WO2023210414A1 - 通信システム、電波屈折板および電波屈折板の設置位置の算出方法 - Google Patents

通信システム、電波屈折板および電波屈折板の設置位置の算出方法 Download PDF

Info

Publication number
WO2023210414A1
WO2023210414A1 PCT/JP2023/015236 JP2023015236W WO2023210414A1 WO 2023210414 A1 WO2023210414 A1 WO 2023210414A1 JP 2023015236 W JP2023015236 W JP 2023015236W WO 2023210414 A1 WO2023210414 A1 WO 2023210414A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
fresnel zone
wave refracting
refracting plates
area
Prior art date
Application number
PCT/JP2023/015236
Other languages
English (en)
French (fr)
Inventor
信樹 平松
大輔 富樫
憲吾 杉山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023210414A1 publication Critical patent/WO2023210414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism

Definitions

  • the present disclosure relates to a communication system, a radio wave refraction plate, and a method for calculating the installation position of the radio wave refraction plate.
  • Patent Document 1 describes a technique for refracting radio waves by changing the parameters of each element in a structure in which resonator elements are arranged.
  • the communication system of the present disclosure includes a base station configured to transmit and receive radio waves, a terminal configured to transmit and receive the radio waves to and from the base station, and a communication system that is identical between the base station and the terminal.
  • a plurality of radio wave refracting plates are installed on a plane and are configured to refract the radio waves in the direction of the terminal and emit them as refracted radio waves when the radio waves transmitted from the base station pass therethrough.
  • a plurality of radio wave refracting plates of the present disclosure are installed on the same plane between a base station configured to transmit and receive radio waves and a terminal configured to transmit and receive the radio waves between the base station, and When the radio waves transmitted from the base station pass through, the radio waves are refracted in the direction of the terminal and emitted as refracted radio waves.
  • a method for calculating the installation position of a radio wave refracting plate includes the steps of: calculating the geometric center of the center point of a plurality of installed radio wave refracting plates; setting a plane perpendicular to a straight line connecting a transmission point that transmits radio waves and a reception point that receives the radio waves refracted by the radio wave refraction plate; and projecting the plurality of radio wave refraction plates onto the plane. and the plurality of radio wave refracting plates such that the area of the plurality of radio wave refracting plates included in the odd-order Fresnel zone in the plane is larger than the area of the plurality of radio wave refracting plates included in the even-numbered Fresnel zone. the step of calculating the installation position of the.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment.
  • FIG. 2 is a diagram schematically showing an example of a radio wave refraction plate.
  • FIG. 3 is a diagram for explaining a method of receiving radio waves according to a comparative example of this embodiment.
  • FIG. 4 is a diagram for explaining a method of receiving radio waves according to a comparative example of this embodiment.
  • FIG. 5 is a diagram for explaining a method of receiving radio waves according to this embodiment.
  • FIG. 6 is a diagram for explaining a method of receiving radio waves according to the present embodiment.
  • FIG. 7 is a diagram for explaining the method of installing the radio wave refraction plate according to the present embodiment.
  • FIG. 8 is a diagram for explaining the Fresnel zone according to this embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment.
  • FIG. 2 is a diagram schematically showing an example of a radio wave refraction plate.
  • FIG. 9 is a flowchart showing the flow of processing for calculating the installation position of the radio wave refraction plate according to the present embodiment.
  • FIG. 10 is a diagram for explaining the angle dependence of received power according to a comparative example.
  • FIG. 11 is a diagram for explaining the angular dependence of received power according to the embodiment.
  • FIG. 12 is a diagram for explaining the transmission characteristics of adjacent radio wave refraction plates according to the embodiment.
  • FIG. 13 is a diagram for explaining the transmission characteristics of adjacent radio wave refracting plates according to the embodiment.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be explained with reference to this XYZ orthogonal coordinate system.
  • the direction parallel to the X-axis in the horizontal plane is the X-axis direction
  • the direction parallel to the Y-axis in the horizontal plane perpendicular to the X-axis is the Y-axis direction
  • the direction parallel to the Z-axis orthogonal to the horizontal plane is the Z-axis direction.
  • a plane including the X axis and the Y axis is appropriately referred to as an XY plane.
  • a plane including the X axis and the Z axis is appropriately referred to as an XZ plane.
  • a plane including the Y axis and the Z axis is appropriately referred to as a YZ plane.
  • the XY plane is parallel to the horizontal plane.
  • the XY plane, the XZ plane, and the YZ plane are orthogonal to each other.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment.
  • the communication system 1 includes a base station 10, a terminal 12, and a plurality of radio wave refracting plates 14.
  • the communication system 1 is capable of high-speed high-capacity data communication, such as a fifth generation mobile communication system (hereinafter also referred to as "5G") or a sixth generation mobile communication system (hereinafter also referred to as "6G"). It can be a communication system compatible with millimeter wave communication.
  • 5G fifth generation mobile communication system
  • 6G sixth generation mobile communication system
  • the base station 10 is a wireless communication device configured to transmit and receive radio waves to and from various external devices.
  • the base station 10 is configured to perform wireless communication with the terminal 12 by transmitting and receiving radio waves compatible with 5G or 6G to and from the terminal 12, for example.
  • the base station 10 is configured to perform wireless communication with the terminal 12 via a plurality of radio wave refracting plates 14 installed on the same plane.
  • the terminal 12 is a wireless communication device configured to transmit and receive radio waves from various external devices.
  • the terminal 12 is configured to perform wireless communication with the base station 10 by transmitting and receiving radio waves compatible with 5G or 6G to and from the base station 10, for example.
  • the terminal 12 is configured to perform wireless communication with the base station 10 via a plurality of radio wave refracting plates 14 installed on the same plane.
  • a smartphone used by a user is exemplified, but the present disclosure is not limited thereto.
  • the terminal 12 may be, for example, a relay device that relays communication between the base station 10 and a smartphone used by a user.
  • the radio wave refraction plate 14 is a plate-shaped member configured to allow radio waves transmitted by the base station 10 to pass therethrough.
  • the radio wave refracting plate 14 is configured to, for example, receive a radio wave transmitted by the base station 10, refract the radio wave at a predetermined angle, and emit the refracted radio wave.
  • the radio wave refraction plate 14 is configured to, upon receiving a radio wave transmitted by the base station 10 , refract the radio wave in the direction of the terminal 12 and emit the radio wave toward the terminal 12 .
  • the radio wave refraction plate 14 may be made of, for example, a metamaterial that changes the phase of incident light.
  • FIG. 2 is a diagram schematically showing an example of the radio wave refraction plate 14.
  • the radio wave refraction plate 14 may include, for example, a substrate 20, an element 22, an element 24, an element 26, and an element 28.
  • Element 22 , element 24 , element 26 , and element 28 may be formed on substrate 20 .
  • the substrate 20 may have a rectangular shape, for example, but is not limited thereto.
  • Elements 22, 24, 26, and 28 may be two-dimensionally arranged on substrate 20.
  • a plurality of elements 22 may be installed in a line at the bottom of the substrate 20.
  • a plurality of elements 24 may be installed in a row on a level above the level where the elements 22 are installed.
  • a plurality of elements 26 may be installed in a row on a level above the level where the elements 24 are installed.
  • a plurality of elements 28 may be installed in a row on a level above the level where the elements 26 are installed.
  • the radio wave refraction plate 14 may have a structure in which a plurality of elements of different sizes are arranged periodically.
  • the elements 22 to 28 may differ in the amount of change in the frequency band and phase of the radio waves to be changed. Although each of the elements 22 to 28 has a rectangular shape, the shape is not limited to this. By changing the size, shape, etc. of the elements 22, 24, 26, and 28, the amount of change in the frequency band and phase of the refracted radio waves can be adjusted.
  • the communication system 1 includes a plurality of radio wave refracting plates 14.
  • a plurality of radio wave refracting plates 14 may be installed within the same plane 16. In the example shown in FIG. 1, four radio wave refracting plates 14 are installed on the plane 16, but this is an example and does not limit the present disclosure.
  • the plane 16 may be a space or the surface of a transparent structure such as a window glass.
  • the plurality of radio wave refracting plates 14 refract the radio wave W1 transmitted from the base station 10 and output it to the terminal 12 as a refracted radio wave W2.
  • 3 and 4 are diagrams for explaining a method of receiving radio waves according to a comparative example of this embodiment.
  • the comparative example shows a method in which radio waves from the base station 10 are reflected and received by the terminal 12.
  • radio wave reflecting plates a radio wave reflecting plate 30-1 and a radio wave reflecting plate 30-2, are shown.
  • the radio wave reflecting plate 30-1 and the radio wave reflecting plate 30-2 are configured to reflect the radio wave W1 transmitted from the base station 10 at a predetermined angle as a reflected radio wave W3.
  • arrows attached to the radio wave W1 and the reflected radio wave W3 indicate the traveling directions of the radio wave W1 and the reflected radio wave W3, respectively.
  • the radio wave reflecting plate 30-1 and the radio wave reflecting plate 30-2 are installed at an interval along the Z-axis direction at the origin O so as to strengthen the phases of the reflected radio waves W3 reflected from each other. shall be.
  • the phase of the reflected radio wave W3 reflected by the radio wave reflecting plate 30-1 and the reflected radio wave W3 reflected by the radio wave reflecting plate 30-2 is are in phase. That is, the received power of the reflected radio wave W3 reflected by the radio wave reflecting plate 30-1 and the reflected radio wave W3 reflected by the radio wave reflecting plate 30-2 strengthen each other at a position on the straight line 41 on the ZX plane.
  • FIG. 4 shows an example in which the radio wave reflecting plate 30-2 is shifted by ⁇ /4 from the origin O in the positive direction of the X-axis, where ⁇ is the wavelength of the radio wave W1.
  • ⁇ /4 is 2.7 mm (millimeters) when ⁇ is 28 GHz (gigahertz).
  • the reflected radio wave W3 reflected by the radio wave reflecting plate 30-1 and the reflected radio wave W3 reflected by the radio wave reflecting plate 30-2 are different. The phases are opposite.
  • the received power of the reflected radio wave W3 reflected by the radio wave reflecting plate 30-1 and the reflected radio wave W3 reflected by the radio wave reflecting plate 30-2 weaken each other at a position on the straight line 41 on the ZX plane. In this way, even if the area of the reflector is increased by using a plurality of radio wave reflectors, the reflected radio waves do not necessarily strengthen each other, and the received power may not improve.
  • 5 and 6 are diagrams for explaining a method of receiving radio waves according to this embodiment.
  • a radio wave refracting plate 14-1 and a radio wave refracting plate 14-2 are shown.
  • the radio wave refracting plate 14-1 and the radio wave refracting plate 14-2 are configured to reflect the radio wave W1 transmitted from the base station 10 at a predetermined angle ⁇ as a refracted radio wave W2.
  • arrows attached to the radio wave W1 and the refracted radio wave W2 indicate the traveling directions of the radio wave W1 and the refracted radio wave W2, respectively.
  • the radio wave refracting plate 14-1 and the radio wave refracting plate 14-2 are installed at an interval along the Z-axis direction at the origin O so as to mutually strengthen the phases of the refracted radio waves W2.
  • the phase of the refracted radio wave W2 refracted by the radio wave refracting plate 14-1 and the refracted radio wave W2 refracted by the radio wave refracting plate 14-2 is are in phase. That is, the received power of the refracted radio wave W2 refracted by the radio wave refracting plate 14-1 and the refracted radio wave W2 refracted by the radio wave refracting plate 14-2 strengthen each other at a position on the straight line 32 on the ZX plane.
  • FIG. 6 shows an example in which the radio wave refracting plate 14-2 is shifted by ⁇ /4 from the origin O in the positive direction of the X-axis, where ⁇ is the wavelength of the radio wave W1.
  • is the wavelength of the radio wave W1.
  • the path length remains almost unchanged. Therefore, in this embodiment, even if the radio wave refracting plate 14-2 is shifted in the positive direction of the X-axis, the refracted radio wave W2 refracted by the radio wave refracting plate 14-1 and , and have the same phase as the refracted radio wave W2 refracted by the radio wave refracting plate 14-2. That is, in this embodiment, since the received power does not weaken, the received power can be improved by increasing the area of the reflecting plate using a plurality of radio wave reflecting plates.
  • the radio wave refraction plate 14-1 and the radio wave refraction plate 14-2 when the distance between the radio wave refraction plate 14-1 and the radio wave refraction plate 14-2 is s, and the refraction angle of the refracted radio wave W2 is ⁇ , the radio wave refraction plate 14-1 and the radio wave refraction plate It is preferable that the deviation in the thickness direction (X-axis direction in FIG. 6) of 14-2 is equal to or less than s/tan ⁇ .
  • the received power can be improved.
  • FIG. 7 is a diagram for explaining the method of installing the radio wave refraction plate according to the present embodiment.
  • the area installed in the area where the radio waves strengthen each other is The radio wave refraction plate 14 is installed so that its area is larger than the area installed in the weakening region. Thereby, this embodiment can obtain higher received power.
  • a region where radio waves strengthen each other is called an odd-numbered Fresnel zone, and a region where radio waves weaken each other is called an even-numbered Fresnel zone.
  • Fresnel zone The definition of the Fresnel zone according to this embodiment will be explained.
  • Transmission point T indicates the location of the antenna of base station 10
  • reception point R indicates the location of the antenna of terminal 12.
  • the geometric center (center of gravity) of the center points of the plurality of radio wave refracting plates 14 is defined as the geometric center C.
  • the straight line distance between the transmission point T and the geometric center C be d1 .
  • the distance between the receiving point R and the geometric center C be d2 .
  • n is a natural number and ⁇ is the wavelength of the radio wave.
  • FIG. 8 is a diagram for explaining the Fresnel zone according to this embodiment.
  • the annular portion ranging from radius R n-1 to radius R n is defined as the n-th Fresnel zone.
  • a first Fresnel zone 50, a second Fresnel zone 52, a third Fresnel zone 54, and a fourth Fresnel zone 56 are shown.
  • FIG. 9 is a flowchart showing the flow of processing for calculating the installation position of the radio wave refraction plate according to the present embodiment.
  • the process shown in FIG. 9 is, for example, a process executed by an information processing device such as a personal computer (not shown).
  • the information processing device calculates the geometric center C of the center points of the plurality of installed radio wave refracting plates 14 (step S10). Then, the process advances to step S12.
  • the information processing device sets a plane P that passes through the geometric center C and is perpendicular to the straight line TR connecting the transmission point T and the reception point R (step S12). Then, the process advances to step S14.
  • the information processing device projects the plurality of radio wave refracting plates 14 onto the plane P (step S14). Then, the process advances to step S16.
  • the information processing device calculates the installation positions of the plurality of radio wave refraction plates 14 (step S16). Specifically, the information processing device includes a plurality of radio wave refracting plates such that the area of the radio wave refracting plate 14 included in the odd-order Fresnel zone is larger than the area of the radio wave refracting plate 14 included in the even-numbered Fresnel zone. 14 installation positions are calculated. More specifically, in the example shown in FIG. 7, the area of the radio wave refracting plate 14 included in the first Fresnel zone 50 and the third Fresnel zone 54 is equal to The installation positions of the plurality of radio wave refraction plates 14 are calculated so that the area is larger than the area of the radio wave refraction plates 14. Then, the process advances to step S18.
  • the information processing device outputs installation position information regarding the installation positions of the plurality of radio wave refracting plates 14 (step S18). Thereby, the user can adjust the installation positions of the plurality of radio wave refracting plates 14 based on the installation position information.
  • d2 be the straight line distance between the geometric center C of the center points of the plural radio wave refracting plates 14 and the reception point R, and let L sum be the sum of the maximum dimensions (for example, diagonals) of the plural radio wave refracting plates 14 installed. , d 2 preferably satisfy the following formula (2).
  • the beam width of the refracted radio wave becomes narrower, and higher received power can be obtained than when only one radio wave refraction plate 14 is installed.
  • FIG. 10 is a diagram for explaining the angle dependence of received power according to a comparative example.
  • FIG. 11 is a diagram for explaining the angular dependence of received power according to the embodiment.
  • FIG. 10 shows the angular dependence of received power when the above equation (2) is not satisfied. Specifically, FIG. 10 shows the angular dependence of received power when d 2 is 0.75 m, L sum is 0.6 m, and ⁇ is 28 GHz.
  • FIG. 11 shows the angle dependence of received power when the above equation (2) is satisfied. Specifically, FIG. 11 shows the angular dependence of received power when d2 is 5.0 m, L sum is 0.6 m, and ⁇ is 28 GHz.
  • FIG. 11 shows a waveform 103 and a waveform 104.
  • the horizontal axis represents the refraction angle [deg]
  • the vertical axis represents the gain [dB].
  • a waveform 103 shows the angular dependence of received power when one radio wave refraction plate 14 is installed.
  • a waveform 104 shows the angle dependence of received power when two radio wave refracting plates 14 are installed. As shown by waveform 103 and waveform 104, by installing two radio wave refracting plates 14, the gain of received power is improved and the power distribution is narrowed.
  • FIGS. 12 and 13 are diagrams for explaining the transmission characteristics of adjacent radio wave refracting plates according to the embodiment.
  • the radio wave refracting plate 14-1 and the radio wave refracting plate 14-2 are installed so that the area included in the odd-numbered Fresnel zone is larger than the area included in the even-numbered Fresnel zone, and are adjacent to each other. It is assumed that the The radio wave refracting plate 14-1 and the radio wave refracting plate 14-2 may be installed in the same odd-numbered Fresnel zone, or may be installed in different odd-numbered Fresnel zones.
  • the radio wave refracting plate 14-1 includes an element 22A, an element 24A, an element 26A, and so on. It is assumed that the radio wave refraction plate 14-2 includes an element 22B, an element 24B, and so on. In the example shown in FIG. 12, it is assumed that the elements 22A, 24A, 26A, . . . , the elements 22B, 24B, . . . are installed adjacent to each other.
  • the horizontal axis indicates the installation position of the radio wave refracting plate 14, and the vertical axis indicates the amount of phase change [degrees].
  • Point P1 indicates the installation position and phase change amount of the element 22A.
  • Point P2 indicates the installation position and phase change amount of the element 24A.
  • Point P3 indicates the installation position and phase change amount of the element 26A.
  • Point P4 indicates the installation position and phase change amount of element 22B.
  • Point P5 indicates the installation position and phase change amount of element 24B.
  • the radio wave refraction plate 14-1 and the radio wave refraction plate 14-2 are installed so that the points P1 to P5 are on the straight line 61. Thereby, the radio wave refracting plate 14-1 and the radio wave refracting plate 14-2 can increase the reception power of the refracted radio waves, thereby further improving the characteristics.
  • the radio wave refracting plate 14-1 is installed such that the area included in the odd-numbered Fresnel zone is larger than the area included in the even-numbered Fresnel zone. It is assumed that the radio wave refracting plate 14-3 is installed such that the area included in the even-numbered Fresnel zone is larger than the area included in the odd-numbered Fresnel zone. Further, it is assumed that the radio wave refraction plate 14-1 and the radio wave refraction plate 14-3 are installed adjacent to each other.
  • the horizontal axis indicates the installation position of the radio wave refracting plate 14, and the vertical axis indicates the amount of phase change [degrees].
  • Point P1 indicates the installation position and phase change amount of the element 22A.
  • Point P2 indicates the installation position and phase change amount of the element 24A.
  • Point P3 indicates the installation position and phase change amount of the element 26A.
  • Point P11 indicates the installation position and phase change amount of the element 22C.
  • Point P12 indicates the installation position and phase change amount of the element 24C.
  • the radio wave refracting plate 14-1 is installed so that points P1 to P3 are on the straight line 61, and the radio wave refracting plate 14-1 is installed so that the points P11 and P12 are deviated from the straight line 61.
  • Install 14-3 That is, a radio wave refracting plate whose area included in the even-order Fresnel zone is larger than the area included in the odd-order Fresnel zone is installed so as to deviate from the straight line 61.
  • the radio wave refraction plate 14-3 is installed so that point P11 and point P12 are on a straight line 62. That is, the radio wave refraction plate 14-3 is installed such that the amount of phase change is shifted from the radio wave refraction plate 14-1. Since the even-order Fresnel zone is a region where radio waves weaken each other, by installing the radio wave refracting plate 14-3 so as to deviate from the straight line 61, the received power of the refracted radio waves can be increased, and the characteristics can be further improved. .
  • the arrow between the straight line 61 and the straight line 62 indicates the shift in the amount of phase change between the straight line 61 and the straight line 62.
  • the characteristics can be further improved by setting the phase change amount difference between the straight line 61 and the straight line 62 to, for example, 180°. Note that the deviation in phase change amount between the straight line 61 and the straight line 62 is not limited to 180°.

Abstract

通信システムは、電波を送受信するように構成される基地局と、基地局との間で電波を送受信するように構成される端末と、基地局と端末の間において同一平面に複数設置され、基地局から送信された電波が透過する際に、電波を端末の方向に屈折させて屈折電波とし出射するように構成される電波屈折板と、を含む。

Description

通信システム、電波屈折板および電波屈折板の設置位置の算出方法
 本開示は、通信システム、電波屈折板および電波屈折板の設置位置の算出方法に関する。
 誘電体レンズを用いずに、電磁波を制御する技術が知られている。例えば、特許文献1には、共振器素子を配列した構造において、各素子のパラメータを変化させることで、電波を屈折させる技術が記載されている。
特開2015-231182号公報
 本開示の通信システムは、電波を送受信するように構成される基地局と、前記基地局との間で前記電波を送受信するように構成される端末と、前記基地局と前記端末の間において同一平面に複数設置され、前記基地局から送信された前記電波が透過する際に、前記電波を前記端末の方向に屈折させて屈折電波とし出射するように構成される電波屈折板と、を含む。
 本開示の電波屈折板は、電波を送受信するように構成される基地局と、前記基地局との間で前記電波を送受信するように構成される端末の間において同一平面に複数設置され、前記基地局から送信された前記電波が透過する際に、前記電波を前記端末の方向に屈折させて屈折電波とし出射するように構成される。
 本開示の電波屈折板の設置位置の算出方法は、設置されている複数の電波屈折板の中心点の幾何中心を算出するステップと、前記幾何中心を通過し、かつ前記複数の電波屈折板に電波を送信する送信点と、前記電波屈折板が屈折させた前記電波を受信する受信点とを結ぶ直線に垂直な平面を設定するステップと、前記複数の電波屈折板を前記平面に投影するステップと、前記平面において奇数次フレネルゾーンに含まれる前記複数の電波屈折板の面積が、偶数次フレネルゾーンに含まれる前記複数の電波屈折板の面積よりも大きくなるように、前記複数の電波屈折板の設置位置を算出するステップと、を含む。
図1は、実施形態に係る通信システムの構成例を示す図である。 図2は、電波屈折板の一例を模式的に示す図である。 図3は、本実施形態の比較例に係る電波の受信方法を説明する方法を説明するための図である。 図4は、本実施形態の比較例に係る電波の受信方法を説明する方法を説明するための図である。 図5は、本実施形態に係る電波の受信方法を説明する方法を説明するための図である。 図6は、本実施形態に係る電波の受信方法を説明する方法を説明するための図である。 図7は、本実施形態に係る電波屈折板の設置方法を説明するための図である。 図8は、本実施形態に係るフレネルゾーンを説明するための図である。 図9は、本実施形態に係る電波屈折板の設置位置を算出する処理の流れを示すフローチャートである。 図10は、比較例に係る受信電力の角度依存性を説明するための図である。 図11は、実施形態に係る受信電力の角度依存性を説明するための図である。 図12は、実施形態に係る隣接して設置される電波屈折板の透過特性を説明するための図である。 図13は、実施形態に係る隣接して設置される電波屈折板の透過特性を説明するための図である。
 以下、添付図面を参照して、本発明に係る実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、以下の実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内のX軸と平行な方向をX軸方向とし、X軸と直交する水平面内のY軸と平行な方向をY軸方向とし、水平面と直交するZ軸と平行な方向をZ軸方向とする。X軸及びY軸を含む平面を適宜、XY平面と称する。X軸及びZ軸を含む平面を適宜、XZ平面と称する。Y軸及びZ軸を含む平面を適宜、YZ平面と称する。XY平面は、水平面と平行である。XY平面とXZ平面とYZ平面とは直交する。
[実施形態]
 図1を用いて、実施形態に係る通信システム構成例について説明する。図1は、実施形態に係る通信システムの構成例を示す図である。
 図1に示すように、通信システム1は、基地局10と、端末12と、複数の電波屈折板14と、を含む。通信システム1は、例えば、第5世代移動通信システム(以下、「5G」とも称する)または第6世代移動通信システム(以下、「6G」とも称する)などの大容量のデータ通信を高速で実行可能なミリ波通信に対応した通信システムであり得る。
 基地局10は、各種の外部装置と電波の送受信を行うように構成された無線通信装置である。基地局10は、例えば、端末12との間で5Gまたは6Gに対応した電波を送受信することで、端末12と無縁通信を行うように構成される。本実施形態では、基地局10は、同一平面に設置された複数の電波屈折板14を介して、端末12と無線通信を行うように構成されている。
 端末12は、各種の外部装置電波の送受信を行うように構成された無線通信装置である。端末12は、例えば、基地局10との間で5Gまたは6Gに対応した電波を送受信することで、基地局10と無線通信を行うように構成される。本実施形態では、端末12は、同一平面に設置された複数の電波屈折板14を介して、基地局10と無線通信を行うように構成されている。端末12としては、例えば、ユーザによって使用されるスマートフォンが例示されるが、本開示はこれに限定されない。端末12は、例えば、基地局10と、ユーザによって使用されるスマートフォンとの間の通信を中継する中継装置であってもよい。
 電波屈折板14は、基地局10が送信した電波が透過可能に構成された板状の部材である。電波屈折板14は、例えば、基地局10が送信した電波を受けると、その電波を所定の角度に屈折させて、屈折電波として出射するように構成されている。具体的には、電波屈折板14は、基地局10が送信した電波を受けると、その電波を端末12の方向に屈折させて、端末12に向けて出射するように構成されている。電波屈折板14は、例えば、入射光の位相を変化させるメタマテリアルなどで構成され得る。
 図2は、電波屈折板14の一例を模式的に示す図である。図2に示すように、電波屈折板14は、例えば、基板20と、素子22と、素子24と、素子26と、素子28と、を含み得る。
 素子22と、素子24と、素子26と、素子28とは、基板20上に形成され得る。基板20は、例えば、矩形形状を有し得るが、これに限定されない。素子22と、素子24と、素子26と、素子28とは、基板20上に2次元に配列され得る。具体的には、図2において、基板20の最下段には、複数の素子22が一列に設置され得る。基板20において、素子22が設置されている段の上の段には、複数の素子24が一列に設置され得る。基板20において、素子24が設置されている段の上の段には、複数の素子26が一列に設置され得る。基板20において、素子26が設置されている段の上の段には、複数の素子28が一列に設置され得る。すなわち、電波屈折板14は、サイズの異なる複数の素子が周期的に配列された構造を有し得る。素子22から素子28は、それぞれ、変化させる電波の周波数帯域および位相の変化量が異なり得る。素子22から素子28は、それぞれ矩形形状有しているが、これに限定されない。素子22と、素子24と、素子26と、素子28との大きさおよび形状等を変化させることで、屈折させる電波の周波数帯域および位相の変化量を調整し得る。
 図1に示すように、本実施形態では、通信システム1は、複数の電波屈折板14を含む。複数の電波屈折板14は、同一の平面16内に設置され得る。図1に示す例では、平面16には4個の電波屈折板14が設置されているが、これは例示であり、本開示を限定するものではない。平面16は、空間であってもよいし、窓ガラスなどの透明な構造物の表面であってもよい。複数の電波屈折板14は、基地局10から送信された電波W1を屈折させて、屈折電波W2として端末12に出射する。
[比較例]
 実施形態を説明する前に、本実施形態の比較例に係る電波の受信方法を説明する。図3と、図4とは、本実施形態の比較例に係る電波の受信方法を説明する方法を説明するための図である。比較例では、基地局10からの電波を反射させて端末12で受信する方法を示している。
 図3に示す例では、電波反射板30-1と、電波反射板30-2との2つの電波反射板が示されている。電波反射板30-1と、電波反射板30-2とは、基地局10から送信された電波W1を反射電波W3として所定の角度で反射するように構成されている。図3において、電波W1および反射電波W3に付された矢印は、それぞれ、電波W1および反射電波W3の進行方向を示す。電波反射板30-1と、電波反射板30-2とは、原点OにおいてZ軸方向に沿って、間隔を空けて、互いに反射した反射電波W3の位相を強め合うように設置されているものとする。図3に示す例では、例えば、ZX平面の直線41上の位置において、電波反射板30-1により反射された反射電波W3と、電波反射板30-2により反射された反射電波W3との位相が同相となる。すなわち、電波反射板30-1により反射された反射電波W3と、電波反射板30-2により反射された反射電波W3とは、ZX平面の直線41上の位置において、受信電力が強め合う。
 図4では、電波W1の波長をλとすると、原点Oから電波反射板30-2がX軸の正方向側にλ/4ずれた例を示す。λ/4は、例えば、λが28GHz(ギガヘルツ)である場合、2.7mm(ミリメートル)である。この場合、図4に示すように、ZX平面の直線41上の位置において、電波反射板30-1により反射された反射電波W3と、電波反射板30-2により反射された反射電波W3との位相が逆位相となる。すなわち、電波反射板30-1により反射された反射電波W3と、電波反射板30-2により反射された反射電波W3とは、ZX平面の直線41上の位置において、受信電力が弱め合う。このように、複数の電波反射板を用いて反射板の面積を増やしても、必ずしも反射電波が強め合うとは限らず、受信電力が向上しない場合があった。
 次に、本実施形態に係る電波の受信方法を説明する。図5と、図6とは、本実施形態に係る電波の受信方法を説明する方法を説明するための図である。
 図5に示す例では、電波屈折板14-1と、電波屈折板14-2との2つの反射板が示されている。電波屈折板14-1と、電波屈折板14-2とは、基地局10から送信された電波W1を屈折電波W2として所定の角度θで反射するように構成されている。図5において、電波W1および屈折電波W2に付された矢印は、それぞれ、電波W1および屈折電波W2の進行方向を示す。電波屈折板14-1と、電波屈折板14-2とは、原点OにおいてZ軸方向に沿って、間隔を空けて、互いに屈折させた屈折電波W2の位相を強め合うように設置されているものとする。図5に示す例では、例えば、ZX平面の直線42上の位置において、電波屈折板14-1により屈折された屈折電波W2と、電波屈折板14-2により屈折された屈折電波W2との位相が同相となる。すなわち、電波屈折板14-1により屈折された屈折電波W2と、電波屈折板14-2により屈折された屈折電波W2とは、ZX平面の直線32上の位置において、受信電力が強め合う。
 図6では、電波W1の波長をλとすると、原点Oから電波屈折板14-2がX軸の正方向側にλ/4ずれた例を示す。本実施形態では、図6に示すように、電波屈折板14-2がX軸の正方向側にずれたとしても、経路長はほぼ変わらない。そのため、本実施形態では、電波屈折板14-2がX軸の正方向側にずれたとしても、ZX平面の直線32上の位置において、電波屈折板14-1により屈折された屈折電波W2と、電波屈折板14-2により屈折された屈折電波W2との位相が同相となる。すなわち、本実施形態では、受信電力が弱まることはないので、複数の電波反射板を用いて反射板の面積を増やすことで、受信電力を向上させることができる。
 本実施形態では、電波屈折板14-1と、電波屈折板14-2との間の間隔をs、屈折電波W2の屈折角度をθとしたときに、電波屈折板14-1および電波屈折板14-2の厚み方向(図6ではX軸方向)のずれが、s/tanθ以下であることが好ましい。電波屈折板14-1および電波屈折板14-2の厚み方向(図5ではX軸方向)のずれをs/tanθ以下とすることで、受信電力を向上させることができる。
[電波屈折板の設置方法]
 次に、本実施形態に係る電波屈折板の設置方法について説明する。図7は、本実施形態に係る電波屈折板の設置方法を説明するための図である。
 本実施形態では、電波の送信点Tから電波屈折板14上の点を通過して受信点Rに到達する経路を考えたときに、電波が強め合う領域に設置されている面積が、電波が弱め合う領域に設置されている面積よりも大きくなるように電波屈折板14を設置する。これにより、本実施形態は、より高い受信電力を得ることができる。本実施形態では、電波が強め合う領域を奇数次フレネルゾーンと呼び、電波が弱め合う領域を偶数次フレネルゾーンと呼ぶ。
(フレネルゾーン)
 本実施形態に係るフレネルゾーンの定義について説明する。図7に示すように、送信点Tからの電波が、複数の電波屈折板14を通過して、受信点Rに到達する状況を考える。送信点Tは、基地局10のアンテナの位置を示し、受信点Rは、端末12のアンテナの位置を示す。図7において、複数の電波屈折板14の中心点の幾何中心(重心)を幾何中心Cとする。送信点Tと、幾何中心Cとの間の直線距離をdとする。受信点Rと、幾何中心Cとの間の距離をdとする。幾何中心Cを通り、送信点Tと受信点Rとを結ぶ直線TRに垂直な平面Pを考える。ここで、平面P上において、幾何中心Cを中心として、半径が以下の式(1)で定義される円を考える。
Figure JPOXMLDOC01-appb-M000003
 式(1)において、nは自然数、λは電波の波長である。
 図8は、本実施形態に係るフレネルゾーンを説明するための図である。本実施形態では、式(1)において、半径Rn-1から半径Rの範囲の円環部を第nフレネルゾーンと定義する。図8に示す例では、第1フレネルゾーン50と、第2フレネルゾーン52と、第3フレネルゾーン54と、第4フレネルゾーン56とが示されている。
 図8と、図9とを用いて、本実施形態に係る電波屈折板の設置位置を算出する方法について説明する。図9は、本実施形態に係る電波屈折板の設置位置を算出する処理の流れを示すフローチャートである。
 図9に示す処理は、例えば、図示しないパーソナルコンピュータ等の情報処理装置が実行する処理である。
 情報処理装置は、設置されている複数の電波屈折板14の中心点の幾何中心Cを算出する(ステップS10)。そして、ステップS12に進む。
 情報処理装置は、幾何中心Cを通過し、送信点Tと受信点Rとを結ぶ直線TRに垂直な平面Pを設定する(ステップS12)。そして、ステップS14に進む。
 情報処理装置は、複数の電波屈折板14を平面Pに投影する(ステップS14)。そして、ステップS16に進む。
 情報処理装置は、複数の電波屈折板14の設置位置を算出する(ステップS16)。具体的には、情報処理装置は、奇数次フレネルゾーンに含まれる電波屈折板14の面積が、偶数次フレネルゾーンに含まれる電波屈折板14の面積よりも大きくなるように、複数の電波屈折板14の設置位置を算出する。より具体的には、図7に示す例でいえば、第1フレネルゾーン50および第3フレネルゾーン54に含まれる電波屈折板14の面積が、第2フレネルゾーン52および第4フレネルゾーン56に含まれる電波屈折板14の面積よりも大きくなるように、複数の電波屈折板14の設置位置を算出する。そして、ステップS18に進む。
 情報処理装置は、複数の電波屈折板14の設置位置に関する設置位置情報を出力する(ステップS18)。これにより、ユーザは、設置位置情報に基づいて、複数の電波屈折板14の設置位置を調整することができる。
(距離設定方法)
 次に、本実施形態に係る端末12と、複数の電波屈折板14との間の距離の設定方法を説明する。
 電波屈折板14からの距離が、電波屈折板14の長辺に比べて十分短い距離(近傍領域)では、電波屈折板14からの屈折電波のビーム幅が広く、電力が分散されるため高い受信電力を得ることは困難である。複数の電波屈折板14の中心点の幾何中心Cと受信点Rとの間の直線距離をd、設置した複数の電波屈折板14の最大寸法(例えば、対角線)の和をLsumとすると、dは以下の式(2)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000004
 直線距離dが式(2)を満たすとき、屈折電波のビーム幅が狭くなり、電波屈折板14を1枚しか設置しなかった場合と比べて、高い受信電力を得ることができる。
(受信電力の角度依存性)
 図10と、図11とを用いて、受信電力の角度依存性について説明する。図10は、比較例に係る受信電力の角度依存性を説明するための図である。図11は、実施形態に係る受信電力の角度依存性を説明するための図である。
 図10は、上記の式(2)を満たさない場合の受信電力の角度依存性を示す。具体的には、図10は、dが0.75m、Lsumが0.6m、λが28GHzの場合の受信電力の角度依存性を示す。
 図10は、波形101と、波形102と、を示す。図10は、横軸が屈折角度[deg(度)]、縦軸が利得[dB]を示す。波形101は、電波屈折板14を1枚設置した場合の、受信電力の角度依存性を示す。波形102は、電波屈折板14を2枚設置した場合の、受信電力の角度依存性を示す。波形101と、波形102とが示すように、電波屈折板14を2枚設置することで屈折電波の電力分布が広くなる
 図11は、上記の式(2)を満たす場合の受信電力の角度依存性を示す。具体的には、図11は、dが5.0m、Lsumが0.6m、λが28GHzの場合の受信電力の角度依存性を示す。
 図11は、波形103と、波形104と、を示す。図11は、横軸が屈折角度[deg]、縦軸が利得[dB]を示す。波形103は、電波屈折板14を1枚設置した場合の、受信電力の角度依存性を示す。波形104は、電波屈折板14を2枚設置した場合の、受信電力角度依存性を示す。波形103と、波形104とが示すように、電波屈折板14を2枚設置することで受信電力の利得が向上し、電力分布が狭くなる。
 すなわち、図10と、図11とに示すように、dが上記の式(2)を満たす条件の場合、電波屈折板14を複数枚設置することで、より高い受信電力を得ることができる。
(相対関係)
 次に、複数の電波屈折板14を設置する際に、他の電波屈折板14に隣接して電波屈折板14を設置する際の、好ましい設置方法について説明する。
 図12と、図13とは、実施形態に係る隣接して設置される電波屈折板の透過特性を説明するための図である。
 図12において、電波屈折板14-1と、電波屈折板14-2とは、奇数次フレネルゾーンに含まれる面積が偶数次フレネルゾーンに含まれる面積よりも大きくなるように設置され、かつ隣接して設置されているものとする。電波屈折板14-1と、電波屈折板14-2とは、同一の奇数次フレネルゾーンに設置されていてもよいし、異なる奇数次フレネルゾーンに設置されていてもよい。
 電波屈折板14-1は、素子22Aと、素子24Aと、素子26Aと、・・・、を含むものとする。電波屈折板14-2は、素子22Bと、素子24Bと、・・・、を含むものとする。図12に示す例では、素子22Aと、素子24Aと、素子26Aと、・・・と、素子22Bと、素子24Bと、・・・とは、隣接して設置されているものとする。
 図12のグラフは、横軸が電波屈折板14の設置位置を示し、縦軸が位相変化量[度]を示す。点P1は、素子22Aの設置位置と位相変化量を示す。点P2は、素子24Aの設置位置と位相変化量を示す。点P3は、素子26Aの設置位置と位相変化量を示す。点P4は、素子22Bの設置位置と位相変化量を示す。点P5は、素子24Bの設置位置と位相変化量を示す。
 図12に示すように、本実施形態では、点P1から点P5が直線61上に乗るように電波屈折板14-1と、電波屈折板14-2とを設置する。これにより、電波屈折板14-1と、電波屈折板14-2は、屈折電波の受信電力を高くすることができるので、特性をより向上させることができる。
 図13に示す例では、電波屈折板14-1は、奇数次フレネルゾーンに含まれる面積が偶数次フレネルゾーンに含まれる面積よりも大きくなるように設置されているものとする。電波屈折板14-3は、偶数次フレネルゾーンに含まれる面積が奇数次フレネルゾーンに含まれる面積よりも大きくなるように設置されているものとする。また、電波屈折板14-1と、電波屈折板14-3とは、隣接して設置されているものとする。
 図13のグラフは、横軸が電波屈折板14の設置位置を示し、縦軸が位相変化量[度]を示す。点P1は、素子22Aの設置位置と位相変化量を示す。点P2は、素子24Aの設置位置と位相変化量を示す。点P3は、素子26Aの設置位置と位相変化量を示す。点P11は、素子22Cの設置位置と位相変化量を示す。点P12は、素子24Cの設置位置と位相変化量を示す。
 図13に示すように、本実施形態では、点P1から点P3が直線61上に乗るように電波屈折板14-1を設置し、点P11および点P12は直線61から外れるように電波屈折板14-3を設置する。すなわち、偶数次フレネルゾーンに含まれる面積が奇数次フレネルゾーンに含まれる面積よりも大きい電波屈折板については、直線61から外れるように設置する。
 図13に示す例では、電波屈折板14-3は、点P11と、点P12とは直線62上に乗るように設置されている。すなわち、電波屈折板14-3は、位相変化量が電波屈折板14-1からずれるように設置されている。偶数次フレネルゾーンは電波を弱め合う領域なので、直線61から外れるように電波屈折板14-3を設置することで、屈折電波の受信電力を高くすることができ、特性をより向上させることができる。
 直線61と、直線62との間の矢印は、直線61と、直線62との位相変化量のずれを示す。直線61と、直線62との位相変化量のずれは、例えば、180°とすることにより、より特性を向上させることができる。なお、直線61と、直線62との位相変化量のずれは、180°に限定されない。
 以上、本開示の実施形態を説明したが、これら実施形態の内容により本開示が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 1 通信システム
 10 基地局
 12 端末
 14 電波屈折板
 16 平面
 20 基板
 22,24,26,28 素子
 30-1,30-2 電波反射板
 50 第1フレネルゾーン
 52 第2フレネルゾーン
 54 第3フレネルゾーン
 56 第4フレネルゾーン

Claims (19)

  1.  電波を送受信するように構成される基地局と、
     前記基地局との間で前記電波を送受信するように構成される端末と、
     前記基地局と前記端末の間において同一平面に複数設置され、前記基地局から送信された前記電波が透過する際に、前記電波を前記端末の方向に屈折させて屈折電波とし出射するように構成される電波屈折板と、
     を含む、通信システム。
  2.  前記複数の電波屈折板の各々は、前記複数の電波屈折板の幾何中心を通り前記基地局のアンテナと前記端末のアンテナとを結ぶ直線に垂直な設置平面において、前記基地局のアンテナと前記複数の電波屈折板の各々の幾何中心との第1直線距離と、前記端末のアンテナと前記複数の電波屈折板の各々の幾何中心との第2直線距離とに基づいて定義される領域に設置されている、
     請求項1に記載の通信システム。
  3.  前記第1直線距離をd、前記第2直線距離をdとしたとき、前記平面において、幾何中心Cを中心として、半径が以下の式(1)で定義される円を考え、
    Figure JPOXMLDOC01-appb-M000001
     前記式(1)において、nは自然数、λは電波の波長であり、
     前記電波屈折板は、半径Rn-1から半径Rの範囲の円環部を第nフレネルゾーンと定義したとき、奇数次フレネルゾーンに含まれる前記複数の電波屈折板の面積が、偶数次フレネルゾーンに含まれる前記複数の電波屈折板の面積よりも大きくなるように設置されている、
     請求項2に記載の通信システム。
  4.  前記第1直線距離と、前記第2直線距離とに基づいて定義される領域は、奇数次フレネルゾーンと、偶数次フレネルゾーンとを含み、
     前記複数の電波屈折板の各々は、前記設置平面に前記複数の電波屈折板の各々を投影した面積を考えたとき、前記奇数次フレネルゾーンに含まれる面積が前記偶数次フレネルゾーンに含まれる面積よりも大きくなるように設置されている、
     請求項2に記載の通信システム。
  5.  前記複数の電波屈折板は、隣接する前記電波屈折板の間隔をs、前記電波の屈折角度をθ、としたときに、隣接する前記電波屈折板との厚み方向のずれが、s/tanθ以内である、
     請求項1または2に記載の通信システム。
  6.  前記複数の電波屈折板の最大寸法の和をLsum、前記電波の波長をλとしたとき、前記端末のアンテナと前記複数の電波屈折板の各々の幾何中心との間の距離が、0.62×(Lsum /λ)以上である、
     請求項1または2に記載の通信システム。
  7.  前記複数の電波屈折板に含まれる複数の単位構造各々の座標を、横軸が位置、縦軸が透過位相を示すグラフにプロットしたとき、直線状に乗るように前記複数の電波屈折板を設置する、
     請求項1または2に記載の通信システム。
  8.  前記複数の電波屈折板に含まれる複数の単位構造各々の座標を、横軸が位置、縦軸が透過位相を示すグラフにプロットしたとき、前記複数の電波屈折板のうち、前記奇数次フレネルゾーンに含まれる面積が前記偶数次フレネルゾーンに含まれる面積よりも大きいものについては直線上に乗り、前記偶数次フレネルゾーンに含まれる面積が前記奇数次フレネルゾーンに含まれる面積よりも大きいものについては前記直線上からはずれるように設置する、
     請求項4に記載の通信システム。
  9.  前記偶数次フレネルゾーンに含まれる面積が前記奇数次フレネルゾーンに含まれる面積よりも大きいものについては前記直線から位相変化量が180°ずれるように設置する、
     請求項8に記載の通信システム。
  10.  電波を送受信するように構成される基地局と、前記基地局との間で前記電波を送受信するように構成される端末の間において同一平面に複数設置され、前記基地局から送信された前記電波が透過する際に、前記電波を前記端末の方向に屈折させて屈折電波とし出射するように構成される、電波屈折板。
  11.  前記複数の電波屈折板の幾何中心を通り前記基地局のアンテナと前記端末のアンテナとを結ぶ直線に垂直な設置平面において、前記基地局のアンテナと前記複数の電波屈折板の各々の幾何中心との第1直線距離と、前記端末のアンテナと前記複数の電波屈折板の各々の幾何中心との第2直線距離とに基づいて定義される領域に設置されている、
     請求項10に記載の電波屈折板。
  12.  前記第1直線距離をd、前記第2直線距離をdとしたとき、前記平面において、幾何中心Cを中心として、半径が以下の式(1)で定義される円を考え、
    Figure JPOXMLDOC01-appb-M000002
     前記式(1)において、nは自然数、λは電波の波長であり、
     半径Rn-1から半径Rの範囲の円環部を第nフレネルゾーンと定義したとき、奇数次フレネルゾーンに含まれる前記複数の電波屈折板の面積が、偶数次フレネルゾーンに含まれる前記複数の電波屈折板の面積よりも大きくなるように設置されている、
     請求項11に記載の電波屈折板。
  13.  前記第1直線距離と、前記第2直線距離とに基づいて定義される領域は、奇数次フレネルゾーンと、偶数次フレネルゾーンとを含み、
     前記設置平面に前記複数の電波屈折板の各々を投影した面積を考えたとき、前記奇数次フレネルゾーンに含まれる面積が前記偶数次フレネルゾーンに含まれる面積よりも大きくなるように設置されている、
     請求項11に記載の電波屈折板。
  14.  前記複数の電波屈折板は、隣接する前記電波屈折板の間隔をs、前記電波の屈折角度をθ、としたときに、隣接する前記電波屈折板との厚み方向のずれが、s/tanθ以内である、
     請求項10または11に記載の電波屈折板。
  15.  前記複数の電波屈折板の最大寸法の和をLsum、前記電波の波長をλとしたとき、前記端末のアンテナと前記複数の電波屈折板の各々の幾何中心との間の距離が、0.62×(Lsum /λ)以上である、
     請求項10または11に記載の電波屈折板。
  16.  前記複数の電波屈折板に含まれる複数の単位構造各々の座標を、横軸が位置、縦軸が透過位相を示すグラフにプロットしたとき、直線状に乗るように設置されている、
     請求項10または11に記載の電波屈折板。
  17.  前記複数の電波屈折板に含まれる複数の単位構造各々の座標を、横軸が位置、縦軸が透過位相を示すグラフにプロットしたとき、前記複数の電波屈折板のうち、前記奇数次フレネルゾーンに含まれる面積が前記偶数次フレネルゾーンに含まれる面積よりも大きいものについては直線上に乗り、前記偶数次フレネルゾーンに含まれる面積が前記奇数次フレネルゾーンに含まれる面積よりも大きいものについては前記直線上からはずれるように設置せれている、
     請求項13に記載の電波屈折板。
  18.  前記偶数次フレネルゾーンに含まれる面積が前記奇数次フレネルゾーンに含まれる面積よりも大きいものについては前記直線から位相変化量が180°ずれるように設置する、
     請求項17に記載の電波屈折板。
  19.  設置されている複数の電波屈折板の中心点の幾何中心を算出するステップと、
     前記幾何中心を通過し、かつ前記複数の電波屈折板に電波を送信する送信点と、前記電波屈折板が屈折させた前記電波を受信する受信点とを結ぶ直線に垂直な平面を設定するステップと、
     前記複数の電波屈折板を前記平面に投影するステップと、
     前記平面において奇数次フレネルゾーンに含まれる前記複数の電波屈折板の面積が、偶数次フレネルゾーンに含まれる前記複数の電波屈折板の面積よりも大きくなるように、前記複数の電波屈折板の設置位置を算出するステップと、
     を含む、電波屈折板の設置位置の算出方法。
PCT/JP2023/015236 2022-04-28 2023-04-14 通信システム、電波屈折板および電波屈折板の設置位置の算出方法 WO2023210414A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075131 2022-04-28
JP2022075131 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210414A1 true WO2023210414A1 (ja) 2023-11-02

Family

ID=88518549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015236 WO2023210414A1 (ja) 2022-04-28 2023-04-14 通信システム、電波屈折板および電波屈折板の設置位置の算出方法

Country Status (1)

Country Link
WO (1) WO2023210414A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237717A (ja) * 2000-12-07 2002-08-23 Asahi Glass Co Ltd アンテナ装置
WO2022138397A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 位相調整板、ガラス板、及び無線通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237717A (ja) * 2000-12-07 2002-08-23 Asahi Glass Co Ltd アンテナ装置
WO2022138397A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 位相調整板、ガラス板、及び無線通信システム

Similar Documents

Publication Publication Date Title
RU2586023C2 (ru) Антенное устройство с электронным сканированием луча
US20150116154A1 (en) Lens antenna with electronic beam steering capabilities
US8638267B2 (en) Parabolic antenna
JP2019519988A (ja) アンテナアレイ内の相互結合を低減するための装置および方法
Kitayama et al. Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: controlling transmission/reflection and making a window into an RF lens
EP3764462A1 (en) Antenna device for beam steering and focusing
US20230023706A1 (en) Electromagnetic wave reflector, electromagnetic wave reflective fence, and method of assembling electromagnetic wave reflector
CN111989822B (zh) 天线装置
WO2023210414A1 (ja) 通信システム、電波屈折板および電波屈折板の設置位置の算出方法
JP2006279525A (ja) アンテナ
Ahmed et al. State-of-the-art passive beam-steering antenna technologies: Challenges and capabilities
JP7265462B2 (ja) 電波透過板および電波透過システム
WO2023234082A1 (ja) 電波制御板および通信システム
WO2023027195A1 (ja) 周波数選択反射板および通信中継システム
JP7255678B2 (ja) アンテナ装置及びその設計方法
US10581136B2 (en) Three-way power divider and multibeam forming circuit
WO2024014411A1 (ja) 無線通信システムおよび無線通信方法
US4504806A (en) Modular beam waveguide
US20220077589A1 (en) Leaky Wave Antenna
CN113270727A (zh) 一种天线装置
JP6836475B2 (ja) 無線通信システム、無線通信方法及び無線通信装置
JP6194263B2 (ja) アンテナ装置
US20240120664A1 (en) Antenna device and window glass for building
JP7295316B1 (ja) 反射装置及びシステム
WO2023223896A1 (ja) 反射器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796157

Country of ref document: EP

Kind code of ref document: A1