WO2023214689A1 - Non-powered air circulating apparatus - Google Patents

Non-powered air circulating apparatus Download PDF

Info

Publication number
WO2023214689A1
WO2023214689A1 PCT/KR2023/004057 KR2023004057W WO2023214689A1 WO 2023214689 A1 WO2023214689 A1 WO 2023214689A1 KR 2023004057 W KR2023004057 W KR 2023004057W WO 2023214689 A1 WO2023214689 A1 WO 2023214689A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
unit
air circulation
powered air
circulation device
Prior art date
Application number
PCT/KR2023/004057
Other languages
French (fr)
Korean (ko)
Inventor
백승철
Original Assignee
백승철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백승철 filed Critical 백승철
Publication of WO2023214689A1 publication Critical patent/WO2023214689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to a non-powered air circulation device, and more preferably, to a non-powered air circulation device that can circulate a fan by generating a temperature difference between the top and bottom using a thermoelectric element.
  • a stove In general, a stove generates heat by burning fuel such as wood, oil, gas, or electricity, and uses the heat generated from the stove to warm the air.
  • the air warmed by the stove is sent upward, and when the temperature drops, it moves downward. After being warmed from the top due to convection, the temperature at the bottom becomes relatively lower than the temperature at the top.
  • the air heated by the heat source rises upward and warms the air from the top, so it takes a long time for the air to become warm at a distance from the stove and a lot of heating costs are consumed.
  • blowing air using external electricity has the problem of causing energy loss and taking a long time to warm the air, resulting in a lot of heat loss.
  • thermoelectric element that converts heat into electricity is used to circulate the air at the top downward without consuming external energy, thereby maintaining the power of the stove. It contains information about blowers that effectively keep warm by sending heat downward.
  • the present invention was devised to solve the above problems.
  • the purpose of the present invention is to provide a non-powered air circulation device for efficiently improving the temperature difference between the upper and lower ends of a thermoelectric element by placing a cooling plate and a heat transfer plate, respectively. there is.
  • the present invention is to provide a non-powered air circulation device with improved cooling performance by having a cooling unit including a plurality of cooling fins of different shapes located on a cooling plate.
  • the purpose of the present invention is to provide a non-powered air circulation device with improved fastening force through a cover part fastened to a flange extending from a cooling plate.
  • the non-powered air circulation device for achieving the object of the present invention described above includes the following configuration.
  • a non-powered air circulation device includes a heat transfer unit that is mounted on a heating device that generates heat and transfers heat generated from the heating device; A thermoelectric element installed on top of the heat transfer unit and generating electricity by heat; a cooling plate located above the thermoelectric element and including at least one cooling unit for cooling an upper end of the thermoelectric element; A driving motor driven by power generated from the thermoelectric element; a rotating fan that forcibly convects air while rotating by the drive motor; and a cover unit configured to surround at least a portion of the rotating fan and fastened to the cooling plate, wherein the heat transfer part is located between a contact part in contact with the heating device and the contact part and the thermoelectric element, and outside the contact part. It provides a non-powered air circulation device consisting of a heat transfer plate extending to.
  • the cooling unit may include a first cooling unit located on a lower surface of the driving motor; and a second cooling unit extending along the outside of the cooling plate outside the first cooling unit.
  • first cooling unit and the second cooling unit provide a non-powered air circulation device configured to extend in a radial direction along the cooling plate.
  • the second cooling unit includes main cooling fins extending in a radial direction; It provides a non-powered air circulation device including; an auxiliary cooling fin formed between the main cooling fins and having a relatively shorter length than the main cooling fins.
  • the main cooling fin provides a non-powered air circulation device consisting of at least one cooling fin along the radial direction.
  • the first cooling unit has a plurality of cooling fins extending perpendicular to each other and is axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate on the same plane of the cooling plate, and the second cooling unit is symmetrical to the origin of the cooling plate.
  • a non-powered air circulation device configured to extend in a radial direction of the cooling plate is provided.
  • a non-powered air circulation device in which the edge of the heat transfer plate is bent downward based on the height direction.
  • an edge of the heat transfer plate is bent downward to form a cavity surrounding the outside of the contact portion.
  • the cover unit includes a cover portion configured to surround the outside of the cooling fan; And it provides a non-powered air circulation device including; a plunger fastened to the cooling plate and configured to fix the cover portion and the cooling plate.
  • a non-powered air circulation device including a guide groove formed in the cooling plate, and configured so that the rear surface of the flange is inserted into the guide groove.
  • a non-powered air circulation device in which the heat transfer plate protrudes to the outside of the cooling unit based on the circumference of the contact portion.
  • the main cooling fin of the second cooling fin is configured to have a length equal to 50 to 80% of the radius of the cooling plate in the direction from the outermost part of the cooling plate to the center, and the auxiliary cooling fin is oriented from the outermost part of the cooling plate to the center.
  • a non-powered air circulation device configured to have a length equal to 50 to 80% of the main cooling fin along the direction.
  • an insulating material configured to surround an outer portion of the thermoelectric element located between the cooling plate and the heat transfer plate; provides a non-powered air circulation device further comprising a.
  • At least one temperature sensor located at the top of the cover unit; a control unit that controls the rotation amount of the drive motor; and a battery capable of being charged and discharged by being coupled to the thermoelectric element. It provides a non-powered air circulation device including a.
  • control unit receives temperature information measured by the temperature sensor, and when the received temperature information is greater than the temperature set in the control unit, it provides a non-powered air circulation device configured to increase the rotation amount of the drive motor.
  • control unit provides a non-powered air circulation device configured to increase the rotation amount of the driving motor through discharge of the thermoelectric element and the battery.
  • the present invention can achieve the following effects by combining the above-mentioned embodiment with the configuration, combination, and use relationship described below.
  • the present invention provides the effect of increasing the current and voltage generated from the thermoelectric element by increasing the temperature difference between the upper and lower ends of the thermoelectric element.
  • the present invention provides a cover portion that is easily detachable, thereby improving usability.
  • the present invention has the effect of blocking the flow of air rising from the heat source and increasing the heat transfer efficiency of the bottom of the thermoelectric element through a heat transfer plate configuration including a cavity.
  • the present invention has the effect of maximizing the air circulation effect by allowing the flow generated from the fan to be sprayed at an optimal radiation angle through a heat transfer plate bent downward.
  • Figure 1 shows a perspective view of a non-powered air circulation device as an embodiment of the present invention.
  • Figure 2 is an embodiment of the present invention, showing a perspective view of a non-powered air circulation device with the cover portion removed.
  • Figure 3 shows the configuration of a non-powered air circulator cooling plate as an embodiment of the present invention.
  • Figure 4 shows a top view of a non-powered air circulator cooling plate, as an embodiment of the present invention.
  • Figure 5 shows a side view of a non-powered air circulator cooling plate, as an embodiment of the present invention.
  • Figure 6 shows a top view of a non-powered air circulator heat transfer plate, as an embodiment of the present invention.
  • Figure 7 shows a cavity of a non-powered air circulator heat transfer plate, as one embodiment of the present invention.
  • Figure 8 shows another embodiment of the present invention, a non-powered air circulator cooling plate.
  • ...unit refers to at least one function or operation. It refers to a processing unit, which can be implemented through hardware, software, or a combination of hardware and software.
  • the present invention relates to a non-powered air circulation device, which is configured to force rising air to descend by rotating a rotary fan (900) using current generated according to the temperature difference between the back and top surfaces of the thermoelectric element (400). It's about.
  • FIG. 1 to 2 show a perspective view of a non-powered air circulation device as an embodiment of the present invention.
  • the non-powered air circulation device includes a heat transfer portion 100 including a contact portion 420 configured to be located at the top of the heating device and a heat transfer plate 410 surrounding the contact portion 420, a heat transfer plate 410, and cooling. It consists of a cooling plate 200 including a thermoelectric element 400 located between the plates 200 and a cooling unit 300 located on the upper surface of the thermoelectric element 400 and configured to cool the upper surface of the thermoelectric element 400. .
  • the heat transfer unit 100 is configured to surround the contact part 420 and the contact part 420 in contact with the heating apparatus so that the heat applied from the heating apparatus is transferred to the back of the thermoelectric element 400, and is configured to surround the contact part 420 to the outside of the cooling plate 200. It includes a heat transfer plate 410 configured to protrude.
  • the heat transfer plate 410 is configured to extend from the outermost side of one surface of the contact portion 420. More preferably, the heat transfer plate 410 is located on the upper surface of the contact part 420 and extends along the outermost edge of the contact part 420, and the outer area of the heat transfer plate 410 is based on the height direction as it becomes farther away from the contact part 420. It may be configured to be bent downward (411).
  • the heat transfer plate 410 may form a cavity 412 as a predetermined space between the downwardly bent area 411 and the outer surface of the contact portion 420, and heat applied from the contact portion 420 or the heating device may be transmitted. It may be configured to be convected through the cavity 412 and transferred to the heat transfer plate 410. Accordingly, the heat of the heating device is configured to be transmitted to the thermoelectric element 400 through direct contact with the contact portion 420 and indirectly through the cavity portion 412 at the same time.
  • the back of the cooling plate 200 is located on the upper surface of the thermoelectric element 400, and the upper surface of the cooling plate 200 is configured to include a cooling unit 300.
  • the cooling unit 300 is composed of a plurality of cooling fins having at least one or more shapes. More preferably, the cooling unit 300 is spaced apart from the first cooling unit 210 located adjacent to the position where the drive motor 600 is seated and the outer peripheral surface of the first cooling unit 210, so as to be at the maximum of the cooling plate 200. It is divided into a second cooling unit 220 that extends to the outside. More preferably, the first cooling unit 210 may be configured in a plate shape with a height relatively lower than that of the second cooling unit 220.
  • the thermoelectric element 400 is an external heat source that uses radiant heat or convection heat generated from a heating device to convert it into electricity. That is, the thermoelectric element 400 is configured to receive heat directly or indirectly from an external heat source through the heat transfer plate 410, and includes an insulating material 1000 positioned on the same plane to surround the thermoelectric element 400. do. Furthermore, a cooling plate 200 is located on the top of the thermoelectric element 400 to apply a temperature difference between the top and back surfaces of the thermoelectric element 400 and generate electricity from the thermoelectric element 400 through this.
  • thermoelectric element 400 generates electricity based on the Seebeck effect, that is, the effect of connecting both ends of two types of metal and creating an electromotive force when the temperatures of both ends are different, and the lower part of the thermoelectric element 400 is used for heat transfer. It is heated by the thermal energy of the heating device transmitted through the unit 100, and the opposite side uses the temperature difference distributed along the height direction of the heat transfer unit 100 as heat is radiated through the cooling plate 200.
  • a battery 800 that stores electrical energy generated from the thermoelectric element 400 may be further included, and a control unit 700 may be provided to control the amount of rotation of the drive motor 600.
  • the control unit 700 may drive the driving motor 600 by supplying the power charged in the battery 800 to the driving motor 600.
  • control unit 700 may be configured to measure the amount of power generated from the thermoelectric element 400 and to control the rotation amount of the driving motor 600. Moreover, when the amount of power output from the thermoelectric element 400 is greater than the amount of power set in the control unit 700, the control unit 700 supplies a predetermined amount of power to the battery 800 to charge the battery 800. It can be configured to perform. In addition, the control unit 700 determines the charge amount of the battery 800 and charges the battery 800 through the power generated from the thermoelectric element 400 or uses the power stored in the battery 800 to drive the drive motor 600. ) is configured to increase the amount of rotation.
  • control unit 700 receives temperature information measured from at least one temperature sensor 1100 located on top of the thermoelectric element 500. If the received temperature information is greater than the temperature set in the control unit 700, the rotational force of the drive motor 600 is increased to form a stronger downward airflow along the inside of the cover unit 500.
  • the control unit 700 when the driving force applied to the driving motor 600 is less than or equal to the driving force set in response to the temperature information measured from the temperature sensor 1100, the control unit 700 performs discharging of the battery 800 to drive the driving motor 600. It may be configured to increase rotational force.
  • control unit 700 can charge the battery 800 based on the amount of power generated from the thermoelectric element 400, and the temperature sensor 1100 located in the cover unit 500 or the cooling unit 300. ) If the temperature measured is greater than the set temperature, control can be performed to increase the rotation amount of the rotating fan 900.
  • the control unit 700 may determine to consider the rotation amount of the driving motor 600 before considering the charge amount of the battery 800. Therefore, when the temperature sensor located in the cover unit 500 is greater than the set temperature, power is applied to the driving motor 600 through the thermoelectric element 400, and when additional electrical energy is required, the battery 800 Power can be controlled to be applied to the driving motor 600 through the battery 800 without considering the amount of charge. Therefore, the control unit 700 considers control of the rotation amount of the driving motor 600 as a priority, and when control of the rotation amount of the driving motor 600 is not necessary, the battery ( It is configured to control the electrical energy produced from the thermoelectric element 400 to perform charging of the device 800.
  • the control unit 700 operates the thermoelectric element 400 and/or the battery 800.
  • the control unit 700 is configured to increase the rotation amount of the motor, and is configured to determine in advance whether the temperature of the air adjacent to the cover part 510 has increased, and to move the high temperature air downward by driving the rotating fan 900. do.
  • the cover unit 500 includes a cover portion 510 coupled to the cooling plate 200 and composed of one or multiple plates, and the cover portion 510 is configured to surround the outer surface of the cooling plate 200. It may be configured to be located on the outer upper surface of the cooling plate 200.
  • the cover part 510 is configured so that one or each plate is independently detachable, and is fixed through a flange 520, one end of which is fixed to the upper surface of the cooling plate 200 and the other end of which is fixed to the inside of the cover part 510. It can be.
  • the cover portion 510 may be configured in a cylindrical shape to integrally surround the cooling fan.
  • the flanges 520 are fastened to the cooling plate 200 and are configured to be at least partially inserted and positioned inside the guide groove 230 located on the upper surface of the cooling plate 200, and the cover portion 510 and It is possible to prevent the flanges 520 from flowing.
  • the lower end of the cover part 510 is configured to face the bent area 411 of the heat transfer plate 410, and the cover part ( 510) is located. Accordingly, the high temperature air inside the cover part 510 is configured to be discharged to the outside along the gap formed between the cover part 510 and the heat transfer plate 410.
  • the moving part 511 may include a moving part 511 that is formed in a portion of the lower part of the cover part 510 and whose cross-section becomes wider as it goes downward of the cover part 510 in the height direction compared to the top of the cover part.
  • the moving part 511 may be formed integrally with the cover part 510 in a portion of the height direction at the bottom of the cover part 510, and may form a space between the cover part 510 and the heat transfer plate 410.
  • the flow performance can be increased so that the air flowing along the inside of the cover part moves downward through the flow part 511.
  • the moving part may be configured in a shape corresponding to the bending area 411.
  • Figure 3 shows a perspective view of the cooling plate 200
  • Figure 4 shows a top view of the cooling plate 200
  • Figure 5 shows a side view of the cooling plate 200.
  • the cooling plate 200 including the cooling unit 300 is configured to be located on top of the thermoelectric element 400, and includes a drive motor 600 fixed to the cooling plate 200 on the upper surface of the cooling plate 200. .
  • the cooling unit 300 located on the cooling plate 200 includes a first cooling unit 210 located adjacent to the bottom of the driving motor 600 depending on the location, and a cooling plate along the outside of the first cooling unit 210 ( It includes a second cooling unit 220 extending to the outside of the upper surface of the 200).
  • the first cooling unit 210 may be arranged with cooling fins configured in a perpendicular form overlapping each other. More preferably, the cooling fins formed along the first direction and the cooling fins formed along the second direction are integrated with each other, or cooling fins having a separate ' ⁇ ' shape or ' ⁇ ' shape are adjacent to and overlap each other. can be located.
  • a plurality of cooling fin groups formed integrally along the first and second directions with respect to the upper surface of the cooling plate 200 are axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate 200. It is configured to form the first cooling unit 210. Accordingly, the first cooling unit 210 may be configured so that a plurality of cooling fin groups form four symmetrical areas around the origin.
  • the first cooling unit 210 may be configured to extend along the radial direction of the cooling plate 200. This will be explained below in Figure 8.
  • the second cooling unit 220 may be positioned on the outer surface of the first cooling unit 210 at a predetermined distance. More preferably, the second cooling unit 220 may be configured to extend from the outside of the first cooling unit 210 to an area adjacent to the outer portion of the cooling plate 200.
  • the second cooling unit 220 may include cooling fins that are spaced apart from the first cooling unit 210 and integrally extend to the outside of the cooling plate 200, and are located at a position overlapping with the guide unit.
  • the cooling fins formed may be positioned separately into at least two or more cooling fins. More preferably, the plurality of cooling fins constituting the second cooling unit 220 may extend along the radial direction of the cooling plate 200, or the plurality of cooling fins may extend in the first direction and/or the second direction. Accordingly, they may be positioned at right angles to each other on the upper surface of the cooling plate 200 to be axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate 200.
  • the cooling fins forming the second cooling unit 220 are formed between the main cooling fins 221 and the main cooling fins 221, which are configured to extend along the radial direction of the second cooling unit 220, and are relatively It may be composed of auxiliary cooling fins 222 that have a shorter length than the main cooling fins 221.
  • the main cooling fin 221 it may be configured by combining two cooling fins divided along the longitudinal direction. In another embodiment of the present invention, the main cooling fin 221 is configured by combining two cooling fins. It can be.
  • the main cooling fin 221 of the second cooling fin 220 is 50 to 80% of the radius of the cooling plate 200 in the direction from the outermost part of the cooling plate 200 to the center. It is configured to have a length, and the auxiliary cooling fin 222 is configured to have a length equal to 50 to 80% of the main cooling fin 221 along the center direction from the outermost part of the cooling plate 200.
  • the main cooling fin 221 and the auxiliary cooling fin 222 are separated into two cooling fins based on the radial direction of the cooling plate 200 with respect to the flow groove configured to surround the fixed grooves 250. and can be located. Furthermore, the length of the main cooling fins 221 and the auxiliary cooling fins 222 on the cooling plate 200 including the flow grooves may mean the length in the radial direction of the cooling plate 200 excluding the flow grooves.
  • the space spaced between the first cooling unit 210 and the second cooling unit 220 may include a fastening part 240 configured to fasten the driving motor 600.
  • the first cooling unit 210 may be located adjacent to the back of the drive motor 600, and may function to cool the drive heat generated from the back of the drive motor 600.
  • the fastening part 240 may be located adjacent to the first cooling unit 210, and the rear surface of the drive motor 600 may be located adjacent to the first cooling unit 210 along the height direction.
  • the outermost end of the cooling plate 200 may be positioned at a distance of 3 to 20 mm inward from the end of the heat transfer plate 410.
  • At least one guide groove 230 may be located on the upper surface of the cooling plate 200, and at least a portion of the rear surface of the flanges 520 in the height direction may be inserted into the guide groove 230. Furthermore, the inner end of the flange 520 may be fixed by the fixing groove 250 formed on the upper surface of the cooling plate 200, and the outer end may be fastened to the cover portion 510. More preferably, one end of the flange 520 fixed to the fixing groove 250 may be fixed by a bolt fastened to the inside of the fixing groove 250. In this way, the flanges 520 and the guide grooves 230 are formed at positions corresponding to each other, and the cover portion 510 can be configured to correspond to the number of flanges 520.
  • the second cooling unit 220 may include flow grooves along the periphery of the fixing grooves 250, and the flow grooves may increase the flow of air flowing along the second cooling unit 220. You can. Accordingly, the second cooling unit 220 has the effect of enhancing cooling performance by the flow groove formed around the fixing groove 250.
  • the upper surface of the cooling plate 200 where the guide groove 230 is located may include a second cooling part 220 configured at a position that does not overlap the guide groove 230, and the second cooling part 220 is As shown, it is configured to extend along the end of the cooling plate 200 along the radial direction. More preferably, the second cooling unit 220 extends to the outermost part of the cooling plate 200, and the outermost end of the cooling plate 200 is inside the bent area 411 formed on the edge of the heat transfer plate 410. It can be configured in a position that matches the stage.
  • FIG. 6 to 7 show the heat transfer plate 410, showing a cavity 412 formed outside the contact portion 420 and a downwardly bent area 411 formed to form the cavity 412. .
  • the heat transfer unit 100 includes a circular contact part 420 positioned in contact with a heating device as a heat source. Moreover, the heat transfer part 100 includes a heat transfer plate 410 that extends to the outside of the contact part 420.
  • the heat transfer plate 410 formed on the outside of the contact part 420 has a shape bent downward along the height direction, and the side of the contact part 420 and the heat transfer plate 410 bent downward form a cavity 412. can do.
  • the cavity 412 may be formed adjacent to the heat source and is configured to transfer heat to the thermoelectric element 400 more efficiently. That is, it is configured so that heat conduction occurs through the contact portion 420 and at the same time, heat can be transferred to the thermoelectric element 400 in a convection form through heat flowing into the cavity 412.
  • the cavity 412 is configured to prevent heat generated from the stove from being directly transferred to the cooling plate 200, thereby increasing the generated voltage of the thermoelectric element 400.
  • the outermost part of the heat transfer plate 410 is configured to protrude from the side of the cooling plate 200 along the lateral direction, and the protruding heat transfer plate 410 has a downwardly bent shape 411. Therefore, when the rotary fan 900 rotates according to the rotation of the drive motor 600, high temperature air moves downward inside the cover part 510, and the cover part 411 follows the downward bending shape of the heat transfer plate 410. (510) It is configured to be discharged to the outside of the bottom. More preferably, there is a predetermined gap between the cover part 510 and the downward bending area 411 of the heat transfer plate 410, and the downwardly moved air flows along the outer bottom of the cover part 510 through the gap. It is configured to circulate.
  • Figure 8 is another embodiment of the present invention, showing a configuration in which cooling fins located in the first cooling unit 210 are located along the radial direction of the cooling plate 200.
  • Another embodiment of the present invention includes all of the heat transfer unit 100, cooling plate 200, drive motor 600, and cover unit 500 disclosed in FIGS. 1 and 2, and the drive motor 600
  • the driving force is configured to be controlled by the control unit 700.
  • the first cooling unit 210 may be configured to extend along the radial direction of the circular cooling plate 200.
  • the cooling fins of the second cooling unit 220 may be located in positions corresponding to the radial cooling fins formed in the first cooling unit 210.
  • the first cooling unit 210 cools the heat applied from the thermoelectric element 400 and is located on the rear of the drive motor 600 to radiate heat generated from the drive motor 600 to the outside. performs its function.
  • the non-powered air circulation device of the present invention relatively cools the upper surface of the thermoelectric element 400 through a plurality of cooling parts formed on the cooling plate 200 to optimize the efficiency of the electrical energy generated from the thermoelectric element 400.
  • the control unit 700 is configured to control the driving speed of the rotating fan 900 based on the temperature of the top of the cover unit 510 to drive more efficient heat circulation.
  • thermoelectric element 400 400: thermoelectric element

Abstract

The present invention relates to a non-powered air circulating apparatus. The non-powered air circulating apparatus according to an embodiment of the present invention comprises: a heat transfer unit which is placed on a heating mechanism for generating heat and transfers the heat generated from the heating mechanism; a thermoelectric element which is installed above the heat transfer unit and generates electricity by using the heat; a cooling plate which is disposed above the thermoelectric element and includes at least one cooling unit for cooling the upper end of the thermoelectric element; a driving motor which is driven by power generated by the thermoelectric element; a rotating fan which forcibly convects air while being rotated by the driving motor; and a cover unit which is configured to cover at least a portion of the rotating fan and fastened to the cooling plate.

Description

무동력 공기 순환장치Non-powered air circulation device
본 발명은 무동력 공기 순환장치에 관한 것으로, 더 바람직하게, 열전소자를 이용하여 상하단의 온도차이를 발생하여 팬을 순환시킬 수 있는 무동력 공기 순환장치에 관한 것이다.The present invention relates to a non-powered air circulation device, and more preferably, to a non-powered air circulation device that can circulate a fan by generating a temperature difference between the top and bottom using a thermoelectric element.
일반적으로 난로는 나무, 기름, 가스 전기 등의 연료를 연소시켜 열을 발생시키고, 난로에서 발생된 열로 공기를 데워 보온하는 것으로 난로에 의하여 따뜻해진 공기는 상부로 보내고 온도가 낮아지면 하방으로 이동하는 대류현상으로 상부에서부터 따뜻해진 후에 하부의 온도가 상대적으로 상부 온도보다 낮게 되는 것이다.In general, a stove generates heat by burning fuel such as wood, oil, gas, or electricity, and uses the heat generated from the stove to warm the air. The air warmed by the stove is sent upward, and when the temperature drops, it moves downward. After being warmed from the top due to convection, the temperature at the bottom becomes relatively lower than the temperature at the top.
즉 열원에 의하여 더워진 공기는 위로 상승하여 상부에서부터 공기를 데워지도록 구성되어 있어 난로로부터 조금 떨어진 곳에서는 공기는 따뜻해지는 것은 오랜 시간이 필요하고 난방비가 많이 소모되는 것이다.In other words, the air heated by the heat source rises upward and warms the air from the top, so it takes a long time for the air to become warm at a distance from the stove and a lot of heating costs are consumed.
이와 같이 외부의 전기를 이용하여 송풍하는 것은 에너지의 손실을 가져오고 또 공기를 데우는데 오랜 시간이 소요되어 열의 손실이 많게 되는 문제점이 있었다.In this way, blowing air using external electricity has the problem of causing energy loss and taking a long time to warm the air, resulting in a lot of heat loss.
이를 해결하기 위해서 종래 기술로서 열전소자를 이용한 송풍기를 구동하는 기술이 제안되고 있으며, 구체적으로 보면, 열을 전기로 전환하는 열전소자를 이용하여 외부 에너지 소비 없이 상부의 공기를 하방으로 순환시켜 난로의 열기를 하방으로 보내 효과적으로 보온하는 송풍기에 관한 내용을 포함하고 있다.To solve this problem, a technology for driving a blower using a thermoelectric element has been proposed as a conventional technology. Specifically, a thermoelectric element that converts heat into electricity is used to circulate the air at the top downward without consuming external energy, thereby maintaining the power of the stove. It contains information about blowers that effectively keep warm by sending heat downward.
하지만, 종래기술에서는 일체형으로 구성되어 있음에 따라 유지, 보수가 어려워 고장이 날 경우 전체를 그대로 교체해야 하는 문제점이 있었다.However, in the prior art, as it is composed of an integrated structure, maintenance and repair are difficult, and in case of failure, there is a problem in that the entire device has to be replaced as is.
또한, 초기 작동시 하우징 전체가 이미 뜨거워짐에 따라 온도차가 적어 성능저하 (또는 발전량 저하)가 일어나게 되는 문제점도 있었으며, 송풍기 전체가 열에 지속적으로 노출됨에 따라 열에 의한 내구성이 저하되는 문제점도 있었다.In addition, as the entire housing already becomes hot during initial operation, there is a problem in that the temperature difference is small, resulting in a decrease in performance (or a decrease in power generation), and there is also a problem in that durability due to heat is reduced as the entire blower is continuously exposed to heat.
또한, 난로에서 발생한 상승기류(대류열)와 송풍기에서 발생한 하강기류(송풍수단에 의해 생성된 바람)의 바람의 방향이 서로 반대방향임에 따라 송풍기 내부 혹은 송풍기 하단부분에서 공기의 흐름이 엉켜 원활한 배출이 되지 않는다는 문제점도 있었다.In addition, as the wind direction of the rising air current (convection heat) generated from the stove and the descending air current generated from the blower (wind generated by the blowing means) are in opposite directions, the air flow inside the blower or at the bottom of the blower becomes entangled, creating a smooth flow. There was also the problem of not being discharged.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명은 냉각 플레이트와 열전달 플레이트를 각각 위치하여 열전소자의 상하단의 온도차이를 효율적으로 개선시키기 위한 무동력 공기 순환장치를 제공하는데 그 목적이 있다.The present invention was devised to solve the above problems. The purpose of the present invention is to provide a non-powered air circulation device for efficiently improving the temperature difference between the upper and lower ends of a thermoelectric element by placing a cooling plate and a heat transfer plate, respectively. there is.
또한, 본 발명은 서로 다른 형상의 다수의 냉각핀을 포함하는 냉각 유닛이 냉각 플레이트 상에 위치하여 냉각 성능이 개선된 무동력 공기 순환장치를 제공하기 위한 것이다.In addition, the present invention is to provide a non-powered air circulation device with improved cooling performance by having a cooling unit including a plurality of cooling fins of different shapes located on a cooling plate.
더욱이, 본 발명은 냉각 플레이트로부터 연장되는 플린지와 체결되는 커버부를 통해 체결력이 향상된 무동력 공기 순환장치를 제공하는데 그 목적이 있다.Furthermore, the purpose of the present invention is to provide a non-powered air circulation device with improved fastening force through a cover part fastened to a flange extending from a cooling plate.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다. 또한 본 발명의 목적들은 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있다. The objects of the present invention are not limited to the objects mentioned above, and other objects of the present invention that are not mentioned can be understood by the following description and can be more clearly understood by the examples of the present invention. Additionally, the objects of the present invention can be realized by means and combinations thereof as indicated in the claims.
상술한 본 발명의 목적을 달성하기 위한 무동력 공기 순환장치는 다음과 같은 구성을 포함한다.The non-powered air circulation device for achieving the object of the present invention described above includes the following configuration.
본 발명의 일 실시예로서, 무동력 공기 순환장치는 열을 발생하는 난방기구에 안착되어 상기 난방기구로부터 발생하는 열을 전달하는 열전달부; 상기 열전달부의 상부에 설치되며, 열에 의해 전기를 발생하는 열전소자; 상기 열전소자 상부에 위치하여 상기 열전소자의 상단부를 냉각하기 위한 적어도 하나 이상의 냉각 유닛을 포함하는 냉각 플레이트; 상기 열전소자에서 생성된 전원을 통해 구동하는 구동모터; 상기 구동모터에 의해 회전하면서 공기를 강제로 대류시키는 회전팬; 및 상기 회전팬을 적어도 일부를 감싸도록 구성되고, 상기 냉각 플레이트와 체결되는 커버 유닛;를 포함하고, 상기 열전달부는 상기 난방기구와 접촉되는 접촉부와 상기 접촉부와 상기 열전소자 사이에 위치하고, 상기 접촉부 외측으로 연장되는 열전달 플레이트로 구성되는 무동력 공기 순환장치를 제공한다.In one embodiment of the present invention, a non-powered air circulation device includes a heat transfer unit that is mounted on a heating device that generates heat and transfers heat generated from the heating device; A thermoelectric element installed on top of the heat transfer unit and generating electricity by heat; a cooling plate located above the thermoelectric element and including at least one cooling unit for cooling an upper end of the thermoelectric element; A driving motor driven by power generated from the thermoelectric element; a rotating fan that forcibly convects air while rotating by the drive motor; and a cover unit configured to surround at least a portion of the rotating fan and fastened to the cooling plate, wherein the heat transfer part is located between a contact part in contact with the heating device and the contact part and the thermoelectric element, and outside the contact part. It provides a non-powered air circulation device consisting of a heat transfer plate extending to.
또한, 상기 냉각 유닛은, 상기 구동모터의 하면에 위치하는 제 1냉각부; 및 상기 제 1냉각부 외측에 상기 냉각 플레이트의 외측을 따라 연장되는 제 2냉각부;를 포함하는 무동력 공기 순환장치를 제공한다.Additionally, the cooling unit may include a first cooling unit located on a lower surface of the driving motor; and a second cooling unit extending along the outside of the cooling plate outside the first cooling unit.
또한, 상기 제 1냉각부 및 제 2냉각부는 상기 냉각 플레이트를 따라 방사방향으로 연장되도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, the first cooling unit and the second cooling unit provide a non-powered air circulation device configured to extend in a radial direction along the cooling plate.
또한, 상기 제 2냉각부는 방사방향을 따라 연장되는 주 냉각핀; 상기 주 냉각핀의 사이에 형성되어, 상기 주 냉각핀보다 상대적으로 짧은 길이를 갖는 보조 냉각핀;을 포함하는 무동력 공기 순환장치를 제공한다.Additionally, the second cooling unit includes main cooling fins extending in a radial direction; It provides a non-powered air circulation device including; an auxiliary cooling fin formed between the main cooling fins and having a relatively shorter length than the main cooling fins.
또한, 상기 주 냉각핀은, 상기 방사방향을 따라 적어도 하나 이상의 냉각핀으로 구성되는 무동력 공기 순환장치를 제공한다.Additionally, the main cooling fin provides a non-powered air circulation device consisting of at least one cooling fin along the radial direction.
또한, 상기 제 1냉각부는 서로 수직 방향으로 연장되는 다수의 냉각핀이 상기 냉각 플레이트의 동일 평면상에 제 1방향 축 대칭, 제 2방향 축 대칭 및 냉각 플레이트 원점 대칭되고, 상기 제 2냉각부는 상기 냉각 플레이트의 방사 방향으로 연장되도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, the first cooling unit has a plurality of cooling fins extending perpendicular to each other and is axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate on the same plane of the cooling plate, and the second cooling unit is symmetrical to the origin of the cooling plate. A non-powered air circulation device configured to extend in a radial direction of the cooling plate is provided.
또한, 상기 열전달 플레이트의 테두리는 높이 방향을 기준으로 하향 절곡되도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, a non-powered air circulation device is provided in which the edge of the heat transfer plate is bent downward based on the height direction.
또한, 상기 열전달 플레이트의 테두리가 하향 절곡되어 상기 접촉부의 외곽을 둘러싸는 공동부;를 형성하도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, an edge of the heat transfer plate is bent downward to form a cavity surrounding the outside of the contact portion.
또한, 상기 커버 유닛은, 상기 냉각팬의 외측을 둘러싸듯이 구성되는 커버부; 및 상기 냉각 플레이트와 체결되어 상기 커버부와 상기 냉각 플레이트를 고정하도록 구성되는 플린지;를 포함하는 무동력 공기 순환장치를 제공한다.Additionally, the cover unit includes a cover portion configured to surround the outside of the cooling fan; And it provides a non-powered air circulation device including; a plunger fastened to the cooling plate and configured to fix the cover portion and the cooling plate.
또한, 상기 냉각 플레이트에 형성되는 가이드홈;을 포함하고, 상기 플린지의 배면이 상기 가이드홈에 삽입되도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, a non-powered air circulation device is provided, including a guide groove formed in the cooling plate, and configured so that the rear surface of the flange is inserted into the guide groove.
또한, 상기 접촉부의 둘레를 기준으로 상기 열전달 플레이트가 냉각 유닛의 외측으로 돌출되도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, a non-powered air circulation device is provided in which the heat transfer plate protrudes to the outside of the cooling unit based on the circumference of the contact portion.
또한, 상기 제 2냉각핀의 주 냉각핀은 상기 냉각 플레이트의 최외곽부에서 중심 방향으로 냉각 플레이트 반지름의 50~80%만큼의 길이를 갖도록 구성되고, 보조 냉각핀은 냉각 플레이트의 최외곽으로부터 중심 방향을 따라 주 냉각핀의 50~80%만큼의 길이를 갖도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, the main cooling fin of the second cooling fin is configured to have a length equal to 50 to 80% of the radius of the cooling plate in the direction from the outermost part of the cooling plate to the center, and the auxiliary cooling fin is oriented from the outermost part of the cooling plate to the center. Provided is a non-powered air circulation device configured to have a length equal to 50 to 80% of the main cooling fin along the direction.
또한, 상기 냉각 플레이트와 상기 열전달 플레이트 사이에 위치하는 상기 열전소자의 외곽 부분을 감싸도록 구성되는 단열소재;를 더 포함하는 무동력 공기 순환장치를 제공한다.In addition, an insulating material configured to surround an outer portion of the thermoelectric element located between the cooling plate and the heat transfer plate; provides a non-powered air circulation device further comprising a.
또한, 상기 커버 유닛 상단에 위치하는 적어도 하나 이상의 온도 센서; 상기 구동모터의 회전량을 제어하는 제어부; 및 상기 열전소자와 체결되어 충방전이 가능한 배터리;를 포함하는 무동력 공기 순환장치를 제공한다.Additionally, at least one temperature sensor located at the top of the cover unit; a control unit that controls the rotation amount of the drive motor; and a battery capable of being charged and discharged by being coupled to the thermoelectric element. It provides a non-powered air circulation device including a.
또한, 상기 제어부는 상기 온도 센서에서 측정되는 온도 정보를 수신하고, 수신된 온도 정보가 상기 제어부에 설정된 온도보다 큰 경우, 상기 구동모터의 회전량을 증대하도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, the control unit receives temperature information measured by the temperature sensor, and when the received temperature information is greater than the temperature set in the control unit, it provides a non-powered air circulation device configured to increase the rotation amount of the drive motor.
또한, 상기 제어부는 상기 열전소자 및 상기 배터리의 방전을 통해 상기 구동모터의 회전량을 증대하도록 구성되는 무동력 공기 순환장치를 제공한다.In addition, the control unit provides a non-powered air circulation device configured to increase the rotation amount of the driving motor through discharge of the thermoelectric element and the battery.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can achieve the following effects by combining the above-mentioned embodiment with the configuration, combination, and use relationship described below.
본 발명은 열전소자의 상하단의 온도차이를 증대시켜 열전소자로부터 발생되는 전류 및 전압을 증대시키는 효과를 제공한다.The present invention provides the effect of increasing the current and voltage generated from the thermoelectric element by increasing the temperature difference between the upper and lower ends of the thermoelectric element.
또한, 본 발명은 탈착이 용이한 커버부의 구성을 제공하는바, 사용성 개선의 효과를 제공한다.In addition, the present invention provides a cover portion that is easily detachable, thereby improving usability.
더욱이, 본 발명은 공동부를 포함하는 열전달 플레이트 구성을 통해서 열원으로부터 상승되는 공기의 흐름을 차단하고 열전소자 하면의 열전달 효율이 증가되는 효과를 갖는다.Furthermore, the present invention has the effect of blocking the flow of air rising from the heat source and increasing the heat transfer efficiency of the bottom of the thermoelectric element through a heat transfer plate configuration including a cavity.
또한, 본 발명은 하향 절곡된 열전달 플레이트를 통해, 팬으로부터 발생한 유동이 최적의 방사 각도로 분사되도록 하여 공기 순환 효과를 극대화시키는 효과를 갖는다.In addition, the present invention has the effect of maximizing the air circulation effect by allowing the flow generated from the fan to be sprayed at an optimal radiation angle through a heat transfer plate bent downward.
도 1은 본 발명의 일 실시예로서, 무동력 공기 순환장치의 사시도를 도시하고 있다.Figure 1 shows a perspective view of a non-powered air circulation device as an embodiment of the present invention.
도 2는 본 발명의 일 실시예로서, 무동력 공기 순환장치의 커버부를 제거한 상태의 사시도를 도시하고 있다.Figure 2 is an embodiment of the present invention, showing a perspective view of a non-powered air circulation device with the cover portion removed.
도 3은 본 발명의 일 실시예로서, 무동력 공기 순환장치 냉각 플레이트의 구성을 도시하고 있다.Figure 3 shows the configuration of a non-powered air circulator cooling plate as an embodiment of the present invention.
도 4는 본 발명의 일 실시예로서, 무동력 공기 순환장치 냉각 플레이트의 상면도를 도시하고 있다.Figure 4 shows a top view of a non-powered air circulator cooling plate, as an embodiment of the present invention.
도 5는 본 발명의 일 실시예로서, 무동력 공기 순환장치 냉각 플레이트의 측면도를 도시하고 있다.Figure 5 shows a side view of a non-powered air circulator cooling plate, as an embodiment of the present invention.
도 6은 본 발명의 일 실시예로서, 무동력 공기 순환장치 열전달 플레이트의 상면도를 도시하고 있다.Figure 6 shows a top view of a non-powered air circulator heat transfer plate, as an embodiment of the present invention.
도 7은 본 발명의 일 실시예로서, 무동력 공기 순환장치 열전달 플레이트의 공동부를 도시하고 있다.Figure 7 shows a cavity of a non-powered air circulator heat transfer plate, as one embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예로서, 무동력 공기 순환장치 냉각 플레이트를 도시하고 있다.Figure 8 shows another embodiment of the present invention, a non-powered air circulator cooling plate.
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, embodiments of the present invention will be described in more detail with reference to the attached drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This example is provided to more completely explain the present invention to those skilled in the art.
또한, 명세서에 기재된 "...부", "...유닛", "...핀", "...플레이트", "...소자" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as "...unit", "...unit", "...pin", "...plate", and "...element" described in the specification refer to at least one function or operation. It refers to a processing unit, which can be implemented through hardware, software, or a combination of hardware and software.
또한, 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Additionally, the terms used in the specification are merely used to describe specific embodiments and are not intended to limit the embodiments. Singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, 본 명세서에서 구성의 명칭을 제1, 제2 등으로 구분한 것은 그 구성의 명칭이 동일한 관계로 이를 구분하기 위한 것으로, 하기의 설명에서 반드시 그 순서에 한정되는 것은 아니다.In addition, in this specification, the names of the components are divided into first, second, etc. to distinguish them because the names of the components are the same, and the order is not necessarily limited in the following description.
이하, 실시예를 첨부된 도면들을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대해 중복되는 설명은 생략하기로 한다.Hereinafter, the embodiment will be described in detail with reference to the accompanying drawings. In the description with reference to the accompanying drawings, identical or corresponding components will be assigned the same drawing numbers and overlapping descriptions thereof will be omitted.
본 발명은 무동력 공기 순환장치에 관한 것으로, 열전소자(400)의 배면과 상면의 온도차이에 따라 생성되는 전류를 이용하여 회전팬(900)을 회전시켜 상승공기를 강제적으로 하강시키도록 구성되는 장치에 관한 것이다.The present invention relates to a non-powered air circulation device, which is configured to force rising air to descend by rotating a rotary fan (900) using current generated according to the temperature difference between the back and top surfaces of the thermoelectric element (400). It's about.
도 1 내지 도 2는 본 발명의 일 실시예로서, 무동력 공기 순환장치의 사시도를 도시하고 있다.1 to 2 show a perspective view of a non-powered air circulation device as an embodiment of the present invention.
도시된 바와 같이, 무동력 공기순환장치는 난방기구 상단에 위치하도록 구성되는 접촉부(420) 및 접촉부(420)를 감싸는 열전달 플레이트(410)를 포함하는 열전달부(100), 열전달 플레이트(410)와 냉각 플레이트(200) 사이에 위치하는 열전소자(400), 열전소자(400) 상면에 위치하여 열전소자(400) 상면을 냉각하도록 구성되는 냉각 유닛(300)을 포함하는 냉각 플레이트(200)로 구성된다.As shown, the non-powered air circulation device includes a heat transfer portion 100 including a contact portion 420 configured to be located at the top of the heating device and a heat transfer plate 410 surrounding the contact portion 420, a heat transfer plate 410, and cooling. It consists of a cooling plate 200 including a thermoelectric element 400 located between the plates 200 and a cooling unit 300 located on the upper surface of the thermoelectric element 400 and configured to cool the upper surface of the thermoelectric element 400. .
열전달부(100)는 난방기구로부터 인가되는 열이 열전소자(400) 배면으로 전달되도록 구성되도록 난방기구와 접촉되는 접촉부(420) 및 접촉부(420)를 감싸도록 구성되어 냉각 플레이트(200) 외측으로 돌출되도록 구성되는 열전달 플레이트(410)를 포함한다. The heat transfer unit 100 is configured to surround the contact part 420 and the contact part 420 in contact with the heating apparatus so that the heat applied from the heating apparatus is transferred to the back of the thermoelectric element 400, and is configured to surround the contact part 420 to the outside of the cooling plate 200. It includes a heat transfer plate 410 configured to protrude.
열전달 플레이트(410)는 접촉부(420) 일면의 최외곽으로부터 연장되도록 구성된다. 더 바람직하게, 열전달 플레이트(410)는 접촉부(420) 상면에 위치하여 접촉부(420)의 최외곽을 따라 연장되고, 열전달 플레이트(410) 외곽영역은 접촉부(420)와 멀어질수록 높이 방향을 기준으로 하향 절곡(411)되도록 구성될 수 있다. 열전달 플레이트(410)가 하향 절곡 영역(411)과 접촉부(420)의 외측면 사이에 소정의 공간으로서 공동부(412)를 형성할 수 있으며, 접촉부(420) 또는 난방기구로부터 인가되는 열이 상기 공동부(412)를 통해 대류되어 열전달 플레이트(410)로 전달되도록 구성될 수 있다. 따라서, 난방기구의 열은 접촉부(420)와 직접적인 접촉을 통해 열이 열전소자(400)로 전달됨과 동시에 공동부(412)를 통해 간접적으로 전달될 수 있도록 구성된다.The heat transfer plate 410 is configured to extend from the outermost side of one surface of the contact portion 420. More preferably, the heat transfer plate 410 is located on the upper surface of the contact part 420 and extends along the outermost edge of the contact part 420, and the outer area of the heat transfer plate 410 is based on the height direction as it becomes farther away from the contact part 420. It may be configured to be bent downward (411). The heat transfer plate 410 may form a cavity 412 as a predetermined space between the downwardly bent area 411 and the outer surface of the contact portion 420, and heat applied from the contact portion 420 or the heating device may be transmitted. It may be configured to be convected through the cavity 412 and transferred to the heat transfer plate 410. Accordingly, the heat of the heating device is configured to be transmitted to the thermoelectric element 400 through direct contact with the contact portion 420 and indirectly through the cavity portion 412 at the same time.
냉각 플레이트(200)의 배면은 열전소자(400) 상면에 위치하고, 냉각 플레이트(200) 상면에는 냉각 유닛(300)을 포함하도록 구성된다. 냉각 유닛(300)은 적어도 하나 이상의 형상을 갖는 다수의 냉각핀으로 구성된다. 더 바람직하게, 냉각 유닛(300)은 구동모터(600)가 안착되는 위치와 인접하여 위치하는 제 1냉각부(210)와 제 1냉각부(210) 외주면에 이격되어 냉각 플레이트(200)의 최외곽으로 연장되도록 구성되는 제 2냉각부(220)로 구분된다. 더 바람직하게, 제 1냉각부(210)는 상대적으로 제 2냉각부(220)보다 높이가 낮은 플레이트 형상으로 구성될 수 있다.The back of the cooling plate 200 is located on the upper surface of the thermoelectric element 400, and the upper surface of the cooling plate 200 is configured to include a cooling unit 300. The cooling unit 300 is composed of a plurality of cooling fins having at least one or more shapes. More preferably, the cooling unit 300 is spaced apart from the first cooling unit 210 located adjacent to the position where the drive motor 600 is seated and the outer peripheral surface of the first cooling unit 210, so as to be at the maximum of the cooling plate 200. It is divided into a second cooling unit 220 that extends to the outside. More preferably, the first cooling unit 210 may be configured in a plate shape with a height relatively lower than that of the second cooling unit 220.
열전소자(400)는 외부 열원으로서 난방기구에서 발생하는 복사열 혹은 대류열을 이용하여 전기로 전환하게 된다. 즉, 열전소자(400)는 외부 열원으로부터 직접 또는 간접적으로 열전달 플레이트(410)를 통해 열을 전달받도록 구성되고, 열전소자(400)를 감싸도록 동일 평면상에 위치하는 단열소재(1000)를 포함한다. 더욱이, 열전소자(400)의 상단에는 냉각 플레이트(200)가 위치하여 열전소자(400)의 상면과 배면의 온도차를 인가하고, 이를 통해 열전소자(400)로부터 전기를 생성하도록 구성된다.The thermoelectric element 400 is an external heat source that uses radiant heat or convection heat generated from a heating device to convert it into electricity. That is, the thermoelectric element 400 is configured to receive heat directly or indirectly from an external heat source through the heat transfer plate 410, and includes an insulating material 1000 positioned on the same plane to surround the thermoelectric element 400. do. Furthermore, a cooling plate 200 is located on the top of the thermoelectric element 400 to apply a temperature difference between the top and back surfaces of the thermoelectric element 400 and generate electricity from the thermoelectric element 400 through this.
더욱이, 열전소자(400)는 제베크효과 즉, 2종류 금속의 양끝을 접속하여, 그 양끝 온도를 다르게 하면 기전력이 생기는 효과를 기초로 전기를 생성하는 것이며, 열전소자(400)의 하부는 열전달부(100)를 통해 전달되는 난방기구의 열에너지에 의해 가열되고, 반대쪽은 냉각 플레이트(200)를 통해 방열함에 따라 열전달부(100)의 높이 방향을 따라 분포되는 온도차이를 이용한다.Moreover, the thermoelectric element 400 generates electricity based on the Seebeck effect, that is, the effect of connecting both ends of two types of metal and creating an electromotive force when the temperatures of both ends are different, and the lower part of the thermoelectric element 400 is used for heat transfer. It is heated by the thermal energy of the heating device transmitted through the unit 100, and the opposite side uses the temperature difference distributed along the height direction of the heat transfer unit 100 as heat is radiated through the cooling plate 200.
또한, 열전소자(400)로부터 생성된 전기 에너지를 저장하는 배터리(800)를 더 포함할 수 있으며, 구동모터(600)의 회전양을 제어하기 위한 제어부(700)가 마련될 수 있다. 제어부(700)는 배터리(800)에 충전된 전원을 구동모터(600)로 공급하여 구동모터(600)를 구동할 수 있다.In addition, a battery 800 that stores electrical energy generated from the thermoelectric element 400 may be further included, and a control unit 700 may be provided to control the amount of rotation of the drive motor 600. The control unit 700 may drive the driving motor 600 by supplying the power charged in the battery 800 to the driving motor 600.
더 바람직하게, 제어부(700)는 열전소자(400)로부터 생성되는 전력의 양을 측정할 수 있도록 구성되고, 구동모터(600)의 회전량을 제어하도록 구성될 수 있다. 더욱이, 제어부(700)는 열전소자(400)로부터 출력되는 전력의 양이 제어부(700)에 설정된 전력 양보다 큰 경우, 소정의 전력을 배터리(800)로 통전하여 상기 배터리(800)의 충전을 수행하도록 구성될 수 있다. 뿐만 아니라, 제어부(700)는 배터리(800)의 충전량을 판단하여, 열전소자(400)로부터 발생되는 전력을 통해 배터리(800)의 충전 또는 배터리(800)에 저장된 전력을 이용하여 구동모터(600)의 회전량을 증대할 수 있도록 구성된다.More preferably, the control unit 700 may be configured to measure the amount of power generated from the thermoelectric element 400 and to control the rotation amount of the driving motor 600. Moreover, when the amount of power output from the thermoelectric element 400 is greater than the amount of power set in the control unit 700, the control unit 700 supplies a predetermined amount of power to the battery 800 to charge the battery 800. It can be configured to perform. In addition, the control unit 700 determines the charge amount of the battery 800 and charges the battery 800 through the power generated from the thermoelectric element 400 or uses the power stored in the battery 800 to drive the drive motor 600. ) is configured to increase the amount of rotation.
또한, 제어부(700)는 열전소자(500) 상단에 위치하는 적어도 하나 이상의 온도 센서(1100)로부터 측정되는 온도 정보를 수신한다. 수신된 온도 정보가 제어부(700)에 설정된 온도보다 큰 경우 구동모터(600)의 회전력을 상승시켜 커버유닛(500) 내측을 따라 하강기류를 보다 강하게 형성하도록 구성된다.Additionally, the control unit 700 receives temperature information measured from at least one temperature sensor 1100 located on top of the thermoelectric element 500. If the received temperature information is greater than the temperature set in the control unit 700, the rotational force of the drive motor 600 is increased to form a stronger downward airflow along the inside of the cover unit 500.
더욱이, 제어부(700)는 구동모터(600)로 인가되는 구동력이 온도 센서(1100)로부터 측정된 온도 정보에 대응하여 설정된 구동력 이하인 경우, 배터리(800)의 방전을 수행하여 구동모터(600)의 회전력을 증대하도록 구성될 수 있다. Moreover, when the driving force applied to the driving motor 600 is less than or equal to the driving force set in response to the temperature information measured from the temperature sensor 1100, the control unit 700 performs discharging of the battery 800 to drive the driving motor 600. It may be configured to increase rotational force.
이처럼, 제어부(700)는 열전소자(400)로부터 발생되는 전력 양을 기반으로 배터리(800)의 충전을 수행할 수 있으며, 커버유닛(500) 또는 냉각 유닛(300)에 위치하는 온도 센서(1100)로 측정되는 온도가 설정 온도보다 큰 경우 회전팬(900)의 회전량을 증대하도록 제어를 수행할 수 있다.In this way, the control unit 700 can charge the battery 800 based on the amount of power generated from the thermoelectric element 400, and the temperature sensor 1100 located in the cover unit 500 or the cooling unit 300. ) If the temperature measured is greater than the set temperature, control can be performed to increase the rotation amount of the rotating fan 900.
본 발명의 일 실시예에서, 제어부(700)는 배터리(800) 충전량을 고려하기 이전에 구동모터(600)의 회전량을 선행하여 고려하도록 판단될 수 있다. 따라서, 커버유닛(500)에 위치하는 온도센서가 설정 온도보다 큰 경우, 열전소자(400)를 통해 구동모터(600)로 전력이 인가되고, 추가적인 전기 에너지가 요구되는 경우, 배터리(800)의 충전량을 고려하지 않고 상기 배터리(800)를 통해 구동모터(600)로 전력이 인가되도록 제어될 수 있다. 따라서, 제어부(700)는 구동모터(600)의 회전량 제어를 우선순위로 고려하며, 구동모터(600)의 회전량 제어가 필요하지 않는 경우, 배터리(800)의 충전량을 기반으로 상기 배터리(800)의 충전을 수행하도록 열전소자(400)로부터 생산되는 전기 에너지를 제어하도록 구성된다.In one embodiment of the present invention, the control unit 700 may determine to consider the rotation amount of the driving motor 600 before considering the charge amount of the battery 800. Therefore, when the temperature sensor located in the cover unit 500 is greater than the set temperature, power is applied to the driving motor 600 through the thermoelectric element 400, and when additional electrical energy is required, the battery 800 Power can be controlled to be applied to the driving motor 600 through the battery 800 without considering the amount of charge. Therefore, the control unit 700 considers control of the rotation amount of the driving motor 600 as a priority, and when control of the rotation amount of the driving motor 600 is not necessary, the battery ( It is configured to control the electrical energy produced from the thermoelectric element 400 to perform charging of the device 800.
이처럼, 제어부(700)는 커버부(510) 상단 또는 냉각 유닛(300) 표면에 위치하는 온도 센서(1100)로부터 측정되는 온도가 설정온도보다 큰 경우, 열전소자(400) 및/또는 배터리(800)를 통해 모터의 회전량을 상승하도록 구성되는바, 커버부(510)에 인접한 공기의 온도 상승 여부를 선행하여 판단하고, 회전팬(900)의 구동을 통해 높은 온도의 공기를 하향이동하도록 구성된다.In this way, when the temperature measured from the temperature sensor 1100 located on the top of the cover part 510 or the surface of the cooling unit 300 is greater than the set temperature, the control unit 700 operates the thermoelectric element 400 and/or the battery 800. ) is configured to increase the rotation amount of the motor, and is configured to determine in advance whether the temperature of the air adjacent to the cover part 510 has increased, and to move the high temperature air downward by driving the rotating fan 900. do.
커버유닛(500)은 냉각 플레이트(200)와 체결되어 하나 또는 다수의 플레이트로 구성되는 커버부(510)를 포함하고, 커버부(510)는 상기 냉각 플레이트(200)의 외측면을 감싸도록 구성될 수 있으며, 또는 냉각 플레이트(200) 외측 상면에 위치하도록 구성될 수 있다. The cover unit 500 includes a cover portion 510 coupled to the cooling plate 200 and composed of one or multiple plates, and the cover portion 510 is configured to surround the outer surface of the cooling plate 200. It may be configured to be located on the outer upper surface of the cooling plate 200.
커버부(510)는 하나 또는 각각의 플레이트가 독립적으로 탈착 가능하도록 구성되고, 냉각 플레이트(200) 상면에 일단이 고정되고 타단이 커버부(510) 내측에 고정되는 플린지(520)를 통해 고정될 수 있다. 본 발명의 또 다른 실시예에서 커버부(510)는 원통 형상으로 구성되어 냉각 팬을 감싸도록 일체로 구성될 수 있다. 또한, 플린지(520)는 냉각 플레이트(200)와 체결되고, 냉각 플레이트(200) 상면에 위치하는 가이드홈(230) 내측에 적어도 일부가 삽입되어 위치되도록 구성되는바, 커버부(510) 및 플린지(520)의 유동을 방지할 수 있다.The cover part 510 is configured so that one or each plate is independently detachable, and is fixed through a flange 520, one end of which is fixed to the upper surface of the cooling plate 200 and the other end of which is fixed to the inside of the cover part 510. It can be. In another embodiment of the present invention, the cover portion 510 may be configured in a cylindrical shape to integrally surround the cooling fan. In addition, the flanges 520 are fastened to the cooling plate 200 and are configured to be at least partially inserted and positioned inside the guide groove 230 located on the upper surface of the cooling plate 200, and the cover portion 510 and It is possible to prevent the flanges 520 from flowing.
커버부(510)의 하단은 열전달 플레이트(410)의 절곡 영역(411)과 마주하도록 구성되고, 열전달 플레이트(410)의 절곡 영역(411)과 높이 방향을 따라 소정의 간격을 갖도록 상기 커버부(510)가 위치된다. 따라서, 커버부(510) 내측에 고온의 공기가 커버부(510)와 열전달 플레이트(410) 사이에 형성되는 간극을 따라 외부로 배출되도록 구성된다. The lower end of the cover part 510 is configured to face the bent area 411 of the heat transfer plate 410, and the cover part ( 510) is located. Accordingly, the high temperature air inside the cover part 510 is configured to be discharged to the outside along the gap formed between the cover part 510 and the heat transfer plate 410.
더욱이, 커버부(510)의 하단 일부 영역에 구성되고 커버부의 상단과 비교하여, 높이방향을 따라 커버부(510)의 아래로 갈수록 단면이 넓어지도록 구성되는 유동부(511)를 포함할 수 있다. 더 바람직하게 유동부(511)는 커버부(510)의 하단의 높이 방향 일부 영역에 상기 커버부(510)와 일체로 구성될 수 있으며, 커버부(510)와 열전달 플레이트(410) 사이 공간을 보다 확장하여 상기 커버부 내측을 따라 유동되는 공기가 상기 유동부(511)를 통해 하향이동되도록 유동 성능을 증대할 수 있다. 더욱이, 유동부는 상기 절곡 영역(411)과 대응되는 형태로 구성될 수 있다.Moreover, it may include a moving part 511 that is formed in a portion of the lower part of the cover part 510 and whose cross-section becomes wider as it goes downward of the cover part 510 in the height direction compared to the top of the cover part. . More preferably, the moving part 511 may be formed integrally with the cover part 510 in a portion of the height direction at the bottom of the cover part 510, and may form a space between the cover part 510 and the heat transfer plate 410. By extension, the flow performance can be increased so that the air flowing along the inside of the cover part moves downward through the flow part 511. Moreover, the moving part may be configured in a shape corresponding to the bending area 411.
도 3에서는 냉각 플레이트(200)의 사시도를 도시하고 있으며, 도 4에서는 냉각 플레이트(200)의 상면도 및 도 5에서는 냉각 플레이트(200)의 측면도를 도시하고 있다.Figure 3 shows a perspective view of the cooling plate 200, Figure 4 shows a top view of the cooling plate 200, and Figure 5 shows a side view of the cooling plate 200.
냉각 유닛(300)을 포함하는 냉각 플레이트(200)는 열전소자(400) 상단에 위치하도록 구성되고, 냉각 플레이트(200) 상면에는 상기 냉각 플레이트(200)에 고정되는 구동모터(600)를 포함한다. The cooling plate 200 including the cooling unit 300 is configured to be located on top of the thermoelectric element 400, and includes a drive motor 600 fixed to the cooling plate 200 on the upper surface of the cooling plate 200. .
냉각 플레이트(200)에 위치하는 냉각 유닛(300)은 위치에 따라 구동모터(600) 하단과 인접하여 위치하는 제 1냉각부(210), 제 1냉각부(210) 외측을 따라 상기 냉각 플레이트(200)의 상면의 외곽으로 연장되는 제 2냉각부(220)을 포함한다.The cooling unit 300 located on the cooling plate 200 includes a first cooling unit 210 located adjacent to the bottom of the driving motor 600 depending on the location, and a cooling plate along the outside of the first cooling unit 210 ( It includes a second cooling unit 220 extending to the outside of the upper surface of the 200).
본 발명의 일 실시예로서, 제 1냉각부(210)는 서로 직교 형태로 구성되는 냉각핀들이 중첩된 상태로 배치될 수 있다. 더 바람직하게, 제 1방향을 따라 형성되는 냉각핀과 제 2방향을 따라 형성되는 냉각핀이 서로 일체로 구성되거나 분리된 'ㄱ' 형상 또는 'ㄴ'형상을 갖는 냉각핀이 서로 인접하여 중첩되어 위치될 수 있다. 또한, 냉각 플레이트(200) 상면을 기준으로 제 1방향과 제 2방향을 따라 일체로 형성되는 다수의 냉각핀 그룹이 제 1방향 축 대칭, 제 2방향 축 대칭 및 냉각 플레이트(200) 원점 대칭을 이루도록 구성되어 제 1냉각부(210)을 형성된다. 따라서, 제 1냉각부(210)는 다수의 냉각핀 그룹이 원점을 중심으로 4개의 대칭 영역을 이루도록 구성될 수 있다. As an embodiment of the present invention, the first cooling unit 210 may be arranged with cooling fins configured in a perpendicular form overlapping each other. More preferably, the cooling fins formed along the first direction and the cooling fins formed along the second direction are integrated with each other, or cooling fins having a separate 'ㄱ' shape or 'ㄴ' shape are adjacent to and overlap each other. can be located In addition, a plurality of cooling fin groups formed integrally along the first and second directions with respect to the upper surface of the cooling plate 200 are axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate 200. It is configured to form the first cooling unit 210. Accordingly, the first cooling unit 210 may be configured so that a plurality of cooling fin groups form four symmetrical areas around the origin.
본 발명의 또 다른 실시예로서, 제 1냉각부(210)는 냉각 플레이트(200)의 방사 방향을 따라 연장되도록 구성될 수 있다. 이는 하기 도 8에서 이하 설명하도록 하겠다.As another embodiment of the present invention, the first cooling unit 210 may be configured to extend along the radial direction of the cooling plate 200. This will be explained below in Figure 8.
제 2냉각부(220)는 제 1냉각부(210)의 외측면에 소정의 간격만큼 이격되어 위치될 수 있다. 더 바람직하게, 제 2냉각부(220)는 제 1냉각부(210)의 외측으로부터 냉각 플레이트(200)의 외곽부와 인접한 영역까지 연장되도록 구성될 수 있다.The second cooling unit 220 may be positioned on the outer surface of the first cooling unit 210 at a predetermined distance. More preferably, the second cooling unit 220 may be configured to extend from the outside of the first cooling unit 210 to an area adjacent to the outer portion of the cooling plate 200.
본 발명의 일 실시예에서 제 2냉각부(220)는 제 1냉각부(210)로부터 이격되어 냉각 플레이트(200) 외측으로 일체로 연장되는 냉각핀을 포함할 수 있으며, 가이드부와 중첩되는 위치에 형성되는 냉각핀은 적어도 2개 이상의 냉각핀으로 분리되어 위치될 수 있다. 더 바람직하게, 제 2냉각부(220)를 구성하는 다수의 냉각핀은 냉각 플레이트(200)의 방사 방향을 따라 연장될 수 있으며, 또는 다수의 냉각핀은 제 1방향 또는/및 제 2방향을 따라 서로 직교한 형태로 상기 냉각 플레이트(200) 상면에 제 1방향 축 대칭, 제 2방향 축 대칭 및 냉각 플레이트(200) 원점 대칭 되도록 위치될 수 있다.In one embodiment of the present invention, the second cooling unit 220 may include cooling fins that are spaced apart from the first cooling unit 210 and integrally extend to the outside of the cooling plate 200, and are located at a position overlapping with the guide unit. The cooling fins formed may be positioned separately into at least two or more cooling fins. More preferably, the plurality of cooling fins constituting the second cooling unit 220 may extend along the radial direction of the cooling plate 200, or the plurality of cooling fins may extend in the first direction and/or the second direction. Accordingly, they may be positioned at right angles to each other on the upper surface of the cooling plate 200 to be axially symmetrical in the first direction, axially symmetrical in the second direction, and symmetrical to the origin of the cooling plate 200.
더욱이, 제 2냉각부(220)를 형성하는 냉각핀은 제 2냉각부(220)의 방사 방향을 따라 연장되도록 구성되는 주 냉각핀(221)과 주 냉각핀(221) 사이에 형성되어 상대적으로 주 냉각핀(221)보다 짧은 길이를 형성하는 보조 냉각핀(222)으로 구성될 수 있다.Moreover, the cooling fins forming the second cooling unit 220 are formed between the main cooling fins 221 and the main cooling fins 221, which are configured to extend along the radial direction of the second cooling unit 220, and are relatively It may be composed of auxiliary cooling fins 222 that have a shorter length than the main cooling fins 221.
주 냉각핀(221)의 경우, 길이 방향을 따라 분할된 두개의 냉각핀의 결합으로 구성될 수 있으며, 본 발명의 다른 실시예에서 주 냉각핀(221)은 두개의 냉각핀의 결합을 통해 구성될 수 있다.In the case of the main cooling fin 221, it may be configured by combining two cooling fins divided along the longitudinal direction. In another embodiment of the present invention, the main cooling fin 221 is configured by combining two cooling fins. It can be.
본 발명이 일 실시예로서, 제 2냉각핀(220)의 주 냉각핀(221)은 상기 냉각 플레이트(200)의 최외곽부에서 중심 방향으로 냉각 플레이트(200) 반지름의 50~80%만큼의 길이를 갖도록 구성되고, 보조 냉각핀(222)은 냉각 플레이트(200)의 최외곽부에서 중심방향을 따라 주 냉각핀(221)의 50~80%만큼의 길이를 갖도록 구성된다.As an embodiment of the present invention, the main cooling fin 221 of the second cooling fin 220 is 50 to 80% of the radius of the cooling plate 200 in the direction from the outermost part of the cooling plate 200 to the center. It is configured to have a length, and the auxiliary cooling fin 222 is configured to have a length equal to 50 to 80% of the main cooling fin 221 along the center direction from the outermost part of the cooling plate 200.
더욱이, 주 냉각핀(221)과 보조 냉각핀(222)은 고정홈(250)들을 둘레를 감싸도록 구성되는 유동홈을 기준으로 냉각 플레이트(200)의 방사방향을 기준으로 2개의 냉각핀으로 분리되어 위치될 수 있다. 더욱이, 유동홈을 포함하는 냉각 플레이트(200) 상의 주 냉각핀(221)과 보조 냉각핀(222)의 길이는 유동홈을 제외한 냉각 플레이트(200) 방사 방향의 길이를 의미할 수 있다.Moreover, the main cooling fin 221 and the auxiliary cooling fin 222 are separated into two cooling fins based on the radial direction of the cooling plate 200 with respect to the flow groove configured to surround the fixed grooves 250. and can be located. Furthermore, the length of the main cooling fins 221 and the auxiliary cooling fins 222 on the cooling plate 200 including the flow grooves may mean the length in the radial direction of the cooling plate 200 excluding the flow grooves.
제 1냉각부(210)와 제 2냉각부(220) 사이에 이격된 공간에는 구동모터(600)가 체결되도록 구성되는 체결부(240)를 포함하여 위치될 수 있다. 더 바람직하게, 제 1냉각부(210)는 구동모터(600)의 배면과 인접하여 위치할 수 있는바, 구동모터(600)의 배면으로부터 발생되는 구동열을 냉각시키는 기능을 수행할 수 있다. 따라서, 체결부(240)는 제 1냉각부(210)와 인접한 위치에 구성되고, 구동모터(600)의 배면은 제 1냉각부(210)와 높이 방향을 따라 서로 인접하여 위치될 수 있다. 더 바람직하게, 냉각 플레이트(200)의 최외곽 끝단은 열전달 플레이트(410)의 끝단으로부터 3~20mm만큼 내측으로 이격되어 위치될 수 있다The space spaced between the first cooling unit 210 and the second cooling unit 220 may include a fastening part 240 configured to fasten the driving motor 600. More preferably, the first cooling unit 210 may be located adjacent to the back of the drive motor 600, and may function to cool the drive heat generated from the back of the drive motor 600. Accordingly, the fastening part 240 may be located adjacent to the first cooling unit 210, and the rear surface of the drive motor 600 may be located adjacent to the first cooling unit 210 along the height direction. More preferably, the outermost end of the cooling plate 200 may be positioned at a distance of 3 to 20 mm inward from the end of the heat transfer plate 410.
가이드홈(230)은 냉각 플레이트(200) 상면에 적어도 하나 이상 위치될 수 있으며, 플린지(520)의 배면의 높이 방향의 적어도 일부가 상기 가이드홈(230)에 삽입되어 위치될 수 있다. 더욱이, 플린지(520)의 내측 일단은 냉각 플레이트(200)의 상면에 형성되는 고정홈(250)에 의해 고정될 수 있으며, 외측 일단은 커버부(510)와 체결될 수 있다. 더 바람직하게, 고정홈(250)에 고정된 플린지(520) 일단은 고정홈(250) 내측으로 체결되는 볼트에 의해 고정될 수 있다. 이처럼, 플린지(520)와 가이드홈(230)은 서로 대응되는 위치에 형성되고, 커버부(510)는 플린지(520) 수와 대응되도록 구성될 수 있다.At least one guide groove 230 may be located on the upper surface of the cooling plate 200, and at least a portion of the rear surface of the flanges 520 in the height direction may be inserted into the guide groove 230. Furthermore, the inner end of the flange 520 may be fixed by the fixing groove 250 formed on the upper surface of the cooling plate 200, and the outer end may be fastened to the cover portion 510. More preferably, one end of the flange 520 fixed to the fixing groove 250 may be fixed by a bolt fastened to the inside of the fixing groove 250. In this way, the flanges 520 and the guide grooves 230 are formed at positions corresponding to each other, and the cover portion 510 can be configured to correspond to the number of flanges 520.
또한, 제 2냉각부(220)는 고정홈(250)들이 위치하는 둘레를 따라 유동홈을 포함할 수 있는바, 유동홈은 제 2냉각부(220)를 따라 유동되는 공기의 흐름을 증대시킬 수 있다. 따라서, 제 2냉각부(220)는 고정홈(250)의 둘레에 형성되는 유동홈에 의해 냉각 성능이 강화되는 효과를 포함한다.In addition, the second cooling unit 220 may include flow grooves along the periphery of the fixing grooves 250, and the flow grooves may increase the flow of air flowing along the second cooling unit 220. You can. Accordingly, the second cooling unit 220 has the effect of enhancing cooling performance by the flow groove formed around the fixing groove 250.
가이드홈(230)이 위치하는 냉각 플레이트(200)의 상면에는 가이드홈(230)과 중첩되지 않는 위치에 구성되는 제 2냉각부(220)를 포함할 수 있으며, 제 2냉각부(220)는 도시된 바와 같이, 방사방향을 따라 냉각 플레이트(200)의 끝단을 따라 연장되도록 구성된다. 더 바람직하게, 제 2냉각부(220)는 냉각 플레이트(200)의 최외곽으로 연장되고, 냉각 플레이트(200)의 최외곽 끝단은 열전달 플레이트(410)의 테두리에 형성되는 절곡 영역(411) 내측단과 일치하는 위치에 구성될 수 있다.The upper surface of the cooling plate 200 where the guide groove 230 is located may include a second cooling part 220 configured at a position that does not overlap the guide groove 230, and the second cooling part 220 is As shown, it is configured to extend along the end of the cooling plate 200 along the radial direction. More preferably, the second cooling unit 220 extends to the outermost part of the cooling plate 200, and the outermost end of the cooling plate 200 is inside the bent area 411 formed on the edge of the heat transfer plate 410. It can be configured in a position that matches the stage.
도 6내지 도 7에서는 열전달 플레이트(410)를 도시하고 있는바, 접촉부(420) 외곽에 형성되는 공동부(412)와 공동부(412)를 구성하도록 형성되는 하향 절곡 영역(411)을 도시한다.6 to 7 show the heat transfer plate 410, showing a cavity 412 formed outside the contact portion 420 and a downwardly bent area 411 formed to form the cavity 412. .
도시된 바와 같이, 열전달부(100)는 열원으로서 난방기구와 접하여 위치하는 원형의 접촉부(420)를 포함한다. 더욱이 열전달부(100)는 열전달 플레이트(410)로서 접촉부(420)의 외곽으로 연장되어 형성되는 구성을 포함한다. As shown, the heat transfer unit 100 includes a circular contact part 420 positioned in contact with a heating device as a heat source. Moreover, the heat transfer part 100 includes a heat transfer plate 410 that extends to the outside of the contact part 420.
접촉부(420)의 외곽에 형성되는 열전달 플레이트(410)는 높이 방향을 따라 하향 절곡되는 형상을 포함하고, 접촉부(420)의 측면과 하향 절곡된 열전달 플레이트(410)는 공동부(412)를 형성할 수 있다. 공동부(412)는 열원과 인접한 위치에 형성될 수 있는바, 열전소자(400)로 열이 보다 효율적으로 전달될 수 있도록 구성된다. 즉, 접촉부(420)를 통해 열전도가 이루어짐과 동시에 공동부(412)로 유입되는 열을 통해 대류 형태로 열전소자(400)로 열이 전달될 수 있도록 구성된다. 또한 공동부(412)는 난로에서 발생한 열이 직접 냉각 플레이트(200)에 전달되는 것을 방지함으로서, 열전소자(400)의 발전 전압을 증가시켜 주는 역할을 수행할 수 있도록 구성된다.The heat transfer plate 410 formed on the outside of the contact part 420 has a shape bent downward along the height direction, and the side of the contact part 420 and the heat transfer plate 410 bent downward form a cavity 412. can do. The cavity 412 may be formed adjacent to the heat source and is configured to transfer heat to the thermoelectric element 400 more efficiently. That is, it is configured so that heat conduction occurs through the contact portion 420 and at the same time, heat can be transferred to the thermoelectric element 400 in a convection form through heat flowing into the cavity 412. In addition, the cavity 412 is configured to prevent heat generated from the stove from being directly transferred to the cooling plate 200, thereby increasing the generated voltage of the thermoelectric element 400.
더욱이, 열전달 플레이트(410)의 최외곽은 냉각 플레이트(200)와 측면으로부터 측면 방향을 따라 돌출되도록 구성되는바, 돌출된 열전달 플레이트(410)는 하향 절곡 형상(411)을 갖는다. 따라서 구동모터(600)의 회전에 따라 회전팬(900)이 회전되는 경우 커버부(510) 내측에 고온의 공기가 하향 이동되고, 열전달 플레이트(410)의 하향 절곡 형상(411)을 따라 커버부(510) 하단 외측으로 배출되도록 구성된다. 더 바람직하게, 커버부(510)와 열전달 플레이트(410)의 하향 절곡 영역(411) 사이에는 소정의 간극을 포함하고, 하향 이동된 공기가 상기 간극을 통해 커버부(510)의 하단 외측을 따라 순환되도록 구성된다.Moreover, the outermost part of the heat transfer plate 410 is configured to protrude from the side of the cooling plate 200 along the lateral direction, and the protruding heat transfer plate 410 has a downwardly bent shape 411. Therefore, when the rotary fan 900 rotates according to the rotation of the drive motor 600, high temperature air moves downward inside the cover part 510, and the cover part 411 follows the downward bending shape of the heat transfer plate 410. (510) It is configured to be discharged to the outside of the bottom. More preferably, there is a predetermined gap between the cover part 510 and the downward bending area 411 of the heat transfer plate 410, and the downwardly moved air flows along the outer bottom of the cover part 510 through the gap. It is configured to circulate.
도 8은 본 발명의 또 다른 실시예로서, 제 1냉각부(210)에 위치하는 냉각핀이 냉각 플레이트(200)의 방사방향을 따라 위치되는 구성을 도시하고 있다.Figure 8 is another embodiment of the present invention, showing a configuration in which cooling fins located in the first cooling unit 210 are located along the radial direction of the cooling plate 200.
본 발명의 또 다른 실시예는, 도 1 내지 2에 개시된 열전달부(100), 냉각 플레이트(200), 구동모터(600), 커버유닛(500)을 모두 포함하고 있으며, 구동모터(600)의 구동력은 제어부(700)에 의해 제어되도록 구성된다.Another embodiment of the present invention includes all of the heat transfer unit 100, cooling plate 200, drive motor 600, and cover unit 500 disclosed in FIGS. 1 and 2, and the drive motor 600 The driving force is configured to be controlled by the control unit 700.
다만, 상기 도 1 내지 2에 개시된 일 실시예와의 차이로서, 제 1냉각부(210)는 원형의 냉각 플레이트(200) 방사 방향을 따라 연장되도록 구성될 수 있다. 더욱이, 제 1냉각부(210)에 형성되는 방사방향 냉각핀과 대응되는 위치에 제 2냉각부(220)의 냉각핀이 위치될 수 있다.However, as a difference from the embodiment disclosed in FIGS. 1 and 2, the first cooling unit 210 may be configured to extend along the radial direction of the circular cooling plate 200. Moreover, the cooling fins of the second cooling unit 220 may be located in positions corresponding to the radial cooling fins formed in the first cooling unit 210.
더욱이, 제 1냉각부(210)는 열전소자(400)로부터 인가되는 열을 냉각함과 동시에, 구동모터(600)의 배면에 위치되어 구동모터(600)로부터 발생되는 열을 외부로 방출할 수 있는 기능을 수행한다.Moreover, the first cooling unit 210 cools the heat applied from the thermoelectric element 400 and is located on the rear of the drive motor 600 to radiate heat generated from the drive motor 600 to the outside. performs its function.
이처럼, 본 발명의 무동력 공기 순환장치는 냉각 플레이트(200)에 형성되는 다수의 냉각부를 통해 열전소자(400)의 상면을 상대적으로 냉각시켜 열전소자(400)로부터 생성되는 전기 에너지의 효율을 최적화할 수 있으며, 제어부(700)를 커버부(510) 상단의 온도를 기반으로 회전팬(900)의 구동속도를 제어하여 보다 효율적인 열 서큘레이션이 구동되도록 구성된다.In this way, the non-powered air circulation device of the present invention relatively cools the upper surface of the thermoelectric element 400 through a plurality of cooling parts formed on the cooling plate 200 to optimize the efficiency of the electrical energy generated from the thermoelectric element 400. The control unit 700 is configured to control the driving speed of the rotating fan 900 based on the temperature of the top of the cover unit 510 to drive more efficient heat circulation.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 기술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 기술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is illustrative of the present invention. Additionally, the foregoing is intended to illustrate preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications can be made within the scope of the concept of the invention disclosed in this specification, a scope equivalent to the disclosed content, and/or within the scope of technology or knowledge in the art. The described embodiments illustrate the best state for implementing the technical idea of the present invention, and various changes required for specific application fields and uses of the present invention are also possible. Accordingly, the detailed description of the invention above is not intended to limit the invention to the disclosed embodiments. Additionally, the appended claims should be construed to include other embodiments as well.
[부호의 설명][Explanation of symbols]
100: 열전달부100: heat transfer unit
200: 냉각 플레이트200: cooling plate
210: 제 1냉각부210: first cooling unit
220: 제 2냉각부220: Second cooling unit
221: 주 냉각핀221: main cooling fin
222: 보조 냉각핀222: Auxiliary cooling fin
230: 가이드홈230: Guide home
240: 체결부240: fastening part
250: 고정홈250: Fixed groove
300: 냉각 유닛300: cooling unit
400: 열전소자400: thermoelectric element
410: 열전달 플레이트410: heat transfer plate
411: 하향 절곡 영역411: downward bending area
412: 공동부412: Common department
420: 접촉부420: contact part
500: 커버유닛500: Cover unit
510: 커버부510: Cover part
511: 유동부511: floating part
520: 플린지520: Plunge
600: 구동모터600: Drive motor
700: 제어부700: Control unit
800: 배터리800: Battery
900: 회전팬900: Rotating fan
1000: 단열소재1000: Insulating material
1100: 온도 센서1100: Temperature sensor

Claims (18)

  1. 열을 발생하는 난방기구에 안착되어 상기 난방기구로부터 발생하는 열을 전달하는 열전달부;A heat transfer unit that is mounted on a heat-generating heating device and transfers heat generated from the heating device;
    상기 열전달부의 상부에 설치되며, 열에 의해 전기를 발생하는 열전소자;A thermoelectric element installed on top of the heat transfer unit and generating electricity by heat;
    상기 열전소자 상부에 위치하여 상기 열전소자의 상단부를 냉각하기 위한 적어도 하나 이상의 냉각 유닛을 포함하는 냉각 플레이트;a cooling plate located above the thermoelectric element and including at least one cooling unit for cooling an upper end of the thermoelectric element;
    상기 열전소자에서 생성된 전원을 통해 구동하는 구동모터;A driving motor driven by power generated from the thermoelectric element;
    상기 구동모터에 의해 회전하면서 공기를 강제로 대류시키는 회전팬; 및 a rotating fan that forcibly convects air while rotating by the drive motor; and
    상기 회전팬을 적어도 일부를 감싸도록 구성되고, 상기 냉각 플레이트와 체결되는 커버유닛;를 포함하고,A cover unit configured to surround at least a portion of the rotating fan and fastened to the cooling plate,
    상기 열전달부는 상기 난방기구와 접촉되는 접촉부와 상기 접촉부와 상기 열전소자 사이에 위치하고, 상기 접촉부 외측으로 연장되는 열전달 플레이트로 구성되는 무동력 공기 순환장치.The heat transfer unit is a non-powered air circulation device consisting of a contact part in contact with the heating device and a heat transfer plate located between the contact part and the thermoelectric element and extending outside the contact part.
  2. 제 1항에 있어서,According to clause 1,
    상기 냉각 유닛은, The cooling unit is,
    상기 구동모터의 하면에 위치하는 제 1냉각부; 및a first cooling unit located on the lower surface of the driving motor; and
    상기 제 1냉각부 외측에 상기 냉각 플레이트의 외측을 따라 연장되는 제 2냉각부;를 포함하는 무동력 공기 순환장치.A non-powered air circulation device comprising: a second cooling unit extending along an outside of the cooling plate outside the first cooling unit.
  3. 제 2항에 있어서,According to clause 2,
    상기 제 1냉각부 및 제 2냉각부는 상기 냉각 플레이트를 따라 방사방향으로 연장되도록 구성되는 무동력 공기 순환장치.The first cooling unit and the second cooling unit are configured to extend radially along the cooling plate.
  4. 제 3항에 있어서,According to clause 3,
    상기 제 2냉각부는 방사방향을 따라 연장되는 주 냉각핀;The second cooling unit includes main cooling fins extending in a radial direction;
    상기 주 냉각핀의 사이에 형성되어, 상기 주 냉각핀보다 상대적으로 짧은 길이를 갖는 보조 냉각핀;을 포함하는 무동력 공기 순환장치.A non-powered air circulation device including; an auxiliary cooling fin formed between the main cooling fins and having a relatively shorter length than the main cooling fins.
  5. 제 4항에 있어서,According to clause 4,
    상기 주 냉각핀은,The main cooling fin is,
    상기 방사방향을 따라 적어도 하나 이상의 냉각핀으로 구성되는 무동력 공기 순환장치.A non-powered air circulation device comprising at least one cooling fin along the radial direction.
  6. 제 4항에 있어서,According to clause 4,
    상기 제 2냉각핀의 주 냉각핀은 상기 냉각 플레이트의 최외곽부에서 중심 방향으로 상기 냉각 플레이트 반지름의 50~80%만큼의 길이를 갖도록 구성되고, The main cooling fin of the second cooling fin is configured to have a length of 50 to 80% of the radius of the cooling plate from the outermost part of the cooling plate toward the center,
    상기 보조 냉각핀은 상기 냉각 플레이트의 최외곽부에서 중심 방향을 따라 주 냉각핀의 50~80%만큼의 길이를 갖도록 구성되는 무동력 공기 순환장치.The auxiliary cooling fin is a non-powered air circulation device configured to have a length of 50 to 80% of the main cooling fin along the center direction from the outermost part of the cooling plate.
  7. 제 1항에 있어서,According to clause 1,
    상기 열전달 플레이트의 테두리는 높이 방향을 기준으로 하향 절곡되도록 구성되는 무동력 공기 순환장치.A non-powered air circulation device in which the edge of the heat transfer plate is configured to be bent downward based on the height direction.
  8. 제 7항에 있어서,According to clause 7,
    상기 열전달 플레이트의 테두리가 하향 절곡되어 상기 접촉부의 외곽을 둘러싸는 공동부;를 형성하도록 구성되는 무동력 공기 순환장치.A non-powered air circulation device configured to form a cavity surrounding the outer edge of the contact portion by bending an edge of the heat transfer plate downward.
  9. 제 1항에 있어서,According to clause 1,
    상기 커버유닛은,The cover unit is,
    상기 냉각 플레이트의 외측을 둘러싸듯이 구성되는 커버부; 및a cover portion configured to surround the outside of the cooling plate; and
    상기 냉각 플레이트와 체결되어 상기 커버부와 상기 냉각 플레이트를 고정하도록 구성되는 플린지;를 포함하는 무동력 공기 순환장치.A non-powered air circulation device comprising a flange that is engaged with the cooling plate and is configured to fix the cover portion and the cooling plate.
  10. 제 9항에 있어서,According to clause 9,
    상기 냉각 플레이트에 형성되는 가이드홈;을 포함하고,It includes a guide groove formed on the cooling plate,
    상기 플린지의 배면이 상기 가이드홈에 삽입되도록 구성되는 무동력 공기 순환장치.A non-powered air circulation device configured to insert the rear surface of the flange into the guide groove.
  11. 제 1항에 있어서,According to clause 1,
    상기 접촉부의 둘레를 기준으로 상기 열전달 플레이트가 상기 냉각 플레이트 외측으로 돌출되도록 구성되는 무동력 공기 순환장치A non-powered air circulation device configured such that the heat transfer plate protrudes outside the cooling plate based on the circumference of the contact portion.
  12. 제 11항에 있어서,According to clause 11,
    상기 냉각 플레이트의 최외곽 끝단은 상기 열전달 플레이트의 최외곽 끝단으로부터 3~20mm 만틈 내측으로 이격되어 위치되는 무동력 공기 순환장치.A non-powered air circulation device in which the outermost end of the cooling plate is positioned 3 to 20 mm apart from the outermost end of the heat transfer plate.
  13. 제 1항에 있어서,According to clause 1,
    상기 냉각 플레이트와 상기 열전달 플레이트 사이에 위치하는 상기 열전소자의 외곽을 감싸도록 구성되는 단열소재;를 더 포함하는 무동력 공기 순환장치.A non-powered air circulation device further comprising: an insulating material configured to surround the outside of the thermoelectric element located between the cooling plate and the heat transfer plate.
  14. 제 1항에 있어서,According to clause 1,
    상기 커버유닛 상단에 위치하는 적어도 하나 이상의 온도 센서;At least one temperature sensor located on the top of the cover unit;
    상기 구동모터의 회전량을 제어하는 제어부; 및a control unit that controls the rotation amount of the drive motor; and
    상기 열전소자와 체결되어 충방전이 가능한 배터리;를 포함하는 무동력 공기 순환장치.A non-powered air circulation device including a battery that is connected to the thermoelectric element and can be charged and discharged.
  15. 제 14항에 있어서,According to clause 14,
    상기 제어부는 상기 온도 센서에서 측정되는 온도 정보를 수신하고,The control unit receives temperature information measured by the temperature sensor,
    수신된 온도 정보가 상기 제어부에 설정된 온도보다 큰 경우, 상기 구동모터의 회전량을 증대하도록 구성되는 무동력 공기 순환장치.A non-powered air circulation device configured to increase the rotation amount of the drive motor when the received temperature information is greater than the temperature set in the control unit.
  16. 제 14항에 있어서,According to clause 14,
    상기 제어부는 상기 열전소자 및 상기 배터리의 방전을 통해 상기 구동모터의 회전량을 증대하도록 구성되는 무동력 공기 순환장치.The control unit is a non-powered air circulation device configured to increase the rotation amount of the driving motor through discharge of the thermoelectric element and the battery.
  17. 제 2항에 있어서,According to clause 2,
    상기 제 1냉각부는 서로 수직 방향으로 연장되는 다수의 냉각핀이 상기 냉각 플레이트의 동일 평면상에 제 1방향 축 대칭, 제 2방향 축 대칭 및 냉각 플레이트 원점 대칭되고,The first cooling unit has a plurality of cooling fins extending perpendicular to each other and are axially symmetrical in a first direction, axially symmetrical in a second direction, and symmetrical to the origin of the cooling plate on the same plane of the cooling plate,
    상기 제 2냉각부는 상기 냉각 플레이트의 방사 방향으로 연장되도록 구성되는 무동력 공기 순환장치.The second cooling unit is a non-powered air circulation device configured to extend in a radial direction of the cooling plate.
  18. 제 9항에 있어서,According to clause 9,
    상기 커버부의 하단에는 상기 커버부의 상단과 비교하여 높이 방향 아래로 갈수록 상기 커버부의 단면이 넓어지도록 구성되는 유동부;를 더 포함하는 무동력 공기 순환장치.A non-powered air circulation device further comprising: a moving portion at the bottom of the cover portion so that the cross-section of the cover portion becomes wider as it goes downward in the height direction compared to the top of the cover portion.
PCT/KR2023/004057 2022-05-03 2023-03-28 Non-powered air circulating apparatus WO2023214689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0054721 2022-05-03
KR1020220054721A KR102642979B1 (en) 2022-05-03 2022-05-03 Non-powered Air Circulation System

Publications (1)

Publication Number Publication Date
WO2023214689A1 true WO2023214689A1 (en) 2023-11-09

Family

ID=88646636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004057 WO2023214689A1 (en) 2022-05-03 2023-03-28 Non-powered air circulating apparatus

Country Status (2)

Country Link
KR (1) KR102642979B1 (en)
WO (1) WO2023214689A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185252A (en) * 1996-12-18 1998-07-14 Matsushita Seiko Co Ltd Start-up control device of ventilator
JP2011101005A (en) * 2009-11-09 2011-05-19 Fuzhun Precision Industry (Shenzhen) Co Ltd Heat dissipation device
KR20150003670U (en) * 2014-03-27 2015-10-07 오정희 air blower
KR101949088B1 (en) * 2018-07-24 2019-02-15 장규호 Air circulator
KR20190061993A (en) * 2017-11-28 2019-06-05 차병미 A Warm Air Fan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613998B1 (en) 2004-11-20 2006-08-21 이태성 An air-conditioner using themoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185252A (en) * 1996-12-18 1998-07-14 Matsushita Seiko Co Ltd Start-up control device of ventilator
JP2011101005A (en) * 2009-11-09 2011-05-19 Fuzhun Precision Industry (Shenzhen) Co Ltd Heat dissipation device
KR20150003670U (en) * 2014-03-27 2015-10-07 오정희 air blower
KR20190061993A (en) * 2017-11-28 2019-06-05 차병미 A Warm Air Fan
KR101949088B1 (en) * 2018-07-24 2019-02-15 장규호 Air circulator

Also Published As

Publication number Publication date
KR102642979B1 (en) 2024-03-04
KR20230155187A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2013129814A1 (en) Vehicle heater
WO2018030670A1 (en) Wireless charging device
WO2013172603A1 (en) Heater for a vehicle
WO2018012937A1 (en) High-voltage cooling fan motor unit
WO2016076648A1 (en) Module for cooling heating element and motor including same
WO2012148131A2 (en) Electric motor and electric vehicle having the same
WO2012148189A2 (en) Electric motor and electric vehicles equipped with same
WO2016060403A1 (en) Electric compressor
WO2020101177A1 (en) Cooling pad and electric vehicle using same
WO2014010778A1 (en) Optical semiconductor illumination device
WO2012086902A1 (en) Induction range including an air layer for improving heat resistance and shock resistance
WO2023214689A1 (en) Non-powered air circulating apparatus
WO2019231070A1 (en) System for controlling battery cell temperature and method for controlling same
WO2020204534A1 (en) Converter
WO2019154045A1 (en) Combustion chamber structure and gas water heater
WO2021045408A1 (en) Clothes dryer
WO2014027755A1 (en) Heat sink for lighting
WO2013032239A1 (en) Lighting device
WO2016186481A1 (en) Cooling fan using surface cooling effect for rotating fan blade part
WO2014196676A1 (en) Heat exchanger for cooking apparatus
WO2021112330A1 (en) High-efficiency wireless hairdryer
WO2021167221A1 (en) Electronic device
WO2011002191A2 (en) Thermoelectric power-generating system using the waste heat of a cooling fluid
WO2024034868A1 (en) Variable-capacity electric propulsion motor cooling structure and variable-capacity electric propulsion motor equipped therewith
WO2022149749A1 (en) Secondary battery charge/discharge system comprising peltier device, and temperature control method of secondary battery charge/discharge system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799572

Country of ref document: EP

Kind code of ref document: A1