WO2023213106A1 - 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统 - Google Patents

人工心脏瓣膜的锚固装置及人工心脏瓣膜系统 Download PDF

Info

Publication number
WO2023213106A1
WO2023213106A1 PCT/CN2023/075329 CN2023075329W WO2023213106A1 WO 2023213106 A1 WO2023213106 A1 WO 2023213106A1 CN 2023075329 W CN2023075329 W CN 2023075329W WO 2023213106 A1 WO2023213106 A1 WO 2023213106A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchoring device
anchoring
heart valve
wire
artificial heart
Prior art date
Application number
PCT/CN2023/075329
Other languages
English (en)
French (fr)
Inventor
何东
赵婧
刘祥
Original Assignee
上海臻亿医疗科技有限公司
江苏臻亿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海臻亿医疗科技有限公司, 江苏臻亿医疗科技有限公司 filed Critical 上海臻亿医疗科技有限公司
Publication of WO2023213106A1 publication Critical patent/WO2023213106A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable

Definitions

  • the invention relates to the technical field of medical devices, and in particular to an anchoring device for an artificial heart valve and an artificial heart valve system.
  • Transcatheter mitral valve replacement surgery uses a catheter intervention method to compress the artificial heart valve into the delivery system outside the body and then deliver it to the human mitral valve annulus.
  • the artificial heart valve is released and fixed on the mitral valve.
  • the valve annulus replaces the native valve leaflets.
  • mitral valve replacement surgery does not require extracorporeal circulation auxiliary devices, has less trauma, and the patient recovers quickly.
  • the patient's hemodynamic index can be significantly improved after surgery.
  • the atrial septal route implantation through the femoral vein is more convenient. It is less invasive and has a wider audience.
  • the traditional anchoring method mainly fixes the artificial heart valve by designing anchoring spines to grasp the native valve leaflets, or fixing the artificial heart valve by over-sizing the artificial heart valve. Both anchoring methods can easily cause damage to the native valve leaflets or compression of the native valve annulus tissue, thus adversely affecting the patient's recovery.
  • the existing technology also adopts a design that separates the anchoring device from the artificial heart valve.
  • the artificial heart valve is composed of an anchoring ring and a valve body.
  • This design of separating the anchoring ring and the valve body can effectively avoid compression of the native valve annulus and is not easily damaged.
  • the native leaflets also reduce the size of each part of the delivery system, which is more conducive to the movement of the delivery system in the body.
  • the anchoring ring and the valve body are delivered separately. The process of releasing the anchor ring by the anchor ring delivery system is complicated.
  • the anchor ring delivery system needs to release the rope loop structure in the ventricle to capture the end of the guide wire so that the guide wire forms a guide coil, and then it can be implanted along the guide coil.
  • Anchor ring At the same time, the end of the anchor ring must be specially designed with a docking fastening device so that the anchor ring forms a closed ring structure.
  • the artificial heart valve has a waist-shaped structure (that is, convex at both ends and concave in the middle)
  • the mutual positions of the artificial heart valve and the anchoring ring need to be adjusted multiple times so that the anchoring ring can fit into the artificial heart valve.
  • heart valve The indentation of the membrane will increase the difficulty and complexity of the artificial heart valve implantation operation and place high requirements on the operator's proficiency.
  • the long operation time will also have a negative impact on the patient's health.
  • the purpose of the present invention is to provide an anchoring device for an artificial heart valve and an artificial heart valve system that can accurately surround the native valve leaflets under the guidance of a guide wire, thereby simplifying the implantation steps of the anchoring device and reducing the cost of implantation. Entering difficulty.
  • the present invention provides an anchoring device for an artificial heart valve, the anchoring device having a contraction state and an expansion state, and being able to switch between the contraction state and the expansion state;
  • the anchoring device includes an anchoring structure and a guide structure;
  • the anchoring structure includes an elastic wire and an accommodating portion;
  • the accommodating portion is connected to the elastic wire and is arranged along the extension direction of the elastic wire;
  • the guide The structure includes a guide wire, the guide wire is disposed axially through the accommodation part;
  • the guide wire can extend out of the accommodating part from the distal end of the accommodating part and be used to move along the cavity wall of the predetermined cavity to form a release trajectory;
  • the anchoring structure is configured to travel along the release trajectory formed by the guide wire to transition from the contracted state to the expanded state.
  • the accommodating portion has a cavity extending through the axial direction thereof, and the guide wire is disposed in the cavity.
  • the elastic wire is arranged outside the accommodating part, the accommodating part is composed of a hollow tube, the cavity tube is arranged parallel to the elastic wire, and the guide wire is arranged on in the cavity of the cavity tube.
  • the elastic wire is arranged outside the accommodating part, and the accommodating part is composed of a plurality of accommodating structures spaced apart along the extension direction of the elastic wire;
  • Each of the accommodation structures has at least one through hole, and the through holes of all the accommodation structures define at least one cavity.
  • the guide wire passes through a row of the elastic wires in sequence along the extension direction of the elastic wire. through hole.
  • the elastic wire is provided inside the accommodating part, and the accommodating part has at least two cavities extending through its own axial direction, and the elastic wire and the guide wire are respectively arranged in the two cavities of the accommodating part.
  • the guide wire is configured to increase the diameter of the anchoring structure
  • the anchoring device further includes a reducing wire disposed in the accommodating portion, and the reducing wire is used for By increasing the radius of curvature of the accommodating portion, the diameter of the anchoring structure is increased.
  • the elastic wire is arranged outside the accommodating part, and the guide wire and the reducing wire are respectively arranged in the same cavity or two cavities in the accommodating part. in the cavity; or, the elastic wire is arranged inside the accommodating part, and the elastic wire, the guide wire and the reducing wire are respectively arranged in the three cavities of the accommodating part. .
  • the stiffness of the variable diameter wire is greater than 0.1 times the stiffness of the elastic wire.
  • the distal end of the cavity of the accommodating portion for accommodating the variable diameter wire is sealed, and the shape of the distal end is spherical, conical or elliptical.
  • the anchoring device in the expanded state is a coil structure; wherein in the expanded state, the anchoring device has an anchoring section for surrounding the native valve leaflet, and the anchoring section has at least one turn of the coil. , the anchoring device also has a grabbing section axially connected to the anchoring section; the radius of curvature of the grabbing section is greater than the radius of curvature of the anchoring section, so that the anchoring device can be implanted along the predetermined cavity.
  • the cavity walls move and expand to form.
  • the present invention also provides an artificial heart valve system, which includes an artificial heart valve and an anchoring device of any one of the artificial heart valves, and the artificial heart valve is used to be accommodated in the anchoring device.
  • the anchoring device has a contracted state and an expanded state, and can switch between the contracted state and the expanded state;
  • the anchoring device includes Anchor structure and guide structure;
  • the anchor structure includes elastic wires and accommodating parts;
  • the accommodating parts are connected to the elastic wires and are arranged along the extension direction of the elastic wires;
  • the guide structure includes guide wires,
  • the guide wire is axially provided in the accommodating part;
  • the guide wire can extend out of the accommodating part from the distal end of the accommodating part and is used to move along the cavity wall of the predetermined chamber.
  • Form a release trajectory the anchoring structure is used to form along the guide wire The release trajectory travels to transition from the contracted state to the expanded state.
  • the anchoring structure (including the elastic wire and the accommodation part) can gradually follow when the anchoring device is implanted.
  • the guide wire moves along the cavity wall of the predetermined chamber, and enables the anchoring device to expand and shape around the native valve leaflets when gradually released, thereby enabling the anchoring device to be implanted in the predetermined chamber.
  • the anchoring device does not need a rope structure to capture the guide wire when implanted, which can simplify the implantation process of the anchoring device, reduce the difficulty of implanting the anchoring device, and also improve the success rate of artificial heart valve implantation, thereby improving the success rate of artificial heart valve implantation. It can improve the reliability and convenience of artificial heart valve surgery.
  • the anchoring structure preferably has an anchoring section, and the anchoring section can realize the connection between the artificial heart valve and the anchoring section through an interference fit between the inner cavity and the artificial heart valve, and exert an anchoring force on the artificial heart valve.
  • the anchoring device preferably also has a reducing wire or a guide wire capable of increasing the diameter of the anchoring structure. After the anchoring device is implanted, the guide wire and/or reducing wire is withdrawn, and the anchoring device can return to its predetermined smaller diameter and surround the native valve leaflet. After the artificial heart valve is implanted, the anchoring device can adapt to the external contour of the artificial heart valve, so that the artificial heart valve can be fixed in a predetermined object through the anchoring device.
  • Figure 1 is a schematic structural diagram of an anchoring device in Embodiment 1 of the present invention, in which the accommodating part is composed of a hollow tube, and the hollow tube has a cavity;
  • FIG. 2 is a schematic structural diagram of the anchoring device in Embodiment 1 of the present invention, in which the accommodating part is composed of a hollow tube, and the hollow tube has two cavities;
  • FIG. 3 is a schematic diagram of the usage scenario of the anchoring device in Embodiment 1 of the present invention.
  • Figure 4 is a schematic diagram of the usage scenario of the artificial heart valve system in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of the anchoring device in Embodiment 2 of the present invention.
  • Figure 6 is a schematic structural diagram of the anchoring device in Embodiment 3 of the present invention.
  • anchoring device 1 elastic wire 11; accommodating part 12; cavity 121; cavity tube 122; accommodating structure 123; through hole 124; guide wire 13; inner cavity 14; anchoring section 15; grabbing section 16; Native valve leaflets 21; chordae tendineae 22; artificial heart valve 3; outflow section 31; annulus section 32; flange section 33; delivery sheath 4.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation or be constructed in a specific orientation. and operation, and therefore cannot be construed as limitations of the present invention.
  • the terms “installation”, “connection”, “fixing” and other terms should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integrated connection.
  • It can be a mechanical connection, an electrical connection or communication with each other; it can be a direct connection, or it can be connected through an intermediate medium, it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limited.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • proximal end generally refers to the end that is close to the operator; the term “distal end” is opposite to the “proximal end” and generally refers to the end that is far away from the operator.
  • radial refers to the direction parallel to the native annulus after the anchoring device or artificial heart valve system is implanted in the heart, that is, the radial direction of the native annulus; the term “axial” It refers to the direction perpendicular to the native valve annulus after the anchoring device or artificial heart valve system is implanted in the heart, that is, the axial direction of the native valve annulus.
  • the intended object refers to the subject who needs to be implanted with an artificial heart valve, and the intended object generally refers to the human heart;
  • the intended chamber refers to the chamber in the heart that can accommodate and fix the anchoring structure, such as the left ventricle or the right ventricle. Ventricles.
  • the first preferred embodiment of the present invention provides an artificial heart valve system, which includes an anchoring device 1 and an artificial heart valve 3 .
  • the artificial heart valve 3 is used to be accommodated in the anchoring device 1 .
  • the expanded anchoring device 1 is a coil structure (including a spiral coil) and has an annular inner cavity 14 , and the artificial heart valve 3 is used to be accommodated in the inner cavity 14 of the anchoring device 1 .
  • the anchoring device 1 has a contracted state and an expanded state and is capable of switching between said contracted state and said expanded state.
  • the contracted state usually refers to the state of the anchoring device 1 in the delivery sheath 4 , in which the anchoring device 1 is deformed and compressed;
  • the expanded state refers to the anchoring device 1 not being constrained or separated from the delivery sheath 4 At this time, the anchoring device 1 expands and forms independently.
  • the anchoring device 1 includes an anchoring structure, which includes an elastic wire 11 and a receiving portion 12 .
  • the accommodating portion 12 is connected to the elastic yarn 11 and is arranged along the extending direction of the elastic yarn 11 .
  • the elastic thread 11 can be arranged inside or outside the accommodating part 12; as in the first embodiment, the elastic thread 11 is arranged outside the accommodating part 12.
  • the anchoring device 1 also includes a guide structure, which includes a guide wire 13 , and the guide wire 13 is disposed axially through the receiving portion 12 .
  • the guide wire 13 can extend from the distal end of the accommodating part 12 and is used to move along the wall of the left ventricle (predetermined chamber) to form a release trajectory; the anchoring structure (including the elastic wire 11 and the accommodating Part 12) is used to travel along the release trajectory formed by the guide wire 13 to convert from the contracted state to the expanded state.
  • the anchoring structure (elastic wire 11 and accommodating portion 12) can gradually follow the guide wire 13 along the left
  • the chamber wall of the ventricle moves, eventually allowing the anchoring device 1 to expand and shape around the native valve leaflets 21 during gradual release, thereby enabling the implantation of the anchoring device 1 in a predetermined chamber.
  • the anchoring device 1 does not need a cord structure to capture the guide wire during implantation, which can simplify the implantation process of the anchoring device 1, reduce the difficulty of implanting the anchoring device 1, and also improve the success of the implantation of the artificial heart valve 3. rate, thereby improving the reliability and convenience of artificial heart valve 3 surgery.
  • the accommodating part 12 has a cavity 121 extending through the axial direction thereof, and the guide wire 13 is disposed in the cavity 121 of the accommodating part 12 .
  • the accommodating part 12 may be a continuously extending structure, or may be composed of multiple structures arranged intermittently. As shown in FIG. 1 , the accommodating portion 12 is a continuously extending tube, the length of which is equal to or different from the length of the elastic wire 11 . Preferably, the distal end of the accommodating part 12 is correspondingly arranged at the distal end of the elastic wire 11 , and the proximal end of the accommodating part 12 is correspondingly arranged at the proximal end of the elastic wire 11 .
  • the expanded maximum outer diameter of the anchoring device 1 is smaller than the inner diameter of the contact area between the anchoring device 1 and the left ventricle, so that the anchoring device 1 can be fixed to the native valve leaflet 21 through the artificial heart valve 3 s position.
  • the anchoring device 1 does not need anchoring thorns, nor does it need to be fixed by over-sizing the artificial heart valve 3. Therefore, it will not cause damage to the native valve leaflets 21 or compress the native valve annulus tissue. The surgery will cause less damage and is more beneficial to the patient. postoperative recovery.
  • the elastic wire 11 is made of an elastic material.
  • the elastic material is preferably a superelastic material and/or a material with a shape memory function, or other materials with strong elastic deformation ability to ensure that the elastic wire 11 can be axially deformed. , a large degree of elastic deformation in the radial or circumferential direction.
  • This application does not limit the elastic material used to prepare the elastic yarn 11, as long as it is a metal material or polymer material that can produce elastic deformation.
  • the elastic wire 11 can be configured to be one or a combination of stainless steel, titanium alloy, and nickel-titanium alloy.
  • the material of the elastic wire 11 can also be configured to be a polymer material, such as nylon material, polyester fiber, etc.
  • each elastic thread 11 can be made of one or more combinations of materials, for example, different types of material segments can be connected to each other to form the elastic thread 11 .
  • the elastic wire 11 can be a solid or hollow structure, as long as it can provide strong enough support.
  • the cross-sectional shape of the elastic yarn 11 is not limited, such as circular, annular or rectangular, or it can also be designed with variable diameter or variable cross-section, that is, the cross-sectional size or shape of the elastic yarn 11 at different positions is different. To meet the design requirements of the anchoring device 1.
  • the elastic yarn 11 can be shaped into a specific shape in advance, such as a spiral shape.
  • the elastic wire 11 is stretched along the extension direction (ie, the length direction) and placed in the delivery sheath 4 (see Figure 3); when the anchoring device 1 is separated from the distal end of the delivery sheath 4, the elastic wire 11 is Can be restored to its original shape (i.e. spiral shape).
  • the elastic wire 11 is pre-shaped into a spiral shape.
  • the elastic wire 11 can return to the spiral shape during the gradual removal of the delivery sheath 4, so that the anchoring device 1 can form a spiral shape and be anchored at the position of the native leaflet 21 after expansion.
  • This application does not limit the material used to prepare the guide wire 13.
  • the guide wire 13 only needs to have sufficient stiffness and softness to be able to extend at the distal end of the accommodating part 12 without damaging the cavity wall of the predetermined cavity. That is, for example, a conventional green guidewire or a loach guidewire can be used as the guidewire 13 in this application.
  • the artificial heart valve 3 is partially accommodated in the annular inner cavity 14, and the anchoring device 1 is positioned and fixed on the mitral valve through the expansion or structure of the artificial heart valve 3. Ring.
  • the fixation method of the anchoring device 1 is related to the structure of the artificial heart valve 3 .
  • the artificial heart valve 3 can adopt an existing structure. Specifically, it can include an interconnected outflow section 31 and an annulus section 32.
  • the artificial heart valve also includes a flange section 33 to improve the performance of the artificial heart valve 3. anchoring effect and prevent the occurrence of paravalvular leakage.
  • the outflow section 31 , annulus section 32 and flange section 33 are connected axially in sequence, and after the artificial heart valve 3 is expanded, the inner diameters of the outflow section 31 and the flange section 33 are both larger than the inner diameter of the annulus section 32 .
  • the artificial heart valve 3 When the artificial heart valve 3 has the above-mentioned structure of convex at both ends and concave in the middle (i.e., waist-shaped structure), the artificial heart valve 3 does not compress the anchoring device 1 when expanding. At this time, the anchoring device 1 is close to the annulus of the artificial heart valve. Segment 32 position, and can be stuck in the depression through the outflow segment 31 and flange segment 33 of the artificial heart valve 3. If the artificial heart valve 3 is cylindrical or conical, the anchoring device 1 can be pressed against the annulus through expansion of the artificial heart valve 3. At this time, the anchoring device 1 can adapt to the expanded artificial heart when deformed by force. The outer contour of the valve 3 is used to apply an anchoring force to the artificial heart valve 3. After the anchoring force is applied, the artificial heart valve 3 and the anchoring device 1 are sealed and fixedly connected to each other.
  • the anchoring device 1 can be placed in the delivery sheath 4 and moved to the mitral annulus with the delivery sheath 4, and then the anchoring device 1 is pushed by the delivery system.
  • the delivery sheath 4 can be gradually removed and released in the left ventricle.
  • the distal end of the guide wire 13 can first extend out of the distal end of the accommodating portion 12 and move a certain distance along the wall of the left ventricle (see Figure 3), and then stop the guide wire.
  • the movement of 13 can make the elastic wire 11 and the accommodating portion 12 move along the movement trajectory (release trajectory) of the guide wire 13 .
  • the movement of the elastic wire 11 and the accommodating part 12 is stopped. Move again to move the distal end of the guide wire 13 along the wall of the left ventricle, and so on, until the anchoring device 1 is completely released and can be expanded and molded around the native valve leaflet 21 of the intended target to complete the implantation of the anchoring device 1 .
  • the anchoring device 1 can be positioned around the native valve leaflet 21 of the intended object, and the anchoring device 1 can be fixed at the native valve annulus using the artificial heart valve 3 .
  • the proximal end of the accommodating part 12 is close to the proximal end of the elastic wire 11; the distal end of the accommodating part 12 is close to the distal end of the elastic wire 11.
  • “Close” here means that the proximal end of the accommodating part 12 does not exceed the proximal end of the elastic wire 11.
  • the proximal ends of the two may be aligned or misaligned.
  • the distal ends of the two can be aligned or misaligned.
  • the delivery system refers to the delivery system of the anchoring device 1 or the artificial heart valve 3, that is, it refers to a device that can carry the compressed anchoring device 1 or the artificial heart valve 3 to move within a predetermined object.
  • the expanded outer diameter of the artificial heart valve 3 is larger than the expanded inner diameter of the anchoring device 1, so that after the artificial heart valve 3 is implanted, the anchoring device 1 can be forced to deform after the artificial heart valve 3 is expanded, due to elasticity.
  • the wire 11 is elastic, and the anchoring device 1 can also adapt to the external contour of the artificial heart valve 3 when deformed by force, and can exert an anchoring force on the artificial heart valve 3 through the interference fit between the anchoring device 1 and the artificial heart valve 3 , so that the artificial heart valve 3 can be more firmly connected to the anchoring device 1, and the anchoring device 1 can also be used to provide the anchoring force for the artificial heart valve 3 to be anchored in the predetermined object, so as to realize the anchoring of the artificial heart valve 3 to the native valve leaflets.
  • the fixation at 21 means that the artificial heart valve 3 is fixed in a predetermined object through the anchoring device 1 .
  • the elastic wire 11 is arranged outside the accommodating part 12.
  • the accommodating part 12 is composed of a hollow tube 122, and the cavity tube 122 is arranged parallel to the elastic wire 11.
  • the accommodating part 12 has a cavity 121, and the guide wire 13 is arranged in the cavity 121 of the cavity tube 122.
  • the proximal end of the cavity 121 corresponds to the proximal end of the elastic wire 11
  • the distal end of the cavity 121 corresponds to the distal end of the elastic wire 11 .
  • This application does not limit the shape of the cavity 121.
  • the cross-sectional shape of the cavity 121 along the axial direction can be circular, elliptical, square, etc., and is preferably circular or elliptical to facilitate the guide wire 13 in the cavity 121. of movement.
  • the lengths of the elastic yarn 11 and the cavity tube 122 are the same, and the positions of the elastic yarn 11 and the cavity tube 122 are corresponding and can be sewn, bonded or otherwise used at the contact positions. connect.
  • the cavity tube 122 can be made of polymer material, such as low-strength polyethylene, PU or polytetrafluoroethylene.
  • the anchoring device 1 further includes a reducing wire (not shown) disposed in the accommodating part 12, and the reducing wire is used to increase the curvature radius of the accommodating part 12, thereby increasing the diameter of the accommodating part 12.
  • the variable diameter wire may be an unbent wire or a bent wire with a larger radius of curvature.
  • the guide wire 13 and the reducing wire are removed, and the anchoring device 1 can return to its predetermined spiral shape with a smaller diameter and close to the native valve leaflet 21 to facilitate the anchoring device 1 Adapt to the external contour of the artificial heart valve 3 and provide anchoring force to the artificial heart valve 3 .
  • the anchoring device 1 passes through the middle of the tendineae 22 , that is, when the anchoring device 1 fails to accommodate the native leaflets 21 and the chordae 22 in the inner cavity 14 , because at this time part of the tissue of the chordae 22 is located in the anchorage
  • the outside of the device 1 prevents the artificial heart valve 3 from being able to adhere closely to part of the native valve leaflets 21 after implantation, which may cause paravalvular leakage and may lead to the failure of the artificial heart valve 3 operation.
  • variable diameter wires can be set to one or more of stainless steel wires, titanium alloy wires, and nickel titanium alloy wires. combination of species.
  • the stiffness of the variable-diameter wire is greater than 0.1 times the stiffness of the elastic wire 11, so that the curvature radius of each part of the anchoring device 1 can be greater than the inner diameter of the left ventricle, thereby better ensuring that the anchoring device 1 can be released after release. It always moves along the cavity wall of the left ventricle and can capture all native valve leaflets 21 and chordae tendineae 22 and other native tissues.
  • the guide wire 13 is configured to increase the diameter of the anchoring structure, for example, using a material with greater stiffness to prepare the guide wire 13 or increasing the wall thickness of the material for making the guide wire 13 so that The guide wire 13 has sufficient strength, and the reducing wire does not need to be provided at this time.
  • the stronger guide wire 13 can also increase the radius of curvature of the accommodating portion 12, thereby increasing the diameter of the entire anchoring structure, so that the anchoring device 1 can always move along the cavity wall of the left ventricle after release.
  • the guide wire 13 and the reducing wire are respectively provided in the same cavity 121 or two cavities 121 in the accommodation part 12 .
  • the guide wire 13 and the reducing wire are respectively arranged in the same cavity 121 or two different cavities 121 in the cavity tube 122 .
  • a cavity tube 122 may also have two cavities 121, and the guide wire 13 and the reducing wire are respectively passed through the two cavities of the cavity tube 122. 121 in.
  • the two cavities 121 of the cavity tube 122 can be provided independently or connected with each other. It is preferred that the two cavities 121 are provided independently so that the guide wire 13 will not be interfered by the reducing wire when moving.
  • the accommodating part 12 includes two hollow tubes 122 , the two hollow tubes 122 are arranged parallel to the elastic wire 11 , each hollow tube 122 has a cavity 121 , and the guide wire 13 and The reducing wires can be respectively inserted into the cavities 121 of different cavity tubes 122 .
  • This application does not limit the placement positions of the elastic wire 11 and the cavity tube 122.
  • the two cavity tubes 122 can be connected to the elastic wire 11 respectively.
  • the two cavity tubes 122 can be arranged on the elastic wire. 11 on both sides.
  • two hollow tubes 122 are connected to each other, and only one hollow tube 122 is connected to the elastic wire 11.
  • the elastic wire 11 and one hollow tube 122 can be arranged in another cavity.
  • each cavity tube 122 is connected to the elastic wire 11 and another cavity tube 122 respectively, that is, the elastic wire 11 and the two cavity tubes 122 form a triangular-like structure, which can reduce anchorage.
  • the cross-sectional dimensions of the device 1 are to facilitate the transportation of the conveyor system. It should be understood that among the two hollow tubes 122 mentioned above, the material, size and strength of each hollow tube 122 may be the same or different.
  • the distal end of the cavity 121 for accommodating the variable diameter wire in the accommodating portion 12 is sealed, which can reduce the resistance of the variable diameter wire entering or withdrawing from the delivery system, and can also reduce Risk of thrombosis at the distal end of the anchoring device 1 .
  • all the distal ends of the hollow tubes 122 containing the variable diameter wires that are in contact with the left ventricle are sealed.
  • a silicone gasket can be placed at the distal end of the hollow tube 121 to make the distal end of the anchoring device 1 End seal.
  • the shape of the distal end of the cavity 121 in the accommodating portion 12 for accommodating the variable diameter wire is a spherical, conical, elliptical or similar spherical structure.
  • such an arrangement can reduce the The implantation of the anchoring device 1 brings about the risk of thrombosis; on the other hand, the distal end of the anchoring device 1 can be smoothly transitioned to prevent the distal end of the anchoring device 1 from scratching the myocardial wall or the apex.
  • the anchoring device 1 in the expanded state is a coil structure, such as a spiral coil.
  • the anchoring structure has an anchoring section 15 for surrounding the native leaflet 21.
  • the anchoring section 15 has at least one turn of coil, and the number of turns here is the winding circle of the anchoring section 15 when it is preformed. number. It is preferably 2 turns, so that the anchoring section 15 can have sufficient anchoring force for the artificial heart valve 3, and can deform when the artificial heart valve 3 expands and adapt to the external contour of the artificial heart valve 3, so that the anchoring device can 1 to achieve anchoring of the artificial heart valve 3.
  • the inner diameter of the anchoring segment 15 (ie, the maximum diameter of the lumen 14 in the anchoring device 1) generally corresponds to the size of the native valve leaflet 21.
  • the anchoring segment 15 The radius of the inner contour is 5mm ⁇ 20mm, and the appropriate anchoring device 1 can be selected according to different patients.
  • This application does not limit the shape of the anchoring segment 15.
  • the expanded outer contour shape of the anchoring segment 15 corresponds to the inner contour shape of the native valve leaflet 21 to achieve better anchoring.
  • the expanded shape of the anchoring segment 15 can be Be circular, arc or elliptical, etc.
  • the anchoring segment 15 may be wound by an elastic wire 11 of one material and a hollow tube 122 of one material.
  • the anchoring section 15 can also be formed by connecting elastic wires 11 of two or more materials and hollow tubes 122 of more than two materials in sections.
  • the elastic wires 11 of different types of materials can be connected to each other. Connect, connect the cavity tubes 122 of different types of materials to each other, and then connect the elastic wire 11 and the cavity tube 122 in the radial direction to form the anchoring section 15 .
  • a covering layer with a high friction coefficient can be coated on the surface of the anchoring section 15 .
  • the high friction coefficient covering layer may be one or a combination of polyethylene and PET materials.
  • the anchoring structure in the expanded state, preferably also has a grabbing section 16 axially connected to the anchoring section 15.
  • the radius of curvature of the grabbing section 16 is greater than the radius of curvature of the anchoring section 15, so that When implanted, the anchoring structure moves along the cavity wall of the left ventricle and expands to shape. Due to the large radius of the grasping section 16, when the anchoring device 1 is released in the delivery sheath 4, the grasping section 16 can always be close to the wall of the left ventricle, so that the anchoring device 1 can grasp all the native valves. Native tissues such as leaflets 21 and chordae tendineae 22 will be accommodated in the inner cavity 14 when the anchoring device 1 moves. .
  • the anchoring device 1 can reduce the initial radius of curvature of the grabbing section 16, or make the radius of curvature of the grabbing section 16 the same as that of the anchor.
  • the curvature radii of the anchoring segments 15 are the same.
  • the grabbing segment 16 will not float inside the left ventricle, which is beneficial to the long-term implantation of the anchoring device 1 in the human body.
  • the radius of curvature of the grasping segment 16 usually corresponds to the size of the left ventricle, that is, the radius of the expanded outer contour of the grasping segment 16 is consistent with the size of the left ventricle.
  • the radius of the inner contour corresponds, and the anchoring device 1 can be selected according to different patients. This allows the anchoring device 1 to move closely against the wall of the left ventricle without being easily inserted into the myocardial wall.
  • the grabbing section 16 can be an arc structure or a coil structure.
  • the grabbing section 16 can be composed of a single arc, or can be connected by multiple arcs, and the length of the arc can be set as needed.
  • the curvature radius of each arc segment in the multiple arcs that make up the grasping section 16 is 10 mm to 30 mm, so as to better assist the anchoring device 1 in grasping all the native valve leaflets 21, chordae tendineae 22 and other structures.
  • the grabbing section 16 is a coil structure, the number of turns of the coil structure does not exceed 2, so that the grabbing section 16 can be easily deformed and change the moving direction when moving.
  • a covering layer with a low friction coefficient can be coated on the surface of the grabbing section 16 .
  • the low friction coefficient covering layer may be one or a combination of polytetrafluoroethylene or velvet cloth.
  • different elastic wires 11 and hollow tubes 122 can be used to make the anchoring section 15 and the grabbing section 16 respectively, and the anchoring section 15 and the grabbing section 16 are connected to each other to form the anchoring device 1, that is, The anchoring section 15 and the grabbing section 16 are formed separately and then connected to each other.
  • an elastic wire 11 and a hollow tube 122 connected to each other can also be wound successively to form the anchoring section 15 and the grabbing section 16 to form an integrated anchoring device 1 .
  • Embodiment 1 The parts in this embodiment that are the same as those in Embodiment 1 will not be described in detail. The following mainly describes the differences. For similarities, please refer to Embodiment 1.
  • the accommodating portion 12 includes a plurality of accommodating structures 123 spaced apart along the extension direction of the elastic wire 11; each accommodating structure 123 has at least one through hole 124, all of which are spaced apart.
  • the through holes 124 of the accommodation structure 123 define at least one cavity 121 , and the guide wire 13 passes through a row of through holes 124 in sequence along the extension direction of the elastic wire 11 .
  • each receiving structure 123 includes a ring connected to the elastic wire 11 , each ring has a through hole 124 , and a row of through holes 124 is formed on the axis of the elastic wire 11 .
  • a cavity 121, the guide wire 13 passes through one of the cavity 121, that is, the guide wire 13 passes through a row of through holes 124 formed by all the rings in sequence, thereby reducing the possible damage caused by the cavity tube 122. Risk of blood clots.
  • the accommodation structure 123 is not limited to a ring.
  • the accommodation structure 123 only needs to include at least one through hole 124 .
  • This application does not limit the specific structure of the accommodation structure 123 .
  • This application does not limit the number of accommodation structures 123, and the number of accommodation structures 123 can be set as needed.
  • This application does not limit the connection method between the accommodation structure 123 and the elastic thread 11.
  • the accommodation structure 123 can be connected to the elastic thread 11 by welding, sewing or gluing.
  • each receiving structure 123 has at least two through holes 124 arranged side by side along the radial direction of the elastic wire 11 , and the through holes 124 of all the receiving structures 123 define at least two cavities. 121.
  • the guide wire 13 passes through one row of through holes 124 in sequence along the extension direction of the elastic wire 11, and the variable diameter wire passes through another row of through holes 124 in sequence along the extension direction of the elastic wire 11.
  • each receiving structure 123 includes two circular rings arranged side by side and connected to the elastic wire 11 , each of the circular rings has a through hole 124 , and two holes 124 on the axis of the elastic wire 11 .
  • the through holes 124 of the rows of rings form two cavities 121, and the guide wire 13 and the reducing wire pass through the through holes 124 of the two rows of rings respectively to realize the guide wire 13 and the reducing wire. Wearing in the accommodation part 12.
  • Embodiment 1 The parts in this embodiment that are the same as those in Embodiment 1 will not be described in detail. The following mainly describes the differences. For similarities, please refer to Embodiment 1.
  • the elastic wire 11 is provided inside the accommodating part 12, and the accommodating part 12 has at least two cavities 121 extending through its own axial direction. 11 and the guide wire 13 are respectively inserted into the two cavities 121 of the accommodating part 12 . The elastic wire 11 and the guide wire 13 can be inserted into any cavity 121 of the accommodating part 12 .
  • the accommodation part 12 is composed of a hollow tube 122, which is arranged parallel to the elastic wire 11; the hollow tube 122 has two cavities 121, the elastic wire 11 and the guide wire. 13 are respectively arranged in the two cavities 121 of the cavity tube 122.
  • the cavity tube 122 of the anchoring device 1 may have three cavities 121 , the elastic wire 11 , the guide wire 13 and the variable-diameter wire respectively. penetrated in the three cavities 121 of the accommodating part 12 .
  • the elastic wire 11 , the guide wire 13 and the variable diameter wire are respectively inserted into the three cavities 121 of the cavity tube 122 .
  • the elastic wire 11 , the reducing wire and the guide wire 13 can be inserted into any cavity 121 of the accommodating part 12 .
  • the three cavities 121 can be set up independently or connected to each other. It is preferred that the three cavities 121 are independently provided so that the guide wire 13 will not be interfered by the elastic wire 11 and the variable diameter wire when moving.
  • the distal end for accommodating the elastic wire 11 and the distal end for accommodating the variable diameter wire in the accommodating portion 12 are sealed, for example, they can be distal to the cavity 121 for accommodating the elastic wire 11 .
  • Silicone gaskets are placed at the end and the distal end of the cavity 121 that accommodates the variable diameter wire, so that the distal ends of the remaining cavities 121 of the anchoring device 1 except the cavity 121 that accommodates the guide wire 13 are sealed, thereby lowering the anchoring device. 1 distal thrombotic risk.
  • the shape of the distal end of the anchoring device 1 (ie, the distal end of the grabbing section 16) is a spherical, conical, elliptical or similar spherical shape with holes. Structure.
  • the through hole at the distal end of the anchoring device 1 has a cavity 121 for accommodating the guide wire 13 .
  • the implantation process of the anchoring device 1 and the artificial heart valve 3 is as follows:
  • the anchoring device 1 is contracted in the delivery sheath 4.
  • the delivery sheath 4 can enter the left ventricle via the aorta, atrium or other paths, and then the anchoring device can be 1 is pushed to the sheath port of the delivery sheath 4 and the release of the anchoring device 1 is initiated in the left ventricle.
  • the grabbing section 16 of the anchoring device 1 is pushed out of the delivery sheath 4 .
  • the guide wire 13 or the accommodation part 12 can be slightly withdrawn and pushed again, so that the guide wire 13 can The distal end can be advanced along the cavity wall of the left ventricle, and the anchoring section 15 can always move along the cavity wall of the predetermined cavity under the guidance of the grasping section 16 so as to surround all native valve leaflets 21 and chordae tendineae 22 and other native tissues. organize.
  • the guide wire 13 and the reducing wire can be withdrawn, and the anchoring device 1 can return to the smaller diameter of the predetermined shape and surround the native valve leaflet 21.
  • Leaflets 21 and chordae tendineae 22 The delivery system is then allowed to maintain the position of the anchoring device 1 and the implantation of the artificial heart valve 3 is started.
  • the artificial heart valve 3 is used to replace and replace the natural mitral valve.
  • the artificial heart valve 3 can enter the atrium via the inferior vena cava or other paths, and cross the native valve leaflets 21 into the inner cavity 14 of the anchoring device 1; release the artificial heart valve 3 and allow the artificial heart valve 3 to expand radially, as described
  • the artificial heart valve 3 can be expanded through one-time balloon expansion or self-expanding sheath withdrawal.
  • the anchoring section 15 in the anchoring device 1 will undergo elastic deformation or plastic deformation, and the anchoring section 15 will When deformed, it can adapt to the shape of the annulus section 32 of the artificial heart valve 3 and be fully fixedly connected and sealed with the annular section 32, so that the anchoring device 1 and the artificial heart valve 3 are fixedly connected as a whole.
  • the anchoring section 15 can exert an anchoring force on the expanded artificial heart valve 3 to achieve anchoring of the artificial heart valve 3 at the position of the native valve leaflets 21 .
  • the artificial heart valve 3 includes an outflow section 31, an annulus section 32 and a flange section 33 that are connected in sequence in the axial direction. After the artificial heart valve 3 is expanded, The inner diameters of the outflow section 31 and the flange section 33 are both larger than the inner diameter of the annulus section 32 .
  • the expanded artificial heart valve 3 can provide the anchoring device 1 with anchoring force within a predetermined object.
  • the outflow section 31 and the flange section 33 with a larger radius can limit the annular section 32 of the artificial heart valve 3 in the axial direction, that is, the annular section 32 can only be located at the position of the anchoring device 1, thereby Ensure that the artificial heart valve 3 cannot move in the axial direction after implantation.
  • the operator can withdraw the delivery system after confirming that the artificial heart valve 3 and the anchoring device 1 have been firmly implanted in the predetermined position, thus completing the implantation operation of the artificial heart valve 3 and the anchoring device 1 .
  • the artificial heart valve system provided by the embodiment of the present invention may include the anchoring device 1 provided in any embodiment.
  • the anchoring device 1 provided by the present invention includes an anchoring structure and a guiding structure.
  • the anchoring structure includes elastic wires 11 and accommodating parts 12.
  • the guiding structure includes guide wires 13. Since the anchoring device 1 has been pre-shaped to a specific shape before implantation, When the anchoring device 1 is implanted, the anchoring structure can gradually follow the guide wire 13 to move along the wall of the predetermined chamber, and the anchoring device 1 can expand and form around the native valve leaflet 21 when it is gradually released, thereby achieving Implantation of the anchoring device 1 in a predetermined chamber.
  • the anchoring device 1 does not require a cord structure to capture the guide wire 13 during implantation. This can simplify the implantation process of the anchoring device 1, reduce the difficulty of implanting the anchoring device 1, and also improve the success of the implantation of the artificial heart valve 3. rate, thereby improving the reliability and convenience of artificial heart valve 3 surgery.
  • the anchoring structure of the artificial heart valve provided by the present invention preferably has an anchoring section 15.
  • the anchoring section 15 can realize the connection between the artificial heart valve 3 and the anchoring section 15 through the interference fit between the inner cavity 14 and the artificial heart valve 3. And apply anchoring force to the artificial heart valve 3.
  • the anchoring device 1 preferably also has a reducing wire or a guide wire that can increase the diameter of the anchoring structure. After the anchoring device 1 is implanted, the guide wire 13 and/or the reducing wire can be withdrawn, and the anchoring device 1 can be restored to its original position. The smaller diameter when pre-shaped and surrounds the native leaflets 21. After the artificial heart valve 3 is implanted, the anchoring device 1 can adapt to the external contour of the artificial heart valve 3, so that the artificial heart valve 3 can be fixed in a predetermined object through the anchoring device 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

本发明提供一种人工心脏瓣膜的锚固装置及人工心脏瓣膜系统,所述锚固装置包括锚固结构和引导结构;所述锚固结构包括弹性丝和容置部;所述容置部与所述弹性丝连接,并沿着所述弹性丝的延伸方向设置;所述引导结构包括引导丝,所述引导丝轴向贯穿地设置在所述容置部内;所述引导丝能够自所述容置部的远端伸出所述容置部,并用于沿着预定腔室的腔壁移动以形成释放轨迹;所述锚固结构用于沿所述引导丝所形成的所述释放轨迹行进,以从收缩状态转换为扩张状态。所述人工心脏瓣膜系统包括锚固装置和人工心脏瓣膜,人工心脏瓣膜用于容纳在锚固装置中。本发明能够在引导丝的引导下,使锚固装置精准环绕原生瓣叶,简化锚固装置的植入步骤,并降低植入难度。

Description

人工心脏瓣膜的锚固装置及人工心脏瓣膜系统 技术领域
本发明涉及医疗器械技术领域,特别涉及一种人工心脏瓣膜的锚固装置及人工心脏瓣膜系统。
背景技术
经导管二尖瓣置换手术(简称TMVR)就是采用导管介入的方法,将人工心脏瓣膜在体外压缩到输送系统后送达人体二尖瓣瓣环处,并将人工心脏瓣膜释放并固定在二尖瓣瓣环处以替换原生瓣叶。与外科手术相比,二尖瓣置换手术无须体外循环辅助装置,创伤小、病人恢复快,术后患者血流动力学指标可以得到明显改善,相对于心尖路径,经股静脉的房间隔路径植入创伤更小,受众更广。
虽然二尖瓣瓣膜置换技术飞速发展,但是人工心脏瓣膜的锚固方式仍然存在一定的局限性。传统的锚固方式主要是通过设计锚固刺抓取原生瓣叶以实现人工心脏瓣膜的固定,或者通过对人工心脏瓣膜的过尺寸设计来固定人工心脏瓣膜。这两种锚固方式均容易造成原生瓣叶的损伤或原生瓣环组织的压迫,从而对患者的康复产生不利影响。
现有技术还采用锚固装置与人工心脏瓣膜分离的设计,比如人工心脏瓣膜由锚固环和瓣膜主体构成,此种锚固环和瓣膜主体分离的设计可以有效避免对原生瓣环的压迫,且不易损伤原生瓣叶,同时使得输送系统各部分的尺寸减小,更有利于输送系统在体内的移动。该方式中,锚固环与瓣膜主体是分开输送的。其中锚固环输送系统释放锚固环的过程复杂,首先锚固环输送系统需要在心室内释放绳套结构来捕捉引导丝的端部,以使引导丝形成引导线圈,然后才能沿着所述引导线圈植入锚固环。同时,锚固环的端部还要特殊设计对接的紧固装置,以使锚固环形成封闭的环结构。此外,当人工心脏瓣膜为腰形结构(即两端凸、中间凹)时,为达到预期的锚固效果,需要多次调整人工心脏瓣膜和锚固环的相互位置,以使锚固环恰好卡进人工心脏瓣 膜的凹陷处,如此会增加人工心脏瓣膜植入手术的难度和复杂度,并对操作者的操作熟练度具有较高的要求,同时过长的手术时间也对病人的健康产生不利影响。
发明内容
本发明的目的在于提供一种人工心脏瓣膜的锚固装置及人工心脏瓣膜系统,能够在引导丝的引导下,使锚固装置精准环绕原生瓣叶,从而可简化锚固装置的植入步骤,并降低植入难度。
为实现上述至少一个目的,本发明提供一种人工心脏瓣膜的锚固装置,所述锚固装置具有收缩状态和扩张状态,并能够在所述收缩状态和所述扩张状态之间切换;
所述锚固装置包括锚固结构和引导结构;所述锚固结构包括弹性丝和容置部;所述容置部与所述弹性丝连接,并沿着所述弹性丝的延伸方向设置;所述引导结构包括引导丝,所述引导丝轴向贯穿地设置在所述容置部内;
所述引导丝能够自所述容置部的远端伸出所述容置部,并用于沿着预定腔室的腔壁移动以形成释放轨迹;
所述锚固结构用于沿所述引导丝所形成的所述释放轨迹行进,以从所述收缩状态转换为所述扩张状态。
可选的,所述容置部具有沿自身轴向贯通地延伸的空腔,所述引导丝设置在所述空腔中。
可选的,所述弹性丝设置在所述容置部的外部,所述容置部由一根空腔管组成,所述空腔管与所述弹性丝平行设置,所述引导丝设置在所述空腔管的所述空腔中。
可选的,所述弹性丝设置在所述容置部的外部,所述容置部由沿所述弹性丝的延伸方向间隔布置的多个容纳结构组成;
每个所述容纳结构具有至少一个通孔,所有所述容纳结构的所述通孔限定形成至少一个所述空腔,所述引导丝沿所述弹性丝的延伸方向依次穿过一排所述通孔。
可选的,所述弹性丝设置在所述容置部的内部,所述容置部具有沿自身轴向贯通地延伸的至少两个所述空腔,所述弹性丝和所述引导丝分别设置在所述容置部的两个所述空腔中。
可选的,所述引导丝被配置为能够增大所述锚固结构的直径,和/或,所述锚固装置还包括设置于所述容置部中的变径丝,所述变径丝用于增大所述容置部的曲率半径而增大所述锚固结构的直径。
可选的,所述弹性丝设置在所述容置部的外部,所述引导丝和所述变径丝分别设置在所述容置部中的同一个所述空腔或两个所述空腔中;或者,所述弹性丝设置在所述容置部的内部,所述弹性丝、所述引导丝和所述变径丝分别设置在所述容置部的三个所述空腔中。
可选的,所述变径丝的刚度大于所述弹性丝的刚度的0.1倍。
可选的,所述容置部的用于容纳所述变径丝的空腔的远端端部密封设置,所述远端端部的形状为球形、圆锥形或椭圆形。
可选的,所述扩张状态下的所述锚固装置为线圈结构;其中在所述扩张状态下,所述锚固装置具有用于环绕原生瓣叶的锚固段,所述锚固段具有至少一匝线圈,所述锚固装置还具有与所述锚固段轴向连接的抓取段;所述抓取段的曲率半径大于所述锚固段的曲率半径,以使所述锚固装置植入时沿预定腔室的腔壁移动并扩张成型。
为实现上述目的,本发明还提供一种人工心脏瓣膜系统,其包括人工心脏瓣膜以及任一项所述的人工心脏瓣膜的锚固装置,所述人工心脏瓣膜用于容纳在所述锚固装置中。
在本发明提供的人工心脏瓣膜的锚固装置及人工心脏瓣膜系统中,所述锚固装置具有收缩状态和扩张状态,并能够在所述收缩状态和所述扩张状态之间切换;所述锚固装置包括锚固结构和引导结构;所述锚固结构包括弹性丝和容置部;所述容置部与所述弹性丝连接,并沿着所述弹性丝的延伸方向设置;所述引导结构包括引导丝,所述引导丝轴向贯穿地设置在所述容置部内;所述引导丝能够自所述容置部的远端伸出所述容置部,并用于沿着预定腔室的腔壁移动以形成释放轨迹;所述锚固结构用于沿所述引导丝所形成的 所述释放轨迹行进,以从所述收缩状态转换为所述扩张状态。如此配置,由于锚固装置在植入前已被预定型为特定结构(如线圈结构或环状结构),在锚固装置植入时,可使锚固结构(包括弹性丝和容置部)能够逐步跟随引导丝沿预定腔室的腔壁移动,并使锚固装置在逐步释放时能够环绕原生瓣叶扩张成型,从而可实现锚固装置在预定腔室内的植入。那么,所述锚固装置在植入时无需绳套结构抓捕引导丝,如此可简化锚固装置的植入过程,降低锚固装置的植入难度,还能够提高人工心脏瓣膜植入的成功率,进而可提升人工心脏瓣膜手术的可靠性和便利性。
所述锚固结构优选具有锚固段,所述锚固段可通过内腔与人工心脏瓣膜之间的过盈配合来实现人工心脏瓣膜与锚固段的连接,并对人工心脏瓣膜施加锚固力。所述锚固装置优选还具有能够增大所述锚固结构直径的变径丝或引导丝。在锚固装置植入后,抽离引导丝和/或变径丝,锚固装置可恢复至预定型时的较小的直径并环绕原生瓣叶。在人工心脏瓣膜植入后,锚固装置可自适应人工心脏瓣膜的外部轮廓,从而可使人工心脏瓣膜通过锚固装置固定在预定对象中。
附图说明
图1为本发明实施例一中锚固装置的结构示意图,其中容置部由一根空腔管组成,且空腔管具有一个空腔;
图2为本发明实施例一中锚固装置的结构示意图,其中容置部由一根空腔管组成,且空腔管具有两个空腔;
图3为本发明实施例一中锚固装置的使用场景示意图;
图4为本发明实施例一中人工心脏瓣膜系统的使用场景示意图;
图5为本发明实施例二中锚固装置的结构示意图;
图6为本发明实施例三中锚固装置的结构示意图。
图中:锚固装置1;弹性丝11;容置部12;空腔121;空腔管122;容纳结构123;通孔124;引导丝13;内腔14;锚固段15;抓取段16;原生瓣叶21;腱索22;人工心脏瓣膜3;流出段31;瓣环段32;法兰段33;输送鞘管 4。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如在本说明书中所使用的,术语“近端”通常是指靠近术者的一端;术语“远端”与“近端”相对,通常是指远离术者的一端。如在本说明书中所使用的,术语“径向”指的是锚固装置或人工心脏瓣膜系统植入心脏后平行于原生瓣环的方向,也即原生瓣环的径向;术语“轴向”指的是锚固装置或人工心脏瓣膜系统植入心脏后垂直于原生瓣环的方向,也即原生瓣环的轴向。本文中,预定对象是指需要植入人工心脏瓣膜的主体,预定对象一般指人体的心脏;预定腔室是指心脏中能够容纳并固定锚固结构的腔室,如预定腔室为左心室或右心室。
以下结合附图和优选实施例对本发明作详细的说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互补充或相互组合。以下描述中, 虽以左心室为预定腔室来进行说明,但本领域技术人员应当能够修改以下描述以得到预定腔室为右心室时的实现方式。
<实施例一>
如图1至图4所示,本发明优选实施例一提供一种人工心脏瓣膜系统,其包括锚固装置1以及人工心脏瓣膜3,所述人工心脏瓣膜3用于容纳在锚固装置1中。在本实施例中,扩张后的锚固装置1为线圈结构(包括螺旋线圈)并具有环形的内腔14,所述人工心脏瓣膜3用于容纳在锚固装置1的内腔14中。
锚固装置1具有收缩状态和扩张状态,并能够在所述收缩状态和所述扩张状态之间切换。所述收缩状态通常是指锚固装置1在输送鞘管4中的状态,在输送鞘管4中,锚固装置1变形压缩;所述扩张状态是指锚固装置1未受到约束或脱离输送鞘管4时的状态,此时,锚固装置1自主扩张成型。
所述锚固装置1包括锚固结构,所述锚固结构包括弹性丝11和容置部12。容置部12与弹性丝11连接,并沿着弹性丝11的延伸方向设置。弹性丝11可以设置在容置部12的内部或外部;如本实施例一中,弹性丝11设置在容置部12的外部。
锚固装置1还包括引导结构,所述引导结构包括引导丝13,引导丝13轴向贯穿地设置在容置部12内。引导丝13能够自容置部12的远端伸出容置部12,并用于沿左心室(预定腔室)的腔壁移动以形成释放轨迹;所述锚固结构(包括弹性丝11和容置部12)用于沿引导丝13所形成的所述释放轨迹行进,以从所述收缩状态转换为所述扩张状态。
如此配置时,由于锚固装置1在植入前已被预定型为特定结构,在锚固装置1植入时,可使锚固结构(弹性丝11和容置部12)能够逐步跟随引导丝13沿左心室的腔壁移动,最终使锚固装置1在逐步释放时能够环绕原生瓣叶21扩张成型,从而可实现锚固装置1在预定腔室内的植入。这样设置,使得锚固装置1在植入时无需绳套结构抓捕引导丝,可简化锚固装置1的植入过程,降低锚固装置1的植入难度,还能够提高人工心脏瓣膜3植入的成功率,进而可提升人工心脏瓣膜3手术的可靠性和便利性。
在本实施例中,容置部12具有沿自身轴向贯通地延伸的空腔121,引导丝13设置于容置部12的空腔121内。
容置部12可以是连续延伸的结构,也可以是间断设置的多个结构组成。如图1中,容置部12为连续延伸的管子,其长度与弹性丝11的长度相等或不相等。优选地,容置部12的远端对应设置在弹性丝11的远端,容置部12的近端对应设置在弹性丝11的近端。
参照图3所示,在一实施方式中,锚固装置1扩张后的最大外径小于锚固装置1与左心室所接触部位的内径,使锚固装置1可通过人工心脏瓣膜3固定在原生瓣叶21的位置。如此设置,锚固装置1无需锚固刺,也无需通过人工心脏瓣膜3的过尺寸来固定,因而不会造成原生瓣叶21的损伤或对原生瓣环组织的压迫,手术损伤小,更有利于患者的术后康复。
进一步地,弹性丝11由弹性材料制成,弹性材料优选为超弹性材料和/或具有形状记忆功能的材料,或者其他具有较强的弹性变形能力的材料,以确保弹性丝11可在轴向、径向或周向上进行较大程度的弹性变形。本申请对制备弹性丝11的弹性材料不做限定,只要是能够产生弹性变形的金属材料或高分子材料即可。如弹性丝11可设置为不锈钢、钛合金、镍钛合金中的一种或多种的组合,弹性丝11的材料还可设置为高分子材料,例如尼龙材料、聚酯纤维等。此外,每根弹性丝11可以由一种或多种材料组合制备而成,例如可将不同种类的材料段相互连接以形成弹性丝11。弹性丝11可以是实心或空心的结构,只要能够提供足够强的支撑力即可。同时弹性丝11的横截面形状不限定,如为圆形、环形或矩形,或者也可为变径或者变截面的设计,即弹性丝11在不同位置处的横截面的尺寸不同或形状不同,以满足锚固装置1的设计要求。
弹性丝11可预先进行定型处理为特定形状,如螺旋形状。在压缩状态时将弹性丝11沿延伸方向(即长度方向)拉伸并放置在输送鞘管4中(参见图3);当锚固装置1脱离输送鞘管4的远端后,弹性丝11即可恢复至初始形状(即螺旋形状)。
在本实施例中,弹性丝11先预定型为螺旋形状,在锚固装置1释放时, 弹性丝11可在逐步移出输送鞘管4的过程中恢复至螺旋形状,以使锚固装置1在扩张后能够形成螺旋形状并锚固在原生瓣叶21的位置。
本申请对制备引导丝13的材料也不做限定,引导丝13仅需满足具有足够的刚度和柔软度,从而能够在容置部12的远端伸出并不会损伤预定腔室的腔壁即可,例如可使用常规的绿导丝或泥鳅导丝等作为本申请中的引导丝13。
以二尖瓣瓣膜置换为例,植入体内后,人工心脏瓣膜3部分容纳在环形的内腔14中,并通过人工心脏瓣膜3的扩张或结构将锚固装置1定位并固定在二尖瓣瓣环处。
具体而言,锚固装置1的固定方式同人工心脏瓣膜3的结构有关。人工心脏瓣膜3可采用现有的结构,具体地,可包括相互连接的流出段31和瓣环段32,在某些情况下,人工心脏瓣膜还包括法兰段33,以提高人工心脏瓣膜3的锚固效果并防止瓣周漏的发生。所述流出段31、瓣环段32和法兰段33轴向依次连接,且人工心脏瓣膜3扩张后,流出段31和法兰段33的内径均大于瓣环段32的内径。当人工心脏瓣膜3为上述两头凸中间凹的结构(即腰形结构)时,人工心脏瓣膜3可以在扩张时不压紧锚固装置1,此时锚固装置1贴靠在人工心脏瓣膜的瓣环段32位置,并可通过人工心脏瓣膜3的流出段31和法兰段33卡在凹陷处。如果人工心脏瓣膜3为圆柱形或圆锥形时,可通过人工心脏瓣膜3的扩张将锚固装置1压紧在瓣环处,此时锚固装置1能够在受力变形时自适应扩张后的人工心脏瓣膜3的外部轮廓,以对人工心脏瓣膜3施加锚固力,施加锚固力后,使人工心脏瓣膜3与锚固装置1相互密封固定连接。
更具体地,参照图1和图3所示,所述锚固装置1可放置在输送鞘管4中并随输送鞘管4移动至二尖瓣瓣环位置,而后锚固装置1在输送系统的推动下可逐步移出输送鞘管4并在左心室中进行释放。具体的,所述锚固装置1在植入时可先使引导丝13的远端伸出容置部12的远端并沿左心室的腔壁移动一段距离(参照图3),而后停止引导丝13的移动并可使弹性丝11和容置部12沿着引导丝13的移动轨迹(释放轨迹)移动。当弹性丝11的远端和容置部12的远端接近引导丝13的远端位置时,停止弹性丝11和容置部12的 移动,再次使引导丝13的远端沿左心室的腔壁移动,如此往复,直至使锚固装置1完全释放并能够环绕预定对象的原生瓣叶21扩展成型,以完成锚固装置1的植入。在锚固装置1完全扩张后,锚固装置1能够环绕预定对象的原生瓣叶21定位,并且锚固装置1能够利用人工心脏瓣膜3固定在原生瓣环处。较优地,容置部12的近端靠近弹性丝11的近端;容置部12的远端靠近弹性丝11的远端。这里的“靠近”是指容置部12的近端未超过弹性丝11的近端,两者的近端可以对齐或不对齐,同理,指容置部12的远端未超过弹性丝11的远端,两者的远端可以对齐或不对齐。
应理解,所述输送系统是指锚固装置1或人工心脏瓣膜3的输送系统,即是指能够携带压缩后的锚固装置1或人工心脏瓣膜3在预定对象内移动的设备。
优选,人工心脏瓣膜3扩张后的外径大于所述锚固装置1扩张后的内径,如此可在人工心脏瓣膜3植入后,锚固装置1能够在人工心脏瓣膜3扩张后受力变形,由于弹性丝11具有弹性,锚固装置1还能够在受力变形时自适应人工心脏瓣膜3的外部轮廓,并可通过锚固装置1与人工心脏瓣膜3之间的过盈配合对人工心脏瓣膜3施加锚固力,从而可使人工心脏瓣膜3能够更加牢固的与锚固装置1进行连接,还可通过锚固装置1为人工心脏瓣膜3提供锚固在预定对象内的锚固力,以实现人工心脏瓣膜3在原生瓣叶21处的固定,即,使人工心脏瓣膜3通过锚固装置1固定在预定对象中。
参照图1所示,在一实施方式中,所述弹性丝11设置在容置部12的外部,容置部12由一根空腔管122组成,空腔管122与弹性丝11平行设置,容置部12具有一个空腔121,引导丝13设置在空腔管122的空腔121中。优选地,空腔121的近端对应于弹性丝11的近端,空腔121的远端对应于弹性丝11的远端。本申请对空腔121的形状不作限定,空腔121沿轴向的横截面形状可为圆形、椭圆形或正方形等,优选为圆形或椭圆形,以方便引导丝13在空腔121中的移动。
在本实施例中,弹性丝11和空腔管122的长度相同,弹性丝11和空腔管122的位置相对应并能够在相接触的位置采用缝制、粘接或其它方式进行 连接。
本申请对制备空腔管122的材料不做限定。如空腔管122可由高分子材料制成,例如低强度的聚乙烯、PU或聚四氟乙烯等。
在一实施方式中,所述锚固装置1还包括设置在容置部12中的变径丝(未图示),所述变径丝用于增大容置部12的曲率半径,从而增大整个锚固结构的直径。所述变径丝可为未弯曲的丝材或已弯曲的曲率半径较大的丝材。当容置部12的空腔121内穿设所述变径丝时,变径丝可增大锚固装置1各部位的曲率半径,以使锚固装置1在释放后能够始终沿着左心室的腔壁移动,并能够抓取全部原生瓣叶21和腱索22等原生组织。在锚固装置1完全植入后,抽离引导丝13和所述变径丝,锚固装置1能够恢复至预定型时的直径较小的螺旋形状而紧贴原生瓣叶21,以方便锚固装置1自适应人工心脏瓣膜3的外部轮廓并对人工心脏瓣膜3提供锚固力。需要说明的是,当锚固装置1从腱索22中间穿过,即锚固装置1未能够将原生瓣叶21和腱索22收容在内腔14中时,由于此时部分腱索22组织位于锚固装置1的外部,使得人工心脏瓣膜3植入后不能紧贴部分原生瓣叶21,从而可导致瓣周漏的产生,并可能导致人工心脏瓣膜3手术的失败。
本申请可使用金属丝、金属管或高分子聚合物线等作为所述变径丝,例如可将所述变径丝设置为不锈钢丝、钛合金丝、镍钛合金丝中的一种或多种的组合。
优选的,所述变径丝的刚度大于弹性丝11的刚度的0.1倍,如此可使锚固装置1各部位的曲率半径大于左心室的内径,从而可更好地确保锚固装置1在释放后能够始终沿着左心室的腔壁移动,并能够抓取全部原生瓣叶21和腱索22等原生组织。
在其他实施例中,所述引导丝13被配置为能够增大所述锚固结构的直径,例如使用刚度较大的材料制备引导丝13或者增大制备引导丝13的材料的壁厚,以使引导丝13具有足够的强度,此时可不设置所述变径丝。强度较大的引导丝13也能够增大容置部12的曲率半径,从而增大整个锚固结构的直径,如此可使锚固装置1在释放后能够始终沿着左心室的腔壁移动。
在一实施方式中,引导丝13和所述变径丝分别设置在容置部12中的同一个空腔121或两个空腔121中。在本实施例中,引导丝13和所述变径丝分别设置在空腔管122中的同一个空腔121或两个不同的空腔121中。
如图2所示,在另一些实施例中,一根空腔管122还可具有两个空腔121,引导丝13和所述变径丝分别穿设在空腔管122的两个空腔121中。所述空腔管122的两个空腔121可独立设置,也可相互连通。优选两个空腔121独立设置,以使引导丝13移动时不会受到所述变径丝的干扰。
在另一些实施例中,容置部12包括两根所述空腔管122,两根空腔管122与弹性丝11平行设置,每根空腔管122具有一个空腔121,引导丝13和所述变径丝可分别穿设在不同的空腔管122的空腔121中。本申请对弹性丝11和空腔管122的放置位置不作限定,在一实施例中,两根空腔管122可分别与弹性丝11连接,例如可将两根空腔管122设置在弹性丝11的两侧。在另一实施例中,两根空腔管122相互连接,且仅有一根空腔管122与弹性丝11连接,例如可将弹性丝11和一根空腔管122设置在另一根空腔管122的两侧。在又一实施例中,每根空腔管122分别与弹性丝11和另一根空腔管122连接,即弹性丝11和两根空腔管122形成类似三角形的结构,如此可减小锚固装置1的横截面尺寸,以方便输送系统的输送。应理解,在上述的两根空腔管122中,每根空腔管122的材质、尺寸和强度可以相同,也可以不同。
优选的,所述容置部12中用于容纳所述变径丝的空腔121的远端端部密封设置,如此可降低所述变径丝进入或撤出输送系统的阻力,还可降低锚固装置1的远端的血栓风险。在本实施例中,所有容纳所述变径丝的空腔管122与左心室相接触的远端密封设置,例如可在空腔管121的远端放置硅胶垫片以使锚固装置1的远端密封。
更优选的,所述容置部12中用于容纳所述变径丝的空腔121的远端端部的形状为球形、圆锥形、椭圆形或类似球形的结构,如此设置一方面可以降低锚固装置1的植入带来的血栓风险;另一方面可使锚固装置1的远端能够平滑过渡,以防止锚固装置1的远端划伤心肌壁或心尖。
进一步地,所述扩张状态下的所述锚固装置1为线圈结构,如螺旋线圈。 在所述扩张状态下,所述锚固结构具有用于环绕原生瓣叶21的锚固段15,锚固段15具有至少一匝线圈,此处的匝数即为锚固段15预定型时的绕制圈数。优选为2匝,如此可使锚固段15能够对人工心脏瓣膜3具有足够的锚固力,又能够在人工心脏瓣膜3扩张时发生变形而自适应人工心脏瓣膜3的外部轮廓,从而可通过锚固装置1实现对人工心脏瓣膜3的锚固。
为使锚固装置1能够环绕原生瓣叶21,锚固段15的内径(即锚固装置1中内腔14的最大直径)通常对应于原生瓣叶21的尺寸,如在本实施例中,锚固段15的内轮廓的半径为5mm~20mm,并可根据不同的患者选择适配的锚固装置1。本申请对锚固段15的形状不作限定,优选锚固段15扩张后的外轮廓的形状与原生瓣叶21的内轮廓形状相对应,以实现更好的锚固,如锚固段15扩张后的形状可为圆形、圆弧形或椭圆形等。
在一实施例中,锚固段15可由一种材料的弹性丝11和一种材料的空腔管122绕制而成。在另一实施例中,锚固段15还可采用两种以上的材料的弹性丝11和两种以上材料的空腔管122分段连接而成,例如可将不同种类的材料的弹性丝11相互连接,并将不同种类的材料的空腔管122相互连接再将弹性丝11和空腔管122在径向上连接以形成锚固段15。
为增加锚固段15锚固时的摩擦力,即进一步增加锚固装置1在心脏内的锚固效果,可在锚固段15的表面涂覆高摩擦系数的覆盖层。所述高摩擦系数的覆盖层可为聚乙烯和PET材料中的一种或多种的组合。
参照图1和图3所示,在扩张状态下,所述锚固结构优选还具有与锚固段15轴向连接的抓取段16,抓取段16的曲率半径大于锚固段15的曲率半径,以使锚固结构植入时沿左心室的腔壁移动并扩张成型。由于抓取段16的半径较大,当锚固装置1在输送鞘管4内释放时,使得抓取段16能够始终紧贴左心室的腔壁,以使锚固装置1能够抓取所有的原生瓣叶21和腱索22等原生组织,并将在锚固装置1移动时将原生瓣叶21和腱索22等原生组织收容在内腔14内部(即环绕所有的原生瓣叶21和腱索22)。
当然如果引导丝13有足够的强度或锚固装置1包括所述变径丝时,锚固装置1可减小抓取段16的初始曲率半径,或者使抓取段16的曲率半径与锚 固段15的曲率半径相同,此时在锚固装置1植入后,抓取段16不会悬浮于左心室的内部,从而可有利于锚固装置1在人体内的长期植入。
为使抓取段16能够在移动时始终沿左心室的腔壁移动,抓取段16的曲率半径通常对应于左心室的尺寸,即抓取段16扩张后的外轮廓的半径与左心室的内轮廓的半径相对应,并可根据不同的患者选择适配的锚固装置1,如此可使锚固装置1能够紧贴左心室的腔壁移动而又不会较容易的插入心肌壁内。
本申请对抓取段16的形状不作限定,抓取段16可为圆弧结构或线圈结构。当抓取段16为圆弧结构时,所述抓取段16可为单一圆弧组成,也可为多段圆弧连接而成,所述圆弧的长度可根据需要进行设定。其中,组成抓取段16的多段圆弧中各弧段的曲率半径为10mm~30mm,以更好的辅助锚固装置1抓取全部原生瓣叶21和腱索22等结构。当抓取段16为线圈结构时,所述线圈结构的匝数不超过2匝,以使抓取段16在移动时能够较容易的变形而改变移动方向。
为减少抓取段16移动时的摩擦力,即进一步减少抓取段16移动时的阻力,可在抓取段16的表面涂覆低摩擦系数的覆盖层。所述低摩擦系数的覆盖层可为聚四氟乙烯或丝绒布中的一种或多种的组合。
在一示例中,可采用不同的弹性丝11和空腔管122分别制成锚固段15和抓取段16,并将锚固段15和抓取段16相互连接以形成锚固装置1,也即,锚固段15和抓取段16为分体制作成型后再相互连接。在其他示例中,也可采用相互连接的一根弹性丝11和一根空腔管122先后绕制形成锚固段15和抓取段16,以形成一体式的锚固装置1。
<实施例二>
本实施例中与实施例一相同的部分不再详细叙述,以下主要针对不同之处进行描述,而相同之处可参阅实施例一。
与实施例一不同的是,在本实施例中,所述容置部12包括沿弹性丝11的延伸方向间隔布置的多个容纳结构123;每个容纳结构123具有至少一个通孔124,所有容纳结构123的通孔124限定形成至少一个空腔121,引导丝13沿弹性丝11的延伸方向依次穿过一排通孔124。
参照图5所示,每个容纳结构123包括一个与弹性丝11连接的圆环,每个所述圆环具有一个通孔124,在所述弹性丝11的轴线上的一排通孔124形成一个空腔121,引导丝13穿过一个所述空腔121,即引导丝13依次穿过所有所述圆环所形成的一排通孔124,从而可降低空腔管122可能会带来的血栓风险。
应知晓,所述容纳结构123不限于圆环,容纳结构123仅需包括至少一个通孔124即可,本申请对容纳结构123的具体结构不作限定。本申请对容纳结构123的数量也不做限定,容纳结构123的数量可根据需要进行设置。本申请对容纳结构123与弹性丝11的连接方式不作限定,容纳结构123可以通过焊接、缝合或粘接的方式与弹性丝11连接。
当锚固装置1包括所述变径丝时,每个容纳结构123具有至少两个沿弹性丝11的径向并排设置的通孔124,所有容纳结构123的通孔124限定形成至少两个空腔121,引导丝13沿弹性丝11的延伸方向依次穿过一排通孔124,所述变径丝沿弹性丝11的延伸方向依次穿过另一排通孔124。在一具体实施例中,每个容纳结构123包括两个并排设置且与弹性丝11连接的圆环,每个所述圆环具有一个通孔124,在所述弹性丝11的轴线上的两排所述圆环的通孔124形成两个空腔121,引导丝13和所述变径丝分别穿过两排所述圆环的通孔124,以实现引导丝13和所述变径丝在容置部12中的穿设。
<实施例三>
本实施例中与实施例一相同的部分不再详细叙述,以下主要针对不同之处进行描述,而相同之处可参阅实施例一。
与实施例一不同的是,在本实施例中,所述弹性丝11设置在容置部12的内部,容置部12具有沿自身轴向贯通地延伸的至少两个空腔121,弹性丝11和引导丝13分别穿设在容置部12的两个空腔121中。其中,弹性丝11和引导丝13可穿设在容置部12的任意一个空腔121中。
在一具体实施例中,所述容置部12由一根空腔管122组成,空腔管122与弹性丝11平行设置;空腔管122具有两个空腔121,弹性丝11和引导丝13分别设置在空腔管122的两个空腔121中。
参照图6所示,当锚固装置1包括所述变径丝时,所述锚固装置1的空腔管122可具有三个空腔121,弹性丝11、引导丝13和所述变径丝分别穿设在容置部12的三个空腔121中。在本实施例中,弹性丝11、引导丝13和所述变径丝分别穿设在空腔管122的三个空腔121中。其中,弹性丝11、所述变径丝和引导丝13可穿设在容置部12的任意一个空腔121中。三个空腔121可独立设置,也可相互连通。优选三个空腔121独立设置,以使引导丝13移动时不会受到弹性丝11和所述变径丝的干扰。
优选的,所述容置部12中用于容纳弹性丝11的远端端部和用于容纳变径丝的远端端部均密封设置,例如可在容纳弹性丝11的空腔121的远端和容纳变径丝的空腔121的远端均放置硅胶垫片,以使锚固装置1除容纳引导丝13的空腔121之外的其余空腔121的远端均密封,从而降低锚固装置1的远端的血栓风险。
为增加锚固装置1在左心室内移动的顺滑性,锚固装置1的远端(即抓取段16的远端)的端部的形状为带孔的球形、圆锥形、椭圆形或类似球形的结构。其中,所述锚固装置1的远端的通孔中贯穿有用于容纳引导丝13的空腔121。
针对以上任意实施例,在一非限定性操作中,以二尖瓣瓣膜置换为例,所述锚固装置1和人工心脏瓣膜3的植入过程为:
参照图3和图4所示,并结合图2,将锚固装置1收缩在输送鞘管4中,输送鞘管4可经由主动脉、心房或其他路径进入到左心室中,随后可将锚固装置1推送至输送鞘管4的鞘管口,并在左心室中开始锚固装置1的释放。首先,先从输送鞘管4中推送锚固装置1的抓取段16。具体的,先将引导丝13的远端推送出容置部12,引导丝13可沿左心室的腔壁移动,在引导丝13移动一小段距离后,停止移动引导丝13,而后推动弹性丝11和容置部12并使弹性丝11和容置部12沿引导丝13的延伸方向移动,直至弹性丝11的远端和容置部12的远端接近引导丝13的远端位置。然后再次推动引导丝13,并使弹性丝11、容置部12和引导丝13重复上述移动过程,直至将锚固装置1脱离输送鞘管4。在锚固装置1释放过程中,由于引导丝13的远端较软, 且不会损伤原生组织,故当引导丝13或容置部12的移动位置脱离左心室的腔壁时,可稍撤回引导丝13或容置部12并重新进行推动,以使得引导丝13的远端能够沿左心室的腔壁推进,并使锚固段15能够在抓取段16的引导下始终沿预定腔室的腔壁移动,以便能够环绕所有的原生瓣叶21和腱索22等原生组织。在确认锚固装置1已完全脱离输送鞘管4并能够环绕原生瓣叶21后,抽出引导丝13和所述变径丝,锚固装置1即可恢复至预定型时的较小的直径并环绕原生瓣叶21和腱索22。而后使输送系统保持锚固装置1的位置,并开始进行人工心脏瓣膜3的植入。
所述人工心脏瓣膜3用以置换和替代天然二尖瓣瓣膜。人工心脏瓣膜3可经由下腔静脉或其他路径进入心房,并跨越原生瓣叶21进入到锚固装置1的内腔14中;释放人工心脏瓣膜3并使人工心脏瓣膜3沿径向扩张,所述人工心脏瓣膜3能够通过球囊一次性球扩或采用自膨退鞘等方式进行扩径,在此扩径时锚固装置1中的锚固段15会产生弹性变形或塑性变形,且锚固段15在发生变形时可自适应人工心脏瓣膜3中瓣环段32的形状,并充分的与瓣环段32固定连接且密封,从而使锚固装置1与人工心脏瓣膜3固定连接为一个整体。锚固段15能够对扩张后的人工心脏瓣膜3施加锚固力,以实现人工心脏瓣膜3在原生瓣叶21位置的锚固。
如图4所示,以腰形的人工心脏瓣膜3为例,人工心脏瓣膜3包括轴向依次连接的流出段31、瓣环段32和法兰段33,且在人工心脏瓣膜3扩张后,流出段31和法兰段33的内径均大于瓣环段32的内径。人工心脏瓣膜3植入时,需要注意其与锚固装置1的相对位置,以使锚固装置1位于人工心脏瓣膜3的瓣环段32的位置,并使锚固装置1环绕并贴靠原生瓣叶21,此时扩张后人工心脏瓣膜3可对锚固装置1提供在预定对象内的锚固力。同时半径较大的流出段31和法兰段33可对人工心脏瓣膜3的瓣环段32进行轴向上的限位,即,使瓣环段32仅能够位于锚固装置1的位置处,从而确保人工心脏瓣膜3植入后不能够在轴向上发生移动。待人工心脏瓣膜3完全扩张后,操作者通过确认人工心脏瓣膜3与锚固装置1已牢固植入预定位置后可撤出输送系统,从而完成人工心脏瓣膜3及锚固装置1的植入手术。
还应理解,本发明实施例提供的人工心脏瓣膜系统,可包括任一实施例中提供的锚固装置1。
综上,本发明提供的锚固装置1包括锚固结构和引导结构,锚固结构包括弹性丝11和容置部12,引导结构包括引导丝13,由于锚固装置1在植入前已被预定型为特定结构,在锚固装置1植入时,可使锚固结构能够逐步跟随引导丝13沿预定腔室的腔壁移动,并使锚固装置1在逐步释放时能够环绕原生瓣叶21扩张成型,从而可实现锚固装置1在预定腔室内的植入。所述锚固装置1在植入时无需绳套结构抓捕引导丝13,如此可简化锚固装置1的植入过程,降低锚固装置1的植入难度,还能够提高人工心脏瓣膜3植入的成功率,进而可提升人工心脏瓣膜3手术的可靠性和便利性。
本发明提供的人工心脏瓣膜的锚固结构优选具有锚固段15,所述锚固段15可通过内腔14与人工心脏瓣膜3之间的过盈配合来实现人工心脏瓣膜3与锚固段15的连接,并对人工心脏瓣膜3施加锚固力。所述锚固装置1优选还具能够增大所述锚固结构直径的变径丝或引导丝,在锚固装置1植入后,抽离引导丝13和/或变径丝,锚固装置1可恢复至预定型时的较小的直径并环绕原生瓣叶21。在人工心脏瓣膜3植入后,锚固装置1可自适应人工心脏瓣膜3的外部轮廓,从而可使人工心脏瓣膜3通过锚固装置1固定在预定对象中。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明的保护范围。

Claims (11)

  1. 一种人工心脏瓣膜的锚固装置,其特征在于,所述锚固装置具有收缩状态和扩张状态,并能够在所述收缩状态和所述扩张状态之间切换;
    所述锚固装置包括锚固结构和引导结构;所述锚固结构包括弹性丝和容置部;所述容置部与所述弹性丝连接,并沿着所述弹性丝的延伸方向设置;所述引导结构包括引导丝,所述引导丝轴向贯穿地设置在所述容置部内;
    所述引导丝能够自所述容置部的远端伸出所述容置部,并用于沿着预定腔室的腔壁移动以形成释放轨迹;
    所述锚固结构用于沿所述引导丝所形成的所述释放轨迹行进,以从所述收缩状态转换为所述扩张状态。
  2. 如权利要求1所述的人工心脏瓣膜的锚固装置,其特征在于,所述容置部具有沿自身轴向贯通地延伸的空腔,所述引导丝设置在所述空腔中。
  3. 如权利要求2所述的人工心脏瓣膜的锚固装置,其特征在于,所述弹性丝设置在所述容置部的外部,所述容置部由一根空腔管组成,所述空腔管与所述弹性丝平行设置,所述引导丝设置在所述空腔管的所述空腔中。
  4. 如权利要求2所述的人工心脏瓣膜的锚固装置,其特征在于,所述弹性丝设置在所述容置部的外部,所述容置部由沿所述弹性丝的延伸方向间隔布置的多个容纳结构组成;
    每个所述容纳结构具有至少一个通孔,所有所述容纳结构的所述通孔限定形成至少一个所述空腔,所述引导丝沿所述弹性丝的延伸方向依次穿过一排所述通孔。
  5. 如权利要求2所述的人工心脏瓣膜的锚固装置,其特征在于,所述弹性丝设置在所述容置部的内部,所述容置部具有沿自身轴向贯通地延伸的至少两个所述空腔,所述弹性丝和所述引导丝分别设置在所述容置部的两个所述空腔中。
  6. 如权利要求2所述的人工心脏瓣膜的锚固装置,其特征在于,所述引导丝被配置为能够增大所述锚固结构的直径,和/或,所述锚固装置还包括设置于所述容置部中的变径丝,所述变径丝用于增大所述容置部的曲率半径而增 大所述锚固结构的直径。
  7. 如权利要求6所述的人工心脏瓣膜的锚固装置,其特征在于,所述弹性丝设置在所述容置部的外部,所述引导丝和所述变径丝分别设置在所述容置部中的同一个所述空腔或两个所述空腔中;或者,所述弹性丝设置在所述容置部的内部,所述弹性丝、所述引导丝和所述变径丝分别设置在所述容置部的三个所述空腔中。
  8. 如权利要求6或7所述的人工心脏瓣膜的锚固装置,其特征在于,所述变径丝的刚度大于所述弹性丝的刚度的0.1倍。
  9. 如权利要求6或7所述的人工心脏瓣膜的锚固装置,其特征在于,所述容置部的用于容纳所述变径丝的空腔的远端端部密封设置,所述远端端部的形状为球形、圆锥形或椭圆形。
  10. 如权利要求1所述的人工心脏瓣膜的锚固装置,其特征在于,所述扩张状态下的所述锚固装置为线圈结构;
    其中在所述扩张状态下,所述锚固结构具有用于环绕原生瓣叶的锚固段,所述锚固段具有至少一匝线圈,所述锚固结构还具有与所述锚固段轴向连接的抓取段;所述抓取段的曲率半径大于所述锚固段的曲率半径,以使所述锚固结构植入时沿所述预定腔室的腔壁移动并扩张成型。
  11. 一种人工心脏瓣膜系统,其特征在于,包括人工心脏瓣膜以及如权利要求1-10中任一项所述的人工心脏瓣膜的锚固装置,所述人工心脏瓣膜用于容纳在所述锚固装置中。
PCT/CN2023/075329 2022-05-06 2023-02-10 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统 WO2023213106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210487344.4 2022-05-06
CN202210487344.4A CN117045393A (zh) 2022-05-06 2022-05-06 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统

Publications (1)

Publication Number Publication Date
WO2023213106A1 true WO2023213106A1 (zh) 2023-11-09

Family

ID=88646206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075329 WO2023213106A1 (zh) 2022-05-06 2023-02-10 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统

Country Status (2)

Country Link
CN (1) CN117045393A (zh)
WO (1) WO2023213106A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379074A1 (en) * 2012-01-31 2014-12-25 Mitral Valve Technologies Sa Mitral valve docking devices, systems and methods
CN109803610A (zh) * 2016-08-26 2019-05-24 爱德华兹生命科学公司 心脏瓣膜对接系统
CN112315626A (zh) * 2020-11-06 2021-02-05 上海纽脉医疗科技有限公司 一种人工心脏瓣膜及医用装置
CN113056302A (zh) * 2018-10-19 2021-06-29 施菲姆德控股有限责任公司 可调节医疗装置
CN113303947A (zh) * 2021-06-17 2021-08-27 上海臻亿医疗科技有限公司 一种心脏瓣膜的锚固装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379074A1 (en) * 2012-01-31 2014-12-25 Mitral Valve Technologies Sa Mitral valve docking devices, systems and methods
CN109803610A (zh) * 2016-08-26 2019-05-24 爱德华兹生命科学公司 心脏瓣膜对接系统
CN113056302A (zh) * 2018-10-19 2021-06-29 施菲姆德控股有限责任公司 可调节医疗装置
CN112315626A (zh) * 2020-11-06 2021-02-05 上海纽脉医疗科技有限公司 一种人工心脏瓣膜及医用装置
CN113303947A (zh) * 2021-06-17 2021-08-27 上海臻亿医疗科技有限公司 一种心脏瓣膜的锚固装置

Also Published As

Publication number Publication date
CN117045393A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
JP7155183B2 (ja) 天然心臓弁を置換するためのシステム
US20200352713A1 (en) Systems for rapidly deployable surgical heart valves
US7241310B2 (en) Method and apparatus for reducing mitral regurgitation
EP4410242A1 (en) Anchoring devices of artificial heart valve and artificial heart valve system
EP4003229B1 (en) Device for implanting a prosthesis for a heart valve
US20230285146A1 (en) Device for arranging guidewires around a heart valve
CN113303947A (zh) 一种心脏瓣膜的锚固装置
WO2023213106A1 (zh) 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统
WO2023213107A1 (zh) 一种瓣膜锚固件及瓣膜系统
US12076233B2 (en) Device for implanting a prosthesis for a heart valve and assembly procedure
EP4233973A2 (en) Device for arranging guide wires around a heart valve
JP2024522730A (ja) 心臓弁修復補綴物、送達デバイス、および方法
WO2020221875A1 (en) Annuloplasty implant system
CN117481872A (zh) 一种人工瓣膜输送装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799096

Country of ref document: EP

Kind code of ref document: A1