WO2023211009A1 - Radiation shielding film and preparation method therefor - Google Patents

Radiation shielding film and preparation method therefor Download PDF

Info

Publication number
WO2023211009A1
WO2023211009A1 PCT/KR2023/004824 KR2023004824W WO2023211009A1 WO 2023211009 A1 WO2023211009 A1 WO 2023211009A1 KR 2023004824 W KR2023004824 W KR 2023004824W WO 2023211009 A1 WO2023211009 A1 WO 2023211009A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation shielding
film
tungsten powder
shielding film
radiation
Prior art date
Application number
PCT/KR2023/004824
Other languages
French (fr)
Korean (ko)
Inventor
김선칠
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220051916A external-priority patent/KR102677296B1/en
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Publication of WO2023211009A1 publication Critical patent/WO2023211009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers
    • G21F1/106Dispersions in organic carriers metallic dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • G21F1/125Laminated shielding materials comprising metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0887Tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • This specification relates to radiation shielding films and methods for manufacturing the same.
  • Lead is mainly used in the manufacture of radiation shielding in medical institutions. Lead has excellent X-ray shielding performance, processability, and economic efficiency, so it is widely used in various forms in medical institutions. However, as lead use increases, there is a risk of lead poisoning because medical staff and patients are exposed to more lead, and lead disposal is also related to environmental problems. To solve this problem, recently, materials mixed with various eco-friendly shielding materials such as tungsten, bismuth, barium sulfate, and antimony and inorganic materials are being used as radiation shields.
  • Radio institutions generally require shielding suits for radiation shielding, which require lightness and flexibility to facilitate the user's activities.
  • the shielding material used in the shielding suit must have sufficient flexibility to not interfere with the medical staff's activities.
  • the content of the polymer material used in manufacturing the shielding material must be increased. This reduces the density of the particle structure of the shielding material, thereby lowering the shielding performance.
  • the shielding material decreases. There was a problem that the bonding strength between them was low and cracks may appear if a thin shielding sheet was used.
  • shielding materials used in medical institutions must have a certain thickness, flexibility, and tensile strength, and must meet complex requirements to demonstrate shielding performance similar to lead.
  • the ideal method is to process and use the shielding material alone, but there is a problem that it is difficult to manufacture the material in the desired form because processability is limited depending on the material.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1261340
  • the problem to be solved by the present disclosure is to provide an ultra-thin radiation shielding film that includes an environmentally friendly radiation shielding material and has excellent flexibility.
  • the problem that the present disclosure aims to solve is to provide a method for manufacturing the radiation shielding film.
  • One embodiment of the present disclosure is a radiation shielding film containing tungsten powder and a polymer base, wherein the average particle size of the tungsten powder is 80 to 200 nm and the thickness of the film is 0.01 to 0.025 mm. to provide.
  • Another embodiment of the present disclosure provides a radiation shielding suit including the radiation shielding film.
  • Another embodiment of the present disclosure provides a building material for a radiation shielding facility including the radiation shielding film.
  • Another embodiment of the present disclosure is a method of manufacturing the radiation shielding film
  • It provides a method for manufacturing a radiation shielding film, including.
  • One embodiment of the present disclosure can provide a radiation shielding film that contains tungsten powder at high density and is an ultra-thin film several micrometers thick by uniformly dispersing and compressing nanoparticle-sized tungsten powder into a polymer base. Therefore, the present disclosure can be usefully used in various industrial fields and various products that require radiation shielding films, such as medical or construction fields that require ultra-light and ultra-thin films with high radiation shielding rates.
  • 1A and 1B are field emission scanning electron microscope (FESEM) images for confirming the distribution of tungsten powder particles of a radiation shielding film according to an embodiment of the present disclosure and a comparative example manufactured according to the prior art.
  • FESEM field emission scanning electron microscope
  • One embodiment of the present disclosure is a radiation shielding film containing tungsten powder and a polymer base.
  • the average particle size of the tungsten powder contained in the film is 80 to 200 nm, and the film has a thickness of 0.01 to 0.025 mm. can be provided.
  • the film may be a lead-free film. More specifically, the film may contain only tungsten as a radiation shielding material.
  • the present disclosure does not contain lead, so it is safe for the human body and harmless to the environment, and can be usefully used in the medical field and other fields that require radiation shielding performance.
  • the film may include 88 to 92% by weight of the tungsten powder based on the total weight of the film.
  • the tungsten powder may be included in more than 88% by weight, more than 89% by weight, more than 90% by weight, more than 91% by weight, or more than 91.9% by weight, and less than 92% by weight, more than 91% by weight, based on the total weight of the radiation shielding film. % or less, 90% by weight or less, 89% by weight or less, or 88.1% by weight or less. If the tungsten powder is included less than 88% by weight, the radiation shielding ability may be lowered, and if it is more than 92% by weight, the polymer base content may be relatively too small, making it difficult to form a film.
  • the tungsten powder may be uniformly dispersed in the film.
  • the average particle size of the tungsten powder may be 80 to 200 nm.
  • the particle size refers to the largest diameter within the particle.
  • the average particle size refers to the average particle size of at least 90% or more of tungsten powder included in the radiation shielding film.
  • the average particle size of the tungsten powders included in the radiation shielding film is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, or 97%. , may mean the average value of the largest diameter within the particles of 98% or more or 99% or more of the powders.
  • the average of the particle sizes is 80 nm or more, 85 nm or more, 90 nm or more, 95 nm or more, 100 nm or more, 110 nm or more, 120 nm or more, 130 nm or more, 140 nm or more, 150 nm or more, 160 nm or more.
  • the thickness of the film may be 0.01 to 0.025 mm.
  • the thickness of the film may be 0.01 mm or more, 0.015 mm or more, 0.02 mm or more, or 0.023 mm or more, and may be 0.025 mm or less, 0.022 mm or less, 0.02 mm or less, 0.015 mm or less, or 0.012 mm or less.
  • radiation shielding performance may be reduced or the film may crack due to low tensile strength.
  • Even when the film thickness exceeds 0.025 mm flexibility may decrease and cracks may occur in the film, and an increase in film thickness and weight may cause inconvenience when used in clothing such as radiation shielding suits, limiting the range of use.
  • the polymer base is not limited as long as it has excellent thermal stability, but may include, for example, polyethylene, high-density polyethylene, or a combination thereof.
  • an embodiment of the present disclosure is a method of manufacturing the radiation shielding film
  • a method for manufacturing a radiation shielding film comprising a can be provided.
  • the method may further include grinding the tungsten powder to produce tungsten powder having an average particle size of 80 to 200 nm.
  • the step of pulverizing the tungsten powder may include ultrasonic pulverizing the tungsten powder five or more times to 200 nm or less using a pulverizer.
  • the grinding step may further include a drying step after grinding the tungsten powder.
  • the drying temperature and time of the drying step may vary depending on the amount of pulverized tungsten powder.
  • the drying temperature may be 40 to 80°C, more specifically 50 to 70°C.
  • the drying time may be 15 to 35 hours, more specifically 20 to 28 hours.
  • the manufacturing method may further include preparing a casting solution by dissolving the polymer base in a solvent before dispersing the tungsten powder in the casting solution.
  • the type of solvent is not limited as long as it can dissolve the polymer base used, and may include, for example, N-dimethylformamide (DMF).
  • the polymer base may be completely dissolved in a solvent, and the step of removing internal bubbles by leaving the solution for a certain period of time may be further included.
  • the leaving time may be, for example, 12 hours or more, 13 hours or more, 14 hours or more, or 15 hours or more.
  • the step of dispersing the tungsten powder in the solution may be performed by a particle dispersion method.
  • the step of dispersing the tungsten powder in the solution may be repeated 2 or more times, 3 or more times, 4 or more times, or 5 or more times.
  • One embodiment of the present disclosure improves mixing by applying a repetitive time-split stirring technique in which part of the tungsten powder is added to the casting solution and stirred, and then another part is added to the casting solution and stirred. Through this, the present disclosure can prevent agglomeration of tungsten powders and produce a film in which tungsten powders are uniformly dispersed.
  • the stirring speed may be 2000 to 4000 rpm, specifically 2000 rpm or more, 2500 rpm or more, 3000 rpm or more, or 3500 rpm or less, and may be 4000 rpm or less, 3500 rpm or less, 3000 rpm or less, or 2500 rpm or less.
  • the stirring time may be 10 to 15 minutes, specifically 10 minutes or more, 11 minutes or more, 12 minutes or more, 13 minutes or more, or 14 minutes or more, but may be 15 minutes or less, 14 minutes or less, 13 minutes or less, It may be 12 minutes or less or 11 minutes or less.
  • the casting solution may further include a plasticizer as an additive to remove micropores of the radiation shielding film and improve flexibility.
  • the plasticizer may include diisononyl phthalate (DINP).
  • the step of applying the solution in which the tungsten powder is dispersed to the film may further include removing foreign substances contained in the casting solution using a filter before application.
  • the step of compressing and molding by applying heat may be performed using a thermal hydraulic press machine, but is not limited thereto.
  • the temperature of heat applied in the compression molding step may be 60 to 90°C, and the pressure applied may be 10 to 30 MPa.
  • the present disclosure uniformly disperses tungsten particles in a solution using a split stirring process and processes them into a film form by extrusion molding, thereby manufacturing an ultra-thin film of 0.01 mm or less while filling nanometer-sized tungsten particles at high density.
  • This not only improves the radiation shielding ability by more than 20% compared to the same thickness, but also improves the tensile strength by more than 30%.
  • the film according to the present disclosure is not only light and thin, but also has excellent flexibility and is easy to cut with scissors or a knife, so the physical burden can be greatly reduced when used as a lining for clothing such as radiation shielding clothing.
  • the x-ray shielding rate of the radiation shielding film may be 70 to 95% when measured in a tube voltage range of 60 to 120 kVp.
  • the x-ray shielding rate of the film is 80 to 90% when measured in a tube voltage range of 60 kVp, 75 to 85% when measured in a tube voltage range of 80 kVp, 70 to 80% when measured in a tube voltage range of 100 kVp, and 120 kVp.
  • the tube voltage range it may be 65 to 80%.
  • the tensile strength of the radiation shielding film may be 10 to 15 MPa.
  • the tensile strength may be 10 MPa or more, 11 MPa or more, 12 MPa or more, or 13 MPa, and may be 15 MPa or less, 14 MPa or less, 13 MPa or less, or 12 MPa or less.
  • the film according to the present disclosure has tensile strength even though it contains a high content of tungsten powder. Since the strength is 10 MPa or more, more specifically 12 MPa or more, processability and usability are excellent.
  • One embodiment of the present disclosure can provide a radiation shielding suit (radiation shielding clothing) or a building material for a radiation shielding facility including the radiation shielding film described above.
  • the radiation shielding film may be a radiation shielding suit, radiation shielding curtain, protective wall, wallpaper, construction interior material, etc., and may be specifically for use in the medical field, but is not limited thereto.
  • a radiation shielding film according to an embodiment of the present disclosure was manufactured in the following manner.
  • tungsten powder pulverized to 200 nm or less (manufacturer: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China) was placed in an oven and dried at 60°C for 24 hours.
  • polyethylene as a polymer material was completely dissolved in DMF (N-dimethylformamide, 99.5%) solvent, and then left for at least 12 hours to remove internal bubbles to prepare a caster solution.
  • a portion of the pulverized tungsten powder was added to the prepared caster solution, and stirred using a stirrer at a speed of 3000 rpm for 10-15 minutes to uniformly disperse the tungsten particles in the caster solution.
  • tungsten powder was similarly added and stirred into the caster solution, and this division and stirring process was repeated several times. After all the tungsten powder was added and dispersed in the caster solution, DINP (Diisononyl phthalate) was added as a plasticizer to remove micropores.
  • DINP Diisononyl phthalate
  • the content of tungsten powder contained in the manufactured film was 92% by weight based on the total weight of the film, and the thickness of the film was 0.01mm.
  • a shielding sheet was manufactured according to the prior art using tungsten powder (manufacturer: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China) ground to an average particle size of 10-200 ⁇ m.
  • the content of tungsten powder contained in the manufactured film was 88 to 92% by weight based on the total weight of the film, and the thickness of the film was 0.01 mm.
  • FIGS. 1A and 1B To confirm the particle distribution of tungsten powder in the radiation shielding film manufactured according to an example of the present disclosure, a field emission scanning electron microscope (FESEM) image was taken and shown in FIGS. 1A and 1B.
  • FESEM field emission scanning electron microscope
  • FIG. 1A the shielding film according to Example 1 of the present disclosure had tungsten powder of 200 nm or less uniformly dispersed at high density within the film, but Comparative Example 1 according to the prior art, as shown in FIG. 1B. It can be seen that the particle size of the tungsten powder is micro-sized and is partially agglomerated and unevenly dispersed within the film.
  • Comparative Example 1 omitted the process of solvent dissolution and leaving for 12 hours at a time, there is a greater possibility of voids between particles compared to the film of the present disclosure.
  • the following experiment was performed to confirm the radiation shielding performance and tensile strength of the tungsten powder in the radiation shielding film manufactured according to an example of the present disclosure.
  • the radiation shielding rate was performed using Equation 1 below.
  • T is the exposure amount measured with a shielding film between the X-rays and the detector
  • To is the exposure amount measured without a shielding film between the X-rays and the detector.
  • the tube current was 200 mA and the irradiation time was 0.1 seconds.
  • Exposure was measured 10 times using an X-ray generator (DK-525, Toshiba E7239X, Tokyo) and a calibrated ion chamber (Model PM-30, PR-18), and the average value was used.
  • Tensile strength was measured according to the KS K 0520:2015 test method.
  • Example 1 according to the present disclosure contains tungsten powder of fine particles of 200 nm or less, so that although it has the same thickness as Comparative Example 1, tungsten powder is contained in a high content of 92% by weight. Since it was uniformly dispersed, it was found to have significantly better radiation blocking performance than Comparative Example 1.
  • the tensile strength of Comparative Example 1, which is an existing shielding sheet was 8 MPa, but Example 1 of the present disclosure had a tensile strength of 12.8 even though it contained a high content of 92% by weight of tungsten powder. It has been improved to MPa, and it can be confirmed that it has excellent quality without cracking when used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present application relates to a radiation shielding film using tungsten powder and a preparation method for the radiation shielding film. The radiation shielding film is prepared in the form of an ultra-thin film while still including tungsten particles at high density, as eco-friendly radiation shielding materials that replace lead, and thus may be excellent in both flexibility and radiation shielding ratio, thereby being usefully applicable in radiation shielding suits for medical institutions as well as in various fields requiring radiation shielding films. The radiation shielding film includes tungsten powder and a polymer base, wherein the tungsten powder has an average particle size of 80-200 nm, and the film has a thickness of 0.1-0.025 mm.

Description

방사선 차폐 필름 및 이의 제조 방법Radiation shielding film and method of manufacturing the same
본 명세서는 방사선 차폐 필름 및 이의 제조방법에 관한 것이다.This specification relates to radiation shielding films and methods for manufacturing the same.
납은 주로 의료기관의 방사선 차폐물 제조에 사용된다. 납은 X선 차폐 성능이 우수하고 가공성 및 경제성이 우수하여 의료기관에서 다양한 형태로 널리 사용되고 있다. 그러나 납 사용이 증가하면 의료진과 환자가 납에 더 많이 노출되기 때문에 납 중독의 위험이 있으며, 납의 폐기는 환경 문제와도 관련이 있다. 이러한 문제를 해결하기 위해 최근에는 텅스텐, 비스무트, 황산바륨, 안티몬 등의 다양한 친환경 차폐재와 무기물을 혼합한 재료가 방사선 차폐물로 사용되고 있다. Lead is mainly used in the manufacture of radiation shielding in medical institutions. Lead has excellent X-ray shielding performance, processability, and economic efficiency, so it is widely used in various forms in medical institutions. However, as lead use increases, there is a risk of lead poisoning because medical staff and patients are exposed to more lead, and lead disposal is also related to environmental problems. To solve this problem, recently, materials mixed with various eco-friendly shielding materials such as tungsten, bismuth, barium sulfate, and antimony and inorganic materials are being used as radiation shields.
의료기관은 일반적으로 방사선 차폐를 위한 차폐복(shielding suit)을 필요로 하는데, 사용자의 활동을 용이하게 하기 위하여는 경량성과 유연성이 필요하다. 즉, 차폐복에 사용되는 차폐 소재는 의료진의 활동을 방해하지 않는 충분한 유연성을 가져야 한다. 그러나 차폐복의 유연성을 향상시키려면 차폐소재의 제조시 사용되는 고분자 재료의 함량을 늘려야 하는데, 이는 차폐소재의 입자 구조의 밀도를 감소시켜 차폐 성능을 저하시키며, 반대로 고분자 재료의 함량을 줄이면 차폐소재 사이의 결합력이 떨어지고 얇은 차폐 시트를 사용할 경우 크랙이 나타날 수 있다는 문제가 있었다. 따라서 의료기관에서 사용하는 차폐소재는 일정한 두께, 유연성, 인장강도를 가져야 하며 납과 유사한 차폐 성능을 발휘할 수 있는 복잡한 요건을 만족해야 한다. 이상적인 방법은 차폐 소재만에 차폐물을 단독으로 처리하고 사용하는 것이나, 소재에 따라 가공성이 제한되어 원하는 형태로 소재를 제조하기 어렵다는 문제가 있다. Medical institutions generally require shielding suits for radiation shielding, which require lightness and flexibility to facilitate the user's activities. In other words, the shielding material used in the shielding suit must have sufficient flexibility to not interfere with the medical staff's activities. However, to improve the flexibility of the shielding suit, the content of the polymer material used in manufacturing the shielding material must be increased. This reduces the density of the particle structure of the shielding material, thereby lowering the shielding performance. Conversely, if the content of the polymer material is reduced, the shielding material decreases. There was a problem that the bonding strength between them was low and cracks may appear if a thin shielding sheet was used. Therefore, shielding materials used in medical institutions must have a certain thickness, flexibility, and tensile strength, and must meet complex requirements to demonstrate shielding performance similar to lead. The ideal method is to process and use the shielding material alone, but there is a problem that it is difficult to manufacture the material in the desired form because processability is limited depending on the material.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 등록특허공보 제10-1261340호(Patent Document 1) Republic of Korea Patent Publication No. 10-1261340
일 관점에서, 본 개시가 해결하고자 하는 과제는 친환경 방사선 차폐물을 포함하면서도 유연성이 우수한 초박막의 방사선 차폐 필름을 제공하는 것이다.From one perspective, the problem to be solved by the present disclosure is to provide an ultra-thin radiation shielding film that includes an environmentally friendly radiation shielding material and has excellent flexibility.
일 관점에서, 본 개시가 해결하고자 하는 과제는 상기 방사선 차폐 필름의 제조방법을 제공하는 것이다.From one perspective, the problem that the present disclosure aims to solve is to provide a method for manufacturing the radiation shielding film.
본 개시의 일 실시예는, 텅스텐 분말 및 고분자 베이스를 포함하는 방사선 차폐 필름이며, 상기 텅스텐 분말의 평균 입자 크기는 80 내지 200 nm이고, 상기 필름의 두께는 0.01 내지 0.025mm인, 방사선 차폐 필름을 제공한다.One embodiment of the present disclosure is a radiation shielding film containing tungsten powder and a polymer base, wherein the average particle size of the tungsten powder is 80 to 200 nm and the thickness of the film is 0.01 to 0.025 mm. to provide.
본 개시의 다른 일 실시예는, 상기 방사선 차폐 필름을 포함하는 방사선 차폐복을 제공한다. Another embodiment of the present disclosure provides a radiation shielding suit including the radiation shielding film.
본 개시의 다른 일 실시예는, 상기 방사선 차폐 필름을 포함하는 방사선 차폐시설의 건축재료를 제공한다.Another embodiment of the present disclosure provides a building material for a radiation shielding facility including the radiation shielding film.
본 개시의 다른 일 실시예는, 상기 방사선 차폐 필름의 제조방법으로,Another embodiment of the present disclosure is a method of manufacturing the radiation shielding film,
평균 입자 크기가 80 내지 200 nm인 텅스텐 분말을 분할하여 일부를 고분자 베이스를 포함하는 캐스팅 용액에 첨가하고 교반하여 텅스텐 분말을 상기 용액내에 분산시키는 단계를 2회 이상 반복 수행하는 단계; 및Splitting tungsten powder with an average particle size of 80 to 200 nm, adding a portion of it to a casting solution containing a polymer base, and stirring to disperse the tungsten powder in the solution, repeating the step two or more times; and
상기 텅스텐 분말이 분산된 용액을 기판에 도포하고, 열을 가해 압착 성형하는 단계;Applying the solution in which the tungsten powder is dispersed to a substrate and pressing and molding it by applying heat;
를 포함하는, 방사선 차폐 필름의 제조방법을 제공한다.It provides a method for manufacturing a radiation shielding film, including.
본 개시의 일 실시예들은 나노 입자 크기의 텅스텐 분말을 고분자 베이스에 균일하게 분산 및 압착하여 텅스텐 분말이 고밀도로 포함되면서도 수 마이크로미터 두께의 초박막인 방사선 차폐 필름을 제공할 수 있다. 따라서, 본 개시는 높은 방사선 차폐율과 함께 초경량 초박막의 필름이 요구되는 의료 분야 또는 건설 분야 등 방사선 차폐 필름을 필요로 하는 다양한 산업분야와 다양한 제품에 유용하게 사용할 수 있다.One embodiment of the present disclosure can provide a radiation shielding film that contains tungsten powder at high density and is an ultra-thin film several micrometers thick by uniformly dispersing and compressing nanoparticle-sized tungsten powder into a polymer base. Therefore, the present disclosure can be usefully used in various industrial fields and various products that require radiation shielding films, such as medical or construction fields that require ultra-light and ultra-thin films with high radiation shielding rates.
[규칙 제91조에 의한 정정 24.04.2023]
도 1a 및 도 1b는 본 개시의 일 실시예에 따른 방사선 차폐 필름과 종래 기술에 따라 제조한 비교예의 텅스텐 분말 입자 분포를 확인하기 위한 전계방사형 주사전자현미경(FESEM) 이미지이다.
[Correction 24.04.2023 pursuant to Rule 91]
1A and 1B are field emission scanning electron microscope (FESEM) images for confirming the distribution of tungsten powder particles of a radiation shielding film according to an embodiment of the present disclosure and a comparative example manufactured according to the prior art.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본문에 개시되어 있는 본 발명의 실시예들은 단지 설명을 위한 목적으로 예시된 것으로서, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들은 본 발명을 특정한 개시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다. The embodiments of the present invention disclosed in the text are illustrative only for illustrative purposes, and the embodiments of the present invention may be implemented in various forms and should not be construed as limited to the embodiments described in the text. . The present invention can make various changes and take various forms, and the embodiments are not intended to limit the present invention to the specific disclosed form, but all changes, equivalents, or substitutes included in the spirit and technical scope of the present invention. It should be understood as including.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제되지 않는다.Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, and one or more other features The presence or addition of elements, numbers, steps, operations, components, parts or combinations thereof is not excluded.
본 개시의 일 실시예는 텅스텐 분말 및 고분자 베이스를 포함하는 방사선 차폐 필름으로, 상기 필름에 포함되는 상기 텅스텐 분말의 평균 입자 크기는 80 내지 200 nm이며, 상기 필름의 두께는 0.01 내지 0.025mm인 필름을 제공할 수 있다.One embodiment of the present disclosure is a radiation shielding film containing tungsten powder and a polymer base. The average particle size of the tungsten powder contained in the film is 80 to 200 nm, and the film has a thickness of 0.01 to 0.025 mm. can be provided.
일 실시예로서, 상기 필름은 무연(lead-free) 필름일 수 있다. 보다 구체적으로, 상기 필름은 방사선 차폐 재료로 텅스텐만으로 포함하는 것일 수 있다. 본 개시는 납을 포함하지 않아 인체에 안전하고 환경에 무해하면서도 의료분야와 이외 방사선 차폐 성능을 필요로 하는 다양한 분야에서 유용하게 사용될 수 있다. As an example, the film may be a lead-free film. More specifically, the film may contain only tungsten as a radiation shielding material. The present disclosure does not contain lead, so it is safe for the human body and harmless to the environment, and can be usefully used in the medical field and other fields that require radiation shielding performance.
일 실시예로서, 상기 필름은 상기 텅스텐 분말을 필름 총 중량에 대하여 88 내지 92 중량%로 포함할 수 있다. 구체적으로, 상기 텅스텐 분말은 방사선 차폐 필름 총 중량에 대하여 88 중량% 이상, 89 중량% 이상, 90 중량% 이상, 91 중량% 이상 또는 91.9 중량% 이상으로 포함될 수 있으며, 92 중량% 이하, 91 중량% 이하, 90중량% 이하, 89 중량% 이하 또는 88.1 중량% 이하로 포함될 수 있다. 상기 텅스텐 분말이 상기 88 중량% 미만으로 적게 포함될 경우 방사선 차폐능이 낮아질 수 있으며, 92 중량%를 초과할 경우에는 고분자 베이스 함량이 상대적으로 너무 적어 필름의 형성이 어려울 수 있다.As an example, the film may include 88 to 92% by weight of the tungsten powder based on the total weight of the film. Specifically, the tungsten powder may be included in more than 88% by weight, more than 89% by weight, more than 90% by weight, more than 91% by weight, or more than 91.9% by weight, and less than 92% by weight, more than 91% by weight, based on the total weight of the radiation shielding film. % or less, 90% by weight or less, 89% by weight or less, or 88.1% by weight or less. If the tungsten powder is included less than 88% by weight, the radiation shielding ability may be lowered, and if it is more than 92% by weight, the polymer base content may be relatively too small, making it difficult to form a film.
일 실시예로서, 상기 텅스텐 분말은 필름에 균일하게 분산되어 있는 것일 수 있다. As an example, the tungsten powder may be uniformly dispersed in the film.
일 실시예로서, 상기 텅스텐 분말의 평균 입자 크기는 80 내지 200 nm일 수 있다. 이때, 상기 입자 크기는 입자내 가장 큰 직경을 의미한다. 상기 평균 입자 크기는 방사선 차폐 필름에 포함되는 적어도 90% 이상의 텅스텐 분말들의 입자 크기의 평균을 의미한다. 구체적으로, 상기 텅스텐 분말들의 입자 크기의 평균은 방사선 차폐 필름에 포함되는 적어도 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상의 분말들의 입자내 가장 큰 직경의 평균값을 의미할 수 있다. 보다 구체적으로 상기 입자 크기의 평균은 80 nm 이상, 85 nm 이상, 90 nm 이상, 95 nm 이상, 100 nm 이상, 110 nm 이상, 120 nm 이상, 130 nm 이상, 140 nm 이상, 150 nm 이상, 160 nm 이상, 170 nm 이상, 180 nm 이상 또는 190 nm 이상일 수 있으며, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하, 140 nm 이하, 130 nm 이하, 120 nm 이하, 110 nm 이하, 100 nm 이하, 90 nm 이하 또는 85 nm 이하일 수 있다. 상기 입자 크기 범위를 벗어날 경우 방사선 차폐 성능이 낮아지거나, 초박막 필름의 형성 또는 가공성이 떨어질 수 있다. As an example, the average particle size of the tungsten powder may be 80 to 200 nm. At this time, the particle size refers to the largest diameter within the particle. The average particle size refers to the average particle size of at least 90% or more of tungsten powder included in the radiation shielding film. Specifically, the average particle size of the tungsten powders included in the radiation shielding film is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, or 97%. , may mean the average value of the largest diameter within the particles of 98% or more or 99% or more of the powders. More specifically, the average of the particle sizes is 80 nm or more, 85 nm or more, 90 nm or more, 95 nm or more, 100 nm or more, 110 nm or more, 120 nm or more, 130 nm or more, 140 nm or more, 150 nm or more, 160 nm or more. Can be greater than or equal to 170 nm, greater than 180 nm or greater than 190 nm, and less than or equal to 200 nm, less than or equal to 190 nm, less than or equal to 180 nm, less than or equal to 170 nm, less than or equal to 160 nm, less than or equal to 150 nm, less than or equal to 140 nm, less than or equal to 130 nm, and less than or equal to 120 nm. It may be smaller than 110 nm, smaller than 100 nm, smaller than 90 nm, or smaller than 85 nm. If the particle size is outside the above range, radiation shielding performance may be lowered, or the formation or processability of an ultra-thin film may be reduced.
일 실시예로서, 상기 필름의 두께는 0.01 내지 0.025mm일 수 있다. 구체적으로, 상기 필름의 두께는 0.01 mm 이상, 0.015 mm 이상, 0.02 mm 이상 또는 0.023 mm 이상일 수 있으며, 0.025 mm 이하, 0.022 mm 이하, 0.02 mm 이하, 0.015 mm 이하 또는 0.012 mm 이하일 수 있다. 상기 필름 두께가 0.01 mm 미만일 경우 방사선 차폐 성능이 낮아지거나 인장강도가 낮아 필름에 균열이 일어날 수 있다. 상기 필름 두께가 0.025 mm 초과일 경우에도 유연성이 저하되어 필름에 균열이 일어날 수 있으며, 필름 두께 및 무게의 증가로 인해 방사선 차폐복과 같은 의류에 사용시 불편함이 초래되어 사용 범위가 제한될 수 있다. As an example, the thickness of the film may be 0.01 to 0.025 mm. Specifically, the thickness of the film may be 0.01 mm or more, 0.015 mm or more, 0.02 mm or more, or 0.023 mm or more, and may be 0.025 mm or less, 0.022 mm or less, 0.02 mm or less, 0.015 mm or less, or 0.012 mm or less. If the film thickness is less than 0.01 mm, radiation shielding performance may be reduced or the film may crack due to low tensile strength. Even when the film thickness exceeds 0.025 mm, flexibility may decrease and cracks may occur in the film, and an increase in film thickness and weight may cause inconvenience when used in clothing such as radiation shielding suits, limiting the range of use.
일 실시예로서, 상기 고분자 베이스는 열적 안정성이 우수한 것이라면 제한되지 않으나, 예를 들어 폴리에틸렌, 고밀도 폴리에틸렌, 또는 이들의 조합을 포함할 수 있다.As an example, the polymer base is not limited as long as it has excellent thermal stability, but may include, for example, polyethylene, high-density polyethylene, or a combination thereof.
또한, 본 개시의 일 실시예는 상기 방사선 차폐 필름의 제조방법으로, In addition, an embodiment of the present disclosure is a method of manufacturing the radiation shielding film,
평균 입자 크기가 80 내지 200 nm인 텅스텐 분말을 분할하여 일부를 고분자 베이스를 포함하는 캐스팅 용액에 첨가하고 교반하여 텅스텐 분말을 상기 용액내에 분산시키는 단계를 2회 이상 반복 수행하는 단계; 및Splitting tungsten powder with an average particle size of 80 to 200 nm, adding a portion of it to a casting solution containing a polymer base, and stirring to disperse the tungsten powder in the solution, repeating the step two or more times; and
상기 텅스텐 분말이 분산된 용액을 기판에 도포하고, 열을 가해 압착 성형하는 단계;Applying the solution in which the tungsten powder is dispersed to a substrate and pressing and molding it by applying heat;
를 포함하는, 방사선 차폐 필름의 제조방법을 제공할 수 있다.A method for manufacturing a radiation shielding film comprising a can be provided.
일 실시예로서, 상기 방법은 텅스텐 분말을 분쇄하여 평균 입자 크기가 80 내지 200 nm인 텅스텐 분말을 제조하는 단계를 더 포함할 수 있다. 이때, 상기 텅스텐 분말을 분쇄하는 단계는 텅스텐 분말을 분쇄기를 이용하여 200nm 이하로 5회 이상 초음파 분쇄하는 단계를 포함할 수 있다. As an example, the method may further include grinding the tungsten powder to produce tungsten powder having an average particle size of 80 to 200 nm. At this time, the step of pulverizing the tungsten powder may include ultrasonic pulverizing the tungsten powder five or more times to 200 nm or less using a pulverizer.
일 실시예로서 상기 분쇄 단계는 텅스텐 분말의 분쇄 후 건조 단계를 더 포함할 수 있다. 구체적으로, 상기 건조 단계의 건조 온도 및 시간은 분쇄된 텅스텐 분말의 양에 따라 달라질 수 있다. 예를 들어 상기 건조 온도는 40 내지 80℃, 보다 구체적으로는 50 내지 70℃일 수 있다. 예를 들어, 상기 건조 시간은 15 내지 35 시간, 보다 구체적으로 20 내지 28시간일 수 있다. As an example, the grinding step may further include a drying step after grinding the tungsten powder. Specifically, the drying temperature and time of the drying step may vary depending on the amount of pulverized tungsten powder. For example, the drying temperature may be 40 to 80°C, more specifically 50 to 70°C. For example, the drying time may be 15 to 35 hours, more specifically 20 to 28 hours.
일 실시예로서, 상기 제조방법은 상기 텅스텐 분말을 캐스팅 용액내 분산시키는 단계 이전에, 고분자 베이스를 용매에 투입 후 용해시켜 캐스팅 용액을 제조하는 단계를 더 포함할 수 있다. 일 실시예로서, 상기 용매는 사용되는 고분자 베이스를 용해시킬 수 있는 것이라면 그 종류가 제한되지 않으며, 예를 들어 N-디메틸포름아마이드(dimethylformamide, DMF)를 포함할 수 있다. 일 실시예로서, 상기 고분자 베이스는 용매에 완전히 용해되는 것일 수 있으며, 상기 용액을 일정 시간 방치하여 내부 기포를 제거하는 단계를 더 포함할 수 있다. 상기 방치 시간은 예를 들어 12 시간 이상, 13 시간 이상, 14 시간 이상 또는 15 시간 이상일 수 있다. As an example, the manufacturing method may further include preparing a casting solution by dissolving the polymer base in a solvent before dispersing the tungsten powder in the casting solution. As an example, the type of solvent is not limited as long as it can dissolve the polymer base used, and may include, for example, N-dimethylformamide (DMF). As an example, the polymer base may be completely dissolved in a solvent, and the step of removing internal bubbles by leaving the solution for a certain period of time may be further included. The leaving time may be, for example, 12 hours or more, 13 hours or more, 14 hours or more, or 15 hours or more.
일 실시예로서, 상기 텅스텐 분말을 용액내 분산시키는 단계는 입자 분산 방식에 의한 것일 수 있다. 일 실시예로서, 상기 텅스텐 분말을 용액내 분산 시키는 단계는 2회 이상, 3회 이상, 4회 이상 또는 5회 이상 반복 수행하는 것일 수 있다. 본 개시의 일 실시예는 텅스텐 분말 중 일부를 캐스팅 용액에 첨가하여 교반 후, 다른 일부를 상기 캐스팅 용액에 넣고 교반하는 반복적인 시간 분할 교반기술을 적용하여 혼합성을 개선하였다. 이를 통해 본 개시는 텅스텐 분말들의 응집을 방지하고, 텅스텐 분말들이 균일하게 분산된 필름을 제조할 수 있다. As an example, the step of dispersing the tungsten powder in the solution may be performed by a particle dispersion method. As an example, the step of dispersing the tungsten powder in the solution may be repeated 2 or more times, 3 or more times, 4 or more times, or 5 or more times. One embodiment of the present disclosure improves mixing by applying a repetitive time-split stirring technique in which part of the tungsten powder is added to the casting solution and stirred, and then another part is added to the casting solution and stirred. Through this, the present disclosure can prevent agglomeration of tungsten powders and produce a film in which tungsten powders are uniformly dispersed.
일 실시예로서, 상기 교반 속도는 2000 내지 4000 rpm, 구체적으로는 2000 rpm 이상, 2500 rpm 이상, 3000 rpm 이상 또는 3500 rpm 이상일 수 있으며, 4000 rpm 이하, 3500 rpm 이하, 3000 rpm 이하 또는 2500 rpm 이하일 수 있다. 일 실시예로서, 교반 시간은 10 내지 15분, 구체적으로는 10 분 이상, 11 분 이상, 12 분 이상, 13 분 이상 또는 14 분 이상일 수 있으며, 15 분 이하, 14 분 이하, 13 분 이하, 12 분 이하 또는 11 분 이하일 수 있다. As an example, the stirring speed may be 2000 to 4000 rpm, specifically 2000 rpm or more, 2500 rpm or more, 3000 rpm or more, or 3500 rpm or less, and may be 4000 rpm or less, 3500 rpm or less, 3000 rpm or less, or 2500 rpm or less. You can. As an example, the stirring time may be 10 to 15 minutes, specifically 10 minutes or more, 11 minutes or more, 12 minutes or more, 13 minutes or more, or 14 minutes or more, but may be 15 minutes or less, 14 minutes or less, 13 minutes or less, It may be 12 minutes or less or 11 minutes or less.
일 실시예로서, 상기 캐스팅 용액은 방사선 차폐 필름의 미세기공을 제거하고 유연성을 향상시키기 위하여 가소제를 첨가제로 더 포함할 수 있다. 예를 들어 상기 가소제는 다이아이소노닐 프탈레이트(Diisononyl phthalate, DINP)를 포함할 수 있다.As an example, the casting solution may further include a plasticizer as an additive to remove micropores of the radiation shielding film and improve flexibility. For example, the plasticizer may include diisononyl phthalate (DINP).
일 실시예로서, 상기 텅스텐 분말이 분산된 용액을 필름에 도포하는 단계는 도포 이전에 필터를 사용하여 상기 캐스팅 용액에 포함된 이물질을 제거하는 단계를 더 포함할 수 있다.As an example, the step of applying the solution in which the tungsten powder is dispersed to the film may further include removing foreign substances contained in the casting solution using a filter before application.
일 실시예로서, 상기 열을 가해 압착 성형하는 단계는 열 유압 프레스 기기를 사용하여 이루어지는 것일 수 있으나, 이에 제한되지 않는다. 이때, 상기 압착 성형하는 단계에서 가해지는 열의 온도는 60 내지 90℃일 수 있으며, 가해지는 압력은 10 내지 30MPa 일 수 있다.As an example, the step of compressing and molding by applying heat may be performed using a thermal hydraulic press machine, but is not limited thereto. At this time, the temperature of heat applied in the compression molding step may be 60 to 90°C, and the pressure applied may be 10 to 30 MPa.
종래에는 방사선 차폐 필름의 제조시 통상적으로 압출 방법을 사용하였으나, 이 경우 나노미터 사이즈의 텅스텐 입자의 고밀도 충전이 어렵다는 문제가 있었다. 이에 종래에는 방사선 차폐재를 박막의 필름 형태가 아닌 일정 두께 이상의 시트 형태로 제조하면서 유연성을 위하여 실리콘 등을 배합하였으나, 이 경우 차폐시트의 두께가 두껍고 단단한 재질로 인해 원하는 모양이나 크기로 자르기 쉽지 않았다. 또한 방사선 차폐재료의 밀도가 낮고 시트내 균일하게 분산되지 않아 일정한 차폐성능을 나타내지 않는다는 단점이 있었다. 그러나 본 개시는 텅스텐 입자를 분할 교반 공정을 사용하여 용액에 균일하게 분산시키고, 이를 압출 성형 방식으로 필름 형태로 가공함으로써 나노미터 사이즈의 텅스텐 입자를 고밀도로 충전하면서도 0.01mm 이하의 초박막의 필름으로 제조할 수 있어, 동일 두께 대비 방사선 차폐능을 20% 이상 향상시킬 수 있을 뿐만 아니라 인장강도도 30% 이상 향상시켰다. 또한, 본 개시에 따른 필름은 가볍고 얇을 뿐만 아니라 유연성이 우수하여 가위나 칼로 재단이 용이하므로, 방사선 차폐복과 같은 의류의 안감으로 사용시 신체적 부담이 훨씬 경감될 수 있다.Conventionally, an extrusion method was used to manufacture radiation shielding films, but in this case, there was a problem that high-density filling of nanometer-sized tungsten particles was difficult. Accordingly, conventionally, radiation shielding materials were manufactured in the form of sheets over a certain thickness rather than in the form of thin films, and silicone etc. were mixed for flexibility, but in this case, it was not easy to cut them into the desired shape or size due to the thick and hard material of the shielding sheets. In addition, there was a disadvantage in that the density of the radiation shielding material was low and it was not uniformly distributed within the sheet, so it did not show consistent shielding performance. However, the present disclosure uniformly disperses tungsten particles in a solution using a split stirring process and processes them into a film form by extrusion molding, thereby manufacturing an ultra-thin film of 0.01 mm or less while filling nanometer-sized tungsten particles at high density. This not only improves the radiation shielding ability by more than 20% compared to the same thickness, but also improves the tensile strength by more than 30%. In addition, the film according to the present disclosure is not only light and thin, but also has excellent flexibility and is easy to cut with scissors or a knife, so the physical burden can be greatly reduced when used as a lining for clothing such as radiation shielding clothing.
본 개시의 일 실시예로서, 상기 방사선 차폐 필름의 x-선 차폐율은 60 내지 120kVp의 관전압 범위에서 측정시 70 내지 95%일 수 있다. 구체적으로, 상기 필름의 x-선 차폐율은 60kVp의 관전압 범위에서 측정시 80 내지 90%, 80kVp의 관전압 범위에서 측정시 75 내지 85%, 100kVp의 관전압 범위에서 측정시 70 내지 80%, 120kVp의 관전압 범위에서 측정시 65 내지 80%일 수 있다.As an example of the present disclosure, the x-ray shielding rate of the radiation shielding film may be 70 to 95% when measured in a tube voltage range of 60 to 120 kVp. Specifically, the x-ray shielding rate of the film is 80 to 90% when measured in a tube voltage range of 60 kVp, 75 to 85% when measured in a tube voltage range of 80 kVp, 70 to 80% when measured in a tube voltage range of 100 kVp, and 120 kVp. When measured in the tube voltage range, it may be 65 to 80%.
일 실시예로서, 상기 방사선 차폐 필름의 인장강도는 10 내지 15MPa일 수 있다. 구체적으로, 상기 인장강도는 10 MPa 이상, 11 MPa 이상, 12 MPa 이상 또는 13 MPa일 수 있으며, 15 MPa 이하, 14 MPa 이하, 13 MPa 이하 또는 12 MPa 이하일 수 있다. 종래 방사선 차폐 필름의 경우 0.01 내지 0.025mm의 두께로 제조시 인장강도가 8 MPa 이하로 낮아 가공 후 사용상의 문제가 발생되었던 것과 달리, 본 개시에 따른 필름은 텅스텐 분말을 고함량으로 포함함에 도 인장강도가 10 MPa 이상, 보다 구체적으로는 12 MPa 이상이므로, 가공성과 사용성이 우수하다.As an example, the tensile strength of the radiation shielding film may be 10 to 15 MPa. Specifically, the tensile strength may be 10 MPa or more, 11 MPa or more, 12 MPa or more, or 13 MPa, and may be 15 MPa or less, 14 MPa or less, 13 MPa or less, or 12 MPa or less. Unlike the conventional radiation shielding film, which had a low tensile strength of 8 MPa or less when manufactured at a thickness of 0.01 to 0.025 mm, causing problems in use after processing, the film according to the present disclosure has tensile strength even though it contains a high content of tungsten powder. Since the strength is 10 MPa or more, more specifically 12 MPa or more, processability and usability are excellent.
본 개시의 일 실시예는 상술된 방사선 차폐 필름을 포함하는 방사선 차폐복(방사선 차폐 의류) 또는 방사선 차폐시설의 건축재료를 제공할 수 잇다. 예를 들어, 상기 방사선 차폐 필름은 방사선 차폐복, 방사선 차폐 커텐, 방호벽, 벽지, 건설 내장재 등일 수 있으며, 구체적으로 의료 분야에서 사용하기 위한 것일 수 있으나, 이에 한정되지 않는다. One embodiment of the present disclosure can provide a radiation shielding suit (radiation shielding clothing) or a building material for a radiation shielding facility including the radiation shielding film described above. For example, the radiation shielding film may be a radiation shielding suit, radiation shielding curtain, protective wall, wallpaper, construction interior material, etc., and may be specifically for use in the medical field, but is not limited thereto.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예들에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be obvious to those skilled in the art that the scope of the present invention should not be construed as limited by these examples.
[실시예 1][Example 1]
본 개시의 일 실시예에 따른 방사선 차폐 필름을 다음과 같은 방법으로 제조하였다. A radiation shielding film according to an embodiment of the present disclosure was manufactured in the following manner.
먼저, 200nm 이하로 분쇄된 텅스텐 분말(제조사: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China)을 오븐에 넣고 60℃에서 24시간 동안 건조하였다. 또한 고분자 물질로 폴리에틸렌을 DMF(N-dimethylformamide, 99.5%) 용매에 완전히 용해시킨 후, 이를 최소 12시간동안 방치하여 내부 기포를 제거하여, 캐스터 용액을 제조하였다. 상기 제조된 캐스터 용액에 분쇄된 텅스텐 분말의 일부를 첨가하고, 3000rpm의 속도로 10-15분 동안 교반기를 사용하여 교반하여 캐스터 용액 내에 텅스텐 입자를 균일하게 분산시켰다. 남은 텅스텐 분말의 일부를 동일하게 캐스터 용액내 투입 및 교반하였으며, 이와 같은 분할 교반과정을 수회 반복하였다. 텅스텐 분말을 캐스터 용액내 모두 투입하고 분산시킨 후, 가소제로 DINP(Diisononyl phthalate)를 더 첨가하여 미세기공을 제거하였다. First, tungsten powder pulverized to 200 nm or less (manufacturer: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China) was placed in an oven and dried at 60°C for 24 hours. In addition, polyethylene as a polymer material was completely dissolved in DMF (N-dimethylformamide, 99.5%) solvent, and then left for at least 12 hours to remove internal bubbles to prepare a caster solution. A portion of the pulverized tungsten powder was added to the prepared caster solution, and stirred using a stirrer at a speed of 3000 rpm for 10-15 minutes to uniformly disperse the tungsten particles in the caster solution. A portion of the remaining tungsten powder was similarly added and stirred into the caster solution, and this division and stirring process was repeated several times. After all the tungsten powder was added and dispersed in the caster solution, DINP (Diisononyl phthalate) was added as a plasticizer to remove micropores.
상기 캐스터 용액을 필터를 통해 이물질을 제거한 후, 필름에 도포하고, 60-90℃의 열을 가하여 20MPa의 압력으로 압착 성형하여, 필름 형태로 가공하였다. After removing foreign substances from the caster solution through a filter, it was applied to a film, heated at 60-90°C, pressed and molded at a pressure of 20 MPa, and processed into a film form.
상기 제조된 필름내 포함된 텅스텐 분말의 함량을 필름 총 중량에 대하여 92 중량%이며, 필름의 두께는 0.01mm였다.The content of tungsten powder contained in the manufactured film was 92% by weight based on the total weight of the film, and the thickness of the film was 0.01mm.
[비교예 1][Comparative Example 1]
본 개시의 비교예로서, 10-200 μm의 평균 입자 크기로 분쇄된 텅스텐 분말(제조사: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China)을 사용하여 종래 기술에 따라 차폐시트를 제조하였다. 상기 제조된 필름내 포함된 텅스텐 분말의 함량을 필름 총 중량에 대하여 88 내지 92 중량%이며, 필름의 두께는 0.01mm였다.As a comparative example of the present disclosure, a shielding sheet was manufactured according to the prior art using tungsten powder (manufacturer: Beijing Tianlong tungsten Technology Co. Ltd., Beijing, China) ground to an average particle size of 10-200 μm. The content of tungsten powder contained in the manufactured film was 88 to 92% by weight based on the total weight of the film, and the thickness of the film was 0.01 mm.
[시험예 1][Test Example 1]
본 개시의 일 실시예에 따라 제조된 방사선 차폐 필름내 텅스텐 분말의 입자 분포를 확인하기 위해 전계방사형 주사전자현미경(FESEM) 이미지를 촬영하여 도 1a및 도 1b에 나타내었다. 그 결과, 도 1a에 나타난 바와 같이 본 개시의 실시예 1에 따른 차폐필름은 200nm 이하의 텅스텐 분말이 필름내 고밀도로 균일하게 분산되어 있었지만, 종래 기술에 따른 비교예 1은 도 1b에 나타난 바와 같이 텅스텐 분말의 입자 크기가 마이크로 사이즈로 크며, 부분적으로 응집되어 필름내 불균일하게 분산되어 있음을 확인할 수 있다. 또한, 비교예 1은 용매 용해를 거쳐 12시간씩 방치하는 과정을 생략하였기 때문에 본 개시의 필름에 비해 입자 간 공극이 발생할 가능성이 크다.To confirm the particle distribution of tungsten powder in the radiation shielding film manufactured according to an example of the present disclosure, a field emission scanning electron microscope (FESEM) image was taken and shown in FIGS. 1A and 1B. As a result, as shown in FIG. 1A, the shielding film according to Example 1 of the present disclosure had tungsten powder of 200 nm or less uniformly dispersed at high density within the film, but Comparative Example 1 according to the prior art, as shown in FIG. 1B. It can be seen that the particle size of the tungsten powder is micro-sized and is partially agglomerated and unevenly dispersed within the film. In addition, since Comparative Example 1 omitted the process of solvent dissolution and leaving for 12 hours at a time, there is a greater possibility of voids between particles compared to the film of the present disclosure.
[시험예 2][Test Example 2]
본 개시의 일 실시예에 따라 제조된 방사선 차폐 필름내 텅스텐 분말의 방사선 차폐성능과 인장강도를 확인하기 위하여 아래의 실험을 수행하였다.The following experiment was performed to confirm the radiation shielding performance and tensile strength of the tungsten powder in the radiation shielding film manufactured according to an example of the present disclosure.
방사선 차폐율은 아래 수학식 1을 이용하여 수행하였다.The radiation shielding rate was performed using Equation 1 below.
[수학식] [Equation]
Figure PCTKR2023004824-appb-img-000001
Figure PCTKR2023004824-appb-img-000001
여기서 S는 차폐율, To은 입사선량(mR), T는 투과선량(mR)이다. 구체적으로, T는 X선과 검출기 사이에 차폐필름이 있는 상태에서 측정한 노출량이고, To은 X선과 검출기 사이에 차폐필름 없이 측정한 노출량이다. 측정된 선량 조건에서 관전류는 200mA이고 조사 시간은 0.1초였다. X선 발생기(DK-525, Toshiba E7239X, Tokyo)와 보정된 이온챔버(Model PM-30, PR-18)를 이용하여 노출량을 10회 측정한 후 평균값을 사용하였다. Here, S is the shielding ratio, To is the incident dose (mR), and T is the transmitted dose (mR). Specifically, T is the exposure amount measured with a shielding film between the X-rays and the detector, and To is the exposure amount measured without a shielding film between the X-rays and the detector. Under the measured dose conditions, the tube current was 200 mA and the irradiation time was 0.1 seconds. Exposure was measured 10 times using an X-ray generator (DK-525, Toshiba E7239X, Tokyo) and a calibrated ion chamber (Model PM-30, PR-18), and the average value was used.
인장강도는 KS K 0520:2015 시험법에 따라 측정하였다.Tensile strength was measured according to the KS K 0520:2015 test method.
방사선 차단율(%)Radiation blocking rate (%)
60 kVp60kVp 80 kVp80kVp 100 kVp100kVp 120 kVp120kVp
실시예 1Example 1 82.0982.09 78.5378.53 73.2973.29 70.870.8
비교예 1Comparative Example 1 61.0161.01 50.5350.53 41.0241.02 40.6640.66
인장강도
(MPa)
tensile strength
(MPa)
실시예 1Example 1 12.812.8
비교예 1Comparative Example 1 88
그 결과, 상기 표 1에 나타난 바와 같이 본 개시에 따른 실시예 1은 200nm 이하의 미립자의 텅스텐 분말을 포함함으로 인해 비교예 1과 동일한 두께를 가짐에도 텅스텐 분말이 92 중량%의 고함량으로 포함되고 균일하게 분산되어 있어, 비교예 1보다 방사선 차단성능이 현저히 우수한 것으로 나타났다. 또한, 표 2에 나타난 바와 같이, 동일한 두께 조건에서 기존 차폐시트인 비교예 1의 인장강도는 8MPa지만, 본 개시의 실시예 1은 텅스텐 분말을 92 중량%의 고함량으로 포함함에도 인장강도가 12.8MPa로 향상되어, 사용시 균열없이 우수한 품질을 가짐을 확인할 수 있다.As a result, as shown in Table 1, Example 1 according to the present disclosure contains tungsten powder of fine particles of 200 nm or less, so that although it has the same thickness as Comparative Example 1, tungsten powder is contained in a high content of 92% by weight. Since it was uniformly dispersed, it was found to have significantly better radiation blocking performance than Comparative Example 1. In addition, as shown in Table 2, under the same thickness conditions, the tensile strength of Comparative Example 1, which is an existing shielding sheet, was 8 MPa, but Example 1 of the present disclosure had a tensile strength of 12.8 even though it contained a high content of 92% by weight of tungsten powder. It has been improved to MPa, and it can be confirmed that it has excellent quality without cracking when used.

Claims (12)

  1. 텅스텐 분말 및 고분자 베이스를 포함하는 방사선 차폐 필름이며,It is a radiation shielding film containing tungsten powder and a polymer base,
    상기 텅스텐 분말의 평균 입자 크기는 80 내지 200 nm이고,The average particle size of the tungsten powder is 80 to 200 nm,
    상기 필름의 두께는 0.01 내지 0.025mm인, 방사선 차폐 필름.A radiation shielding film, wherein the film has a thickness of 0.01 to 0.025 mm.
  2. 제1항에 있어서, 상기 필름은 상기 텅스텐 분말을 필름 총 중량에 대하여 88 내지 92 중량%로 포함하는, 방사선 차폐 필름.The radiation shielding film of claim 1, wherein the film contains 88 to 92% by weight of the tungsten powder based on the total weight of the film.
  3. 제1항에 있어서, 상기 텅스텐 분말은 필름에 균일하게 분산되어 있는 것인, 방사선 차폐 필름.The radiation shielding film of claim 1, wherein the tungsten powder is uniformly dispersed in the film.
  4. 제1항에 있어서, 상기 고분자 베이스는 폴리에틸렌 또는 고밀도 폴리에틸렌을 포함하는, 방사선 차폐 필름.The radiation shielding film of claim 1, wherein the polymer base includes polyethylene or high-density polyethylene.
  5. 제1항에 있어서, 상기 방사선 차폐 필름의 x-선 차폐율은 60 내지 120kVp의 관전압 범위에서 측정시 70 내지 95%인, 방사선 차폐 필름.The radiation shielding film of claim 1, wherein the x-ray shielding rate of the radiation shielding film is 70 to 95% when measured in a tube voltage range of 60 to 120 kVp.
  6. 제1항에 있어서, 상기 방사선 차폐 필름의 인장강도는 10 내지 15MPa인, 방사선 차폐 필름.The radiation shielding film of claim 1, wherein the radiation shielding film has a tensile strength of 10 to 15 MPa.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 방사선 차폐 필름을 포함하는 방사선 차폐복. A radiation-shielding suit comprising the radiation-shielding film according to any one of claims 1 to 6.
  8. 제1항 내지 제6항 중 어느 한 항에 따른 방사선 차폐 필름을 포함하는 방사선 차폐시설의 건축재료.A building material for a radiation shielding facility comprising the radiation shielding film according to any one of claims 1 to 6.
  9. 제1항 내지 제6항의 방사선 차폐 필름의 제조방법으로,A method for producing the radiation shielding film of claims 1 to 6,
    평균 입자 크기가 80 내지 200 nm인 텅스텐 분말을 분할하여 일부를 고분자 베이스를 포함하는 캐스팅 용액에 첨가하고 교반하여 텅스텐 분말을 용액내에 분산시키는 단계를 2회 이상 반복 수행하는 단계; 및Splitting tungsten powder with an average particle size of 80 to 200 nm, adding a portion of it to a casting solution containing a polymer base, and stirring to disperse the tungsten powder in the solution, repeating the step two or more times; and
    상기 텅스텐 분말이 분산된 용액을 필름에 도포하고, 열을 가해 압착 성형하는 단계;Applying the solution in which the tungsten powder is dispersed to a film and pressing and molding it by applying heat;
    를 포함하는, 방사선 차폐 필름의 제조방법. Method for producing a radiation shielding film, including.
  10. 제9항에 있어서, 상기 교반 속도는 2000 내지 4000 rpm이며, 교반 시간은 10 내지 15분인, 방사선 차폐 필름의 제조방법.The method of claim 9, wherein the stirring speed is 2000 to 4000 rpm and the stirring time is 10 to 15 minutes.
  11. 제9항에 있어서, 상기 압착 성형하는 단계에서 가해지는 열의 온도는 60 내지 90℃이고, 가해지는 압력은 10 내지 30MPa인, 방사선 차폐 필름의 제조방법.The method of claim 9, wherein the temperature of heat applied in the compression molding step is 60 to 90° C., and the pressure applied is 10 to 30 MPa.
  12. 제9항에 있어서, 텅스텐 분말을 분쇄하여 평균 입자 크기가 80 내지 200 nm인 텅스텐 분말을 제조하는 단계를 더 포함하는, 방사선 차폐 필름의 제조방법.The method of claim 9, further comprising grinding the tungsten powder to produce tungsten powder having an average particle size of 80 to 200 nm.
PCT/KR2023/004824 2022-04-27 2023-04-10 Radiation shielding film and preparation method therefor WO2023211009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220051916A KR102677296B1 (en) 2022-04-27 Radiation shielding film and Manufacturing method of the same
KR10-2022-0051916 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023211009A1 true WO2023211009A1 (en) 2023-11-02

Family

ID=88519296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004824 WO2023211009A1 (en) 2022-04-27 2023-04-10 Radiation shielding film and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2023211009A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100047510A (en) * 2008-10-29 2010-05-10 한국원자력연구원 Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
WO2013039195A1 (en) * 2011-09-14 2013-03-21 グンゼ株式会社 Radiation protective fabric
JP5848991B2 (en) * 2012-03-05 2016-01-27 三菱樹脂株式会社 Laminated porous film
KR101860052B1 (en) * 2018-01-05 2018-05-23 주식회사 비 에스 지 Eco-friendly radiation shieding sheet compositon and Manufacturing method thereof
JP2022522332A (en) * 2019-03-01 2022-04-18 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation opaque medical parts and medical devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100047510A (en) * 2008-10-29 2010-05-10 한국원자력연구원 Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
WO2013039195A1 (en) * 2011-09-14 2013-03-21 グンゼ株式会社 Radiation protective fabric
JP5848991B2 (en) * 2012-03-05 2016-01-27 三菱樹脂株式会社 Laminated porous film
KR101860052B1 (en) * 2018-01-05 2018-05-23 주식회사 비 에스 지 Eco-friendly radiation shieding sheet compositon and Manufacturing method thereof
JP2022522332A (en) * 2019-03-01 2022-04-18 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation opaque medical parts and medical devices

Also Published As

Publication number Publication date
KR20230152321A (en) 2023-11-03

Similar Documents

Publication Publication Date Title
DE102015215493B4 (en) Method of making gadolinium oxysulfide scintillation ceramics
KR100203378B1 (en) Fabrication method for ceramic core
EP1691761B1 (en) A low-weight ultra-thin flexible radiation attenuation composition
WO2021107440A1 (en) Method for producing uranium carbide/mwcnt disc which is isol target material, and uranium carbide/mwcnt disc produced by same
CN103554847B (en) Anti-ultraviolet polyester fiber master batch, its preparation method and comprise its production method of polyester fiber
DE102015215505B4 (en) Process for the preparation of gadolinium oxysulfide (Gd2O2S) scintillation ceramics
WO2023211009A1 (en) Radiation shielding film and preparation method therefor
CN1204568C (en) Transparent conductive film and production method thereof
KR20170086422A (en) Unleaded radioactive ray shielding sheet and manufacturing method for the same
WO2021096014A1 (en) Hybrid lead-free radiation shielding material, and radiation suit using same
EP3650589A1 (en) Thermally conductive particle-filled fiber
KR102677296B1 (en) Radiation shielding film and Manufacturing method of the same
KR102114825B1 (en) Method of manufacturing composite material for nuclear radiation shielding
WO2023282545A1 (en) Lead-free gamma radiation shielding sheet and manufacturing method therefor
EP1460671A1 (en) Sheet material for forming dielectric layer for plasma display panel
KR20000047821A (en) Method for producing high density indium-tin-oxide sintered body
WO2022139258A1 (en) Method for manufacturing plastic-based radiation-shielding body, radiation-shielding body thereof, and radiation shielding apparatus using same
CN114795973B (en) Dental filler and preparation method thereof
KR102543971B1 (en) Radiation shielding sheet comprising oyster shell and manufacturing method thereof
WO2023090883A1 (en) Fiber for radiation-protective clothing, and manufacturing method therefor
KR20210047428A (en) Slurry composite containing zirconia with high transmittance and strength, Preparation method thereof, and Ceramic structure using the same
WO2022131658A1 (en) Radiation shielding fabric, method for manufacturing same, and radiation shielding article using same
JP2002080675A (en) Acrylic binder resin composition for baking-type paste
KR101884976B1 (en) Ceramic thick film using aqueous binder and solid oxide fuel cells using the same
CN117306270A (en) Leadless flexible X-ray protection material with brick mud bionic structure and preparation and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796658

Country of ref document: EP

Kind code of ref document: A1