WO2023214197A1 - 应用光学新理论提升光学仪器分辨能力的方法及装置 - Google Patents

应用光学新理论提升光学仪器分辨能力的方法及装置 Download PDF

Info

Publication number
WO2023214197A1
WO2023214197A1 PCT/IB2022/054033 IB2022054033W WO2023214197A1 WO 2023214197 A1 WO2023214197 A1 WO 2023214197A1 IB 2022054033 W IB2022054033 W IB 2022054033W WO 2023214197 A1 WO2023214197 A1 WO 2023214197A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
interference
eyepiece
diaphragm
Prior art date
Application number
PCT/IB2022/054033
Other languages
English (en)
French (fr)
Inventor
刘正锋
Original Assignee
刘正锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘正锋 filed Critical 刘正锋
Priority to PCT/IB2022/054033 priority Critical patent/WO2023214197A1/zh
Publication of WO2023214197A1 publication Critical patent/WO2023214197A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices

Definitions

  • the present invention relates to methods for using new optical theories to eliminate diffraction and interference phenomena and improve the resolving power of optical instruments, such as projection technology in developing, film, and photolithography industries, and optical instruments such as microscopes and telescopes. . Background technology It is described in existing physics technology tutorials that light has wave-particle duality. The propagation, refraction and reflection of light are all analyzed by wave front theory. According to the Huygens-Fresnel wave surface propagation principle, light propagates during the propagation process. When encountering an obstacle, the light wave will continue to propagate around the obstacle.
  • Fraunhofer's optical diffraction theory used the Huygens-Fresnel principle to divide a wave passing through a circular hole or slit into multiple outward waves. Waves, when the waves pass by, will be diffracted into two waves, and then travel at parallel angles. The same is true for the waves that follow. When observing, place the screen on the traveling path to see the principle of imaging fringes. Including existing optical tutorial books, they only provide macroscopic descriptions of light wave-particle phenomena, and do not explain the formation theory and causes of propagation phenomena at the microscopic level. The existing optical theory does not have a detailed physical theory for the diffraction interference of light. Many theoretical calculations are caused by details that have no physical meaning.
  • Formation of light Light is caused by the circular motion of electrons around the atomic nucleus, which generates a time-varying magnetic field with zero mass and radiates outward at the speed of light.
  • the so-called particle nature is just a characteristic of a small time-varying magnetic field, which can also be described as a wave packet of light.
  • photons are mainly analyzed and studied as particle states using the finite element method.
  • Physical phenomenon The phenomenon of laser and ordinary light emission is used to illustrate that the laser beam has the same time phase and the direction of the magnetic field changes with time to produce a single wavelength light source.
  • the parallel resonance frame amplifies the light waves emitted by atoms in the vertical direction, a parallel light source is obtained and most of them are Polarization state; For ordinary light, when atoms emit photons, the emission time and angle are random. The time phases of each photon and the direction of the magnetic field change with time, resulting in a light source with a certain bandwidth and spreading in any direction along with the atoms.
  • Light is a time-varying magnetic field that moves in a straight line without loss in a vacuum and is invisible. It interacts with the electromagnetic force of atoms inside the material. Field interactions lose some of the energy and continue to propagate the remaining energy in the form of reflection and refraction. The necessary condition for the visibility of light is that the detection device has substances involved and interacts to produce magnetoelectric effects.
  • Physical phenomenon The Michelson interferometer experiment and Young's double slit experiment can illustrate that the reflection of light and the refracted magnetic pole are opposite to form a coherent light source. Only in the presence of matter can the two columns of light be coherent when their phases are the same in time and space. Strengthen, and disappear when the phases are different. This is the same as the principle of meeting the two poles of the magnetic field NS.
  • Visibility of light Light is invisible in a vacuum and does not lose energy. It only produces paramagnetic (refraction) or diamagnetic (reflection) phenomena with other substances during propagation and changes the direction of movement. If the human eye or detection device wants To see a luminous body, the luminous body must have direct light or light refracted or reflected by other substances, and there must be no coherent cancellation conditions. Physical phenomenon: This phenomenon is relatively common and can be seen in life. It can be understood without giving examples.
  • Diffraction of light a coherent phenomenon based on the interaction between the time-varying magnetic field and the magnetic field of material atoms, where the reflected light and refracted light meet the material at a spatial location.
  • the time-varying magnetic field of incident light has the same direction as the magnetic field of material atoms, refracted light is produced due to paramagnetism and the magnetic field phase co is unchanged; when the time-varying magnetic field of incident light is in the opposite direction to the magnetic field of material atoms, reflected light is produced due to diamagnetism and the magnetic field phase co is different.
  • 1/2 wavelength that is, half-wave loss (opposite magnetic pole).
  • Physical phenomenon This phenomenon is illustrated by single-sided diffraction, single-slit and double-slit experiments.
  • single-sided diffraction can show different diffraction phenomena on both sides.
  • parallel incident light and edge reflected light in the unobstructed direction produce light and dark interference phenomena.
  • there is no incident light in the blocking direction there is only a refracted light that gradually becomes darker as the distance increases.
  • Since the structure of a single slit is the superposition of two single-sided diffraction, light and dark interference will occur on both sides.
  • the double slit was proved by Young's experiment.
  • the experimental proof that is different from the wave surface principle is simpler. It only needs to combine the two parallel sides of the single slit. If the sides are changed to non-parallel, intersecting lines will appear. There will be light and dark interference at the overlapping areas near the center. If there is no overlap further away, only continuous lines will appear.
  • the transmission amount of single-wavelength light can be calculated by the exponential change rate of the thickness of the incident material at one wavelength.
  • the intensity of the reflected light is calculated by the thickness of the incident material, and then the index of the width of the exit surface.
  • the rate of change is used to calculate the scattering intensity of refracted light; the scattered light is distributed between the maximum reflection angle and the maximum refraction of the incident material and decreases as the angle increases.
  • the light intensity ratio is the random angle of the incident photon and the random angle of the atoms of the incident material, which conforms to the direct light according to Sin (x) Equation distribution of person 2, and calculated according to the effective value of the maximum refractive index and maximum reflectivity of the material.
  • the observation method is to select a partially transparent material in the single slit as the shielding sides on both sides, because the reflected light is greater than For refracted light, the two interference lights cannot be canceled out equally in the dark field area, and weak light intensity appears in the dark pattern area.
  • a thin rod can be placed close to the receiving screen and perpendicular to the slit. It can be observed that the center of the dark pattern is more obscured than the thin rod. The light intensity of the strongest clear fringe in the center is inversely proportional to the size of the slit, and the direct light within the slit is not represented in the formula.
  • the parallel direct light will pass through the middle of the slit, and the intensity of the direct light is proportional to the size of the slit.
  • the observation method only requires a magnifying glass behind a single slit to magnify the zero-order clear pattern in its center. It can be seen that the clear pattern is not distributed in a quasi-normal shape, but is composed of the brightest two sides of the center and then fine light and dark stripes.
  • Technical solution of the invention The problem that needs to be solved is to design the diffraction of light to form an interference condition device through new optical theoretical principles, so that the optical instrument can use the coherent enhancement or coherent cancellation of light as the boundary condition to improve the resolution of the instrument or increase the light intensity acceptance capability.
  • n emitted light intensity/incident light intensity
  • equation 1 The amount of light absorbed by the thickness of the blocking material T is the amount of parallel direct light minus the amount of transmitted light. The equation is:
  • the point light source (001) is collimated by the lens (002) and then incident on the surface and vertical edge of the receiving material (003).
  • the absorbed light intensity is;
  • the reflected light (B020) is Taking direct light (A010) as the input light intensity, the reflection amount is equal to the thickness absorption rate of the incident material * the width reflectance integral, and the equation is:
  • the point light source (001) is collimated by the lens (002) and then incident on the surface and vertical edge of the receiving material (003).
  • the first-order dark fringe position 13mm is the first-order dark wide fringe NS001, which is adjacent to the direct light (i.e. the width of the plane grating 100*0.02mm on both sides)
  • the 0-level fine dark wide stripes NS000 are mainly used as the dividing point.
  • the theory of the present invention is mainly suitable for the application and development of optical instruments. Through the discovered new optical theory, calculations can be performed based on the time-varying magnetic field characteristics of light, so that optical instruments can use diffraction and interference phenomena as design boundary conditions to improve the resolution capability of optical instruments.
  • the maximum resolving power of the microscope is only close to the wavelength of light used; similarly, the optical resolution of the telescope is By enlarging the objective lens, the field of view angle is increased to improve resolution, which causes the instrument to expand.
  • a parallel compound eye diaphragm is designed with fine level 0 dark fringes NS0 or dark wide fringes NS000 as the boundary elimination method, which can break through the maximum resolution of the microscope far beyond the light wavelength and reduce the size of the optical objective lens of the telescope. Has better resolution capabilities.
  • the enlargement and reduction of the master pattern will cause the projection quality to deteriorate due to diffraction and interference.
  • the edges will become blurred due to diffraction interference.
  • the application of optical instruments is limited to a certain size range. .
  • Figure 1 is a schematic diagram of the single-sided diffraction principle of the optical theory of the present invention.
  • Figure 2 is a diagram illustrating the principle of single-slit diffraction in optical theory of the present invention.
  • Figure 3 is a diagram illustrating the principle of black-and-white grating diffraction in the optical theory of the present invention.
  • Figure 4 is a diagram illustrating the formation of fine light and dark stripes by a single slit according to the optical theory of the present invention.
  • Figure 5 is a diagram illustrating the formation of fine bright and dark wide stripes in a plane compound eye diaphragm according to the optical theory of the present invention.
  • Figure 6 is an optical path diagram illustrating the principle of eliminating interference light projection in the device of the present invention.
  • Figure 7 is a diagram illustrating the interference-eliminating light path of a transmission short focal length microscope using the device of the present invention.
  • Figure 8 is a diagram illustrating the interference-eliminating optical path of a reflective short-focus microscope using the device of the present invention.
  • Figure 9 is a diagram illustrating the interference-eliminating optical path of a long-focus parallel light microscope of the present invention.
  • Figure 10 is a diagram of the parallel light filtering optical path of the transmission telescope of the device of the present invention.
  • Figure 11 is a diagram of the parallel light filtering optical path of the reflective long-distance telescope of the device of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention illustrates the above effects through implementation cases of six types of optical design devices. Given the existing production technology of corresponding optical instruments, the implementation cases of the present invention can be relatively easily applied in the market.
  • Implementation case 1. Optical path system that eliminates interference light projection principle (Fig. 6).
  • the present invention uses the above-mentioned light principles and characteristics to design a projection device that eliminates interference light (Fig. 6). It is mainly used in projection technology optics in the development, film, and lithography industries.
  • the optical system of the device consists of a monochromatic light source (401), a collimating lens (402), an interference stop (403), a focusing lens (404) and an etching plate (405) along the propagation direction of the light beam (D400).
  • the monochromatic light source (401) emits a stationary light wave with the magnetic pole N phase being 0.
  • the light (A411) passes through the collimating lens (402) to form parallel direct light (A412) and is directed to the anti-interference diaphragm (403).
  • the light passes through the transparent part of the anti-interference diaphragm and reaches the focusing lens (404) to condense the light (A413) towards the etching plate (405).
  • the anti-interference diaphragm (403) is made of transparent glass or transparent film as the substrate.
  • the transparent part of the pattern that needs to be developed or etched is according to the monochromatic light source (401).
  • the thickness is one-quarter of the light wavelength (403b) and the non-transparent part is according to the light wavelength.
  • One-third (403a) thickness using two or more materials for coating alternately. The alternating method is to use different materials between adjacent coating layers.
  • Different positions of the anti-interference diaphragm (403) have different transmission and scattering effects, which need to be described and described according to different optical paths.
  • the light (A421) passes through the collimating lens (402) to form parallel direct light (A422) and is directed to the non-transmissive part of the anti-interference diaphragm (403a). Since the coating is "2" thick, the direct light (A422) passes through the anti-interference diaphragm (403a). 403a)
  • the incident layer is the magnetic pole N phase 0. When passing through the lower layer, the phase becomes Wu and part of the light is reflected to become the reflected light with phase 2 Wu (B423). The same is true when passing through the anti-interference diaphragm (403a) and the incident layer. With "2 optical paths, the phase becomes 3W.
  • the magnetic pole becomes S and the magnetic pole N of the incident light is offset by different magnetism, forming the effect of weakening the intensity of the incident light.
  • most of the incident light can be offset, weakening the intensity of the outgoing light.
  • the light (A431) passes through the collimating lens (402) to form parallel direct light (A432) and is directed to the light-transmitting part of the anti-interference diaphragm (403b). Because the coating is "4" thick, the direct light (A432) passes through the anti-interference diaphragm (403b). (403b)
  • the incident layer is the magnetic pole N phase 0.
  • the phase becomes D/2 and part of the light is reflected to become reflected light with a phase 3/2 ⁇ (B433).
  • the incident layer After passing through the anti-interference diaphragm (403b)
  • the incident layer After passing through the anti-interference diaphragm (403b)
  • the incident layer After passing through the anti-interference diaphragm (403b)
  • the incident layer After passing through the anti-interference diaphragm (403b)
  • the incident layer also has “4 optical paths, the phase becomes 2.
  • the magnetic pole becomes N and the magnetic pole N of the incident light is the same as the magnetic repulsion, forming a reflection that enhances the incident light intensity.
  • most of the The incident light After multi-layer coating, most of the The incident light has no reflection and the purpose is to increase the outgoing light (A433).
  • Light (A441) passes through the collimating lens (402) to form parallel direct light (A442) and is directed to the junction (b4) of the light-transmitting and non-light-transmitting aperture (403). Due to the irregular distribution of atoms in the coatings of the two materials, there will be Scattering (B443) phenomenon, the reflected light and refracted light are based on the light scattering theory. When the scattering angle is small, the ratio of the reflected light intensity and the refracted light intensity is almost the same and the magnetic pole phase is opposite, no scattered light is emitted; because the "4 thick coating is The light intensity of the light-transmitting part is greater than that of the non-light-transmitting part.
  • the scattered light (B443) and (B444) at the junction (b4) are mostly reflected light.
  • the reflected light (B443) and the same reflected light (B444) converge on the light
  • the path difference is 2 layers
  • the magnetic pole phases are opposite and cancel out;
  • the reflected light (B443) or reflected light (B444) and the direct light converge on the coating layer, the optical path difference is close and the magnetic pole phases are opposite and they also cancel out; while the scattered light (C443) Most of it is refracted light, which also cancels out the magnetic pole phase of the direct light at the level of optical path difference "2.
  • the reflected light (B452) and the refracted light (C452) at the junction (c5) are directed to the focusing lens (404) at a certain incident angle. Adjust the distance between the focusing lens (404) and the etching plate (405) to achieve the 0th order of diffraction interference.
  • the dark wide stripe NSOOO acts as a boundary so that the larger coherent light generated by the reflected light (B453) and the refracted light (C453) is outside the range of the etching plate (405).
  • Implementation case 2 optical path system for eliminating interference in a transmission short focus microscope (Fig. 7)
  • the present invention uses the above-mentioned principles and characteristics of light to design a device for eliminating interference in a transmission short-focus microscope ( Figure 7). It is mainly used in the optical system of a microscope that illuminates from below to magnify the object after it is transmitted.
  • the optical system of the device is along the beam ( The propagation direction of D500) includes parallel incident light source, converging lens (530), observation object (501), collimating lens (502), beam expander lens (506), collimating lens (507), compound eye diaphragm (508) , focusing lens (509) and eyepiece (510).
  • the parallel incident light source emits light waves with arbitrary magnetic pole phase and wavelength, light (A521)
  • the converging lens (530) After passing through the converging lens (530), it is focused near the observation object (501).
  • the light (A511) partially passes through the observation object (501) and hits the collimating lens (502) to form collimated parallel light (A512).
  • the elongated hole structure compound eye diaphragm (508) only passes part of the direct light (A514) to the focusing lens.
  • the condensed light (A515) is directed to the eyepiece (510), and finally an image of the observed object (501) is formed on the eyepiece (510).
  • the reflected light (A531) passes through the condensing lens (530), the observation object (501), the collimating lens (502), the beam expander lens (506), the collimating lens (507), the compound diaphragm (508) and the focusing lens.
  • the condensed light (A535) is directed to the eyepiece (510), and finally the eyepiece (510) ⁇ forms an image proportional to the observed object (501).
  • the light-transmitting part of the compound eye diaphragm (508) parallel to the axis in the thickness direction can be composed of an array of holes, an array of slits, or a complex pattern.
  • the shape of the holes is not limited to circular or polygonal.
  • the compound eye diaphragm can be formed by processing holes or slits with light-shielding materials.
  • the lens surface can also be processed or covered with light-shielding material to form a compound eye diaphragm, which is designed to have a linear light-transmitting hole with a certain thickness, allowing scattered light at a certain angle to be re-scattered by the side of the compound eye diaphragm aperture to increase the scattered light intensity at the angle.
  • the scattered light (B511 and C511) formed by diffracting the incident light on the observation object (501) passes through the collimating lens (502) to form a certain angle light source (B512), which passes through the beam expander lens (506) and the collimating lens (507 ), there is also a certain angle (B514).
  • part of the light that can enter the aperture of the compound aperture (508) also scatters twice with the edge of the aperture of the compound aperture (508) and finally forms reflected light (B515 or B516) and
  • refracted light (C515 or C516) calculate the focusing lens (509) according to the interference of light and adjust the appropriate position of the focusing lens (509) so that the interference light is outside the 0-level dark wide stripe NSOOO, making it difficult for the scattered interference light to reach the focusing lens (509) and converge to the eyepiece (510), reducing the influence of interference light on the eyepiece (510).
  • Implementation case 3 Optical path system for eliminating interference in a reflective short-focus microscope (Fig. 8).
  • the present invention uses the above-mentioned principles and characteristics of light to design a device for eliminating interference in a reflective short-focus microscope (Fig. 8). It is mainly used for lighting from above to A microscope optical system that magnifies the object after reflection.
  • the optical system of the device includes a point light source (603), a collimating lens (604), a half mirror (605), a converging lens (602), and It consists of an observation object (601), a beam expander lens (606), a collimating lens (607), a compound eye diaphragm (608), a focusing lens (609) and an eyepiece (610).
  • the point light source (603) emits light waves with any magnetic pole phase and wavelength.
  • the converging lens (602) forms converging light (A611) to illuminate the observation object (601) o
  • the observation object (601) reflects the light (A611) according to the incident light path to the condensing lens (602) to form collimated parallel light (A612), which passes through the semi-reflector mirror (605) to the beam expander lens (606), and after passing through the beam expander lens (606) and the collimator lens (607), a larger parallel direct light (A614) is formed and directed to the compound eye diaphragm (608), elongated hole structure
  • the compound eyepiece (608) only passes part of the direct light (A614) to the focusing lens (609) and condenses the light (A615) to the eyepiece (610).
  • an image of the proportion of the observed object (601) is formed on the eyepiece (610).
  • the reflected light (A631) condenses the light ( A635) is emitted to the eyepiece (610), and finally an image in proportion to the observed object (601) is formed on the eyepiece (610).
  • the light-transmitting part of the compound eye diaphragm (608) parallel to the axis in the thickness direction can be composed of an array of holes, an array of slits, or a complex pattern.
  • the shape of the holes is not limited to circular or polygonal.
  • the compound eye diaphragm can be formed by processing holes or slits of light-shielding material.
  • the lens surface can also be processed or covered with light-shielding material to form a compound eye diaphragm, which is designed to have a linear light-transmitting hole with a certain thickness, allowing scattered light at a certain angle to be re-scattered by the side of the compound eye diaphragm aperture to increase the scattered light intensity at the angle. , eventually scattered from the exit port to outside the range of parallel direct light.
  • the scattered light (B611 and C611) that is not reflected according to the incident light path on the observation object (601) forms a certain angle (B612) after passing through the converging lens (602), passes through the half mirror (605), and reaches the beam expander lens (606) , there is also a certain included angle (B614) after passing through the beam expander lens (606) and the collimating lens (607).
  • part of the light that can enter the compound eye diaphragm (608) hole also has a certain angle with the compound eye diaphragm (608) hole. Secondary scattering occurs on the edge and finally forms reflected light (B615 or B616) and refracted light (C615 or C616).
  • the optical system of the device includes a point light source (701), a converging lens (702), a collimating lens (703), an observation object (704), a beam expander lens (705), and a collimating lens along the propagation direction of the light beam (D700). It is composed of lens (706), compound eye diaphragm (707), focusing lens (708) and eyepiece (709).
  • the point light source (701) emits light waves with arbitrary magnetic pole phase and wavelength, and the light (A711) passes through the converging lens (702) and collimation After the lens (703), a parallel direct light (A713) with a larger intensity and a smaller area is formed and is directed to the observation object (704).
  • the light directly hits the beam expander lens (705) and is expanded.
  • a large surface parallel direct light (A715) is formed and directed to the compound eye diaphragm (707).
  • the elongated hole structure compound eye diaphragm (707) passes part of the direct light and direct light (A715) It reaches the focusing lens (707) and condenses the light (A716) towards the eyepiece (709), and finally forms an image in proportion to the observed object (704) on the eyepiece (709).
  • the light-transmitting part of the compound eye diaphragm (707) parallel to the axis in the thickness direction can be composed of an array of holes, an array of slits, or a complex pattern.
  • the shape of the holes is not limited to circular or polygonal (a7 or b7 or c7), and its composition can be processed by light-shielding materials. Holes or slits can be used to form a compound eye stop.
  • the lens surface can also be processed or covered with light-shielding materials to form a compound eye stop. It is designed as a linear light-transmitting hole with a certain thickness to allow scattered light at a certain angle to be rescattered by the edge of the compound eye stop hole.
  • the observation object (704) is regarded as a compound eye stop, and the 0-level dark wide stripe NSOOO boundary can be calculated based on the scattering of light.
  • the focusing lens (708) and eyepiece (709) are also designed appropriately.
  • the position makes the interference light outside the 0th order dark wide fringe NSOOO, making it difficult for the scattered interference light to reach the focusing lens (708) and converge to the eyepiece (709), reducing the influence of the interference light on the eyepiece (709).
  • Implementation Case 5 Optical path system for parallel light filtering in a transmission type long-distance telescope ( Figure 10).
  • the present invention uses the above-mentioned principles and characteristics of light to design a device for parallel light filtering through a compound eye diaphragm of a transmission type long-distance telescope ( Figure 10).
  • the principle of parallel direct light excluding angle incident light and scattered light is mainly used in telescope optical systems that obtain clear images from distant luminous objects.
  • the optical system of this device sequentially includes the distant luminous object light source and convergence along the propagation direction of the beam (D800). It consists of lens (801), collimating lens (802), compound eye diaphragm (803), focusing lens (804) and eyepiece (805).
  • lens (801) collimating lens
  • compound eye diaphragm 803
  • focusing lens 804
  • eyepiece 805
  • the light source of a distant luminous object emits light waves of any magnetic pole phase and wavelength.
  • the light (A811) is focused by the converging lens (801) (A812) and then passes through the collimating lens (802) to form a smaller parallel direct light (A813).
  • the slender hole structure compound eyepiece diaphragm (803) only passes part of the direct light (A813) to the focusing lens (804) and condenses the light (A814) to the eyepiece (805), which is similar to the compound eyepiece diaphragm (805).
  • Secondary scattered light (B813) occurs at the edge of the hole.
  • the light (B814) is calculated according to the interference of light and the appropriate position of the eyepiece (805) is adjusted to allow the interference light to be there.
  • a reduced image of distant luminous objects is finally formed on the eyepiece (805).
  • the light-transmitting part of the compound eye diaphragm (803) parallel to the axis in the thickness direction can be composed of array holes or array slits of different shapes.
  • the shape of the holes is not limited to circular or polygonal (a8 or b8 or c8), and its composition can be processed by light-shielding materials. Holes or slits can be used to form a compound eye stop.
  • the lens surface can also be processed or covered with light-shielding materials to form a compound eye stop. It is designed as a linear light-transmitting hole with a certain thickness to allow scattered light at a certain angle to be rescattered by the edge of the compound eye stop hole.
  • the light (A821 and A831) incident from a distant luminous object at a certain angle 0 also exists at a certain angle 0' (A823 and A833) after passing through the converging lens (801) and the collimating lens (802).
  • Tan (9 When Refracted light (C824), reflected light (B825) and refracted light (C825) form interference light after passing through the focusing lens (804).
  • the light (A911) is focused by the converging mirror (901) (A912) and then passes through the collimating mirror (902) to form a smaller parallel direct light (A913) that is directed to the compound eye diaphragm (903).
  • the elongated hole structure compound eyepiece diaphragm (903) only passes part of the direct light (A913) to the focusing lens (904) and the condensed light (A914) is emitted to the eyepiece (905), causing a conflict with the side of the compound eyepiece diaphragm (903) hole.
  • the light (B914) is calculated according to the interference of light and the appropriate position of the eyepiece (905) is adjusted so that the interference light is outside the 0-level dark wide stripe NSOOO, and finally on the eyepiece (905) Form a reduced image of a distant luminous object.
  • the light-transmitting part of the compound eye diaphragm (903) parallel to the axis in the thickness direction can be composed of array holes or array slits of different shapes.
  • the shape of the holes is not limited to circular or polygonal (a9 or b9 or c9), and its composition can be processed by light-shielding materials.
  • Holes or slits can be used to form a compound eye stop.
  • the lens surface can also be processed or covered with light-shielding materials to form a compound eye stop. It is designed as a linear light-transmitting hole with a certain thickness to allow scattered light at a certain angle to be rescattered by the edge of the compound eye stop hole. Increase the intensity of scattered light at angles, and eventually scatter from the exit port beyond the range of parallel direct light.
  • the same incident light also has a certain included angle 0, after passing through the converging reflector (901) and the collimating reflector (902) (A923 and A933).
  • all lenses or reflectors involved in the patent do not refer to single-sided mirrors with the same graphics, but refer to multiple lenses or reflectors that can be combined according to specific implementation conditions to achieve the same principle and function of light.
  • the eyepiece in the implementation example can also be replaced by a camera, photoelectric sensor or receiving screen in the application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种提升光学仪器分辨能力的方法,其适用于光学仪器的应用开发,通过对光学新理论的计算,使光学仪器利用衍射与干涉现象提升光学仪器分辨能力,通过设计成细长孔结构的复眼光阑以孔边产生散射进行消除干涉的方法,可以使显微镜最大分辨能力远超光波长和优化望远镜小尺寸物镜小视角分辨率能力。在显影、菲林、光刻行业投影技术中,母版图案的缩放都会因干涉导致投影质量变差,光学仪器应用局限于一定尺寸范围,通过理论计算平面型光阑的衍射干涉情况,设计对应光学投影光路便可获得干涉极小的平面光影,提高投影清晰度。

Description

应 用 光 学 新理 论 提 升 光 学 仪器 分 辨 能 力 的方 法 及 装 置 技术 领域 本发明涉及应用光学新理论消除衍射与干涉现象提升光学仪器分辨能力方法, 如显影、 菲林、 光刻 行业投影技术, 显微镜、 望远镜光学仪器。 背景 技术 在现有物理技术教程中描述为光具有波粒二象性,光的传播、折射与反射均以波阵面理论进行解析, 从惠更斯-菲涅耳波面传播原理光在传播过程中遇到障碍物, 光波会绕过障碍物继续传播, 以及后来夫琅 禾费光学衍射理论使用惠更斯一菲涅耳原理, 把通过圆孔或狭缝的一波动分成多个向外的波动, 当波动 通过时, 波动会被衍射分成两个波动, 之后以平行的角度各自行进, 后面跟着进来的波动亦是如此, 在 观测时把屏幕放在行进路线上来看成像条纹的原理。 包括现有光学教程书籍中也只是在光波粒现象的宏 观描述, 并没有在微观层面上解释形成理论及传播现象原因。 现有光学理论对光的衍射干涉没有物理细节理论, 很多理论计算都是没有物理意义细节成因, 多数 为以前科研者以数学方法与计算来解释物理现象。 或许因为百年前的科学家提出光学理论时因还没有原 子及量子理论, 以致在宏观方面所分析的物理方法缺少微观方面因素, 并且在实验条件比较差的情况下 难以分析到精细部分。 自激光发明以后, 对光学分析提供了很大的便利, 虽然教科书中的方法大部分都 能得到接近实验现象但复杂难懂, 很大一部分计算方法还是源自惠更斯、 菲涅耳等老辈科学家提出的理 论。 对于单双缝实验在教学中同样以经典的杨氏双缝实验装置进行实验观察和夫琅禾费衍射计算方法进 行光学现象计算, 缺少现代先进的教学设备进行精细化分析和精细计算理论。 对单双缝光强计算更是没 有按物理宏观现象理论来分析计算, 或者没有对应的物理形状细节, 对于缝大小物质形状不同没有对应 变化。 再从大学延伸学科相关光学专科教材资料来看, 同样解释有些勉强, 并且对单双缝在低速观测状 态下未解的迷惑一直未作解释, 以概率论或不确定性也只能说明结果但不能解释物理现象原因。 根据现有光学理论所设计光学仪器分辨率是通过夫琅禾费光学衍射理论计算爱里斑公式 Sin(9)=1.22X/d, 其显微镜最大分辨能力也只接近使用的光波长; 同样望远镜光学分辨率是通过加大物镜 的方法来增加视野角度达到提升分辨能力, 这样就造成仪器膨大。 技术 问题 本发明光学技术理论并无公开发表, 所以需先进行新发现光学理论描述讲解, 才能让现有技术领域 中的技术人员理解本发明实施案例。 本发明通过对物理光学进行大胆设想光的形成理论, 讲述光在微观原理与宏观现象, 用相对简单的 物理方式说明理论和用数学方式计算结果并通过实验方法进行验证, 修正教科书中的一些错误, 再以此 理论解释历史实验未解原因与实验证明方法。本发明的案例实现需要先认同以下 5项光学新理论的解释, 为了证明此理论正确性均例举有对应实验证明进行说明。
1、光的形成: 光是由电子围绕原子核作圆周运动产生质量为零的时变磁场并以光速向外辐射。所谓 粒子性, 只是一小段时变磁场所表现的特性而已, 也可描述为光的波包。 在宏观研究中, 主要还是把光 子以有限元法当粒子态来分析研究。 物理现象: 以激光与普通光发射现象说明, 激光因光束时间相位相同, 磁场方向随时间变化而产生 波长单一光源, 因平行谐振框令垂直方向原子发出的光波进行放大获得平行光源且大部分为偏振态; 普 通光因原子发射光子的时候, 发射时间和角度是随机的, 各光子时间相位不同磁场方向随时间变化而产 生一定频宽的光源并随原子任意方向扩散。
2、光的特性: 光是时变磁场在真空中无损耗地作直线运动并且不可见, 其与相遇物质内部原子电磁 场相互作用损耗部分能量并以反射和折射方式继续传播剩余能量。 光的可见性必要条件是检测装置有物 质参与并相互作用产生磁电效应。 物理现象: 以迈克尔逊干涉仪实验与杨氏双缝实验可以说明, 光的反射与折射磁极相反形成相干光 源, 只有在有物质的情况下, 两列光相位在时间与空间相同时才能产生相干加强, 相位相异时相抵消失, 此与磁场 NS两极相遇原理相同。
3、光的可见性: 光在真空中不可见且能量不损失, 只有传播中与其他物质产生顺磁(折射)或抗磁(反 射)现像并改变运动方向, 人眼或检测装置若要看到发光体, 必须让发光体有直射光或经其他物质折射或 反射进入的光, 并且不存在相干抵消条件。 物理现象: 此现象较为普遍, 生活中均可见无需举例说明可理解。
4、光的衍射:基于时变磁场与物质原子磁场相互作用产生的反射光与折射光并在空间位置与物质相 遇时的相干现象。 入射光时变磁场与物质原子磁场方向相同时, 因顺磁产生折射光并且磁场相位 co不变; 入射光时变磁场与物质原子磁场方向相反时, 因抗磁产生反射光并且磁场相位 co相差 1/2波长, 也就是半 波损失(磁极相反)。 物理现象: 以单边衍射、 单缝及双缝实验说明此现象, 以平行激光为光源, 单边衍射可见两边不同 衍射现象, 其中无遮挡方向有平行入射光和边缘反射光产生明暗相间干涉现象, 但在遮挡方向因无入射 光, 只有折射光一条随距离增大逐渐变暗的光线。 单缝因结构为两条单边衍射叠加, 两边均会产生明暗 相间干涉现象, 双缝则以杨氏实验证明, 但与波面原理不同的实验证明较简单, 只需把单缝两条平行边 改为不平行的边便可出现交叉线条, 其在离中心附近重叠处有明暗相间干涉现象, 较远处无重叠处则只 显现出连续线条。
5、光强分布:单波长光的透射量可以通过受射物质在一个波长厚度的指数变化率来计算入射光吸收 强度, 以受射物质厚度计算反射光光强, 再以出射面宽度的指数变化率来计算折射光散射强度; 散射光 分布于受射物质最大反射角与最大折射并随角度增加而减小, 光强比例为入射光子随机角度和受射物质 原子随机角度符合直射光按 Sin(x)人 2的方程分布, 并按物质最大折射率与最大反射率为有效值计算。 物理现象: 以夫琅禾费单缝衍射实验与光强计算方程说明, 从众多教科书中解释球面波振幅积分方 式求得各级明纹光强, 计算复杂理解困难并难于与实验结果相符合, 其计算结果有二个部分与实验现象 不同需要修正。 其一为光强方程中未与单缝材料及厚度相结合, 实验中不同材料与厚度会造成不同光强 结果, 观察方法为选取单缝有部分透明材料作为两边遮挡边, 因其反射光大于折射光, 两干涉光在暗场 区无法相等抵消, 出现暗纹区还有微弱光强出现, 实验可在靠近接收屏位置与缝垂直方向放一细棒可观 察到暗纹中心比细棒遮挡部分稍亮; 其二中心最强明纹光强与缝大小成反比, 缝内直射光也未在公式中 表现, 实验中平行直射光会从缝中间穿过并且直射光光强与缝大小成正比, 观察方法只需单缝后面用放 大镜放大其中心零级明纹, 可见明纹不是以类正态形状分布, 而是以中心最亮两侧再以精细明暗条纹组 成 ° 技术 解决方案 本发明需要解决的问题是通过光学新理论原理设计光的衍射形成干涉条件装置, 使得光学仪器利用 光的相干加强或相干抵消作为分界条件达到提升仪器分辨能力或增加光强接受能力。 为解决上述技术问题取得应用技术方案之前需要先把对上述技术问题中 5项光学新理论进行入射光 散射(指含反射和折射)详细描述并列出求解方法(方程按归一化处理), 请参照(图 1)单边衍射图示说明:
1、 散射光强分析计算: 光只有与其他物质相遇时才会有散射现象, 其散射效率根据受射物质透光率 n决定, 未透光部分按 受射物质反射与折射能力不同进行散射, 未散射光强则以受射物质内部形成相干消耗转变为温度; 受射 物质对不同波长的光其透光量不同, 可以通过入射光波长久与受射物质 A T=X厚度来测试垂直入射光透光 率 n=出射光强 /入射光强, 并按以下方式进行分析计算实验遮挡材料 T厚度的透射光量方程为: nA(T/A) (式 1) 遮挡材料 T厚度的吸收光量是平行直射光量减去透射光量, 方程为:
1 — nA(T/A) (式 2) 点光源 (001)经透镜 (002)平行准直后入射到受射物质 (003)表面及垂直边缘为吸收光强;反射光 (B020) 是以直射光 (A010)为输入光强, 反射量等于受射物质厚度吸收率 *宽度反射率积分, 其方程为:
Figure imgf000005_0001
点光源 (001)经透镜 (002)平行准直后入射到受射物质 (003)表面及垂直边缘为吸收光强;折射光 (C040) 是以直射光 (A010)为输入光强, 折射量等于受射物质厚度吸收率 *厚度折射率积分, 其方程为:
Figure imgf000005_0002
Figure imgf000006_0001
Figure imgf000007_0001
使用平面光栅, 当输入波长 650nm的红光, 缝宽 S=0.01mm, 缝距 W=0.01mm, 线数 100, 接收屏 距离 L = 200mm, 参见 (图 5), 如使用绘图方式进行模拟可见光栅中间缝内有平行光透射 N110, 对应上 述条件下的单缝夫琅禾费衍射方程第一级暗纹位置 13mm处为 1级暗宽条纹 NS001 , 与直射光相邻位置 (即平面光栅宽度 100*0.02mm两侧)有 0级暗宽条纹 NS000,两暗宽条纹之间有 1级明宽条纹 NS111 ,对 于实施案例中主要应用到 0级精细暗宽条纹 NS000作为分界点。 有益 效果 本发明理论主要是适用于光学仪器的应用开发, 通过发现的新光学理论可以根据光的时变磁场特性 进行计算, 使光学仪器以衍射与干涉现象作为设计边界条件提升光学仪器分辨能力。 当今已有的光学分 辨率是通过夫琅禾费光学衍射理论计算爱里斑公式 Sin(9)=1.22X/d,其显微镜最大分辨能力也只接近使用 的光波长; 同样望远镜光学分辨率是通过加大物镜的方法来增加视野角度达到提升分辨能力, 这样就造 成仪器膨大。通过本发明理论进行计算后设计成平行复眼光阑以精细 0级暗条纹 NS0或暗宽条纹 NS000 作为边界消除干涉的方法, 可以突破显微镜最大分辨能力远超光波长和望远镜减小光学物镜尺寸并有更 优的分辨率能力。 在显影、 菲林、 光刻等投影行业技术中, 母版图案的放大与缩小都会因衍射与干涉导致投影质量变 差, 边缘因衍射干涉现象变得模糊不清, 光学仪器应用局限于一定尺寸范围。 通过本发明理论计算消干 涉光阑的衍射干涉情况,再根据 0级暗宽条纹 NS000作为边界范围设计对应光学投影光路便可获得干涉 极小的平面光影, 提高投影清晰度。 附 图说明 本发明先通过前五张附图进行新发现的光学理论辅助说明书描述, 后六张附图进行新发明的装置辅 助说明书描述: 图 1为本发明光学理论单边衍射原理图示。 图 2为本发明光学理论单缝衍射原理图示。 图 3为本发明光学理论黑白光栅衍射原理图示。 图 4为本发明光学理论单缝精细明暗条纹形成图示。 图 5为本发明光学理论平面复眼光阑精细明暗宽条纹形成图示。 图 6为本发明装置消除干涉光投影原理的光路图示。 图 7为本发明装置透射式短焦距显微镜消除干涉光路图示。 图 8为本发明装置反射式短焦距显微镜消除干涉光路图示。 图 9为本发明装置长焦距平行光显微镜消除干涉光路图示。 图 10为本发明装置透射式远距望远镜平行光过滤光路图示。 图 11为本发明装置反射式远距望远镜平行光过滤光路图示。 具体 实施方式 本发明通过 6种光学设计装置实施案例进行上述效果说明, 以现有对应光学仪器生产技术的情 况下, 本发明实施案例可以比较容易得于市场应用。 实施案例 1、 消除干涉光投影原理的光路系统 (图 6) 本发明利用上述光的原理与特性设计消除干涉光的投影装置 (图 6), 主要应用于显影、 菲林、光刻行 业投影技术光学系统,该装置光学系统沿光束 (D400)的传播方向依次包括单色光源 (401)、准直透镜 (402)、 消干涉光阑 (403)、 聚焦透镜 (404)与蚀刻板 (405)组成。 光路设计时假设单色光源 (401)发出磁极为 N相位 为 0的定态光波, 光 (A411)经准直透镜 (402)形成平行直射光 (A412)射向消干涉光阑 (403)并从消干涉光阑 透光部分穿过到达聚焦透镜 (404)会聚光 (A413)射向蚀刻板 (405), 最终蚀刻板 (405)上形成与消干涉光阑 (403)图案相同的缩小或放大图案。 消干涉光阑 (403)由透明玻璃或透明薄膜作为基板, 以需显影或蚀刻的图案透明部分按单色光源 (401) 光波波长四分之一厚度 (403b)和非透明部分按光波波长二分之一 (403a)厚度,使用 2种或 2种以上材料交 替进行镀膜, 交替方法为相邻镀层之间使用不同材料。 消干涉光阑 (403)不同位置对应有不同的透射与散射效果, 需按不同光路进行与描述。 光 (A421)经准直透镜 (402)形成平行直射光 (A422)射向消干涉光阑 (403a)非透光部分,因镀层为〃 2厚, 直射光 (A422)在消干涉光阑 (403a)入射层为磁极 N相位 0,经过下层时有 光程则相位变为兀并有部分光 反射成为相位为 2兀的反射光 (B423),经过消干涉光阑 (403a)入射层时同样有 "2光程则相位变为 3兀,此时 磁极变为 S与入射光磁极 N异磁抵消形成减弱入射光强的作用,经过多层镀层可达到大部分入射光抵消, 减弱出射光的目的。 光 (A431)经准直透镜 (402)形成平行直射光 (A432)射向消干涉光阑 (403b)透光部分, 因镀层为 "4厚, 直射光 (A432)在消干涉光阑 (403b)入射层为磁极 N相位 0, 经过下层时有 "4光程则相位变为兀 /2并有部 分光反射成为相位为 3/2兀的反射光 (B433),经过消干涉光阑 (403b)入射层时同样有 "4光程则相位变为 2兀, 此时磁极变为 N与入射光磁极 N同磁排斥形成反射加强入射光强的作用,经过多层镀层可达到大部分入 射光无反射, 增加出射光 (A433)的目的。 光 (A441)经准直透镜 (402)形成平行直射光 (A442)射向消干涉光阑 (403)透光与非透光交界处 (b4),因 2 种材料镀层原子分布不规律将产生散射 (B443)现象, 其反射光与折射光按光的散射理论, 当散射角度较 小时,反射光强与折射光强比例几乎相同并且磁极相位相反,不发出散射光; 由于 "4厚镀层为透光部分, 其光强比非透光部分大, 交界处 (b4)散射光 (B443)和 (B444)则多数为反射光, 当反射光 (B443)与同样反射 光 (B444)会聚于光程差 "2层面时磁极相位相反抵消; 当反射光 (B443)或反射光 (B444)与直射光会聚于镀 层面时因光程差接近且磁极相位相反同样抵消; 而散射光 (C443)则多数为折射光, 同样在光程差 "2层面 上与直射光磁极相位相反抵消。 从上述边缘散射光多数相抵后边缘仅有较少散射光射出消干涉光阑 (403), 交界处 (b5)反射光 (B452) 和交界处 (c5)折射光 (C452)以一定入射角射向聚焦透镜 (404), 调整聚焦透镜 (404)与蚀刻板 (405)之间的距 离按衍射干涉 0级暗宽条纹 NSOOO作为边界使反射光 (B453)与折射光 (C453)产生的较大相干光在蚀刻板 (405)范围之外。 实施案例 2、 透射式短焦距显微镜消除干涉的光路系统 (图 7) 本发明利用上述光的原理与特性设计透射式短焦距显微镜消除干涉的装置 (图 7),主要应用于从下方 打光到物体透射后放大的显微镜光学系统, 该装置光学系统沿光束 (D500)的传播方向依次包括平行入射 光源、 会聚透镜 (530)、 观测物体 (501)、 准直透镜 (502)、 扩束透镜 (506)、 准直透镜 (507)、 复眼光阑 (508)、 聚焦透镜 (509)与目镜 (510)组成。光路设计时假设平行入射光源发出任意磁极相位、波长的光波,光 (A521) 经会聚透镜 (530)后聚焦于观测物体 (501)附近,光 (A511)透过观测物体 (501)部分射到准直透镜 (502)形成准 直平行光 (A512), 经扩束透镜 (505)和准直透镜 (507)后形成较大面平行直射光 (A514)射向复眼光阑 (508), 细长孔结构复眼光阑 (508)只通过部分直射光 (A514)到达聚焦透镜 (509)并会聚光 (A515)射向目镜 (510),最 终目镜 (510)上形成观测物体 (501)比例的影像。 同理反射光 (A531)经会聚透镜 (530)、观测物体 (501)、准直透镜 (502)、扩束透镜 (506)、准直透镜 (507)、 复眼光阑 (508)和聚焦透镜 (509)会聚光 (A535)射向目镜 (510), 最终目镜 (510)±形成观测物体 (501)比例的 影像。 复眼光阑 (508)在厚度方向平行轴透光部分可以是阵列孔、 阵列缝或复杂图案构成, 其孔的形状不限 于圆形或多边形, 其构成可由遮光材料加工孔或缝形成复眼光阑也可在透镜表面加工或覆盖遮光材料形 成复眼光阑, 其设计成一定厚度的直线透光孔可以让有一定角度的散射光与复眼光阑孔边发生二次散射 加大散射在角度光强, 最终从出射口散射到平行直射光范围之外。 从入射光在观测物体 (501)上衍射形成的散射光 (B511和 C511)经准直透镜 (502)后形成一定夹角光源 (B512), 经过扩束透镜 (506)和准直透镜 (507)后同样存在一定夹角 (B514), 此时可射入复眼光阑 (508)孔的 部分光也与复眼光阑 (508)孔边发生二次散射最终形成反射光 (B515或 B516)和折射光 (C515或 C516), 按 光的干涉计算并调整聚焦透镜 (509)合适位置让干涉光在 0级暗宽条纹 NSOOO之外,使散射干涉光难以到 达聚焦透镜 (509)并会聚到目镜 (510), 减少目镜 (510)受到干涉光影响。 实施案例 3、 反射式短焦距显微镜消除干涉的光路系统 (图 8) 本发明利用上述光的原理与特性设计反射式短焦距显微镜消除干涉的装置 (图 8),主要应用于从上方 打光到物体经反射后放大的显微镜光学系统, 该装置光学系统沿光束 (D600)的传播方向依次包括点光源 (603)、 准直透镜 (604)、 半反镜 (605)、 会聚透镜 (602)、 观测物体 (601)、 扩束透镜 (606)、 准直透镜 (607)、 复眼光阑 (608)、 聚焦透镜 (609)与目镜 (610)组成。 光路设计时假设点光源 (603)发出任意磁极相位、 波长 的光波,光 (A621)经准直透镜 (604)后形成平行直射光 (A622)射向半反镜 (605),部分光反射到会聚透镜 (602) 形成会聚光 (A611)照亮观测物体 (601) o 观测物体 (601)按入射光路反射光 (A611)到会聚透镜 (602)形成准直平行光 (A612), 穿过半反镜 (605) 到扩束透镜 (606), 经扩束透镜 (606)和准直透镜 (607)后形成较大面平行直射光 (A614)射向复眼光阑 (608), 细长孔结构复眼光阑 (608)只通过部分直射光 (A614)到达聚焦透镜 (609)并会聚光 (A615)射向目镜 (610),最 终目镜 (610)上形成观测物体 (601)比例的影像。 同理反射光 (A631)经会聚透镜 (602)、 半反镜 (605)、 扩束透镜 (606)、 准直透镜 (607)、 复眼光阑 (608) 和聚焦透镜 (609)会聚光 (A635)射向目镜 (610), 最终目镜 (610)上形成观测物体 (601)比例的影像。 复眼光阑 (608)在厚度方向平行轴透光部分可以是阵列孔、 阵列缝或复杂图案构成, 其孔的形状不限 于圆形或多边形, 其构成可由遮光材料加工孔或缝形成复眼光阑也可在透镜表面加工或覆盖遮光材料形 成复眼光阑, 其设计成一定厚度的直线透光孔可以让有一定角度的散射光与复眼光阑孔边发生二次散射 加大散射在角度光强, 最终从出射口散射到平行直射光范围之外。 在观测物体 (601)上未按入射光光路反回的散射光 (B611和 C611)经会聚透镜 (602)后形成一定夹角 (B612)穿过半反镜 (605)到扩束透镜 (606), 再经过扩束透镜 (606)和准直透镜 (607)后同样存在一定夹角 (B614), 此时可射入复眼光阑 (608)孔的部分光也与复眼光阑 (608)孔边发生二次散射最终形成反射光 (B615或 B616)和折射光 (C615或 C616), 按光的干涉计算并调整聚焦透镜 (609)合适位置让干涉光在 0级 暗宽条纹 NSOOO之外, 使散射干涉光难以到达聚焦透镜 (609)并会聚到目镜 (610), 减少目镜 (610)受到干 涉光影响。 实施案例 4、 长焦距平行光显微镜消除干涉的光路系统 (图 9) 本发明利用上述光的原理与特性设计长焦距平行光显微镜消除干涉的装置 (图 9),主要应用于远焦距 物体显微镜光学系统, 该装置光学系统沿光束 (D700)的传播方向依次包括点光源 (701)、 会聚透镜 (702)、 准直透镜 (703)、观测物体 (704)、扩束透镜 (705)、准直透镜 (706)、复眼光阑 (707)、聚焦透镜 (708)与目镜 (709) 组成。 光路设计时假设点光源 (701) 发出任意磁极相位、 波长的光波, 光 (A711)经会聚透镜 (702)和准直 透镜 (703)后形成光强较大面积较小的平行直射光 (A713)射向观测物体 (704),因观测物体 (704)无遮挡光直 接射到扩束透镜 (705), 经扩束透镜 (705)和准直透镜 (706)后形成较大面平行直射光 (A715)射向复眼光阑 (707),细长孔结构复眼光阑 (707)通过部分直射光直射光 (A715)到达聚焦透镜 (707)并会聚光 (A716)射向目 镜 (709), 最终目镜 (709)上形成观测物体 (704)比例的影像。 复眼光阑 (707)在厚度方向平行轴透光部分可以是阵列孔、 阵列缝或复杂图案构成, 其孔的形状不限 于圆形或多边形 (a7或 b7或 c7), 其构成可由遮光材料加工孔或缝形成复眼光阑也可在透镜表面加工或 覆盖遮光材料形成复眼光阑, 其设计成一定厚度的直线透光孔可以让有一定角度的散射光与复眼光阑孔 边发生二次散射加大散射在角度光强, 最终从出射口散射到平行直射光范围之外。 光 (A731)经会聚透镜 (702)和准直透镜 (703)后形成光强较大面积较小的平行直射光 (A733)射向观测 物体 (704), 在观测物体 (704)遮挡处光无法直接射到扩束透镜 (705)但有边缘散射光, 把观测物体 (704)看 作复眼光阑可根据光的散射计算 0级暗宽条纹 NSOOO边界,设计扩束透镜 (705)距离于反射光 (B733)与折 射光 (C773)形成的 0级暗宽条纹 NSOOO之外; 部分散射光 (B731)经扩束透镜 (705)和准直透镜 (706)后形成 较大面散射光 (B734)射向复眼光阑 (707), 当散射光 (B734)的夹角 Tan(9,)>复眼光阑孔直径 S/复眼光阑厚 度 T时,此时射入复眼光阑 (707)孔的光与复眼光阑 (707)孔边发生二次散射最终形成反射光 (B715或 B735) 和折射光 (C715或 C735)形成干涉光, 同样设计聚焦透镜 (708)和目镜 (709)合适位置让干涉光在 0级暗宽 条纹 NSOOO之外, 使散射干涉光难以到达聚焦透镜 (708)并会聚到目镜 (709), 减少目镜 (709)受到干涉光 影响。 实施案例 5、 透射式远距望远镜平行光过滤的光路系统 (图 10) 本发明利用上述光的原理与特性设计透射式远距望远镜复眼光阑平行光过滤的装置 (图 10), 利用复 眼光阑通平行直射光排除夹角入射光及散射光的原理主要应用于从远方发光物体获得清晰图像的望远镜 光学系统, 该装置光学系统沿光束 (D800)的传播方向依次包括远方发光物体光源、 会聚透镜 (801)、 准直 透镜 (802)、 复眼光阑 (803)、 聚焦透镜 (804)与目镜 (805)组成。 光路设计时假设远方发光物体光源发出任 意磁极相位、 波长的光波, 光 (A811)经会聚透镜 (801)聚焦后 (A812)经准直透镜 (802)形成较小面平行直射 光 (A813)射向复眼光阑 (803),细长孔结构复眼光阑 (803)只通过部分直射光 (A813)到达聚焦透镜 (804)并会 聚光 (A814)射向目镜 (805), 与复眼光阑 (803)孔边发生二次散射光 (B813)经聚焦透镜 (804)后光 (B814), 按 光的干涉计算并调整目镜 (805)合适位置让干涉光在。级暗宽条纹 NS000之外, 最终目镜 (805)上形成远 方发光物体缩小影像。 复眼光阑 (803)在厚度方向平行轴透光部分可以是不同形状的阵列孔或阵列缝构成, 其孔的形状不限 于圆形或多边形 (a8或 b8或 c8), 其构成可由遮光材料加工孔或缝形成复眼光阑也可在透镜表面加工或 覆盖遮光材料形成复眼光阑, 其设计成一定厚度的直线透光孔可以让有一定角度的散射光与复眼光阑孔 边发生二次散射加大散射在角度光强, 最终从出射口散射到平行直射光范围之外。 从远方发光物体以一定角度 0入射的光 (A821和 A831)经会聚透镜 (801)和准直透镜 (802)后同样存在 一定夹角 0'的光 (A823和 A833),当 Tan(9,)>复眼光阑孔直径 S/复眼光阑厚度 T时,此时射入复眼光阑 (803) 孔的光与复眼光阑 (803)孔边发生二次散射最终形成反射光 (B824)和折射光 (C824), 经聚焦透镜 (804)后反 射光 (B825)和折射光 (C825)形成干涉光, 按光的干涉计算并调整目镜 (805)合适位置让干涉光在 0级暗宽 条纹 NS000之外, 使散射干涉光难以到达聚焦透镜 (804)会聚到目镜 (805), 减少目镜 (805)受到干涉光影 响。 本发 明的最佳 实施方 式 实施案例 6、 反射式远距望远镜平行光过滤的光路系统 (图 11) 本发明利用上述光的原理与特性设计反射式远距望远镜复眼光阑平行光过滤的装置 (图 11), 利用复 眼光阑通平行直射光排除夹角入射光及散射光的原理主要应用于从远方发光物体获得清晰图像的望远镜 光学系统, 该装置光学系统沿光束 (D900)的传播方向依次包括远方发光物体光源、 会聚反光镜 (901)、 准 直反光镜 (902)、 复眼光阑 (903)、 聚焦透镜 (904)与目镜 (905)组成。 光路设计时假设远方发光物体光源发 出任意磁极相位、 波长的光波, 光 (A911)经会聚反光镜 (901)聚焦后 (A912)经准直反光镜 (902)形成较小面 平行直射光 (A913)射向复眼光阑 (903), 细长孔结构复眼光阑 (903)只通过部分直射光 (A913)到达聚焦透镜 (904)并会聚光 (A914)射向目镜 (905), 与复眼光阑 (903)孔边发生二次散射光 (B913)经聚焦透镜 (904)后光 (B914), 按光的干涉计算并调整目镜 (905)合适位置让干涉光在 0级暗宽条纹 NSOOO之外, 最终目镜 (905) 上形成远方发光物体缩小影像。 复眼光阑 (903)在厚度方向平行轴透光部分可以是不同形状的阵列孔或阵列缝构成, 其孔的形状不限 于圆形或多边形 (a9或 b9或 c9), 其构成可由遮光材料加工孔或缝形成复眼光阑也可在透镜表面加工或 覆盖遮光材料形成复眼光阑, 其设计成一定厚度的直线透光孔可以让有一定角度的散射光与复眼光阑孔 边发生二次散射加大散射在角度光强, 最终从出射口散射到平行直射光范围之外。 从远方发光物体以一定角度 0入射的光 (A920和 A930, 为便于直观图示, 角度较明显的 (A920)是与 (A921)同一支入射光, 角度较明显的 (A930)是与 (A931)同一支入射光)经会聚反光镜 (901)和准直反光镜 (902)后同样存在一定夹角 0,的光 (A923和 A933), 当 Tan(9,)>复眼光阑孔直径 S/复眼光阑厚度 T时, 此 时射入复眼光阑 (903)孔的光与复眼光阑 (903)孔边发生二次散射最终形成反射光 (B924)和折射光 (C924), 经聚焦透镜 (904)后反射光 (B925)和折射光 (C925)形成干涉光, 按光的干涉计算并调整目镜 (905)合适位置 让干涉光在。级暗宽条纹 NSOOO之外, 使散射干涉光难以到达聚焦透镜 (904)并会聚到目镜 (905), 减少 目镜 (905)受到干涉光影响。 以上是对本发明的较佳实施进行了具体说明, 但本发明并不限于所述实施例, 熟悉本领域的技术人 员在不违背本发明精神的前提下还可做出种种的等同变形或替换, 这些等同的变形或替换均包含在本申 请权利要求所限定的范围内。 因此, 本发明不局限于所公开的具体实施例, 而应当包括落入本发明权利 要求范围内的全部实施方式。 另外, 专利中涉及到的所有透镜或反光镜, 并非单指与图形相同的单面镜, 而是指可根据具体实施 情况进行多片透镜或反光镜进行组合, 使光达到相同原理功能。 在实施案例中的目镜, 在应用中同样可 以用相机或光电传感器或接收屏代替。

Claims

权 利 要 求 书
1. 一种消干涉光阑的制作方法, 应用于投影、 菲林、 光刻行业投影技术光学系统的母版影膜, 其特 征在于: 在选定使用的光波波长, 该消干涉光阑由透明玻璃或透明薄膜作为基板, 以需显影或蚀刻的比例 图案透明部分按使用的光波波长二分之一厚度和非透明部分按使用的光波波长四分之一厚度, 使用 2种或 2种以上材料进行交替镀膜, 交替方法为相邻镀层之间使用不同材料。
2. 一种消除干涉光投影原理的光路系统装置, 由权利要求 1项所述的消干涉光阑延伸应用, 适合显 影、 菲林、 光刻行业投影技术光学系统, 其特征在于: 该光学系统沿光束的传播方向依次包括单色光源、 准直镜、 消干涉光阑、 聚焦镜和蚀刻板组成; 单色光源经准直镜后形成平行直射光射向消干涉光阑并从消 干涉光阑透光部分穿过, 消干涉光阑与聚焦镜位置分布条件按消干涉光阑遮挡边散射的折射光与反射光相 干涉后形成的明条纹位于蚀刻板之外。
3. 一种提升光学仪器分辨能力的装置, 应用于显微镜、 望远镜光学系统, 其特征在于: 该光学系统 沿光束的传播方向依次包括发光物体、 准直镜、 复眼光阑、 聚焦镜与目镜组成; 发光物体经准直镜准直平 行的直射光射向复眼光阑并从复眼光阑透光部分穿过聚焦镜, 复眼光阑与聚焦镜位置分布条件按遮挡边吸 收直射光后散射出的折射光与反射光相干涉形成的明条纹位于聚焦镜或目镜之外。
4. 一种透射式短焦距显微镜消除干涉的光路系统装置, 应用于从下方打光到物体透射后放大的显微 镜光学系统, 其特征在于: 该装置光学系统沿光束 (D500)的传播方向依次包括平行入射光源、 会聚透镜 (530)、 观测物体 (501)、 准直透镜 (502)、 扩束透镜 (506)、 准直透镜 (507)、 复眼光阑 (508)、 聚焦透镜 (509) 与目镜 (510)组成;光路设计时假设平行入射光源发出任意磁极相位、波长的光波,光 (A521)经会聚透镜 (530) 后聚焦于观测物体 (501)附近, 光 (A511)透过观测物体 (501)部分射到准直透镜 (502)形成准直平行光 (A512), 经扩束透镜 (505)和准直透镜 (507)后形成较大而平行直射光 (A515)射向复眼光阑 (508),细长孔结构复眼光阑 (508)只通过部分直射光 (A514)到达聚焦透镜 (509)并会聚光 (A515)射向目镜 (510), 最终目镜 (510)上形成观 测物体 (501)比例的影像;从入射光衍射形成的散射光 (B511和 C511)经准直透镜 (502)后形成一定夹角光源, 经过扩束透镜 (505)和准直透镜 (507)后同样存在一定夹角, 此时可射入复眼光阑 (508)孔的部分光也与复眼 光阑 (508)孔边发生二次散射最终形成反射光 (B515或 B516)和折射光 (C515或 C516)形成干涉光,按光的干 涉计算并调整聚焦透镜 (509)合适位置让干涉光在 0级暗宽条纹 NSOOO之外, 使散射干涉光难以到达聚焦 透镜 (509)并会聚到目镜 (510), 减少目镜 (510)受到干涉光影响。
5. 一种反射式短焦距显微镜消除干涉的光路系统装置, 主要应用于从上方打光到物体经反射后放大 的显微镜光学系统, 其特征在于: 该装置光学系统沿光束 (D600)的传播方向依次包括点光源 (603)、 准直透 镜 (604)、 半反镜 (605)、 会聚透镜 (602)、 准直透镜 (603)、 观测物体 (601)、 扩束透镜 (606)、 准直透镜 (607)、 复眼光阑 (608)、 聚焦透镜 (609)与目镜 (610)组成; 光路设计时假设点光源 (603)发出任意磁极相位、 波长的 光波, 光 (A621)经准直透镜 (604)后形成平行直射光 (A622)射向半反镜 (605), 部分光反射到会聚透镜 (602) 形成会聚光 (A611)照亮观测物体 (601);观测物体 (601)反射光 (A611)按入射光路反射到会聚透镜 (602)形成准 直平行光 (A612), 穿过半反镜 (605)到扩束透镜 (606), 经扩束透镜 (606)和准直透镜 (607)后形成较大而平行 直射光 (A615)射向复眼光阑 (608), 细长孔结构复眼光阑 (608)只通过部分直射光 (A614)到达聚焦透镜 (609) 并会聚光 (A615)射向目镜 (610),最终目镜⑹ 0)上形成观测物体 (601)比例的影像; 未按入射光光路反回的散 射光 (B611和 C611)经会聚透镜 (602)后形成一定夹角穿过半反镜 (605)到扩束透镜 (606) , 再经过扩束透镜 (606)和准直透镜 (607)后同样存在一定夹角, 此时可射入复眼光阑 (608)孔的部分光也与复眼光阑 (608)孔边 发生二次散射最终形成反射光 (B615或 B616)和折射光 (C615或 C616)形成干涉光, 按光的干涉计算并调整 聚焦透镜 (609)合适位置让干涉光在 0级暗宽条纹 NSOOO之外, 使散射干涉光难以到达聚焦透镜 (609)并会 聚到目镜 (610), 减少目镜 (610)受到干涉光影响。
6. 一种长焦距平行光显微镜消除干涉的装置, 主要应用于远距物体显微镜光学系统, 其特征在于: 该装置光学系统沿光束 (D700)的传播方向依次包括点光源 (701)、会聚透镜 (702)、准直透镜 (703)、观测物体 (704)、 扩束透镜 (705)、 准直透镜 (706)、 复眼光阑 (707)、 聚焦透镜 (708)与目镜 (709)组成; 光路设计时假设 点光源 (701) 发出任意磁极相位、 波长的光波, 光 (A711)经会聚透镜 (702)和准直透镜 (703)后形成较小而平 行直射光 (A713)射向观测物体 (704), 因观测物体 (704)无遮挡光直接射到扩束透镜 (705), 经扩束透镜 (705) 和准直透镜 (706)后形成较大面平行直射光 (A715)射向复眼光阑 (707), 复眼光阑 (707)设计成细长孔结构复 眼, 部分直射光可从复眼光阑透光部分穿过到达聚焦透镜 (707)并会聚光 (A716)射向目镜 (709), 最终目镜 (709)上形成观测物体 (704)比例的影像; 光 (A731)经会聚透镜 (702)和准直透镜 (703)后形成光强较大面积较 小的平行直射光 (A733)射向观测物体 (704),在观测物体 (704)遮挡处光无法直接射到扩束透镜 (705)但有边缘 散射光,把观测物体 (704)看作复眼光阑可根据光的散射计算 0级暗宽条纹 NSOOO边界,设计扩束透镜 (705) 距离于反射光 (B733)与折射光 (C773)形成的 0级暗宽条纹 NSOOO之外; 部分散射光 (B731)经扩束透镜 (705) 和准直透镜 (706)后形成较大面散射光 (B734)射向复眼光阑 (707), 当散射光 (B734)的夹角 Tan(9,)>复眼光阑 孔直径 S/复眼光阑厚度 T时, 此时射入复眼光阑 (707)孔的光与复眼光阑 (707)孔边发生二次散射最终形成 反射光 (B715或 B735)和折射光 (C715或 C735)形成干涉光,同样设计聚焦透镜 (708)和目镜 (709)合适位置让 干涉光在 0级暗宽条纹 NSOOO之外, 使散射干涉光难以到达聚焦透镜 (708)并会聚到目镜 (709), 减少目镜 (709)受到干涉光影响。
7. 一种远距望远镜复眼光阑平行光过滤的装置, 利用复眼光阑通平行直射光排除夹角入射光及散射 光的原理主要应用于从远方发光物体获得清晰图像的望远镜光学系统, 其特征在于: 该装置光学系统沿光 束 (D800)的传播方向依次包括远方发光物体光源、会聚透镜 (801)、 准直透镜 (802)、 复眼光阑 (803)、 聚焦透 镜 (804)与目镜 (805)组成; 光路设计时假设远方发光物体光源发出任意磁极相位、 波长的光波, 光 (A811) 经会聚透镜 (801)聚焦后 (A812)经准直透镜 (802)形成较小面平行直射光 (A813)射向复眼光阑 (803),细长孔结 构复眼光阑 (803)只通过部分直射光 (A813)到达聚焦透镜 (804)并会聚光 (A814)射向目镜 (805), 与复眼光阑 (803)孔边发生二次散射光 (B813)经聚焦透镜 (804)后光 (B814),按光的干涉计算并调整目镜 (805)合适位置让 干涉光在 0级暗宽条纹 NS000之外, 最终目镜 (805)上形成远方发光物体缩小影像; 从远方发光物体以一 定角度 0入射的光 (A821和 A831)经会聚透镜 (801)和准直透镜 (802)后同样存在一定夹角 0,的光 (A823和 A833), 当 Tan(9,)>复眼光阑孔直径 S/复眼光阑厚度 T时, 此时射入复眼光阑 (803)孔的光与复眼光阑 (803) 孔边发生二次散射最终形成反射光 (B824)和折射光 (C824),经聚焦透镜 (804)后反射光 (B825)和折射光 (C825) 形成干涉光, 按光的干涉计算并调整目镜 (805)合适位置让干涉光在。级暗宽条纹 NS000之外, 使散射干 涉光难以到达聚焦透镜 (804)会聚到目镜 (805), 减少目镜 (805)受到干涉光影响。
8. 根据权利要求 3、 4、 5、 6或 7项所述的复眼光阑由柱形或多边棒状材料构成并在厚度方向有加工 平行轴透光部分, 其特征在于: 复眼光阑体透光部分可以是阵列孔、 阵列缝或复杂图案构成, 其孔的形状 不限于圆形或多边形, 其构成可由遮光材料加工孔或缝形成复眼光阑, 或在透镜表面加工或覆盖遮光材料 形成复眼光阑。
9. 根据权利要求 2、 3、 4、 5、 6或 7项所述的准直镜或准直透镜, 其特征在于: 可由多片透镜或反 光镜进行组合达到入射光准直平行功能的结构, 在光入射到复眼光阑之前的准直镜在上述项光路系统中调 整相对位置可起以调焦缩放功能。
10. 根据权利要求 2、 3、 4、 5、 6或 7项所述的聚焦镜或聚焦透镜, 其特征在于: 可由多片透镜或反 光镜进行组合达到入射光会聚缩放功能的结构, 在光入射到复眼光阑之前的准直镜在上述项光路系统中调 整相对位置可起以调焦缩放功能, 在光从复眼光阑处射出之后的聚焦镜在上述项光路系统中调整相对位置 可起以调整干涉光 0级暗宽条纹 NS000范围在蚀刻板或目镜之外的位置。
11. 根据权利要求 3、 4、 5、 6、 7或 9项所述的目镜, 其特征在于: 可由相机或光电传感器或接收屏 代替。
PCT/IB2022/054033 2022-05-02 2022-05-02 应用光学新理论提升光学仪器分辨能力的方法及装置 WO2023214197A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/054033 WO2023214197A1 (zh) 2022-05-02 2022-05-02 应用光学新理论提升光学仪器分辨能力的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/054033 WO2023214197A1 (zh) 2022-05-02 2022-05-02 应用光学新理论提升光学仪器分辨能力的方法及装置

Publications (1)

Publication Number Publication Date
WO2023214197A1 true WO2023214197A1 (zh) 2023-11-09

Family

ID=88646358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/054033 WO2023214197A1 (zh) 2022-05-02 2022-05-02 应用光学新理论提升光学仪器分辨能力的方法及装置

Country Status (1)

Country Link
WO (1) WO2023214197A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987547A (zh) * 2006-12-30 2007-06-27 中国科学院光电技术研究所 一种利用望远镜次镜自动校正望远镜像差的装置
CN102213913A (zh) * 2010-04-09 2011-10-12 中国科学院微电子研究所 一种增强光学掩模分辨率及制造高分辨率光学掩模的方法
JP2017097301A (ja) * 2015-11-27 2017-06-01 株式会社ニコン 制御装置、顕微鏡装置、制御方法、及び制御プログラム
CN109683299A (zh) * 2019-01-10 2019-04-26 浙江大学 一种多色多角度照明的高分辨显微成像系统
CN113156634A (zh) * 2021-04-07 2021-07-23 华侨大学 一种多场景实时应用的超便携光镊
CN113296169A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜、一种减干涉准直膜及其制备方法、一种贴合型准直膜及一种图像识别模组
WO2021210052A1 (ja) * 2020-04-13 2021-10-21 株式会社ニコン 計測装置、露光装置、および計測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987547A (zh) * 2006-12-30 2007-06-27 中国科学院光电技术研究所 一种利用望远镜次镜自动校正望远镜像差的装置
CN102213913A (zh) * 2010-04-09 2011-10-12 中国科学院微电子研究所 一种增强光学掩模分辨率及制造高分辨率光学掩模的方法
JP2017097301A (ja) * 2015-11-27 2017-06-01 株式会社ニコン 制御装置、顕微鏡装置、制御方法、及び制御プログラム
CN109683299A (zh) * 2019-01-10 2019-04-26 浙江大学 一种多色多角度照明的高分辨显微成像系统
CN113296169A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜、一种减干涉准直膜及其制备方法、一种贴合型准直膜及一种图像识别模组
WO2021210052A1 (ja) * 2020-04-13 2021-10-21 株式会社ニコン 計測装置、露光装置、および計測方法
CN113156634A (zh) * 2021-04-07 2021-07-23 华侨大学 一种多场景实时应用的超便携光镊

Similar Documents

Publication Publication Date Title
US11415725B2 (en) System, method and apparatus for polarization control
Zernike Phase contrast
JP2020516949A (ja) スキューミラー補助画像化
CN110297287B (zh) 一种圆偏振二向色性超透镜和包括该超透镜的光路系统
US11703689B2 (en) Device for enlarging exit pupil area and display including the same
Ustinov et al. Calculating the complex transmission function of refractive axicons
Berg et al. A review and reassessment of diffraction, scattering, and shadows in electrodynamics
WO2023214197A1 (zh) 应用光学新理论提升光学仪器分辨能力的方法及装置
Jha Textbook of Applied Physics
Lukin et al. Peculiarities of adaptive phase correction of optical wave distortions under conditions of ‘strong’intensity fluctuations
Bollepalli et al. Image formation in extreme ultraviolet lithography and numerical aperture effects
Tien Development of multi-spectral three-dimensional micro particle tracking velocimetry1
Krist et al. Assessing the performance limits of internal coronagraphs through end-to-end modeling
Gdoutos et al. Fundamentals of Optics
KR20210059594A (ko) 사출동 확장기 및 이를 포함하는 디스플레이
Heintzmann et al. Introduction to Optics
Hahlweg et al. Fourier planes vs. Scheimpflug principle in microscopic and scatterometric devices
Magalhães et al. Construction of restricted field of view holographic screens
Distante et al. Optical System
Torkaman et al. Revisiting Young's edge diffracted wave: Diffraction of light by fractured plane wave-front
Lüders et al. Interference
Gitin Geometrical method for calculating the group velocity dispersion of a stretcher taking into account the influence of optical system parameters
Malacara Wave optics
Burke et al. Optics I: Imaging
Divitt Modulation of optical spatial coherence via surface plasmon polaritons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940795

Country of ref document: EP

Kind code of ref document: A1