것을 포함한다.
본 발명에서의 용어 "서열을 획득하는 것" 또는 "리드를 획득하는 것"은 본 명세서에서 사용되며, 서열 또는 리드를 "직접적으로 획득하거나" 또는 "간접적으로 획득함으로써" 뉴클레오타이드 서열 또는 아미노산 서열의 소유를 얻는 것을 지칭한다. 서열 또는 리드를 "직접적으로 획득하는 것"은 시퀀싱 방법(예를 들어, 차세대 시퀀싱(NGS) 방법)을 수행하는 것과 같이 서열을 얻기 위한 과정을 수행하는 것(예를 들어, 합성 또는 분석 방법을 수행하는 것)을 의미한다. 서열 또는 리드를 "간접적으로 획득하는"은 다른 관계자 또는 공급원(예를 들어 서열을 직접적으로 획득한 제3자 연구소)으로부터 서열을 수용하거나 또는 서열의 정보 또는 지식을 수용하는 것을 지칭한다. 획득한 서열 또는 리드는 완전한 서열일 필요는 없으며, 예를 들어 적어도 하나의 뉴클레오타이드의 시퀀싱 또는 피험체에서 존재하는 것과 같은 본 명세서에 개시된 변경 중 하나 이상을 확인하는 정보 또는 지식을 얻는 것은 서열을 획득하는 것을 구성한다.
서열 또는 리드를 직접적으로 획득하는 것은 물리적 물질, 예를 들어 출발 물질, 예컨대 조직 또는 세포 샘플, 예를 들어 생검 또는 분리된 핵산(예를 들어 DNA 또는 RNA) 샘플에서 물리적 변화를 포함하는 과정을 수행하는 것을 포함한다. 대표적인 변화는 2 이상의 출발 물질, 물질을 전단 또는 단편화하는 것, 예컨대 게놈 DNA 단편으로부터 물리적 독립체를 제조하는 것(예를 들어, 조직으로부터 핵산 샘플을 분리시키는 것); 2 이상의 별개의독립체를 혼합물로 합하는 것, 공유 또는 비-공유 결합을 파괴하거나 또는 형성하는 것을 포함하는 화학 반응을 수행하는 것을 포함한다. 값을 직접적으로 획득하는 것은 상기 기재한 바와 같은 샘플 또는 다른 물질에서 물리적 변화를 포함하는 과정을 수행하는 것을 포함한다.
본 발명에서의 용어 "핵산" 또는 "폴리뉴클레오타이드"는 단일 가닥 또는 이중 가닥 형태의 데옥시리보핵산(DNA) 또는 리보핵산(RNA) 및 이들의 중합체를 의미한다. 달리 특별히 제한되지 않는 한, 상기 용어는 기준 핵산과 유사한 결합특성을 갖고 천연 뉴클레오타이드와 유사한 방식으로 대사되는 천연 뉴클레오타이드의 공지된 유사체를 함유하는 핵산을 포함한다. 달리 기재되지 않은 한, 특정 핵산 서열은 또한 명확히 기재된 서열뿐만 아니라 암묵적으로 이의 보존적으로 변형된 변이체(예를 들면, 축퇴성 코돈 치환), 대립유전자, 오소로그, SNP 및 상보적 서열을 포함한다. 구체적으로, 하나 이상의 선택된(또는 모든) 코돈의 3번 위치가 혼합 염기 및/또는 데옥시이노신잔기로 치환되는 서열을 생성함으로써 축퇴성 코돈 치환이 달성될 수 있다. 상기 용어 핵산은 유전자, cDNA, mRNA, 작은 비코딩 RNA, 마이크로 RNA(miRNA), 피위상호작용(Piwi-interacting) RNA 및 유전자 또는 유전자좌에 의해 코딩된 짧은 헤어핀 RNA(shRNA)와 상호 교환적으로 사용된다.
본 발명에서의 용어 "페어드 엔드 리드(paired-end read)"는 '페어드 엔드'란 동일한 DNA 분자의 양 말단을 의미한다. 한 쪽 말단을 시퀀싱하고, 이를 뒤집어 다른 말단을 시퀀싱했을 경우, 염기서열이 규명된 이들 두 말단을 '페어드 엔드 리드'라 한다. 예를 들어 Illumina 시퀀싱은 약 500bps의 리드를 생성하고, 이 리드의 양쪽 끝 75bps의 염기 서열을 읽어낸다. 이때 두 리드(제1리드와 제2리드)를 읽는 방향은 3'와 5'로 각각 반대가되며, 서로의 페어드 엔드 리드가 된다.
본 발명에서의 용어 "소프트-클립(soft-clip)", "소프트-클립 조각(soft-clip segment)" 또는 "소프트 클립 리드(soft clipped read)"는 NGS에서 획득한 리드에서 일부만 참조 유전체(참조 서열)로 맵핑되고, 나머지는 맵핑이 되지 않은 상태의 리드를 의미한다.
본 발명에서의 용어 "소프트-클립 서열(soft-clip base)이란 소프트-클립 리드에서 참조 서열과 매칭한 후, 매칭되는 부분의 말단 이 후에 존재하는 매칭되지 않은 서열들을 의미한다.
본 발명에서의 용어 "브릭 포인트(brick point)"는 "소프트 클립 리드(soft clipped read)"에서 일부만 참조 유전체(참조 서열)로 맵핑된 서열의 말단을 의미한다.
본 발명에서의 용어 "insertion 서열"은 참조 서열(기준 서열)과 비교하여, 리드에서 추가적으로 삽입된 서열을 의미한다.
본 발명에서의 용어 "불일치 리드 쌍(disconcordant read pair)"은 페어드 엔드 리드 시퀀싱으로 획득한 리드쌍(제1리드, 제2리드)이 같은 참조 유전자 상에 맵핑되지 않고, 서로 다른 위치 또는 서로 다른 염색체 상에 맵핑되는 리드 쌍을 의미한다.
본 발명에서의 용어 "일치 리드 쌍(concordant read pair)"은 페어드 엔드 리드 시퀀싱으로 획득한 리드 쌍(제1리드, 제2리드)이 같은 유전자에 맵핑되었지만, 리드의 소프트 클립 조각 부분이 다른 유전자에 맵핑되는 정보를 가지고 있는 것을 의미한다.
본 발명에서의 용어 "씨드 서열(seed sequnece)"란 ITD 분석을 빠르고 정확하게 하기 위하여, 본 발명에서 도출된 서열을 의미한다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명하기로 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
본 발명의 일 실시예에 따라, 특정 타겟 서열에 대한 NGS 분석에서 ITD 분석을 신속하고, 정확하게 하기 위한 씨드 서열을 도출하는 방법을 제공하고자 한다.
도 1을 참조하면, 일 실시예에 따른 씨드 서열을 도출하는 방법은 앰플리콘 방식에 의하여 생성된 BAM 파일을 IGV(Integrative Genomincs Viewer)에 로딩한 후, maxium downsized read count를 10,000으로 설정한 후, insertion size에 의하여 리드들을 나열(sort alignment by insertion size)하여, 3개 이상의 리드에서 동일한 서열의 insertion이 존재하는지 확인하였고, 이 후, base에 의하여 리드들을 나열(sort alignment by base)를 수행하여, 3개 이상의 read에서 동일 서열의 soft-clipped bases가 존재하는지 확인하여, 상기 확인된 서열을 이용하여 insertion 서열 또는 soft-clipped bases 서열의 경계에 걸쳐있는 8 내지 30bp, 바람직하게는 12 내지 20bp 가량의 씨드 서열(Seed seqeunce)을 결정할 수 있다. 이 후, 결정된 씨드 서열이 포함된 리드의 수를 samtool 명령어를 이용하여 count하여 total count로 나누어 VAF(Variant allele frequency)를 결정할 수 있다.
도 2는 일 실시예에 의하여 도출된 씨드 서열을 이용하여 ITD를 분석하여 다른 방법으로 ITD를 분석한 결과와 비교한 도이다. 구체적으로 53개의 알려진 NGS 리드정보 및 ITD 정보를 바탕으로, 각 방법별로 시뮬레이션을 하였다.
도 2에 나타난 바와 같이, 전체 53개의 ITD를 분석하였을 경우, 본 발명의 방법으로 모든 ITD를 찾아내었으나, 다른 방식들은 일부만 찾을 수 있었다.
도 3은 일 실시예 따라 도출된 씨드 서열을 이용하여, ITD 분석을 수행한 예시이다.
도 4는 일 실시예에 따른 씨드 서열을 도출하기 위한 방법을 설명하기 위한 흐름도이다.
단계 S410에서, 대상체의 유전체, 또는 기 저장된 데이터로부터 타겟 부위의 리드를 획득할 수 있다. 상기 리드를 획득하기 위하여, 다양한 NGS 방법이 사용 가능할 수 있으나, 앰플리콘 NGS 방법이 바람직할 수 있다.
단계 S420에서, 참조 서열(기준 서열, reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별할 수 있다. 상기 참조 서열 또는/및 기준 서열이란, 기존의 잘 알려진 타겟부위에 대한 서열을 의미하고, 상기 참조 서열과 획득된 리드를 다양한 방식으로 나열할 수 있고, insertion size에 의하여 리드들을 나열(sort alignment by insertion size)할 수 있다.
또한 S420에서, soft-clipped bases를 갖는 리드들을 선별할 수 있으며, soft-clipped bases의 의미는 전술하였다. 상기 soft-clipped base를 도출하기 위하여, base에 의하여 리드들을 나열(sort alignment by base)을 수행할 수 있다.
단계 S430에서는 상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정할 수 있다.
단계 S440에서는 상기 획득된 씨드 서열을 이용하여 ITD를 분석할 수 있으며, 상기 분석은 ITD의 숫자를 카운팅할 수 있으며, 상기 ITD의 수를 총 ITD 숫자로 나누어 VAF를 도출할 수 있다. VAF를 바탕으로 환자의 임상적 상태를 예측할 수 있으며, 예컨대, 환자의 질환을 판정에 대한 정보를 제공하거나, 특정 환자의 예후를 예측을 할 수 있다거나, 환자의 치료반응성을 예측할 수 있는 정보를 제공할 수 있다.
도 5는 일 실시예에 따른 씨드 서열 도출 방법을 보다 구체적으로 설명하기 위한 흐름도이다.
S510 단계는, NGS 방법으로 리드를 획득하는 방법이고, 보다 구체적으로 앰플리콘 NGS 방법으로 리드정보를 획득할 수 있다.
S520 단계는 특정 리드를 선별하는 단계로서, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우(S520-1) 및/또는 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우(S520-2)를 리드들을 선별할 수 있다. 상기 단계들은 독립적으로 또는 동시에 수행이 가능할 수 있다.
S530 단계는 씨드 서열을 결정하는 단계로서, 3개 이상의 동일한 soft-clipped bases 서열을 포함하는 리드들이 갖는 soft-clipped base의 부근의 서열들을 씨드 서열로 결정할 수 있으며, 보다 구제적으로 soft-clipped segment의 brick point, 즉 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 씨드 서열로 결정할 수 있으며, 상기 씨드 서열은 3` 또는 5` 말단으로부터 인접한 서열을 포함할 수 있으며, 상기 씨드 서열은 soft-clipped base의 일부 또는 전부서열을 포함하되, 서열 길이가 12bp 내지 20bp일 수 있다.
또한, 3개 이상의 동일한 insertion 서열을 포함하는 리드들이 갖는 insertion 서열 부근의 서열들을 씨드 서열로 설정할 수 있으며, 보다 구체적으로 싱기 씨드 서열은 insertion 서열의 전부 또는 일부, 그리고 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp일 수 있다. 즉, insertion 서열의 일부 또는 전부를 포함하되, insertion 서열의 인접한 서열을 포함한다.
도 6은 일 실시예에 따른 씨드 서열 도출 장치(600)의 블록도이다.
도 6을 참조하면, 장치(600)는 프로세서(610), 메모리(620) 및 디스플레이(630)를 포함할 수 있다. 상기 실시 예들에서 장치(600)에 따라, 프로세서(610)가 동작할 수 있다. 다만, 일 실시예에 따른 씨드 도출 장치(600)의 구성 요소가 전술한 예에 한정되는 것은 아니다. 다른 실시예에 따라, 씨드 서열 도출 장치(600)는 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다.
프로세서(610)는 NGS 분석방법에 의하여 임의의 서열에 대한 리드에 대한 정보를 획득하고, 참조 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하고, 상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정할 수 있다.
상기 프로세서는 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우, 상기 동일한 insertion 서열을 갖는 상기 리드들을 선별할 수 있으며, 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우 상기 리드들을 선별할 수 있다.
상기 soft-clipped bases 서열을 포함하는 부위는 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp일 수 있으며,
상기 insertion 서열을 포함하는 부위는 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp일 수 있다.
메모리(620)는 리드에 대한 정보, 참조 서열 및 씨드 서열에 대한 정보를 저장할 수 있다.
디스플레이(630)는 씨드 서열 또는 ITD, 질환의 예후등에 관한 정보를 표시할 수 있으며, 도 5에서 전술한 바와 같이, 씨드 서열에 대한 DB 서술형 텍스트를 함께 제공할 수 있다.
본 발명에 따른 장치는 프로세서, 프로그램 데이터를 저장하고 실행하는 메모리, 디스크 드라이브와 같은 영구 저장부(permanent storage), 외부 장치와 통신하는 통신 포트, 터치 패널, 키(key), 버튼 등과 같은 사용자 인터페이스 장치 등을 포함할 수 있다. 소프트웨어 모듈 또는 알고리즘으로 구현되는 방법들은 상기 프로세서상에서 실행 가능한 컴퓨터가 읽을 수 있는 코드들 또는 프로그램 명령들로서 컴퓨터가 읽을 수 있는 기록 매체 상에 저장될 수 있다. 여기서 컴퓨터가 읽을 수 있는 기록 매체로 마그네틱 저장 매체(예컨대, ROM(read-only memory), RAM(random-access memory), 플로피 디스크, 하드 디스크 등) 및 광학적 판독 매체(예컨대, 시디롬(CD-ROM), 디브이디(DVD: Digital Versatile Disc)) 등이 있다. 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템들에 분산되어, 분산 방식으로 컴퓨터가 판독 가능한 코드가 저장되고 실행될 수 있다. 매체는 컴퓨터에 의해 판독가능하며, 메모리에 저장되고, 프로세서에서 실행될 수 있다.
본 발명에서 인용하는 공개 문헌, 특허 출원, 특허 등을 포함하는 모든 문헌들은 각 인용 문헌이 개별적으로 및 구체적으로 병합하여 나타내는 것 또는 본 발명에서 전체적으로 병합하여 나타낸 것과 동일하게 본 발명에 병합될 수 있다.
본 발명의 이해를 위하여, 도면에 도시된 바람직한 실시 예들에서 참조 부호를 기재하였으며, 본 발명의 실시 예들을 설명하기 위하여 특정 용어들을 사용하였으나, 특정 용어에 의해 본 발명이 한정되는 것은 아니며, 본 발명은 당업자에 있어서 통상적으로 생각할 수 있는 모든 구성 요소들을 포함할 수 있다.
본 발명은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명에의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 발명은 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 발명은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. "매커니즘", "요소", "수단", "구성"과 같은 용어는 넓게 사용될 수 있으며, 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.
본 발명의 명세서(특히 특허청구범위에서)에서 "상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 본 발명에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 본 발명에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 본 발명이 한정되는 것은 아니다. 본 발명에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 본 발명을 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 본 발명의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.

Claims (13)

1)NGS 방법에 의하여 리드를 획득하는 단계;
2)a)기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하는 단계; 및
3)상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정하는 단계;를 포함하는 NGS 방법에서 ITD(internal tandem duplication)를 분석하기 위한 서열을 도출하는 하는 방법.
제 1항에 있어서,
상기 2)단계의 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우, 상기 동일한 insertion 서열을 갖는 상기 리드들을 선별하는 것을 특징으로 하는, 방법.
제 1항에 있어서,
상기 2)단계의 리드를 선별하는 단계에 있어서, 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우 상기 리드들을 선별하는 것을 특징으로 하는 방법.
제 1항에 있어서,
상기 3)단계에서 soft-clipped bases 서열을 포함하는 부위는 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되,
상기 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp 인 것을 특징으로 하는, 방법.
제 1항에 있어서,
상기 3)단계에서 insertion 서열을 포함하는 부위는 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp인 것을 특징으로 하는, 방법.
제 1항에 있어서, 상기 NGS 방법은 앰플리콘(amplicon) 기반의 NGS 방법인 것인, 방법.
1)NGS 방법에 의하여 리드를 획득하는 단계;
2)a)기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하는 단계; 및
3)상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열로 선정하는 단계;
4)상기 선정된 씨드 서열을 쿼리로 임의의 NGS 방법에 의하여 획득된 리드들에 대하여 씨드 서열과 매칭되는 서열을 분석하는 단계;를 포함하는 하는 NGS 방법에서 ITD(internal tandem duplication)를 분석하는 방법.
제 7항에 있어서, 상기 4)단계의 분석은 매칭되는 서열의 숫자를 카운팅 하는 단계인 것인, 방법.
NGS(next generation sequence) 분석에서의 ITD(internal tandem duplication)를 분석하기 위한 서열을 도출하는 장치에 있어서,
NGS 분석방법에 의하여 임의의 서열에 대한 리드에 대한 정보를 획득하고, 기준 서열(reference sequence)을 기준으로 상기 획득된 리드들 중 동일한 insertion 서열을 갖는 리드를 선별; 또는/및 b)동일한 soft-clipped bases를 갖는 리드들을 선별하고,
상기 선별된 리드들의 soft-clipped bases 서열 또는/및 insertion 서열의 일부 또는 전부를 포함하는 부위를 씨드 서열(seed sequence)로 선정하는 프로세서;
상기 리드에 대한 정보, 기준 서열 및 씨드 서열에 대한 정보를 저장하는 메모리; 및
상기 도출된 씨드 서열에 관한 정보를 표시하는 디스플레이를 포함하는, 장치.
제 9항에 있어서, 상기 리드의 선별은, 3개 이상의 리드에서 동일한 insertion 서열을 갖는 경우, 상기 동일한 insertion 서열을 갖는 상기 리드들을 선별하는 것을 특징으로 하는, 장치.
제 9항에 있어서, 상기 리드의 선별은, 3개 이상의 리드에서 동일한 soft-clipped bases 서열을 갖는 경우 상기 리드들을 선별하는 것을 특징으로 하는 장치.
제 9항에 있어서, 상기 soft-clipped bases 서열을 포함하는 부위는 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되,
상기 soft-clipped base의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp 인 것을 특징으로 하는, 장치.
제 9항에 있어서,
상기 insertion 서열을 포함하는 부위는 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함하되, 상기 insertion 서열의 3` 또는 5` 말단으로부터 인접한 서열을 포함한 서열 길이가 12bp 내지 20bp인 것을 특징으로 하는, 장치.
PCT/KR2023/005884 2022-05-02 2023-04-28 Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치 WO2023214754A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220054353A KR20230154658A (ko) 2022-05-02 2022-05-02 Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치
KR10-2022-0054353 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214754A1 true WO2023214754A1 (ko) 2023-11-09

Family

ID=88646663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005884 WO2023214754A1 (ko) 2022-05-02 2023-04-28 Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20230154658A (ko)
WO (1) WO2023214754A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160039386A (ko) * 2014-10-01 2016-04-11 삼성에스디에스 주식회사 Itd 검출 장치 및 방법
KR20160056841A (ko) * 2014-11-12 2016-05-20 가톨릭대학교 산학협력단 Flt3 유전자 변이 정량분석방법 및 분석 키트
US20190172554A1 (en) * 2017-12-01 2019-06-06 Life Technologies Corporation Methods, systems, and computer-readable media for tandem duplication detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160039386A (ko) * 2014-10-01 2016-04-11 삼성에스디에스 주식회사 Itd 검출 장치 및 방법
KR20160056841A (ko) * 2014-11-12 2016-05-20 가톨릭대학교 산학협력단 Flt3 유전자 변이 정량분석방법 및 분석 키트
US20190172554A1 (en) * 2017-12-01 2019-06-06 Life Technologies Corporation Methods, systems, and computer-readable media for tandem duplication detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TSAI HARRISON K., BRACKETT DIANE G., SZETO DAVID, FRAZIER RYAN, MACLEAY ALLISON, DAVINENI PHANI, MANNING DANIELLE K., GARCIA ELIZA: "Targeted Informatics for Optimal Detection, Characterization, and Quantification of FLT3 Internal Tandem Duplications Across Multiple Next-Generation Sequencing Platforms", THE JOURNAL OF MOLECULAR DIAGNOSTICS, AMERICAN SOCIETY FOR INVESTIGATIVE PATHOLOGY AND THE ASSOCIATION FOR MOLECULAR PATHOLOGY, vol. 22, no. 9, 1 September 2020 (2020-09-01), pages 1162 - 1178, XP093003449, ISSN: 1525-1578, DOI: 10.1016/j.jmoldx.2020.06.006 *
YAN CHAOKUN, HE JUNYI, LUO JUNWEI, WANG JIANLIN, ZHANG GE, LUO HUIMIN: "SIns: A Novel Insertion Detection Approach Based on Soft-Clipped Reads", FRONTIERS IN GENETICS, vol. 12, no. 665812, 21 April 2021 (2021-04-21), XP093105989, DOI: 10.3389/fgene.2021.665812 *

Also Published As

Publication number Publication date
KR20230154658A (ko) 2023-11-09

Similar Documents

Publication Publication Date Title
Logsdon et al. Long-read human genome sequencing and its applications
Kumar et al. Next-generation sequencing and emerging technologies
Ameur et al. Single-molecule sequencing: towards clinical applications
US9920370B2 (en) Haplotying of HLA loci with ultra-deep shotgun sequencing
Ulahannan et al. Technical and implementation issues in using next-generation sequencing of cancers in clinical practice
Duncan et al. Next-Generation Sequencing in the Clinical Laboratory
Johnsen et al. Massively parallel sequencing: the new frontier of hematologic genomics
Profaizer et al. Human leukocyte antigen typing by next-generation sequencing
EP3552128A1 (en) Methods for detecting mutation load from a tumor sample
Kockum et al. Overview of genotyping technologies and methods
Yadav et al. Next-Generation sequencing transforming clinical practice and precision medicine
Smart et al. A novel phylogenetic approach for de novo discovery of putative nuclear mitochondrial (pNumt) haplotypes
Watson et al. Assessing the utility of long-read nanopore sequencing for rapid and efficient characterization of mobile element insertions
US20200075122A1 (en) Methods for detecting mutation load from a tumor sample
WO2023214754A1 (ko) Ngs 분석에서의 itd 분석을 위한 씨드 서열의 생성 방법 및 장치
WO2019031867A1 (ko) 앰플리콘 기반 차세대 염기서열 분석기법에서 프라이머 서열을 제거하여 분석의 정확도를 높이는 방법
Bayés et al. Applications of second generation sequencing technologies in complex disorders
Zhang et al. The reliable assurance of detecting somatic mutations in cancer-related genes by next-generation sequencing: the results of external quality assessment in China
WO2020123536A1 (en) Multiplexed droplet-based sequencing using natural genetic barcodes
WO2016208827A1 (ko) 유전자를 분석하는 방법 및 장치
WO2014119914A1 (ko) 유전자 서열 기반 개인 마커에 관한 정보를 제공하는 방법 및 이를 이용한 장치
RU2822040C1 (ru) Способ обнаружения вариаций числа копий (cnv) по данным секвенирования полного экзома человека и генома с низким покрытием
Tang et al. Screening and Diagnosis of Rare Thalassemia Variants: Is Third-Generation Sequencing Enough?
RU2829344C1 (ru) Способ пробоподготовки образцов для типирования генов главного комплекса гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, HLA-DRB1 и олигонуклеотидные праймеры для его реализации
WO2023043097A1 (ko) 차세대 염기서열 분석을 위한 짝지어진 서열조각 병합 표시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799636

Country of ref document: EP

Kind code of ref document: A1