WO2023210489A1 - Black resin composition, black matrix substrate, and display device - Google Patents

Black resin composition, black matrix substrate, and display device Download PDF

Info

Publication number
WO2023210489A1
WO2023210489A1 PCT/JP2023/015752 JP2023015752W WO2023210489A1 WO 2023210489 A1 WO2023210489 A1 WO 2023210489A1 JP 2023015752 W JP2023015752 W JP 2023015752W WO 2023210489 A1 WO2023210489 A1 WO 2023210489A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
black
mass
resin composition
titanium nitride
Prior art date
Application number
PCT/JP2023/015752
Other languages
French (fr)
Japanese (ja)
Inventor
雅敏 石塚
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023210489A1 publication Critical patent/WO2023210489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a black resin composition, a black matrix substrate, and a display device.
  • a display device is composed of a solid-state image sensor such as a CCD (charge-coupled device) and a circuit board on which the solid-state image sensor is mounted.
  • This display device is installed in digital cameras, camera-equipped mobile phones, smartphones, and the like.
  • a solid-state image sensor is provided with a light-shielding property for the purpose of suppressing the generation of noise due to reflection of visible light.
  • a black composition containing a black pigment such as carbon black or titanium black.
  • the composition containing the black resin composition of Patent Document 1 is a composition that can produce a cured film that has excellent anticorrosion properties for electrodes and excellent patterning properties, and contains titanium nitride-containing particles and titanium oxide. and silica particles are dispersed using a disperser, and further contains black pigment particles other than titanium nitride-containing particles.
  • the black resin composition of Patent Document 1 contains titanium nitride-containing particles containing chlorine atoms, the content of chlorine atoms in the particles is 0.001 to 0.3% by mass, and the average primary particle size is 10% by mass. ⁇ 30 nm, and 60 or more of the 100 particles observed in photographic observation of the primary particle image of the particles are spherical.
  • composition of Patent Document 1 has the light-shielding performance and low reflection performance required for a black matrix of a color filter disposed in a solid-state image sensor or a light-shielding film around an image sensor (frame light-shielding film), the composition has further light-shielding performance.
  • a self-luminous display such as an in-vehicle liquid crystal display or a micro LED display that requires low reflection performance
  • an object of the present invention is to provide a black resin composition capable of obtaining a cured film that forms a black matrix or image sensor peripheral light shielding film that has both high light shielding properties and low reflection. Furthermore, it is an object of the present invention to provide a display element having high light-shielding properties, low reflectivity, high visibility, and design.
  • the present invention provides a black resin composition, a black matrix substrate, and a display device.
  • a light-shielding material, transparent particles, a resin, and a solvent the light-shielding material contains titanium nitride particles, the mass of the titanium nitride particles is 1.3 to 15 times the mass of the transparent particles, and the titanium nitride
  • 2. The black resin composition according to 1, wherein the mass of the titanium nitride particles is 2.0 to 4.8 times the mass of the transparent particles. 3.
  • the light shielding material further contains other black pigment particles, and the average secondary particle size of the other black pigment particles is 20 to 80% of the average secondary particle size of the titanium nitride particles.
  • This is a black resin composition.
  • 4. The black resin composition according to 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 0.1 to 0.8 times the mass of the titanium nitride particles. . 5.
  • 3. The black resin composition according to 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 4.5 to 49 times the mass of the titanium nitride particles. 6. 3.
  • a black matrix substrate comprising a transparent substrate and a cured film of the black resin composition according to items 1 to 10 formed on the transparent substrate, wherein the cured film has an optical density (OD value) per 1.0 ⁇ m of film thickness. 2.4 to 4.5, the reflected color a* value is 0.1 to 3.0, and the transparent substrate has a reflectance of 4.5% to 5.5%.
  • 12. 12 A display device including the black matrix substrate according to 11 above.
  • the black resin composition of the present invention it is possible to obtain a cured film that forms a black matrix or image sensor peripheral light-shielding film that has both high light-shielding properties and low reflection. Furthermore, a display device using this cured film on a black matrix substrate has excellent characteristics of achieving both high light-shielding properties and low reflection.
  • FIG. 1 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to an embodiment of the present invention.
  • the layer of the black resin composition contains a light shielding material containing titanium nitride particles, transparent particles, and a resin.
  • FIG. 2 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to another embodiment of the present invention.
  • the layer of the black resin composition contains a light shielding material containing titanium nitride particles and other black pigment particles, transparent particles, and a resin.
  • FIG. 2 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to another embodiment of the present invention.
  • the layer of the black resin composition contains titanium nitride particles, other black pigment particles, and a light-shielding material, transparent particles, and resin containing further black pigment particles.
  • the black resin composition of the present invention includes a light shielding material, transparent particles, a resin, and a solvent, and the light shielding material contains titanium nitride particles.
  • the black resin composition of the present invention can be formed into a film on a substrate by a method such as coating to form a black layer.
  • the light-shielding material contained in the black resin composition contains black pigment particles (also referred to as light-shielding material pigment particles), and contributes to light-shielding properties by containing the titanium nitride particles of the present invention.
  • the transparent particles contained in the black resin composition have the effect of finely diffusing light rays that pass through the layer of the black resin composition and suppressing reflection of the entire layer of the black resin composition.
  • the mass of the titanium nitride particles of the present invention is 1.3 to 15.0 times the mass of the transparent particles contained in the black resin composition, and the average secondary particle size of the titanium nitride particles is 160 nm to 220 nm.
  • a layer of a black resin composition having high light-shielding properties and low reflectivity is formed.
  • the black layer of the black matrix substrate can be provided by curing the layer of the black resin composition.
  • the black matrix substrate containing the black resin composition of the present invention can provide a display device having high light-shielding properties and low reflectivity.
  • “mass" is synonymous with "weight.”
  • FIG. 1 shows an embodiment in which a layer 10 of the black resin composition of the present invention is formed on a base material 5, and the layer 10 of the black resin composition includes a light shielding material 1, transparent particles 2, and a resin 3.
  • the light shielding material 1 contains titanium nitride particles 1a. Titanium nitride particles 1a and transparent particles 2 are dispersed in resin 3. The titanium nitride particles 1a have a larger particle size than the transparent particles 2, and the mass contained in the black resin composition is also larger compared to the transparent particles 2. External light rays finely diffused by the transparent particles 2 are blocked by the surfaces of the titanium nitride particles 1a, making them difficult to reflect, and as a result, an effect of suppressing reflection can be obtained. At this time, the mass ratio of the titanium nitride particles 1a to the transparent particles of the present invention and the average secondary particle size of the titanium nitride particles 1a are important. Details will be described later.
  • FIG. 2 shows an embodiment in which a layer 10 of the black resin composition of the present invention is formed on a base material 5, and the layer 10 of the black resin composition includes a light shielding material 1, transparent particles 2, and a resin 3.
  • the light shielding material 1 contains titanium nitride particles 1a and other black pigment particles 1b which are other types of pigments.
  • the light-shielding material 1 is composed of single or multiple types of black pigment particles, and various properties such as light-shielding properties, reflective properties, reflective chromaticity, and electrical resistance change depending on the type and content ratio of the black pigment particles contained. .
  • titanium nitride particles of the present invention which is one of the black pigment particles that are a light-shielding material
  • titanium carbide particles and/or carbon black which are other black pigment particles and other black pigment particles. An example is shown below.
  • the titanium nitride particles 1a of the present invention contain titanium nitride TiN as a main component, and titanium oxide TiO 2 as subcomponents, lower titanium oxide represented by Ti n O 2n-1 (1 ⁇ n ⁇ 20), and TiO x Contains titanium oxynitride expressed by N y (0.1 ⁇ x ⁇ 2.0, 0 ⁇ y ⁇ 2.0).
  • pure titanium nitride TiN which has less oxidation on the particle surface, that is, contains less oxygen, is preferable because higher light-shielding properties can be obtained, and it is particularly preferable that it does not contain TiO 2 as a subcomponent.
  • the content of oxygen atoms is preferably 10% by mass or less, more preferably 6% by mass or less.
  • TiO x N y is a composition formula representing the molar ratio of constituent elements, where x represents the molar ratio of oxygen to 1 mole of titanium, and y represents the molar ratio of nitrogen to 1 mole of titanium.
  • y can take a number greater than 0 and less than 2 since titanium nitride mainly consists of titanium nitride, y is preferably 0.1 to 0.99, more preferably 0.1 to 0.5. Further, the ratio x/y of x to y is preferably 0.01 to 0.5, more preferably 0.05 to 0.3.
  • the content of titanium atoms is analyzed by ICP emission spectroscopy
  • the content of nitrogen atoms is analyzed by inert gas melting - thermal conductivity method
  • the content of oxygen atoms is analyzed by inert gas melting - infrared absorption method. It can be analyzed by the method. Based on these analysis results, n, x, and y are calculated.
  • atoms other than the titanium atoms, nitrogen atoms, and oxygen atoms mentioned above may be contained as impurities, but if the amount of impurities is small and difficult to identify, the particles may not be taken into account. Perform calculations.
  • the titanium nitride particles of the present invention preferably do not contain chlorine atoms.
  • the black resin composition of the present invention includes a light shielding material, transparent particles, a resin, and a solvent.
  • the proportion of components other than the solvent in the black resin composition that is, solid components consisting of light shielding material, transparent particles, and resin, can be set depending on the application and processing method, but it is possible to If it is too high, the drying properties will deteriorate, and if it is too high, the coating properties will deteriorate, so it is preferably about 1% to 50%, more preferably about 3% to 40%, and even more preferably 5% to 25%.
  • the light-shielding property of the resin film obtained by processing the black resin composition of the present invention is determined by the proportion of the light-shielding material in the solid content in the black resin composition.
  • the ratio of the light shielding material in the solid content is preferably 5% to 75%, and 20% to 70%, because if it is low, the light shielding property will deteriorate, and if it is high, the properties of the film such as adhesion and processability will be impaired. % is more preferred, and 35% to 65% is even more preferred. Note that the proportion occupied by this light-shielding material refers to the proportion of the mass that includes all black pigment particles that contribute to single or multiple light-shielding properties.
  • the mass of the titanium nitride particles 1a of the present invention is 1.3 to 15 times the mass of the transparent particles 2. If the mass of the titanium nitride particles is less than 1.3 times the mass of the transparent particles, the light shielding properties of the titanium nitride particles 1a will be insufficient.
  • the mass of the titanium nitride particles is preferably 2.0 times or more, more preferably 3.0 times or more, the mass of the transparent particles. On the other hand, if the mass of the titanium nitride particles 1a is greater than 15 times the mass of the transparent particles 2, the antireflection performance of the transparent particles 2 will not be sufficiently effective, and the reflectance will increase.
  • the mass of the titanium nitride particles is preferably 4.8 times or less, more preferably 4.0 times or less, relative to the mass of the transparent particles.
  • the mass of the titanium nitride particles 1a is 1.3 to 15.0 times the mass of the transparent particles 2, but the mass proportion of the titanium nitride particles 1a contained in the black resin composition of the present invention is low. In some cases, the mass ratio to the transparent particles tends to be small.
  • the mass ratio of the titanium nitride particles 1a to the transparent particles tends to be small.
  • the mass ratio of the titanium nitride particles 1a when the mass ratio of the titanium nitride particles 1a is high, the mass ratio with the transparent particles tends to become large. In other words, as long as the mass proportion of each component contained in the black resin composition does not exceed the total amount of 100%, the mass of the titanium nitride particles 1a is 1.3 to 15 times the mass of the transparent particles 2, More preferably, the mass of the titanium nitride particles 1a is 2.0 to 4.9 times the mass of the transparent particles 2.
  • the mass of the titanium nitride particles and the transparent particles can be adjusted by using a dispersion liquid in which pigments such as titanium nitride particles and transparent particles are dispersed in advance using a bead mill or the like so as to have an arbitrary concentration. Moreover, the mass of the pigment or transparent particles in the resin composition can be confirmed by quantitatively analyzing the constituent elements of the resin composition using an ICP mass spectrometer.
  • the average secondary particle size of the titanium nitride particles 1a is 160 nm to 220 nm.
  • the average secondary particle size of the titanium nitride particles 1a is preferably 190 nm or less.
  • the average secondary particle size of the titanium nitride particles 1a is smaller than 160 nm, the reflectance becomes high and the effect of lowering the reflectance due to the transparent particles described below becomes weak.
  • the average secondary particle size of the titanium nitride particles is preferably 170 nm or more.
  • the "average secondary particle size" refers to a black resin composition containing titanium nitride particles 1a, etc., diluted with a dispersion solvent or an equivalent solvent, and measured by a dynamic light scattering method. It refers to the average particle diameter value of particles determined by the cumulant method, and for example, in the case of a black resin composition consisting of titanium nitride particles 1a and polyimide resin, it is 0.24 in the case of a solvent of N-methyl-2-pyrrolidone. This is a value measured after diluting to mass % particle concentration.
  • the method for producing primary particles such as the titanium nitride particles 1a of the present invention is not particularly limited, but includes a thermal plasma method using a nitrogen-containing gas as a plasma gas.
  • the thermal plasma method first, the powder is dispersed into primary particles, and at the same time, these powders are further uniformly mixed, and the powder is fed into a thermal plasma flame while maintaining this mixed state.
  • the homogeneously mixed powder material atomized into the thermal plasma flame then evaporates into a more highly dispersed mixture in the gas phase, after which this mixture is quenched in a chamber to form primary particles.
  • the method is to do so.
  • the light shielding material further contains other black pigment particles, and the average secondary particle size of the other black pigment particles is 20% of the average secondary particle size of the titanium nitride particles 1a. It is preferably 80% (see Figure 2).
  • other black pigment particles 1b having a smaller average secondary particle size than the titanium nitride particles 1a other black pigment particles can be added to the gaps between adjacent titanium nitride particles 1a having a larger secondary particle size. The particles 1b are more easily dispersed, and the light-shielding performance of the black resin composition layer 10 is further improved.
  • the black pigment can be densely arranged in the film while increasing the light blocking performance. It is possible to suppress an excessive increase in reflectance due to
  • the average secondary particle size of the other black pigment particles is more preferably 50% or more of the average secondary particle size of the titanium nitride particles.
  • the average secondary particle size of the other black pigment particles is 80% or less of the average secondary particle size of the titanium nitride particles, the black pigment particles are efficiently filled into the gaps between the titanium nitride particles 1a. By arranging them in a dispersed manner, it is possible to obtain the effect of further improving light-shielding properties.
  • the average secondary particle size of the other black pigment particles is more preferably 70% or less of the average secondary particle size of the titanium nitride particles.
  • the average secondary particle size of at least one type of the other black pigment particles is within the above range, and at least the other black pigment particles It is more preferable that the average secondary particle size of the particles having the highest mass ratio among the particles is within the above range, and it is still more preferable that the average secondary particle size of two or more types of other black pigment particles is within the above range. preferable.
  • the content of the other black pigment particles 1b is preferably 0.1 to 0.8 times the mass of the titanium nitride particles 1a.
  • the mass 0.1 times or more the mass of the titanium nitride particles 1a By making the mass 0.1 times or more the mass of the titanium nitride particles 1a, the amount of other black pigment particles 1b that can be dispersed in the gaps between the titanium nitride particles 1a is ensured, and the light-shielding property is maintained.
  • the mass by setting the mass to 0.8 times or less than the mass of the titanium nitride particles 1a, the antireflection performance achieved by the combination of the titanium nitride particles 1a and transparent particles, which will be described later, can be maintained. Further, when there are two or more types of other black pigment particles, it is preferable that the total mass of the other black pigment particles is within the above range.
  • the other black pigment particles 1b may be made of any material as long as it is different from the titanium nitride particles 1a, including carbon black, perylene black, aniline black, graphite, as well as titanium, copper, iron, manganese, cobalt, and chromium. , metal fine particles such as nickel, zinc, calcium, or silver, and oxides, composite oxides, sulfides, nitrides, and carbides of these metals. Among these, titanium carbide and carbon black are particularly preferred from the viewpoint of light-shielding properties and reflective chromaticity.
  • the other black pigment particles contain titanium carbide particles.
  • the titanium carbide particles mainly consist of titanium carbide TiC, and contain titanium oxide TiO 2 , lower titanium oxide represented by Ti O 2n-1 (1 ⁇ n ⁇ 20) and, in some cases, the titanium nitride as subcomponents. .
  • Methods for synthesizing titanium carbide fine particles can be roughly divided into gas phase reaction method and liquid phase reaction method.
  • Gas phase reaction methods include electric furnace method and thermal plasma method, but they are less contaminated with impurities and have a higher particle size. Synthesis by a thermal plasma method is preferable because the diameter can be easily made uniform and productivity is high.
  • Methods for generating thermal plasma include direct current arc discharge, multilayer arc discharge, radio frequency (RF) plasma, hybrid plasma, etc., and radio frequency plasma is more preferred since it contains less impurities from the electrodes.
  • RF radio frequency
  • Examples of methods for producing titanium carbide particles using a gas phase method include a method in which titanium halide is reacted with a carbide gas such as methane gas or ethylene gas in a plasma flame.
  • Examples of the method for producing titanium carbide fine particles by a liquid phase reaction method include a method using titanium alkoxide and an organic compound that coordinates the titanium alkoxide, but is not limited to these, and any desired method can be used. Any manufacturing method may be used as long as titanium carbide particles having physical properties can be obtained. Note that various types of titanium carbide particles are commercially available, and those commercially available products can be preferably used.
  • the mass of the titanium carbide particles is preferably 0.1 to 0.8 times the mass of the titanium nitride particles. Since the mass of the titanium carbide particles is 0.1 times or more the mass of the titanium nitride particles 1a, the amount of titanium carbide particles that can be dispersed in the gaps between the titanium nitride particles 1a is ensured, and the light blocking property is improved. At the same time, a more neutral hue can be obtained compared to the case where the same amount of other black pigment particles is added.
  • the mass of the titanium carbide particles is more preferably 0.2 times or more the mass of the titanium nitride particles.
  • the mass of the titanium carbide particles is 0.8 times or less the mass of the titanium nitride particles 1a, the antireflection performance achieved by the combination of the titanium nitride particles 1a and the transparent particles can be maintained.
  • the mass of the titanium carbide particles is more preferably 0.5 times or less the mass of the titanium nitride particles.
  • the inventors found that in the case where the other black pigment particles contain titanium carbide particles, in addition to the preferable ratio range of the mass of the titanium nitride particles and the titanium carbide particles, the titanium carbide particles By setting the mass of the particles to 4.5 to 49 times the mass of the titanium nitride particles, the electrical resistance properties are improved without significantly impairing the antireflection performance of the titanium nitride particles 1a in combination with the transparent particles. I discovered that.
  • the mass of the titanium carbide particles is more preferably 5.5 times or more the mass of the titanium nitride particles.
  • the electrical resistance properties can be improved without significantly impeding the antireflection performance of the titanium nitride particles 1a in combination with the transparent particles. improves.
  • the mass of the titanium carbide particles is more preferably 35 times or less the mass of the titanium nitride particles.
  • the other black pigment particles contain carbon black particles.
  • the carbon black particles it is preferable to use carbon black particles whose insulation properties have been improved by surface treatment.
  • treatments for increasing insulation include surface coating with a resin, wet oxidation treatment of the surface, and surface modification with an organic group consisting of a non-polymer group.
  • carbon black particles are commercially available, and these commercially available products can be preferably used. It is more preferable to use carbon black particles whose surface has been modified with an organic group consisting of a non-polymer group. In particular, by using carbon black particles whose surface has been modified with an organic group having a sulfonic acid group, high insulation properties can be achieved. This is more preferable because it can suppress a decrease in insulation properties during high-temperature treatment.
  • the mass of the carbon black particles is preferably 0.1 to 0.8 times the mass of the titanium nitride particles.
  • the mass of the carbon black particles is 0.1 times or more the mass of the titanium nitride particles, the light-shielding property can be further improved compared to the case where the same amount of other black pigment particles is added.
  • the mass of the carbon black particles is more preferably 0.2 times or more the mass of the titanium nitride particles.
  • the mass of the carbon black particles is 0.8 times or less the mass of the titanium nitride particles, the light shielding property can be further improved while suppressing the increase in reflectance due to the addition of the carbon black particles.
  • the mass of the carbon black particles is more preferably 0.5 times or less the mass of the titanium nitride particles.
  • FIG. 2 consists of two types of light shielding material 1, titanium nitride particles 1a and other black pigment particles 1b of a different type, but as shown in FIG. 3, another black pigment particle 1c of a different type is further included. It may be included.
  • the material of the other black pigment particles 1c may be any material as long as it is different from the titanium nitride particles 1a and the other black pigment particles 1b, and includes carbon black, perylene black, aniline black, graphite, as well as titanium, copper, and iron. , manganese, cobalt, chromium, nickel, zinc, calcium, or silver, and oxides, composite oxides, sulfides, nitrides, and carbides of these metals.
  • the other black pigment particles preferably contain titanium carbide particles and carbon black particles.
  • the titanium nitride particles 1a it is preferable for the titanium nitride particles 1a to have a low oxygen content from the viewpoint of light-shielding properties, but the lower the oxygen content, the bluer the transmitted color becomes, and the stronger the reddish chromaticity of reflection. Adding only either carbon black particles or titanium carbide particles, which have a red transmitted color, improves the reflection chromaticity to some extent, but the other particles have a strong reddish titanium nitride particle 1a with low oxygen content. By adding both titanium carbide particles as the black pigment particles 1b and carbon black particles as the other black pigment particles 1c, it becomes easier to obtain a reflective chromaticity close to an achromatic color.
  • the reflection chromaticity a* of the black resin composition 10 can be improved to an achromatic color of 1 or less.
  • the "reflection chromaticity a*” is measured from the surface on the substrate 5 side, and is based on the L*a*b* color system of the CIE International Commission on Illumination using the reflection spectrum for a standard C light source according to the method of JIS-Z8729. This is the chromaticity value of a* calculated by .
  • the mass of the carbon black particles is preferably 0.5 to 2.0 times the mass of the titanium carbide particles.
  • the mass of the carbon black particles is more preferably 0.7 times or more the mass of the titanium carbide particles.
  • the mass of the carbon black particles is 2.0 times or less the mass of the titanium carbide particles, it is possible to further suppress an increase in reflectance while obtaining the effect of improving the light shielding property by adding the carbon black particles.
  • the mass of the carbon black particles is more preferably 1.3 times or less the mass of the titanium carbide particles.
  • transparent particles are particles that are dispersed and contained in the resin 3 at a predetermined mass, and the light rays that pass through the black resin composition 10 hit the transparent particles 2 and are finely diffused in all directions, thereby forming a layer of the black resin composition 10. Suppresses overall reflection.
  • transparent refers to a state in which almost all visible light is transmitted through and the other side of an object can be seen through, and includes those that are lightly colored without being obstructed.
  • transparent particles 2 are commercially available, ranging from fine particles with an average primary particle size of several nm to coarse particles of about several ⁇ m, but in the present invention, transparent particles with an average primary particle size of 5 to 30 nm are used. is preferred.
  • the transparent particles 2 whose average primary particle size is very small compared to the black pigment particles contained in the light shielding material, the transparent particles 2 are easily dispersed in the gaps between the black pigment particles contained in the light shielding material. This is because (see FIGS. 1, 2, and 3). Black pigment particles absorb most of the external light but reflect some of the light.
  • the transparent particles By dispersing the transparent particles in the spaces between the black pigment particles in this way, the light rays that pass through the vicinity of the black pigment particles are finely and diffusely reflected, and a portion of the light that is specularly reflected on the surface of the black pigment particles is visible.
  • the proportion of regularly reflected light is reduced as a result, and reflection within the layer 10 of the black resin composition is further suppressed.
  • the authors found that by arranging transparent particles with an average primary particle size of 5 to 30 nm in the gaps between titanium nitride particles, which have an average secondary particle size of 160 nm to 220 nm, among light shielding material particles.
  • the reflectance reduction effect is particularly high compared to the case where transparent particles are not arranged.
  • transparent particles By adding transparent particles to titanium nitride particles with an average secondary particle size within the above range, it is possible to not only lower the refractive index of the film, that is, the layer of the black resin composition, but also to reduce the polarity of the light irradiated onto the film.
  • Low reflection can be achieved by suppressing reflection and effectively diffusing light and absorbing it into the film, so even when using a resin with a particularly high refractive index, it is possible to achieve a low reflection effect. can.
  • other black pigment particles are added in addition to the titanium nitride particles, the low reflection effect due to the arrangement of the titanium nitride particles and transparent particles continues.
  • the material of the transparent particles 2 is not particularly limited, a resin with a low refractive index is preferable from the viewpoint of improving antireflection performance.
  • particles made of a silicon oxide-based, fluorine-based, urethane-based, or acrylic-based resin. can be mentioned.
  • silicon oxide-based silica particles are preferred because of their good dispersibility. This is because silica particles can easily control the particle size when they are made into nanoparticles, so particle size variations are suppressed, and because they have a low refractive index equivalent to glass, they have a particularly high low reflection effect compared to other transparent particles. It's for a reason.
  • silica it is particularly preferable to use fumed silica, colloidal silica, and hollow silica particles.
  • the resin 3 is a binder for dispersing the light shielding material 1 and the transparent particles 2, and includes the light shielding material 1 and the transparent particles 2 in a solvent-soluble form to give an appropriate viscosity and quickly adheres to the base material 5. It has the function of forming and adhering a layer 10 of a black resin composition.
  • the material of the resin 3 is not particularly limited, since it is necessary to pattern the black matrix into a predetermined pattern, an alkali-soluble material such as epoxy resin, acrylic resin, siloxane polymer resin, polyimide resin, etc. that can be developed by photolithography is used. Resins are preferred. Among these, polyimide resins or acrylic resins are preferred because they have excellent storage stability of black resin compositions and heat resistance of coating films. In the present invention, the effect of reducing the reflectance can be obtained even in polyimide resins that generally have a higher refractive index than glass and some acrylic resins that have a high refractive index.
  • an alkali-soluble material such as epoxy resin, acrylic resin, siloxane polymer resin, polyimide resin, etc. that can be developed by photolithography is used. Resins are preferred. Among these, polyimide resins or acrylic resins are preferred because they have excellent storage stability of black resin compositions and heat resistance of coating films. In the present invention, the effect of reducing the reflectance can be
  • the polyimide resin is preferably a precursor, and more preferably a polyamic acid having a repeating unit having a tetracarboxylic dianhydride residue and a diamine residue.
  • Tetracarboxylic dianhydride has high light absorption at wavelengths in the visible light range and can also provide light blocking properties. The higher the electron-withdrawing property of the acid dianhydride residue, the more preferable the tetracarboxylic dianhydride is.
  • Acid dianhydride residues with high electron-withdrawing properties include ketone type residues such as benzophenone group, ether type residues such as diphenyl ether group, residues with phenyl group, and sulfone residues such as diphenyl sulfone group. Examples include those having a group.
  • the tetracarboxylic dianhydride specifically includes 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, Pyromellitic dianhydride and the like are preferred.
  • acrylic resin examples include acrylic resins having carboxyl groups.
  • acrylic resin having a carboxyl group a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound is preferable.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and vinyl acetic acid. These may be used alone or in combination with other copolymerizable ethylenically unsaturated compounds.
  • copolymerizable ethylenically unsaturated compounds include unsaturated carboxylic acid alkyl esters such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, benzyl methacrylate, and aromatic vinyl such as styrene.
  • cyclic hydrocarbon groups such as tricyclodecanyl (meth)acrylate, unsaturated carboxylic acid aminoalkyl esters such as aminoethyl acrylate, unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, vinyl acetate , carboxylic acid vinyl esters such as vinyl propionate, cyanide vinyl compounds such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, aliphatic conjugated dienes such as 1,3-butadiene and isoprene, each with an acryloyl group or methacryloyl group at the end.
  • unsaturated carboxylic acid aminoalkyl esters such as aminoethyl acrylate
  • unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate, glycidyl methacrylate
  • vinyl acetate carboxylic acid
  • Examples include, but are not limited to, polystyrene, polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, etc. having groups.
  • acrylic polymers containing (meth)acrylic acid and benzyl (meth)acrylate are particularly preferred from the viewpoints of dispersion stability and pattern processability.
  • the solvent can be used depending on the dispersion stability of the light shielding material 1 and the transparent particles 2 and the solubility of the resin 3, and is composed of water or an organic solvent.
  • the organic solvent include amide-based or lactone-based polar solvents, glycol ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, aliphatic alcohol-based solvents, ketone-based solvents, and the like. A mixed solvent of two or more of these may be used, or a mixture with an organic solvent other than these may be used.
  • an amide such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, etc. that can dissolve and mix the polyimide resin
  • Preferred are polar solvents based on lactones, polar solvents based on lactones, dimethyl sulfoxide, and the like.
  • an acrylic resin is selected as the resin 3
  • a glycol ether solvent such as propylene glycol monoethyl ether acetate that can dissolve and mix the acrylic resin, an ester solvent such as butyl acetate, or a solvent such as toluene or xylene can be used.
  • Aromatic hydrocarbon solvents are preferred.
  • the black resin composition of the present invention is made up of at least titanium nitride particles 1a having a specific average secondary particle size, transparent particles 2, resin 3, and a solvent, but a photosensitive resin or a non-photosensitive resin is selected. If necessary, additives such as photoradical polymerization initiators, curing accelerators, thermal polymerization inhibitors, antioxidants, plasticizers, leveling agents, antifoaming agents, coupling agents, and surfactants may be added. Good too.
  • the radical photopolymerization initiator is not particularly limited, but preferably includes an alkylphenone and/or oxime ester photopolymerization initiator.
  • alkylphenone photopolymerization initiator include ⁇ -aminoalkylphenone and ⁇ -hydroxyalkylphenone, with ⁇ -aminoalkylphenone being particularly preferred from the viewpoint of high sensitivity.
  • oxime ester photopolymerization initiator is 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime), which is BASF Corporation's "Irgacure (registered trademark)" OXE01.
  • photoradical polymerization initiators benzophenone compounds, oxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, carbazole compounds, triazine compounds, phosphorus compounds, titanates, etc.
  • photopolymerization initiators such as inorganic photopolymerization initiators can also be used in combination.
  • thermal polymerization inhibitors include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, and phenothiazine; examples of antioxidants include hindered phenol compounds; and examples of plasticizers: Examples include dibutyl phthalate, dioctyl phthalate, and tricresyl phosphate.
  • antifoaming agents and leveling agents include silicone-based, fluorine-based, and acrylic compounds.
  • surfactant include fluorine-based surfactants, silicone-based surfactants, and the like.
  • the titanium examples include a method in which primary particles such as nitride particles 1a are directly dispersed in a mixture of a dispersion medium such as a solvent and a resin component described below, and the time for the dispersion is controlled.
  • the primary particles such as the titanium nitride particles 1a are dispersed with a dispersion medium such as a polymer dispersant or a solvent, and the dispersion time is set to an appropriate time to form a primary dispersion liquid, and then the resin component described below is added later.
  • a dispersion medium such as a polymer dispersant or a solvent
  • the dispersion time is set to an appropriate time to form a primary dispersion liquid, and then the resin component described below is added later.
  • It may also be produced using an addition mixing and dispersing machine.
  • a bead mill, a ball mill, a sand grinder, a three-roll mill, a high-speed impact mill, etc. may be used. Examples of such bead mills include coball mills, basket mills, pin mills, dyno mills, nano mills, and apex mills.
  • Beads for the bead mill include titania beads, zirconia beads, zircon beads, etc., and the dispersion may be performed using a bead mill having a centrifugal separator capable of separating the bead mill and the dispersion liquid.
  • the diameter of beads used for the dispersion is preferably 0.05 to 0.5 mm.
  • an inkjet machine As a method for applying the obtained black resin composition onto the base material 5, in addition to the known solution dipping method and spray method, an inkjet machine, a roller coater machine, a land coater machine, a slit die coater machine, and a spinner machine are used. Any method may be used. If the resin 3 is a polyimide resin, a method using a slit die coater is preferable in that a good coating film can be obtained. After adjusting the viscosity with a solvent and coating it to the desired thickness, a dry coating is formed by scattering the solvent under heating or reduced pressure, and is further cured by light and/or heat to achieve the desired black color. A cured film of the resin composition can be formed.
  • a photolithography method is used, in which a black resin composition is applied, dried, irradiated with ultraviolet rays through a photomask, and patterned by exposure and development. be.
  • a black resin composition is similarly applied and dried to form a film, and then a photoresist is applied on the black resin composition, dried, and a photoresist is applied and dried. It can be processed in the same way by irradiating ultraviolet light through a mask, exposing it, and developing it.
  • a pattern may be formed by applying a screen printing method, an intaglio printing method, a gravure printing method, or the like, or an inkjet method that does not require a mask or a printing plate may be used.
  • the black matrix substrate containing the black resin composition of the present invention can be produced by coating the black resin composition on the base material 5, drying it to scatter the solvent, and carrying out a curing treatment if necessary.
  • a layer 10 of is formed.
  • the optical density (OD value) is 2.4 or more per ⁇ m.
  • the layer maintains good light shielding properties and at the same time has good low reflection performance with a reflectance of 5.5% or less.
  • Black matrices used in automotive LCD displays and micro LED displays are required to have an OD value of 2.4 or more for light blocking performance and a reflectance of less than 5.5%.
  • the resin composition layer 10 achieves both of these requirements.
  • the upper limit of the OD value there is no upper limit from the viewpoint that the larger the OD value, the better the light shielding property is.
  • the OD value per 1.0 ⁇ m thickness of the cured film is preferably in the range of 2.4 to 4.5. From the viewpoint of composition design considering the mass ratio balance between the light shielding material and other constituents, it is more preferable that the OD value per 1.0 ⁇ m film thickness is 2.4 to 4.0; The OD value per 1.0 ⁇ m thickness is 2.4 to 3.5.
  • the black matrix substrate of the present invention is a black matrix substrate including a transparent substrate and a cured film of the black resin composition formed on the transparent substrate, wherein the optical density (OD value) of the cured film is 1 2.4 to 4.5 per .0 ⁇ m, the reflected color a* value is 0.1 to 3.0, and the reflectance of the transparent substrate is 4.5% to 5.5%.
  • the black resin composition of the present invention may be applied to uses other than micro LED display devices. Examples include liquid crystal displays and organic electroluminescent displays used in personal computers, tablet PCs, game consoles, navigation systems, liquid crystal televisions, videos, liquid crystal projectors, and the like.
  • the preliminary dispersion was supplied to an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% 0.10 mm ⁇ zirconia beads (manufactured by Toray Industries), and dispersed for 2 hours at a rotational speed of 8.0 m/s.
  • a titanium nitride particle-dispersed acrylic resin solution (Bk-1) having a solid content concentration of 25.0% by mass and a mass ratio of titanium nitride particles/resin 80/20 was obtained.
  • the average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed acrylic resin solution (Bk-1) was 180 nm. The measurement method will be described later.
  • the content of titanium atoms was measured by ICP emission spectrometry (ICP emission spectrometer SPS3000 manufactured by Seiko Instruments).
  • the content of oxygen atoms and nitrogen atoms was measured using an oxygen/nitrogen analyzer EMGA-620W/C (manufactured by Horiba, Ltd.), and oxygen atoms were measured using an inert gas melting-infrared absorption method. Nitrogen atoms were determined by the degree method.
  • the composition of the titanium nitride particles was analyzed using ICP mass spectrometry, inert gas melting-infrared absorption method, and inert gas melting-thermal conductivity method, the titanium content, oxygen content, and nitrogen content were determined.
  • the compositional formula of the titanium nitride particles was TiO 0.05 N 0.30 .
  • TiC nanopowder Lot: 1330709111 manufactured by Nissin Engineering Co., Ltd.
  • a titanium carbide particle dispersed acrylic resin solution (Bk-3) having a ratio of titanium carbide particles/resin 80/20 was obtained.
  • the average secondary particle size of titanium carbide particles in the titanium carbide particle dispersed acrylic resin solution (Bk-3) was 120 nm.
  • polyamic acid (polyimide precursor) solution (A-1) 147.0 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride was charged together with 993.0 g of N-methyl-2-pyrrolidone, and 95.1 g of 4,4'-diaminodiphenyl ether and bis 6.20 g of (3-aminopropyl)tetramethyldisiloxane was added and reacted at 60° C. for 3 hours to obtain a polyamic acid solution (A-1) which is a polyimide precursor.
  • Titanium nitride particles (B-1) produced by thermal plasma method (Nissin Engineering Co., Ltd.) 96.0 g, polyamic acid solution (A-1) 120.0 g, ⁇ -butyrolactone 114.0 g, N-methyl 538.0 g of -2-pyrrolidone and 132.0 g of 3-methyl-3-methoxybutyl acetate were placed in a tank, and after stirring for 1 hour at a speed of 6000 rpm in the normal rotation direction using a homomixer (manufactured by Tokushu Kika), 0.05 mm ⁇ zirconia beads ( Dispersion was performed for 2 hours at a rotation speed of 8.0 m/s using an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% YTZ balls (manufactured by Nikkato), and the solid content
  • a titanium nitride-dispersed polyamic acid solution (Bk-5) having a mass ratio of pigment/resin of 80/20 was obtained.
  • the average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed polyamic acid solution (Bk-5) was 180 nm.
  • the compositional formula of the titanium nitride particles was TiO 0.05 N 0.30 .
  • TiC nanopowder Lot: 1330709111 manufactured by Nissin Engineering Co., Ltd.
  • a titanium carbide particle-dispersed polyamic acid solution (Bk-6) having a ratio of titanium carbide particles/resin 80/20 was obtained.
  • the average secondary particle size of titanium carbide particles in the titanium carbide particle dispersed acrylic resin solution (Bk-6) was 120 nm.
  • Transparent particle dispersed acrylic resin solution (P-1) 200.0 g of titanium oxide fine particles (ultrafine titanium oxide TTO-55 (A); manufactured by Ishihara Sangyo Co., Ltd.), 36.25 g of a 40% by mass solution of acrylic resin powder in propylene glycol monomethyl ether acetate, and a polymer dispersant (BYK21116; 35.50 g of propylene glycol monoethyl ether acetate (manufactured by Bick Chemie) and 730.0 g of propylene glycol monoethyl ether acetate were placed in a tank and stirred in the reverse direction at 4000 rpm for 1 hour using a homomixer (manufactured by Tokushu Kika) to obtain a preliminary dispersion.
  • TTO-55 A
  • a polymer dispersant BYK21116; 35.50 g of propylene glycol monoethyl ether acetate (manufactured by Bick Chemie
  • the average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-1) was 40 nm. The method for measuring the average primary particle diameter will be described later.
  • the average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-2) was 15 nm.
  • Transparent particle dispersed acrylic resin solution (P-3) A solid content concentration of 25% by mass was obtained in the same manner as in (P-2) except that silica fine particles (“AEROSIL (registered trademark)” OX50; manufactured by Nippon Aerosil Co., Ltd.; 200.0 g) were used as transparent particles.
  • AEROSIL registered trademark
  • OX50 manufactured by Nippon Aerosil Co., Ltd.
  • the average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-3) was 15 nm.
  • Transparent particle dispersed polyamic acid solution (P-4) 96.0 g of silica fine particles ("AEROSIL (registered trademark)"OX50; manufactured by Nippon Aerosil Co., Ltd.), 120.0 g of polyamic acid solution (A-1), 145.0 g of ⁇ -butyrolactone, and 512.0 g of N-methyl-2-pyrrolidone.
  • AEROSIL registered trademark
  • the pigment-dispersed resin solution or the obtained black resin composition was measured using a dynamic light scattering nanoparticle analyzer (HORIBA SZ-100, manufactured by Horiba, Ltd.) with the measurement mode set to standard and the distribution form set to standard and dispersed.
  • the morphology was monodisperse
  • the cell type was a four-sided transmission cell
  • the black resin composition was diluted with a solvent to a particle concentration of 0.24% by mass, and the average secondary particle diameter determined by the cumulant method was measured.
  • a value measured using a B-type viscometer manufactured by Tokimec
  • the pigment-dispersed resin solution or black resin composition to be measured is cured in advance on a silicon wafer using the above-mentioned method for forming a cured film, and then measured using an ⁇ -SE ellipsometer (J.A. Woollam).
  • the refractive index calculated by fitting the measured amplitude ratio and phase difference to the refractive index, attenuation coefficient, surface roughness, angular offset, and film thickness using Cauchy's film model was used.
  • the diluting solvent propylene glycol monomethyl ether acetate was used for the acrylic resin system, and N-methyl-2-pyrrolidone was used for the polyamic acid resin system.
  • the transparent particle-dispersed resin solution or the obtained black resin composition was measured using a dynamic light scattering nanoparticle analyzer (HORIBA SZ-100, manufactured by Horiba, Ltd.) with the measurement mode set to standard, the distribution form set to standard, The dispersion form was monodisperse, the cell type was a four-sided transmission cell, and the black resin composition was diluted with a solvent to a particle concentration of 0.24% by mass, and the average primary particle size determined by the cumulant method was measured.
  • a value measured using a B-type viscometer manufactured by Tokimec
  • the known refractive index value of the applied transparent particles was used as the refractive index.
  • the diluting solvent propylene glycol monomethyl ether acetate was used for the acrylic resin system, and N-methyl-2-pyrrolidone was used for the polyamic acid resin system.
  • the reflectance here refers to the total reflectance including regular reflection and diffuse reflection.
  • OD value (light blocking performance) measurement The films of the black resin compositions obtained in Examples and Comparative Examples were measured from the glass surface side using an optical densitometer (361T (visual); manufactured by X-rite). The OD value per unit film thickness (1.0 ⁇ m) was evaluated based on the following criteria as OD/ ⁇ m, and the light shielding properties were ranked S, A to E in descending order, with S and A to D being good. Those with low light shielding properties of less than 2.25 were rated E, and E had poor light shielding properties. S: 3.25 or more A: 3.00 or more, less than 3.25 B: 2.75 or more, less than 3.00 C: 2.50 or more, less than 2.75 D: 2.25 or more, less than 2.50 E: Less than 2.25.
  • the reflection chromaticity of the black resin composition films obtained in Examples and Comparative Examples was measured from the glass surface side using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2450). Wavelength range: 300 to 780 nm, sampling pitch: 1.0 nm, scan speed: slow, slit width: 2.0 nm).
  • the value of a* of the reflection chromaticity per unit film thickness (1.0 ⁇ m) was evaluated based on the following criteria.
  • the colors were ranked A to D in order of neutral color. A: Less than 0.50 B: 0.50 or more, less than 1.0 C: 1.0 or more, less than 3.0 D: 3.0 or more.
  • volume resistivity (electrical resistance characteristics) measurement For the films of the black resin compositions obtained in Examples and Comparative Examples, the volume resistivity ⁇ ( ⁇ cm) was determined from the film surface using an insulation resistance meter (manufactured by Keithley Instruments, Inc., 6517A). . A black resin composition with a film thickness of 1.0 ⁇ m formed on an aluminum substrate was set in a test fixture chair (manufactured by Keithley Instruments, Inc., 8090), and an alternating voltage of 1 V was applied to measure the leakage current flowing through the coating film. The volume resistivity was determined and evaluated based on the following criteria. Those with good electrical resistance characteristics were designated as B, and those with even better electrical resistance characteristics were designated as A.
  • a and B were good, but C had poor insulation and needed improvement.
  • Bk-1 Titanium nitride particle dispersed acrylic resin solution
  • P-1 the transparent particle dispersed acrylic resin solution
  • Particles 1.14 parts by mass
  • Table 1 shows the composition of the light shielding material, transparent particles, and resin.
  • a diluted resin solution in which a 40.0% by mass solution of acrylic resin powder in propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate are mixed, and add a titanium nitride particle-dispersed acrylic resin solution (Bk- While constantly stirring 1) at 100 rpm, the transparent particle-dispersed acrylic resin solution (P-1) and the resin diluted solution were added little by little at a rate of 50 g/min using a gear pump (manufactured by Nishiyama Seisakusho) in that order.
  • a gear pump manufactured by Nishiyama Seisakusho
  • the titanium nitride particles were mixed in such a manner that the average secondary particle size of the titanium nitride particles obtained with the titanium nitride particle-dispersed acrylic resin solution (Bk-1) did not change. After all the components were mixed, the mixture was stirred at room temperature of 23° C. for 1 hour.
  • Exposure was performed using an exposure machine PLA-501F (manufactured by Canon) through a prescribed photomask, and the positive resist was developed and the polyimide precursor was etched using an alkaline developer (Shipley "Microposit” (registered trademark) 351). After performing this simultaneously, the positive resist was removed using methylcellosolve acetate.
  • the film of black resin composition 1 corresponds to layer 10 of black resin composition.
  • Example 2 [Preparation of black resin composition 2]
  • the amount of the transparent particle-dispersed acrylic resin solution (P-1) was 8.0 parts by mass (transparent particles: 1.60 parts by mass), and the amount of the 40.0 mass% propylene glycol monomethyl ether acetate solution of acrylic resin powder was 6.25 parts by mass.
  • Black resin composition 2 was prepared in the same manner as black resin composition 1 except that the parts by mass and the amount of propylene glycol monomethyl ether acetate added were changed to 72.75 parts by mass.
  • Black resin composition 4 was prepared in the same manner as black resin composition 3 except that the aniline black particle-dispersed acrylic resin solution (Bk-2) was changed to the titanium carbide particle-dispersed acrylic resin solution (Bk-3).
  • the weight of the titanium nitride particle-dispersed acrylic resin solution (Bk-1) was 4.0 parts by mass (titanium nitride particles: 0.8 parts by mass), and the weight of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was 24 parts by mass. 0 parts by mass (titanium carbide particles: 4.80 parts by mass), the amount of transparent particle-dispersed acrylic resin solution (P-1) was 1.4 parts by mass (transparent particles: 0.28 parts by mass), and the amount of acrylic resin powder was 1.4 parts by mass (transparent particles: 0.28 parts by mass).
  • a black resin composition was prepared in the same manner as in Black Resin Composition 4, except that the 40.0% by mass solution of propylene glycol monomethyl ether acetate was changed to 10.37 parts by mass, and the amount of propylene glycol monomethyl ether acetate added was changed to 75.21 parts by mass.
  • Composition 5 was prepared.
  • the titanium carbide particles contained in the titanium carbide particle dispersed acrylic resin solution (Bk-3) correspond to other black pigment particles.
  • Black resin composition 6 was prepared in the same manner as black resin composition 4, except that the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was replaced with a carbon black particle-dispersed acrylic resin solution (Bk-4).
  • a titanium nitride particle-dispersed acrylic resin solution (Bk-1) and an aniline black particle-dispersed acrylic resin solution ( Bk-2), titanium carbide particle-dispersed acrylic resin solution (Bk-3), and carbon black particle-dispersed acrylic resin solution (Bk-4) were mixed so that the average secondary particle size did not change, and all constituents were mixed. After mixing, the mixture was stirred at room temperature of 23°C for 1 hour.
  • the volume resistivity was 1.0 ⁇ 10 11 ⁇ cm (B rating), indicating sufficiently high electrical resistance characteristics.
  • the volume resistivity was 1.0 ⁇ 10 12 ⁇ cm (B rating), indicating sufficiently high electrical resistance characteristics.
  • black resin composition 8 The amount of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was set to 2.50 parts by mass (titanium carbide particles: 0.50 parts by mass), and the amount of the carbon black particle-dispersed acrylic resin solution (Bk-4) was set to 7.0 parts by mass.
  • Black resin composition 8 was prepared in the same manner as black resin composition 7 except that the amount was changed to 0 parts by mass (carbon black particles: 1.40 parts by mass).
  • black resin composition 9 The amount of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was set to 4.70 parts by mass (titanium carbide particles: 0.94 parts by mass), and the amount of the carbon black particle-dispersed acrylic resin solution (Bk-4) was set to 4.70 parts by mass (titanium carbide particles: 0.94 parts by mass).
  • Black resin composition 9 was prepared in the same manner as black resin composition 7 except that the amount was changed to 80 parts by mass (carbon black particles: 0.96 parts by mass).
  • the average secondary particle size obtained with the acrylic resin solution dispersed with particles (Bk-1), the acrylic resin solution dispersed with titanium carbide particles (Bk-3), and the acrylic resin solution with carbon black particles dispersed (Bk-4) does not change. After all components were mixed, the mixture was stirred at room temperature of 23° C. for 1 hour.
  • Example 8 the ratio of carbon black particles, which are other black pigment particles, to titanium nitride particles was higher than the mass ratio of titanium carbide particles, which were other black pigment particles, and the reflectance, reflective chromaticity, and volume resistance Both rates were the same as in Example 6. Carbon black particles having an average secondary particle size of 56% of titanium nitride particles and titanium carbide particles having an average secondary particle size of 67% of titanium nitride particles are combined, and the ratio of carbon black particles is high. As a result, extremely high light-shielding properties were obtained with an OD value of 3.40 (S judgment).
  • Example 9 the mass ratio of titanium carbide particles, which are black pigment particles other than titanium nitride particles, and carbon black particles, which are other black pigment particles, is close to each other, so that the reflectance is increased compared to Example 4.
  • a very high light shielding property with an OD value of 3.00 (A rating) was obtained without any deterioration.
  • the volume resistivity was 1.0 ⁇ 10 11 ⁇ cm (B rating), indicating sufficiently high electrical resistance characteristics.
  • Black resin composition 10 was prepared in the same manner as black resin composition 9 except that the transparent particle dispersion liquid was changed to transparent particle dispersed acrylic resin solution (P-2).
  • Example 10 [Formation of film of black resin composition 10] Using the black resin composition 10 obtained above, a film was formed in the same manner as the black resin composition 1 to obtain a film of the black resin composition 10. In the same manner as in Example 1, the OD value, reflectance, reflection chromaticity, and volume resistivity per unit film thickness were determined. In Example 10, by making the average secondary particle size of the transparent particles 15 nm, which is sufficiently small compared to the black pigment particles, the reflectance was 5.15% (C judgment) while suppressing the OD decrease due to the addition of the transparent particles. It further declined. The volume resistivity was the same as in Example 9.
  • Black resin composition 11 was prepared in the same manner as black resin composition 9 except that the transparent particle dispersion liquid was changed to transparent particle dispersed acrylic resin solution (P-3).
  • Example 11 [Formation of film of black resin composition 11] Using the black resin composition 11 obtained above, a film was formed in the same manner as for the black resin composition 1 to obtain a film of the black resin composition 11. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined. In Example 11, by applying silica fine particles as transparent particles, the reflectance was reduced to 5.08% (B rating) while maintaining a high light-shielding property with an OD value of 3.00 (A rating). The volume resistivity was the same as in Example 9. The reflectance was further improved by using silica, which has a refractive index close to that of glass and whose shape is precisely controlled.
  • Example 12 [Preparation of black resin composition 12] Titanium nitride particle dispersed polyamic acid solution (Bk-5) 38.50 parts by mass (titanium nitride particles: 3.70 parts by mass), titanium carbide particle dispersed polyamic acid solution (Bk-6) 9.8 parts by mass (titanium Carbide particles: 0.94 parts by mass), carbon black particle-dispersed polyamic acid solution (Bk-7) 10.0 parts by mass (carbon black particles: 0.96 parts by mass), the transparent particle-dispersed polyamic acid solution (P-4) ) 16.70 parts by mass (transparent particles: 1.60 parts by mass), 12.46 parts by mass of polyamic acid solution (A-1), and 142.40 parts by mass of N-methyl-2-pyrrolidone. Black resin composition 12 was prepared.
  • a diluted resin solution prepared by mixing polyamic acid solution (A-1) and N-methyl-2-pyrrolidone is prepared in advance, and a predetermined amount of titanium nitride is weighed.
  • the titanium carbide-dispersed polyamic acid solution (Bk-6) containing titanium carbide particles, which are other black pigment particles, and carbon, which is another black pigment particle.
  • Black resin composition 13 was prepared in the same manner as black resin composition 2 except that the light-shielding material particle dispersion was changed to titanium nitride particle-dispersed acrylic resin solution (Bk-8).
  • Black resin composition 14 was prepared in the same manner as black resin composition 2 except that the light-shielding material particle dispersion was changed to titanium nitride particle-dispersed acrylic resin solution (Bk-9).
  • Black resin composition 15 The amount of transparent particle-dispersed acrylic resin solution (P-1) was changed to 28.0 parts by mass (transparent particles: 5.60 parts by mass), and the amount of propylene glycol monomethyl ether acetate added was changed to 102.75 parts by mass.
  • Black resin composition 15 was prepared in the same manner as black resin composition 2 except for the following changes.
  • black resin composition 16 The amount of transparent bright particle dispersed acrylic resin solution (P-1) was changed to 1.40 parts by mass (transparent particles: 0.28 parts by mass), and a 40.0 mass% propylene glycol monomethyl ether acetate solution of acrylic resin powder was added. Black resin composition 16 was prepared in the same manner as black resin composition 1 except that the amount added was changed to 10.37 parts by mass and the amount of propylene glycol monomethyl ether acetate was changed to 75.21 parts by mass.
  • Comparative Example 1 the average secondary particle size of the titanium nitride particles was small, and the surface area of the pigment increased, resulting in a significant deterioration in reflectance. Furthermore, in Comparative Example 2, the average secondary particle size of the titanium nitride particles was large, and the light shielding property was significantly deteriorated. In Comparative Example 3, the mass ratio of transparent particles to black pigment particles was high, and the light-shielding property was significantly deteriorated. In Comparative Example 4, the mass ratio of transparent particles to black pigment particles was low, and the effect of reducing reflectance due to the addition of transparent particles was not exhibited.
  • the unit film The OD value per thickness ( ⁇ m) is 2.4 or more, the total reflectance is less than 5.8%, which is a good value, and the mass of the titanium nitride particles is 2.0 to 4% of the mass of the transparent particles.
  • the total reflectance is less than 5.6% in the 8x range, which is a very good value, which is the reflectance and OD required for black matrices for automotive LCD displays and micro LED displays. It was found that the value performance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide a black resin composition from which a cured film having both high light shielding properties and low reflection can be obtained. This black resin composition contains a light shielding material, transparent particles, a resin, and a solvent, wherein the light shielding material contains titanium nitride particles, the mass of the titanium nitride particles is 1.3-15 times the mass of the transparent particles, and the average secondary particle diameter of the titanium nitride particles is 160-220 nm.

Description

黒色樹脂組成物、ブラックマトリックス基板および表示装置Black resin composition, black matrix substrate and display device
 本発明は、黒色樹脂組成物、ブラックマトリックス基板および表示装置に関する。 The present invention relates to a black resin composition, a black matrix substrate, and a display device.
 表示装置は、CCD(電荷結合素子)等の固体撮像素子とこの固体撮像素子が実装される回路基板等で構成される。この表示装置は、デジタルカメラ、カメラ付き携帯電話、および、スマートフォン等に搭載される。表示装置を視認する際には、可視光の反射によるノイズの発生を抑制する目的で、固体撮像素子内に遮光特性が付与されている。たとえば、ブラックマトリクス基板に遮光膜を形成するための組成物としては、カーボンブラックやチタンブラック等の黒色顔料を含有する黒色組成物を使用することが知られている。 A display device is composed of a solid-state image sensor such as a CCD (charge-coupled device) and a circuit board on which the solid-state image sensor is mounted. This display device is installed in digital cameras, camera-equipped mobile phones, smartphones, and the like. When viewing a display device, a solid-state image sensor is provided with a light-shielding property for the purpose of suppressing the generation of noise due to reflection of visible light. For example, as a composition for forming a light shielding film on a black matrix substrate, it is known to use a black composition containing a black pigment such as carbon black or titanium black.
 従来、CCD(電荷結合素子)およびCMOS(相補性金属酸化膜半導体)等の固体撮像素子に配置されるカラーフィルターのブラックマトリクスもしくはイメージセンサー周辺遮光膜(額縁遮光膜)と、電極パターン等の電極とが接触する領域に錆び等が発生し、電極が腐食する課題があった。特許文献1の黒色樹脂組成物を含有した組成物は、電極の防食性に優れ、且つ、パターニング性に優れた硬化膜を作製できる組成物であり、チタン窒化物含有粒子を含有し、酸化チタンとシリカ粒子とを分散機を用いて分散し、さらにチタン窒化物含有粒子以外の黒色顔料粒子を含有した組成物が開示されている。 Conventionally, black matrices of color filters arranged in solid-state image sensing devices such as CCDs (charge-coupled devices) and CMOS (complementary metal oxide semiconductors) or image sensor peripheral light-shielding films (frame light-shielding films) and electrodes such as electrode patterns have been used. There was a problem that rust occurred in the area where the electrodes came into contact with each other, and the electrodes corroded. The composition containing the black resin composition of Patent Document 1 is a composition that can produce a cured film that has excellent anticorrosion properties for electrodes and excellent patterning properties, and contains titanium nitride-containing particles and titanium oxide. and silica particles are dispersed using a disperser, and further contains black pigment particles other than titanium nitride-containing particles.
 そして特許文献1の黒色樹脂組成物は、塩素原子を含むチタン窒化物含有粒子を含み、粒子中における塩素原子の含有量が、0.001~0.3質量%で、平均一次粒径が10~30nmであり、粒子の一次粒子像の写真観察において観察対象の100個のうち60個以上が球形であるチタン窒化物含有粒子を用いている。 The black resin composition of Patent Document 1 contains titanium nitride-containing particles containing chlorine atoms, the content of chlorine atoms in the particles is 0.001 to 0.3% by mass, and the average primary particle size is 10% by mass. ~30 nm, and 60 or more of the 100 particles observed in photographic observation of the primary particle image of the particles are spherical.
特許第6698820号公報Patent No. 6698820
 しかしながら、特許文献1の組成物は、固体撮像素子に配置されるカラーフィルターのブラックマトリクスもしくはイメージセンサー周辺遮光膜(額縁遮光膜)に要求される遮光性能および低反射性能は有するものの、さらなる遮光性能および低反射性能が要求される車載向け液晶ディスプレイやマイクロLEDディスプレイなどの自発光型ディスプレイのブラックマトリックスに用いる場合、いずれの性能も不足してしまう課題があった。さらに、遮光性と低反射性能とはトレードオフの関係があり、遮光性を向上しようとすると顔料粒子等の遮光性を発現する成分が多く含まれることによって光が反射しやすくなり反射性能が低下してしまうため、遮光性を高めてかつ低い反射性能の黒色樹脂組成物を含む硬化膜が得られていなかった。 However, although the composition of Patent Document 1 has the light-shielding performance and low reflection performance required for a black matrix of a color filter disposed in a solid-state image sensor or a light-shielding film around an image sensor (frame light-shielding film), the composition has further light-shielding performance. When used in the black matrix of a self-luminous display such as an in-vehicle liquid crystal display or a micro LED display that requires low reflection performance, there is a problem that both performances are insufficient. Furthermore, there is a trade-off relationship between light-shielding properties and low-reflection performance, and if you try to improve light-shielding properties, the inclusion of many components that exhibit light-shielding properties, such as pigment particles, will make it easier to reflect light and reduce reflection performance. Therefore, a cured film containing a black resin composition with enhanced light-shielding properties and low reflective performance has not been obtained.
 特に、車載向け液晶ディスプレイの場合、外光による反射が視認性に大きく影響し、太陽光が直射でディスプレイに照射された時に遮光性能を有しないと画面表示コントラストが低くなり、表示画像が認識できないことや、文字を判読し難くなる課題があった。また、特に液晶ディスプレイにおいてはブラックマトリックスが占める面積割合が大きい場合が多く、より高い反射防止性能を有しないと表示画面が見づらくなるだけでなく、コントラストが低下し視認性が悪化する課題があった。また、未発光時においても反射光の影響により画面が照り返されてしまいディスプレイとしての意匠性が損なわれる課題があった。 In particular, in the case of automotive LCD displays, reflections from outside light greatly affect visibility, and if the display does not have light blocking performance when sunlight hits the display directly, the screen display contrast will be low and the displayed image will be unrecognizable. There were also issues with the text being difficult to read. In addition, especially in liquid crystal displays, the black matrix often occupies a large area, and unless it has higher anti-reflection performance, it not only becomes difficult to see the display screen, but also reduces contrast and worsens visibility. . Furthermore, even when no light is emitted, the screen is reflected back due to the influence of reflected light, which impairs the design of the display.
 本発明は、上記課題に鑑み、高遮光性および低反射を両立するブラックマトリクスやイメージセンサー周辺遮光膜を形成する硬化膜を得ることができる黒色樹脂組成物を提供することを目的とする。さらに、高遮光性および低反射性と高い視認性ならびに意匠性を備える表示素子を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a black resin composition capable of obtaining a cured film that forms a black matrix or image sensor peripheral light shielding film that has both high light shielding properties and low reflection. Furthermore, it is an object of the present invention to provide a display element having high light-shielding properties, low reflectivity, high visibility, and design.
 上記課題を解決するために、本発明は、以下黒色樹脂組成物、ブラックマトリックス基板および表示装置を提供する。
1.遮光材、透明粒子、樹脂および溶媒を含み、前記遮光材がチタン窒化物粒子を含有し、前記チタン窒化物粒子の質量が前記透明粒子の質量の1.3~15倍であり、前記チタン窒化物粒子の平均二次粒径が160~220nmである黒色樹脂組成物である。
2.前記チタン窒化物粒子の質量が前記透明粒子の質量の2.0~4.8倍である1に記載の黒色樹脂組成物である。
3.前記遮光材がさらに他の黒色顔料粒子を含有し、前記他の黒色顔料粒子の平均二次粒径が前記チタン窒化物粒子の平均二次粒径の20~80%である1または2に記載の黒色樹脂組成物である。
4.前記他の黒色顔料粒子がチタン炭化物粒子を含有し、かつ前記チタン炭化物粒子の質量が前記チタン窒化物粒子の質量の0.1~0.8倍である3に記載の黒色樹脂組成物である。
5.前記他の黒色顔料粒子がチタン炭化物粒子を含有し、かつ前記チタン炭化物粒子の質量が前記チタン窒化物粒子の質量の4.5~49倍である3に記載の黒色樹脂組成物である。
6.前記他の黒色顔料粒子がカーボンブラックを含有し、かつ前記カーボンブラックの質量が前記チタン窒化物粒子の質量の0.1~0.8倍である3に記載の黒色樹脂組成物である。
7.前記他の黒色顔料粒子がチタン炭化物粒子およびカーボンブラックを含有し、前記カーボンブラックの質量が前記チタン炭化物粒子の質量の0.5~2.0倍である3に記載の黒色樹脂組成物である。
8.前記透明粒子の平均一次粒径が5~30nmである1~7に記載の黒色樹脂組成物である。
9.前記透明粒子がシリカ粒子である1~8に記載の黒色樹脂組成物である。
10.前記樹脂がテトラカルボン酸二無水物残基およびジアミン残基を有する繰り返し単位を有するポリアミック酸を含む1~9に記載の黒色樹脂組成物である。
11.透明基板および該透明基板上に形成された1~10に記載の黒色樹脂組成物の硬化膜を含むブラックマトリックス基板であって、前記硬化膜の光学濃度(OD値)が膜厚1.0μmあたり2.4~4.5であり、反射色a*値が0.1~3.0であり、前記透明基板の反射率が4.5%~5.5%であるブラックマトリックス基板である。
12.前記11に記載のブラックマトリックス基板を有する表示装置である。
In order to solve the above problems, the present invention provides a black resin composition, a black matrix substrate, and a display device.
1. a light-shielding material, transparent particles, a resin, and a solvent, the light-shielding material contains titanium nitride particles, the mass of the titanium nitride particles is 1.3 to 15 times the mass of the transparent particles, and the titanium nitride This is a black resin composition in which the average secondary particle size of the particles is 160 to 220 nm.
2. 2. The black resin composition according to 1, wherein the mass of the titanium nitride particles is 2.0 to 4.8 times the mass of the transparent particles.
3. 1 or 2, wherein the light shielding material further contains other black pigment particles, and the average secondary particle size of the other black pigment particles is 20 to 80% of the average secondary particle size of the titanium nitride particles. This is a black resin composition.
4. 3. The black resin composition according to 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 0.1 to 0.8 times the mass of the titanium nitride particles. .
5. 3. The black resin composition according to 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 4.5 to 49 times the mass of the titanium nitride particles.
6. 3. The black resin composition according to 3, wherein the other black pigment particles contain carbon black, and the mass of the carbon black is 0.1 to 0.8 times the mass of the titanium nitride particles.
7. 3. The black resin composition according to 3, wherein the other black pigment particles contain titanium carbide particles and carbon black, and the mass of the carbon black is 0.5 to 2.0 times the mass of the titanium carbide particles. .
8. 8. The black resin composition according to any one of items 1 to 7, wherein the transparent particles have an average primary particle size of 5 to 30 nm.
9. 9. The black resin composition according to any one of items 1 to 8, wherein the transparent particles are silica particles.
10. 10. The black resin composition according to any one of 1 to 9, wherein the resin contains a polyamic acid having a repeating unit having a tetracarboxylic dianhydride residue and a diamine residue.
11. A black matrix substrate comprising a transparent substrate and a cured film of the black resin composition according to items 1 to 10 formed on the transparent substrate, wherein the cured film has an optical density (OD value) per 1.0 μm of film thickness. 2.4 to 4.5, the reflected color a* value is 0.1 to 3.0, and the transparent substrate has a reflectance of 4.5% to 5.5%.
12. 12. A display device including the black matrix substrate according to 11 above.
 本発明の黒色樹脂組成物によれば、高遮光性および低反射を両立するブラックマトリクスやイメージセンサー周辺遮光膜を形成する硬化膜を得ることができる。さらに、ブラックマトリクス基板に本硬化膜を用いた表示装置は、高遮光性および低反射を両立する優れた特性を有する。 According to the black resin composition of the present invention, it is possible to obtain a cured film that forms a black matrix or image sensor peripheral light-shielding film that has both high light-shielding properties and low reflection. Furthermore, a display device using this cured film on a black matrix substrate has excellent characteristics of achieving both high light-shielding properties and low reflection.
本発明の一実施形態に係る黒色樹脂組成物の層を基材上に形成した概略断面図である。黒色樹脂組成物の層内に、チタン窒化物粒子を含有する遮光材、透明粒子、樹脂が含まれる。FIG. 1 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to an embodiment of the present invention. The layer of the black resin composition contains a light shielding material containing titanium nitride particles, transparent particles, and a resin. 本発明の別の一実施形態に係る黒色樹脂組成物の層を基材上に形成した概略断面図である。黒色樹脂組成物の層内に、チタン窒化物粒子と他の黒色顔料粒子を含有する遮光材、透明粒子、樹脂が含まれる。FIG. 2 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to another embodiment of the present invention. The layer of the black resin composition contains a light shielding material containing titanium nitride particles and other black pigment particles, transparent particles, and a resin. 本発明の別の一実施形態に係る黒色樹脂組成物の層を基材上に形成した概略断面図である。黒色樹脂組成物の層内に、チタン窒化物粒子と他の黒色顔料粒子および、さらに別の黒色顔料粒子を含有する遮光材、透明粒子、樹脂が含まれる。FIG. 2 is a schematic cross-sectional view of a layer of a black resin composition formed on a base material according to another embodiment of the present invention. The layer of the black resin composition contains titanium nitride particles, other black pigment particles, and a light-shielding material, transparent particles, and resin containing further black pigment particles.
 以下、本発明の黒色樹脂組成物について図を用いて説明する。また、本発明は、以下に説明する実施の形態によって限定されるものではない。 Hereinafter, the black resin composition of the present invention will be explained using figures. Further, the present invention is not limited to the embodiments described below.
 本発明の黒色樹脂組成物は、遮光材、透明粒子、樹脂および溶媒を含み、前記遮光材がチタン窒化物粒子を含有する。そして、本発明の黒色樹脂組成物は、基板上に塗布などの方法で膜状に形成し、黒色の層が形成できる。黒色樹脂組成物に含まれる遮光材は、黒色顔料粒子(遮光材顔料粒子とも呼ぶ)を含み、本発明のチタン窒化物粒子を含有することで、遮光性に寄与する。黒色樹脂組成物に含まれる透明粒子は、黒色樹脂組成物の層を透過する光線が細かく拡散し、黒色樹脂組成物の層全体の反射を抑制する効果をもたらす。本発明のチタン窒化物粒子の質量が、黒色樹脂組成物に含まれる透明粒子の質量の1.3~15.0倍であり、チタン窒化物粒子の平均二次粒径が160nm~220nmであることで、高い遮光性と低反射性を有する黒色樹脂組成物の層が形成される。黒色樹脂組成物の層を硬化することでブラックマトリクス基板の黒色層を提供することができる。さらに、本発明の黒色樹脂組成物を含むブラックマトリクス基板は高い遮光性と低反射性を有する表示装置を提供することができる。なお、本発明において「質量」は「重量」と同義である。 The black resin composition of the present invention includes a light shielding material, transparent particles, a resin, and a solvent, and the light shielding material contains titanium nitride particles. The black resin composition of the present invention can be formed into a film on a substrate by a method such as coating to form a black layer. The light-shielding material contained in the black resin composition contains black pigment particles (also referred to as light-shielding material pigment particles), and contributes to light-shielding properties by containing the titanium nitride particles of the present invention. The transparent particles contained in the black resin composition have the effect of finely diffusing light rays that pass through the layer of the black resin composition and suppressing reflection of the entire layer of the black resin composition. The mass of the titanium nitride particles of the present invention is 1.3 to 15.0 times the mass of the transparent particles contained in the black resin composition, and the average secondary particle size of the titanium nitride particles is 160 nm to 220 nm. As a result, a layer of a black resin composition having high light-shielding properties and low reflectivity is formed. The black layer of the black matrix substrate can be provided by curing the layer of the black resin composition. Furthermore, the black matrix substrate containing the black resin composition of the present invention can provide a display device having high light-shielding properties and low reflectivity. In addition, in this invention, "mass" is synonymous with "weight."
 図1は、基材5上に本発明の黒色樹脂組成物の層10が形成された一実施形態であり、黒色樹脂組成物の層10には、遮光材1、透明粒子2、樹脂3が含まれ、遮光材1としてチタン窒化物粒子1aを含有している。チタン窒化物粒子1aと透明粒子2は樹脂3に分散されている。チタン窒化物粒子1aは透明粒子2よりも粒径が大きく、黒色樹脂組成物に含まれる質量も透明粒子2との対比で大きい。透明粒子2により細かく拡散された外部からの光線は、チタン窒化物粒子1aの表面で反射しにくく遮蔽され、結果、反射を抑制する効果が得られる。このとき、本発明の透明粒子に対するチタン窒化物粒子1aの質量比とチタン窒化物粒子1aの平均二次粒径が重要である。詳細については後述する。 FIG. 1 shows an embodiment in which a layer 10 of the black resin composition of the present invention is formed on a base material 5, and the layer 10 of the black resin composition includes a light shielding material 1, transparent particles 2, and a resin 3. The light shielding material 1 contains titanium nitride particles 1a. Titanium nitride particles 1a and transparent particles 2 are dispersed in resin 3. The titanium nitride particles 1a have a larger particle size than the transparent particles 2, and the mass contained in the black resin composition is also larger compared to the transparent particles 2. External light rays finely diffused by the transparent particles 2 are blocked by the surfaces of the titanium nitride particles 1a, making them difficult to reflect, and as a result, an effect of suppressing reflection can be obtained. At this time, the mass ratio of the titanium nitride particles 1a to the transparent particles of the present invention and the average secondary particle size of the titanium nitride particles 1a are important. Details will be described later.
 図2は、基材5上に本発明の黒色樹脂組成物の層10が形成された一実施形態であり、黒色樹脂組成物の層10には、遮光材1、透明粒子2、樹脂3が含まれ、遮光材1としてチタン窒化物粒子1aとそれ以外の種類の顔料である他の黒色顔料粒子1bを含有している。 FIG. 2 shows an embodiment in which a layer 10 of the black resin composition of the present invention is formed on a base material 5, and the layer 10 of the black resin composition includes a light shielding material 1, transparent particles 2, and a resin 3. The light shielding material 1 contains titanium nitride particles 1a and other black pigment particles 1b which are other types of pigments.
 以下、本発明の黒色樹脂組成物の構成要件である遮光材、透明粒子、樹脂、溶媒を順に説明する。
(遮光材)
 遮光光材1は単一あるいは複数の種類の黒色顔料粒子などから構成され、含有する黒色顔料粒子の種類や含有比率によって遮光性や反射特性、反射色度、電気抵抗等の諸特性が変化する。まず、遮光材である黒色顔料粒子の1つである本発明のチタン窒化物粒子と、他の黒色顔料粒子や別の黒色顔料粒子の1つであるチタン炭化物粒子および/またはカーボンブラックについて実施態様の一例を以下に示す。
Hereinafter, the light shielding material, transparent particles, resin, and solvent, which are constituent elements of the black resin composition of the present invention, will be explained in order.
(shading material)
The light-shielding material 1 is composed of single or multiple types of black pigment particles, and various properties such as light-shielding properties, reflective properties, reflective chromaticity, and electrical resistance change depending on the type and content ratio of the black pigment particles contained. . First, embodiments will be described regarding titanium nitride particles of the present invention, which is one of the black pigment particles that are a light-shielding material, and titanium carbide particles and/or carbon black, which are other black pigment particles and other black pigment particles. An example is shown below.
 (チタン窒化物粒子)
 本発明のチタン窒化物粒子1aは、主成分としてチタン窒化物TiNを含み、副成分として酸化チタンTiO、Ti2n-1(1≦n≦20)で表せる低次酸化チタンおよびTiO(0.1<x<2.0,0<y<2.0)で表される酸窒化チタンを含有する。なかでも、粒子表面の酸化が少ない、すなわち含有する酸素量が少ない純粋のチタン窒化物TiNの方がより高い遮光性が得られるため好ましく、とりわけ副成分としてTiOを含有しないことが好ましい。その酸素原子の含有量としては10質量%以下であることが好ましく、さらに好ましくは6質量%以下である。
(Titanium nitride particles)
The titanium nitride particles 1a of the present invention contain titanium nitride TiN as a main component, and titanium oxide TiO 2 as subcomponents, lower titanium oxide represented by Ti n O 2n-1 (1≦n≦20), and TiO x Contains titanium oxynitride expressed by N y (0.1<x<2.0, 0<y<2.0). Among these, pure titanium nitride TiN, which has less oxidation on the particle surface, that is, contains less oxygen, is preferable because higher light-shielding properties can be obtained, and it is particularly preferable that it does not contain TiO 2 as a subcomponent. The content of oxygen atoms is preferably 10% by mass or less, more preferably 6% by mass or less.
 TiOは、構成する元素のモル比を表す組成式であり、xはチタン1モルに対する酸素のモル比を、yはチタン1モルに対する窒素のモル比を表す。yは0より大きく2未満の数を取り得るが、チタン窒化物は主として窒化チタンからなることから、yは0.1~0.99が好ましく、0.1~0.5がより好ましい。また、yに対するxの比x/yは0.01~0.5が好ましく、0.05~0.3がより好ましい。 TiO x N y is a composition formula representing the molar ratio of constituent elements, where x represents the molar ratio of oxygen to 1 mole of titanium, and y represents the molar ratio of nitrogen to 1 mole of titanium. Although y can take a number greater than 0 and less than 2, since titanium nitride mainly consists of titanium nitride, y is preferably 0.1 to 0.99, more preferably 0.1 to 0.5. Further, the ratio x/y of x to y is preferably 0.01 to 0.5, more preferably 0.05 to 0.3.
 ここで、チタン原子の含有量はICP発光分光分析法により分析し、窒素原子の含有量は不活性ガス融解-熱伝導度法により分析し、酸素原子の含有量は不活性ガス融解-赤外線吸収法により分析することができる。これらの分析結果を基に、n、x、yを算出する。但し、粒子の製造方法によっては、上記チタン原子、窒素原子、酸素原子以外の原子を不純物として含有することがあるが、不純物量が僅かで特定が困難な場合には、不純物を考慮せずに算出を行う。なお、本発明のチタン窒化物粒子には塩素原子を含まないことが好ましい。 Here, the content of titanium atoms is analyzed by ICP emission spectroscopy, the content of nitrogen atoms is analyzed by inert gas melting - thermal conductivity method, and the content of oxygen atoms is analyzed by inert gas melting - infrared absorption method. It can be analyzed by the method. Based on these analysis results, n, x, and y are calculated. However, depending on the manufacturing method of the particles, atoms other than the titanium atoms, nitrogen atoms, and oxygen atoms mentioned above may be contained as impurities, but if the amount of impurities is small and difficult to identify, the particles may not be taken into account. Perform calculations. Note that the titanium nitride particles of the present invention preferably do not contain chlorine atoms.
 本発明の黒色樹脂組成物は遮光材、透明粒子、樹脂、溶媒を含む。黒色樹脂組成物中の溶剤を除く成分、すなわち遮光材、透明粒子、樹脂からなる固形分成分の黒色樹脂組成物中に占める割合は、用途や加工方法によって設定することが可能であるが、低すぎると乾燥性が悪化し、高すぎると塗布性が悪化するため、1%から50%程度が好ましく、3%から40%程度がより好ましく、5%から25%が更により好ましい。また、本発明の黒色樹脂組成物を加工することによって得られる樹脂膜の遮光性は、黒色樹脂組成物中の前記固形分に占める遮光材の割合によって決まる。固形分中に含まれる遮光材の占める割合は、低いと遮光性が悪化し、高いと密着性や加工性といった膜の諸特性が損なわれるため、5%から75%が好ましく、20%から70%がより好ましく、35%から65%が更により好ましい。なお、この遮光材の占める割合とは、単一あるいは複数の遮光性に寄与する全ての黒色顔料粒子を含んだ質量の割合を指す。 The black resin composition of the present invention includes a light shielding material, transparent particles, a resin, and a solvent. The proportion of components other than the solvent in the black resin composition, that is, solid components consisting of light shielding material, transparent particles, and resin, can be set depending on the application and processing method, but it is possible to If it is too high, the drying properties will deteriorate, and if it is too high, the coating properties will deteriorate, so it is preferably about 1% to 50%, more preferably about 3% to 40%, and even more preferably 5% to 25%. Moreover, the light-shielding property of the resin film obtained by processing the black resin composition of the present invention is determined by the proportion of the light-shielding material in the solid content in the black resin composition. The ratio of the light shielding material in the solid content is preferably 5% to 75%, and 20% to 70%, because if it is low, the light shielding property will deteriorate, and if it is high, the properties of the film such as adhesion and processability will be impaired. % is more preferred, and 35% to 65% is even more preferred. Note that the proportion occupied by this light-shielding material refers to the proportion of the mass that includes all black pigment particles that contribute to single or multiple light-shielding properties.
 本発明のチタン窒化物粒子1aの質量は、透明粒子2の質量の1.3~15倍である。チタン窒化物粒子の質量が透明粒子の質量の1.3倍より小さいと、チタン窒化物粒子1aによる遮光性が不十分である。チタン窒化物粒子の質量は、透明粒子の質量に対して2.0倍以上であることが好ましく、3.0倍以上であることが更に好ましい。一方、チタン窒化物粒子1aの質量が透明粒子2の質量の15倍より大きいと、透明粒子2の反射防止性能が十分に効果を発揮せず、反射率が大きくなる。チタン窒化物粒子の質量は、透明粒子の質量に対して4.8倍以下であることが好ましく、4.0倍以下であることが更に好ましい。本発明において、チタン窒化物粒子1aの質量は透明粒子2の質量の1.3~15.0倍であるが、本発明の黒色樹脂組成物に含まれるチタン窒化物粒子1aの質量割合が低い場合には透明粒子との質量比が小さくなりやすい。さらに、遮光材がチタン窒化物粒子1aのほかに、他の黒色顔料粒子や別の黒色顔料粒子を含む場合は、チタン窒化物粒子1aの質量と透明粒子の質量比が小さくなりやすい。また、チタン窒化物粒子1aの質量割合が高い場合には透明粒子との質量比が大きくなりやすい。つまり、黒色樹脂組成物に含まれる各成分の質量割合は全量100%を超えない範囲内であれば、チタン窒化物粒子1aの質量は透明粒子2の質量の1.3~15倍であり、より好ましくはチタン窒化物粒子1aの質量は透明粒子2の質量の2.0~4.9倍である。 The mass of the titanium nitride particles 1a of the present invention is 1.3 to 15 times the mass of the transparent particles 2. If the mass of the titanium nitride particles is less than 1.3 times the mass of the transparent particles, the light shielding properties of the titanium nitride particles 1a will be insufficient. The mass of the titanium nitride particles is preferably 2.0 times or more, more preferably 3.0 times or more, the mass of the transparent particles. On the other hand, if the mass of the titanium nitride particles 1a is greater than 15 times the mass of the transparent particles 2, the antireflection performance of the transparent particles 2 will not be sufficiently effective, and the reflectance will increase. The mass of the titanium nitride particles is preferably 4.8 times or less, more preferably 4.0 times or less, relative to the mass of the transparent particles. In the present invention, the mass of the titanium nitride particles 1a is 1.3 to 15.0 times the mass of the transparent particles 2, but the mass proportion of the titanium nitride particles 1a contained in the black resin composition of the present invention is low. In some cases, the mass ratio to the transparent particles tends to be small. Furthermore, when the light-shielding material contains other black pigment particles or other black pigment particles in addition to the titanium nitride particles 1a, the mass ratio of the titanium nitride particles 1a to the transparent particles tends to be small. Moreover, when the mass ratio of the titanium nitride particles 1a is high, the mass ratio with the transparent particles tends to become large. In other words, as long as the mass proportion of each component contained in the black resin composition does not exceed the total amount of 100%, the mass of the titanium nitride particles 1a is 1.3 to 15 times the mass of the transparent particles 2, More preferably, the mass of the titanium nitride particles 1a is 2.0 to 4.9 times the mass of the transparent particles 2.
 チタン窒化物粒子および透明粒子の質量は、予め任意の濃度となるようチタン窒化物粒子等の顔料や透明粒子をそれぞれビーズミル等で分散した分散液を用いることで、調整できる。また、該顔料や透明粒子の樹脂組成物中の質量は、樹脂組成物をICP質量分析装置で、構成元素を定量分析して確認することができる。 The mass of the titanium nitride particles and the transparent particles can be adjusted by using a dispersion liquid in which pigments such as titanium nitride particles and transparent particles are dispersed in advance using a bead mill or the like so as to have an arbitrary concentration. Moreover, the mass of the pigment or transparent particles in the resin composition can be confirmed by quantitatively analyzing the constituent elements of the resin composition using an ICP mass spectrometer.
 チタン窒化物粒子1aの平均二次粒径は160nm~220nmである。チタン窒化物粒子1aの平均二次粒径が220nmよりも大きいと、チタン窒化物粒子間の空隙が大きくなるために遮光性が低下しやくなる。チタン窒化物粒子の平均二次粒径は、好ましくは190nm以下である。一方、チタン窒化物粒子1aの平均二次粒径が160nmより小さいと、反射率が高くなるとともに、後述する透明粒子による反射率低下の効果が弱くなる。チタン窒化物粒子の平均二次粒径は、好ましくは170nm以上である。 The average secondary particle size of the titanium nitride particles 1a is 160 nm to 220 nm. When the average secondary particle size of the titanium nitride particles 1a is larger than 220 nm, the light-shielding property tends to deteriorate because the voids between the titanium nitride particles become large. The average secondary particle size of the titanium nitride particles is preferably 190 nm or less. On the other hand, when the average secondary particle size of the titanium nitride particles 1a is smaller than 160 nm, the reflectance becomes high and the effect of lowering the reflectance due to the transparent particles described below becomes weak. The average secondary particle size of the titanium nitride particles is preferably 170 nm or more.
 なお、本発明において「平均二次粒径」とは、チタン窒化物粒子1a等を含有した黒色樹脂組成物を分散溶媒又は相当の溶媒にて希釈し、動的光散乱法で測定して、キュムラント法により求めた粒子の平均粒径値を言い、例えば、チタン窒化物粒子1aとポリイミド系樹脂とからなる黒色樹脂組成物の場合では、N-メチル-2-ピロリドンの溶媒にて0.24質量%粒子濃度に希釈して測定した数値である。 In addition, in the present invention, the "average secondary particle size" refers to a black resin composition containing titanium nitride particles 1a, etc., diluted with a dispersion solvent or an equivalent solvent, and measured by a dynamic light scattering method. It refers to the average particle diameter value of particles determined by the cumulant method, and for example, in the case of a black resin composition consisting of titanium nitride particles 1a and polyimide resin, it is 0.24 in the case of a solvent of N-methyl-2-pyrrolidone. This is a value measured after diluting to mass % particle concentration.
 本発明のチタン窒化物粒子1a等の一次粒子の製造方法は、特に限定はされないが、窒素含有ガスをプラズマガスとして用いる熱プラズマ法が挙げられる。熱プラズマ法は、まず、一次粒子の状態に分散すると同時にこれらの粉末をさらに均一に混合し、この混合状態を維持したまま熱プラズマ炎中へ供給する。その後、熱プラズマ炎中に噴霧された均一に混合した粉末材料は、蒸発して気相状態でさらに高度に分散した混合物になり、その直後にこの混合物がチャンバー内で急冷し、一次粒子を生成するという方法である。 The method for producing primary particles such as the titanium nitride particles 1a of the present invention is not particularly limited, but includes a thermal plasma method using a nitrogen-containing gas as a plasma gas. In the thermal plasma method, first, the powder is dispersed into primary particles, and at the same time, these powders are further uniformly mixed, and the powder is fed into a thermal plasma flame while maintaining this mixed state. The homogeneously mixed powder material atomized into the thermal plasma flame then evaporates into a more highly dispersed mixture in the gas phase, after which this mixture is quenched in a chamber to form primary particles. The method is to do so.
 本発明の黒色樹脂組成物は、前記遮光材がさらに他の黒色顔料粒子を含有し、前記他の黒色顔料粒子の平均二次粒径が前記チタン窒化物粒子1aの平均二次粒径の20~80%であることが好ましい(図2参照)。チタン窒化物粒子1aよりも平均二次粒径の小さい他の黒色顔料粒子1bを含有することで、隣り合う大きな二次粒径からなるチタン窒化物粒子1a同士の空いた隙間に他の黒色顔料粒子1bが分散配置されやすくなり、より黒色樹脂組成物の層10の遮光性能が向上する。また、他の黒色顔料粒子の平均二次粒径がチタン窒化物粒子の平均二次粒径の20%以上であることにより、遮光性能を増加させつつ、黒色顔料が膜中に緻密に配列されることによる過度な反射率増加を抑制することができる。他の黒色顔料粒子の平均二次粒径は、チタン窒化物粒子の平均二次粒径の50%以上であることがより好ましい。一方、他の黒色顔料粒子の平均二次粒径がチタン窒化物粒子の平均二次粒径の80%以下であることにより、チタン窒化物粒子1a同士の空いた隙間に効率よく黒色顔料粒子が分散配置し、遮光性をより向上させる効果を得ることができる。他の黒色顔料粒子の平均二次粒径は、チタン窒化物粒子の平均二次粒径の70%以下であることがより好ましい。 In the black resin composition of the present invention, the light shielding material further contains other black pigment particles, and the average secondary particle size of the other black pigment particles is 20% of the average secondary particle size of the titanium nitride particles 1a. It is preferably 80% (see Figure 2). By containing other black pigment particles 1b having a smaller average secondary particle size than the titanium nitride particles 1a, other black pigment particles can be added to the gaps between adjacent titanium nitride particles 1a having a larger secondary particle size. The particles 1b are more easily dispersed, and the light-shielding performance of the black resin composition layer 10 is further improved. In addition, since the average secondary particle size of the other black pigment particles is 20% or more of the average secondary particle size of the titanium nitride particles, the black pigment can be densely arranged in the film while increasing the light blocking performance. It is possible to suppress an excessive increase in reflectance due to The average secondary particle size of the other black pigment particles is more preferably 50% or more of the average secondary particle size of the titanium nitride particles. On the other hand, since the average secondary particle size of the other black pigment particles is 80% or less of the average secondary particle size of the titanium nitride particles, the black pigment particles are efficiently filled into the gaps between the titanium nitride particles 1a. By arranging them in a dispersed manner, it is possible to obtain the effect of further improving light-shielding properties. The average secondary particle size of the other black pigment particles is more preferably 70% or less of the average secondary particle size of the titanium nitride particles.
 ここで、チタン窒化物粒子の他の黒色顔料粒子が2種類以上ある場合、他の黒色顔料粒子のうち少なくとも1種類の平均二次粒径が前記範囲であることが好ましく、少なくとも他の黒色顔料粒子のうち最も質量比率が高い粒子の平均二次粒径が前記範囲であることが更に好ましく、他の黒色顔料粒子のうち2種類以上の平均二次粒径が前記範囲であることが更により好ましい。 Here, when there are two or more types of black pigment particles other than the titanium nitride particles, it is preferable that the average secondary particle size of at least one type of the other black pigment particles is within the above range, and at least the other black pigment particles It is more preferable that the average secondary particle size of the particles having the highest mass ratio among the particles is within the above range, and it is still more preferable that the average secondary particle size of two or more types of other black pigment particles is within the above range. preferable.
 他の黒色顔料粒子1bの含有量は、チタン窒化物粒子1aの質量の0.1~0.8倍の質量が好ましい。チタン窒化物粒子1aの質量の0.1倍以上にすることにより、チタン窒化物粒子1aの隙間に分散配置され得る他の黒色顔料粒子1bの量が担保され、遮光性が維持される。一方、チタン窒化物粒子1aの質量の0.8倍以下にすることにより、後述するチタン窒化物粒子1aと透明粒子の組み合わせによる反射防止性能を維持することができる。また、他の黒色顔料粒子が二種類以上ある場合、他の黒色顔料粒子の質量の総量が前記範囲であることが好ましい。 The content of the other black pigment particles 1b is preferably 0.1 to 0.8 times the mass of the titanium nitride particles 1a. By making the mass 0.1 times or more the mass of the titanium nitride particles 1a, the amount of other black pigment particles 1b that can be dispersed in the gaps between the titanium nitride particles 1a is ensured, and the light-shielding property is maintained. On the other hand, by setting the mass to 0.8 times or less than the mass of the titanium nitride particles 1a, the antireflection performance achieved by the combination of the titanium nitride particles 1a and transparent particles, which will be described later, can be maintained. Further, when there are two or more types of other black pigment particles, it is preferable that the total mass of the other black pigment particles is within the above range.
 他の黒色顔料粒子1bの材質としては、チタン窒化物粒子1aと異なる材質であればいずれでもよく、カーボンブラック、ペリレンブラック、アニリンブラック、グラファイトのほか、チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム若しくは銀等の金属微粒子およびこれらの金属の酸化物、複合酸化物、硫化物、窒化物及び炭化物などが挙げられる。その中でも遮光性と反射色度の観点から、チタン炭化物、カーボンブラックが特に好ましい。 The other black pigment particles 1b may be made of any material as long as it is different from the titanium nitride particles 1a, including carbon black, perylene black, aniline black, graphite, as well as titanium, copper, iron, manganese, cobalt, and chromium. , metal fine particles such as nickel, zinc, calcium, or silver, and oxides, composite oxides, sulfides, nitrides, and carbides of these metals. Among these, titanium carbide and carbon black are particularly preferred from the viewpoint of light-shielding properties and reflective chromaticity.
 (チタン炭化物粒子)
 本発明の黒色樹脂組成物は、前記他の黒色顔料粒子がチタン炭化物粒子を含有することが好ましい。チタン炭化物粒子は、主としてチタン炭化物TiCからなり、副成分として酸化チタンTiO、Ti2n-1(1≦n≦20)で表せる低次酸化チタンおよび、場合により前記チタン窒化物を含有する。粒子表面の酸化が少ない、すなわち含有する酸素量が少ない純粋のチタン炭化物TiCの方がより高い遮光性が得られるため好ましく、とりわけ副成分としてTiOを含有しないことが好ましい。
(Titanium carbide particles)
In the black resin composition of the present invention, it is preferable that the other black pigment particles contain titanium carbide particles. The titanium carbide particles mainly consist of titanium carbide TiC, and contain titanium oxide TiO 2 , lower titanium oxide represented by Ti O 2n-1 (1≦n≦20) and, in some cases, the titanium nitride as subcomponents. . Pure titanium carbide TiC, which has less oxidation on the particle surface, that is, contains less oxygen, is preferable because higher light-shielding properties can be obtained, and it is particularly preferable not to contain TiO 2 as a subcomponent.
 チタン炭化物微粒子の合成方法としては、大きく分けて気相反応法と液相反応法があり、気相反応法としては電気炉法や熱プラズマ法等が挙げられるが、不純物の混入が少なく、粒子径が揃いやすく、また生産性も高い熱プラズマ法による合成が好ましい。熱プラズマを発生させる方法としては、直流アーク放電、多層アーク放電、高周波(RF)プラズマ、ハイブリッドプラズマ等が挙げられ、電極からの不純物の混入が少ない高周波プラズマがより好ましい。 Methods for synthesizing titanium carbide fine particles can be roughly divided into gas phase reaction method and liquid phase reaction method. Gas phase reaction methods include electric furnace method and thermal plasma method, but they are less contaminated with impurities and have a higher particle size. Synthesis by a thermal plasma method is preferable because the diameter can be easily made uniform and productivity is high. Methods for generating thermal plasma include direct current arc discharge, multilayer arc discharge, radio frequency (RF) plasma, hybrid plasma, etc., and radio frequency plasma is more preferred since it contains less impurities from the electrodes.
 気相法によるチタン炭化物粒子の製造方法としては、プラズマ炎中でハロゲン化チタンとメタンガス、エチレンガス等の炭化物ガスを反応させる方法が挙げられる。液相反応法によるチタン炭化物微粒子の製造方法としては、チタンアルコキシドとチタンアルコキシドとを配位結合する有機化合物とを用いた方法等が挙げられるが、これらに限定されるものではなく、所望とする物性を有するチタン炭化物粒子にできれば製造方法は問わない。なお、チタン炭化物粒子は種々のものが市販されており、それらの市販品を好ましく用いることができる。 Examples of methods for producing titanium carbide particles using a gas phase method include a method in which titanium halide is reacted with a carbide gas such as methane gas or ethylene gas in a plasma flame. Examples of the method for producing titanium carbide fine particles by a liquid phase reaction method include a method using titanium alkoxide and an organic compound that coordinates the titanium alkoxide, but is not limited to these, and any desired method can be used. Any manufacturing method may be used as long as titanium carbide particles having physical properties can be obtained. Note that various types of titanium carbide particles are commercially available, and those commercially available products can be preferably used.
 前記他の黒色顔料粒子がチタン炭化物粒子を含有する場合、前記チタン炭化物粒子の質量は前記チタン窒化物粒子の質量の0.1~0.8倍であることが好ましい。チタン炭化物粒子の質量がチタン窒化物粒子1aの質量の0.1倍以上であることにより、チタン窒化物粒子1aの隙間に分散配置され得るチタン炭化物粒子の量が担保され、遮光性が向上するとともに、他の黒色顔料粒子を同量添加した場合と比較して、よりニュートラルな色相を得ることができる。チタン炭化物粒子の質量は、チタン窒化物粒子の質量の0.2倍以上であることがより好ましい。一方、チタン炭化物粒子の質量がチタン窒化物粒子1aの質量の0.8倍以下であることにより、チタン窒化物粒子1aの透明粒子との組み合わせによる反射防止性能を維持することができる。チタン炭化物粒子の質量は、チタン窒化物粒子の質量の0.5倍以下であることがより好ましい。 When the other black pigment particles contain titanium carbide particles, the mass of the titanium carbide particles is preferably 0.1 to 0.8 times the mass of the titanium nitride particles. Since the mass of the titanium carbide particles is 0.1 times or more the mass of the titanium nitride particles 1a, the amount of titanium carbide particles that can be dispersed in the gaps between the titanium nitride particles 1a is ensured, and the light blocking property is improved. At the same time, a more neutral hue can be obtained compared to the case where the same amount of other black pigment particles is added. The mass of the titanium carbide particles is more preferably 0.2 times or more the mass of the titanium nitride particles. On the other hand, since the mass of the titanium carbide particles is 0.8 times or less the mass of the titanium nitride particles 1a, the antireflection performance achieved by the combination of the titanium nitride particles 1a and the transparent particles can be maintained. The mass of the titanium carbide particles is more preferably 0.5 times or less the mass of the titanium nitride particles.
 一方、発明者らは鋭意検討の結果、前記他の黒色顔料粒子がチタン炭化物粒子を含有する場合において、前記チタン窒化物粒子とチタン炭化物粒子の質量の前記好ましい比率範囲に加えて、前記チタン炭化物粒子の質量をチタン窒化物粒子の質量の4.5~49倍とすることで、チタン窒化物粒子1aの透明粒子との組み合わせによる反射防止性能を著しく阻害することなく、電気抵抗特性が向上することを見出した。 On the other hand, as a result of intensive studies, the inventors found that in the case where the other black pigment particles contain titanium carbide particles, in addition to the preferable ratio range of the mass of the titanium nitride particles and the titanium carbide particles, the titanium carbide particles By setting the mass of the particles to 4.5 to 49 times the mass of the titanium nitride particles, the electrical resistance properties are improved without significantly impairing the antireflection performance of the titanium nitride particles 1a in combination with the transparent particles. I discovered that.
 電気抵抗特性は、高いほどディスプレイ駆動時におけるリーク電流による液晶配向不良等による表示不良が抑制され、ディスプレイ表示特性が向上するため好ましい。すなわち、チタン炭化物粒子の質量がチタン窒化物粒子1aの質量の4.5倍以上であることにより、チタン窒化物粒子1aの隙間に分散配置され得るチタン炭化物粒子の量が十分に担保され、遮光性が向上するとともに、他の黒色顔料粒子を同量添加した場合と比較して、よりニュートラルな色相を得ることができ、加えてチタン炭化物粒子特性により電気抵抗特性が向上する。チタン炭化物粒子の質量は、チタン窒化物粒子の質量の5.5倍以上であることがより好ましい。一方、チタン炭化物粒子の質量がチタン窒化物粒子1aの質量の49倍以下であることにより、チタン窒化物粒子1aの透明粒子との組み合わせによる反射防止性能を著しく阻害することなく、電気抵抗特性が向上する。チタン炭化物粒子の質量は、チタン窒化物粒子の質量の35倍以下であることがより好ましい。 The higher the electrical resistance characteristic is, the more preferable it is because display defects due to liquid crystal alignment defects due to leakage current during display driving are suppressed, and display display characteristics are improved. That is, since the mass of the titanium carbide particles is 4.5 times or more the mass of the titanium nitride particles 1a, a sufficient amount of titanium carbide particles that can be dispersed in the gaps between the titanium nitride particles 1a is ensured, and light shielding is achieved. In addition, a more neutral hue can be obtained compared to the case where the same amount of other black pigment particles is added, and in addition, the electrical resistance properties are improved due to the properties of the titanium carbide particles. The mass of the titanium carbide particles is more preferably 5.5 times or more the mass of the titanium nitride particles. On the other hand, since the mass of the titanium carbide particles is 49 times or less than the mass of the titanium nitride particles 1a, the electrical resistance properties can be improved without significantly impeding the antireflection performance of the titanium nitride particles 1a in combination with the transparent particles. improves. The mass of the titanium carbide particles is more preferably 35 times or less the mass of the titanium nitride particles.
 (カーボンブラック粒子)
 本発明の黒色樹脂組成物は、前記他の黒色顔料粒子がカーボンブラック粒子を含有することが好ましい。カーボンブラック粒子としては、表面処理することにより絶縁性を高めたカーボンブラック粒子を使用することが好ましい。絶縁性を高めるための処理としては、一般的に、樹脂による表面被覆や表面の湿式酸化処理、非ポリマー基からなる有機基による表面修飾等が知られている。
(carbon black particles)
In the black resin composition of the present invention, it is preferable that the other black pigment particles contain carbon black particles. As the carbon black particles, it is preferable to use carbon black particles whose insulation properties have been improved by surface treatment. Generally known treatments for increasing insulation include surface coating with a resin, wet oxidation treatment of the surface, and surface modification with an organic group consisting of a non-polymer group.
 カーボンブラック粒子は種々のものが市販されており、それらの市販品を好ましく用いることができる。より好ましくは、非ポリマー基からなる有機基によって表面修飾されたカーボンブラック粒子を用いることが好ましく、とりわけ、スルホン酸基を有する有機により表面修飾されたカーボンブラック粒子を用いることにより、高い絶縁性と高温処理における絶縁性の低下を抑制させることができるためより好ましい。 Various types of carbon black particles are commercially available, and these commercially available products can be preferably used. It is more preferable to use carbon black particles whose surface has been modified with an organic group consisting of a non-polymer group. In particular, by using carbon black particles whose surface has been modified with an organic group having a sulfonic acid group, high insulation properties can be achieved. This is more preferable because it can suppress a decrease in insulation properties during high-temperature treatment.
 前記他の黒色顔料粒子がカーボンブラック粒子を含有する場合、前記カーボンブラック粒子の質量は前記チタン窒化物粒子の質量の0.1~0.8倍であることが好ましい。カーボンブラック粒子の質量が前記チタン窒化物粒子の質量の0.1倍以上であることにより、他の黒色顔料粒子を同量添加した場合と比較して、より遮光性を向上させることができる。カーボンブラック粒子の質量は、チタン窒化物粒子の質量の0.2倍以上であることがより好ましい。一方、カーボンブラック粒子の質量が前記チタン窒化物粒子の質量の0.8倍以下であることにより、カーボンブラック粒子添加による反射率の増加を抑制しながら遮光性をより向上させることができる。カーボンブラック粒子の質量は、チタン窒化物粒子の質量の0.5倍以下であることがより好ましい。 When the other black pigment particles contain carbon black particles, the mass of the carbon black particles is preferably 0.1 to 0.8 times the mass of the titanium nitride particles. When the mass of the carbon black particles is 0.1 times or more the mass of the titanium nitride particles, the light-shielding property can be further improved compared to the case where the same amount of other black pigment particles is added. The mass of the carbon black particles is more preferably 0.2 times or more the mass of the titanium nitride particles. On the other hand, since the mass of the carbon black particles is 0.8 times or less the mass of the titanium nitride particles, the light shielding property can be further improved while suppressing the increase in reflectance due to the addition of the carbon black particles. The mass of the carbon black particles is more preferably 0.5 times or less the mass of the titanium nitride particles.
 図2の態様はチタン窒化物粒子1aと異なる種類の他の黒色顔料粒子1bとの2種類の遮光材1からなるが、図3に示すように、さらに異なる種類の別の黒色顔料粒子1cを含有させてもよい。 The embodiment of FIG. 2 consists of two types of light shielding material 1, titanium nitride particles 1a and other black pigment particles 1b of a different type, but as shown in FIG. 3, another black pigment particle 1c of a different type is further included. It may be included.
 別の黒色顔料粒子1cの材質も、チタン窒化物粒子1aや他の黒色顔料粒子1bと異なる材質であればいずれでもよく、カーボンブラック、ペリレンブラック、アニリンブラック、グラファイトのほか、チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム若しくは銀等の金属微粒子およびこれらの金属の酸化物、複合酸化物、硫化物、窒化物及び炭化物などが挙げられる。 The material of the other black pigment particles 1c may be any material as long as it is different from the titanium nitride particles 1a and the other black pigment particles 1b, and includes carbon black, perylene black, aniline black, graphite, as well as titanium, copper, and iron. , manganese, cobalt, chromium, nickel, zinc, calcium, or silver, and oxides, composite oxides, sulfides, nitrides, and carbides of these metals.
 本発明の黒色樹脂組成物は、前記他の黒色顔料粒子がチタン炭化物粒子およびカーボンブラック粒子を含有することが好ましい。チタン窒化物粒子1aは、前述したように遮光性の点から酸素含有量が少ない方が好ましいが、酸素含有量が少ないほど透過色が青色になりその反射色度は強い赤みを呈する。透過色が赤色であるカーボンブラック粒子またはチタン炭化物粒子のいずれか一方のみを添加するとその反射色度は多少改善されるが、酸素含有量が少ない赤みの強いチタン窒化物粒子1aに対しては他の黒色顔料粒子1bとしてチタン炭化物粒子と、別の黒色顔料粒子1cとしてカーボンブラック粒子の両方を添加した方が、無彩色に近い反射色度にしやすくなる。 In the black resin composition of the present invention, the other black pigment particles preferably contain titanium carbide particles and carbon black particles. As mentioned above, it is preferable for the titanium nitride particles 1a to have a low oxygen content from the viewpoint of light-shielding properties, but the lower the oxygen content, the bluer the transmitted color becomes, and the stronger the reddish chromaticity of reflection. Adding only either carbon black particles or titanium carbide particles, which have a red transmitted color, improves the reflection chromaticity to some extent, but the other particles have a strong reddish titanium nitride particle 1a with low oxygen content. By adding both titanium carbide particles as the black pigment particles 1b and carbon black particles as the other black pigment particles 1c, it becomes easier to obtain a reflective chromaticity close to an achromatic color.
 すなわち、他の黒色顔料粒子1bであるチタン炭化物粒子に別の黒色顔料粒子1cであるカーボンブラック粒子を加え、両方を含有させることにより、前述したとおりに低反射性能を維持しながら、高い遮光性能を得られる効果に加えて、赤みの強い反射色度のチタン窒化物粒子1aであっても、黒色樹脂組成物10の反射色度a*を1以下の無彩色に改善することができる。なお、「反射色度a*」は基板5側の面より測定を行い、JIS-Z8729の方法に従って標準C光源に対する反射スペクトルを用いてCIE国際照明委員会のL*a*b*表色系により計算されたa*の色度値のことである。 That is, by adding carbon black particles, which are other black pigment particles 1c, to titanium carbide particles, which are other black pigment particles 1b, and containing both, high light-shielding performance can be achieved while maintaining low reflection performance as described above. In addition to the effects obtained, even if the titanium nitride particles 1a have a strong reddish reflection chromaticity, the reflection chromaticity a* of the black resin composition 10 can be improved to an achromatic color of 1 or less. The "reflection chromaticity a*" is measured from the surface on the substrate 5 side, and is based on the L*a*b* color system of the CIE International Commission on Illumination using the reflection spectrum for a standard C light source according to the method of JIS-Z8729. This is the chromaticity value of a* calculated by .
 前記カーボンブラック粒子の質量は、前記チタン炭化物粒子の質量の0.5~2.0倍であることが好ましい。カーボンブラック粒子の質量がチタン炭化物粒子の質量の0.5倍以上であることにより、カーボンブラック粒子添加による遮光性向上の効果を十分に発現することができる。カーボンブラック粒子の質量は、チタン炭化物粒子の質量の0.7倍以上であることがより好ましい。一方、カーボンブラック粒子の質量がチタン炭化物粒子の質量の2.0倍以下であることにより、カーボンブラック粒子添加による遮光性向上の効果を得ながら、反射率の増加をより抑制することができる。カーボンブラック粒子の質量は、チタン炭化物粒子の質量の1.3倍以下であることがより好ましい。 The mass of the carbon black particles is preferably 0.5 to 2.0 times the mass of the titanium carbide particles. When the mass of the carbon black particles is 0.5 times or more the mass of the titanium carbide particles, the effect of improving the light shielding property by adding the carbon black particles can be sufficiently exhibited. The mass of the carbon black particles is more preferably 0.7 times or more the mass of the titanium carbide particles. On the other hand, when the mass of the carbon black particles is 2.0 times or less the mass of the titanium carbide particles, it is possible to further suppress an increase in reflectance while obtaining the effect of improving the light shielding property by adding the carbon black particles. The mass of the carbon black particles is more preferably 1.3 times or less the mass of the titanium carbide particles.
 以上が本発明の遮光材に関する実施態様の1つである。次に透明粒子について述べる。
(透明粒子)
 透明粒子2は、所定の質量で樹脂3中に分散含有させる粒子であり、黒色樹脂組成物10内を透過する光線が当該透明粒子2に当たって四方八方に細かく拡散し、黒色樹脂組成物10の層全体の反射を抑制する。本発明において「透明」とは可視光性のほぼ全域の光を透過して、物体の向こう側が見通せる状態をいい、阻害しない状態で薄く着色しているものを含む。
The above is one embodiment of the light shielding material of the present invention. Next, transparent particles will be described.
(transparent particles)
The transparent particles 2 are particles that are dispersed and contained in the resin 3 at a predetermined mass, and the light rays that pass through the black resin composition 10 hit the transparent particles 2 and are finely diffused in all directions, thereby forming a layer of the black resin composition 10. Suppresses overall reflection. In the present invention, "transparent" refers to a state in which almost all visible light is transmitted through and the other side of an object can be seen through, and includes those that are lightly colored without being obstructed.
 透明粒子2は、平均一次粒径が数nmの微粒子から数μm程度の粗大粒子まで多種多様なものが市販されているが、本発明では平均一次粒径が5~30nmの透明粒子であることが好ましい。遮光材に含まれる黒色顔料粒子に比べて平均一次粒径が非常に小さい透明粒子2を含有させることで、遮光材に含まれる黒色顔料粒子との空いた隙間に透明粒子2が分散配置されやすくなるからである(図1、図2、図3参照)。黒色顔料粒子は外部からの光を大部分吸収するが一部の光を反射する。このように透明粒子が黒色顔料粒子間の空隙に分散配置することで、黒色顔料粒子周辺付近を透過する光線が細かく拡散反射して、黒色顔料粒子の表面で正反射した光の一部が視認側へ取り出されず黒色樹脂組成物の層中に吸収されることで、結果として正反射した光の割合が減少し、より黒色樹脂組成物の層10内の反射が抑えられる。筆者らは鋭意検討の結果、遮光材粒子の中でも特に平均二次粒径が160nm~220nmのチタン窒化物粒子の粒子間の空隙に、平均一次粒径5~30nmの透明粒子を配列させることで、透明粒子を配列させない場合と比較して特に反射率低減効果が高いことを見出した。平均二次粒径が前記範囲であるチタン窒化物粒子に透明粒子を添加することで、膜、つまり黒色樹脂組成物の層の屈折率を低下させるだけでなく、膜に照射された光の正反射を抑制して効果的に光拡散および膜中へ吸収されることで低反射を実現することができるため、特に屈折率が高いような樹脂を用いる場合においても低反射効果を発現することができる。また、チタン窒化物粒子に加えて、他の黒色顔料粒子を添加した場合においても、チタン窒化物粒子と透明粒子との配列による低反射効果は持続する。 A wide variety of transparent particles 2 are commercially available, ranging from fine particles with an average primary particle size of several nm to coarse particles of about several μm, but in the present invention, transparent particles with an average primary particle size of 5 to 30 nm are used. is preferred. By containing the transparent particles 2 whose average primary particle size is very small compared to the black pigment particles contained in the light shielding material, the transparent particles 2 are easily dispersed in the gaps between the black pigment particles contained in the light shielding material. This is because (see FIGS. 1, 2, and 3). Black pigment particles absorb most of the external light but reflect some of the light. By dispersing the transparent particles in the spaces between the black pigment particles in this way, the light rays that pass through the vicinity of the black pigment particles are finely and diffusely reflected, and a portion of the light that is specularly reflected on the surface of the black pigment particles is visible. By being absorbed into the layer of the black resin composition without being extracted to the side, the proportion of regularly reflected light is reduced as a result, and reflection within the layer 10 of the black resin composition is further suppressed. As a result of extensive research, the authors found that by arranging transparent particles with an average primary particle size of 5 to 30 nm in the gaps between titanium nitride particles, which have an average secondary particle size of 160 nm to 220 nm, among light shielding material particles. They found that the reflectance reduction effect is particularly high compared to the case where transparent particles are not arranged. By adding transparent particles to titanium nitride particles with an average secondary particle size within the above range, it is possible to not only lower the refractive index of the film, that is, the layer of the black resin composition, but also to reduce the polarity of the light irradiated onto the film. Low reflection can be achieved by suppressing reflection and effectively diffusing light and absorbing it into the film, so even when using a resin with a particularly high refractive index, it is possible to achieve a low reflection effect. can. Further, even when other black pigment particles are added in addition to the titanium nitride particles, the low reflection effect due to the arrangement of the titanium nitride particles and transparent particles continues.
 透明粒子2の材質は、とくに限定されないものの、反射防止性能を向上させる点から低屈折率の材質の樹脂が好ましく、例えば、酸化ケイ素系、フッ素系、ウレタン系、アクリル系などの樹脂からなる粒子が挙げられる。その中でも分散性がよい酸化ケイ素系のシリカ粒子が好ましい。これは、シリカ粒子はナノ粒子化した際の粒径制御が容易であるため粒径ばらつきが抑えられ、かつガラス同等の低い屈折率を有するために、他の透明粒子対比特に低反射効果が高いためである。シリカの中でも特にヒュームドシリカ、コロイダルシリカ、中空シリカ粒子を用いることがより好ましい。 Although the material of the transparent particles 2 is not particularly limited, a resin with a low refractive index is preferable from the viewpoint of improving antireflection performance. For example, particles made of a silicon oxide-based, fluorine-based, urethane-based, or acrylic-based resin. can be mentioned. Among these, silicon oxide-based silica particles are preferred because of their good dispersibility. This is because silica particles can easily control the particle size when they are made into nanoparticles, so particle size variations are suppressed, and because they have a low refractive index equivalent to glass, they have a particularly high low reflection effect compared to other transparent particles. It's for a reason. Among silica, it is particularly preferable to use fumed silica, colloidal silica, and hollow silica particles.
 (樹脂)
 樹脂3は、遮光材1や透明粒子2を分散させるためのバインダーであり、溶媒に溶ける形で遮光材1や透明粒子2を包含して適当な粘度を与えるとともに、迅速に基材5に密着した黒色樹脂組成物の層10を形成して接着する機能をもつ。
(resin)
The resin 3 is a binder for dispersing the light shielding material 1 and the transparent particles 2, and includes the light shielding material 1 and the transparent particles 2 in a solvent-soluble form to give an appropriate viscosity and quickly adheres to the base material 5. It has the function of forming and adhering a layer 10 of a black resin composition.
 樹脂3の材質はとくに限定されないものの、ブラックマトリックスの所定のパターンにパターニングする必要があることから、フォトリソグラフィーによる現像が可能なエポキシ樹脂、アクリル樹脂、シロキサンポリマー系樹脂、ポリイミド樹脂などのアルカリ可溶性の樹脂が好ましい。その中でも、黒色樹脂組成物の貯蔵安定性及び塗膜の耐熱性に優れるポリイミド樹脂またはアクリル樹脂が好ましい。本発明では、一般的にガラスよりも屈折率が高いポリイミド樹脂や一部の高屈折率なアクリル樹脂においても、反射率低減の効果を得ることができる。 Although the material of the resin 3 is not particularly limited, since it is necessary to pattern the black matrix into a predetermined pattern, an alkali-soluble material such as epoxy resin, acrylic resin, siloxane polymer resin, polyimide resin, etc. that can be developed by photolithography is used. Resins are preferred. Among these, polyimide resins or acrylic resins are preferred because they have excellent storage stability of black resin compositions and heat resistance of coating films. In the present invention, the effect of reducing the reflectance can be obtained even in polyimide resins that generally have a higher refractive index than glass and some acrylic resins that have a high refractive index.
 ポリイミド樹脂は前駆体が好ましく、テトラカルボン酸二無水物残基およびジアミン残基を有する繰り返し単位を有するポリアミック酸がより好ましい。 The polyimide resin is preferably a precursor, and more preferably a polyamic acid having a repeating unit having a tetracarboxylic dianhydride residue and a diamine residue.
 テトラカルボン酸二無水物は、可視光域の波長での光吸収が高く、遮光性も得られる。テトラカルボン酸二無水物は、酸二無水物残基の電子吸引性が高い程好ましい。電子吸引性が高い酸二無水物残基としては、ベンゾフェノン基のようなケトンタイプのもの、ジフェニルエ-テル基のようなエーテルタイプのもの、フェニル基を有するもの、ジフェニルスルホン基のようなスルホン基を有するものなどが挙げられる。したがって、テトラカルボン酸二無水物は具体的には、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物、3,3´,4,4´-ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物などが好ましい。 Tetracarboxylic dianhydride has high light absorption at wavelengths in the visible light range and can also provide light blocking properties. The higher the electron-withdrawing property of the acid dianhydride residue, the more preferable the tetracarboxylic dianhydride is. Acid dianhydride residues with high electron-withdrawing properties include ketone type residues such as benzophenone group, ether type residues such as diphenyl ether group, residues with phenyl group, and sulfone residues such as diphenyl sulfone group. Examples include those having a group. Therefore, the tetracarboxylic dianhydride specifically includes 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, Pyromellitic dianhydride and the like are preferred.
 ジアミンは、ジアミン残基の電子供与性が強い程好ましく、ビフェニル基、p-,p-置換またはm-,p-置換構造のジアミノジフェニルエ-テル、メチレンジアニリン、ナフタレン基、ペリレン基などを有するものや、4,4´、または3,4´ジアミノジフェニルエ-テル、パラフェニレンジアミンなどが挙げられる。また、これらの芳香族環にニトロ基が置換された構造を有するものであってもよい。 The stronger the electron-donating property of the diamine residue, the more preferable the diamine is, and examples include biphenyl group, p-, p-substituted or m-, p-substituted diaminodiphenyl ether, methylene dianiline, naphthalene group, perylene group, etc. 4,4' or 3,4' diaminodiphenyl ether, p-phenylenediamine, and the like. Moreover, it may have a structure in which these aromatic rings are substituted with a nitro group.
 アクリル樹脂としては、カルボキシル基を有するアクリル樹脂が挙げられる。カルボキシル基を有するアクリル樹脂としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が好ましい。不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸又はビニル酢酸等が挙げられる。これらは単独で用いてもよいが、他の共重合可能なエチレン性不飽和化合物と組み合わせて用いてもよい。 Examples of the acrylic resin include acrylic resins having carboxyl groups. As the acrylic resin having a carboxyl group, a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound is preferable. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and vinyl acetic acid. These may be used alone or in combination with other copolymerizable ethylenically unsaturated compounds.
 共重合可能なエチレン性不飽和化合物としては、具体的には、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、ベンジルメタクリレートなどの不飽和カルボン酸アルキルエステル、スチレンなどの芳香族ビニル化合物、トリシクロデカニル(メタ)アクリレートなどの(架橋)環式炭化水素基、アミノエチルアクリレートなどの不飽和カルボン酸アミノアルキルエステル、グリシジルアクリレート、グリシジルメタクリレートなどの不飽和カルボン酸グリシジルエステル、酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリルなどのシアン化ビニル化合物、1,3-ブタジエン、イソプレンなどの脂肪族共役ジエン、それぞれ末端にアクリロイル基、あるいはメタクリロイル基を有するポリスチレン、ポリメチルアクリレート、ポリメチルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレートなどがあげられるが、これらに限定されるものではない。とくに(メタ)アクリル酸およびベンジル(メタ)アクリレートを含んでなるアクリル系ポリマーは、分散安定性、パターン加工性の各観点から特に好ましい。 Examples of copolymerizable ethylenically unsaturated compounds include unsaturated carboxylic acid alkyl esters such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, benzyl methacrylate, and aromatic vinyl such as styrene. compounds, (bridged) cyclic hydrocarbon groups such as tricyclodecanyl (meth)acrylate, unsaturated carboxylic acid aminoalkyl esters such as aminoethyl acrylate, unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, vinyl acetate , carboxylic acid vinyl esters such as vinyl propionate, cyanide vinyl compounds such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, aliphatic conjugated dienes such as 1,3-butadiene and isoprene, each with an acryloyl group or methacryloyl group at the end. Examples include, but are not limited to, polystyrene, polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, etc. having groups. In particular, acrylic polymers containing (meth)acrylic acid and benzyl (meth)acrylate are particularly preferred from the viewpoints of dispersion stability and pattern processability.
 (溶媒)
 溶媒は、遮光材1や透明粒子2の分散安定性及び樹脂3の溶解性に合わせて用いることができ、水又は有機溶剤からなる。有機溶剤としては、例えば、アミド系またはラクトン系の極性溶媒、グリコールエーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、脂肪族アルコール系溶媒、ケトン系溶媒などが挙げられる。これらの2種類以上の混合溶媒であってもよいし、またこれら以外の有機溶剤との混合であってもよい。
(solvent)
The solvent can be used depending on the dispersion stability of the light shielding material 1 and the transparent particles 2 and the solubility of the resin 3, and is composed of water or an organic solvent. Examples of the organic solvent include amide-based or lactone-based polar solvents, glycol ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, aliphatic alcohol-based solvents, ketone-based solvents, and the like. A mixed solvent of two or more of these may be used, or a mixture with an organic solvent other than these may be used.
 たとえば、樹脂3としてポリイミド系樹脂を選択するのであれば、ポリイミド系樹脂を溶解、混合させることができるN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどのアミド系極性溶媒、ラクトン系極性溶媒、ジメチルスルフォキシドなどが好ましい。 For example, if a polyimide resin is selected as the resin 3, an amide such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, etc. that can dissolve and mix the polyimide resin Preferred are polar solvents based on lactones, polar solvents based on lactones, dimethyl sulfoxide, and the like.
 樹脂3としてアクリル系樹脂を選択するのであれば、アクリル系樹脂を溶解、混合させることができるプロピレングリコールモノエチルエーテルアセテートなどのグリコールエーテル系溶媒、酢酸ブチルなどのエステル系溶媒、トルエンやキシレンなどの芳香族炭化水素系溶媒などが好ましい。 If an acrylic resin is selected as the resin 3, a glycol ether solvent such as propylene glycol monoethyl ether acetate that can dissolve and mix the acrylic resin, an ester solvent such as butyl acetate, or a solvent such as toluene or xylene can be used. Aromatic hydrocarbon solvents are preferred.
 (その他の成分)
 以上、本発明の黒色樹脂組成物は、少なくとも特定の平均二次粒径のチタン窒化物粒子1a、透明粒子2、樹脂3、溶媒で成立するが、感光性樹脂や非感光性樹脂を選択する場合、必要に応じて光ラジカル重合開始剤、硬化促進剤、熱重合禁止剤、酸化防止剤、可塑剤、レベリング剤、消泡剤、カップリング剤、界面活性剤等の添加剤を配合してもよい。
(Other ingredients)
As described above, the black resin composition of the present invention is made up of at least titanium nitride particles 1a having a specific average secondary particle size, transparent particles 2, resin 3, and a solvent, but a photosensitive resin or a non-photosensitive resin is selected. If necessary, additives such as photoradical polymerization initiators, curing accelerators, thermal polymerization inhibitors, antioxidants, plasticizers, leveling agents, antifoaming agents, coupling agents, and surfactants may be added. Good too.
 (光ラジカル重合開始剤)
 光ラジカル重合開始剤としては、特に制限はないが、アルキルフェノン系および/あるいはオキシムエステル系光重合開始剤を含有することが好ましい。アルキルフェノン系光重合開始剤として、α-アミノアルキルフェノン系あるいはα-ヒドロキシアルキルフェノン系などがあげられるが、特にα-アミノアルキルフェノン系が高感度の観点から好ましい。オキシムエステル系光重合開始剤の具体例として、BASF(株)“イルガキュア(登録商標)”OXE01である1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、BASF(株)“イルガキュア(登録商標)”OXE02であるエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、旭電化工業(株)製の “アデカ(登録商標)オプトマー”N-1818、N-1919、“アデカクルーズ”NCI831などがあげられる。
(Photoradical polymerization initiator)
The radical photopolymerization initiator is not particularly limited, but preferably includes an alkylphenone and/or oxime ester photopolymerization initiator. Examples of the alkylphenone photopolymerization initiator include α-aminoalkylphenone and α-hydroxyalkylphenone, with α-aminoalkylphenone being particularly preferred from the viewpoint of high sensitivity. A specific example of the oxime ester photopolymerization initiator is 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime), which is BASF Corporation's "Irgacure (registered trademark)" OXE01. ], BASF Corporation “Irgacure (registered trademark)” OXE02, ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(0-acetyl oxime), "ADEKA (registered trademark) Optomer" N-1818, N-1919, "ADEKA CRUISE" NCI831 manufactured by Asahi Denka Kogyo Co., Ltd., and the like.
 また、これらの光ラジカル重合開始剤に加えて、ベンゾフェノン系化合物、オキサントン系化合物、イミダゾール系化合物、ベンゾチアゾール系化合物、ベンゾオキサゾール系化合物、カルバゾール系化合物、トリアジン系化合物、リン系化合物あるいはチタネート等の無機系光重合開始剤など公知の光重合開始剤を併用して用いることもできる。 In addition to these photoradical polymerization initiators, benzophenone compounds, oxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, carbazole compounds, triazine compounds, phosphorus compounds, titanates, etc. Known photopolymerization initiators such as inorganic photopolymerization initiators can also be used in combination.
 (熱重合禁止剤)
 熱重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、tert-ブチルカテコール、フェノチアジン等を挙げることができ、酸化防止剤としてはヒンダートフェノール系化合物等を挙げることができ、可塑剤としては、ジブチルフタレート、ジオクチルフタレート、リン酸トリクレジル等を挙げることができ、消泡剤やレベリング剤としては、シリコーン系、フッ素系、アクリル系の化合物を挙げることができる。また、界面活性剤としてはフッ素系界面活性剤、シリコーン系界面活性剤等を挙げることができる。
(Thermal polymerization inhibitor)
Examples of thermal polymerization inhibitors include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, and phenothiazine; examples of antioxidants include hindered phenol compounds; and examples of plasticizers: Examples include dibutyl phthalate, dioctyl phthalate, and tricresyl phosphate. Examples of antifoaming agents and leveling agents include silicone-based, fluorine-based, and acrylic compounds. Furthermore, examples of the surfactant include fluorine-based surfactants, silicone-based surfactants, and the like.
 (黒色樹脂組成物および黒色樹脂組成物の層の製造方法)
 次に、黒色樹脂組成物の製造方法を説明する。チタン窒化物粒子の一次粒子をもとに所望の平均二次粒径を有するチタン窒化物粒子1a等を含有した本発明の黒色樹脂組成物を得る方法としては、混合分散機を用いてこのチタン窒化物粒子1a等の一次粒子を溶媒などの分散媒と後述の樹脂成分の混合物中に直接分散し、その分散する時間を制御する方法が挙げられる。あるいは、このチタン窒化物粒子1a等の一次粒子を高分子分散剤や溶媒などの分散媒と共に分散し、その分散する時間を適当な時間として一次分散液とした後、後述の樹脂成分を後から加え混合分散機を用いて作製するという方法であってもよい。混合分散機を用いる際には、ビーズミル、ボールミル、サンドグラインダー、3本ロールミル、高速度衝撃ミルなどを用いるとよい。そのビーズミルを例にすると、コボールミル、バスケットミル、ピンミル、ダイノーミル、ナノミル、アペックスミルなどが挙げられる。ビーズミルのビーズとしては、チタニアビーズ、ジルコニアビーズ、ジルコンビーズなどが挙げられ、ビーズミルと分散液とを分離することが可能な遠心分離方式によるセパレーターを有するビーズミルを用いて分散でもよい。その分散に用いるビーズ径は、0.05~0.5mmが好ましい。
(Method for producing black resin composition and layer of black resin composition)
Next, a method for producing a black resin composition will be explained. As a method for obtaining the black resin composition of the present invention containing titanium nitride particles 1a and the like having a desired average secondary particle size based on the primary particles of titanium nitride particles, the titanium Examples include a method in which primary particles such as nitride particles 1a are directly dispersed in a mixture of a dispersion medium such as a solvent and a resin component described below, and the time for the dispersion is controlled. Alternatively, the primary particles such as the titanium nitride particles 1a are dispersed with a dispersion medium such as a polymer dispersant or a solvent, and the dispersion time is set to an appropriate time to form a primary dispersion liquid, and then the resin component described below is added later. It may also be produced using an addition mixing and dispersing machine. When using a mixing and dispersing machine, a bead mill, a ball mill, a sand grinder, a three-roll mill, a high-speed impact mill, etc. may be used. Examples of such bead mills include coball mills, basket mills, pin mills, dyno mills, nano mills, and apex mills. Beads for the bead mill include titania beads, zirconia beads, zircon beads, etc., and the dispersion may be performed using a bead mill having a centrifugal separator capable of separating the bead mill and the dispersion liquid. The diameter of beads used for the dispersion is preferably 0.05 to 0.5 mm.
 得られた黒色樹脂組成物を基材5上に塗布する方法としては、公知の溶液浸漬法、スプレー法の他、インクジェット機、ローラーコーター機、ランドコーター機、スリットダイコーター機やスピナー機を用いる方法等の何れの方法を採用しても構わない。樹脂3がポリイミド系樹脂であれば、スリットダイコーターによる方法が良好な塗布膜を得る点で好ましい。溶媒により適正粘度に調整し、所望の厚さに塗布した後、加熱もしくは減圧下で溶媒を飛散させることにより乾燥塗膜が形成され、さらなる光及び/又は熱により硬化することで目的とする黒色樹脂組成物の硬化膜が形成できる。また、黒色樹脂組成物の硬化膜をパターン形成する方法としては、黒色樹脂組成物を塗布、乾燥し、フォトマスクを介して紫外線を照射し、露光、現像によりパターン化するという、フォトリソグラフィー法がある。また、ポリイミドなど非感光性の樹脂を用いてパターン加工する場合は、同様に黒色樹脂組成物を塗布、乾燥して成膜した後に、黒色樹脂組成物上にフォトレジストを塗布、乾燥し、フォトマスクを介して紫外線を照射し、露光、現像することで同様に加工できる。また、スクリーン印刷法、凹版印刷、グラビア印刷法などを適用してパターン形成してもよく、マスクや印刷版を必要としないインクジェット法を用いてもよい。 As a method for applying the obtained black resin composition onto the base material 5, in addition to the known solution dipping method and spray method, an inkjet machine, a roller coater machine, a land coater machine, a slit die coater machine, and a spinner machine are used. Any method may be used. If the resin 3 is a polyimide resin, a method using a slit die coater is preferable in that a good coating film can be obtained. After adjusting the viscosity with a solvent and coating it to the desired thickness, a dry coating is formed by scattering the solvent under heating or reduced pressure, and is further cured by light and/or heat to achieve the desired black color. A cured film of the resin composition can be formed. In addition, as a method for patterning a cured film of a black resin composition, a photolithography method is used, in which a black resin composition is applied, dried, irradiated with ultraviolet rays through a photomask, and patterned by exposure and development. be. In addition, when patterning is performed using a non-photosensitive resin such as polyimide, a black resin composition is similarly applied and dried to form a film, and then a photoresist is applied on the black resin composition, dried, and a photoresist is applied and dried. It can be processed in the same way by irradiating ultraviolet light through a mask, exposing it, and developing it. Further, a pattern may be formed by applying a screen printing method, an intaglio printing method, a gravure printing method, or the like, or an inkjet method that does not require a mask or a printing plate may be used.
 以上の方法により、所定のパターンに形成され、基材5との密着性も確保できれば、マイクロLEDディスプレイ用途などのブラックマトリックス基板に適用して表示装置を製造することができる。 By the above method, if it is formed into a predetermined pattern and the adhesion to the base material 5 can be ensured, it can be applied to a black matrix substrate for use in micro LED displays, etc. to manufacture a display device.
 本発明の黒色樹脂組成物を含むブラックマトリックス基板は、黒色樹脂組成物を基材5上に塗布し、乾燥して溶媒を飛散させ、必要に応じて硬化処理をすることで、黒色樹脂組成物の層10が形成される。そして、図2の紙面下方向の基材5側から基材5を通して本発明の黒色樹脂組成物の層10の光学特性を測定した場合、光学濃度(OD値)が1μm当たり2.4以上の良好な遮光性を維持し、それと同時に反射率が5.5%以下の良好な低反射性能を有する層になる。なお、OD値は、光学濃度計(361T(visual);X-rite社製)を用いて入射光および透過光の強度を測定し、下記式(1)より算出することができる。
OD値 = log10(I0/I) ・・・ 式(1)
I0 : 入射光強度
I : 透過光強度  。
The black matrix substrate containing the black resin composition of the present invention can be produced by coating the black resin composition on the base material 5, drying it to scatter the solvent, and carrying out a curing treatment if necessary. A layer 10 of is formed. When the optical properties of the layer 10 of the black resin composition of the present invention are measured from the base material 5 side in the downward direction of the paper surface of FIG. 2 through the base material 5, the optical density (OD value) is 2.4 or more per μm. The layer maintains good light shielding properties and at the same time has good low reflection performance with a reflectance of 5.5% or less. Note that the OD value can be calculated from the following formula (1) by measuring the intensity of incident light and transmitted light using an optical densitometer (361T (visual); manufactured by X-rite).
OD value = log10 (I0/I) ... Formula (1)
I0: Incident light intensity I: Transmitted light intensity.
 車載向け液晶ディスプレイやマイクロLEDディスプレイ用途のブラックマトリックスでは、遮光性としてOD値2.4以上の性能が要求され、反射率も5.5%未満の性能が要求されているが、本発明の黒色樹脂組成物の層10はこれを両立する。OD値の上限については、OD値が大きければ大きいほど遮光性が良好である観点から上限はない。ここで、ブラックマトリクス基板としては硬化膜の膜厚1.0μmあたりのOD値は、2.4~4.5が好ましい範囲である。遮光材とその他の構成物との質量比率バランスを鑑みた組成設計の観点より、より好ましくは、膜厚1.0μmあたりのOD値は2.4~4.0であり、さらにこの好ましくは膜厚1.0μmあたりのOD値は2.4~3.5である。 Black matrices used in automotive LCD displays and micro LED displays are required to have an OD value of 2.4 or more for light blocking performance and a reflectance of less than 5.5%. The resin composition layer 10 achieves both of these requirements. Regarding the upper limit of the OD value, there is no upper limit from the viewpoint that the larger the OD value, the better the light shielding property is. Here, for the black matrix substrate, the OD value per 1.0 μm thickness of the cured film is preferably in the range of 2.4 to 4.5. From the viewpoint of composition design considering the mass ratio balance between the light shielding material and other constituents, it is more preferable that the OD value per 1.0 μm film thickness is 2.4 to 4.0; The OD value per 1.0 μm thickness is 2.4 to 3.5.
 本発明のブラックマトリックス基板は、透明基板および前記透明基板上に形成された前記黒色樹脂組成物の硬化膜を含むブラックマトリックス基板であって、前記硬化膜の光学濃度(OD値)が膜厚1.0μmあたり2.4~4.5であり、反射色a*値が0.1~3.0であり、前記透明基板の反射率が4.5%~5.5%である。前記の範囲のOD値、反射色a*、反射率を有するブラックマトリックスが形成された基板をカラーフィルターに用いた場合、遮光性に優れ、かつ従来のものより外光による反射を抑制したディスプレイを提供することができる。本発明の黒色樹脂組成物をマイクロLEDディスプレイの表示装置以外の他用途に適用しても構わない。例えば、パソコン、タブレットPC、ゲーム機、ナビゲーションシステム、液晶テレビ、ビデオ、液晶プロジェクターなどの使用する液晶ディスプレイや有機エレクトロルミネッセンスディスプレイなどが挙げられる。 The black matrix substrate of the present invention is a black matrix substrate including a transparent substrate and a cured film of the black resin composition formed on the transparent substrate, wherein the optical density (OD value) of the cured film is 1 2.4 to 4.5 per .0 μm, the reflected color a* value is 0.1 to 3.0, and the reflectance of the transparent substrate is 4.5% to 5.5%. When a substrate on which a black matrix is formed having an OD value, reflection color a*, and reflectance in the above range is used for a color filter, it is possible to create a display that has excellent light-shielding properties and suppresses reflection from external light more than conventional ones. can be provided. The black resin composition of the present invention may be applied to uses other than micro LED display devices. Examples include liquid crystal displays and organic electroluminescent displays used in personal computers, tablet PCs, game consoles, navigation systems, liquid crystal televisions, videos, liquid crystal projectors, and the like.
 以下、本発明の実施例を具体的に説明するが、本発明はこれらに限定されない。各実施例および比較例に用いた樹脂膜の評価方法および製造方法を以下に示す。 Examples of the present invention will be specifically described below, but the present invention is not limited thereto. The evaluation method and manufacturing method of the resin film used in each example and comparative example are shown below.
 [アクリル樹脂粉末の作製]
 文献(特許第3120476号公報;実施例1)記載の方法により、メチルメタクリレート/メタクリル酸/スチレン共重合体(質量比30/40/30)を合成後、グリシジルメタクリレート40質量部を付加させ、精製水で再沈、濾過、乾燥することにより、平均分子量(Mw)40,000、酸価110(mgKOH/g)のアクリル樹脂粉末を得た。
[Preparation of acrylic resin powder]
After synthesizing methyl methacrylate/methacrylic acid/styrene copolymer (mass ratio 30/40/30) by the method described in the literature (Patent No. 3120476; Example 1), 40 parts by mass of glycidyl methacrylate was added and purified. By reprecipitation with water, filtration, and drying, an acrylic resin powder having an average molecular weight (Mw) of 40,000 and an acid value of 110 (mgKOH/g) was obtained.
 [チタン窒化物粒子分散アクリル樹脂溶液(Bk-1)の作製]
 熱プラズマ法により製造したチタン窒化物粒子(B-1)(日清エンジニアリング(株)製)400.0gにアクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40質量%溶液93.75g、高分子分散剤(BYK21116;ビックケミー社製)62.50g及びプロピレングリコールモノエチルエーテルアセテート1440.0gをタンクに仕込み、ホモミキサー(特殊機化製)で正転方向に速度6000rpmにて1時間撹拌し、予備分散液を得た。
[Preparation of titanium nitride particle dispersed acrylic resin solution (Bk-1)]
400.0 g of titanium nitride particles (B-1) (manufactured by Nissin Engineering Co., Ltd.) produced by thermal plasma method, 93.75 g of a 40% by mass solution of acrylic resin powder in propylene glycol monomethyl ether acetate, and a polymer dispersant ( 62.50 g of BYK21116 (manufactured by BYK Chemie) and 1440.0 g of propylene glycol monoethyl ether acetate were placed in a tank, and stirred for 1 hour at a speed of 6000 rpm in the forward direction using a homomixer (manufactured by Tokushu Kika) to prepare a preliminary dispersion. Obtained.
 その後、0.10mmφジルコニアビーズ(東レ製)を70%充填した遠心分離セパレーターを具備した、ウルトラアペックスミル(寿工業製)に予備分散液を供給し、回転速度8.0m/sで2時間分散を行い、固形分濃度25.0質量%、質量比がチタン窒化物粒子/樹脂=80/20となるチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)を得た。チタン窒化物粒子分散アクリル樹脂溶液(Bk-1)のチタン窒化物粒子の平均二次粒径は180nmであった。測定方法については後述する。 Thereafter, the preliminary dispersion was supplied to an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% 0.10 mmφ zirconia beads (manufactured by Toray Industries), and dispersed for 2 hours at a rotational speed of 8.0 m/s. A titanium nitride particle-dispersed acrylic resin solution (Bk-1) having a solid content concentration of 25.0% by mass and a mass ratio of titanium nitride particles/resin = 80/20 was obtained. The average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed acrylic resin solution (Bk-1) was 180 nm. The measurement method will be described later.
 チタン原子の含有量はICP発光分光分析法(セイコーインスツルメンツ社製 ICP発光分光分析装置SPS3000)により測定した。酸素原子及び窒素原子の含有量は(堀場製作所製 酸素・窒素分析装置 EMGA-620W/C)を用いて測定し、不活性ガス融解―赤外線吸収法により酸素原子を、不活性ガス融解―熱伝導度法により窒素原子を求めた。ICP質量分析法、不活性ガス融解―赤外線吸収法、不活性ガス融解―熱伝導度法を用いて上記チタン窒化物粒子の組成分析を行ったところチタン含有量、酸素含有量、窒素含有量はそれぞれ68.4質量%、1.143質量%、6.0048%であり、モル比は、68.4/47.867:1.143/15.999:6.0048/14.007=1.429:0.07145:0.4287=1:0.05:0.30であった。したがって、上記チタン窒化物粒子の組成式はTiO0.050.30であった。 The content of titanium atoms was measured by ICP emission spectrometry (ICP emission spectrometer SPS3000 manufactured by Seiko Instruments). The content of oxygen atoms and nitrogen atoms was measured using an oxygen/nitrogen analyzer EMGA-620W/C (manufactured by Horiba, Ltd.), and oxygen atoms were measured using an inert gas melting-infrared absorption method. Nitrogen atoms were determined by the degree method. When the composition of the titanium nitride particles was analyzed using ICP mass spectrometry, inert gas melting-infrared absorption method, and inert gas melting-thermal conductivity method, the titanium content, oxygen content, and nitrogen content were determined. They are 68.4% by mass, 1.143% by mass, and 6.0048%, respectively, and the molar ratio is 68.4/47.867:1.143/15.999:6.0048/14.007=1. 429:0.07145:0.4287=1:0.05:0.30. Therefore, the compositional formula of the titanium nitride particles was TiO 0.05 N 0.30 .
 [アニリンブラック粒子分散アクリル樹脂溶液(Bk-2)の作製]
 アニリンブラック粒子(B-2)(クサカベ ピグメント#100 アニリンブラック 260品番pig-KU0066((株)クサカベ製))を使用した以外は(Bk-1)と同様の方法で固形分濃度25.0質量%、質量比がアニリンブラック粒子/樹脂=80/20となるアニリンブラック粒子分散アクリル樹脂溶液(Bk-2)を得た。アニリンブラック粒子分散アクリル樹脂溶液(Bk-2)のアニリンブラック粒子の平均二次粒径は120nmであった。
[Preparation of aniline black particle-dispersed acrylic resin solution (Bk-2)]
Solid content concentration 25.0 mass using the same method as (Bk-1) except that aniline black particles (B-2) (Kusakabe Pigment #100 Aniline Black 260 product number pig-KU0066 (manufactured by Kusakabe Co., Ltd.)) were used. %, an aniline black particle-dispersed acrylic resin solution (Bk-2) having a mass ratio of aniline black particles/resin=80/20 was obtained. The average secondary particle size of the aniline black particles in the aniline black particle-dispersed acrylic resin solution (Bk-2) was 120 nm.
 [チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)の作製]
 チタン炭化物粒子(B-3)(TiCナノ粉末 Lot:1330709111(日清エンジニアリング(株)製))を使用した以外は(Bk-1)と同様の方法で固形分濃度25.0質量%、質量比がチタン炭化物粒子/樹脂=80/20となるチタン炭化物粒子分散アクリル樹脂溶液(Bk-3)を得た。チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)のチタン炭化物粒子の平均二次粒径は120nmであった。
[Preparation of titanium carbide particle dispersed acrylic resin solution (Bk-3)]
The same method as (Bk-1) was used except that titanium carbide particles (B-3) (TiC nanopowder Lot: 1330709111 (manufactured by Nissin Engineering Co., Ltd.)) were used at a solid content concentration of 25.0% by mass. A titanium carbide particle dispersed acrylic resin solution (Bk-3) having a ratio of titanium carbide particles/resin = 80/20 was obtained. The average secondary particle size of titanium carbide particles in the titanium carbide particle dispersed acrylic resin solution (Bk-3) was 120 nm.
 [カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)の作製]
 カーボンブラック粒子(B-4)(TPX1291(CABOT製))を使用した以外は(Bk-1)と同様の方法で固形分濃度25.0質量%、質量比がカーボンブラック粒子/樹脂=80/20となるカーボンブラック粒子分散アクリル樹脂溶液(Bk-4)を得た。カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)のカーボンブラック粒子の平均二次粒径は100nmであった。
[Preparation of carbon black particle dispersed acrylic resin solution (Bk-4)]
The same method as (Bk-1) was used except that carbon black particles (B-4) (TPX1291 (manufactured by CABOT)) were used, with a solid content concentration of 25.0% by mass and a mass ratio of carbon black particles/resin = 80/ A carbon black particle-dispersed acrylic resin solution (Bk-4) of No. 20 was obtained. The average secondary particle size of carbon black particles in the carbon black particle-dispersed acrylic resin solution (Bk-4) was 100 nm.
 [ポリアミック酸(ポリイミド前駆体)溶液(A-1)の製造]
 3,3´,4,4´-ビフェニルテトラカルボン酸二無水物147.0gを、N-メチル-2-ピロリドン993.0gと共に仕込み、4,4´-ジアミノジフェニルエ-テル95.1gおよびビス(3-アミノプロピル)テトラメチルジシロキサン6.20gを添加し、60℃で3時間反応させ、ポリイミド前駆体であるポリアミック酸溶液(A-1)を得た。
[Production of polyamic acid (polyimide precursor) solution (A-1)]
147.0 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride was charged together with 993.0 g of N-methyl-2-pyrrolidone, and 95.1 g of 4,4'-diaminodiphenyl ether and bis 6.20 g of (3-aminopropyl)tetramethyldisiloxane was added and reacted at 60° C. for 3 hours to obtain a polyamic acid solution (A-1) which is a polyimide precursor.
 [チタン窒化物粒子分散ポリアミック酸溶液(Bk-5)の作製]
 熱プラズマ法により製造したチタン窒化物粒子(B-1)(日清エンジニアリング(株)製)96.0g、ポリアミック酸溶液(A-1)120.0g、γ-ブチロラクトン114.0g、N-メチル-2ピロリドン538.0g及び3メチル-3メトキシブチルアセテート132.0gをタンクに仕込み、ホモミキサー(特殊機化製)で正転方向に速度6000rpmにて1時間撹拌後、0.05mmφジルコニアビーズ(YTZボール;ニッカトー製)を70%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)を用いて回転速度8.0m/sで2時間分散を行い、固形分濃度12.0質量%、質量比が顔料/樹脂=80/20となるチタン窒化物分散ポリアミック酸溶液(Bk-5)を得た。チタン窒化物粒子分散ポリアミック酸溶液(Bk-5)のチタン窒化物粒子の平均二次粒径は180nmであった。
[Preparation of titanium nitride particle dispersed polyamic acid solution (Bk-5)]
Titanium nitride particles (B-1) produced by thermal plasma method (Nissin Engineering Co., Ltd.) 96.0 g, polyamic acid solution (A-1) 120.0 g, γ-butyrolactone 114.0 g, N-methyl 538.0 g of -2-pyrrolidone and 132.0 g of 3-methyl-3-methoxybutyl acetate were placed in a tank, and after stirring for 1 hour at a speed of 6000 rpm in the normal rotation direction using a homomixer (manufactured by Tokushu Kika), 0.05 mmφ zirconia beads ( Dispersion was performed for 2 hours at a rotation speed of 8.0 m/s using an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% YTZ balls (manufactured by Nikkato), and the solid content concentration was 12.0% by mass. A titanium nitride-dispersed polyamic acid solution (Bk-5) having a mass ratio of pigment/resin of 80/20 was obtained. The average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed polyamic acid solution (Bk-5) was 180 nm.
 チタン原子、酸素原子及び窒素原子の含有量を組成分析した結果、チタン含有量、酸素含有量、窒素含有量はそれぞれ68.4質量%、1.143質量%、6.0048%であり、モル比は、68.4/47.867:1.143/15.999:6.0048/14.007=1.429:0,07145:0.4287=1:0.05:0.30であった。したがって、上記チタン窒化物粒子の組成式はTiO0.050.30であった。 As a result of compositional analysis of the content of titanium atoms, oxygen atoms, and nitrogen atoms, the titanium content, oxygen content, and nitrogen content were 68.4% by mass, 1.143% by mass, and 6.0048%, respectively, and the mole The ratio was 68.4/47.867:1.143/15.999:6.0048/14.007=1.429:0,07145:0.4287=1:0.05:0.30. Ta. Therefore, the compositional formula of the titanium nitride particles was TiO 0.05 N 0.30 .
 [チタン炭化物粒子分散ポリアミック酸溶液(Bk-6)の作製]
 チタン炭化物粒子(B-3)(TiCナノ粉末 Lot:1330709111(日清エンジニアリング(株)製))を使用した以外は(Bk-5)と同様の方法で固形分濃度12.0質量%、質量比がチタン炭化物粒子/樹脂=80/20となるチタン炭化物粒子分散ポリアミック酸溶液(Bk-6)を得た。チタン炭化物粒子分散アクリル樹脂溶液(Bk-6)のチタン炭化物粒子の平均二次粒径は120nmであった。
[Preparation of titanium carbide particle dispersed polyamic acid solution (Bk-6)]
The same method as (Bk-5) was used except that titanium carbide particles (B-3) (TiC nanopowder Lot: 1330709111 (manufactured by Nissin Engineering Co., Ltd.)) were used at a solid content concentration of 12.0% by mass. A titanium carbide particle-dispersed polyamic acid solution (Bk-6) having a ratio of titanium carbide particles/resin = 80/20 was obtained. The average secondary particle size of titanium carbide particles in the titanium carbide particle dispersed acrylic resin solution (Bk-6) was 120 nm.
 [カーボンブラック粒子分散ポリアミック酸溶液(Bk-7)の作製]
 カーボンブラック粒子(B-4)(TPX1291(CABOT製))を使用した以外は(Bk-5)と同様の方法で固形分濃度12.0質量%、質量比がカーボンブラック粒子/樹脂=80/20となるカーボンブラック粒子分散ポリアミック酸溶液(Bk-7)を得た。カーボンブラック粒子分散ポリアミック酸溶液(Bk-7)のカーボンブラック粒子の平均二次粒径は100nmであった。
[Preparation of carbon black particle dispersed polyamic acid solution (Bk-7)]
The same method as (Bk-5) was used except that carbon black particles (B-4) (TPX1291 (manufactured by CABOT)) were used, the solid content concentration was 12.0% by mass, and the mass ratio was carbon black particles/resin = 80/ A carbon black particle-dispersed polyamic acid solution (Bk-7) of No. 20 was obtained. The average secondary particle size of carbon black particles in the carbon black particle-dispersed polyamic acid solution (Bk-7) was 100 nm.
 [チタン窒化物粒子分散アクリル樹脂溶液(Bk-8)の作製]
 ウルトラアペックスミル(寿工業製)の回転速度を15.0m/sに変更した以外は(Bk-1)と同様の方法にて、固形分濃度25.0質量%、質量比がチタン窒化物粒子/樹脂=80/20となるチタン窒化物粒子分散アクリル樹脂溶液(Bk-8)を得た。チタン窒化物粒子分散アクリル樹脂溶液(Bk-8)のチタン窒化物粒子の平均二次粒径は150nmであった。
[Preparation of titanium nitride particle dispersed acrylic resin solution (Bk-8)]
Using the same method as (Bk-1) except that the rotation speed of Ultra Apex Mill (manufactured by Kotobuki Kogyo) was changed to 15.0 m/s, the solid content concentration was 25.0% by mass and the mass ratio was titanium nitride particles. A titanium nitride particle-dispersed acrylic resin solution (Bk-8) having a ratio of 80/20/resin was obtained. The average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed acrylic resin solution (Bk-8) was 150 nm.
 [チタン窒化物粒子分散アクリル樹脂溶液(Bk-9)の作製]
 ウルトラアペックスミル(寿工業製)の回転速度を5.0m/sに変更した以外は(Bk-8)と同様の方法にて、固形分濃度25.0質量%、質量比がチタン窒化物粒子/樹脂=80/20となるチタン窒化物粒子分散アクリル樹脂溶液(Bk-9)を得た。チタン窒化物粒子分散アクリル樹脂溶液(Bk-9)のチタン窒化物粒子の平均二次粒径は230nmであった。
[Preparation of titanium nitride particle dispersed acrylic resin solution (Bk-9)]
Using the same method as (Bk-8) except that the rotation speed of Ultra Apex Mill (manufactured by Kotobuki Kogyo) was changed to 5.0 m/s, the solid content concentration was 25.0% by mass and the mass ratio was titanium nitride particles. A titanium nitride particle-dispersed acrylic resin solution (Bk-9) having a ratio of 80/20/resin was obtained. The average secondary particle size of titanium nitride particles in the titanium nitride particle-dispersed acrylic resin solution (Bk-9) was 230 nm.
 [透明粒子分散アクリル樹脂溶液(P-1)]
 酸化チタン微粒子(超微粒子酸化チタンTTO―55(A);石原産業(株)製)200.0gにアクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40質量%溶液36.25g、高分子分散剤(BYK21116;ビックケミー社製)35.50g及びプロピレングリコールモノエチルエーテルアセテート730.0gをタンクに仕込み、ホモミキサー(特殊機化製)で反転方向に速度4000rpmにて1時間撹拌し、予備分散液を得た。
[Transparent particle dispersed acrylic resin solution (P-1)]
200.0 g of titanium oxide fine particles (ultrafine titanium oxide TTO-55 (A); manufactured by Ishihara Sangyo Co., Ltd.), 36.25 g of a 40% by mass solution of acrylic resin powder in propylene glycol monomethyl ether acetate, and a polymer dispersant (BYK21116; 35.50 g of propylene glycol monoethyl ether acetate (manufactured by Bick Chemie) and 730.0 g of propylene glycol monoethyl ether acetate were placed in a tank and stirred in the reverse direction at 4000 rpm for 1 hour using a homomixer (manufactured by Tokushu Kika) to obtain a preliminary dispersion.
 その後、0.05mmφジルコニアビーズ(東レ製)を70%充填した遠心分離セパレーターを具備した、ウルトラアペックスミル(寿工業製)に上記予備分散液を供給し、回転速度2.0m/sで2時間分散を行い、固形分濃度25.0質量%、質量比が透明粒子/樹脂=80/20となる透明粒子分散アクリル樹脂溶液(P-1)を得た。透明粒子分散アクリル樹脂溶液(P-1)の透明粒子の平均一次粒径は40nmであった。平均一次粒子径の測定方法は後述する。 Thereafter, the above preliminary dispersion was supplied to an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% of 0.05 mmφ zirconia beads (manufactured by Toray Industries), and the rotation speed was 2.0 m/s for 2 hours. Dispersion was performed to obtain a transparent particle-dispersed acrylic resin solution (P-1) with a solid content concentration of 25.0% by mass and a mass ratio of transparent particles/resin = 80/20. The average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-1) was 40 nm. The method for measuring the average primary particle diameter will be described later.
 [透明粒子分散アクリル樹脂溶液(P-2)]
 ウルトラアペックスミル(寿工業製)の回転速度を3.0m/sに変更した以外は(P-1)と同様の方法にて固形分濃度25.0質量%、質量比が透明粒子/樹脂=80/20となる透明粒子分散アクリル樹脂溶液(P-2)を得た。透明粒子分散アクリル樹脂溶液(P-2)の透明粒子の平均一次粒径は15nmであった。
[Transparent particle dispersed acrylic resin solution (P-2)]
A solid content concentration of 25.0% by mass and a mass ratio of transparent particles/resin = A transparent particle-dispersed acrylic resin solution (P-2) having a ratio of 80/20 was obtained. The average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-2) was 15 nm.
 [透明粒子分散アクリル樹脂溶液(P-3)]
 透明粒子としてシリカ微粒子(“AEROSIL(登録商標)” OX50;日本アエロジル(株)製;200.0g)を使用した以外は(P-2)と同様の方法にて固形分濃度25質量%、質量比が透明粒子/樹脂=80/20となる透明粒子分散アクリル樹脂溶液(P-3)を得た。透明粒子分散アクリル樹脂溶液(P-3)の透明粒子の平均一次粒径は15nmであった。
[Transparent particle dispersed acrylic resin solution (P-3)]
A solid content concentration of 25% by mass was obtained in the same manner as in (P-2) except that silica fine particles (“AEROSIL (registered trademark)” OX50; manufactured by Nippon Aerosil Co., Ltd.; 200.0 g) were used as transparent particles. A transparent particle-dispersed acrylic resin solution (P-3) having a ratio of transparent particles/resin of 80/20 was obtained. The average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-3) was 15 nm.
 [透明粒子分散ポリアミック酸溶液(P-4)]
 シリカ微粒子(“AEROSIL(登録商標)” OX50;日本アエロジル(株)製)96.0gにポリアミック酸溶液(A-1)120.0g、γ-ブチロラクトン145.0g、N-メチル-2ピロリドン512.0g及び3メチル-3メトキシブチルアセテート125.0gをタンクに仕込み、ホモミキサー(特殊機化製)で反転方向に速度4000rpmにて1時間撹拌後、0.05mmφジルコニアビーズ(YTZボール;ニッカトー製)を70%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)を用いて回転速度3.0m/sで2時間分散を行い、固形分濃度12.0質量%、質量比が透明粒子/樹脂=80/20となる透明粒子分散ポリアミック酸溶液(P-4)を得た。透明粒子分散アクリル樹脂溶液(P-4)の透明粒子の平均一次粒径は15nmであった。
[Transparent particle dispersed polyamic acid solution (P-4)]
96.0 g of silica fine particles ("AEROSIL (registered trademark)"OX50; manufactured by Nippon Aerosil Co., Ltd.), 120.0 g of polyamic acid solution (A-1), 145.0 g of γ-butyrolactone, and 512.0 g of N-methyl-2-pyrrolidone. 0g and 125.0g of 3-methyl-3-methoxybutyl acetate were placed in a tank, and stirred for 1 hour at a speed of 4000 rpm in the reverse direction using a homomixer (manufactured by Tokushu Kika), and then mixed with 0.05mmφ zirconia beads (YTZ balls; manufactured by Nikkato). Dispersion was carried out for 2 hours at a rotation speed of 3.0 m/s using an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% of A transparent particle-dispersed polyamic acid solution (P-4) having a ratio of 80/20/resin was obtained. The average primary particle size of the transparent particles in the transparent particle-dispersed acrylic resin solution (P-4) was 15 nm.
 [平均二次粒径測定]
 顔料分散樹脂溶液または得られた黒色樹脂組成物について、動的光散乱法ナノ粒子解析装置(株式会社堀場製作所製、HORIBA SZ-100)を用いて、測定モードを標準、分布形態をスタンダード、分散形態を単分散、セルの種類を4面透過セル、黒色樹脂組成物を溶媒にて0.24質量%粒子濃度に希釈して、キュムラント法により求められる平均二次粒径を測定した。分散媒の粘度は、B型粘度計(トキメック社製)を用いて測定した値を用いた。また、測定の際には、予め測定する顔料分散樹脂溶液または黒色樹脂組成物をシリコンウェハ上に前記硬化膜の形成方法にて硬化させ、α-SEエリプソメーター(J.A.Woollam)にて測定した振幅比と位相差を、Cauchyの膜モデルを使用して、屈折率、減衰係数、表面粗さ、角度オフセット、及び膜厚をフィッティングさせて算出した屈折率を用いた。希釈溶媒には、アクリル樹脂系にはプロピレングリコールモノメチルエーテルアセテートを、ポリアミック酸樹脂系にはN-メチル-2ピロリドンをそれぞれ用いた。
[Average secondary particle size measurement]
The pigment-dispersed resin solution or the obtained black resin composition was measured using a dynamic light scattering nanoparticle analyzer (HORIBA SZ-100, manufactured by Horiba, Ltd.) with the measurement mode set to standard and the distribution form set to standard and dispersed. The morphology was monodisperse, the cell type was a four-sided transmission cell, and the black resin composition was diluted with a solvent to a particle concentration of 0.24% by mass, and the average secondary particle diameter determined by the cumulant method was measured. For the viscosity of the dispersion medium, a value measured using a B-type viscometer (manufactured by Tokimec) was used. In addition, during measurement, the pigment-dispersed resin solution or black resin composition to be measured is cured in advance on a silicon wafer using the above-mentioned method for forming a cured film, and then measured using an α-SE ellipsometer (J.A. Woollam). The refractive index calculated by fitting the measured amplitude ratio and phase difference to the refractive index, attenuation coefficient, surface roughness, angular offset, and film thickness using Cauchy's film model was used. As the diluting solvent, propylene glycol monomethyl ether acetate was used for the acrylic resin system, and N-methyl-2-pyrrolidone was used for the polyamic acid resin system.
 [平均一次粒径測定]
 透明粒子分散樹脂溶液または得られた黒色樹脂組成物について、動的光散乱法ナノ粒子解析装置(株式会社堀場製作所製、HORIBA SZ-100)を用いて、測定モードを標準、分布形態をスタンダード、分散形態を単分散、セルの種類を4面透過セル、黒色樹脂組成物を溶媒にて0.24質量%粒子濃度に希釈して、キュムラント法により求められる平均一次粒径を測定した。分散媒の粘度は、B型粘度計(トキメック社製)を用いて測定した値を用いた。また、屈折率には適用する透明粒子の既知の屈折率値を用いた。希釈溶媒には、アクリル樹脂系にはプロピレングリコールモノメチルエーテルアセテートを、ポリアミック酸樹脂系にはN-メチル-2ピロリドンをそれぞれ用いた。
[Average primary particle size measurement]
The transparent particle-dispersed resin solution or the obtained black resin composition was measured using a dynamic light scattering nanoparticle analyzer (HORIBA SZ-100, manufactured by Horiba, Ltd.) with the measurement mode set to standard, the distribution form set to standard, The dispersion form was monodisperse, the cell type was a four-sided transmission cell, and the black resin composition was diluted with a solvent to a particle concentration of 0.24% by mass, and the average primary particle size determined by the cumulant method was measured. For the viscosity of the dispersion medium, a value measured using a B-type viscometer (manufactured by Tokimec) was used. Furthermore, the known refractive index value of the applied transparent particles was used as the refractive index. As the diluting solvent, propylene glycol monomethyl ether acetate was used for the acrylic resin system, and N-methyl-2-pyrrolidone was used for the polyamic acid resin system.
 [反射率(低反射性能)測定]
 実施例および比較例にて得られた黒色樹脂組成物の膜について、ガラス面側から測定した全反射率を、紫外可視分光光度計(株式会社島津製作所製、UV-2450)を用いて、入射角・反射角ともに5°の設定条件にて測定した。単位膜厚(1.0μm)あたりの反射率を以下の基準に基づき評価し、反射率の低い順にA~Hとし、A~Gが良好であった。反射率が5.8%以上と高いものをHとし、Hは不良であった。なお、ガラスによる反射率は約4.20%であり、この全反射率の測定値はその反射率も含んでいる。尚、ここでいう反射率とは正反射と拡散反射を含む全反射率を指す。
A:5.00%未満
B:5.00%以上、5.10%未満
C:5.10%以上、5.20%未満
D:5.20%以上、5.30%未満
E:5.30%以上、5.40%未満
F:5.40%以上、5.60%未満
G:5.60%以上、5.80%未満
H:5.80%以上 。
[Reflectance (low reflection performance) measurement]
The total reflectance of the black resin composition films obtained in Examples and Comparative Examples was measured from the glass surface side using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2450). Measurements were made with both angle and reflection angle set at 5°. The reflectance per unit film thickness (1.0 μm) was evaluated based on the following criteria, and the reflectance was ranked A to H in descending order of reflectance, with A to G being good. Those with a high reflectance of 5.8% or more were rated H, and H was poor. Note that the reflectance of glass is about 4.20%, and the measured value of the total reflectance also includes this reflectance. Note that the reflectance here refers to the total reflectance including regular reflection and diffuse reflection.
A: Less than 5.00% B: 5.00% or more, less than 5.10% C: 5.10% or more, less than 5.20% D: 5.20% or more, less than 5.30% E: 5. 30% or more, less than 5.40% F: 5.40% or more, less than 5.60% G: 5.60% or more, less than 5.80% H: 5.80% or more.
 [OD値(遮光性能)測定]
 実施例および比較例にて得られた黒色樹脂組成物の膜について、ガラス面側から光学濃度計(361T(visual);X-rite社製)を用いて測定した。単位膜厚(1.0μm)あたりのOD値をOD/μmとして以下の基準に基づき評価し、遮光性が高い順にS、A~Eとし、S、A~Dが良好であった。遮光性が2.25未満と低いものをEとし、Eは遮光性が不良であった。
S:3.25以上
A:3.00以上、3.25未満
B:2.75以上、3.00未満
C:2.50以上、2.75未満
D:2.25以上、2.50未満
E:2.25未満 。
[OD value (light blocking performance) measurement]
The films of the black resin compositions obtained in Examples and Comparative Examples were measured from the glass surface side using an optical densitometer (361T (visual); manufactured by X-rite). The OD value per unit film thickness (1.0 μm) was evaluated based on the following criteria as OD/μm, and the light shielding properties were ranked S, A to E in descending order, with S and A to D being good. Those with low light shielding properties of less than 2.25 were rated E, and E had poor light shielding properties.
S: 3.25 or more A: 3.00 or more, less than 3.25 B: 2.75 or more, less than 3.00 C: 2.50 or more, less than 2.75 D: 2.25 or more, less than 2.50 E: Less than 2.25.
 [反射色度]
 実施例および比較例にて得られた黒色樹脂組成物の膜について、ガラス面側から紫外可視分光光度計(株式会社島津製作所製、UV-2450)を用いて、反射色度を測定した(測定波長領域:300~780nm、サンプリングピッチ:1.0nm、スキャン速度:低速、スリット幅:2.0nm)。単位膜厚(1.0μm)あたりの反射色度のうちa*の値を以下の基準に基づき評価した。ニュートラル色に近い順にA~Dとした。
A:0.50未満
B:0.50以上、1.0未満
C:1.0以上、3.0未満
D:3.0以上。
[Reflection chromaticity]
The reflection chromaticity of the black resin composition films obtained in Examples and Comparative Examples was measured from the glass surface side using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2450). Wavelength range: 300 to 780 nm, sampling pitch: 1.0 nm, scan speed: slow, slit width: 2.0 nm). The value of a* of the reflection chromaticity per unit film thickness (1.0 μm) was evaluated based on the following criteria. The colors were ranked A to D in order of neutral color.
A: Less than 0.50 B: 0.50 or more, less than 1.0 C: 1.0 or more, less than 3.0 D: 3.0 or more.
 [体積抵抗率(電気抵抗特性)測定]
 実施例および比較例にて得られた黒色樹脂組成物の膜について、膜面側より絶縁抵抗計(ケースレーインスツルメンツ(株)製、6517A)を用いて体積抵抗率ρ(Ω・cm)を求めた。アルミニウム基板上に形成した膜厚1.0μmの黒色樹脂組成物をテストフィクスチェア(ケースレーインスツルメンツ(株)製、8090)にセットし、1Vの交番電圧を印加して塗膜を流れるリーク電流の測定を行い、体積抵抗率を求め、以下の基準に基づき評価した。電気抵抗特性が良いものをBとし、更に良いものをAとした。AとBが良好で、Cは絶縁性が低く改善が必要であった。
A:1.0×1013Ω・cm以上
B:1.0×1010Ω・cm以上、1.0×1013Ω・cm未満
C:1.0×1010Ω・cm未満
 (実施例1)
 [黒色樹脂組成物1の調製]
 チタン窒化物粒子分散アクリル樹脂溶液(Bk-1) 28.0質量部(チタン窒化物粒子:5.60質量部)、前記透明粒子分散アクリル樹脂溶液(P-1)5.70質量部(透明粒子:1.14質量部)、アクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40.0質量%溶液7.69質量部、プロピレングリコールモノメチルエーテルアセテート73.60質量部をそれぞれ全量混合することにより黒色樹脂組成物を調製した。表1に遮光材、透明粒子、樹脂の構成を示す。
[Volume resistivity (electrical resistance characteristics) measurement]
For the films of the black resin compositions obtained in Examples and Comparative Examples, the volume resistivity ρ (Ω cm) was determined from the film surface using an insulation resistance meter (manufactured by Keithley Instruments, Inc., 6517A). . A black resin composition with a film thickness of 1.0 μm formed on an aluminum substrate was set in a test fixture chair (manufactured by Keithley Instruments, Inc., 8090), and an alternating voltage of 1 V was applied to measure the leakage current flowing through the coating film. The volume resistivity was determined and evaluated based on the following criteria. Those with good electrical resistance characteristics were designated as B, and those with even better electrical resistance characteristics were designated as A. A and B were good, but C had poor insulation and needed improvement.
A: 1.0×10 13 Ω・cm or more B: 1.0×10 10 Ω・cm or more but less than 1.0×10 13 Ω・cm C: Less than 1.0×10 10 Ω・cm (Example 1)
[Preparation of black resin composition 1]
Titanium nitride particle dispersed acrylic resin solution (Bk-1) 28.0 parts by mass (titanium nitride particles: 5.60 parts by mass), the transparent particle dispersed acrylic resin solution (P-1) 5.70 parts by mass (transparent) Particles: 1.14 parts by mass), 7.69 parts by mass of a 40.0 mass% propylene glycol monomethyl ether acetate solution of acrylic resin powder, and 73.60 parts by mass of propylene glycol monomethyl ether acetate were mixed in their entirety to form a black resin composition. I prepared something. Table 1 shows the composition of the light shielding material, transparent particles, and resin.
 調整は、予めアクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40.0質量%溶液とプロピレングリコールモノメチルエーテルアセテートを混合した樹脂希釈液を準備し、所定量秤量したチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)を常に100rpmで攪拌しながら、透明粒子分散アクリル樹脂溶液(P-1)および前記樹脂希釈液の順にギアポンプ(西山製作所製)を用いて50g/minの速度で少量ずつ添加することで前述のチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)で得られたチタン窒化物粒子の平均二次粒径が変化しないように混合した。全ての構成物を混合した後、室温23℃で1時間攪拌した。 For adjustment, prepare in advance a diluted resin solution in which a 40.0% by mass solution of acrylic resin powder in propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate are mixed, and add a titanium nitride particle-dispersed acrylic resin solution (Bk- While constantly stirring 1) at 100 rpm, the transparent particle-dispersed acrylic resin solution (P-1) and the resin diluted solution were added little by little at a rate of 50 g/min using a gear pump (manufactured by Nishiyama Seisakusho) in that order. The titanium nitride particles were mixed in such a manner that the average secondary particle size of the titanium nitride particles obtained with the titanium nitride particle-dispersed acrylic resin solution (Bk-1) did not change. After all the components were mixed, the mixture was stirred at room temperature of 23° C. for 1 hour.
 [黒色樹脂組成物1の膜の形成]
 上記得られた黒色樹脂組成物1をG4.5(730mm×920mm)のガラス基板上にスリットダイコーターで塗布、80℃1分熱風乾燥した後、120℃で2分間セミキュアした。その後、ポジ型レジスト(Shipley “Microposit”(登録商標) RC100 30cp)をスリットダイコーターで塗布後、80℃で2分間乾燥させた。
[Formation of film of black resin composition 1]
The obtained black resin composition 1 was applied onto a G4.5 (730 mm x 920 mm) glass substrate using a slit die coater, dried with hot air at 80°C for 1 minute, and then semi-cured at 120°C for 2 minutes. Thereafter, a positive resist (Shipley "Microposit" (registered trademark) RC100 30 cp) was applied using a slit die coater, and then dried at 80° C. for 2 minutes.
 露光機PLA-501F(キャノン社製)を用い、所定のフォトマスクを介して露光し、アルカリ現像液(Shipley “Microposit”(登録商標)351)でポジ型レジストの現像およびポリイミド前駆体のエッチングを同時に行なった後、ポジ型レジストをメチルセルソルブアセテートで剥離した。 Exposure was performed using an exposure machine PLA-501F (manufactured by Canon) through a prescribed photomask, and the positive resist was developed and the polyimide precursor was etched using an alkaline developer (Shipley "Microposit" (registered trademark) 351). After performing this simultaneously, the positive resist was removed using methylcellosolve acetate.
 さらに、230℃で30分間キュアして、膜厚1.0μmの黒色樹脂組成物1の膜を得た。黒色樹脂組成物1の膜は黒色樹脂組成物の層10に相当する。得られた黒色樹脂組成物1の膜は、平均線幅3.5μmで、最小線幅3.0μm、最大線幅4.0μm、3σ=0.64であり、欠損なく加工できていてブラックマトリックスのパターンへの適用が可能であった。得られた黒色樹脂組成物1の膜(黒色樹脂組成物の層10)を用いて、単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。 Furthermore, it was cured at 230° C. for 30 minutes to obtain a film of black resin composition 1 with a film thickness of 1.0 μm. The film of black resin composition 1 corresponds to layer 10 of black resin composition. The obtained film of black resin composition 1 had an average line width of 3.5 μm, a minimum line width of 3.0 μm, a maximum line width of 4.0 μm, and 3σ = 0.64, and could be processed without defects and had a black matrix. It was possible to apply it to the following patterns. Using the obtained film of black resin composition 1 (layer 10 of black resin composition), the OD value, reflectance, reflection chromaticity, and volume resistivity per unit film thickness were determined.
 実施例1では色味がa*=3.2(D判定)と赤みが強いものの、OD値が2.40(D判定)と比較的高い値であり、かつ反射率が5.65%(G判定)と低い値となった。また体積抵抗率は1.0×1011Ω・cm(B判定)と十分高い電気抵抗特性を示した。表2に評価結果を示す。 In Example 1, the color is a*=3.2 (D judgment), which is strong red, but the OD value is 2.40 (D judgment), which is a relatively high value, and the reflectance is 5.65% ( G judgment), which was a low value. Further, the volume resistivity was 1.0×10 11 Ω·cm (B judgment), which showed sufficiently high electrical resistance characteristics. Table 2 shows the evaluation results.
 (実施例2)
 [黒色樹脂組成物2の調製]
 前記透明粒子分散アクリル樹脂溶液(P-1)の量を8.0質量部(透明粒子:1.60質量部)、アクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40.0質量%溶液を6.25質量部、プロピレングリコールモノメチルエーテルアセテートの添加量を72.75質量部にそれぞれ変更した以外は黒色樹脂組成物1と同様にして、黒色樹脂組成物2を調製した。
(Example 2)
[Preparation of black resin composition 2]
The amount of the transparent particle-dispersed acrylic resin solution (P-1) was 8.0 parts by mass (transparent particles: 1.60 parts by mass), and the amount of the 40.0 mass% propylene glycol monomethyl ether acetate solution of acrylic resin powder was 6.25 parts by mass. Black resin composition 2 was prepared in the same manner as black resin composition 1 except that the parts by mass and the amount of propylene glycol monomethyl ether acetate added were changed to 72.75 parts by mass.
 [黒色樹脂組成物2の膜の形成]
 上記得られた黒色樹脂組成物2を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物2の膜を得た。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。実施例2では色味がa*=3.2(D判定)と赤みが強いものの、OD値が2.40(D判定)と比較的高い値であり、かつ反射率が5.25%(D判定)と十分に低い値となった。また体積抵抗率は1.0×1011Ω・cm(B判定)と十分高い電気抵抗特性を示した。
[Formation of film of black resin composition 2]
Using the black resin composition 2 obtained above, a film was formed in the same manner as the black resin composition 1 to obtain a film of the black resin composition 2. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined. In Example 2, the color is a*=3.2 (D judgment), which is strong red, but the OD value is 2.40 (D judgment), which is a relatively high value, and the reflectance is 5.25% ( (D judgment), which was a sufficiently low value. Further, the volume resistivity was 1.0×10 11 Ω·cm (B judgment), which showed sufficiently high electrical resistance characteristics.
 (実施例3~6)
 [黒色樹脂組成物3の調製]
 遮光材粒子分散液をチタン窒化物粒子分散アクリル樹脂溶液(Bk-1) 18.50質量部(チタン窒化物粒子:3.70質量部)、アニリンブラック粒子分散アクリル樹脂溶液(Bk-2) 9.50質量部(アニリンブラック粒子:1.90質量部)に変更した以外は黒色樹脂組成物2と同様にして黒色樹脂組成物3を調製した。アニリンブラック粒子分散アクリル樹脂溶液(Bk-2)に含まれるアニリンブラック粒子は他の黒色顔料粒子にあたる。
(Examples 3 to 6)
[Preparation of black resin composition 3]
Light-shielding material particle dispersion liquid was mixed with titanium nitride particle-dispersed acrylic resin solution (Bk-1) 18.50 parts by mass (titanium nitride particles: 3.70 parts by mass), aniline black particle-dispersed acrylic resin solution (Bk-2) 9 Black resin composition 3 was prepared in the same manner as black resin composition 2 except that the amount was changed to .50 parts by mass (aniline black particles: 1.90 parts by mass). The aniline black particles contained in the aniline black particle-dispersed acrylic resin solution (Bk-2) correspond to other black pigment particles.
 [黒色樹脂組成物4の調製]
 アニリンブラック粒子分散アクリル樹脂溶液(Bk-2)をチタン炭化物粒子分散アクリル樹脂溶液(Bk-3)に変更した以外は黒色樹脂組成物3と同様にして黒色樹脂組成物4を調製した。
[Preparation of black resin composition 4]
Black resin composition 4 was prepared in the same manner as black resin composition 3 except that the aniline black particle-dispersed acrylic resin solution (Bk-2) was changed to the titanium carbide particle-dispersed acrylic resin solution (Bk-3).
 [黒色樹脂組成物5の調製]
 チタン窒化物粒子分散アクリル樹脂溶液(Bk-1) の重量を4.0質量部(チタン窒化物粒子:0.8質量部)、チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)の重量を 24.0質量部(チタン炭化物粒子:4.80質量部)、透明粒子分散アクリル樹脂溶液(P-1)の量を1.4質量部(透明粒子:0.28質量部)、アクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40.0質量%溶液を10.37質量部、プロピレングリコールモノメチルエーテルアセテートの添加量を75.21質量部にそれぞれ変更した以外は黒色樹脂組成物4と同様にして、黒色樹脂組成物5を調製した。チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)に含まれるチタン炭化物粒子は他の黒色顔料粒子にあたる。
[Preparation of black resin composition 5]
The weight of the titanium nitride particle-dispersed acrylic resin solution (Bk-1) was 4.0 parts by mass (titanium nitride particles: 0.8 parts by mass), and the weight of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was 24 parts by mass. 0 parts by mass (titanium carbide particles: 4.80 parts by mass), the amount of transparent particle-dispersed acrylic resin solution (P-1) was 1.4 parts by mass (transparent particles: 0.28 parts by mass), and the amount of acrylic resin powder was 1.4 parts by mass (transparent particles: 0.28 parts by mass). A black resin composition was prepared in the same manner as in Black Resin Composition 4, except that the 40.0% by mass solution of propylene glycol monomethyl ether acetate was changed to 10.37 parts by mass, and the amount of propylene glycol monomethyl ether acetate added was changed to 75.21 parts by mass. Composition 5 was prepared. The titanium carbide particles contained in the titanium carbide particle dispersed acrylic resin solution (Bk-3) correspond to other black pigment particles.
 [黒色樹脂組成物6の調製]
 チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)をカーボンブラック粒子分散アクリル樹脂溶液(Bk-4) に変更した以外は黒色樹脂組成物4と同様にして黒色樹脂組成物6を調製した。
[Preparation of black resin composition 6]
Black resin composition 6 was prepared in the same manner as black resin composition 4, except that the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was replaced with a carbon black particle-dispersed acrylic resin solution (Bk-4).
 尚、黒色樹脂組成物3~6のように2種類の黒色顔料粒子分散アクリル樹脂溶液を混合する場合も同様に、所定量秤量したチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)を常に100rpmで攪拌しながら、前記その他の黒色顔料粒子分散アクリル樹脂溶液((Bk-2)または(Bk-3)または(Bk-4))、透明粒子分散アクリル樹脂溶液(P-1)および前記樹脂希釈液の順に所定の量をギアポンプ(西山製作所製)を用いて50g/minの速度で少量ずつ添加することでチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)とアニリンブラック粒子分散アクリル樹脂溶液(Bk-2)やチタン炭化物粒子分散アクリル樹脂溶液(Bk-3)、カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)で得られた平均二次粒径が変化しないよう混合し、全ての構成物を混合した後、室温23℃で1時間攪拌した。 Similarly, when mixing two types of black pigment particle-dispersed acrylic resin solutions as in black resin compositions 3 to 6, a predetermined amount of the titanium nitride particle-dispersed acrylic resin solution (Bk-1) is always heated at 100 rpm. While stirring, add the other black pigment particle-dispersed acrylic resin solution ((Bk-2) or (Bk-3) or (Bk-4)), the transparent particle-dispersed acrylic resin solution (P-1) and the resin dilution. A titanium nitride particle-dispersed acrylic resin solution (Bk-1) and an aniline black particle-dispersed acrylic resin solution ( Bk-2), titanium carbide particle-dispersed acrylic resin solution (Bk-3), and carbon black particle-dispersed acrylic resin solution (Bk-4) were mixed so that the average secondary particle size did not change, and all constituents were mixed. After mixing, the mixture was stirred at room temperature of 23°C for 1 hour.
 [黒色樹脂組成物3~6の膜の形成]
 上記得られた黒色樹脂組成物3~6を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物3~6の膜を得た。実施例3は黒色樹脂組成物3、実施例4は黒色樹脂組成物4、実施例5は黒色樹脂組成物5、実施例6は黒色樹脂組成物6をそれぞれ用いた。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。
[Formation of films of black resin compositions 3 to 6]
Using the black resin compositions 3 to 6 obtained above, films were formed in the same manner as for black resin composition 1 to obtain films of black resin compositions 3 to 6. Example 3 used black resin composition 3, Example 4 used black resin composition 4, Example 5 used black resin composition 5, and Example 6 used black resin composition 6. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined.
 実施例3では、チタン窒化物粒子の67%の平均二次粒径であるアニリンブラック粒子を、チタン窒化物粒子の質量比0.5倍添加することで、反射率が増加することなく、OD値が2.55(C判定)と良化した。また、反射色度はa*=1.5(C判定)と依然赤みがあるものの、良好であった。体積抵抗率は1.0×1011Ω・cm(B判定)と十分高い電気抵抗特性を示した。実施例4では、同様にチタン窒化物粒子の67%の平均二次粒径であるチタン炭化物粒子を、チタン窒化物粒子の質量比0.5倍添加することで、反射率が増加することなく、OD値が2.75(B判定)と良化した。また、反射色度はa*=0.4(A判定)と大きくニュートラル色に近づき改善した。体積抵抗率は1.0×1012Ω・cm(B判定)と十分高い電気抵抗特性を示した。 In Example 3, the OD The value improved to 2.55 (C rating). Further, the reflection chromaticity was a*=1.5 (C judgment), which was good although there was still some redness. The volume resistivity was 1.0×10 11 Ω·cm (B rating), indicating sufficiently high electrical resistance characteristics. In Example 4, similarly, by adding titanium carbide particles having an average secondary particle size of 67% of the titanium nitride particles at a mass ratio of 0.5 times that of the titanium nitride particles, the reflectance was not increased. , the OD value improved to 2.75 (B rating). In addition, the reflected chromaticity was significantly improved, approaching a neutral color, with a*=0.4 (A judgment). The volume resistivity was 1.0×10 12 Ω·cm (B rating), indicating sufficiently high electrical resistance characteristics.
 実施例5では、実施例4同様の平均二次粒径であるチタン炭化物粒子を、チタン窒化物粒子の質量比6.0倍添加することで、反射率が5.35%(E判定)、OD値が2.65(C判定)と実施例4対比悪化したものの、反射色度はa*=0.2(A判定)とニュートラルに近い色相を呈し、体積抵抗率が1.0×1014Ω・cm(A判定)と極めて高い電気抵抗特性を示した。 In Example 5, by adding titanium carbide particles having the same average secondary particle size as Example 4 at a mass ratio of 6.0 times that of titanium nitride particles, the reflectance was 5.35% (E judgment). Although the OD value was 2.65 (C judgment), which was worse than in Example 4, the reflected chromaticity was a*=0.2 (A judgment), which was a nearly neutral hue, and the volume resistivity was 1.0 × 10 It exhibited extremely high electrical resistance characteristics of 14 Ω·cm (A rating).
 実施例6では、同様にチタン窒化物粒子の56%の平均二次粒径であるカーボンブラック粒子を、チタン窒化物粒子の質量比0.5倍添加することで、反射率が5.35%(E判定)と実施例4対比悪化したが、OD値が3.00(A判定)と非常に高い遮光性を得た。また、反射色度はa*=0.8(B判定)と良好であった。体積抵抗率は1.0×1010Ω・cm(B判定)と十分高い電気抵抗特性を示した。 In Example 6, carbon black particles having an average secondary particle size of 56% of the titanium nitride particles were added at a mass ratio of 0.5 times that of the titanium nitride particles, resulting in a reflectance of 5.35%. (E rating) and deteriorated compared to Example 4, but a very high light shielding property with an OD value of 3.00 (A rating) was obtained. Further, the reflection chromaticity was good at a*=0.8 (B judgment). The volume resistivity was 1.0×10 10 Ω·cm (B rating), indicating sufficiently high electrical resistance characteristics.
 (実施例7~9)
 [黒色樹脂組成物7の調製]
 チタン炭化物粒子分散アクリル樹脂溶液(Bk-3) 7.0質量部(チタン炭化物粒子:1.40質量部)、カーボンブラック粒子分散アクリル樹脂溶液(Bk-4) 2.50質量部(カーボンブラック粒子:0.50質量部)に変更した以外は黒色樹脂組成物6と同様にして黒色樹脂組成物7を調製した。チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)に含まれるチタン炭化物粒子は他の黒色顔料粒子にあたり、カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)に含まれるカーボンブラック粒子は別の黒色顔料粒子にあたる。
(Examples 7 to 9)
[Preparation of black resin composition 7]
Titanium carbide particle dispersed acrylic resin solution (Bk-3) 7.0 parts by mass (titanium carbide particles: 1.40 parts by mass), carbon black particle dispersed acrylic resin solution (Bk-4) 2.50 parts by mass (carbon black particles : 0.50 parts by mass)), Black Resin Composition 7 was prepared in the same manner as Black Resin Composition 6. The titanium carbide particles contained in the titanium carbide particle-dispersed acrylic resin solution (Bk-3) are other black pigment particles, and the carbon black particles contained in the carbon black particle-dispersed acrylic resin solution (Bk-4) are other black pigment particles. corresponds to
 [黒色樹脂組成物8の調製]
 チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)の量を 2.50質量部(チタン炭化物粒子:0.50質量部)に、カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)の量を7.0質量部(カーボンブラック粒子:1.40質量部)に変更した以外は黒色樹脂組成物7と同様にして、黒色樹脂組成物8を調製した。
[Preparation of black resin composition 8]
The amount of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was set to 2.50 parts by mass (titanium carbide particles: 0.50 parts by mass), and the amount of the carbon black particle-dispersed acrylic resin solution (Bk-4) was set to 7.0 parts by mass. Black resin composition 8 was prepared in the same manner as black resin composition 7 except that the amount was changed to 0 parts by mass (carbon black particles: 1.40 parts by mass).
 [黒色樹脂組成物9の調製]
 チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)の量を 4.70質量部(チタン炭化物粒子:0.94質量部)に、カーボンブラック粒子分散アクリル樹脂溶液(Bk-4)の量を4.80質量部(カーボンブラック粒子:0.96質量部)に変更した以外は黒色樹脂組成物7と同様にして、黒色樹脂組成物9を調製した。尚、黒色樹脂組成物7~9のように3種類以上の黒色顔料粒子分散アクリル樹脂溶液を混合する場合も同様に、所定量秤量したチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)を常に100rpmで攪拌しながら、他の黒色顔料粒子であるチタン炭化物粒子を含むチタン炭化物分散アクリル樹脂溶液(Bk-3)、別の黒色顔料粒子であるカーボンブラック粒子を含むカーボンブラック粒子分散アクリル樹脂溶液(Bk-4)、透明粒子分散アクリル樹脂溶液(P-1)および前記樹脂希釈液の順に所定の量をギアポンプ(西山製作所製)を用いて50g/minの速度で少量ずつ添加することでチタン窒化物粒子分散アクリル樹脂溶液(Bk-1)および、チタン炭化物粒子分散アクリル樹脂溶液(Bk-3)やカーボンブラック粒子分散アクリル樹脂溶液(Bk-4)で得られた平均二次粒径が変化しないよう混合し、全ての構成物を混合した後、室温23℃で1時間攪拌した。
[Preparation of black resin composition 9]
The amount of the titanium carbide particle-dispersed acrylic resin solution (Bk-3) was set to 4.70 parts by mass (titanium carbide particles: 0.94 parts by mass), and the amount of the carbon black particle-dispersed acrylic resin solution (Bk-4) was set to 4.70 parts by mass (titanium carbide particles: 0.94 parts by mass). Black resin composition 9 was prepared in the same manner as black resin composition 7 except that the amount was changed to 80 parts by mass (carbon black particles: 0.96 parts by mass). In addition, when mixing three or more types of black pigment particle-dispersed acrylic resin solutions like black resin compositions 7 to 9, always add a predetermined amount of the titanium nitride particle-dispersed acrylic resin solution (Bk-1) weighed out. While stirring at 100 rpm, a titanium carbide-dispersed acrylic resin solution (Bk-3) containing titanium carbide particles as other black pigment particles, a carbon black particle-dispersed acrylic resin solution containing carbon black particles as another black pigment particle ( Titanium nitridation was carried out by adding predetermined amounts of Bk-4), transparent particle dispersed acrylic resin solution (P-1), and the resin diluted solution in this order little by little at a rate of 50 g/min using a gear pump (manufactured by Nishiyama Seisakusho). The average secondary particle size obtained with the acrylic resin solution dispersed with particles (Bk-1), the acrylic resin solution dispersed with titanium carbide particles (Bk-3), and the acrylic resin solution with carbon black particles dispersed (Bk-4) does not change. After all components were mixed, the mixture was stirred at room temperature of 23° C. for 1 hour.
 [黒色樹脂組成物7~9の膜の形成]
 上記得られた黒色樹脂組成物7~9を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物7~9の膜を得た。実施例7は黒色樹脂組成物7、実施例8は黒色樹脂組成物8、実施例9は黒色樹脂組成物9をそれぞれ用いた。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。実施例7では、チタン窒化物粒子の他の黒色顔料粒子であるチタン炭化物粒子の質量の比率が別の黒色顔料粒子であるカーボンブラック粒子の質量の比率よりも高く、反射率、OD値、反射色度、体積抵抗率ともに実施例4と同様になった。また実施例8ではチタン窒化物粒子の他の黒色顔料粒子であるカーボンブラック粒子の比率が別の黒色顔料粒子であるチタン炭化物粒子の質量の比率よりも高く、反射率、反射色度、体積抵抗率ともに実施例6と同様になった。チタン窒化物粒子の56%の平均二次粒径であるカーボンブラック粒子と、チタン窒化物粒子の67%の平均二次粒径であるチタン炭化物粒子を組合せて、かつカーボンブラック粒子の比率が高いことで、OD値は3.40(S判定)と極めて高い遮光性を得た。実施例9では、チタン窒化物粒子の他の黒色顔料粒子であるチタン炭化物粒子と、別の黒色顔料粒子であるカーボンブラック粒子の質量の比率が近くなることにより、実施例4対比で反射率が悪化することなく、OD値3.00(A判定)と非常に高い遮光性を得た。また、反射色度a*の値は、チタン炭化物粒子とカーボンブラック粒子とを併用添加することにより、a*=0.4(A判定)と赤みがかなり緩和された色相になった。体積抵抗率は1.0×1011Ω・cm(B判定)と十分高い電気抵抗特性を示した。
[Formation of films of black resin compositions 7 to 9]
Using the black resin compositions 7 to 9 obtained above, films were formed in the same manner as for black resin composition 1 to obtain films of black resin compositions 7 to 9. Example 7 used black resin composition 7, Example 8 used black resin composition 8, and Example 9 used black resin composition 9. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined. In Example 7, the mass ratio of titanium carbide particles, which are other black pigment particles, to titanium nitride particles is higher than the mass ratio of carbon black particles, which are another black pigment particle, and the reflectance, OD value, and Both the chromaticity and the volume resistivity were the same as in Example 4. Furthermore, in Example 8, the ratio of carbon black particles, which are other black pigment particles, to titanium nitride particles was higher than the mass ratio of titanium carbide particles, which were other black pigment particles, and the reflectance, reflective chromaticity, and volume resistance Both rates were the same as in Example 6. Carbon black particles having an average secondary particle size of 56% of titanium nitride particles and titanium carbide particles having an average secondary particle size of 67% of titanium nitride particles are combined, and the ratio of carbon black particles is high. As a result, extremely high light-shielding properties were obtained with an OD value of 3.40 (S judgment). In Example 9, the mass ratio of titanium carbide particles, which are black pigment particles other than titanium nitride particles, and carbon black particles, which are other black pigment particles, is close to each other, so that the reflectance is increased compared to Example 4. A very high light shielding property with an OD value of 3.00 (A rating) was obtained without any deterioration. Moreover, the value of reflection chromaticity a* was a*=0.4 (A judgment), which was a hue with considerably reduced redness, by adding titanium carbide particles and carbon black particles together. The volume resistivity was 1.0×10 11 Ω·cm (B rating), indicating sufficiently high electrical resistance characteristics.
 (実施例10)
 [黒色樹脂組成物10の調製]
 透明粒子分散液を透明粒子分散アクリル樹脂溶液(P-2)に変更した以外は黒色樹脂組成物9と同様にして黒色樹脂組成物10を調製した。
(Example 10)
[Preparation of black resin composition 10]
Black resin composition 10 was prepared in the same manner as black resin composition 9 except that the transparent particle dispersion liquid was changed to transparent particle dispersed acrylic resin solution (P-2).
 [黒色樹脂組成物10の膜の形成]
 上記得られた黒色樹脂組成物10を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物10の膜を得た。実施例1と同様にして単位膜厚当たりのOD値、反射率および反射色度、体積抵抗率を求めた。実施例10では、透明粒子の平均二次粒径が15nmと、黒色顔料粒子対比十分に小さくすることで、透明粒子添加によるOD減少を抑制しながら、反射率が5.15%(C判定)まで更に低下した。体積抵抗率は、実施例9と同様になった。
[Formation of film of black resin composition 10]
Using the black resin composition 10 obtained above, a film was formed in the same manner as the black resin composition 1 to obtain a film of the black resin composition 10. In the same manner as in Example 1, the OD value, reflectance, reflection chromaticity, and volume resistivity per unit film thickness were determined. In Example 10, by making the average secondary particle size of the transparent particles 15 nm, which is sufficiently small compared to the black pigment particles, the reflectance was 5.15% (C judgment) while suppressing the OD decrease due to the addition of the transparent particles. It further declined. The volume resistivity was the same as in Example 9.
 (実施例11)
 [黒色樹脂組成物11の調製]
 透明粒子分散液を透明粒子分散アクリル樹脂溶液(P-3)に変更した以外は黒色樹脂組成物9と同様にして黒色樹脂組成物11を調製した。
(Example 11)
[Preparation of black resin composition 11]
Black resin composition 11 was prepared in the same manner as black resin composition 9 except that the transparent particle dispersion liquid was changed to transparent particle dispersed acrylic resin solution (P-3).
 [黒色樹脂組成物11の膜の形成]
 上記得られた黒色樹脂組成物11を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物11の膜を得た。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。実施例11では、透明粒子としてシリカ微粒子を適用することにより、OD値3.00(A判定)の高い遮光性を維持したまま、反射率が5.08%(B判定)に低下した。体積抵抗率は、実施例9と同様になった。ガラスと近い屈折率を有し、形状が精度よく制御されたシリカを適用することで反射率がさらに改善した。
[Formation of film of black resin composition 11]
Using the black resin composition 11 obtained above, a film was formed in the same manner as for the black resin composition 1 to obtain a film of the black resin composition 11. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined. In Example 11, by applying silica fine particles as transparent particles, the reflectance was reduced to 5.08% (B rating) while maintaining a high light-shielding property with an OD value of 3.00 (A rating). The volume resistivity was the same as in Example 9. The reflectance was further improved by using silica, which has a refractive index close to that of glass and whose shape is precisely controlled.
 (実施例12)
 [黒色樹脂組成物12の調製]
 チタン窒化物粒子分散ポリアミック酸溶液(Bk-5) 38.50質量部(チタン窒化物粒子:3.70質量部)、チタン炭化物粒子分散ポリアミック酸溶液(Bk-6) 9.8質量部(チタン炭化物粒子:0.94質量部)、カーボンブラック粒子分散ポリアミック酸溶液(Bk-7) 10.0質量部(カーボンブラック粒子:0.96質量部)、前記透明粒子分散ポリアミック酸溶液(P-4)16.70質量部(透明粒子:1.60質量部)、ポリアミック酸溶液(A-1)を12.46質量部、N-メチル-2ピロリドン142.40質量部をそれぞれ全量混合することにより黒色樹脂組成物12を調製した。
(Example 12)
[Preparation of black resin composition 12]
Titanium nitride particle dispersed polyamic acid solution (Bk-5) 38.50 parts by mass (titanium nitride particles: 3.70 parts by mass), titanium carbide particle dispersed polyamic acid solution (Bk-6) 9.8 parts by mass (titanium Carbide particles: 0.94 parts by mass), carbon black particle-dispersed polyamic acid solution (Bk-7) 10.0 parts by mass (carbon black particles: 0.96 parts by mass), the transparent particle-dispersed polyamic acid solution (P-4) ) 16.70 parts by mass (transparent particles: 1.60 parts by mass), 12.46 parts by mass of polyamic acid solution (A-1), and 142.40 parts by mass of N-methyl-2-pyrrolidone. Black resin composition 12 was prepared.
 尚、樹脂の種類をポリアミック酸に変更しても同様に、予めポリアミック酸溶液(A-1)とN-メチル-2ピロリドンとを混合した樹脂希釈液を準備し、所定量秤量したチタン窒化物粒子分散ポリアミック酸溶液(Bk-5)を常に100rpmで攪拌しながら、他の黒色顔料粒子であるチタン炭化物粒子を含むチタン炭化物分散ポリアミック酸溶液(Bk-6)、別の黒色顔料粒子であるカーボンブラック粒子を含むカーボンブラック粒子分散ポリアミック酸溶液(Bk-7)、透明粒子分散ポリアミック酸溶液(P-4)および前記樹脂希釈液の順に所定の量をギアポンプ(西山製作所製)を用いて50g/minの速度で少量ずつ添加することでチタン窒化物粒子分散ポリアミック酸溶液(Bk-5)およびチタン炭化物粒子分散ポリアミック酸溶液(Bk-6)やカーボンブラック粒子分散ポリアミック酸溶液(Bk-7)で得られた平均二次粒径が変化しないよう混合し、全ての構成物を混合した後、室温23℃で1時間攪拌した。 In addition, even if the type of resin is changed to polyamic acid, in the same way, a diluted resin solution prepared by mixing polyamic acid solution (A-1) and N-methyl-2-pyrrolidone is prepared in advance, and a predetermined amount of titanium nitride is weighed. While constantly stirring the particle-dispersed polyamic acid solution (Bk-5) at 100 rpm, the titanium carbide-dispersed polyamic acid solution (Bk-6) containing titanium carbide particles, which are other black pigment particles, and carbon, which is another black pigment particle. Using a gear pump (manufactured by Nishiyama Seisakusho), predetermined amounts of carbon black particle-dispersed polyamic acid solution (Bk-7) containing black particles, transparent particle-dispersed polyamic acid solution (P-4), and the above-mentioned resin diluted solution were added in this order to 50 g/ By adding small amounts at a rate of After mixing so that the obtained average secondary particle size did not change, all the components were mixed, and then stirred at room temperature of 23° C. for 1 hour.
 [黒色樹脂組成物12の膜の形成]
 上記得られた黒色樹脂組成物12を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物12の膜を得た。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。得られたOD値は3.05(A判定)と良好な遮光性能であった。また、得られた反射率の値は4.90%(A判定)と極めて良好な低反射性能となった。また、得られた反射色度a*の値は0.4(A判定)とニュートラルな色相であった。体積抵抗率は、実施例9と同様になった。
[Formation of film of black resin composition 12]
Using the black resin composition 12 obtained above, a film was formed in the same manner as the black resin composition 1 to obtain a film of the black resin composition 12. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined. The obtained OD value was 3.05 (A rating), indicating good light shielding performance. Further, the obtained reflectance value was 4.90% (A judgment), which was an extremely good low reflection performance. Further, the obtained reflection chromaticity a* value was 0.4 (A judgment), which was a neutral hue. The volume resistivity was the same as in Example 9.
 (比較例1~4)
 [黒色樹脂組成物13の調製]
 遮光材粒子分散液をチタン窒化物粒子分散アクリル樹脂溶液(Bk-8)に変更した以外は黒色樹脂組成物2と同様にして黒色樹脂組成物13を調製した。
(Comparative Examples 1 to 4)
[Preparation of black resin composition 13]
Black resin composition 13 was prepared in the same manner as black resin composition 2 except that the light-shielding material particle dispersion was changed to titanium nitride particle-dispersed acrylic resin solution (Bk-8).
 [黒色樹脂組成物14の調製]
 遮光材粒子分散液をチタン窒化物粒子分散アクリル樹脂溶液(Bk-9)に変更した以外は黒色樹脂組成物2と同様にして黒色樹脂組成物14を調製した。
[Preparation of black resin composition 14]
Black resin composition 14 was prepared in the same manner as black resin composition 2 except that the light-shielding material particle dispersion was changed to titanium nitride particle-dispersed acrylic resin solution (Bk-9).
 [黒色樹脂組成物15の調製]
 透明粒子分散アクリル樹脂溶液(P-1)の量を28.0質量部(透明粒子:5.60質量部)に変更し、プロピレングリコールモノメチルエテーテルアセテートの添加量を102.75質量部にそれぞれ変更した以外は黒色樹脂組成物2と同様にして、黒色樹脂組成物15を調製した。
[Preparation of black resin composition 15]
The amount of transparent particle-dispersed acrylic resin solution (P-1) was changed to 28.0 parts by mass (transparent particles: 5.60 parts by mass), and the amount of propylene glycol monomethyl ether acetate added was changed to 102.75 parts by mass. Black resin composition 15 was prepared in the same manner as black resin composition 2 except for the following changes.
 [黒色樹脂組成物16の調製]
 透明明粒子分散アクリル樹脂溶液(P-1)の量を1.40質量部(透明粒子:0.28質量部)に変更し、アクリル樹脂粉末のプロピレングリコールモノメチルエーテルアセテート40.0質量%溶液の添加量を10.37質量部、プロピレングリコールモノメチルエーテルアセテートを75.21質量部にそれぞれ変更した以外は黒色樹脂組成物1と同様にして、黒色樹脂組成物16を調製した。
[Preparation of black resin composition 16]
The amount of transparent bright particle dispersed acrylic resin solution (P-1) was changed to 1.40 parts by mass (transparent particles: 0.28 parts by mass), and a 40.0 mass% propylene glycol monomethyl ether acetate solution of acrylic resin powder was added. Black resin composition 16 was prepared in the same manner as black resin composition 1 except that the amount added was changed to 10.37 parts by mass and the amount of propylene glycol monomethyl ether acetate was changed to 75.21 parts by mass.
 [黒色樹脂組成物13~16の膜の形成]
 上記得られた黒色樹脂組成物13~16を用いて、黒色樹脂組成物1と同様の方法で成膜し、黒色樹脂組成物13~16の膜を得た。比較例1は黒色樹脂組成物13、比較例2は黒色樹脂組成物14、比較例3は黒色樹脂組成物15、比較例4は黒色樹脂組成物16をそれぞれ用いた。実施例1と同様にして単位膜厚当たりのOD値、反射率、反射色度、および体積抵抗率を求めた。
[Formation of films of black resin compositions 13 to 16]
Using the black resin compositions 13 to 16 obtained above, films were formed in the same manner as for black resin composition 1 to obtain films of black resin compositions 13 to 16. Comparative Example 1 used Black Resin Composition 13, Comparative Example 2 used Black Resin Composition 14, Comparative Example 3 used Black Resin Composition 15, and Comparative Example 4 used Black Resin Composition 16. In the same manner as in Example 1, the OD value, reflectance, reflective chromaticity, and volume resistivity per unit film thickness were determined.
 比較例1では、チタン窒化物粒子の平均二次粒径が小さく、顔料の表面積が増えることにより反射率が著しく悪化した。また、比較例2ではチタン窒化物粒子の平均二次粒径が大きく遮光性が大きく悪化した。比較例3では、黒色顔料粒子に対して透明粒子の質量比率が高く、遮光性が著しく悪化した。比較例4では、黒色顔料粒子に対して透明粒子の質量比率が低く、透明粒子添加による反射率低下の効果が発現しなかった。 In Comparative Example 1, the average secondary particle size of the titanium nitride particles was small, and the surface area of the pigment increased, resulting in a significant deterioration in reflectance. Furthermore, in Comparative Example 2, the average secondary particle size of the titanium nitride particles was large, and the light shielding property was significantly deteriorated. In Comparative Example 3, the mass ratio of transparent particles to black pigment particles was high, and the light-shielding property was significantly deteriorated. In Comparative Example 4, the mass ratio of transparent particles to black pigment particles was low, and the effect of reducing reflectance due to the addition of transparent particles was not exhibited.
 表1の結果から、チタン窒化物粒子の平均二次粒径が160~220nmであり、チタン窒化物粒子の質量が透明粒子の質量の、1.3~15倍の範囲であれば、単位膜厚(μm)あたりのOD値が2.4以上となり、全反射率が5.8%未満となる良好な数値を示し、更にチタン窒化物粒子の質量が透明粒子の質量の2.0~4.8倍の範囲であれば全反射率が5.6%未満となる非常に良好な数値を示すことから、車載用液晶ディスプレイやマイクロLEDディスプレイ用途のブラックマトリックスで要求されている反射率およびOD値の性能が得られることがわかった。 From the results in Table 1, if the average secondary particle diameter of the titanium nitride particles is 160 to 220 nm and the mass of the titanium nitride particles is in the range of 1.3 to 15 times the mass of the transparent particles, the unit film The OD value per thickness (μm) is 2.4 or more, the total reflectance is less than 5.8%, which is a good value, and the mass of the titanium nitride particles is 2.0 to 4% of the mass of the transparent particles. The total reflectance is less than 5.6% in the 8x range, which is a very good value, which is the reflectance and OD required for black matrices for automotive LCD displays and micro LED displays. It was found that the value performance can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1  遮光材
1a チタン窒化物粒子
1b 他の黒色顔料粒子
1c 別の黒色顔料粒子
2  透明粒子
3  樹脂
5  基材
10 黒色樹脂組成物の層
1 Light shielding material 1a Titanium nitride particles 1b Other black pigment particles 1c Other black pigment particles 2 Transparent particles 3 Resin 5 Base material 10 Layer of black resin composition

Claims (12)

  1.  遮光材、透明粒子、樹脂および溶媒を含み、前記遮光材がチタン窒化物粒子を含有し、前記チタン窒化物粒子の質量が前記透明粒子の質量の1.3~15倍であり、前記チタン窒化物粒子の平均二次粒径が160~220nmである黒色樹脂組成物。 a light-shielding material, transparent particles, a resin, and a solvent, the light-shielding material contains titanium nitride particles, the mass of the titanium nitride particles is 1.3 to 15 times the mass of the transparent particles, and the titanium nitride A black resin composition in which the average secondary particle size of the particles is 160 to 220 nm.
  2.  前記チタン窒化物粒子の質量が前記透明粒子の質量の2.0~4.8倍である請求項1に記載の黒色樹脂組成物。 The black resin composition according to claim 1, wherein the mass of the titanium nitride particles is 2.0 to 4.8 times the mass of the transparent particles.
  3.  前記遮光材がさらに他の黒色顔料粒子を含有し、前記他の黒色顔料粒子の平均二次粒径が前記チタン窒化物粒子の平均二次粒径の20~80%である請求項1または請求項2に記載の黒色樹脂組成物。 2. The light shielding material further contains other black pigment particles, and the average secondary particle size of the other black pigment particles is 20 to 80% of the average secondary particle size of the titanium nitride particles. Item 2. The black resin composition according to item 2.
  4.  前記他の黒色顔料粒子がチタン炭化物粒子を含有し、かつ前記チタン炭化物粒子の質量が前記チタン窒化物粒子の質量の0.1~0.8倍である請求項3に記載の黒色樹脂組成物。 The black resin composition according to claim 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 0.1 to 0.8 times the mass of the titanium nitride particles. .
  5.  前記他の黒色顔料粒子がチタン炭化物粒子を含有し、かつ前記チタン炭化物粒子の質量が前記チタン窒化物粒子の質量の4.5~49倍である請求項3に記載の黒色樹脂組成物。 The black resin composition according to claim 3, wherein the other black pigment particles contain titanium carbide particles, and the mass of the titanium carbide particles is 4.5 to 49 times the mass of the titanium nitride particles.
  6.  前記他の黒色顔料粒子がカーボンブラックを含有し、かつ前記カーボンブラックの質量が前記チタン窒化物粒子の質量の0.1~0.8倍である請求項3に記載の黒色樹脂組成物。 The black resin composition according to claim 3, wherein the other black pigment particles contain carbon black, and the mass of the carbon black is 0.1 to 0.8 times the mass of the titanium nitride particles.
  7.  前記他の黒色顔料粒子がチタン炭化物粒子およびカーボンブラックを含有し、前記カーボンブラックの質量が前記チタン炭化物粒子の質量の0.5~2.0倍である請求項3に記載の黒色樹脂組成物。 The black resin composition according to claim 3, wherein the other black pigment particles contain titanium carbide particles and carbon black, and the mass of the carbon black is 0.5 to 2.0 times the mass of the titanium carbide particles. .
  8.  前記透明粒子の平均一次粒径が5~30nmである請求項1または請求項2に記載の黒色樹脂組成物。 The black resin composition according to claim 1 or 2, wherein the average primary particle size of the transparent particles is 5 to 30 nm.
  9.  前記透明粒子がシリカ粒子である請求項1または請求項2に記載の黒色樹脂組成物。 The black resin composition according to claim 1 or 2, wherein the transparent particles are silica particles.
  10.  前記樹脂がテトラカルボン酸二無水物残基およびジアミン残基を有する繰り返し単位を有するポリアミック酸を含む請求項1または請求項2に記載の黒色樹脂組成物。 The black resin composition according to claim 1 or 2, wherein the resin contains a polyamic acid having a repeating unit having a tetracarboxylic dianhydride residue and a diamine residue.
  11.  透明基板および前記透明基板上に形成された請求項1または請求項2に記載の黒色樹脂組成物の硬化膜を含むブラックマトリックス基板であって、前記硬化膜の光学濃度(OD値)が膜厚1.0μmあたり2.4~4.5であり、反射色a*値が0.1~3.0であり、前記透明基板の反射率が4.5%~5.5%であるブラックマトリックス基板。 A black matrix substrate comprising a transparent substrate and a cured film of the black resin composition according to claim 1 or 2 formed on the transparent substrate, wherein the optical density (OD value) of the cured film is a black matrix having a reflectance of 2.4 to 4.5 per 1.0 μm, a reflected color a* value of 0.1 to 3.0, and a reflectance of the transparent substrate of 4.5% to 5.5%; substrate.
  12.  前記請求項11に記載のブラックマトリックス基板を有する表示装置。 A display device comprising the black matrix substrate according to claim 11.
PCT/JP2023/015752 2022-04-28 2023-04-20 Black resin composition, black matrix substrate, and display device WO2023210489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022074190 2022-04-28
JP2022-074190 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210489A1 true WO2023210489A1 (en) 2023-11-02

Family

ID=88518671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015752 WO2023210489A1 (en) 2022-04-28 2023-04-20 Black resin composition, black matrix substrate, and display device

Country Status (2)

Country Link
TW (1) TW202407057A (en)
WO (1) WO2023210489A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286633A (en) * 1996-04-22 1997-11-04 Nippon Sheet Glass Co Ltd Colored flaky glass, its production and decorative material containing the same
JP2001242492A (en) * 1999-12-21 2001-09-07 Ricoh Co Ltd Display liquid for electrophoresis display, display particle, display medium, display device, and display body
JP2002285007A (en) * 2001-03-27 2002-10-03 Dainippon Printing Co Ltd Black resin composition, black coat, black matrix substrate, and manufacturing method of black resin composition
WO2014136738A1 (en) * 2013-03-07 2014-09-12 東レ株式会社 Black matrix substrate
JP2018083730A (en) * 2016-11-22 2018-05-31 三菱マテリアル電子化成株式会社 Mixed powder for forming black film and manufacturing method therefor
JP2019151786A (en) * 2018-03-06 2019-09-12 東レ・ファインケミカル株式会社 Black pigment dispersion
WO2020203080A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Composition, light shielding film, color filter, optical element, sensor, solid-state imaging element, and headlight unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286633A (en) * 1996-04-22 1997-11-04 Nippon Sheet Glass Co Ltd Colored flaky glass, its production and decorative material containing the same
JP2001242492A (en) * 1999-12-21 2001-09-07 Ricoh Co Ltd Display liquid for electrophoresis display, display particle, display medium, display device, and display body
JP2002285007A (en) * 2001-03-27 2002-10-03 Dainippon Printing Co Ltd Black resin composition, black coat, black matrix substrate, and manufacturing method of black resin composition
WO2014136738A1 (en) * 2013-03-07 2014-09-12 東レ株式会社 Black matrix substrate
JP2018083730A (en) * 2016-11-22 2018-05-31 三菱マテリアル電子化成株式会社 Mixed powder for forming black film and manufacturing method therefor
JP2019151786A (en) * 2018-03-06 2019-09-12 東レ・ファインケミカル株式会社 Black pigment dispersion
WO2020203080A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Composition, light shielding film, color filter, optical element, sensor, solid-state imaging element, and headlight unit

Also Published As

Publication number Publication date
TW202407057A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP7234631B2 (en) Negative photosensitive resin composition, cured film, device and organic EL display provided with cured film, and method for producing the same
JP5967782B2 (en) Black composite fine particles, black resin composition, color filter substrate and liquid crystal display device
TWI425042B (en) Black resin composition, resin black matrices, color filter, and liquid crystal display device
KR102112520B1 (en) Black matrix substrate
US10209554B2 (en) Method for manufacturing laminated resin black-matrix substrate
JP5333670B2 (en) Black resin composition, resin black matrix substrate and touch panel
WO1995035525A1 (en) Resin black matrix for liquid crystal display
JP5099094B2 (en) Black resin composition, resin black matrix, color filter, and liquid crystal display device
JP2010097214A (en) Color filter substrate for liquid crystal display apparatus and liquid crystal display apparatus
JP2015001654A (en) Method for manufacturing laminate resin black matrix substrate
JP2015026049A (en) Laminated resin black matrix substrate and manufacturing method therefor
JP2015001655A (en) Laminate resin black matrix substrate
WO2023210489A1 (en) Black resin composition, black matrix substrate, and display device
JP2015001652A (en) Laminate resin black matrix substrate
JP2010189628A (en) Black resin composition, resin black matrix, color filter and liquid crystal display device
WO2022270182A1 (en) Positive photosensitive pigment composition, cured film containing cured product thereof, and organic el display device
JP2009058946A (en) Black resin composition, resin black matrix, color filter, and liquid crystal display
JP5157686B2 (en) Black resin composition, resin black matrix, color filter, and liquid crystal display device
WO2023276802A1 (en) Black resin composition and black matrix substrate
CN117043676A (en) Positive photosensitive pigment composition, cured film containing cured product thereof, and organic EL display device
TW202238269A (en) Organic el display device
CN118077312A (en) Organic EL display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023530575

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796231

Country of ref document: EP

Kind code of ref document: A1