WO2023211073A1 - Biomarker composition for predicting cancer patient susceptibility to anti-igsf1 antibody, and method using same - Google Patents

Biomarker composition for predicting cancer patient susceptibility to anti-igsf1 antibody, and method using same Download PDF

Info

Publication number
WO2023211073A1
WO2023211073A1 PCT/KR2023/005499 KR2023005499W WO2023211073A1 WO 2023211073 A1 WO2023211073 A1 WO 2023211073A1 KR 2023005499 W KR2023005499 W KR 2023005499W WO 2023211073 A1 WO2023211073 A1 WO 2023211073A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
igsf1
protein
antibody
gene encoding
Prior art date
Application number
PCT/KR2023/005499
Other languages
French (fr)
Korean (ko)
Inventor
김성락
박윤선
진솔
배승건
김다은
이여진
최연승
Original Assignee
웰마커바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웰마커바이오 주식회사 filed Critical 웰마커바이오 주식회사
Publication of WO2023211073A1 publication Critical patent/WO2023211073A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention provides a biomarker composition for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody and a method for providing the information necessary to predict the susceptibility of a cancer patient to an anti-IGSF1 antibody using the same.
  • Cancer is a major disease that ranks first in mortality in modern society, and despite much research, there is no technological treatment to date. Worldwide, more than 100 million cancer patients occur every year, and the World Health Organization (WHO) considers cancer to be one of the main causes of death.
  • WHO World Health Organization
  • the responsiveness of a living body when an anticancer drug is administered in anticancer therapy largely depends on the sensitivity of the targeted cancer cells to a specific drug.
  • the sensitivity of these cancer cells to drugs is greatly different for each cancer cell, and this difference in sensitivity is due to quantitative or qualitative differences in the target molecules of the drug or factors related thereto, or the acquisition of drug resistance, etc.
  • the effectiveness of the drug can be determined at an early stage, the treatment regimen can be established, and new treatments can be selected. This is possible and is very beneficial.
  • cancer cells are isolated from cancer tissue obtained by biological tissue fragments, etc. according to a conventional method and then treated with a drug, and whether the cancer cells are sensitive to the drug is measured based on the above-mentioned changes. It is very useful clinically because it is possible to predict in advance whether treatment by .
  • Republic of Korea Patent Publication No. 10-2021-0122185 discloses that an antibody against IGSF1 can be used as a pharmaceutical composition for cancer prevention or treatment.
  • no method has been disclosed at all to predict the sensitivity of cancer patients to antibodies against IGSF1.
  • the present inventors studied to develop a method to predict the sensitivity of cancer patients to antibodies against IGSF1, and as a result, it was found that the expression patterns of IGSF1 and PD-L1 in cancer cells or tissues of cancer patients show an opposite correlation. By confirming this, the present invention was completed.
  • one aspect of the present invention is a biomarker composition for predicting the susceptibility of cancer patients to anti-IGSF1 antibodies, comprising an agent capable of measuring the expression level of PD-L1 protein or the gene encoding it. provides.
  • Another aspect of the present invention provides a kit for predicting susceptibility of cancer patients to anti-IGSF1 antibodies, comprising the biomarker composition.
  • Another aspect of the present invention provides information necessary for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody, comprising measuring the expression level of the PD-L1 protein or the gene encoding it in a biological sample obtained from the individual. Provides a method to provide.
  • Another aspect of the present invention provides a method of selecting cancer patients suitable for treatment with an anti-IGSF1 antibody, comprising selecting an individual with a low expression level of the PD-L1 protein or the gene encoding it.
  • the susceptibility of individual cancer patients to anti-IGSF1 antibody can be determined by measuring the expression level of PD-L1 protein or the gene encoding it. Since accurate predictions can be made before treatment, it is possible to select an anticancer drug with high therapeutic effect and prevent side effects from unnecessary use of anticancer drugs.
  • Figure 1a shows the results of Western blot (top) and RT-PCR (bottom) to confirm changes in the expression pattern of PD-L1 due to IGSF1 overexpression in NCI-H292, a non-small cell lung cancer cell line. ⁇ -actin and GAPDH are controls for each experiment.
  • Figure 1b shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was knocked down in a cell line with stable IGSF1 overexpression.
  • Figure 2a shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was knocked down in three lung cancer cell lines (NCI-H520, NCI-H1435, NCI-H1944) expressing IGSF1.
  • Figure 2b shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was overexpressed in two lung cancer cell lines (Calu-1, NCI-H2228) that do not express IGSF1.
  • Figure 3 shows a Western blot to confirm changes in the expression pattern of PD-L1 when co-transfected with increasing amounts of the IGSF1 expression vector while maintaining a fixed amount of the PD-L1 expression vector in 293T, a human embryonic kidney cell line. This is the result of the performance.
  • Figure 4 is a photograph (top) of a tissue showing an inverse correlation between the expression patterns of IGSF1 and PD-L1 by performing immunohistochemical staining, and the IGSF1 expression levels are categorized as 0(-), 1(+), and 2( ++), 3(+++), and PD-L1 is a graph created by calculating the TPS value (bottom).
  • Figure 5a shows the results of confirming the binding between ATF3, a downstream signal of IGSF1, and PD-L1 through chromatin immunoprecipitation when IGSF1 was knocked down in a cell line stably overexpressing IGSF1.
  • Figure 5b shows the results of RT-PCR (top) and Western blot (bottom) to confirm changes in the expression patterns of ATF3 and PD-L1 due to inhibition of IGSF1 expression in lung cancer cell lines NCI-H838 and NCI-H358. GAPDH and ⁇ -actin are controls for each experiment.
  • Figure 5c shows the results of RT-PCR (top) and Western blot (bottom) to confirm changes in the expression patterns of ATF3 and PD-L1 due to IGSF1 overexpression in NCI-H292 cells, a lung cancer cell line. GAPDH and ⁇ -actin are controls for each experiment.
  • Figure 6 is a diagram showing the results of identifying IGSF1 protein using TMT labeling LC/MS in lung cancer cell lines with different PD-L1 expression levels.
  • One aspect of the present invention provides a biomarker composition for predicting susceptibility of cancer patients to anti-IGSF1 antibodies, including an agent capable of measuring the expression level of PD-L1 protein or the gene encoding it.
  • Immunoglobulin superfamily member 1 is a plasma membrane glycoprotein encoded by the IGSF1 gene found on the X chromosome of humans and other mammalian species. Although the function of IGSF1 in normal cells is not well known, IGSF1 mutations are known to cause diseases such as IGSF1 deficiency syndrome or central hypothyroidism.
  • PD-L1 refers to a protein present on the surface of cancer cells or hematopoietic cells.
  • PD-L1 and PD-L2 on the surface of cancer cells are PD-L1, a protein on the surface of T cells. When combined with 1, T cells cannot attack cancer cells.
  • the term “susceptibility” refers to whether an anti-IGSF1 antibody exhibits a therapeutic effect for an individual cancer patient. It is known that even types of therapeutic agents recognized as effective for cancer treatment may or may not be effective depending on the individual patient. Whether or not a treatment is effective for an individual cancer patient can be referred to as sensitivity to the treatment.
  • biomarker may also be used as a companion diagnosis marker and refers to a substance that can predict in advance a patient's responsiveness to a specific drug treatment in a biological sample.
  • Polypeptides or nucleic acids e.g., mRNA, etc.
  • lipids e.g., glycolipids, glycoproteins, or sugars (e.g., monosaccharides, disaccharides, oligosaccharides, etc.) that are shown to be increased or decreased in biological samples taken from certain cancer patients. It may include organic biomolecules, etc.
  • cancer refers to the aggressive nature of cells dividing and proliferating in defiance of normal growth limits, the invasive nature of infiltrating surrounding tissues, and the ability to spread to other parts of the body. It refers to a general term for diseases caused by cells with metastatic characteristics, and is used in the same sense as malignant tumor.
  • treatment of cancer means inhibiting or preventing the growth of cancer cells or tissues, which reduces cancer growth and cancer metastasis compared to no treatment or treatment, and reduces resistance to anticancer drugs. This concept also includes making the treatment more effective.
  • the cancer metastasis refers to the process by which tumor (cancer) cells spread to distant parts of the body, and "resistance to anticancer drugs” or “anticancer drug resistance” refers to the initial stage of treatment when treating cancer patients using anticancer drugs. This means that there is no treatment effect or that the cancer treatment effect is initially effective but the cancer treatment effect is lost during the continuous treatment process.
  • the expression level of the PD-L1 protein or the gene encoding the same in the responding patient group showing a therapeutic effect against the anti-IGSF1 antibody compared to the non-responsive cancer patient group showing no therapeutic effect against the anti-IGSF1 antibody may decrease.
  • the expression level of PD-L1 protein or the gene encoding it is increased in the non-responsive cancer patient group that does not show a therapeutic effect to the anti-IGSF1 antibody compared to the responsive cancer patient group that shows a therapeutic effect to the anti-IGSF1 antibody. can do.
  • the cancer may be one in which the IGSF1 protein or the gene encoding it is overexpressed.
  • the cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. It may be any one selected from the group, but is not limited thereto, and may be applicable to any tumor tissue in which the IGSF1 protein or the gene encoding it is present.
  • Measuring the expression level of the PD-L1 protein is a process of confirming the presence and expression level of the protein in a biological sample isolated from a cancer patient in order to predict the cancer patient's sensitivity to the anti-IGSF1 antibody, The amount of protein is confirmed using a molecule that specifically binds to the protein.
  • Agents that can measure the expression level of the protein include monoclonal antibodies, polyclonal antibodies, chimeric antibodies, ligands, PNA (peptide nucleic acid), and aptamers ( It may be one or more selected from the group consisting of an aptamer and a nanoparticle, but is not limited thereto.
  • Analysis methods for this include western blotting, ELISA (enzyme linked immunosorbent assay), radioimmunoassay (RIA), radioimmunodiffusion, ouchterlony immunodiffusion, and rocket ( rocket) immunoelectrophoresis, immunoprecipitation assay, immunohistochemical analysis, complement fixation assay, FACS (fluorescence activated cell sorter), protein chip, two-dimensional electrophoresis Electrophoretic analysis, protein mass spectrometry, liquid chromatography-mass spectrometry (LC-MS), LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry), MALDI-TOF (matrix desorption/ionization time) of flight mass spectrometry) analysis and SELDI-TOF (surface enhanced laser desorption/ionization time of flight mass spectrometry) analysis, etc., but are not limited thereto.
  • LC-MS liquid chromatography-mass spectrometry
  • LC-MS/MS
  • Measurement of the expression level of the gene encoding the protein determines the presence or absence of the gene encoding the protein in biological samples isolated from cancer patients and the expression level of the gene in order to predict the susceptibility of the cancer patient to the anti-IGSF1 antibody. In the process of confirming, the amount of the gene is confirmed using a molecule that specifically binds to the gene.
  • An agent capable of measuring the expression level of a gene encoding the protein may be at least one selected from the group consisting of a primer pair, a probe, and an antisense nucleotide that specifically binds to the gene. However, it is not limited to this.
  • RT-PCR reverse transcriptase-polymerase chain reaction
  • RPA RNase protection assay
  • Northern include, but are not limited to, northern blotting and DNA chips.
  • the expression patterns of PD-L1 and IGSF1 show a reverse correlation.
  • Another aspect of the present invention provides a kit for predicting the sensitivity of cancer patients to anti-IGSF1 antibodies, including the biomarker composition.
  • the kit can predict sensitivity to the anti-IGSF1 antibody using biological samples isolated from cancer patients. Specifically, the kit can predict sensitivity to the anti-IGSF1 antibody using tumor tissue collected from a cancer patient.
  • the kit may include tools and reagents commonly used in immunological analysis, as well as agents for measuring the expression level of the protein or gene.
  • the tool or reagent may include, but is not limited to, a suitable carrier, a labeling substance capable of generating a detectable signal, a chromophore, a solubilizer, a detergent, a buffer, and a stabilizer.
  • a labeling substance capable of generating a detectable signal
  • a chromophore capable of generating a detectable signal
  • a solubilizer a detergent
  • a buffer a buffer
  • stabilizer a stabilizer.
  • Carriers include soluble carriers and insoluble carriers.
  • soluble carriers include physiologically acceptable buffers known in the art, such as PBS, and examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, It may be polyacrylonitrile, fluororesin, cross-linked dextran, polysaccharide, polymers such as magnetic fine particles plated with metal on latex, other paper, glass, metal, agarose, and combinations thereof.
  • the biomarker composition is as described above.
  • Another aspect of the present invention provides information necessary for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody, comprising measuring the expression level of the PD-L1 protein or the gene encoding it in a biological sample obtained from the individual. Provides a method to provide.
  • the method may additionally include the step of predicting sensitivity to an anticancer agent containing an anti-IGSF1 antibody when the expression level of the PD-L1 protein or the gene encoding it is lower than the reference value. Specifically, when the expression level of the PD-L1 protein or the gene encoding it is lower than the reference value, the expression level of the IGSF1 protein or the gene encoding it can be predicted to be high.
  • the term “reference value” refers to amplification/non-amplification of a gene; Alternatively, it refers to a value that serves as a standard for dividing over- or under-expression of mRNA or protein.
  • the reference value may be, for example, the average mRNA/protein expression level of an individual before treatment with a specific drug, or the average mRNA/protein expression level of a normal individual, but is not limited thereto.
  • the reference value may be determined according to the distribution of the average mRNA/protein expression level of a specific patient group, but is not limited thereto.
  • the mRNA expression level or protein expression level is measured by measuring the average mRNA expression level or protein expression level from each individual sample using a method for measuring gene, mRNA, or protein levels commonly used in the technical field of the present invention. , top 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 10%, 11%, 12%, 13%, 14%, 15% of the distribution of measurements.
  • biological sample refers to any sample obtained from an individual in which the expression level of the PD-L1 protein or the gene encoding it can be measured.
  • the biological sample may be, but is not limited to, blood, plasma, serum, urine, saliva, sputum, cerebrospinal fluid, cell culture fluid, tissue extract, or tumor tissue.
  • the biological sample may be tumor tissue collected from an individual for biopsy.
  • the biological sample can be prepared by processing by methods commonly used in the art.
  • the cancer may be one in which the IGSF1 protein or the gene encoding it is overexpressed.
  • the cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. It may be any one selected from the group, but is not limited thereto, and may be applicable to any tumor tissue in which the IGSF1 protein or the gene encoding it is present.
  • PD-L1 and IGSF1 are as described above.
  • Another aspect of the present invention provides a method of selecting cancer patients suitable for treatment with an anti-IGSF1 antibody, comprising selecting an individual with a low expression level of the PD-L1 protein or the gene encoding it.
  • the anti-IGSF1 antibody, PD-L1 protein expression level, cancer, etc. are as described above.
  • Redundant content is omitted in consideration of the complexity of the present specification, and terms not otherwise defined in this specification have meanings commonly used in the technical field to which the present invention pertains.
  • Example 1 Analysis of expression patterns of IGSF1 and PD-L1 in non-small cell lung cancer cell lines
  • Example 1.1 Analysis of PD-L1 expression pattern according to IGSF1 overexpression
  • the non-small cell lung cancer cell line NCI-H292 (Korean Cell Line Bank, KCLB) was genetically engineered to overexpress IGSF1 (NCI-H292 IGSF1 O/E), and as a negative control, an empty vector (pCMV6 entry) was added to NCI-H292. , Origene PS100001) was used (NCI-H292 MOCK).
  • the IGSF1 expression vector pCMV6 entry IGSF1, Origene, RC209621 was transfected into NCI-H292 cells using jetPRIME reagent, and treated with 800 ⁇ g/ml of G418 starting 2 days later. After treatment with G418, the transfected cells were selected for 1 month to obtain a single clone (clone F) IGSF1 overexpressing stable cell line.
  • target category cat.# Manufacturer IGSF1 Mouse IgG (primary antibody) sc-393786 SantaCruz Biotechnology, Inc.
  • PD-L1 Rabbit IgG (primary antibody) ab205921 Abcam ⁇ -actin Mouse IgG (primary antibody) sc-47778 SantaCruz Biotechnology, Inc.
  • RNA was extracted and quantified with Trizol, and then 2,000 ng of RNA was prepared. Subsequently, cDNA was synthesized using the AccuPower ® CycleScript RT PreMix kit using 100 pmole 1 ⁇ l of oligo dt primer. PCR was performed on 2 ⁇ l of the synthesized cDNA in an AB Veriti 96-Well Thermal Cycler using the AccuPower ® PCR PreMix kit for 28 cycles. After completing PCR, 5 ⁇ l of each sample was loaded onto a 1% agarose gel, electrophoresed at 150 V for 35 minutes, and changes in mRNA expression levels were confirmed through UV irradiation in Gel-Doc. The results are shown in Figure 1a. Primer information used in PCR is as listed in Table 2 below.
  • Example 1.2 Analysis of PD-L1 expression pattern according to decreased IGSF1 expression
  • Example 2 Analysis of expression patterns of IGSF1 and PD-L1 in various lung cancer cell lines
  • Example 2.1 Analysis of PD-L1 expression pattern according to inhibition of IGSF1 expression
  • NCI-H520 (ATCC), NCI-H1435 (KCLB), and NCI-H1944 (ATCC) cells were inoculated at 5x10 5 cells/dish in a 60 mm 2 culture dish and cultured for 24 hours, followed by Scrambled shRNA and IGSF1. 200 pmol of each shRNA was transfected using JetPrime reagent. Scrambled (sc) shRNA is a negative control for IGSF1 shRNA, and IGSF1 shRNA is for knocking down IGSF1. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer. Western blot was performed using the cell lysed sample in the same manner as described in Example 1.1, and the results are shown in Figure 2a.
  • Example 2.2 Analysis of PD-L1 expression pattern according to induction of IGSF1 expression
  • Lung cancer cell lines Calu-1 (KCLB) and NCI-H2228 (ATCC) cells were inoculated into a 60 mm 2 culture dish at 5x10 5 cells/dish and cultured for 24 hours, followed by empty vector and HA-tagged IGSF1 expression. 2 ⁇ g of each vector was transfected using JetPrime reagent. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer and Western blot was performed. Specifically, cell lysis samples were reacted with Bradford solution and quantified at a wavelength of 595 nm. 15 ⁇ g of cell lysis sample was loaded onto an 8% SDS-gel and subjected to SDS-PAGE, and then the sample present in the gel was transferred to a PVDF membrane at 100V for 120 minutes.
  • the primary antibodies anti-IGSF1 antibody, anti-HA antibody, anti-PD-L1 antibody, and anti- ⁇ -actin antibody
  • the secondary antibody HRP (horseradish peroxidase)-conjugated mouse antibody
  • HRP horseradish peroxidase
  • the signal was amplified using an enhanced chemiluminescence (ECL) solution, sensitized to film, developed, and the change in protein expression level was measured.
  • ECL enhanced chemiluminescence
  • 293T (ATCC) cells a human embryonic kidney cell line, were inoculated at 5x10 5 cells/dish in a 60 mm 2 culture dish and cultured for 24 hours.
  • the amount of PD-L1 expression vector was fixed at 0.5 ⁇ g, and the amount of IGSF1 expression vector was increased to 0 ⁇ g, 0.5 ⁇ g, 1.0 ⁇ g, 1.5 ⁇ g, and 2.0 ⁇ g and co-transfected using JetPrime reagent. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer. Western blot was performed using the cell lysed sample in the same manner as described in Example 1.1, and the results are shown in Figure 3.
  • Example 4 In non-small cell lung cancer patient tissue Expression pattern analysis of IGSF1 and PD-L1
  • immunohistochemistry was performed. Specifically, tissue sections from 84 human non-small cell lung cancer patients were deparaffinized and rehydrated. For heat-induced epitope recovery, the cells were soaked in target recovery buffer, heated in a microwave oven for 15 minutes, and left in target recovery buffer for an additional 30 minutes.
  • TBS-T Tris-buffered saline-0.05% Tween 20
  • IGSF1 is subdivided into 0(-), 1(+)(negative/low), 2(++), and 3(+++)(positive/high), and PD-L1 is classified into tumor proportion score (TPS). ) values were calculated and subdivided into ⁇ 1, 1 ⁇ 4.9, 5 ⁇ 49 (negative/low), and ⁇ 50 (positive/high).
  • TPS tumor proportion score
  • the expression patterns of IGSF1 and PD-L1 in the tissues of non-small cell lung cancer patients show an inverse correlation (bottom), and the tissues with IGSF1 (positive/high) and PD-L1 (negative/low) It was confirmed that 34.5%, IGSF1 (negative/low), and PD-L1 (positive/high) were 3.6%.
  • Example 5 Analysis of PD-L1 gene expression regulation by IGSF1 in various lung cancer cell lines
  • Example 5.1 Analysis of the interaction between ATF3, a downstream signal of IGSF1, and PD-L1
  • the ATF3 binding site (binding site) was identified on the PD-L1 promoter through PD-L1 promoter chip assay depending on whether IGSF1 was expressed or not. ) and conducted an experiment. The results were confirmed through chromatin immunoprecipitation.
  • lung cancer cell lines NCI-H292 mock and NCI-H292 IGSF1 O/E cells were cultured by adding 37% formaldehyde to a concentration of 1% for 15 minutes at room temperature. During the culture, 740 mL glycine (1 M) was added and incubated at room temperature for 5 minutes, and then the cells were harvested. Cross-linked cells were then melted in SDS lysis buffer and sonicated to obtain DNA fragments. Chromatin was immunoprecipitated with ATF3 antibody or IgG antibody and agarose at 4°C. Chromatin, antibody, and agarose complex were eluted by adding sodium chloride during the washing process, and reverse histone-DNA crosslinks were performed at 65°C.
  • Polymerase chain reaction was performed using 1 ⁇ L of immunoprecipitated DNA using primers specific to the PD-L1 promoter. Information on the antibodies used in immunoprecipitation is as shown in Table 4 below, and information on primers used in the polymerase chain reaction is as shown in Table 5 below.
  • Example 5.2 Analysis of expression patterns of ATF3 and PD-L1 according to inhibition of IGSF1 expression
  • RT-PCR Reverse transcription-polymerase chain reaction
  • Western blot was used to analyze changes in the expression patterns of ATF3 and PD-L1 according to IGSF1 K/D (knock down) in lung cancer cell lines NCI-838 and NCI-H358 cells. blot) was performed.
  • NCI-838 and NCI-H358 cells were treated with Trizol, RNA was extracted and quantified. Afterwards, cDNA was synthesized using the AccuPower® CycleScript RT PreMix kit using 1 ⁇ L of 100 pmole of oligo dt primer for 2000 ng of RNA. PCR was performed on 2 ⁇ L of the synthesized cDNA in an AB Veriti 96-Well Thermal Cycler using the AccuPower® PCR PreMix kit for 28 cycles. After completing PCR, 5 ⁇ L of each sample was loaded onto a 1% agarose gel and electrophoresed at 150 V for 35 minutes. Afterwards, changes in mRNA expression levels were confirmed through UV irradiation in Gel-Doc.
  • Example 5.3 Analysis of expression patterns of ATF3 and PD-L1 according to IGSF1 overexpression
  • IGSF1 protein was identified using TMT labeling LC/MS in lung cancer cell lines with different levels of PD-L1 expression.
  • membrane proteins from human non-small cell lung cancer cell lines were extracted using the Subcellular Protein Fractionation Kit (Thermo Scientific, 78840). Quantity of extracted protein was measured using Bradford assay (Bio-Rad, 5000001). 50 ⁇ g of each protein was reacted with 10 mM Tris(2-carboxyethyl)phosphine (TCEP) at 55°C for 1 hour, 18.75 mM iodoacetamide for 30 minutes at room temperature, and then precipitated with acetone overnight at -20°C. .
  • TCEP Tris(2-carboxyethyl)phosphine
  • the protein pellet precipitated with acetone was dissolved in 50 mM triethylammonium bicarbonate (TEAB), 2.5 ⁇ g of trypsin (1:40) per 100 ⁇ g of protein was added, and the protein was cleaved overnight at 37°C to peptide.
  • TMT-labeling was performed using the TMTsixplex TM labeling reagent set (Thermo Scientific, 90066), and the protocol was performed according to the manufacturer's specifications.
  • Mass spectrometry and protein identification was performed using an LTQ-Orbitrap Hybrid FT-ETD mass spectrometer (Thermo Scientific).

Abstract

The present invention relates to: a biomarker composition for predicting cancer patient susceptibility to an anti-IGSF1 antibody; and a method for providing information required for predicting cancer patient susceptibility to an anti-IGSF1 antibody by using same. Therefore, individual cancer patient susceptibility to an anti-IGSF1 antibody can be accurately predicted before treatment through a method for measuring the expression level of PD-L1 protein or a gene encoding same, and thus an anticancer drug with a high therapeutic effect can be selected, and side effects caused by using unnecessary anticancer drugs can be prevented.

Description

항-IGSF1 항체에 대한 암 환자의 감수성 예측용 바이오마커 조성물 및 이를 이용하는 방법Biomarker composition for predicting susceptibility of cancer patients to anti-IGSF1 antibodies and method of using the same
본 발명은 항-IGSF1 항체에 대한 암 환자의 감수성을 예측하기 위한 바이오마커 조성물 및 이를 이용하여 항-IGSF1 항체에 대한 암 환자의 감수성을 예측하기 위해 필요한 정보를 제공하는 방법을 제공한다.The present invention provides a biomarker composition for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody and a method for providing the information necessary to predict the susceptibility of a cancer patient to an anti-IGSF1 antibody using the same.
암은 현대 사회에서 사망률 1위를 차지하는 주요 질병으로서 현재까지 많은 연구에도 불구하고 획기적인 치료법이 없는 실정이다. 전세계적으로 매년 10,000만명이 넘는 암 환자가 발생하고 있으며, 세계보건기구(WHO)는 사망의 주요 원인 중 하나로 암을 꼽고 있다.Cancer is a major disease that ranks first in mortality in modern society, and despite much research, there is no groundbreaking treatment to date. Worldwide, more than 100 million cancer patients occur every year, and the World Health Organization (WHO) considers cancer to be one of the main causes of death.
일반적으로 항암 요법에서 항암제를 투여하였을 때의 생체의 반응성은 표적이 되는 암 세포의 특정 약제에 대한 감수성에 크게 의존한다. 이러한 암 세포의 약제에 대한 감수성은 암 세포마다 크게 상이하고, 이러한 감수성의 차이는, 약제의 표적 분자 또는 이에 관련하는 인자의 양적 또는 질적 차이, 또는 약제 내성의 획득 등에 기인한다. 이러한 배경을 근거로, 표적이 되는 암 세포가 약제에 대하여 감수성을 나타낼 경우에 특이적으로 나타나는 암 세포의 유전적인 변화를 확인할 수 있다면, 조기에 약제의 효과 판정, 치료법의 확립, 새로운 치료법의 선택 등이 가능해져 대단히 유익하다. 또한, 치료에 앞서 생체 조직편 등에 의해 취득된 암 조직에서, 통상의 방법에 따라 암 세포를 분리한 후 약제 처리를 실시하여, 이 암 세포가 약제 감수성인지 여부를 상기 변화에 의해 측정하면, 이 약제에 의한 치료가 유효한지 여부를 미리 예측할 수 있기 때문에 임상적으로 매우 유용하다.In general, the responsiveness of a living body when an anticancer drug is administered in anticancer therapy largely depends on the sensitivity of the targeted cancer cells to a specific drug. The sensitivity of these cancer cells to drugs is greatly different for each cancer cell, and this difference in sensitivity is due to quantitative or qualitative differences in the target molecules of the drug or factors related thereto, or the acquisition of drug resistance, etc. Based on this background, if genetic changes in cancer cells that specifically appear when target cancer cells are sensitive to drugs can be identified, the effectiveness of the drug can be determined at an early stage, the treatment regimen can be established, and new treatments can be selected. This is possible and is very beneficial. In addition, prior to treatment, cancer cells are isolated from cancer tissue obtained by biological tissue fragments, etc. according to a conventional method and then treated with a drug, and whether the cancer cells are sensitive to the drug is measured based on the above-mentioned changes. It is very useful clinically because it is possible to predict in advance whether treatment by .
한편, 대한민국 공개특허 제10-2021-0122185호는 IGSF1에 대한 항체를 암 예방 또는 치료용 약학 조성물로 사용할 수 있다는 점에 대하여 개시하고 있다. 하지만, 암 환자의 IGSF1에 대한 항체에 대한 감수성을 예측할 수 있는 방법에 대해서는 전혀 개시되어 있지 않다.Meanwhile, Republic of Korea Patent Publication No. 10-2021-0122185 discloses that an antibody against IGSF1 can be used as a pharmaceutical composition for cancer prevention or treatment. However, no method has been disclosed at all to predict the sensitivity of cancer patients to antibodies against IGSF1.
이에 본 발명자들은 암 환자의 IGSF1에 대한 항체에 대한 감수성을 예측할 수 있는 방법을 개발하기 위하여 연구한 결과, 암 세포 또는 암 환자의 조직에서 IGSF1과 PD-L1의 발현 패턴이 반대 상관관계를 나타낸다는 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors studied to develop a method to predict the sensitivity of cancer patients to antibodies against IGSF1, and as a result, it was found that the expression patterns of IGSF1 and PD-L1 in cancer cells or tissues of cancer patients show an opposite correlation. By confirming this, the present invention was completed.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정할 수 있는 제제를 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측용 바이오마커 조성물을 제공한다.In order to achieve the above object, one aspect of the present invention is a biomarker composition for predicting the susceptibility of cancer patients to anti-IGSF1 antibodies, comprising an agent capable of measuring the expression level of PD-L1 protein or the gene encoding it. provides.
본 발명의 다른 측면은, 상기 바이오마커 조성물을 포함하는 암 환자의 항-IGSF1 항체에 대한 감수성 예측용 키트를 제공한다.Another aspect of the present invention provides a kit for predicting susceptibility of cancer patients to anti-IGSF1 antibodies, comprising the biomarker composition.
본 발명의 또 다른 측면은, 개체로부터 수득한 생물학적 샘플에서 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정하는 단계를 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측에 필요한 정보를 제공하는 방법을 제공한다.Another aspect of the present invention provides information necessary for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody, comprising measuring the expression level of the PD-L1 protein or the gene encoding it in a biological sample obtained from the individual. Provides a method to provide.
본 발명의 또 다른 측면은, PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 낮은 개체를 선별하는 단계를 포함하는 항-IGSF1 항체의 치료에 적합한 암 환자를 선별하는 방법을 제공한다.Another aspect of the present invention provides a method of selecting cancer patients suitable for treatment with an anti-IGSF1 antibody, comprising selecting an individual with a low expression level of the PD-L1 protein or the gene encoding it.
본 발명의 항-IGSF1 항체에 대한 감수성 예측용 바이오마커 조성물을 이용하면, PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정하는 방법을 통하여 개개의 암 환자의 항-IGSF1 항체에 대한 감수성을 치료 전에 정확하게 예측할 수 있으므로 치료 효과가 높은 항암제의 선택이 가능하고, 불필요한 항암제의 사용으로 인한 부작용을 방지할 수 있다.Using the biomarker composition for predicting susceptibility to anti-IGSF1 antibody of the present invention, the susceptibility of individual cancer patients to anti-IGSF1 antibody can be determined by measuring the expression level of PD-L1 protein or the gene encoding it. Since accurate predictions can be made before treatment, it is possible to select an anticancer drug with high therapeutic effect and prevent side effects from unnecessary use of anticancer drugs.
도 1a는 비소세포폐암 세포주인 NCI-H292에서 IGSF1 과발현에 따른 PD-L1의 발현 패턴 변화를 확인하기 위하여 웨스턴 블롯(상)과 RT-PCR(하)을 수행한 결과이다. β-액틴(β-actin)과 GAPDH는 각 실험에 대한 대조군이다.Figure 1a shows the results of Western blot (top) and RT-PCR (bottom) to confirm changes in the expression pattern of PD-L1 due to IGSF1 overexpression in NCI-H292, a non-small cell lung cancer cell line. β-actin and GAPDH are controls for each experiment.
도 1b는 IGSF1 과발현 안정화 세포주에서 IGSF1을 넉다운(knockdown)한 경우에 PD-L1의 발현 패턴 변화를 확인하기 위하여 웨스턴 블롯을 수행한 결과이다. Figure 1b shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was knocked down in a cell line with stable IGSF1 overexpression.
도 2a는 IGSF1을 발현하는 폐암 세포주 3종(NCI-H520, NCI-H1435, NCI-H1944)에서 IGSF1을 넉다운한 경우에 PD-L1의 발현 패턴 변화를 확인하기 위하여 웨스턴 블롯을 수행한 결과이다.Figure 2a shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was knocked down in three lung cancer cell lines (NCI-H520, NCI-H1435, NCI-H1944) expressing IGSF1.
도 2b는 IGSF1을 발현하지 않는 폐암 세포주 2종(Calu-1, NCI-H2228)에서 IGSF1을 과발현한 경우에 PD-L1의 발현 패턴 변화를 확인하기 위하여 웨스턴 블롯을 수행한 결과이다.Figure 2b shows the results of Western blotting to confirm changes in the expression pattern of PD-L1 when IGSF1 was overexpressed in two lung cancer cell lines (Calu-1, NCI-H2228) that do not express IGSF1.
도 3은 인간 배아 신장 세포주인 293T에서 PD-L1 발현 벡터의 양을 고정한 상태에서 IGSF1 발현 벡터의 양을 증가하면서 공동 형질감염시킨 경우에, PD-L1의 발현 패턴 변화를 확인하기 위하여 웨스턴 블롯을 수행한 결과이다.Figure 3 shows a Western blot to confirm changes in the expression pattern of PD-L1 when co-transfected with increasing amounts of the IGSF1 expression vector while maintaining a fixed amount of the PD-L1 expression vector in 293T, a human embryonic kidney cell line. This is the result of the performance.
도 4는 면역조직화학염색을 수행하여 IGSF1과 PD-L1의 발현 패턴이 반대 상관관계를 나타내는 조직을 촬영한 사진(상)이고, IGSF1 발현 수준을 0(-), 1(+), 2(++), 3(+++)으로 세분화하고, PD-L1은 TPS 값을 계산하여 작성한 그래프(하)이다.Figure 4 is a photograph (top) of a tissue showing an inverse correlation between the expression patterns of IGSF1 and PD-L1 by performing immunohistochemical staining, and the IGSF1 expression levels are categorized as 0(-), 1(+), and 2( ++), 3(+++), and PD-L1 is a graph created by calculating the TPS value (bottom).
도 5a는 IGSF1 과발현 안정화 세포주에서 IGSF1을 넉다운(knock down)한 경우에 IGSF1의 다운스트림 신호인 ATF3와 PD-L1 간의 결합 여부를 염색질 면역침강법을 통해 확인한 결과이다.Figure 5a shows the results of confirming the binding between ATF3, a downstream signal of IGSF1, and PD-L1 through chromatin immunoprecipitation when IGSF1 was knocked down in a cell line stably overexpressing IGSF1.
도 5b는 폐암 세포주인 NCI-H838 및 NCI-H358에서 IGSF1 발현 억제에 따른 ATF3 및 PD-L1의 발현 패턴 변화를 확인하기 위하여 RT-PCR(상)과 웨스턴 블롯(하)을 수행한 결과이다. GAPDH와 β-액틴(β-actin)은 각 실험에 대한 대조군이다.Figure 5b shows the results of RT-PCR (top) and Western blot (bottom) to confirm changes in the expression patterns of ATF3 and PD-L1 due to inhibition of IGSF1 expression in lung cancer cell lines NCI-H838 and NCI-H358. GAPDH and β-actin are controls for each experiment.
도 5c는 폐암 세포주인 NCI-H292 세포에서 IGSF1 과발현에 따른 ATF3 및 PD-L1의 발현 패턴 변화를 확인하기 위하여 RT-PCR(상)과 웨스턴 블롯(하)을 수행한 결과이다. GAPDH와 β-액틴(β-actin)은 각 실험에 대한 대조군이다.Figure 5c shows the results of RT-PCR (top) and Western blot (bottom) to confirm changes in the expression patterns of ATF3 and PD-L1 due to IGSF1 overexpression in NCI-H292 cells, a lung cancer cell line. GAPDH and β-actin are controls for each experiment.
도 6은 PD-L1 발현 양이 상이한 폐암 세포주에서 TMT 표지(labeling) LC/MS를 이용하여 IGSF1 단백질을 동정한 결과를 나타낸 도면이다.Figure 6 is a diagram showing the results of identifying IGSF1 protein using TMT labeling LC/MS in lung cancer cell lines with different PD-L1 expression levels.
항-IGSF1 항체에 대한 감수성 예측용 바이오마커 조성물Biomarker composition for predicting susceptibility to anti-IGSF1 antibody
본 발명의 일 측면은, PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정할 수 있는 제제를 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측용 바이오마커 조성물을 제공한다.One aspect of the present invention provides a biomarker composition for predicting susceptibility of cancer patients to anti-IGSF1 antibodies, including an agent capable of measuring the expression level of PD-L1 protein or the gene encoding it.
본 명세서에서 사용된 용어, "IGSF1(Immunoglobulin superfamily member 1)"은 인간 및 다른 포유동물 종의 X 염색체에서 발견되는 IGSF1 유전자에 의해 암호화된 혈장 막 당단백질이다. 정상 세포에서 IGSF1의 기능에 대해서는 잘 알려져 있지 않으나, IGSF1 돌연변이는 IGSF1 결핍 증후군(IGSF1 deficiency syndrome) 또는 중추성 갑상선 기능 저하증 등의 질병을 유발하는 것으로 알려져 있다.As used herein, the term “Immunoglobulin superfamily member 1 (IGSF1)” is a plasma membrane glycoprotein encoded by the IGSF1 gene found on the X chromosome of humans and other mammalian species. Although the function of IGSF1 in normal cells is not well known, IGSF1 mutations are known to cause diseases such as IGSF1 deficiency syndrome or central hypothyroidism.
본 명세서에서 사용된 용어, "PD-L1"은 암 세포의 표면이나 조혈 세포에 존재하는 단백질로서, 암 세포의 표면에 있는 PD-L1, PD-L2가 T 세포의 표면에 있는 단백질인 PD-1과 결합하면 T 세포는 암 세포를 공격하지 못한다.As used herein, the term "PD-L1" refers to a protein present on the surface of cancer cells or hematopoietic cells. PD-L1 and PD-L2 on the surface of cancer cells are PD-L1, a protein on the surface of T cells. When combined with 1, T cells cannot attack cancer cells.
본 명세서에서 사용된 용어 "감수성"은 개개의 암 환자에 대하여 항-IGSF1 항체가 치료 효과를 나타내는지 여부를 의미한다. 암 치료에 유효한 것으로 인정되고 있는 종류의 치료제라도, 개개의 환자에 따라 효과를 나타내는 경우와 효과를 나타내지 않는 경우가 있는 것으로 알려져 있다. 이와 같은 개개의 암 환자에 대해 치료제가 효과를 나타내는지 여부를 치료제에 대한 감수성이라고 할 수 있다. As used herein, the term “susceptibility” refers to whether an anti-IGSF1 antibody exhibits a therapeutic effect for an individual cancer patient. It is known that even types of therapeutic agents recognized as effective for cancer treatment may or may not be effective depending on the individual patient. Whether or not a treatment is effective for an individual cancer patient can be referred to as sensitivity to the treatment.
본 명세서에서 사용된 용어, "바이오마커(biomarker)"는 동반진단(companion diagnosis) 마커로도 쓰일 수 있으며, 생물학적 샘플에서 환자의 특정 약물 치료에 대한 반응성을 미리 예측할 수 있는 물질을 의미한다. 특정 암 환자에서 채취한 생물학적 샘플에서 증가 또는 감소를 보이는 폴리펩타이드 또는 핵산(예를 들어, mRNA 등), 지질, 당지질, 당단백질 또는 당(예를 들어, 단당류, 이당류, 올리고당류 등) 등과 같은 유기 생체 분자 등을 포함할 수 있다.As used herein, the term “biomarker” may also be used as a companion diagnosis marker and refers to a substance that can predict in advance a patient's responsiveness to a specific drug treatment in a biological sample. Polypeptides or nucleic acids (e.g., mRNA, etc.), lipids, glycolipids, glycoproteins, or sugars (e.g., monosaccharides, disaccharides, oligosaccharides, etc.) that are shown to be increased or decreased in biological samples taken from certain cancer patients. It may include organic biomolecules, etc.
본 명세서에서 사용된 용어, "암(cancer)"은 세포가 정상적인 성장 한계를 무시하고 분열 및 증식하는 공격적인(aggressive) 특성, 주위 조직에 침투하는 침투적인(invasive) 특성 및 체내의 다른 부위로 퍼지는 전이적인(metastatic) 특성을 갖는 세포에 의한 질병을 총칭하는 의미하며, 악성 종양(tumor)과 동일한 의미로 사용된다. 또한, "암의 치료"는 암 세포 또는 조직의 성장을 억제하거나 예방한다는 것을 의미하고, 이는 치료하거나 처리하지 않았을 때와 비교시에 암의 성장 및 암 전이를 감소시키고, 항암제에 대한 내성을 줄여 치료 효과가 더 발휘되도록 하는 것도 포함하는 개념이다. 상기 암 전이(metastasis)는 종양(암) 세포가 신체의 멀리 떨어진 부분으로 확산되는 과정을 의미하고, "항암제에 대한 내성" 또는 "항암제 내성"이란 항암제를 이용하여 암 환자를 치료할 때, 치료 초기부터 치료 효과가 없거나 초기에는 암 치료 효과가 있으나 계속적인 치료 과정에서 암 치료 효과가 상실되는 것을 의미한다.As used herein, the term “cancer” refers to the aggressive nature of cells dividing and proliferating in defiance of normal growth limits, the invasive nature of infiltrating surrounding tissues, and the ability to spread to other parts of the body. It refers to a general term for diseases caused by cells with metastatic characteristics, and is used in the same sense as malignant tumor. In addition, “treatment of cancer” means inhibiting or preventing the growth of cancer cells or tissues, which reduces cancer growth and cancer metastasis compared to no treatment or treatment, and reduces resistance to anticancer drugs. This concept also includes making the treatment more effective. The cancer metastasis refers to the process by which tumor (cancer) cells spread to distant parts of the body, and "resistance to anticancer drugs" or "anticancer drug resistance" refers to the initial stage of treatment when treating cancer patients using anticancer drugs. This means that there is no treatment effect or that the cancer treatment effect is initially effective but the cancer treatment effect is lost during the continuous treatment process.
일 구현예에서, 상기 항-IGSF1 항체에 대하여 치료 효과를 나타내지 않는 비반응 암 환자군과 대비하여 상기 항-IGSF1 항체에 대하여 치료 효과를 나타내는 반응 환자군에서 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 감소할 수 있다. 또한, 상기 항-IGSF1 항체에 대하여 치료 효과를 나타내는 반응 암 환자군과 대비하여 상기 항-IGSF1 항체에 대하여 치료 효과를 나타내지 않는 비반응 암 환자군에서 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 증가할 수 있다. In one embodiment, the expression level of the PD-L1 protein or the gene encoding the same in the responding patient group showing a therapeutic effect against the anti-IGSF1 antibody compared to the non-responsive cancer patient group showing no therapeutic effect against the anti-IGSF1 antibody. This may decrease. In addition, the expression level of PD-L1 protein or the gene encoding it is increased in the non-responsive cancer patient group that does not show a therapeutic effect to the anti-IGSF1 antibody compared to the responsive cancer patient group that shows a therapeutic effect to the anti-IGSF1 antibody. can do.
상기 암은 IGSF1 단백질 또는 이를 암호화하는 유전자가 과발현(overexpression)된 것일 수 있다.The cancer may be one in which the IGSF1 protein or the gene encoding it is overexpressed.
상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니며, IGSF1 단백질 또는 이를 암호화하는 유전자가 존재하는 종양 조직이라면 모두 적용 가능할 수 있다.The cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. It may be any one selected from the group, but is not limited thereto, and may be applicable to any tumor tissue in which the IGSF1 protein or the gene encoding it is present.
상기 PD-L1 단백질의 발현 수준 측정은 상기 항-IGSF1 항체에 대한 암 환자의 감수성을 예측하기 위하여 암 환자로부터 분리된 생물학적 샘플에서 상기 단백질의 존재 여부와 그 단백질의 발현 정도를 확인하는 과정으로, 상기 단백질에 대하여 특이적으로 결합하는 분자를 이용하여 단백질의 양을 확인하는 것이다.Measuring the expression level of the PD-L1 protein is a process of confirming the presence and expression level of the protein in a biological sample isolated from a cancer patient in order to predict the cancer patient's sensitivity to the anti-IGSF1 antibody, The amount of protein is confirmed using a molecule that specifically binds to the protein.
상기 단백질의 발현 수준을 측정할 수 있는 제제는 모노클로날(monoclonal) 항체, 폴리클로날(polyclonal) 항체, 키메릭(chimeric) 항체, 리간드(ligand), PNA(peptide nucleic acid), 압타머(aptamer) 및 나노파티클(nanoparticle)로 구성된 군에서 선택되는 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.Agents that can measure the expression level of the protein include monoclonal antibodies, polyclonal antibodies, chimeric antibodies, ligands, PNA (peptide nucleic acid), and aptamers ( It may be one or more selected from the group consisting of an aptamer and a nanoparticle, but is not limited thereto.
이를 위한 분석 방법으로는 웨스턴 블랏팅(western blotting), ELISA(enzyme linked immunosorbent assay), 방사선면역분석(radioimmunoassay; RIA), 방사선면역확산법(radioimmunodiffusion), 오우크테로니(ouchterlony) 면역 확산법, 로케트(rocket) 면역전기영동, 면역침전 분석법(immunoprecipitation assay), 면역조직화학적 분석(immunohistochemical analysis), 보체 고정 분석법(complement fixation assay), FACS(fluorescence activated cell sorter), 단백질 칩(protein chip), 2차원 전기영동분석, 단백질 질량 분석, 액상 크로마토그래피-질량분석(liquid chromatography-mass spectrometry, LC-MS), LC-MS/MS(liquid chromatography-mass spectrometry/mass spectrometry), MALDI-TOF(matrix desorption/ionization time of flight mass spectrometry) 분석, SELDI-TOF(surface enhanced laser desorption/ionization time of flight mass spectrometry) 분석 등이 있으나, 이에 한정되는 것은 아니다.Analysis methods for this include western blotting, ELISA (enzyme linked immunosorbent assay), radioimmunoassay (RIA), radioimmunodiffusion, ouchterlony immunodiffusion, and rocket ( rocket) immunoelectrophoresis, immunoprecipitation assay, immunohistochemical analysis, complement fixation assay, FACS (fluorescence activated cell sorter), protein chip, two-dimensional electrophoresis Electrophoretic analysis, protein mass spectrometry, liquid chromatography-mass spectrometry (LC-MS), LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry), MALDI-TOF (matrix desorption/ionization time) of flight mass spectrometry) analysis and SELDI-TOF (surface enhanced laser desorption/ionization time of flight mass spectrometry) analysis, etc., but are not limited thereto.
상기 단백질을 암호화하는 유전자의 발현 수준의 측정은 상기 항-IGSF1 항체에 대한 암 환자의 감수성을 예측하기 위하여 암 환자로부터 분리된 생물학적 샘플에서 상기 단백질을 암호화하는 유전자의 존재 여부와 그 유전자의 발현 정도를 확인하는 과정으로, 상기 유전자에 특이적으로 결합하는 분자를 이용하여 유전자의 양을 확인하는 것이다.Measurement of the expression level of the gene encoding the protein determines the presence or absence of the gene encoding the protein in biological samples isolated from cancer patients and the expression level of the gene in order to predict the susceptibility of the cancer patient to the anti-IGSF1 antibody. In the process of confirming, the amount of the gene is confirmed using a molecule that specifically binds to the gene.
상기 단백질을 암호화하는 유전자의 발현 수준을 측정할 수 있는 제제는 상기 유전자에 특이적으로 결합하는 프라이머(primer) 쌍, 프로브(probe) 및 안티센스 뉴클레오타이드(antisense nucleotide)로 구성된 군에서 선택되는 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.An agent capable of measuring the expression level of a gene encoding the protein may be at least one selected from the group consisting of a primer pair, a probe, and an antisense nucleotide that specifically binds to the gene. However, it is not limited to this.
이를 위한 분석 방법으로는 역전사 중합효소 연쇄반응(reverse transcriptase-polymerase chain reaction; RT-PCR), 실시간 중합효소 연쇄반응(real time-polymerase chain reaction), RNase 보호 분석법(RNase protection assay; RPA), 노던 블랏팅(northern blotting) 및 DNA 칩 등이 있으나, 이에 한정되는 것은 아니다.Analysis methods for this include reverse transcriptase-polymerase chain reaction (RT-PCR), real time-polymerase chain reaction, RNase protection assay (RPA), and Northern These include, but are not limited to, northern blotting and DNA chips.
일 구현예에서, PD-L1과 IGSF1의 발현 패턴은 반대 상관관계(reverse correlation)를 나타내는 것을 확인할 수 있다.In one embodiment, it can be seen that the expression patterns of PD-L1 and IGSF1 show a reverse correlation.
본 발명의 다른 측면은, 상기 바이오마커 조성물을 포함하는 항-IGSF1 항체에 대한 암 환자의 감수성 예측용 키트를 제공한다.Another aspect of the present invention provides a kit for predicting the sensitivity of cancer patients to anti-IGSF1 antibodies, including the biomarker composition.
상기 키트는 암 환자로부터 분리된 생물학적 샘플을 이용하여 상기 항-IGSF1 항체에 대한 감수성을 예측할 수 있다. 구체적으로는, 상기 키트는 암 환자로부터 채취한 종양 조직을 이용하여 상기 항-IGSF1 항체에 대한 감수성을 예측할 수 있다.The kit can predict sensitivity to the anti-IGSF1 antibody using biological samples isolated from cancer patients. Specifically, the kit can predict sensitivity to the anti-IGSF1 antibody using tumor tissue collected from a cancer patient.
상기 키트에는 상기 단백질 또는 유전자의 발현 수준을 측정하기 위한 제제뿐만 아니라, 면역학적 분석에서 일반적으로 사용되는 도구, 시약 등이 포함될 수 있다.The kit may include tools and reagents commonly used in immunological analysis, as well as agents for measuring the expression level of the protein or gene.
상기 도구 또는 시약의 일 예로, 적합한 담체, 검출 가능한 신호를 생성할 수 있는 표지 물질, 발색단, 용해제, 세정제, 완충제, 안정화제 등이 포함될 수 있으나, 이에 제한되는 것은 아니다. 표지 물질이 효소인 경우에는 효소 활성을 측정할 수 있는 기질 및 반응 정지제를 포함할 수 있다. 담체는 가용성 담체, 불용성 담체가 있고, 가용성 담체의 일 예로 해당 기술분야에서 공지된 생리학적으로 허용되는 완충액, 예를 들어 PBS가 있고, 불용성 담체의 일 예로 폴리스틸렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아크릴로니트릴, 불소 수지, 가교 덱스트란, 폴리사카라이드, 라텍스에 금속을 도금한 자성 미립자와 같은 고분자, 기타 종이, 유리, 금속, 아가로오스 및 이들의 조합일 수 있다.Examples of the tool or reagent may include, but is not limited to, a suitable carrier, a labeling substance capable of generating a detectable signal, a chromophore, a solubilizer, a detergent, a buffer, and a stabilizer. If the labeling substance is an enzyme, it may include a substrate that can measure enzyme activity and a reaction stopper. Carriers include soluble carriers and insoluble carriers. Examples of soluble carriers include physiologically acceptable buffers known in the art, such as PBS, and examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, It may be polyacrylonitrile, fluororesin, cross-linked dextran, polysaccharide, polymers such as magnetic fine particles plated with metal on latex, other paper, glass, metal, agarose, and combinations thereof.
상기 바이오마커 조성물에 대해서는 상기에서 설명한 바와 같다.The biomarker composition is as described above.
항-IGSF1 항체에 대한 감수성 예측에 필요한 정보를 제공하는 방법Methods that provide information needed to predict susceptibility to anti-IGSF1 antibodies
본 발명의 또 다른 측면은, 개체로부터 수득한 생물학적 샘플에서 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정하는 단계를 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측에 필요한 정보를 제공하는 방법을 제공한다.Another aspect of the present invention provides information necessary for predicting the susceptibility of a cancer patient to an anti-IGSF1 antibody, comprising measuring the expression level of the PD-L1 protein or the gene encoding it in a biological sample obtained from the individual. Provides a method to provide.
상기 방법은 상기 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 기준값 보다 낮은 경우에, 항-IGSF1 항체를 포함하는 항암제에 대하여 감수성을 나타내는 것으로 예측하는 단계를 추가적으로 포함할 수 있다. 구체적으로, 상기 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 기준값 보다 낮은 경우에, IGSF1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 높은 것으로 예측할 수 있다.The method may additionally include the step of predicting sensitivity to an anticancer agent containing an anti-IGSF1 antibody when the expression level of the PD-L1 protein or the gene encoding it is lower than the reference value. Specifically, when the expression level of the PD-L1 protein or the gene encoding it is lower than the reference value, the expression level of the IGSF1 protein or the gene encoding it can be predicted to be high.
본 명세서에서 사용된 용어, "기준값(reference value)"은 유전자의 증폭/비증폭; 또는 mRNA 또는 단백질의 과발현/저발현을 나누는 기준이 되는 값을 의미한다. 상기 기준값은 일 예로 특정 약물의 처리 전 개체의 평균 mRNA/단백질 발현 수준이거나, 정상 개체의 평균 mRNA/단백질 발현 수준일 수 있으나 이에 한정되지 않는다. 또한, 상기 기준값은 특정 환자군의 평균 mRNA/단백질 발현 수준의 분포에 따라 정해질 수 있으나 이에 한정되는 것은 아니다.As used herein, the term “reference value” refers to amplification/non-amplification of a gene; Alternatively, it refers to a value that serves as a standard for dividing over- or under-expression of mRNA or protein. The reference value may be, for example, the average mRNA/protein expression level of an individual before treatment with a specific drug, or the average mRNA/protein expression level of a normal individual, but is not limited thereto. In addition, the reference value may be determined according to the distribution of the average mRNA/protein expression level of a specific patient group, but is not limited thereto.
구체적으로, mRNA 발현 수준 또는 단백질 발현 수준은 본 발명의 기술분야에서 통상적으로 사용하는 유전자, mRNA 또는 단백질 수준을 측정하는 방법을 이용하여 각 개체의 시료로부터 평균 mRNA 발현 수준이나 단백질 발현 수준을 측정하고, 측정값의 분포에서 상위 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%,70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%에 해당하는 경우의 측정값을 기준값으로 설정할 수 있다.Specifically, the mRNA expression level or protein expression level is measured by measuring the average mRNA expression level or protein expression level from each individual sample using a method for measuring gene, mRNA, or protein levels commonly used in the technical field of the present invention. , top 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 10%, 11%, 12%, 13%, 14%, 15% of the distribution of measurements. , 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32 %, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65% , 66%, 67%, 68%, 69%,70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82 %, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or The measured value corresponding to 99% can be set as the standard value.
본 명세서에서 사용된 용어, "생물학적 샘플(biological sample)"은 상기 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정할 수 있는 개체로부터 수득한 모든 샘플을 의미한다.As used herein, the term “biological sample” refers to any sample obtained from an individual in which the expression level of the PD-L1 protein or the gene encoding it can be measured.
상기 생물학적 샘플은 혈액, 혈장, 혈청, 소변, 타액, 객담, 뇌척수액, 세포 배양액, 조직 추출물 또는 종양 조직일 수 있으나, 이에 제한되는 것은 아니다. 구체적으로는, 상기 생물학적 샘플은 생검(biopsy)을 위하여 개체로부터 채취한 종양 조직일 수 있다. 상기 생물학적 샘플은 해당 기술분야에서 통상적으로 사용되는 방법으로 처리하여 준비될 수 있다.The biological sample may be, but is not limited to, blood, plasma, serum, urine, saliva, sputum, cerebrospinal fluid, cell culture fluid, tissue extract, or tumor tissue. Specifically, the biological sample may be tumor tissue collected from an individual for biopsy. The biological sample can be prepared by processing by methods commonly used in the art.
상기 암은 IGSF1 단백질 또는 이를 암호화하는 유전자가 과발현된 것일 수 있다.The cancer may be one in which the IGSF1 protein or the gene encoding it is overexpressed.
상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니며, IGSF1 단백질 또는 이를 암호화하는 유전자가 존재하는 종양 조직이라면 모두 적용 가능할 수 있다.The cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. It may be any one selected from the group, but is not limited thereto, and may be applicable to any tumor tissue in which the IGSF1 protein or the gene encoding it is present.
상기 PD-L1 및 IGSF1에 대해서는 상기에서 설명한 바와 같다.PD-L1 and IGSF1 are as described above.
항-IGSF1 항체 치료에 적합한 환자를 선별하는 방법How to select patients suitable for anti-IGSF1 antibody treatment
본 발명의 또 다른 측면은, PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 낮은 개체를 선별하는 단계를 포함하는 항-IGSF1 항체의 치료에 적합한 암 환자를 선별하는 방법을 제공한다.Another aspect of the present invention provides a method of selecting cancer patients suitable for treatment with an anti-IGSF1 antibody, comprising selecting an individual with a low expression level of the PD-L1 protein or the gene encoding it.
상기 항-IGSF1 항체, PD-L1 단백질 발현 수준 및 암 등은 상기에서 설명한 바와 같다.The anti-IGSF1 antibody, PD-L1 protein expression level, cancer, etc. are as described above.
중복되는 내용은 본 명세서의 복잡성을 고려하여 생략하며, 본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Redundant content is omitted in consideration of the complexity of the present specification, and terms not otherwise defined in this specification have meanings commonly used in the technical field to which the present invention pertains.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1. 비소세포폐암 세포주에서 IGSF1과 PD-L1의 발현 패턴 분석Example 1. Analysis of expression patterns of IGSF1 and PD-L1 in non-small cell lung cancer cell lines
실시예 1.1. IGSF1 과발현에 따른 PD-L1의 발현 패턴 분석Example 1.1. Analysis of PD-L1 expression pattern according to IGSF1 overexpression
비소세포폐암 세포주인 NCI-H292(한국 세포주 은행, KCLB)가 IGSF1을 과발현하도록 유전적으로 조작하고(NCI-H292 IGSF1 O/E), 음성 대조군으로서 NCI-H292에 공벡터(empty vector)(pCMV6 entry, Origene PS100001)를 이용하였다(NCI-H292 MOCK). 구체적으로, IGSF1 발현 벡터(pCMV6 entry IGSF1, Origene, RC209621)를 jetPRIME 시약을 이용하여 NCI-H292 세포에 형질감염(transfection) 시키고, 2일 후부터 800 ㎍/㎖의 G418을 처리하였다. G418을 처리한 후 1개월 동안 형질감염된 세포를 선별(selection)하여 단일 클론(clone F)의 IGSF1 과발현 안정화 세포주를 수득하였다.The non-small cell lung cancer cell line NCI-H292 (Korean Cell Line Bank, KCLB) was genetically engineered to overexpress IGSF1 (NCI-H292 IGSF1 O/E), and as a negative control, an empty vector (pCMV6 entry) was added to NCI-H292. , Origene PS100001) was used (NCI-H292 MOCK). Specifically, the IGSF1 expression vector (pCMV6 entry IGSF1, Origene, RC209621) was transfected into NCI-H292 cells using jetPRIME reagent, and treated with 800 μg/ml of G418 starting 2 days later. After treatment with G418, the transfected cells were selected for 1 month to obtain a single clone (clone F) IGSF1 overexpressing stable cell line.
암 세포에서 IGSF1 과발현에 따른 PD-L1의 발현 패턴을 확인하기 위하여, 웨스턴 블롯과 RT-PCR을 수행하였다. 구체적으로, NCI-H292 MOCK, NCI-H292 IGSF1 O/E를 RIPA 버퍼를 사용하여 세포를 용해한 후, 브래드포드(Bradford) 용액과 반응시키고 595 nm 파장에서 정량화하였다. 15 ㎍의 세포 용해 샘플을 8% SDS-겔에 로딩하고 SDS-PAGE을 진행한 후, 겔에 존재하는 샘플을 100V에서 120분 동안 PVDF 막(membrane)으로 전이(transfer)하였다.To confirm the expression pattern of PD-L1 according to IGSF1 overexpression in cancer cells, Western blot and RT-PCR were performed. Specifically, NCI-H292 MOCK and NCI-H292 IGSF1 O/E were lysed using RIPA buffer, reacted with Bradford solution, and quantified at a wavelength of 595 nm. 15 μg of cell lysis sample was loaded onto an 8% SDS-gel and subjected to SDS-PAGE, and then the sample present in the gel was transferred to a PVDF membrane at 100V for 120 minutes.
이어서, TBST에 녹인 5% 탈지분유(skim milk)를 이용하여 1차 항체인 항-IGSF1 항체, 항-PD-L1 항체, 항-β-액틴(actin) 항체를 1:2000의 비율로 4℃에서 밤새도록 반응시켰다. 이후, 2차 항체인 HRP(horseradish peroxidase) 접합 마우스 항체를 5% 탈지분유에 1:5000의 비율로 희석하고 상온에서 1시간 동안 반응시켰다. ECL(enhanced chemiluminescence) 용액을 이용하여 신호(signal)를 증폭시키고, 필름에 감광시킨 후 현상하여 단백질 발현 수준 변화를 측정한 결과를 도 1a에 나타냈다. 웨스턴 블롯에 사용한 항체 정보는 하기 표 1에 기재한 바와 같다.Next, the primary antibodies, anti-IGSF1 antibody, anti-PD-L1 antibody, and anti-β-actin antibody, were incubated at a ratio of 1:2000 at 4°C using 5% skim milk dissolved in TBST. The reaction was carried out overnight. Afterwards, the secondary antibody, HRP (horseradish peroxidase)-conjugated mouse antibody, was diluted in 5% skim milk powder at a ratio of 1:5000 and reacted at room temperature for 1 hour. The signal was amplified using an enhanced chemiluminescence (ECL) solution, sensitized to film, developed, and the change in protein expression level was measured. The results are shown in Figure 1a. Antibody information used in Western blot is as listed in Table 1 below.
타겟target 유형category cat.#cat.# 제조업체Manufacturer
IGSF1IGSF1 마우스 IgG (1차 항체)Mouse IgG (primary antibody) sc-393786sc-393786 SantaCruz Biotechnology, Inc.SantaCruz Biotechnology, Inc.
PD-L1PD-L1 토끼 IgG (1차 항체)Rabbit IgG (primary antibody) ab205921ab205921 AbcamAbcam
β-액틴β-actin 마우스 IgG (1차 항체)Mouse IgG (primary antibody) sc-47778sc-47778 SantaCruz Biotechnology, Inc.SantaCruz Biotechnology, Inc.
또한, mRNA 발현 수준을 확인하기 위하여, Trizol로 RNA를 추출하여 정량화한 후, 2,000 ng의 RNA를 준비하였다. 이어서, 100 pmole 1 ㎕의 올리고(oligo) dt 프라이머를 사용하여 AccuPower®CycleScript RT PreMix kit로 cDNA를 합성하였다. 합성된 2 ㎕의 cDNA를 AccuPower®PCR PreMix kit을 이용하여 AB Veriti 96-Well Thermal Cycler에서 28 사이클로 PCR을 수행하였다. PCR을 마친 샘플을 1% 아가로스 겔에 5 ㎕씩 로딩한 후 150V에서 35분 동안 전기영동하고, Gel-Doc에서 UV 조사를 통하여 mRNA 발현 수준 변화를 확인한 결과를 도 1a에 나타냈다. PCR에 사용한 프라이머 정보는 하기 표 2에 기재한 바와 같다.Additionally, to confirm the mRNA expression level, RNA was extracted and quantified with Trizol, and then 2,000 ng of RNA was prepared. Subsequently, cDNA was synthesized using the AccuPower ® CycleScript RT PreMix kit using 100 pmole 1 μl of oligo dt primer. PCR was performed on 2 μl of the synthesized cDNA in an AB Veriti 96-Well Thermal Cycler using the AccuPower ® PCR PreMix kit for 28 cycles. After completing PCR, 5 μl of each sample was loaded onto a 1% agarose gel, electrophoresed at 150 V for 35 minutes, and changes in mRNA expression levels were confirmed through UV irradiation in Gel-Doc. The results are shown in Figure 1a. Primer information used in PCR is as listed in Table 2 below.
유전자gene 프라이머 서열(5` → 3`)Primer sequence (5` → 3`) 서열번호sequence number
IGSF1IGSF1 정방향forward CTGGAGATCTGGGTGACTGATACTGGAGATCTGGTGACTGATA 1One
역방향 reverse AGCAAGAGAGAGGAGAGGAAAGAGCAAGAGAGAGGAGAGGAAAG 22
PD-L1PD-L1 정방향forward TTACTGTCACGGTTCCCAAGTTACTGTCACGGTTCCCAAG 33
역방향reverse TCATGTTCAGAGGTGACTGGTCATGTTCAGAGTGACTGG 44
GAPDHGAPDH 정방향forward GAAGGTGAAGGTCGGAGTCGAAGGTGAAGGTCGGAGTC 55
역방향 reverse GAAGATGGTGATGGGATTTCGAAGATGGTGATGGGATTTC 66
도 1a에 나타난 바와 같이, NCI-H292 IGSF1 과발현 안정화 세포주에서 PD-L1의 발현 수준이 감소하는 것을 단백질과 mRNA에서 확인하였다.As shown in Figure 1a, it was confirmed that the expression level of PD-L1 was decreased in protein and mRNA in the NCI-H292 IGSF1 overexpression stabilized cell line.
실시예 1.2. IGSF1 발현 감소에 따른 PD-L1의 발현 패턴 분석Example 1.2. Analysis of PD-L1 expression pattern according to decreased IGSF1 expression
실시예 1.1.의 IGSF1 과발현 안정화 세포주에서 IGSF1 발현 감소에 따른 PD-L1의 발현 패턴을 확인하기 위하여, 웨스턴 블롯을 수행하였다. 구체적으로, NCI-H292 IGSF1 O/E를 60 mm2 배양 접시(dish)에 5x105 cells/dish로 접종(seeding)한 후, 24시간 동안 배양하고 Scrambled shRNA(Short hairpin RNA)와 IGSF1 shRNA(서열번호 7)를 각각 200 pmol씩 JetPrime 시약을 이용하여 형질감염(transfection)시켰다. Scrambled(sc) shRNA는 IGSF1 shRNA에 대한 음성 대조군이고, IGSF1 shRNA는 IGSF1를 넉다운(knockdown) 시키기 위한 것이다. 형질감염된 세포를 48시간 동안 배양하고 모두 모은 후, RIPA 버퍼를 이용하여 세포를 용해하였다. 세포 용해 샘플을 이용하여 실시예 1.1.에 기재된 방법과 동일한 방법으로 웨스턴 블롯을 수행하고, 그 결과를 도 1b에 나타냈다.In order to confirm the expression pattern of PD-L1 according to the decrease in IGSF1 expression in the IGSF1 overexpression stabilized cell line of Example 1.1, Western blot was performed. Specifically, NCI-H292 IGSF1 O/E was seeded at 5x10 5 cells/dish in a 60 mm 2 culture dish, cultured for 24 hours, and Scrambled shRNA (Short hairpin RNA) and IGSF1 shRNA (Sequence) Number 7) were transfected at 200 pmol each using JetPrime reagent. Scrambled (sc) shRNA is a negative control for IGSF1 shRNA, and IGSF1 shRNA is for knockdown of IGSF1. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer. Western blot was performed using the cell lysed sample in the same manner as described in Example 1.1, and the results are shown in Figure 1b.
도 1b에 나타난 바와 같이, NCI-H292 IGSF1 과발현 안정화 세포주에서 감소하였던 PD-L1의 발현이 IGSF1을 넉다운 시켰을 때 다시 증가하는 것을 확인하였다.As shown in Figure 1b, it was confirmed that the expression of PD-L1, which had decreased in the NCI-H292 IGSF1 overexpression stabilization cell line, increased again when IGSF1 was knocked down.
실시예 2. 다양한 폐암 세포주에서 IGSF1과 PD-L1의 발현 패턴 분석Example 2. Analysis of expression patterns of IGSF1 and PD-L1 in various lung cancer cell lines
실시예 2.1. IGSF1 발현 억제에 따른 PD-L1의 발현 패턴 분석Example 2.1. Analysis of PD-L1 expression pattern according to inhibition of IGSF1 expression
폐암 세포주인 NCI-H520(ATCC), NCI-H1435(KCLB), NCI-H1944(ATCC) 세포를 60 mm2 배양 접시에 5x105 cells/dish로 접종한 후 24시간 동안 배양하고, Scrambled shRNA와 IGSF1 shRNA를 각각 200 pmol씩 JetPrime 시약을 이용하여 형질감염시켰다. Scrambled(sc) shRNA는 IGSF1 shRNA에 대한 음성 대조군이고, IGSF1 shRNA는 IGSF1를 넉다운시키기 위한 것이다. 형질감염된 세포를 48시간 동안 배양하고 모두 모은 후, RIPA 버퍼를 이용하여 세포를 용해하였다. 세포 용해 샘플을 이용하여 실시예 1.1.에 기재된 방법과 동일한 방법으로 웨스턴 블롯을 수행하고, 그 결과를 도 2a에 나타냈다.Lung cancer cell lines NCI-H520 (ATCC), NCI-H1435 (KCLB), and NCI-H1944 (ATCC) cells were inoculated at 5x10 5 cells/dish in a 60 mm 2 culture dish and cultured for 24 hours, followed by Scrambled shRNA and IGSF1. 200 pmol of each shRNA was transfected using JetPrime reagent. Scrambled (sc) shRNA is a negative control for IGSF1 shRNA, and IGSF1 shRNA is for knocking down IGSF1. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer. Western blot was performed using the cell lysed sample in the same manner as described in Example 1.1, and the results are shown in Figure 2a.
도 2a에 나타난 바와 같이, IGSF1을 발현하는 폐암 세포주에서 IGSF1을 넉다운 시킨 경우에 PD-L1의 발현이 증가하는 것을 확인하였다.As shown in Figure 2a, when IGSF1 was knocked down in a lung cancer cell line expressing IGSF1, the expression of PD-L1 was confirmed to increase.
실시예 2.2. IGSF1 발현 유도에 따른 PD-L1의 발현 패턴 분석Example 2.2. Analysis of PD-L1 expression pattern according to induction of IGSF1 expression
폐암 세포주인 Calu-1(KCLB), NCI-H2228(ATCC) 세포를 60 mm2 배양 접시에 5x105 cells/dish로 접종한 후 24시간 동안 배양하고, 공벡터(empty vector), HA tagged IGSF1 발현 벡터를 각각 2 ㎍씩 JetPrime 시약을 이용하여 형질감염시켰다. 형질감염된 세포를 48시간 동안 배양하고 모두 모은 후, RIPA 버퍼를 사용하여 세포를 용해하고 웨스턴 블롯을 수행하였다. 구체적으로, 세포 용해 샘플을 Bradford 용액과 반응시키고 595 nm 파장에서 정량화하였다. 15 ㎍의 세포 용해 샘플을 8% SDS-겔(gel)에 로딩하고 SDS-PAGE을 진행한 후, 겔에 존재하는 샘플을 100V에서 120분 동안 PVDF 막(membrane)으로 전이(transfer)하였다.Lung cancer cell lines Calu-1 (KCLB) and NCI-H2228 (ATCC) cells were inoculated into a 60 mm 2 culture dish at 5x10 5 cells/dish and cultured for 24 hours, followed by empty vector and HA-tagged IGSF1 expression. 2 μg of each vector was transfected using JetPrime reagent. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer and Western blot was performed. Specifically, cell lysis samples were reacted with Bradford solution and quantified at a wavelength of 595 nm. 15 μg of cell lysis sample was loaded onto an 8% SDS-gel and subjected to SDS-PAGE, and then the sample present in the gel was transferred to a PVDF membrane at 100V for 120 minutes.
이어서, TBST에 녹인 5% 탈지분유(skim milk)를 이용하여 1차 항체인 항-IGSF1 항체, 항-HA 항체, 항-PD-L1 항체, 항-β-액틴(actin) 항체를 1:2000의 비율로 4℃에서 밤새도록 반응시킨 후, 2차 항체인 HRP(horseradish peroxidase) 접합 마우스 항체를 5% 탈지분유에 1:5000의 비율로 희석하고 상온에서 1시간 동안 반응시켰다. ECL(enhanced chemiluminescence) 용액을 이용하여 신호(signal)를 증폭시키고, 필름에 감광시킨 후 현상하여 단백질 발현 수준 변화를 측정한 결과를 도 2b에 나타냈다. 웨스턴 블롯에 사용한 항체 정보는 하기 표 3에 기재한 바와 같다.Next, the primary antibodies, anti-IGSF1 antibody, anti-HA antibody, anti-PD-L1 antibody, and anti-β-actin antibody, were mixed at 1:2000 using 5% skim milk dissolved in TBST. After reacting overnight at 4°C, the secondary antibody, HRP (horseradish peroxidase)-conjugated mouse antibody, was diluted in 5% skim milk powder at a ratio of 1:5000 and reacted at room temperature for 1 hour. The signal was amplified using an enhanced chemiluminescence (ECL) solution, sensitized to film, developed, and the change in protein expression level was measured. The results are shown in Figure 2b. Antibody information used in Western blot is as listed in Table 3 below.
타겟target 유형category cat.#cat.# 제조업체Manufacturer
IGSF1IGSF1 마우스 IgG (primary)Mouse IgG (primary) sc-393786sc-393786 SantaCruz Biotechnology, Inc.SantaCruz Biotechnology, Inc.
HAHA 토끼 IgG (primary)Rabbit IgG (primary) 3724S3724S Cell Signaling TechnologyCell Signaling Technology
PD-L1PD-L1 토끼 IgG (primary)Rabbit IgG (primary) ab205921ab205921 AbcamAbcam
β-액틴β-actin 마우스 IgG (primary)Mouse IgG (primary) sc-47778sc-47778 SantaCruz Biotechnology, Inc.SantaCruz Biotechnology, Inc.
도 2b에 나타난 바와 같이, IGSF1을 발현하지 않는 폐암 세포주에서 IGSF1을 과발현시킨 경우에 PD-L1의 발현이 감소하는 것을 확인하였다.As shown in Figure 2b, it was confirmed that PD-L1 expression was decreased when IGSF1 was overexpressed in a lung cancer cell line that does not express IGSF1.
실시예 3. IGSF1 발현량 증가에 따른 PD-L1의 발현 변화 분석Example 3. Analysis of PD-L1 expression changes according to increase in IGSF1 expression level
인간 배아 신장 세포주인 293T(ATCC) 세포를 60 mm2 배양 접시에 5x105 cells/dish로 접종한 후 24시간 동안 배양하였다. PD-L1 발현 벡터의 양은 0.5 ㎍으로 고정하고, IGSF1 발현 벡터의 양을 0 ㎍, 0.5 ㎍, 1.0 ㎍, 1.5 ㎍, 2.0 ㎍으로 늘려가며 JetPrime 시약을 이용하여 각각 공동 형질감염시켰다. 형질감염된 세포를 48시간 동안 배양하고 모두 모은 후, RIPA 버퍼를 이용하여 세포를 용해하였다. 세포 용해 샘플을 이용하여 실시예 1.1.에 기재된 방법과 동일한 방법으로 웨스턴 블롯을 수행하고, 그 결과를 도 3에 나타냈다.293T (ATCC) cells, a human embryonic kidney cell line, were inoculated at 5x10 5 cells/dish in a 60 mm 2 culture dish and cultured for 24 hours. The amount of PD-L1 expression vector was fixed at 0.5 μg, and the amount of IGSF1 expression vector was increased to 0 μg, 0.5 μg, 1.0 μg, 1.5 μg, and 2.0 μg and co-transfected using JetPrime reagent. After culturing the transfected cells for 48 hours and collecting them, the cells were lysed using RIPA buffer. Western blot was performed using the cell lysed sample in the same manner as described in Example 1.1, and the results are shown in Figure 3.
도 3에 나타난 바와 같이, IGSF1 발현 벡터 양의 증가 수준에 의존적으로 PD-L1의 발현 수준이 감소하는 것을 확인하였다.As shown in Figure 3, it was confirmed that the expression level of PD-L1 decreased depending on the increase in the amount of IGSF1 expression vector.
실시예 4. 비소세포폐암 환자 조직에서Example 4. In non-small cell lung cancer patient tissue IGSF1과 PD-L1의 발현 패턴 분석Expression pattern analysis of IGSF1 and PD-L1
비소세포폐암 환자 조직 슬라이드 84종에 대해서 IGSF1과 PD-L1의 발현 패턴을 확인하기 위하여, 면역조직화학염색법(immunohistochemistry, IHC)을 수행하였다. 구체적으로, 인간 비소세포폐암 환자 84종의 조직 절편을 탈파라핀화하고 재수화하였다. 열-유도된 에피토프 복구를 위하여 표적 복구 완충액에 담근 후 전자레인지를 이용하여 15분 동안 가열하고, 표적 복구 완충액에 30분의 추가 시간 동안 놓아두었다.To confirm the expression patterns of IGSF1 and PD-L1 on 84 tissue slides from non-small cell lung cancer patients, immunohistochemistry (IHC) was performed. Specifically, tissue sections from 84 human non-small cell lung cancer patients were deparaffinized and rehydrated. For heat-induced epitope recovery, the cells were soaked in target recovery buffer, heated in a microwave oven for 15 minutes, and left in target recovery buffer for an additional 30 minutes.
트리스 완충 식염수-0.05% 트윈 20(TBS-T)으로 3회 세척한 후, 블록킹(blocking) 용액으로 60분 동안 블록킹하였다. 이후, 1차 항체인 항-IGSF1 항체(santacruz, sc-393786), 항-PD-L1 항체(abcam, ab205921)를 1:100로 혼합하여 4℃에 밤새(overnight) 결합시켰다. 다음날, TBS-T로 3회 세척한 후, 내인성 퍼옥시다제 차단 시약(Cell Marque, 925B)과 상온에서 5분 동안 반응시키고, 2차 항체인 토끼와 마우스 항체(Vector, PK-6101, PK-6102)를 상온에서 60분 동안 결합시켰다. TBS-T로 3회 세척한 후, 아비딘-바이오틴과 60분 동안 반응시켰다. 최종적으로, DAB 염색(Vector, SK-4100)을 한 후 다시 탈수 과정을 거쳐 조직 염색을 마무리하였다. 염색이 끝난 슬라이드는 슬라이드 스캐너(slide scanner)(cat: M8, precipoint)로 촬영하고, 그 결과를 도 4(상단)에 나타냈다.After washing three times with Tris-buffered saline-0.05% Tween 20 (TBS-T), it was blocked with a blocking solution for 60 minutes. Afterwards, the primary antibodies, anti-IGSF1 antibody (Santacruz, sc-393786) and anti-PD-L1 antibody (abcam, ab205921), were mixed at 1:100 and incubated overnight at 4°C. The next day, after washing three times with TBS-T, it was reacted with endogenous peroxidase blocking reagent (Cell Marque, 925B) at room temperature for 5 minutes, and secondary antibodies, rabbit and mouse antibodies (Vector, PK-6101, PK- 6102) were combined for 60 minutes at room temperature. After washing three times with TBS-T, it was reacted with avidin-biotin for 60 minutes. Finally, tissue staining was completed through DAB staining (Vector, SK-4100) and then another dehydration process. The dyed slide was photographed with a slide scanner (cat: M8, precipoint), and the results are shown in Figure 4 (top).
또한, 면역조직화학염색을 수행하여 IGSF1과 PD-L1의 발현을 확인한 후 scoring하였다. Scoring 방법은 [Yi Xin Li et al., PLOS ONE, 10(2), e0118391]에 기재된 방법을 참고하였다. 구체적으로, IGSF1은 0(-), 1(+)(negative/low), 2(++), 3(+++)(positive/high)으로 세분화하고, PD-L1은 TPS(tumor proportion score) 값을 계산하여 <1, 1~4.9, 5~49(negative/low), ≥50(positive/high)으로 세분화하였다. IGSF1과 PD-L1의 score를 비교하여 IGSF1과 PD-L1의 score가 반대 상관관계(reverse correlation)인 조직을 확인하고 그래프를 작성하여 도 4(하단)에 나타냈다.In addition, immunohistochemical staining was performed to confirm the expression of IGSF1 and PD-L1 and then scoring. For the scoring method, refer to the method described in [Yi Xin Li et al., PLOS ONE, 10(2), e0118391]. Specifically, IGSF1 is subdivided into 0(-), 1(+)(negative/low), 2(++), and 3(+++)(positive/high), and PD-L1 is classified into tumor proportion score (TPS). ) values were calculated and subdivided into <1, 1~4.9, 5~49 (negative/low), and ≥50 (positive/high). By comparing the scores of IGSF1 and PD-L1, tissues in which the scores of IGSF1 and PD-L1 were reverse correlated were identified, and a graph was created and shown in Figure 4 (bottom).
도 4에 나타난 바와 같이, 비소세포폐암 환자의 조직에서 IGSF1과 PD-L1의 발현 패턴이 반대 상관관계를 나타내며(하단), IGSF1(positive/high), PD-L1(negative/low)인 조직이 34.5%, IGSF1(negative/low), PD-L1(positive/high)인 조직이 3.6%임을 확인하였다.As shown in Figure 4, the expression patterns of IGSF1 and PD-L1 in the tissues of non-small cell lung cancer patients show an inverse correlation (bottom), and the tissues with IGSF1 (positive/high) and PD-L1 (negative/low) It was confirmed that 34.5%, IGSF1 (negative/low), and PD-L1 (positive/high) were 3.6%.
실시예 5. 다양한 폐암 세포주에서 IGSF1에 의한 PD-L1 유전자 발현 조절 분석Example 5. Analysis of PD-L1 gene expression regulation by IGSF1 in various lung cancer cell lines
실시예 5.1. IGSF1의 다운스트림 신호인 ATF3과 PD-L1 간의 상호작용 분석Example 5.1. Analysis of the interaction between ATF3, a downstream signal of IGSF1, and PD-L1
폐암 세포주에서 IGSF1의 다운스트림 신호인 ATF3와 PD-L1 간의 상호작용에 영향을 미치는지 확인하기 위하여, IGSF1 발현 여부에 따른 PD-L1 프로모터 칩 어세이를 통해 PD-L1 프로모터 상에서 ATF3 결합 부위(binding site)를 찾아 실험을 진행하였다. 결과는 염색질 면역침강법을 통해 확인하였다.To determine whether it affects the interaction between ATF3, a downstream signal of IGSF1, and PD-L1 in lung cancer cell lines, the ATF3 binding site (binding site) was identified on the PD-L1 promoter through PD-L1 promoter chip assay depending on whether IGSF1 was expressed or not. ) and conducted an experiment. The results were confirmed through chromatin immunoprecipitation.
구체적으로, 폐암 세포주인 NCI-H292 mock, NCI-H292 IGSF1 O/E 세포를 실온에서 15분간 37% 포름알데하이드를 1%의 농도가 되도록 첨가하여 배양하였다. 배양 중 740 mL 글리신(1 M)을 첨가하여 실온에서 5분간 반응시킨 후 세포를 수확하였다. 가교된(Cross-linked) 세포를 이후 SDS 용해 버퍼(lysis buffer)에서 용융시키고, 초음파 분쇄하여 DNA 단편을 얻었다. 염색질을 4℃에서 ATF3 항체 또는 IgG 항체와 아가로즈로 면역침강시켰다. 염색질, 항체 및 아가로즈 복합체(complex)는 세척 과정 상에 염화나트륨을 첨가하여 용출시키고, 65℃에서 리버스 히스톤(reverse histone)-DNA 교차결합(crosslinks)을 수행하였다. 면역침전된 DNA 1 μL를 사용하여 PD-L1 프로모터에 특이적인 프라이머를 통해 중합효소연쇄반응을 진행하였다. 면역침강에 사용한 항체 정보는 하기 표 4에 기재한 바와 같으며, 중합효소연쇄반응에 사용한 프라이머 정보는 하기 표 5에 기재한 바와 같다.Specifically, lung cancer cell lines NCI-H292 mock and NCI-H292 IGSF1 O/E cells were cultured by adding 37% formaldehyde to a concentration of 1% for 15 minutes at room temperature. During the culture, 740 mL glycine (1 M) was added and incubated at room temperature for 5 minutes, and then the cells were harvested. Cross-linked cells were then melted in SDS lysis buffer and sonicated to obtain DNA fragments. Chromatin was immunoprecipitated with ATF3 antibody or IgG antibody and agarose at 4°C. Chromatin, antibody, and agarose complex were eluted by adding sodium chloride during the washing process, and reverse histone-DNA crosslinks were performed at 65°C. Polymerase chain reaction was performed using 1 μL of immunoprecipitated DNA using primers specific to the PD-L1 promoter. Information on the antibodies used in immunoprecipitation is as shown in Table 4 below, and information on primers used in the polymerase chain reaction is as shown in Table 5 below.
타겟target 유형category cat.#cat.# 제조업체Manufacturer
ATF3ATF3 토끼 IgG (primary)Rabbit IgG (primary) 3359333593 Cell Signaling TechnologyCell Signaling Technology
유전자gene 프라이머 서열(5` → 3`)Primer sequence (5` → 3`) 서열번호sequence number
PD-L1
프로모터 영역
PD-L1
promoter region
정방향forward CACACACACACACACCTACTCACACACACACACACCTACT 88
역방향reverse ACATCTGAACGCACCTTGATACATCTGAACGCACCTTGAT 99
그 결과, IGSF1 발현이 없는 NCI-H292 세포주에서 PD-L1 프로모터에 ATF3가 결합함을 확인하였으며, NCI-H292 IGSF1 과발현 안정화 세포주에서는 PD-L1 프로모터에 ATF3가 결합하지 않은 것을 확인하였다(도 5a).As a result, it was confirmed that ATF3 bound to the PD-L1 promoter in the NCI-H292 cell line without IGSF1 expression, and that ATF3 did not bind to the PD-L1 promoter in the NCI-H292 IGSF1 overexpressing stable cell line (Figure 5a) .
실시예 5.2. IGSF1 발현 억제에 따른 ATF3 및 PD-L1의 발현 패턴 분석Example 5.2. Analysis of expression patterns of ATF3 and PD-L1 according to inhibition of IGSF1 expression
폐암 세포주인 NCI-838 및 NCI-H358 세포에서 IGSF1 K/D(knock down)에 따른 ATF3 및 PD-L1의 발현 양상 변화를 분석하고자 역전사-중합효소연쇄반응(RT-PCR) 및 웨스턴 블롯(Western blot)을 수행하였다.Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to analyze changes in the expression patterns of ATF3 and PD-L1 according to IGSF1 K/D (knock down) in lung cancer cell lines NCI-838 and NCI-H358 cells. blot) was performed.
구체적으로, NCI-838 및 NCI-H358 세포에 Trizol을 처리하여 RNA를 추출하여 정량하였다. 이후, 2000 ng의 RNA에 대해 100 pmole의 올리고(oligo) dt 프라이머 1 μL를 사용하여 AccuPower® CycleScript RT PreMix kit로 cDNA를 합성하였다. 합성된 cDNA 2 μL를 AccuPower® PCR PreMix kit을 이용하여 AB Veriti 96-Well Thermal Cycler에서 28 사이클(cycles)로 PCR을 수행하였다. PCR을 마친 샘플을 1% 아가로즈 겔에 5 μL씩 로딩(loading) 한 뒤 150V에서 35분 동안 전기영동하였다. 이후, Gel-Doc에서 UV 조사를 통해 mRNA 발현 수준 변화를 확인하였다. 단백질 발현 확인을 위해 RIPA 버퍼를 이용하여 세포를 분해한 뒤, Bradford 용액과 반응시켜 595 nm 파장에서 정량하였다. 8% SDS-겔에서 세포 분해 샘플 15 μg을 로딩하여 SDS-PAGE를 진행하였다. 이후, PVDF 멤브레인에 100V로 120분 동안 트랜스퍼(transfer) 하고, TBST에 녹인 5% 탈지분유를 이용하여 IGSF1 항체, ATF 항체, PD-L1 항체, β-액틴 항체를 1:2000의 비율로 4℃에서 밤새 반응시켰다. 반응 후, 2차 마우스 HRP 항체를 5% 탈지분유에 1:5000의 비율로 희석하여 상온에서 1시간 동안 반응시켰다. ECL 용액을 이용하여 신호를 증폭시키고, 필름에 감광시킨 후 현상하여 단백질 발현 수준 변화를 확인하였다. Specifically, NCI-838 and NCI-H358 cells were treated with Trizol, RNA was extracted and quantified. Afterwards, cDNA was synthesized using the AccuPower® CycleScript RT PreMix kit using 1 μL of 100 pmole of oligo dt primer for 2000 ng of RNA. PCR was performed on 2 μL of the synthesized cDNA in an AB Veriti 96-Well Thermal Cycler using the AccuPower® PCR PreMix kit for 28 cycles. After completing PCR, 5 μL of each sample was loaded onto a 1% agarose gel and electrophoresed at 150 V for 35 minutes. Afterwards, changes in mRNA expression levels were confirmed through UV irradiation in Gel-Doc. To confirm protein expression, cells were digested using RIPA buffer, reacted with Bradford solution, and quantified at a wavelength of 595 nm. SDS-PAGE was performed by loading 15 μg of cell lysis sample on an 8% SDS-gel. Afterwards, transfer was performed on the PVDF membrane at 100V for 120 minutes, and IGSF1 antibody, ATF antibody, PD-L1 antibody, and β-actin antibody were incubated at 4°C at a ratio of 1:2000 using 5% skim milk powder dissolved in TBST. The reaction was carried out overnight. After reaction, the secondary mouse HRP antibody was diluted in 5% skim milk powder at a ratio of 1:5000 and reacted at room temperature for 1 hour. The signal was amplified using an ECL solution, sensitized to film, and developed to confirm changes in protein expression levels.
폐암세포주인 NCI-H838 및 NCI-H358에서 IGSF1 발현 억제에 따른 ATF3 및 PD-L1의 발현 양상 변화를 확인한 결과, IGSF1 발현 억제시 ATF3 및 PD-L1의 발현이 증가하는 것을 mRNA 및 단백질 수준에서 확인하였다(도 5b).As a result of confirming changes in the expression patterns of ATF3 and PD-L1 due to inhibition of IGSF1 expression in lung cancer cell lines NCI-H838 and NCI-H358, it was confirmed at the mRNA and protein levels that the expression of ATF3 and PD-L1 increased when IGSF1 expression was inhibited. (Figure 5b).
실시예 5.3. IGSF1 과발현에 따른 ATF3 및 PD-L1의 발현 패턴 분석Example 5.3. Analysis of expression patterns of ATF3 and PD-L1 according to IGSF1 overexpression
폐암 세포주인 NCI-H292 세포에서 IGSF1 O/E(over expression)에 따른 ATF3 및 PD-L1의 발현 양상 변화를 분석하고자 실시예 5.2.와 동일한 방법으로 역전사-중합효소연쇄반응(RT-PCR) 및 웨스턴 블롯(Western blot)을 수행하였다.To analyze changes in the expression patterns of ATF3 and PD-L1 due to IGSF1 O/E (over expression) in NCI-H292 cells, a lung cancer cell line, reverse transcription-polymerase chain reaction (RT-PCR) and Western blot was performed.
H292 폐암 세포주에서 IGSF1 과발현에 따른 ATF3 및 PD-L1의 발현 양상 변화를 확인한 결과, IGSF1 과발현시 ATF3 및 PD-L1의 발현이 감소하는 것을 mRNA 및 단백질 수준에서 확인하였다(도 5c).As a result of confirming changes in the expression patterns of ATF3 and PD-L1 according to IGSF1 overexpression in the H292 lung cancer cell line, it was confirmed that the expression of ATF3 and PD-L1 was decreased at the mRNA and protein levels when IGSF1 was overexpressed (Figure 5c).
실시예 6. PD-L1 발현 양에 따른 IGSF1 단백질 동정Example 6. IGSF1 protein identification according to PD-L1 expression amount
PD-L1 발현 양이 상이한 폐암 세포주에서 TMT 표지(labeling) LC/MS를 이용하여 IGSF1 단백질을 동정하였다.IGSF1 protein was identified using TMT labeling LC/MS in lung cancer cell lines with different levels of PD-L1 expression.
구체적으로, Subcellular Protein Fractionation Kit(Thermo Scientific, 78840)를 이용하여 인간 비소세포폐암 세포주 중 PD-L1 발현이 높은 NCI-H358 세포주와 PD-L1 발현이 낮은 NCI-H838 세포주의 막 단백질을 추출하였다. 추출된 단백질의 정량은 Bradford assay(Bio-Rad, 5000001)를 이용하여 측정하였다. 각 단백질 50 μg을 10 mM Tris(2-carboxyethyl)phosphine(TCEP)과 55℃에서 1시간, 18.75 mM 요오드아세트아미드(iodoacetamide)와 상온에서 30분간 반응시킨 후, 아세톤으로 -20℃에서 밤새 침전시켰다. 아세톤으로 침전된 단백질 펠릿을 50 mM TEAB(triethylammonium bicarbonate)에 용해시키고, 단백질 100 μg당 트립신 2.5 μg(1:40)을 첨가하고 37℃에서 밤새도록 단백질을 절단시켜 펩티드화하였다. TMT-표지(labeling)는 TMTsixplexTM 라벨 시약 세트(Thermo Scientific, 90066)를 사용하여 수행되었으며, 프로토콜은 제조업체의 사양에 따라 수행하였다. 질량 분석법 및 단백질 식별 질량 분석은 LTQ-Orbitrap Hybrid FT-ETD 질량 분석기(Thermo Scientific)를 사용하여 분석하였다. 원시 데이터(Raw data) 분석은 IP2 소프트웨어(Integrated Proteomics Pipeline)로 분석하였고, 단백질 ID 및 정량화는 IP2에서 제공하는 검색 엔진을 사용하여 UniProt 인간 데이터베이스에서 펩티드로 확인하였다. 이후, NCI-H358에서 발현하는 막 단백질들과 NCI-H838에서 발현하는 막 단백질들을 정량적으로 비교하여 NCI-H358 보다 NCI-H838에서 더 많이 발현하는 막 단백질을 volcano plot으로 분류하였다.Specifically, membrane proteins from human non-small cell lung cancer cell lines, NCI-H358 cell line with high PD-L1 expression and NCI-H838 cell line with low PD-L1 expression, were extracted using the Subcellular Protein Fractionation Kit (Thermo Scientific, 78840). Quantity of extracted protein was measured using Bradford assay (Bio-Rad, 5000001). 50 μg of each protein was reacted with 10 mM Tris(2-carboxyethyl)phosphine (TCEP) at 55°C for 1 hour, 18.75 mM iodoacetamide for 30 minutes at room temperature, and then precipitated with acetone overnight at -20°C. . The protein pellet precipitated with acetone was dissolved in 50 mM triethylammonium bicarbonate (TEAB), 2.5 μg of trypsin (1:40) per 100 μg of protein was added, and the protein was cleaved overnight at 37°C to peptide. TMT-labeling was performed using the TMTsixplex TM labeling reagent set (Thermo Scientific, 90066), and the protocol was performed according to the manufacturer's specifications. Mass spectrometry and protein identification Mass spectrometry was performed using an LTQ-Orbitrap Hybrid FT-ETD mass spectrometer (Thermo Scientific). Raw data was analyzed using IP2 software (Integrated Proteomics Pipeline), and protein ID and quantification were confirmed as peptides in the UniProt human database using the search engine provided by IP2. Afterwards, the membrane proteins expressed in NCI-H358 were quantitatively compared with those expressed in NCI-H838, and membrane proteins expressed more in NCI-H838 than in NCI-H358 were classified using a volcano plot.
동정한 정량화된 단백질들을 volcano plot을 이용하여 도 6과 같이 분류한 결과, NCI-H838에서 유의적으로 더 많이 발현하는 막 단백질들은 27종 (우측 상단 원으로 표시)이 분류되었고, 이 단백질들 중 IGSF1을 동정하였다.As a result of classifying the identified quantified proteins using a volcano plot as shown in Figure 6, 27 types of membrane proteins (indicated by circles in the upper right corner) that were significantly more expressed in NCI-H838 were classified, and among these proteins, IGSF1 was identified.

Claims (11)

  1. PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정할 수 있는 제제를 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측용 바이오마커 조성물.A biomarker composition for predicting susceptibility to anti-IGSF1 antibodies in cancer patients, comprising an agent capable of measuring the expression level of PD-L1 protein or the gene encoding it.
  2. 제1항에 있어서,According to paragraph 1,
    상기 단백질의 발현 수준을 측정할 수 있는 제제는 상기 단백질에 특이적으로 결합하는 모노클로날(monoclonal) 항체, 폴리클로날(polyclonal) 항체, 키메릭(chimeric) 항체, 리간드(ligand), PNA(peptide nucleic acid), 압타머(aptamer) 및 나노파티클(nanoparticle)로 구성된 군에서 선택되는 것인, 바이오마커 조성물.Agents that can measure the expression level of the protein include monoclonal antibodies, polyclonal antibodies, chimeric antibodies, ligands, and PNA ( A biomarker composition selected from the group consisting of peptide nucleic acid, aptamer, and nanoparticle.
  3. 제1항에 있어서,According to paragraph 1,
    상기 단백질을 암호화하는 유전자의 발현 수준을 측정할 수 있는 제제는 상기 유전자에 특이적으로 결합하는 프라이머(primer) 쌍, 프로브(probe) 및 안티센스 뉴클레오타이드(antisense nucleotide)로 구성된 군에서 선택되는 것인, 바이오마커 조성물.The agent capable of measuring the expression level of the gene encoding the protein is selected from the group consisting of a primer pair, a probe, and an antisense nucleotide that specifically binds to the gene, Biomarker composition.
  4. 제1항에 있어서,According to paragraph 1,
    상기 암은 IGSF1 단백질 또는 이를 암호화하는 유전자가 과발현된 것인, 바이오마커 조성물.A biomarker composition in which the cancer overexpresses the IGSF1 protein or the gene encoding it.
  5. 제1항에 있어서,According to paragraph 1,
    상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나인, 바이오마커 조성물.The cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. A biomarker composition selected from the group.
  6. 제1항 내지 제5항 중 어느 한 항에 기재된 바이오마커 조성물을 포함하는, 암 환자의 항-IGSF1 항체에 대한 감수성 예측용 키트.A kit for predicting susceptibility of a cancer patient to an anti-IGSF1 antibody, comprising the biomarker composition according to any one of claims 1 to 5.
  7. 개체로부터 수득한 생물학적 샘플에서 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정하는 단계를 포함하는, Comprising the step of measuring the expression level of PD-L1 protein or the gene encoding it in a biological sample obtained from the individual,
    암 환자의 항-IGSF1 항체에 대한 감수성 예측에 필요한 정보를 제공하는 방법.A method that provides the information needed to predict susceptibility to anti-IGSF1 antibodies in cancer patients.
  8. 제7항에 있어서,In clause 7,
    상기 PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 기준값(reference value)보다 낮은 경우에, 항-IGSF1 항체를 포함하는 항암제에 대하여 감수성을 나타내는 것으로 예측하는 단계를 추가적으로 포함하는, 정보를 제공하는 방법.When the expression level of the PD-L1 protein or the gene encoding it is lower than the reference value, it additionally includes the step of predicting sensitivity to an anticancer agent containing an anti-IGSF1 antibody, providing information method.
  9. 제7항에 있어서,In clause 7,
    상기 암은 IGSF1 단백질 또는 이를 암호화하는 유전자가 과발현된 것인, 정보를 제공하는 방법.A method of providing information, wherein the cancer is one in which the IGSF1 protein or the gene encoding it is overexpressed.
  10. 제7항에 있어서,In clause 7,
    상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나인, 바이오마커 조성물.The cancer consists of stomach cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreas cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer, and lymphoma. A biomarker composition selected from the group.
  11. PD-L1 단백질 또는 이를 암호화하는 유전자의 발현 수준이 낮은 개체를 선별하는 단계를 포함하는,Including the step of selecting individuals with low expression levels of the PD-L1 protein or the gene encoding it,
    항-IGSF1 항체의 치료에 적합한 암 환자를 선별하는 방법.Method for selecting cancer patients suitable for treatment with anti-IGSF1 antibodies.
PCT/KR2023/005499 2022-04-25 2023-04-21 Biomarker composition for predicting cancer patient susceptibility to anti-igsf1 antibody, and method using same WO2023211073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220050770 2022-04-25
KR10-2022-0050770 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023211073A1 true WO2023211073A1 (en) 2023-11-02

Family

ID=88519327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005499 WO2023211073A1 (en) 2022-04-25 2023-04-21 Biomarker composition for predicting cancer patient susceptibility to anti-igsf1 antibody, and method using same

Country Status (2)

Country Link
KR (1) KR20230151916A (en)
WO (1) WO2023211073A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811731B1 (en) * 2014-07-29 2018-01-25 재단법인 아산사회복지재단 Novel Biomarkers for Predicting Susceptibility to MET Inhibitor and Uses Thereof
US20190128892A1 (en) * 2016-04-14 2019-05-02 Creatv Microtech, Inc. Methods of using pd-l1 expression in treatment decisions for cancer therapy
WO2021201571A1 (en) * 2020-03-31 2021-10-07 웰마커바이오 주식회사 Pharmaceutical composition for preventing or treating cancer containing antibody against igsf1 as active ingredient, and method for treating cancer using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811731B1 (en) * 2014-07-29 2018-01-25 재단법인 아산사회복지재단 Novel Biomarkers for Predicting Susceptibility to MET Inhibitor and Uses Thereof
US20190128892A1 (en) * 2016-04-14 2019-05-02 Creatv Microtech, Inc. Methods of using pd-l1 expression in treatment decisions for cancer therapy
WO2021201571A1 (en) * 2020-03-31 2021-10-07 웰마커바이오 주식회사 Pharmaceutical composition for preventing or treating cancer containing antibody against igsf1 as active ingredient, and method for treating cancer using same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUNGMAN LEE: "GSK Invests about 1 Trillion KRW to Develop Next-generation Immune Anti-cancer Drugs in Earnest. ", HEALTH KOREA NEWS, 5 April 2023 (2023-04-05), XP093103220, Retrieved from the Internet <URL: https://www.hkn24.com/news/articleView.html?idxno=332412> [retrieved on 20231120] *
SEUNGDEOK LEE: "Well Marker Bio-Samsung Bio Immuno-oncology CDMO Contract Signed. ", MEDICAL NEWSPAPER, 15 March 2021 (2021-03-15), XP093103219, Retrieved from the Internet <URL:http://www.bosa.co.kr/news/articleView.html?idxno=2146179> [retrieved on 20231120] *
WELLMARKER BIO: "Wellmarker Bio Announces Clinical Trial Collaboration with MSD to evaluate WM-A1-3389 in combination with KEYTRUDA® (pembrolizumab)", CISION PR NEWSWIRE, 7 February 2023 (2023-02-07), XP093103218, Retrieved from the Internet <URL:https://www.prnewswire.co.uk/news-releases/wellmarker-bio-announces-clinical-trial-collaboration-with-msd-to-evaluate-wm-a1-3389-in-combination-with-keytruda-pembrolizumab-301740567.html> [retrieved on 20231120] *
YAOYAO GUAN; YINGHAO WANG; ADHEESH BHANDARI; ERJIE XIA; OUCHEN WANG: "IGSF1: A novel oncogene regulates the thyroid cancer progression", CELL BIOCHEMISTRY AND FUNCTION., BUTTERWORTH, GUILDFORD., GB, vol. 37, no. 7, 25 July 2019 (2019-07-25), GB , pages 516 - 524, XP071523442, ISSN: 0263-6484, DOI: 10.1002/cbf.3426 *

Also Published As

Publication number Publication date
KR20230151916A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
Necela et al. Folate receptor-α (FOLR1) expression and function in triple negative tumors
Kanamoto et al. Functional proteomics of transforming growth factor‐β1‐stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1‐dependent regulation of DNA repair
Prabhu et al. Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer
WO2009113814A2 (en) Protein marker for early diagnosis of liver cancer
Zhang et al. MiR-216a-5p inhibits tumorigenesis in pancreatic cancer by targeting TPT1/mTORC1 and is mediated by LINC01133
Zhu et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1
Hong et al. Claudin 18.2 expression in various tumor types and its role as a potential target in advanced gastric cancer
Zhang et al. Phosphorylation of Ser 78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer
Lin et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression
WO2006036175A2 (en) Wnt proteins and detection and treatment of cancer
Guerrero et al. C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth
Chen et al. Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS
WO2016152352A1 (en) Melanoma-specific biomarker and use thereof
Sun et al. Transgelin-2 is a novel target of KRAS-ERK signaling involved in the development of pancreatic cancer
St. Clair et al. Fyn‐dependent phosphorylation of PlexinA1 and PlexinA2 at conserved tyrosines is essential for zebrafish eye development
Song et al. Elevated eukaryotic elongation factor 2 expression is involved in proliferation and invasion of lung squamous cell carcinoma
Peng et al. Purification and biochemical characterization of a novel protein—tongue cancer chemotherapy resistance-associated protein1 (TCRP1)
Zhao et al. Trigred motif 36 regulates neuroendocrine differentiation of prostate cancer via HK2 ubiquitination and GPx4 deficiency
Chang et al. DPP9 Stabilizes NRF2 to Suppress Ferroptosis and Induce Sorafenib Resistance in Clear Cell Renal Cell Carcinoma
Li et al. BRD7 inhibits enhancer activity and expression of BIRC2 to suppress tumor growth and metastasis in nasopharyngeal carcinoma
Arai et al. Expression of DNA damage response proteins in gastric cancer: Comprehensive protein profiling and histological analysis
Men et al. RUFY3 predicts poor prognosis and promotes metastasis through epithelial-mesenchymal transition in lung adenocarcinoma
Yano et al. Transcriptional activation of the human claudin-18 gene promoter through two AP-1 motifs in PMA-stimulated MKN45 gastric cancer cells
Liu et al. Cold shock domain containing E1 (CSDE1) protein is overexpressed and can be targeted to inhibit invasiveness in pancreatic cancer cells
WO2005107803A2 (en) Methods of determining the prognosis and treatment of subjects with lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796720

Country of ref document: EP

Kind code of ref document: A1