WO2023212971A1 - 一种先进核电机组蒸发器用钢板及其制造方法 - Google Patents

一种先进核电机组蒸发器用钢板及其制造方法 Download PDF

Info

Publication number
WO2023212971A1
WO2023212971A1 PCT/CN2022/091895 CN2022091895W WO2023212971A1 WO 2023212971 A1 WO2023212971 A1 WO 2023212971A1 CN 2022091895 W CN2022091895 W CN 2022091895W WO 2023212971 A1 WO2023212971 A1 WO 2023212971A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel
steel plate
rolling
nuclear power
Prior art date
Application number
PCT/CN2022/091895
Other languages
English (en)
French (fr)
Inventor
王勇
王储
段江涛
孙殿东
丛津功
李黎明
陈捷
艾芳芳
孙绍广
Original Assignee
鞍钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢股份有限公司 filed Critical 鞍钢股份有限公司
Priority to EP22940665.7A priority Critical patent/EP4394074A1/en
Priority to US18/697,571 priority patent/US20240327964A1/en
Publication of WO2023212971A1 publication Critical patent/WO2023212971A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the field of metal materials, and in particular to a steel plate for evaporators of advanced nuclear power units and a manufacturing method thereof.
  • nuclear energy technology includes sodium liquid-cooled fast reactor, gas-cooled fast reactor, and liquid lead-cooled fast reactor.
  • Fourth-generation advanced nuclear technologies such as ultra-high temperature gas-cooled reactors, molten salt reactors and supercritical water-cooled reactors have been proposed by global nuclear energy experts and become the development direction of future nuclear power technology.
  • the main features of the fourth generation nuclear energy technology are better safety, better economy, less nuclear waste, and the ability to effectively prevent nuclear proliferation. Therefore, very high requirements are placed on nuclear technology and nuclear equipment. For example, the outlet temperature of the evaporator reaches a high temperature of 530°C, which places very high technical requirements on the steel used for evaporator manufacturing. Therefore, developing key nuclear equipment and key materials that meet the needs of fourth-generation advanced nuclear power plants has become a core problem that major nuclear powers in the world urgently need to solve.
  • the disclosed invention patent "A steel for pressure-bearing boundary parts of nuclear power plant evaporators and its manufacturing method" (publication number CN201811165268.5), judging from the disclosed ingredients, production methods and beneficial effects, the mechanical properties involved in this patent can only be It guarantees the use requirements under the working environment temperature of 350°C. There is no explanation or guarantee for higher use temperatures, and it is clearly stated that the patent is used for the steel and manufacturing of third-generation nuclear power evaporators.
  • the above-mentioned disclosed invention patents mainly involve metal materials required for third-generation nuclear power equipment. Compared with the key materials required for fourth-generation nuclear power technology, they are characterized by outlet temperatures of 150°C to 350°C and low post-weld heat treatment temperatures (620°C). °C below), short holding time (below 15h) and other low parameter requirements. The demand for fourth-generation advanced nuclear power plants is no longer met, and there is an urgent need to develop key materials that meet the key equipment requirements of fourth-generation nuclear power plants.
  • the present invention aims at the fourth-generation nuclear power steam generator materials that require high internal purity, small anisotropic differences, and excellent high-temperature strength and toughness and fatigue fracture resistance after post-weld heat treatment at 700°C ⁇ 16 hours.
  • the invention satisfies New materials and new processes required for key equipment of advanced nuclear power units.
  • a steel plate for an advanced nuclear power unit evaporator and a manufacturing method thereof are provided.
  • This invention aims to adopt a new chemical composition design and appropriate production technology, based on medium and low C, Si, and Mn components, and compoundly add Cr, Mo, Ni, Nb, V, Ti, and N alloy elements to strictly control harmful elements.
  • P, S, Sn and gas O and H content coupled with unique smelting, rolling and heat treatment production processes, obtain a homogeneous steel plate that can withstand 530°C post-weld heat treatment high temperature strength, high temperature fatigue performance, low temperature toughness and high purity.
  • the technical means adopted in the present invention are as follows:
  • the normal temperature yield strength of the supplied state is: 407MPa ⁇ R el ⁇ 431MPa
  • the tensile strength is: 573MPa ⁇ R m ⁇ 586MPa
  • the tensile strength at 530°C is: 422MPa ⁇ R m ⁇ 435MPa, HBW ⁇ 180
  • the tensile strength after post-weld heat treatment at 700°C ⁇ 16h is: 407MPa ⁇ R m (530°C) ⁇ 418MPa, -20°C impact energy KV 2 ⁇ 320J, 530°C cycle ⁇ 1.1 million times.
  • the main solid solution C and compound C in the present invention ensure the high-temperature strength and tensile strength of the steel in the heat treatment and post-weld heat treatment states, and are also the main elements to improve the fatigue strength.
  • excessive carbon content affects the toughness of the steel. It is detrimental to welding performance, so the present invention sets the C content range to 0.10% to 0.14%.
  • Si It is a good reducing agent and deoxidizer in the steelmaking process. Especially when used in combination with Alt, it can significantly increase the deoxidizing ability of Alt. Si forms a dense, anti-oxidation SiO 2 protective film on the surface at high temperatures. In addition, Si and Mo combine to form MoSi 2 , an intermetallic compound. The atomic combination in its crystal structure exhibits the characteristics of coexistence of metal bonds and covalent bonds, and has excellent high-temperature oxidation resistance. Therefore, the Mo/Si ratio of the present invention It is limited to between 4.05 and 13.30 to ensure the formation of a certain amount of MoSi 2 structure.
  • the present invention sets the Si content range 0.10% ⁇ 0.25%.
  • Mn In the present invention, due to the small addition amount of deoxidizers such as Si and Alt, the addition of Mn makes up for the effect of insufficient deoxidation. In addition, Mn, as an alloy element with strong solid solution strengthening ability, can improve the strength of the matrix, but Mn has an impact on the return. The main factor of fire brittleness needs to be strictly controlled in the present invention, so the Mn content range is set to 0.25% to 0.50%.
  • Cr As a strong carbide-forming element, it combines with Fe, Mn, and Mo in steel to form a stable alloy carbide with M 23 C 6 structure. M is a combination of Fe, Mn, Cr, and Mo, ensuring long-term welding.
  • the high-temperature performance of the post-heat treatment state also exerts the affinity between Cr and oxygen.
  • dense metal oxides can be formed on the metal surface to improve the steel's resistance to high-temperature oxidation and oxidation corrosion.
  • excessive Cr content will increase the steel's resistance to high-temperature oxidation and oxidation corrosion.
  • the present invention sets the Cr content range at 1.80% to 2.10%.
  • Mo Improves the hardenability of steel and ensures the matrix strength of steel.
  • Mo is a strong carbide-forming element and forms a stable Mo 2 C thermal strengthening phase with carbon elements, which plays a high-temperature strengthening effect.
  • this patent adds more Cr elements and certain Mn elements can easily co-segregate with impurity elements such as P and Sn at grain boundaries, causing high-temperature temper embrittlement and affecting the high-temperature properties of steel.
  • Mo has the opposite effect, promoting P to precipitate within the grains to prevent grain boundary segregation. Therefore, the present invention limits (Cr+Mn)/Mo to 1.70 to 2.50 to ensure the structure and performance of the evaporator steel when operating at 530°C. Stability, but too high Mo content will lead to embrittlement of steel.
  • the Mo content range is set at 1.00% to 1.35%.
  • Ni element mainly improves the plastic toughness of steel, but too high Ni content will reduce the radiation resistance of the material. Therefore, the present invention sets the Ni content range to 0.80% to 1.20%.
  • Nb plays the role of refining crystal grains in the present invention.
  • the Nb element is embodied as a participating or small amount of added element, so the Nb content is limited to 0% to 0.04%.
  • V A larger amount is added in the present invention.
  • One of its main functions is that the carbon and nitrogen complexes formed with C and N elements during the long-term high-temperature post-weld tempering treatment are very stable, ensuring the high-temperature post-weld heat treatment state. High temperature strength.
  • the addition of V alloy effectively inhibits the segregation of Cr and Mn elements at grain boundaries caused by radiation, so the V content is limited to 0.05% to 0.10%.
  • Ti It is one of the strong ferrite forming elements, which strongly increases the A1 and A3 temperatures of steel. Titanium in steel can improve plasticity and toughness. Because titanium fixes carbon and nitrogen and forms carbon and titanium nitride, the strength of the steel is increased. After normalizing heat treatment, the grains are refined and carbides are precipitated to form, which can significantly improve the plasticity and impact toughness of the steel. Therefore, the Ti content is limited to 0.03% to 0.06%.
  • Sn It is a residual element in steel. It not only affects the purity of steel, but also is an important element that affects the J coefficient of temper brittleness. It must be strictly controlled, so the Sn content is limited to ⁇ 0.001%.
  • the Alt element is embodied as a participating or a small amount of added element to play the role of a deoxidizer.
  • No addition or a small amount of Alt is mainly to ensure the purity of the steel and prevent the generation of aluminum oxides from affecting the fatigue performance. Therefore, the Alt content is limited to 0% ⁇ 0.02%.
  • the MnS inclusions become CaS or composite inclusions containing CaS, so that the Al 2 O 3 type inclusions become calcium aluminate type oxide inclusions.
  • Such inclusions are spherical in shape. Dispersed distribution, basically no deformation at the rolling temperature of steel, and still spherical after rolling.
  • the size of Ca (O, S) will be too large and the brittleness will also increase, which can become the starting point of fracture cracks, reduce the low-temperature toughness, ductility and weldability of the steel, and at the same time reduce the purity of the steel. Therefore, this The invention sets the Ca content range to 0.001% to 0.004%.
  • N forms nitrides with Nb, V and other elements, precipitates at the grain boundaries, pins the grain boundaries to refine the grains, and improves the high-temperature strength of the grain boundaries. Therefore, the N content is limited to 0.01% to 0.03%.
  • H As harmful gases, it can cause many defects.
  • H causes defects such as "white spots” or “hydrogen embrittlement” in steel, seriously affecting the service life of materials and equipment safety;
  • O forms brittle non-toxic gases with Al and Si elements.
  • Metal oxides affect the purity and fatigue limit performance of steel and must be strictly controlled, so the O content is limited to ⁇ 0.0020% and the H content is limited to ⁇ 0.0001%.
  • the present invention also discloses a technical solution, that is, a production method of steel plates for evaporators of advanced nuclear power units, including molten iron pretreatment-converter dephosphorization-converter decarburization-outside furnace refining (LF+RH )—slab continuous casting—stacking slow cooling—slab cleaning—electroslag remelting—electroslag ingot slow cooling—slab heating—controlled rolling and controlled cooling—thermal straightening—slow cooling—heat treatment—flaw detection—inspection and inspection process Steps, the main specific process steps of the present invention are as follows:
  • Smelting process Molten steel is smelted in a converter, using high-quality scrap steel and molten iron as raw materials.
  • the molten iron content is controlled at 70 to 80%.
  • dephosphorization and decarburization are smelted separately in a converter, in which dephosphorization and decarburization are smelted separately.
  • the phosphorus oxygen blowing is controlled at 7 to 10 minutes, and the decarburization oxygen blowing is controlled at 8 to 12 minutes, ultimately reducing the phosphorus mass fraction to less than 0.006%; deep desulfurization is performed in the LF refining furnace, and the sulfur content is controlled below 0.002%.
  • the steel Calcium treatment is performed on the medium-feeding CaSi wire.
  • the wire feeding speed is 200 ⁇ 350m/min.
  • the wire feeding depth is 1.0 ⁇ 2.0m below the slag layer.
  • This treatment changes the shape of the non-metallic inclusions and forms small CaS or calcium aluminate balls.
  • Inclusion material points increase the isoaxial ratio of the steel billet while purifying the steel, improving purity, improving the low-temperature toughness and high-temperature fatigue performance of the steel.
  • the thickness of the generated slag layer is 60 ⁇ 90mm, ensuring that inclusions are fully floated; degassing is done in the RH furnace When completed, the net circulation time is 10 to 15 minutes, and the sedation time before pouring is 3 to 6 minutes.
  • Electroslag remelting process In order to further improve the purity of steel, homogenize the as-cast structure, and reduce non-metallic inclusions, the addition of the electroslag remelting process is crucial for high-temperature fatigue performance and low-temperature toughness.
  • the present invention uses electroslag steel ingots with a thickness of 280 to 350mm to roll evaporator steel plates of 50mm and below. After the electroslag steel ingots are demoulded, the stacking slow cooling time is 48 to 72 hours, and the destacking is air-cooled below 400°C.
  • Heating process By controlling the heating process of the steel billet, it ensures that the alloy elements are fully dissolved and effectively inhibits the growth of the original austenite grains.
  • the heating temperature of the electroslag steel ingot is controlled at 1180 ⁇ 1250°C, and the heating time is 6 ⁇ 8h. Thermal time is 0.5 ⁇ 1.0h.
  • the recrystallization opening rolling temperature is 1050 ⁇ 1150°C
  • the single pass deformation rate in the recrystallization zone is 10 ⁇ 14%
  • each of the first three passes adopts a pass reduction rate of 11 ⁇ 13%
  • the total deformation rate is ⁇ 50%
  • the thickness of the intermediate billet is 2.0 ⁇ 5.0 times that of the finished steel plate
  • the non-recrystallized opening rolling temperature is 850 ⁇ 920°C
  • the non-recrystallized final rolling temperature is 800 ⁇ 850°C
  • the cumulative deformation rate is ⁇ 50%.
  • the accelerated cooling process of the rolled steel plate (ACC controlled cooling process), the cooling temperature is 800 ⁇ 830°C, the red return temperature is 400 ⁇ 500°C, and the cooling rate is 20 ⁇ 25°C/s.
  • the Nb, V, Ti micro-alloying elements added to the steel are organically combined with C and N elements to maximize their dispersion strengthening and grain refining effects and refine the rolled structure.
  • the thickness of the rolled product is 20 to 50 mm.
  • Heat treatment process In order to obtain a organizational form that meets the demanding performance requirements of the present invention, it needs to be completed through a final heat treatment process.
  • the present invention adopts a multiple heat treatment process of high-temperature normalizing + secondary normalizing + high-temperature tempering.
  • the steel grade of the present invention The temperature of A C3 is approximately 870°C.
  • the high temperature normalizing temperature is designed according to A C3 + (80 ⁇ 130)°C, that is, 950°C ⁇ 1000°C.
  • the holding time is 0.5min/mm ⁇ 1.0min/mm, and it is air cooled to room temperature.
  • the secondary normalizing temperature is 930 to 960°C
  • the holding time is 0.5 to 1.5 minutes. /mm, air-cool to room temperature, and obtain a multi-phase structure of bainite-based mixed ferrite and pearlite.
  • the ferrite + pearlite content is controlled at 5 to 10wt.%.
  • the upper limit of the heat-treated tensile strength of the material calculated based on the design allowable stress does not exceed 586MPa, and it is also necessary to ensure that the post-weld heat-treated tensile strength at 530°C is not less than 422MPa , therefore it is necessary to further carry out the process through precise tempering heat treatment for organization and performance control.
  • the present invention designs a tempering temperature of 730-760°C and a holding time of 120min+1.0-2.0min/mm.
  • the mechanical properties of the advanced nuclear power unit evaporator steel plates obtained through unique production processes are as follows: 407MPa ⁇ R el ⁇ 431MPa, 573MPa ⁇ R m ⁇ 586MPa at normal temperature in the supply state, 422MPa ⁇ R m ⁇ 435MPa at 530°C, and HBW ⁇ 180 ; 700 °C evaporator steel plate, filling the gap in this type of product.
  • Table 5 shows the fatigue performance of the examples
  • the steel plate for the evaporator of advanced nuclear power units has high internal purity, extremely low content of harmful elements P and S, and an anti-temper embrittlement coefficient J ⁇ 50;
  • the normal temperature in the supplied state is 407MPa ⁇ R el ⁇ 431MPa, 573MPa ⁇ R m ⁇ 586MPa, 422MPa ⁇ R m ⁇ 435MPa at 530°C, (A+B+C+D) fine series ⁇ 0.5, (A+B+C+D) thick series 0, 5wt .% ⁇ (pearlite+ferrite) ⁇ 10wt.%
  • band structure evaluation level is level 0, HBW ⁇ 180; 700°C ⁇ 16h post-weld heat treatment state 407MPa ⁇ R m (530°C) ⁇ 418MPa, KV 2 (-20°C) ⁇ 320J, 530°C cycle ⁇ 1.1 million times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种先进核电机组蒸发器用钢板及其制造方法。组分及质量百分比含量为:C:0.10%~0.14%、Si:0.10%~0.25%、Mn:0.25%~0.50%、P≤0.006%、S≤0.002%、Cr:1.80%~2.10%、Mo:1.00%~1.35%、Ni:0.80%~1.20%、Nb:0%~0.04%、V:0.05%~0.10%、Ti:0.03%~0.06%、Alt:0%~0.02%、Ca:0.001%~0.004%、N:0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%,余量为Fe及不可避免夹杂,抗高温回火脆化系数J=(Si+Mn)×(P+Sn)×10 4≤50。提供的流程工艺能够保证先进核电机组蒸发器用钢板的综合性能要求。

Description

一种先进核电机组蒸发器用钢板及其制造方法 技术领域
本发明涉及金属材料领域,尤其涉及一种先进核电机组蒸发器用钢板及其制造方法。
背景技术
核能作为世界上清洁高效的能源之一,已经被人类利用了70余年。进入二十一世纪以来,人类频繁的活动和全球经济的发展与能源短缺和极端气候的矛盾日益凸显,在这样全球一体化的背景下,核能的优势显得更加突出。因此和平发展更先进核能仍是时代所趋。目前,核能技术在经历了第一代试验性原型堆、第二代压水堆、第三代先进轻水堆的发展后,包含钠液冷却快堆、气冷快堆、铅液冷却快堆、超高温气冷堆、熔盐反应堆和超临界水冷堆等第四代先进核技术被全球核能专家提出,成为未来核电技术的发展方向。
第四代核能技术的主要特点是安全性更好、经济性更好、核废物量少,同时能有效防止核扩散。因此对核技术和核设备提出了非常高的要求,例如蒸发器的出口温度达到了530℃高温,这对蒸发器制造用钢提出了非常高的技术指标要求。因此开发满足第四代先进核电站需求的关键核设备、关键核材料已成为当今世界核能大国迫切需要解决的核心难题。
公开的发明专利“核反应堆蒸发器大锻件钢晶粒细化方法”(公开号CN201110224501.4),从公开的成分、生产方法和有益效果来看,该专利涉牌号为SA508Gr.3Cl.2,为三代核电蒸发器所需的材料,生产工艺为锻造方式,性能指标不适用四代核电的指标要求。
公开的发明专利“一种核电站蒸发器承压边界部件用钢及其制造方法”(公开号CN201811165268.5),从公开的成分、生产方法和有益效果来看,该专利涉及的力学性能仅能保证350℃工作环境温度下的使用要求,对于更高使用温度无说明或保障,并且明确说明该专利是用于三代核电蒸发器用钢及制造的。
上述公开的发明专利主要涉及第三代核电设备所需的金属材料,相对于第四代核电技术所需的关键材料,其特点为出口温度在150℃~350℃、焊后热处理温度低(620℃以下)、保温时间短(15h以下)等低参数要求。已经不满足第四代先进核电站需求,急需开发满足第四代核电站关键设备所需的关键材料。
为此,本发明针对第四代核电蒸汽发生器材料需要高的内部纯净度、各向差异性小、700℃×16h焊后热处理后具有优异的高温强韧性、抗疲劳断裂性能特性,发明满足先进核电机组关键设备所需的新材料和新工艺。
发明内容
根据上述提出的技术问题,而提供一种先进核电机组蒸发器用钢板及其制造方法。本发明旨在采用全新的化学成分设计和适宜的生产工艺,在中低C、Si、Mn成分基础上,复合添加Cr、Mo、Ni、Nb、V、Ti及N合金元素,严格控制有害元素P、S、Sn及气体O、H含量,配以独特的冶炼、轧制及热处理生产工艺,获得耐530℃焊后热处理高温强度、高温疲劳性能、低温韧性及高纯净度的均质钢板,满足四代核电站蒸发器制造及使用要求。本发明采用的技术手段如下:
一种先进核电机组蒸发器用钢板,其组分及质量百分比含量为:C:0.10%~0.14%、Si:0.10%~0.25%、Mn:0.25%~0.50%、P≤0.006%、S≤0.002%、Cr:1.80%~2.10%、Mo:1.00%~1.35%、Ni:0.80%~1.20%、Nb:0%~0.04%、V:0.05%~0.10%、Ti:0.03%~0.06%、Alt:0%~0.02%、Ca:0.001%~0.004%、N:0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%,余量为Fe及不可避免夹杂,抗高温回火脆化系数J=(Si+Mn)×(P+Sn)×10 4≤50。
进一步地,供货态的常温屈服强度为:407MPa≤R el≤431MPa、抗拉强度为:573MPa≤R m≤586MPa、530℃的抗拉强度为:422MPa≤R m≤435MPa,HBW≤180;700℃×16h焊后热处理态的抗拉强度为:407MPa≤R m(530℃)≤418MPa、-20℃冲击功KV 2≥320J、530℃循环周次≥110万次。
进一步地,获得含有(5wt.%~10wt.%)的铁素体+珠光体和回火贝氏体的复合组织,细系的A+B+C+D≤0.5级、粗系的A+B+C+D为0级、带状组 织评价级别为0级。
本发明的各化学组分的选用原理及含量设计原因如下:
C:本发明中主要固溶态的C和化合态的C保证钢的热处理和焊后热处理态的高温强度抗拉强度,也是提高疲劳强度的主要元素,但过多的碳含量对钢的韧性和焊接性能不利,因此本发明将C含量范围设定为0.10%~0.14%。
Si:是炼钢过程中良好的还原剂和脱氧剂,特别是与Alt联合使用,能显著增加Alt的脱氧能力。Si在高温下表面形成一层致密的、抗氧化SiO 2保护膜。另外,Si与Mo联合作用形成MoSi 2,一种金属间化合物,其晶体结构中的原子结合呈现金属健和共价键共存的特征,具有优良的高温抗氧化性,因此本发明Mo/Si比限定为4.05~13.30之间,保证形成一定量的MoSi 2结构。但在350~550℃回火脆化温度范围,过高的硅含量将导致钢的回火脆化敏感性升高,所以本发明不宜过多添加硅元素,因此本发明将Si含量范围设定为0.10%~0.25%。
Mn:本发明中由于Si、Alt等脱氧剂的添加量较少,Mn的添加弥补了脱氧不足的效果,另外Mn作为固溶强化能力强的合金元素,能够提高基体强度,但Mn是影响回火脆性的主要因素,本发明需要严格控制,因此本发明将Mn含量范围设定为0.25%~0.50%。
S、P:作为钢中的有害元素,为保证钢质的纯净度和J系数等综合指标必须严格控制,因此限定为S≤0.002%,P≤0.006%。
Cr:作为强碳化物形成元素,它与钢中的Fe、Mn、Mo组合生成稳定的M 23C 6结构的合金碳化物,其中M为Fe、Mn、Cr和Mo的组合,保证长时焊后热处理态的高温性能,同时发挥Cr与氧的亲和作用,高温时可以在金属表面形成致密的金属氧化物,提高钢的抗高温氧化和氧化腐蚀作用,但Cr含量过高会提高钢的脆性转变温度,本发明将Cr含量范围设定在1.80%~2.10%。
Mo:提高钢的淬透性,保证钢的基体强度,同时Mo是强碳化物形成元素,与碳元素形成稳定的Mo 2C热强化相,起到高温强化作用,另外本专利添加了较多的Cr元素和一定的Mn元素,它们极易与P、Sn等杂质元素在晶界处发生共偏聚现象,引起高温回火脆化,影响钢的高温性能。而Mo的作用正相反,促使P在晶内沉淀防止晶界偏聚,因此本发明限定(Cr+Mn)/Mo为1.70~2.50,以此保证蒸发器钢在530℃工作时的组织、性能稳定性,但Mo含 量过高反而会导致钢的脆化,本发明将Mo含量范围设定在1.00%~1.35%。
Ni:在本发明中Ni元素主要提高钢的塑韧性,但Ni含量过高会降低材料的抗辐照作用,因此本发明将Ni含量范围设定在0.80%~1.20%。
Nb:在本发明中起细化晶粒的作用,在本发明中Nb元素作为参与或少量添加元素体现,因此Nb含量限定在0%~0.04%。
V:在本发明中加入量较多,主要作用之一是在长时间高温焊后回火处理过程中与C、N元素形成的碳、氮复合化物非常稳定,保证了高温焊后热处理态的高温强度,另外,V合金的添加有效抑制辐照诱起的Cr、Mn元素在晶界偏析,因此V含量限定在0.05%~0.10%。
Ti:是强铁素体形成元素之一,强烈地提高钢的A1和A3温度。钛在钢中能提高塑性和韧性。由于钛固定了碳和氮并形成碳、氮化钛,提高了钢的强度。经正火热处理后使晶粒细化,析出形成碳化物可使钢的塑性和冲击韧性得到显著改善,因此Ti含量限定在0.03%~0.06%。
Sn:是钢中的残余元素,不仅影响钢质纯净度,而且作为影响回火脆性J系数的重要元素,必须严格控制,因此Sn含量限定在≤0.001%。
Alt:在本发明中Alt元素作为参与或少量添加元素体现,发挥脱氧剂作用,不添加或少量Alt主要是保证钢质的纯净度,防止生成铝的氧化物影响疲劳性能,因此Alt含量限定在0%~0.02%。
Ca:本发明夹杂物通过Ca的球化处理,MnS夹杂物变成CaS或含CaS的复合夹杂,使Al 2O 3类夹杂成为铝酸钙型氧化物夹杂,这类夹杂物为球形,呈弥散分布,在钢的轧制温度下基本不变形,轧制后仍为球形。但Ca加入过多,形成Ca(O,S)尺寸过大,脆性也增大,可成为断裂裂纹起始点,降低钢的低温韧性、延伸性及焊接性,同时降低钢质纯净度,因此本发明将Ca含量范围设定为0.001%~0.004%。
N:与Nb、V等元素形成氮化物,在晶界析出,钉扎晶界细化晶粒,起到提高晶界高温强度作用,因此N含量限定在0.01%~0.03%。
H、O:作为有害气体存在会引起诸多缺陷,如H引起钢中产生“白点”或“氢脆”等缺陷,严重影响材料的使用寿命和设备安全;O与Al、Si元素形成脆性非金属氧化物,影响钢质纯净度和疲劳极限性能,必须严格加以控制,因此O含量限定在≤0.0020%,H含量限定在≤0.0001%。
为实现本发明的目的,本发明还公开了一种技术方案,即一种先进核电机组蒸发器用钢板的生产方法,包括铁水预处理—转炉脱磷—转炉脱碳—炉外精炼(LF+RH)—板坯连铸—堆垛缓冷—铸坯清理—电渣重熔—电渣钢锭缓冷—钢坯加热—控轧控冷—热矫直—缓冷—热处理—探伤—检查、检验工艺步骤,本发明主要具体工艺步骤如下:
1)冶炼工艺:钢水冶炼在转炉中进行,采用优质废钢和铁水作为原料,铁水含量控制在70~80%,同时为有效降低有害元素P含量,脱磷和脱碳采用转炉分开冶炼,其中脱磷吹氧控制在7~10min,脱碳吹氧控制在8~12min,最终将磷质量分数降至0.006%以内;在LF精炼炉进行深脱硫处理,硫含量控制在0.002%以下,同时向钢中喂CaSi线进行钙处理,喂丝速度为200~350m/min,喂丝深度下渣层以下1.0~2.0m处,该处理改变非金属夹杂物的形态,形成细小的CaS或铝酸钙球状夹杂物质点,增加钢坯等轴率的同时净化钢质,提高纯净度,改善钢的低温韧性和高温疲劳性能,生成的渣层厚度60~90mm,确保夹杂物充分上浮;脱气在RH炉内完成,净循环时间10~15min,开浇前镇静时间3~6min。
2)浇铸工艺:破真空后采用连铸机浇铸,过热度20~30℃,浇注过程要稳定恒速,铸坯下线进堆垛缓冷,堆垛缓冷时间24~48h,400℃以下解垛,防止因急冷导致铸坯内部产生裂纹。
3)电渣重熔工艺:为进一步提高钢质纯净度,均匀化铸态组织,减少非金属夹杂物,电渣重熔工序的加入对于高温疲劳性能和低温韧性至关重要。本发明采用280~350mm厚度规格的电渣钢锭轧制50mm及以下规格蒸发器钢板,电渣钢锭脱模后堆垛缓冷时间48~72h,400℃以下解垛空冷。
4)加热工艺:通过控制钢坯的加热工艺,确保合金元素充分固溶,并有效抑制原始奥氏体晶粒长大,电渣钢锭加热温度控制在1180~1250℃,加热时间6~8h,均热时间0.5~1.0h。
5)控轧控冷工艺:再结晶开轧温度1050~1150℃,再结晶区单道次变形率10~14%,且前三道次每道次采用11~13%的道次压下率,总变形率≥50%,中间坯厚度为成品钢板的2.0~5.0倍;未再结晶开轧温度850~920℃,未再结晶终轧温度800~850℃,未再结晶区轧制不少于6道次,累计变形率≥50%。轧后钢板加速冷却工艺(ACC控冷工艺),开冷温度为800~830℃,返红温 度为400~500℃,冷却速度20~25℃/s。通过钢中添加的Nb、V、Ti微合金元素与C、N元素有机结合最大限度的发挥其弥散强化及细化晶粒作用,细化轧态组织,轧制后的成品厚度20~50mm。
6)热处理工序:为获得满足本发明苛刻性能要求的组织形态,需要通过最终热处理工艺完成,本发明采用高温正火+二次正火+高温回火的多次热处理工艺,本发明钢种的A C3温度大致为870℃,高温正火温度按A C3+(80~130)℃设计,即950℃~1000℃,保温时间为0.5min/mm~1.0min/mm,空冷至室温。该工艺消除了因轧件温度不均产生的晶粒差异和组织偏析,保证本发明产品的成分均质化和性能均匀化;二次正火温度为930~960℃,保温时间0.5~1.5min/mm,空冷至室温,获得贝氏体为主混合铁素体和珠光体的多相组织,其中为了满足高温强度和高温疲劳性能,铁素体+珠光体含量控制在5~10wt.%。
另外,为了获得本发明产品优异加工性能和使用性能,根据设计许用应力推算材料的热处理态抗拉强度上限不超过586MPa,同时还要保证530℃下的焊后热处理态抗拉强度不小于422MPa,因此需要通过精准的回火热处理进一步进行工艺进行组织、性能调控,本发明设计了730~760℃的回火温度,保温时间120min+1.0~2.0min/mm,该工艺下组织结构高温稳定性好,经过700℃×16h的焊后热处理不发生本质变化,保证钢板长时焊后热处理的综合性能,特别是高温强塑性、低温韧性和高温疲劳性能。
本发明具有以下优点:
1、在中低C、Si、Mn成分基础上,严格控制有害元素P、S、Sn及气体O、H含量,控制高温回火脆化系数在40以下,通过复合添加Cr、Mo、Ni、Nb、V、Ti及N合金元素结合制造工艺获得含有5wt.%~10wt.%(铁素体+珠光体)和回火贝氏体组织,(A+B+C+D)细系≤0.5级、(A+B+C+D)粗系为0级、带状组织评价级别为0级保证了蒸发器钢板的抗辐照性能和综合力学性能要求。
2、通过特有的生产工艺获得的先进核电机组蒸发器钢板其力学性能表现为供货态的常温407MPa≤R el≤431MPa、573MPa≤R m≤586MPa、530℃的422MPa≤R m≤435MPa、HBW≤180;700℃×16h焊后热处理态的407MPa≤R m(530℃)≤418MPa、KV 2(-20℃)≥320J、530℃循环周次≥110万次, 获得了厚度规格20~50mm的蒸发器钢板,填补该类产品空白。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的化学成分见表1;相应实施例的工艺参数见表2;实施例组织性能最终效果见表3;实施例非金属夹杂物评价结果见表4;实施例疲劳性能结果见表5。
表1实施例化学成分(wt,%)
Figure PCTCN2022091895-appb-000001
表2实施例工艺参数
Figure PCTCN2022091895-appb-000002
Figure PCTCN2022091895-appb-000003
表3实施例最终效果
Figure PCTCN2022091895-appb-000004
Figure PCTCN2022091895-appb-000005
表4实施例非金属夹杂物评价结果
Figure PCTCN2022091895-appb-000006
表5为实施例疲劳性能
Figure PCTCN2022091895-appb-000007
Figure PCTCN2022091895-appb-000008
根据以上结果可以得出,本发明提供的先进核电机组蒸发器用钢板内部纯净度高,P、S有害元素含量控制极低,抗回火脆化系数J≤50;供货态的常温407MPa≤R el≤431MPa、573MPa≤R m≤586MPa、530℃的422MPa≤R m≤435MPa、(A+B+C+D)细系≤0.5、(A+B+C+D)粗系为0、5wt.%≤(珠光体+铁素体)≤10wt.%、带状组织评价级别为0级、HBW≤180;700℃×16h焊后热处理态407MPa≤R m(530℃)≤418MPa、KV 2(-20℃)≥320J、530℃循环周次≥110万次。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种先进核电机组蒸发器用钢板,其特征在于,其组分及质量百分比含量为:C:0.10%~0.14%、Si:0.10%~0.25%、Mn:0.25%~0.50%、P≤0.006%、S≤0.002%、Cr:1.80%~2.10%、Mo:1.00%~1.35%、Ni:0.80%~1.20%、Nb:0%~0.04%、V:0.05%~0.10%、Ti:0.03%~0.06%、Alt:0%~0.02%、Ca:0.001%~0.004%、N:0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%,余量为Fe及不可避免夹杂,抗高温回火脆化系数J=(Si+Mn)×(P+Sn)×10 4≤50。
  2. 根据权利要求1所述的先进核电机组蒸发器用钢板,其特征在于,供货态的常温屈服强度为:407MPa≤R el≤431MPa、抗拉强度为:573MPa≤R m≤586MPa、530℃的抗拉强度为:422MPa≤R m≤435MPa;
    700℃×16h焊后热处理后在530℃的抗拉强度为:407MPa≤R m≤418MPa、-20℃冲击功KV 2≥320J、530℃循环周次≥110万次。
  3. 根据权利要求1所述的先进核电机组蒸发器用钢板,其特征在于,获得含有铁素体+珠光体和回火贝氏体的复合组织,其中,铁素体+珠光体含量为5~10wt.%,细系的A+B+C+D≤0.5级、粗系的A+B+C+D为0级、带状组织评价级别为0级。
  4. 根据权利要求1所述的先进核电机组蒸发器用钢板,其特征在于,Mo/Si为4.05~13.30;(Cr+Mn)/Mo为1.70~2.50。
  5. 一种权利要求1~4任一项所述的先进核电机组蒸发器用钢板的生产方法,其特征在于,包括冶炼工艺—浇铸工艺—电渣重熔工艺—加热工艺—轧制工艺—热处理工艺,主要工艺步骤如下:
    1)冶炼工艺:钢水冶炼在转炉中进行,脱磷和脱碳采用转炉分开冶炼,其中脱磷吹氧控制在7~10min,脱碳吹氧控制在8~12min,最终将磷质量分数降至0.006%以内;在LF精炼炉进行深脱硫处理,硫含量控制在0.002%以下, 同时向钢中喂CaSi线进行钙处理;
    生成的渣层厚度60~90mm;
    脱气在RH炉内完成,净循环时间10~15min,开浇前镇静时间3~5min;
    2)浇铸工艺:破真空后采用连铸机浇铸,过热度20~30℃,恒速浇注,铸坯下线进堆垛缓冷,并在预设温度下解垛;
    3)电渣重熔工艺:采用280~350mm电渣钢锭轧制50mm及以下规格蒸发器钢板,电渣钢锭脱模后堆垛缓冷,并在预设温度下解垛;
    4)加热工艺:电渣钢锭加热温度控制在1180~1250℃,加热时间6~8h,均热时间0.5~1.0h;
    5)轧制工艺:再结晶区开轧温度1050~1150℃,再结晶区单道次变形率10~14%,总变形率≥50%,中间坯厚度为成品钢板的2.0~5.0倍;未再结晶区开轧温度850~920℃,未再结晶区终轧温度800~850℃,未再结晶区累计变形率≥50%;轧制后的成品厚度20~50mm;
    6)热处理工艺:进行基于A C3+(80~130)℃的高温正火,保温时间为0.5~1.0min/mm,空冷至室温;
    二次正火温度为930~960℃,保温时间0.5~1.5min/mm,空气冷却至室温;
    之后进行高温回火热处理。
  6. 根据权利要求5所述的生产方法,其特征在于,所述冶炼工艺中,采用废钢和铁水作为原料,铁水含量控制在70~80%;
    进行钙处理过程中,喂丝速度为200~350m/min,喂丝深度在渣层以下1~2m处。
  7. 根据权利要求5所述的生产方法,其特征在于,所述浇铸工艺中,堆垛缓冷时间24~48h,解垛温度为400℃以下;所述电渣重熔工艺中,电渣钢锭脱模后堆垛缓冷时间48~72h,400℃以下解垛空冷。
  8. 根据权利要求5所述的生产方法,其特征在于,所述控轧控冷工艺中,再结晶区前三道次每道次采用11~13%的道次压下率,未再结晶区轧制不少于6道次。
  9. 根据权利要求5所述的生产方法,其特征在于,控轧控冷工艺中,轧后ACC控冷工艺,开冷温度为800~830℃,返红温度为400~500℃,冷却速度20~25℃/S。
  10. 根据权利要求5所述的生产方法,其特征在于,所述高温回火热处理具体为:730~760℃的回火温度,保温时间120min+1.0~2.0min/mm。
PCT/CN2022/091895 2022-05-06 2022-05-10 一种先进核电机组蒸发器用钢板及其制造方法 WO2023212971A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22940665.7A EP4394074A1 (en) 2022-05-06 2022-05-10 Steel plate for advanced nuclear power unit evaporator, and manufacturing method for steel plate
US18/697,571 US20240327964A1 (en) 2022-05-06 2022-05-10 Steel plate for evaporator of advanced nuclear power unit and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210488680.0 2022-05-06
CN202210488680.0A CN114908292B (zh) 2022-05-06 2022-05-06 一种先进核电机组蒸发器用钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2023212971A1 true WO2023212971A1 (zh) 2023-11-09

Family

ID=82767148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091895 WO2023212971A1 (zh) 2022-05-06 2022-05-10 一种先进核电机组蒸发器用钢板及其制造方法

Country Status (4)

Country Link
US (1) US20240327964A1 (zh)
EP (1) EP4394074A1 (zh)
CN (1) CN114908292B (zh)
WO (1) WO2023212971A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959459B (zh) * 2022-05-06 2023-06-16 鞍钢股份有限公司 一种先进核电机组堆芯壳筒体用钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199926A (ja) * 1998-01-21 1999-07-27 Toa Steel Co Ltd 冷間加工性及び耐遅れ破壊性に優れた高強度ボルト用棒鋼の製造方法
CN102181807A (zh) * 2011-05-09 2011-09-14 武汉钢铁(集团)公司 一种-50℃核电承压设备用钢及生产方法
CN103510009A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种核电机组汽轮机辅机用钢及其制造方法
CN103911559A (zh) * 2014-03-18 2014-07-09 济钢集团有限公司 一种核电站压力容器用钢板及其制造方法
CN103924161A (zh) * 2014-04-21 2014-07-16 中广核工程有限公司 核电站常规岛主蒸汽主给水管道及其制备方法
US20210340653A1 (en) * 2018-12-11 2021-11-04 Nippon Steel Corporation High-strength steel plate having excellent formability, toughness and weldability, and production method of same
CN113930692A (zh) * 2021-10-13 2022-01-14 鞍钢股份有限公司 一种先进压水堆核电站用高均质化超厚钢板及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691007B (zh) * 2011-03-23 2013-09-04 宝山钢铁股份有限公司 抗高回火参数pwht脆化的低温用特厚钢板及制造方法
CN103725967B (zh) * 2013-12-26 2016-05-11 南阳汉冶特钢有限公司 120mm规格以下SCMV4-2压力容器钢厚板及生产方法
KR102228292B1 (ko) * 2017-02-20 2021-03-16 닛폰세이테츠 가부시키가이샤 강판

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199926A (ja) * 1998-01-21 1999-07-27 Toa Steel Co Ltd 冷間加工性及び耐遅れ破壊性に優れた高強度ボルト用棒鋼の製造方法
CN102181807A (zh) * 2011-05-09 2011-09-14 武汉钢铁(集团)公司 一种-50℃核电承压设备用钢及生产方法
CN103510009A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种核电机组汽轮机辅机用钢及其制造方法
CN103911559A (zh) * 2014-03-18 2014-07-09 济钢集团有限公司 一种核电站压力容器用钢板及其制造方法
CN103924161A (zh) * 2014-04-21 2014-07-16 中广核工程有限公司 核电站常规岛主蒸汽主给水管道及其制备方法
US20210340653A1 (en) * 2018-12-11 2021-11-04 Nippon Steel Corporation High-strength steel plate having excellent formability, toughness and weldability, and production method of same
CN113930692A (zh) * 2021-10-13 2022-01-14 鞍钢股份有限公司 一种先进压水堆核电站用高均质化超厚钢板及其制造方法

Also Published As

Publication number Publication date
EP4394074A1 (en) 2024-07-03
US20240327964A1 (en) 2024-10-03
CN114908292A (zh) 2022-08-16
CN114908292B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2023029282A1 (zh) 一种工程机械用高强度钢板的生产方法
CN105925893B (zh) 一种250mm厚的S355NL低碳高韧性低合金钢板及其制造方法
WO2022227396A1 (zh) 一种高效焊接桥梁钢及其制造方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
CN106319380A (zh) 一种低压缩比690MPa级特厚钢板及其生产方法
CN105925894A (zh) 一种超厚高强抗层状撕裂q500d-z35水电机组钢板及其制造方法
CN102181807B (zh) 一种-50℃核电承压设备用钢及生产方法
CN106086642B (zh) 一种200mm厚抗氢致开裂压力容器钢板及其制造方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN109930071A (zh) 一种建筑钢板及其生产方法
CN107287500A (zh) 一种压水堆核电站安注箱基板用钢及其制造方法
CN109112423A (zh) 一种优良低温韧性特厚合金钢板及其制备方法
CN106811700A (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN104561837A (zh) 一种压力容器钢ASTMA387CL11Gr2钢板及其生产方法
CN108728757A (zh) 一种低温l450m管线钢及其制造方法
WO2023197571A1 (zh) 一种360hb-450hb级耐磨钢及其生产方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN114378480B (zh) 大热输入埋弧焊焊丝钢盘条及其制备方法、大热输入埋弧焊焊丝、大热输入焊接方法
WO2023212971A1 (zh) 一种先进核电机组蒸发器用钢板及其制造方法
WO2024109390A1 (zh) 一种高强度水电工程用hy950cf钢板及其生产方法
WO2024179612A1 (zh) 一种正火轧制型420MPa级高强韧风电用钢板及其制备方法
CN114892085B (zh) 一种先进核电机组定位用宽厚钢板及其制造方法
CN114875321B (zh) 一种先进核电机组蒸发器支承用钢板及其制造方法
WO2023212970A1 (zh) 一种先进核电机组堆芯壳筒体用钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022940665

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022940665

Country of ref document: EP

Effective date: 20240325

WWE Wipo information: entry into national phase

Ref document number: 18697571

Country of ref document: US