WO2023210393A1 - Elastic wave filter - Google Patents

Elastic wave filter Download PDF

Info

Publication number
WO2023210393A1
WO2023210393A1 PCT/JP2023/015010 JP2023015010W WO2023210393A1 WO 2023210393 A1 WO2023210393 A1 WO 2023210393A1 JP 2023015010 W JP2023015010 W JP 2023015010W WO 2023210393 A1 WO2023210393 A1 WO 2023210393A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
wave filter
elastic wave
bus bar
electrode
Prior art date
Application number
PCT/JP2023/015010
Other languages
French (fr)
Japanese (ja)
Inventor
明 野口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023210393A1 publication Critical patent/WO2023210393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter, and more particularly, to an elastic wave filter in which a resonator is formed on a substrate.
  • Acoustic wave filters are widely used as filters for mobile communication devices and the like.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-204743.
  • the elastic wave filter of Patent Document 1 includes a plurality of resonators, and a predetermined reflector electrode of a predetermined resonator is connected to a ground pad by wiring. A bump is formed on the ground pad.
  • the ground pad and the bumps formed on the ground pad are set to the ground potential. Therefore, the reflector electrode connected by wiring also becomes the ground potential.
  • the present invention efficiently dissipates the heat generated at the IDT electrode of the resonator to the bump via the reflector electrode and wiring, and at the same time prevents the generation of unnecessary capacitance between the IDT electrode and the reflector electrode. It is an object of the present invention to provide an elastic wave filter in which deterioration of characteristics is suppressed.
  • an elastic wave filter includes a substrate, at least one resonator formed on the substrate, a plurality of bumps formed on the substrate, and a substrate. a plurality of wirings formed on the resonator, the resonator having an IDT electrode having an IDT electrode finger; a pair of reflector electrodes formed on both sides, the reflector electrode includes a plurality of reflector electrode fingers, and the at least one resonator has at least one reflector electrode connected to the bump by a first wiring; It is assumed that one wiring is provided with at least two linear parts, and the first wiring is provided with at least one folded part that folds back the two linear parts arranged side by side.
  • the elastic wave filter according to one embodiment of the present invention can increase the length of the first wiring, it is possible to suppress the generation of unnecessary capacitance between the IDT electrode and the reflector electrode, and the deterioration of characteristics. can be suppressed.
  • FIG. 1 is a plan view of an elastic wave filter 100 according to a first embodiment. 1 is an equivalent circuit diagram of an elastic wave filter 100. FIG. 1 is a plan view of main parts of an elastic wave filter 100. FIG. FIG. 2 is an explanatory diagram of Example of Experiment 1, Comparative Example 1, and Comparative Example 2. 3 is a graph showing the reflection characteristics of Example of Experiment 1, Comparative Example 1, and Comparative Example 2. FIG. 3 is a plan view of main parts of an elastic wave filter 200 according to a second embodiment.
  • FIG. 7 is a plan view of main parts of an elastic wave filter 300 according to a third embodiment.
  • FIG. 4 is a plan view of main parts of an elastic wave filter 400 according to a fourth embodiment.
  • FIG. 7 is a plan view of main parts of an elastic wave filter 500 according to a fifth embodiment.
  • FIG. 7 is a plan view of main parts of an elastic wave filter 600 according to a sixth embodiment. It is an explanatory view (main part sectional view) of elastic wave filter 700 concerning a 7th embodiment.
  • FIG. 8 is a plan view of main parts of an elastic wave filter 800 according to an eighth embodiment.
  • each embodiment is an illustrative example of an embodiment of the present invention, and the present invention is not limited to the content of the embodiment. Further, it is also possible to implement the contents described in different embodiments in combination, and the implementation contents in that case are also included in the present invention.
  • the drawings are intended to aid understanding of the specification and may be drawn schematically, and the drawn components or the dimensional ratios between the components may be different from those described in the specification. The proportions of those dimensions may not match.
  • constituent elements described in the specification are omitted in the drawings or drawn with their numbers omitted.
  • FIG. 1 is a plan view of the elastic wave filter 100.
  • FIG. 2 is an equivalent circuit diagram of the elastic wave filter 100.
  • FIG. 3 is a plan view of essential parts of the elastic wave filter 100.
  • FIGS. 1 and 3 show the mounting surface side of the acoustic wave filter 100.
  • arrows indicate that the horizontal direction in the drawings is the horizontal direction X of the elastic wave filter 100, and the vertical direction in the drawings is the vertical direction Y of the elastic wave filter 100.
  • the horizontal direction X and vertical direction Y of the elastic wave filter 100 may be referred to.
  • series arm resonators S11 to S15, S21, S22, parallel arm resonators P11 to P14, P21 to P23, etc., which will be described later, are sometimes schematically depicted.
  • the elastic wave filter 100 includes a piezoelectric substrate 1.
  • a duplexer consisting of the equivalent circuit shown in FIG. 2 is constructed on the main surface of the substrate 1.
  • the duplexer includes a transmitter filter 10 and a receiver filter 20.
  • the elastic wave filter 100 includes an antenna side terminal Ant, a transmitting side terminal Tx, a receiving side terminal Rx, and a ground terminal G.
  • a transmitting filter 10 is formed between the transmitting terminal Tx and the antenna terminal Ant.
  • the transmitting side filter 10 is a ladder type filter including series arm resonators S11, S12, S13, S14, and S15 and parallel arm resonators P11, P12, P13, and P14.
  • series arm resonators S11, S12, S13, S14, and S15 are connected in this order between the transmission side terminal Tx and the antenna side terminal Ant.
  • One end of the parallel arm resonator P11 is connected to the connection point between the series arm resonator S11 and the series arm resonator S12. Furthermore, one end of the parallel arm resonator P12 is connected to the connection point between the series arm resonator S12 and the series arm resonator S13. The other end of the parallel arm resonator P11 and the other end of the parallel arm resonator P12 are connected to each other and to ground.
  • a parallel arm resonator P13 is connected between the connection point of the series arm resonator S13 and the series arm resonator S14 and the ground.
  • a parallel arm resonator P14 is connected between the connection point of the series arm resonator S14 and the series arm resonator S15 and the ground.
  • a cancellation circuit 6 and a capacitor C0 are connected in parallel to the series-connected series arm resonators S11, S12, S13, S14, and S15.
  • a capacitor C1 is connected in parallel with the series arm resonator S14.
  • a receiving side filter 20 is formed between the antenna side terminal Ant and the receiving side terminal Rx.
  • the receiving filter 20 is a ladder type filter including series arm resonators S21, S22, parallel arm resonators P21, P22, P23, and a double mode SAW filter 7.
  • a series arm resonator S21, a double mode SAW filter 7, and a series arm resonator S22 are connected in this order between the antenna side terminal Ant and the reception side terminal Rx.
  • a parallel arm resonator P21 is connected between the connection point of the series arm resonator S21 and the double mode SAW filter 7 and the ground.
  • a parallel arm resonator P22 is connected between the connection point between the double mode SAW filter 7 and the series arm resonator S22 and the ground.
  • a parallel arm resonator P23 is connected between the connection point between the series arm resonator S22 and the receiving terminal Rx and the ground.
  • inductors may be intentionally formed at predetermined locations, or inductors may be formed floatingly at predetermined locations by wiring, but these are not shown in FIG. The inductor is not shown.
  • the elastic wave filter 100 includes a duplexer including two acoustic wave filters, the transmitter filter 10 and the receiver filter 20, which are made of the equivalent circuit of FIG. 2, on the piezoelectric substrate 1. ing.
  • the piezoelectric substrate 1 may itself be made of a piezoelectric material.
  • the piezoelectric substrate 1 may be one in which a film (layer) of a piezoelectric material is formed on a non-piezoelectric base.
  • the type of piezoelectric material is arbitrary, for example, LiNbO 3 , LiTaO 3 , etc. can be used.
  • the series arm resonators S11 to S15 of the transmitting side filter 10 As shown in FIG. 1, on the main surface of the substrate 1, the series arm resonators S11 to S15 of the transmitting side filter 10, the parallel arm resonators P11 to P14, the series arm resonators S21 and S22 of the transmitting side filter 10, and the parallel arm Resonators P21 to P23 are formed.
  • the series arm resonators S11 to S15, S21, S22 and the parallel arm resonators P11 to P14, P21 to P23 will be explained by taking the series arm resonator S13 as an example, with reference to the main part plan view of the elastic wave filter 100 in FIG. do.
  • the other resonators have the same basic structure as the series arm resonator S13 except for the dimensions and the number of electrode fingers.
  • the resonator (series arm resonator S13) includes an IDT electrode 30.
  • the IDT electrode 30 includes a plurality of first IDT electrode fingers 31 and a plurality of second IDT electrode fingers 32.
  • the plurality of first IDT electrode fingers 31 and the plurality of second IDT electrode fingers 32 are arranged so as to be engaged with each other.
  • the first IDT electrode finger 31 and the second IDT electrode finger 32 each extend in the vertical direction Y of the acoustic wave filter 100.
  • a plurality of first IDT electrode fingers 31 are connected to a first bus bar 33.
  • a plurality of second IDT electrode fingers 32 are connected to a second bus bar 34.
  • the resonator (series arm resonator S13) includes a first reflector electrode 40 and a second reflector electrode 50 on both sides of the IDT electrode 30 in the lateral direction X of the acoustic wave filter 100.
  • the first reflector electrode 40 includes a plurality of reflector electrode fingers 41 .
  • the reflector electrode fingers 41 extend in the vertical direction Y of the acoustic wave filter 100.
  • Each of the plurality of reflector electrode fingers 41 has one end connected to the third bus bar 42 and the other end connected to the fourth bus bar 43.
  • the second reflector electrode 50 includes a plurality of reflector electrode fingers 51.
  • the reflector electrode fingers 51 extend in the vertical direction Y of the acoustic wave filter 100.
  • Each of the plurality of reflector electrode fingers 51 has one end connected to the fifth bus bar 52 and the other end connected to the sixth bus bar 53.
  • the materials of the series arm resonators S11 to S15, S21, S22 and the parallel arm resonators P11 to P14, P21 to P23 are arbitrary, but for example, Pt, Au, Ag, Cu, Ni, W, Ta, Fe, Cr. , Al, and Pd, or an alloy containing one or more of these metals.
  • the series arm resonators S11 to S15, S21, and S22 and the parallel arm resonators P11 to P14 and P21 to P23 may be formed into a multilayer structure using a plurality of types of the above metals or alloys.
  • capacitors C0 and C1 As shown in FIG. 1, capacitors C0 and C1, a cancellation circuit 6, and a double mode SAW filter 7 are formed on the main surface of a substrate 1. These structures and materials are arbitrary.
  • a wiring 8 is formed on the main surface of the substrate 1.
  • the material and structure of the wiring 8 are arbitrary.
  • the wiring 8 includes a first electrode layer group in which NiCr, Pt, Ti, AlCu, and Ti are laminated in order from the bottom, and a first electrode layer group in which Ti, AlCu, Ti, Pt, and Ti are laminated in order from the bottom. It includes two electrode layer groups.
  • the wiring 8 may include a second electrode layer group overlaid on a first electrode layer group. In this case, the Ti layer at the boundary between the two may be shared.
  • the wiring 8 may be formed in either the first electrode layer group or the second electrode layer group.
  • the wiring 8 may include a third electrode layer group in addition to the first electrode layer group and the second electrode layer group. In each of the first electrode layer group and the second electrode layer group, the number of constituent layers can be increased or decreased (they may be a single layer consisting of one layer), and the material of the constituent layers can be changed.
  • a bump 2 serving as the antenna terminal Ant, a bump 3 serving as the transmitting terminal Tx, a bump 4 serving as the receiving terminal Rx, and a plurality of bumps 5 serving as the ground terminal G are formed at predetermined locations on the wiring 8. ing.
  • the portion of the wiring 8 where the bumps 2 to 5 are formed can also be called a bump pad.
  • the bumps 2 to 5 can be made of any material, they can be made of, for example, solder or Au.
  • the ground terminal G is a terminal that is set to a reference potential (eg, ground potential) when the elastic wave filter 100 is used.
  • the reference potential is not limited to the ground potential.
  • the wiring 8 connects the series arm resonators S11 to S15, S21, S22, the parallel arm resonators P11 to P14, P21 to P23, the capacitors C0 and C1, the cancellation circuit 6, the double mode SAW filter 7, and the bumps 2 to 5. , the necessary electrical connections have been made.
  • the first reflector electrode 40 of the series arm resonator S13 of the transmitting side filter 10 is connected to the ground terminal G by the first wiring 9. Connected to bump 5.
  • the first wiring 9 is a type of wiring 8, and is provided especially for heat radiation. Specifically, the heat generated in the IDT electrode 30 of the series arm resonator S13 is transmitted through the first reflector electrode 40 and further through the first wiring 9, and is efficiently transferred to the bump 5, which is the ground terminal G. It dissipates heat.
  • the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, by the first wiring 9, but the second reflector electrode 50 is also connected to the ground by another first wiring 9. It may be connected to the bump 5 which is the terminal G. In this case, the heat generated in the IDT electrode 30 can be radiated more efficiently.
  • the first wiring 9 includes at least two linear portions arranged side by side.
  • the first wiring 9 includes at least one folded portion that folds back the two linear portions.
  • the first wiring 9 includes seven linear portions 91a, 91b, 91c, 91d, 91e, 91f, and 91g arranged side by side.
  • the number of linear parts is not limited to seven, and can be increased or decreased from seven.
  • the linear portions 91a to 91g each extend in the vertical direction Y of the elastic wave filter 100.
  • the linear portions 91a to 91g are each straight.
  • the linear portions 91a to 91g may be curved lines instead of straight lines.
  • the first reflector electrode 40 is connected to the linear portion 91a.
  • the linear portion 91a and the linear portion 91b are connected by a folded portion 92a.
  • the linear portion 91b and the linear portion 91c are connected by a folded portion 92b.
  • the linear portion 91c and the linear portion 91d are connected by a folded portion 92c.
  • the linear portion 91d and the linear portion 91e are connected by a folded portion 92d.
  • the linear portion 91e and the linear portion 91f are connected by a folded portion 92e.
  • the linear portion 91f and the linear portion 91g are connected by a folded portion 92f.
  • the linear portion 91g is connected to the bump 5, which is the ground terminal G.
  • the linear parts 91a to 91g folded back at the folded parts 92a to 92f are arranged parallel to each other, but the linear parts folded back at the folded parts are arranged at an angle to each other. It's okay.
  • the reason why the first wiring 9 is configured to include seven linear parts 91a to 91g and six folded parts 92a to 92f that connect them is because the length of the first wiring 9 is increased and the first This is to increase the impedance of the wiring 9.
  • the reflector electrode if the reflector electrode is connected to a bump at a reference potential (for example, ground potential) by a short wiring, the reflector electrode will also be at the reference potential or a potential close to the reference potential. Then, as described above, the potential difference between the IDT electrode and the reflector electrode increases, unnecessary capacitance is generated between the IDT electrode and the reflector electrode, and the characteristics of the acoustic wave filter deteriorate.
  • a reference potential for example, ground potential
  • the elastic wave filter 100 includes the first reflector electrode 40 and the bump 5 which is the ground terminal G, seven linear parts 91a to 91g and six folded parts 92a to 92f, and has a long length and impedance.
  • the elastic wave filter 100 includes a meander wiring region 60 on the substrate 1 in which the first wiring 9 is formed in a meander shape, since the first wiring 9 includes a plurality of folded parts 92a to 92f.
  • the meander wiring area 60 is rectangular.
  • the outer edge of the meander wiring region 60 includes a first side 61, a second side 62, a third side 63, and a fourth side 64, which are connected at right angles in this order.
  • the first side 61 and the third side 63 extend in the direction in which the first IDT electrode finger 31 and the second IDT electrode finger 32 of the IDT electrode 30 extend. That is, the first side 61 and the third side 63 are arranged in the vertical direction Y of the elastic wave filter 100.
  • the first side 61 is arranged closer to the first reflector electrode 40 than the third side 63.
  • a linear portion 91a is arranged inside the first side of the meander wiring region 60, folded portions 92a, 92c, and 92e are arranged side by side inside the second side 62, and A linear portion 91g is arranged on the inner side, and folded portions 92b, 92d, and 92f are arranged side by side on the inner side of the fourth side 64.
  • the material of the first wiring 9 is arbitrary, it is preferable to use a material with as high thermal conductivity as possible.
  • the first wiring 9 includes a first electrode layer group in which NiCr, Pt, Ti, AlCu, and Ti are laminated in order from the bottom, and a Ti layer formed on the first electrode layer group from the bottom. , AlCu, Ti, Pt, and Ti are laminated in this order. The Ti layer at the boundary between the two may be shared.
  • the direction in which the reflector electrode fingers 41 of the first reflector electrode 40 extend and the direction in which the linear portions 91a to 91g of the first wiring 9 extend are both arranged in the vertical direction Y of the acoustic wave filter 100.
  • the linear portions 91a to 91g of the first wiring 9 can be used (aided) as reflector electrode fingers of the reflector electrode. In this case, the number of reflector electrode fingers 41 of the first reflector electrode 40 may be reduced.
  • the pitch between the linear portions 91a to 91g of the first wiring 9 and the first reflector It is preferable that the pitch between the electrode 40 and the linear portion 91a be the same as the pitch between the reflector electrode fingers 41 of the first reflector electrode 40.
  • the total area of the wiring pattern part and the non-wiring pattern part are The ratio to the total area of the pattern portion.
  • the heat dissipation efficiency by the first wiring 9 improves as the total area of the wiring pattern portion is made larger than the total area of the non-wiring pattern portion.
  • the first reflector electrode 40 of the series arm resonator S13 of the transmitting filter 10 is connected to the bump 5, which is the ground terminal G, via the first wiring 9.
  • which reflector electrode of which resonator is connected to the bump by the first wiring is arbitrary, and reflector electrodes of other resonators may be connected to the bump.
  • reflector electrodes of a plurality of resonators may be connected to the bump.
  • both reflector electrodes may be connected to the bump.
  • the reflector electrode of the resonator whose IDT electrode generates a large amount of heat should be connected to the bump by the first wiring.
  • the elastic wave filter is a ladder type filter
  • the series arm resonator with the lowest anti-resonance frequency among the series arm resonators, and the parallel arm resonator with the highest resonant frequency among the parallel arm resonators Preferably, the reflector electrode is connected to the bump by a first wiring.
  • the reflector electrode is connected to the bump by a first wiring.
  • an elastic wave filter 100 of this embodiment was manufactured.
  • the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, via the first wiring 9.
  • Comparative Example 1 was produced. In Comparative Example 1, a part of the configuration of the elastic wave filter 100 is changed, the first wiring 9 is omitted, and the first reflector electrode 40 is not connected to the bump 5, which is the ground terminal G.
  • Comparative Example 2 was produced. In Comparative Example 2, a part of the configuration of the elastic wave filter 100 was also changed, the first wiring 9 was omitted, and a planar wiring 99 having a large rectangular area was provided instead. Then, the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by a planar wiring 99.
  • Comparative Example 2 in which the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by the planar wiring 99 was the most excellent in the ability to radiate the heat generated in the IDT electrode 30.
  • the second example is the one in which the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, by the first wiring 9.
  • Comparative example 1 in which the first reflector electrode 40 and the bump 5 serving as the ground terminal G are not connected, has the lowest ability to dissipate the heat generated in the IDT electrode 30.
  • Figure 5 shows the measurement results.
  • the solid line graph is the example
  • the one-dot chain line graph is Comparative Example 1
  • the two-dot chain line graph is Comparative Example 2.
  • Comparative Example 1 the reflection characteristics of Comparative Example 1 are the best (reflection is small). This is because the first reflector electrode 40 was not connected to the bump 5, which is the ground terminal G, so no potential difference (or only a very small potential difference) occurred between the IDT electrode 30 and the first reflector electrode 40. This is considered to be because no unnecessary capacitance was generated between the IDT electrode 30 and the first reflector electrode 40 (or only a very small unnecessary capacitance was generated).
  • the reflection characteristics are lower than in Comparative Example 1.
  • the degree of decrease in reflection characteristics is large in Comparative Example 1 and small in Examples.
  • the reflection characteristics were significantly reduced because the first reflector electrode 40 and the bump 5, which is the ground terminal G, were connected by a planar wiring 99 whose impedance was not large. This is considered to be because a large potential difference was generated between the IDT electrode 30 and the first reflector electrode 40, and a large unnecessary capacitance was generated between the IDT electrode 30 and the first reflector electrode 40.
  • the decline in reflection characteristics was small because the first reflector electrode 40 and the bump 5, which is the ground terminal G, were connected by the first wiring 9 having a large impedance. This is considered to be because the generation of a potential difference between the IDT electrode 30 and the first reflector electrode 40 was suppressed, and the generation of unnecessary capacitance between the IDT electrode 30 and the first reflector electrode 40 was suppressed.
  • the present invention is effective in efficiently dissipating the heat generated in the IDT electrode to the bump, while suppressing the generation of unnecessary capacitance between the IDT electrode and the reflector electrode, and suppressing the deterioration of characteristics. It was confirmed that it is effective.
  • FIG. 6 shows an elastic wave filter 200 according to the second embodiment.
  • FIG. 6 is a plan view of essential parts of the elastic wave filter 200.
  • the elastic wave filter 200 according to the second embodiment has a part of the configuration of the elastic wave filter 100 according to the first embodiment.
  • the direction in which the linear portions 91a, 91b, 91c, 91d, 91e, 91f, and 91g of the first wiring 9 extend is the longitudinal direction Y of the elastic wave filter 100.
  • the direction in which the linear portions 94a, 94b, 94c, 94d, 94e, 94f, 94g, 94h, and 94i of the first wiring 29 extend is the lateral direction X of the elastic wave filter 100. Then, the linear portions 94a to 94i were connected by folded portions 95a to 95h.
  • the shape and size of the meander wiring region 60 are the same as those of the elastic wave filter 100, and instead, the lengths of the linear portions 94a to 94i are shortened compared to the elastic wave filter 100, and the linear portion 94a is .about.94i and the number of folded portions 95a to 95h were increased.
  • the folded portions 95b, 95d, 95f, and 95h are arranged side by side on the inside of the first side of the meander wiring region 60, the linear portion 94i is arranged on the inside of the second side 62, and the folded portions 94i are arranged on the inside of the second side 62,
  • the folded parts 95a, 95c, 95e, and 95g are arranged side by side inside the fourth side 63, and the linear part 94a is arranged inside the fourth side 64.
  • the elastic wave filter 200 has a feature that, compared to the elastic wave filter 100, unnecessary capacitance (stray capacitance) generated between the first reflector electrode 40 and the bump 5 is reduced.
  • the unnecessary capacitance generated between the first reflector electrode 40 and the bump 5 is made up of the unnecessary capacitance generated between each linear portion of the first wiring connected in series.
  • the unnecessary capacitance generated between the elastic wave filter and the elastic wave filter 5 is also a factor that deteriorates or fluctuates the characteristics of the elastic wave filter, so it is preferable that the unnecessary capacitance is small.
  • the lengths of the linear parts 94a to 94i are shorter than the lengths of the linear parts 91a to 91g of the elastic wave filter 100. Further, in the elastic wave filter 200, the number of linear parts 94a to 94i folded back by the folding parts 95a to 95h is greater than the number of linear parts 91a to 91g folded back by the folding parts 92a to 92f of the elastic wave filter 100. There are also many. Therefore, the unnecessary capacitance generated between the first reflector electrode 40 and the bump 5, in which the unnecessary capacitance generated between each linear portion is connected in series, is smaller in the elastic wave filter 200 than in the elastic wave filter 100. small. Therefore, in the elastic wave filter 200, as compared to the elastic wave filter 100, deterioration and fluctuation in characteristics due to unnecessary capacitance generated between the first reflector electrode 40 and the bump 5 are suppressed.
  • FIG. 7 shows an elastic wave filter 300 according to a third embodiment.
  • FIG. 7 is a plan view of essential parts of the elastic wave filter 300.
  • the elastic wave filter 300 according to the third embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 100, only the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by the first wiring 9. On the other hand, in the elastic wave filter 300, the second reflector electrode 50 is also connected to the bump 5, which is another ground terminal G, through another first wiring 9.
  • the elastic wave filter 300 Compared to the elastic wave filter 100, the elastic wave filter 300 has improved efficiency in dissipating heat generated in the IDT 30.
  • FIG. 8 shows an elastic wave filter 400 according to a fourth embodiment.
  • FIG. 8 is a plan view of essential parts of the elastic wave filter 400.
  • the elastic wave filter 400 according to the fourth embodiment has a part of the configuration of the elastic wave filter 100 according to the first embodiment.
  • the elastic wave filter 400 includes a convex portion 33a formed on the first bus bar 33 of the IDT electrode 30, a convex portion 34a formed on the second bus bar 34, and a convex portion 34a formed on the third bus bar 42 of the first reflector electrode 40.
  • a recess 42a was formed
  • a recess 43a was formed in the fourth bus bar 43
  • the protrusion 33a and the recess 42a were fitted with a space between them
  • the protrusion 34a and the recess 43a were fitted with a space between them.
  • first bus bar 33 and the second bus bar 34 are each provided with a concave portion
  • the third bus bar 42 and the fourth bus bar 43 are each provided with a convex portion
  • these concave portions and convex portions are connected. They may be fitted together.
  • the acoustic wave filter 400 Compared to the acoustic wave filter 100, the acoustic wave filter 400 has improved efficiency in dissipating heat from the IDT electrode 30 to the first reflector electrode 40, and has improved overall efficiency in dissipating heat generated in the IDT electrode 30. , has further improved.
  • FIG. 9 shows an elastic wave filter 500 according to the fifth embodiment.
  • FIG. 9 is a plan view of essential parts of the elastic wave filter 500.
  • the elastic wave filter 500 according to the fifth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 500, a protrusion 33a is formed on the first bus bar 33 of the IDT electrode 30, and a protrusion 34a is formed on the second bus bar 34. Then, the convex portion 33a is stacked on the third bus bar 42 of the first reflector electrode 40 with an insulating layer 81 interposed therebetween, and the convex portion 34a is stacked on the third bus bar 42 of the first reflector electrode 40 with an insulating layer 81 interposed therebetween. It was stacked on the fourth bus bar 43 of.
  • the acoustic wave filter 500 Compared to the elastic wave filter 100, the acoustic wave filter 500 has improved efficiency in dissipating heat from the IDT electrode 30 to the first reflector electrode 40, and has improved overall efficiency in dissipating heat generated in the IDT electrode 30. , has further improved.
  • FIG. 10 shows an elastic wave filter 600 according to the sixth embodiment.
  • FIG. 10 is a plan view of essential parts of the elastic wave filter 600.
  • the elastic wave filter 600 according to the sixth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the acoustic wave filter 600, a rectangular planar wiring 85 having a large area is first provided in a region of the substrate 1 where the first wiring 9 is to be formed, and an insulating layer 86 is provided thereon. Then, the first wiring 9 was formed on the insulating layer 86.
  • the planar wiring 85 is not connected to anything and is a floating electrode.
  • the elastic wave filter 600 Compared to the elastic wave filter 100, the elastic wave filter 600 has improved efficiency in dissipating heat from the first reflector electrode 40, and further improves overall efficiency in dissipating heat generated in the IDT electrode 30. ing.
  • FIG. 11 shows an elastic wave filter 700 according to a seventh embodiment.
  • FIG. 11 is an explanatory diagram (a sectional view of a main part) of the elastic wave filter 700.
  • the elastic wave filter 700 according to the seventh embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment.
  • the elastic wave filter 700 includes the series arm resonators S11 to S15, S21, S22, the parallel arm resonators P11 to P14, P21 to P23, the capacitors C0 and C1, the cancellation circuit 6,
  • a first dielectric layer (insulator layer) 71 and a second dielectric layer (insulator layer) are formed on a predetermined portion of the substrate 1 on which the double mode SAW filter 7, wiring 8, first wiring 9, etc. are formed.
  • 72 was formed. Further, a wiring 8 was further formed between the first dielectric layer 71 and the second dielectric layer 72.
  • first dielectric layer 71 and the second dielectric layer 72 may be made of any material, for example, SiO 2 can be used.
  • the total thickness dimension D1 of the first dielectric layer 71 and the second dielectric layer 72 in the region forming the resonator is set to The total thickness dimension D2 of the two dielectric layers 72 is made smaller.
  • the reason why the total thickness dimension D1 of the first dielectric layer 71 and the second dielectric layer 72 in the region forming the resonator is reduced is because the first dielectric layer 71 and the second dielectric layer 72 This is to prevent the excitation of the IDT electrode 30 from being suppressed.
  • the total thickness dimension D2 of the first dielectric layer 71 and the second dielectric layer 72 in other areas was increased by using (via) the first dielectric layer 71 and the second dielectric layer 72. This is to radiate heat generated in the IDT electrode 30 to the outside.
  • the heat dissipation effect of the elastic wave filter 700 is further improved by forming the first dielectric layer 71 and the second dielectric layer 72. Furthermore, by forming the first dielectric layer 71 and the second dielectric layer 72, the elastic wave filter 700 includes series arm resonators S11 to S15, S21, S22, parallel arm resonators P11 to P14, P21 to P23. , capacitors C0, C1, cancel circuit 6, double mode SAW filter 7, wiring 8, first wiring 9, etc. are protected from the outside. In addition, in the acoustic wave filter 700, by forming the first dielectric layer 71 and the second dielectric layer 72, three-dimensional wiring of the wiring 8 is possible.
  • FIG. 12 shows an elastic wave filter 800 according to the eighth embodiment.
  • FIG. 12 is a plan view of essential parts of the elastic wave filter 800.
  • the elastic wave filter 800 according to the eighth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 800, a wiring missing portion 93 is formed in the first wiring 9 within the meander wiring region 60.
  • the elastic wave filter 800 can make the potential difference between the IDT electrode 30 and the first reflector electrode 40 smaller than the elastic wave filter 100, and can reduce unnecessary capacitance between the IDT electrode 30 and the first reflector electrode 40. The occurrence can be further suppressed.
  • the interval between the wiring missing portions 93 is preferably smaller than the interval between the IDT electrode 30 and the first reflector electrode 40 in order to maintain good heat dissipation.
  • the elastic wave filters 100, 200, 300, 400, 500, 600, 700, and 800 according to the embodiments have been described above.
  • the present invention is not limited to the content described above, and various changes can be made in accordance with the spirit of the invention.
  • a duplexer including two elastic wave filters is shown as the elastic wave filter, but the elastic wave filter is not limited to a duplexer, and may be a single elastic wave filter.
  • the elastic wave filter is a ladder type filter, but the elastic wave filter is not limited to a ladder type filter.
  • the shape and size of the meander wiring region shown in the above embodiments are merely examples, and the shape and size can be changed as appropriate.
  • the elastic wave filter according to one embodiment of the present invention is as described in the "Means for Solving the Problems" section.
  • the first wiring includes at least two folded portions, and that a rectangular meander wiring region is formed on the substrate by the first wiring.
  • the first wiring includes at least two folded portions, and that a rectangular meander wiring region is formed on the substrate by the first wiring.
  • the meander wiring area consists of a wiring pattern portion where the first wiring is provided and a non-wiring pattern portion where the first wiring is not provided, and the total area of the wiring pattern portion is larger than the total area of the non-wiring pattern portion. It is also preferable that it is large. In this case, when the area of the meander wiring region is constant, the larger the total area of the wiring pattern portion is than the total area of the non-wiring pattern portion, the more the heat dissipation efficiency by the first wiring improves.
  • the meandering wiring region consists of a wiring pattern portion provided with wiring and a non-wiring pattern portion not provided with wiring, and it is also preferable that the total area of the wiring pattern portion is smaller than the total area of the non-wiring pattern portion. .
  • the area of the meander wiring region and the interval between the wiring (linear parts) are constant, the smaller the total area of the wiring pattern part is than the total area of the non-wiring pattern part, the more Since the width of one wiring can be reduced and the length of the first wiring can be increased, the impedance of the first wiring can be increased, and unnecessary capacitance between the IDT electrode and the reflector electrode can be reduced. This can be further suppressed.
  • the outer edge of the meander wiring area has a first side, a second side, a third side, and a fourth side that are connected at right angles in order, and the first side and the third side extend in the direction in which the IDT electrode finger extends, and the first side are arranged closer to the reflector electrode than the third side, a plurality of the folded parts are arranged side by side inside the second side, and another plurality of folded parts are arranged side by side inside the fourth side. It is also preferable that In this case, since the direction in which the reflector electrode fingers of the reflector electrode extend and the direction in which the linear portions of the first wiring extend are the same, the linear portions of the first wiring are used as the reflector electrode fingers of the reflector electrode. )can do. In this case, it is also preferable that the pitch between the reflector electrode fingers is equal to the pitch between the linear parts of the first wiring.
  • the outer edge of the meander wiring area has a first side, a second side, a third side, and a fourth side that are connected at right angles in order, and the first side and the third side extend in the direction in which the IDT electrode finger extends, and the first side is arranged closer to the reflector electrode than the third side, a plurality of folded parts are arranged side by side inside the first side, and another plurality of folded parts are arranged side by side inside the fourth side. is also preferable.
  • the above arrangement can shorten the length of each linear part, and the folded part Since the number of folded linear parts can be increased, unnecessary capacitance generated between the reflector electrode and the bump can be reduced, and deterioration and fluctuation of characteristics due to this unnecessary capacitance can be suppressed.
  • the pitch between the reflector electrode fingers is equal to the pitch between the linear parts of the first wiring.
  • the IDT electrode includes a first bus bar and a second bus bar
  • the reflector electrode includes a third bus bar and a fourth bus bar
  • the first bus bar and the third bus bar fit into each other with a space between them.
  • the second bus bar and the fourth bus bar are arranged so as to fit into each other with a space between them. In this case, the efficiency of dissipating the heat of the IDT electrode to the reflector electrode is improved, so the overall efficiency of dissipating the heat generated in the IDT electrode is further improved.
  • the IDT electrode includes a first bus bar and a second bus bar
  • the reflector electrode includes a third bus bar and a fourth bus bar
  • the first bus bar and the third bus bar are partially laminated with an insulating layer interposed therebetween.
  • the second bus bar and the fourth bus bar are arranged so as to be partially laminated with an insulating layer interposed therebetween. In this case, the efficiency of dissipating the heat of the IDT electrode to the reflector electrode is improved, so the overall efficiency of dissipating the heat generated in the IDT electrode is further improved.
  • a wiring missing part where the wiring pattern is missing is formed in the middle of the first wiring.
  • the potential difference between the IDT electrode and the reflector electrode can be made smaller, and the generation of unnecessary capacitance between the IDT electrode and the reflector electrode can be further suppressed.
  • the interval between the wiring missing parts is preferably smaller than the interval between the IDT electrode and the reflector electrode.
  • a ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator. , is also preferably connected to the bump by the first wiring.
  • the heat generated in the IDT electrode of the resonator which generates a large amount of heat, can be efficiently radiated.
  • a ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and the pitch between the IDT electrode fingers of the IDT electrodes is the largest among the series arm resonators. It is also preferable that the reflector electrode of the series arm resonator is connected to the bump by the first wiring. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
  • a ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and in the parallel arm resonator, the reflector electrode of the parallel arm resonator having the highest resonance frequency is It is also preferable that the first wiring be connected to the bump. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
  • a ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and the pitch between the IDT electrode fingers of the IDT electrodes is the smallest in the parallel arm resonator. It is also preferable that the reflector electrode of the parallel arm resonator is connected to the bump by the first wiring. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an elastic wave filter wherein the heat occurring at an Interdigital Transducer (IDT) electrode can be efficiently dissipated and wherein the occurrence of the unnecessary capacitance between the IDT electrode and a reflector electrode is suppressed. The elastic wave filter comprises: a substrate; at least one resonator formed on the substrate; a plurality of bumps formed on the substrate; and a plurality of wirings formed on the substrate. The resonator comprises: an IDT electrode having IDT electrode fingers; and a pair of reflector electrodes formed on the two sides of the IDT electrode in a direction orthogonal to the direction in which the IDT electrode fingers extend. The reflector electrodes each have a plurality of reflector electrode fingers. At least one of the two reflector electrodes of the at least one resonator is connected to a bump by a first wiring. The first wiring has at least two linear portions. The first wiring comprises at least one folded portion that connects two of the linear portions placed side by side.

Description

弾性波フィルタelastic wave filter
 本発明は、弾性波フィルタに関し、更に詳しくは、基板上に共振子が形成された弾性波フィルタに関する。 The present invention relates to an elastic wave filter, and more particularly, to an elastic wave filter in which a resonator is formed on a substrate.
 移動体通信機器などに使用されるフィルタとして、弾性波フィルタが広く使用されている。  Acoustic wave filters are widely used as filters for mobile communication devices and the like. 
 弾性波フィルタは、使用時に、基板上に形成された共振子のIDT電極において熱が発生する。弾性波フィルタにおいては、共振子のIDT電極において発生した熱を効率的に放熱させることが、特性の低下を抑制し、特性の変動を抑制し、更にIDT電極の損傷を抑制するうえで非常に重要である。 When an acoustic wave filter is used, heat is generated in the IDT electrode of the resonator formed on the substrate. In elastic wave filters, efficiently dissipating the heat generated in the IDT electrode of the resonator is extremely important in suppressing deterioration of characteristics, suppressing fluctuations in characteristics, and further suppressing damage to the IDT electrode. is important.
 特許文献1(特開2017-204743号公報)に、弾性波フィルタが開示されている。 An elastic wave filter is disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-204743).
 特許文献1の弾性波フィルタは、複数の共振子を備えているが、所定の共振子の所定のリフレクタ電極が、配線によってグランドパッドに接続されている。そして、グランドパッドにバンプが形成されている。 The elastic wave filter of Patent Document 1 includes a plurality of resonators, and a predetermined reflector electrode of a predetermined resonator is connected to a ground pad by wiring. A bump is formed on the ground pad.
 特許文献1の弾性波フィルタにおいては、共振子のIDT電極において発生した熱が、リフレクタ電極、配線を経由して、グランドパッド、バンプに放熱されるものと考えられる。すなわち、特許文献1の弾性波フィルタは、このような構造によって、共振子のIDT電極において発生した熱が効率的に放熱されるものと考えられる。 In the elastic wave filter of Patent Document 1, it is thought that the heat generated in the IDT electrode of the resonator is radiated to the ground pad and bump via the reflector electrode and wiring. That is, in the elastic wave filter of Patent Document 1, it is considered that heat generated in the IDT electrode of the resonator is efficiently dissipated due to such a structure.
特開2017-204743号公報JP2017-204743A
 特許文献1の弾性波フィルタは、使用時には、グランドパッドと、グランドパッドに形成されたバンプは、グランド電位とされる。したがって、配線によって接続されたリフレクタ電極もグランド電位になる。 When the elastic wave filter of Patent Document 1 is used, the ground pad and the bumps formed on the ground pad are set to the ground potential. Therefore, the reflector electrode connected by wiring also becomes the ground potential.
 そのため、特許文献1の弾性波フィルタは、IDT電極とリフレクタ電極との間に不要容量(浮遊容量)が発生し、弾性波フィルタの特性が低下する虞があった。 Therefore, in the elastic wave filter of Patent Document 1, unnecessary capacitance (stray capacitance) is generated between the IDT electrode and the reflector electrode, and there is a risk that the characteristics of the elastic wave filter may deteriorate.
 そこで本発明は、共振子のIDT電極で発生した熱を、リフレクタ電極、配線を経由して効率的にバンプに放熱しながら、併せて、IDT電極とリフレクタ電極との間の不要容量の発生を抑制し、特性の低下を抑制した弾性波フィルタを提供することを目的とする。 Therefore, the present invention efficiently dissipates the heat generated at the IDT electrode of the resonator to the bump via the reflector electrode and wiring, and at the same time prevents the generation of unnecessary capacitance between the IDT electrode and the reflector electrode. It is an object of the present invention to provide an elastic wave filter in which deterioration of characteristics is suppressed.
 本発明の一実施態様にかかる弾性波フィルタは、上述した課題を解決するために、基板と、基板上に形成された少なくとも1つの共振子と、基板上に形成された複数のバンプと、基板上に形成された複数の配線と、を備えた弾性波フィルタであって、共振子は、IDT電極指を有するIDT電極と、IDT電極指が伸びる方向に対して直角の方向において、IDT電極の両側に形成された1対のリフレクタ電極とを備え、リフレクタ電極は、複数のリフレクタ電極指を備え、少なくとも1つの共振子は、少なくとも一方のリフレクタ電極が、第1配線によってバンプに接続され、第1配線は、少なくとも2つの線状部を備え、第1配線は、並んで配置された2つの線状部を折り返す折返し部を、少なくとも1つ備えているものとする。 In order to solve the above problems, an elastic wave filter according to an embodiment of the present invention includes a substrate, at least one resonator formed on the substrate, a plurality of bumps formed on the substrate, and a substrate. a plurality of wirings formed on the resonator, the resonator having an IDT electrode having an IDT electrode finger; a pair of reflector electrodes formed on both sides, the reflector electrode includes a plurality of reflector electrode fingers, and the at least one resonator has at least one reflector electrode connected to the bump by a first wiring; It is assumed that one wiring is provided with at least two linear parts, and the first wiring is provided with at least one folded part that folds back the two linear parts arranged side by side.
 本発明の一実施態様にかかる弾性波フィルタは、IDT電極で発生した熱が、効率的に放熱される。本発明の一実施態様にかかる弾性波フィルタは、第1配線の長さを長くすることができるため、IDT電極とリフレクタ電極との間の不要容量の発生を抑制することができ、特性の低下を抑制することができる。 In the acoustic wave filter according to one embodiment of the present invention, heat generated in the IDT electrode is efficiently radiated. Since the elastic wave filter according to one embodiment of the present invention can increase the length of the first wiring, it is possible to suppress the generation of unnecessary capacitance between the IDT electrode and the reflector electrode, and the deterioration of characteristics. can be suppressed.
第1実施形態にかかる弾性波フィルタ100の平面図である。FIG. 1 is a plan view of an elastic wave filter 100 according to a first embodiment. 弾性波フィルタ100の等価回路図である。1 is an equivalent circuit diagram of an elastic wave filter 100. FIG. 弾性波フィルタ100の要部平面図である。1 is a plan view of main parts of an elastic wave filter 100. FIG. 実験1の実施例、比較例1、比較例2の説明図である。FIG. 2 is an explanatory diagram of Example of Experiment 1, Comparative Example 1, and Comparative Example 2. 実験1の実施例、比較例1、比較例2の反射特性を示すグラフである。3 is a graph showing the reflection characteristics of Example of Experiment 1, Comparative Example 1, and Comparative Example 2. 第2実施形態にかかる弾性波フィルタ200の要部平面図である。FIG. 3 is a plan view of main parts of an elastic wave filter 200 according to a second embodiment. 第3実施形態にかかる弾性波フィルタ300の要部平面図である。FIG. 7 is a plan view of main parts of an elastic wave filter 300 according to a third embodiment. 第4実施形態にかかる弾性波フィルタ400の要部平面図である。FIG. 4 is a plan view of main parts of an elastic wave filter 400 according to a fourth embodiment. 第5実施形態にかかる弾性波フィルタ500の要部平面図である。FIG. 7 is a plan view of main parts of an elastic wave filter 500 according to a fifth embodiment. 第6実施形態にかかる弾性波フィルタ600の要部平面図である。FIG. 7 is a plan view of main parts of an elastic wave filter 600 according to a sixth embodiment. 第7実施形態にかかる弾性波フィルタ700の説明図(要部断面図)である。It is an explanatory view (main part sectional view) of elastic wave filter 700 concerning a 7th embodiment. 第8実施形態にかかる弾性波フィルタ800の要部平面図である。FIG. 8 is a plan view of main parts of an elastic wave filter 800 according to an eighth embodiment.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、明細書の理解を助けるためのものであって、模式的に描画されている場合があり、描画された構成要素または構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 Note that each embodiment is an illustrative example of an embodiment of the present invention, and the present invention is not limited to the content of the embodiment. Further, it is also possible to implement the contents described in different embodiments in combination, and the implementation contents in that case are also included in the present invention. In addition, the drawings are intended to aid understanding of the specification and may be drawn schematically, and the drawn components or the dimensional ratios between the components may be different from those described in the specification. The proportions of those dimensions may not match. In addition, there are cases where constituent elements described in the specification are omitted in the drawings or drawn with their numbers omitted.
[第1実施形態]
 図1、図2、図3に、第1実施形態にかかる弾性波フィルタ100を示す。ただし、図1は、弾性波フィルタ100の平面図である。図2は、弾性波フィルタ100の等価回路図である。図3は、弾性波フィルタ100の要部平面図である。なお、図1、図3は、弾性波フィルタ100の実装面側を示している。また、図1、図3には、図の左右方向を弾性波フィルタ100の横方向X、図の上下方向を弾性波フィルタ100の縦方向Yとして矢印で示している。以下の説明において、弾性波フィルタ100の横方向X、縦方向Yに言及する場合がある。また、図1では、後述する直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23などを、模式的に描写している場合がある。
[First embodiment]
1, 2, and 3 show an elastic wave filter 100 according to a first embodiment. However, FIG. 1 is a plan view of the elastic wave filter 100. FIG. 2 is an equivalent circuit diagram of the elastic wave filter 100. FIG. 3 is a plan view of essential parts of the elastic wave filter 100. Note that FIGS. 1 and 3 show the mounting surface side of the acoustic wave filter 100. Further, in FIGS. 1 and 3, arrows indicate that the horizontal direction in the drawings is the horizontal direction X of the elastic wave filter 100, and the vertical direction in the drawings is the vertical direction Y of the elastic wave filter 100. In the following description, the horizontal direction X and vertical direction Y of the elastic wave filter 100 may be referred to. Further, in FIG. 1, series arm resonators S11 to S15, S21, S22, parallel arm resonators P11 to P14, P21 to P23, etc., which will be described later, are sometimes schematically depicted.
 弾性波フィルタ100は、図1に示すように、圧電性を備えた基板1を備えている。基板1の主面に、図2の等価回路からなるデュプレクサが構成されている。デュプレクサは、送信側フィルタ10と受信側フィルタ20とを備えている。まず、図2を参照して、弾性波フィルタ100の等価回路について説明する。 As shown in FIG. 1, the elastic wave filter 100 includes a piezoelectric substrate 1. A duplexer consisting of the equivalent circuit shown in FIG. 2 is constructed on the main surface of the substrate 1. The duplexer includes a transmitter filter 10 and a receiver filter 20. First, with reference to FIG. 2, an equivalent circuit of the elastic wave filter 100 will be described.
 弾性波フィルタ100は、アンテナ側端子Antと、送信側端子Txと、受信側端子Rxと、グランド端子Gとを備えている。 The elastic wave filter 100 includes an antenna side terminal Ant, a transmitting side terminal Tx, a receiving side terminal Rx, and a ground terminal G.
 送信側端子Txとアンテナ側端子Antの間に、送信側フィルタ10が形成されている。送信側フィルタ10は、直列腕共振子S11、S12、S13、S14、S15と、並列腕共振子P11、P12、P13、P14と、を備えたラダー型フィルタである。 A transmitting filter 10 is formed between the transmitting terminal Tx and the antenna terminal Ant. The transmitting side filter 10 is a ladder type filter including series arm resonators S11, S12, S13, S14, and S15 and parallel arm resonators P11, P12, P13, and P14.
 送信側フィルタ10は、送信側端子Txとアンテナ側端子Antとの間に、直列腕共振子S11、S12、S13、S14、S15が、この順番に接続されている。 In the transmission side filter 10, series arm resonators S11, S12, S13, S14, and S15 are connected in this order between the transmission side terminal Tx and the antenna side terminal Ant.
 直列腕共振子S11と直列腕共振子S12の接続点に、並列腕共振子P11の一端が接続されている。また、直列腕共振子S12と直列腕共振子S13の接続点に、並列腕共振子P12の一端が接続されている。そして、並列腕共振子P11の他端と、並列腕共振子P12の他端とが相互に接続されたうえ、グランドに接続されている。 One end of the parallel arm resonator P11 is connected to the connection point between the series arm resonator S11 and the series arm resonator S12. Furthermore, one end of the parallel arm resonator P12 is connected to the connection point between the series arm resonator S12 and the series arm resonator S13. The other end of the parallel arm resonator P11 and the other end of the parallel arm resonator P12 are connected to each other and to ground.
 直列腕共振子S13と直列腕共振子S14の接続点と、グランドとの間に、並列腕共振子P13が接続されている。 A parallel arm resonator P13 is connected between the connection point of the series arm resonator S13 and the series arm resonator S14 and the ground.
 直列腕共振子S14と直列腕共振子S15の接続点と、グランドとの間に、並列腕共振子P14が接続されている。 A parallel arm resonator P14 is connected between the connection point of the series arm resonator S14 and the series arm resonator S15 and the ground.
 直列に接続された直列腕共振子S11、S12、S13、S14、S15と並列に、直列に接続されたキャンセル回路6とキャパシタC0とが接続されている。 A cancellation circuit 6 and a capacitor C0 are connected in parallel to the series-connected series arm resonators S11, S12, S13, S14, and S15.
 直列腕共振子S14と並列に、キャパシタC1が接続されている。 A capacitor C1 is connected in parallel with the series arm resonator S14.
 アンテナ側端子Antと受信側端子Rxの間に、受信側フィルタ20が形成されている。受信側フィルタ20は、直列腕共振子S21、S22と、並列腕共振子P21、P22、P23と、ダブルモードSAWフィルタ7と、を備えたラダー型フィルタである。 A receiving side filter 20 is formed between the antenna side terminal Ant and the receiving side terminal Rx. The receiving filter 20 is a ladder type filter including series arm resonators S21, S22, parallel arm resonators P21, P22, P23, and a double mode SAW filter 7.
 受信側フィルタ20は、アンテナ側端子Antと受信側端子Rxの間に、直列腕共振子S21、ダブルモードSAWフィルタ7、直列腕共振子S22が、この順番に接続されている。 In the reception filter 20, a series arm resonator S21, a double mode SAW filter 7, and a series arm resonator S22 are connected in this order between the antenna side terminal Ant and the reception side terminal Rx.
 直列腕共振子S21とダブルモードSAWフィルタ7の接続点と、グランドとの間に、並列腕共振子P21が接続されている。 A parallel arm resonator P21 is connected between the connection point of the series arm resonator S21 and the double mode SAW filter 7 and the ground.
 ダブルモードSAWフィルタ7と直列腕共振子S22の接続点と、グランドとの間に、並列腕共振子P22が接続されている。 A parallel arm resonator P22 is connected between the connection point between the double mode SAW filter 7 and the series arm resonator S22 and the ground.
 直列腕共振子S22と受信側端子Rxの接続点と、グランドとの間に、並列腕共振子P23が接続されている。 A parallel arm resonator P23 is connected between the connection point between the series arm resonator S22 and the receiving terminal Rx and the ground.
 なお、弾性波フィルタ100においては、所定の箇所に意図的にインダクタが形成されたり、所定の箇所に配線によって浮遊的にインダクタが形成されたりしている場合があるが、図2では、これらのインダクタの表示を省略している。 Note that in the elastic wave filter 100, inductors may be intentionally formed at predetermined locations, or inductors may be formed floatingly at predetermined locations by wiring, but these are not shown in FIG. The inductor is not shown.
 上述したとおり、弾性波フィルタ100は、圧電性を備えた基板1に、図2の等価回路からなる、送信側フィルタ10と受信側フィルタ20との2つの弾性波フィルタを備えたデュプレクサが構成されている。 As described above, the elastic wave filter 100 includes a duplexer including two acoustic wave filters, the transmitter filter 10 and the receiver filter 20, which are made of the equivalent circuit of FIG. 2, on the piezoelectric substrate 1. ing.
 圧電性を備えた基板1は、それ自体が圧電性を備えた材質によって作製されたものであってもよい。あるいは、圧電性を備えた基板1は、非圧電性の基体に、圧電性を備えた材質の膜(層)が形成されたものであってもよい。圧電性を備えた材質の種類は任意であるが、たとえば、LiNbO、LiTaOなどを使用することができる。 The piezoelectric substrate 1 may itself be made of a piezoelectric material. Alternatively, the piezoelectric substrate 1 may be one in which a film (layer) of a piezoelectric material is formed on a non-piezoelectric base. Although the type of piezoelectric material is arbitrary, for example, LiNbO 3 , LiTaO 3 , etc. can be used.
 図1に示すように、基板1の主面に、送信側フィルタ10の直列腕共振子S11~S15、並列腕共振子P11~P14、送信側フィルタ10の直列腕共振子S21、S22、並列腕共振子P21~P23が形成されている。 As shown in FIG. 1, on the main surface of the substrate 1, the series arm resonators S11 to S15 of the transmitting side filter 10, the parallel arm resonators P11 to P14, the series arm resonators S21 and S22 of the transmitting side filter 10, and the parallel arm Resonators P21 to P23 are formed.
 直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23について、図3の弾性波フィルタ100の要部平面図を参照し、直列腕共振子S13を例にとって説明する。他の共振子も、寸法や電極指の数などを除く基本的な構造は、直列腕共振子S13と同じである。 The series arm resonators S11 to S15, S21, S22 and the parallel arm resonators P11 to P14, P21 to P23 will be explained by taking the series arm resonator S13 as an example, with reference to the main part plan view of the elastic wave filter 100 in FIG. do. The other resonators have the same basic structure as the series arm resonator S13 except for the dimensions and the number of electrode fingers.
 共振子(直列腕共振子S13)は、IDT電極30を備えている。IDT電極30は、複数の第1IDT電極指31と、複数の第2IDT電極指32とを備えている。複数の第1IDT電極指31と複数の第2IDT電極指32とは、相互に、噛み合わされて配置されている。本実施形態においては、第1IDT電極指31、第2IDT電極指32は、それぞれ、弾性波フィルタ100の縦方向Yに伸びている。複数の第1IDT電極指31が、第1バスバー33に接続されている。複数の第2IDT電極指32が、第2バスバー34に接続されている。 The resonator (series arm resonator S13) includes an IDT electrode 30. The IDT electrode 30 includes a plurality of first IDT electrode fingers 31 and a plurality of second IDT electrode fingers 32. The plurality of first IDT electrode fingers 31 and the plurality of second IDT electrode fingers 32 are arranged so as to be engaged with each other. In this embodiment, the first IDT electrode finger 31 and the second IDT electrode finger 32 each extend in the vertical direction Y of the acoustic wave filter 100. A plurality of first IDT electrode fingers 31 are connected to a first bus bar 33. A plurality of second IDT electrode fingers 32 are connected to a second bus bar 34.
 共振子(直列腕共振子S13)は、弾性波フィルタ100の横方向Xにおいて、IDT電極30の両側に、第1リフレクタ電極40、第2リフレクタ電極50を備えている。第1リフレクタ電極40は、複数のリフレクタ電極指41を備えている。リフレクタ電極指41は、弾性波フィルタ100の縦方向Yに伸びている。複数のリフレクタ電極指41は、それぞれ、一端が第3バスバー42に接続され、他端が第4バスバー43に接続されている。同様に、第2リフレクタ電極50は、複数のリフレクタ電極指51を備えている。リフレクタ電極指51は、弾性波フィルタ100の縦方向Yに伸びている。複数のリフレクタ電極指51は、それぞれ、一端が第5バスバー52に接続され、他端が第6バスバー53に接続されている。 The resonator (series arm resonator S13) includes a first reflector electrode 40 and a second reflector electrode 50 on both sides of the IDT electrode 30 in the lateral direction X of the acoustic wave filter 100. The first reflector electrode 40 includes a plurality of reflector electrode fingers 41 . The reflector electrode fingers 41 extend in the vertical direction Y of the acoustic wave filter 100. Each of the plurality of reflector electrode fingers 41 has one end connected to the third bus bar 42 and the other end connected to the fourth bus bar 43. Similarly, the second reflector electrode 50 includes a plurality of reflector electrode fingers 51. The reflector electrode fingers 51 extend in the vertical direction Y of the acoustic wave filter 100. Each of the plurality of reflector electrode fingers 51 has one end connected to the fifth bus bar 52 and the other end connected to the sixth bus bar 53.
 直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23の材質は任意であるが、たとえば、Pt、Au、Ag、Cu、Ni、W、Ta、Fe、Cr、AlおよびPdから選ばれる金属、もしくはこれらの金属を1種以上含む合金によって形成することができる。直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23は、複数種類の上記の金属や合金を使って、多層構造に形成してもよい。 The materials of the series arm resonators S11 to S15, S21, S22 and the parallel arm resonators P11 to P14, P21 to P23 are arbitrary, but for example, Pt, Au, Ag, Cu, Ni, W, Ta, Fe, Cr. , Al, and Pd, or an alloy containing one or more of these metals. The series arm resonators S11 to S15, S21, and S22 and the parallel arm resonators P11 to P14 and P21 to P23 may be formed into a multilayer structure using a plurality of types of the above metals or alloys.
 図1に示すように、基板1の主面に、キャパシタC0、C1、キャンセル回路6、ダブルモードSAWフィルタ7が形成されている。これらの構造や材質は任意である。 As shown in FIG. 1, capacitors C0 and C1, a cancellation circuit 6, and a double mode SAW filter 7 are formed on the main surface of a substrate 1. These structures and materials are arbitrary.
 基板1の主面に、配線8が形成されている。配線8の材質および構造は任意である。本実施形態においては、配線8が、下からNiCr、Pt、Ti、AlCu、Tiが順に積層された第1電極層群と、下からTi、AlCu、Ti、Pt、Tiが順に積層された第2電極層群を含んでいる。配線8は、第1電極層群の上に第2電極層群が重ねて形成されている場合がある。この場合において、両者の境界のTiの層は共用させてもよい。また、配線8は、第1電極層群と第2電極層群のいずれか一方で形成されていてもよい。また、配線8は、第1電極層群、第2電極層群の他に、第3電極層群を含んでもよい。第1電極層群、第2電極層群は、それぞれ、構成する層の増減が可能であり(1層からなる単層であってもよい)、構成する層の材質の変更が可能である。 A wiring 8 is formed on the main surface of the substrate 1. The material and structure of the wiring 8 are arbitrary. In this embodiment, the wiring 8 includes a first electrode layer group in which NiCr, Pt, Ti, AlCu, and Ti are laminated in order from the bottom, and a first electrode layer group in which Ti, AlCu, Ti, Pt, and Ti are laminated in order from the bottom. It includes two electrode layer groups. The wiring 8 may include a second electrode layer group overlaid on a first electrode layer group. In this case, the Ti layer at the boundary between the two may be shared. Moreover, the wiring 8 may be formed in either the first electrode layer group or the second electrode layer group. Further, the wiring 8 may include a third electrode layer group in addition to the first electrode layer group and the second electrode layer group. In each of the first electrode layer group and the second electrode layer group, the number of constituent layers can be increased or decreased (they may be a single layer consisting of one layer), and the material of the constituent layers can be changed.
 配線8の所定の箇所に、アンテナ側端子Antであるバンプ2と、送信側端子Txであるバンプ3と、受信側端子Rxであるバンプ4と、グランド端子Gである複数のバンプ5が形成されている。配線8のバンプ2~5が形成されている部分を、バンプパッドと呼ぶこともできる。バンプ2~5の材質は任意であるが、たとえば、はんだや、Auなどによって作製することができる。なお、グランド端子Gは、弾性波フィルタ100を使用する時に、基準電位(たとえばグランド電位)にされる端子である。基準電位は、グランド電位には限られない。 A bump 2 serving as the antenna terminal Ant, a bump 3 serving as the transmitting terminal Tx, a bump 4 serving as the receiving terminal Rx, and a plurality of bumps 5 serving as the ground terminal G are formed at predetermined locations on the wiring 8. ing. The portion of the wiring 8 where the bumps 2 to 5 are formed can also be called a bump pad. Although the bumps 2 to 5 can be made of any material, they can be made of, for example, solder or Au. Note that the ground terminal G is a terminal that is set to a reference potential (eg, ground potential) when the elastic wave filter 100 is used. The reference potential is not limited to the ground potential.
 配線8によって、直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23、キャパシタC0、C1、キャンセル回路6、ダブルモードSAWフィルタ7、バンプ2~5の間において、必要な電気的な接続がなされている。 The wiring 8 connects the series arm resonators S11 to S15, S21, S22, the parallel arm resonators P11 to P14, P21 to P23, the capacitors C0 and C1, the cancellation circuit 6, the double mode SAW filter 7, and the bumps 2 to 5. , the necessary electrical connections have been made.
 本実施形態の弾性波フィルタ100においては、図1、図3に示すように、送信側フィルタ10の直列腕共振子S13の第1リフレクタ電極40が、第1配線9によって、グランド端子Gであるバンプ5に接続されている。第1配線9は、配線8の一種であるが、特に放熱のために設けられたものである。具体的には、直列腕共振子S13のIDT電極30において発生した熱を、第1リフレクタ電極40を経由させたうえ、更に第1配線9を経由させて、グランド端子Gであるバンプ5に効率的に放熱させている。 In the elastic wave filter 100 of this embodiment, as shown in FIGS. 1 and 3, the first reflector electrode 40 of the series arm resonator S13 of the transmitting side filter 10 is connected to the ground terminal G by the first wiring 9. Connected to bump 5. The first wiring 9 is a type of wiring 8, and is provided especially for heat radiation. Specifically, the heat generated in the IDT electrode 30 of the series arm resonator S13 is transmitted through the first reflector electrode 40 and further through the first wiring 9, and is efficiently transferred to the bump 5, which is the ground terminal G. It dissipates heat.
 本実施形態においては、第1リフレクタ電極40のみを、第1配線9によって、グランド端子Gであるバンプ5に接続しているが、第2リフレクタ電極50も、別の第1配線9によって、グランド端子Gであるバンプ5に接続してもよい。この場合には、IDT電極30において発生した熱を、更に効率的に放熱させることができる。 In this embodiment, only the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, by the first wiring 9, but the second reflector electrode 50 is also connected to the ground by another first wiring 9. It may be connected to the bump 5 which is the terminal G. In this case, the heat generated in the IDT electrode 30 can be radiated more efficiently.
 第1配線9は、並んで配置された線状部を少なくとも2つ備えている。そして、第1配線9は、2つの線状部を折り返す折返し部を、少なくとも1つ備えている。 The first wiring 9 includes at least two linear portions arranged side by side. The first wiring 9 includes at least one folded portion that folds back the two linear portions.
 本実施形態においては、図3に示すように、第1配線9は、並んで配置された7つの線状部91a、91b、91c、91d、91e、91f、91gを備えている。ただし線状部の数は7つには限定されず、7つから増減させることができる。線状部91a~91gは、それぞれ、弾性波フィルタ100の縦方向Yに伸びている。 In this embodiment, as shown in FIG. 3, the first wiring 9 includes seven linear portions 91a, 91b, 91c, 91d, 91e, 91f, and 91g arranged side by side. However, the number of linear parts is not limited to seven, and can be increased or decreased from seven. The linear portions 91a to 91g each extend in the vertical direction Y of the elastic wave filter 100.
 線状部の形状は任意であるが、本実施形態においては、線状部91a~91gを、それぞれ直線にした。ただし、線状部91a~91gは、直線に変えて、曲線などであっても
よい。
Although the shape of the linear portions is arbitrary, in this embodiment, the linear portions 91a to 91g are each straight. However, the linear portions 91a to 91g may be curved lines instead of straight lines.
 第1リフレクタ電極40が、線状部91aに接続されている。線状部91aと線状部91bが、折返し部92aによって接続されている。線状部91bと線状部91cが、折返し部92bによって接続されている。線状部91cと線状部91dが、折返し部92cによって接続されている。線状部91dと線状部91eが、折返し部92dによって接続されている。線状部91eと線状部91fが、折返し部92eによって接続されている。線状部91fと線状部91gが、折返し部92fによって接続されている。線状部91gが、グランド端子Gであるバンプ5に接続されている。 The first reflector electrode 40 is connected to the linear portion 91a. The linear portion 91a and the linear portion 91b are connected by a folded portion 92a. The linear portion 91b and the linear portion 91c are connected by a folded portion 92b. The linear portion 91c and the linear portion 91d are connected by a folded portion 92c. The linear portion 91d and the linear portion 91e are connected by a folded portion 92d. The linear portion 91e and the linear portion 91f are connected by a folded portion 92e. The linear portion 91f and the linear portion 91g are connected by a folded portion 92f. The linear portion 91g is connected to the bump 5, which is the ground terminal G.
 本実施形態においては、折返し部92a~92fで折り返された線状部91a~91gが、相互に平行に配置されているが、折返し部で折り返された線状部は、相互に角度をもって配置されてもよい。 In this embodiment, the linear parts 91a to 91g folded back at the folded parts 92a to 92f are arranged parallel to each other, but the linear parts folded back at the folded parts are arranged at an angle to each other. It's okay.
 第1配線9を、7つの線状部91a~91gと、それらを接続する6つの折返し部92a~92fとを備えた構成にしたのは、第1配線9の長さを長くし、第1配線9のインピーダンスを大きくするためである。 The reason why the first wiring 9 is configured to include seven linear parts 91a to 91g and six folded parts 92a to 92f that connect them is because the length of the first wiring 9 is increased and the first This is to increase the impedance of the wiring 9.
 すなわち、リフレクタ電極を、短い配線によって、基準電位(たとえばグランド電位)であるバンプに接続した場合、リフレクタ電極も、基準電位、あるいは、基準電位に近い電位になってしまう。そして、上述したとおり、IDT電極とリフレクタ電極の間の電位差が大きくなり、IDT電極とリフレクタ電極の間に不要容量が発生し、弾性波フィルタの特性が低下してしまう。 That is, if the reflector electrode is connected to a bump at a reference potential (for example, ground potential) by a short wiring, the reflector electrode will also be at the reference potential or a potential close to the reference potential. Then, as described above, the potential difference between the IDT electrode and the reflector electrode increases, unnecessary capacitance is generated between the IDT electrode and the reflector electrode, and the characteristics of the acoustic wave filter deteriorate.
 そこで、弾性波フィルタ100は、第1リフレクタ電極40とグランド端子Gであるバンプ5とを、7つの線状部91a~91gと6つの折返し部92a~92fとを備え、長さが長く、インピーダンスの大きな第1配線9によって接続することによって、IDT電極30と第1リフレクタ電極40の間の電位差を小さくし、IDT電極30と第1リフレクタ電極40の間における不要容量の発生を抑制している。 Therefore, the elastic wave filter 100 includes the first reflector electrode 40 and the bump 5 which is the ground terminal G, seven linear parts 91a to 91g and six folded parts 92a to 92f, and has a long length and impedance. By connecting with the first wiring 9 having a large value, the potential difference between the IDT electrode 30 and the first reflector electrode 40 is reduced, and the generation of unnecessary capacitance between the IDT electrode 30 and the first reflector electrode 40 is suppressed. .
 弾性波フィルタ100は、第1配線9が複数の折返し部92a~92fを備えているため、基板1上に、第1配線9がミアンダ状に形成されたミアンダ配線領域60を備えている。  The elastic wave filter 100 includes a meander wiring region 60 on the substrate 1 in which the first wiring 9 is formed in a meander shape, since the first wiring 9 includes a plurality of folded parts 92a to 92f. 
 図3に示すように、本実施形態においては、ミアンダ配線領域60は矩形である。ミアンダ配線領域60の外縁は、順に直角に繋がる第1辺61、第2辺62、第3辺63、第4辺64を備えている。第1辺61と第3辺63とが、IDT電極30の第1IDT電極指31、第2IDT電極指32が伸びる方向に伸びている。すなわち、第1辺61と第3辺63とが、弾性波フィルタ100の縦方向Yに配置されている。第1辺61は、第3辺63よりも、第1リフレクタ電極40の近くに配置されている。 As shown in FIG. 3, in this embodiment, the meander wiring area 60 is rectangular. The outer edge of the meander wiring region 60 includes a first side 61, a second side 62, a third side 63, and a fourth side 64, which are connected at right angles in this order. The first side 61 and the third side 63 extend in the direction in which the first IDT electrode finger 31 and the second IDT electrode finger 32 of the IDT electrode 30 extend. That is, the first side 61 and the third side 63 are arranged in the vertical direction Y of the elastic wave filter 100. The first side 61 is arranged closer to the first reflector electrode 40 than the third side 63.
 本実施形態においては、ミアンダ配線領域60の第1辺の内側に、線状部91aが配置され、第2辺62の内側に折返し部92a、92c、92eが並べて配置され、第3辺63の内側に線状部91gが配置され、第4辺64の内側に折返し部92b、92d、92fが並べて配置されている。 In this embodiment, a linear portion 91a is arranged inside the first side of the meander wiring region 60, folded portions 92a, 92c, and 92e are arranged side by side inside the second side 62, and A linear portion 91g is arranged on the inner side, and folded portions 92b, 92d, and 92f are arranged side by side on the inner side of the fourth side 64.
 第1配線9の材質は任意であるが、できるだけ熱伝導性の高い材質を使用することが好ましい。本実施形態においては、第1配線9は、下からNiCr、Pt、Ti、AlCu、Tiが順に積層された第1電極層群と、第1電極層群の上に形成された、下からTi、AlCu、Ti、Pt、Tiが順に積層された第2電極層群を含んでいる。両者の境界のTiの層は共用させてもよい。 Although the material of the first wiring 9 is arbitrary, it is preferable to use a material with as high thermal conductivity as possible. In this embodiment, the first wiring 9 includes a first electrode layer group in which NiCr, Pt, Ti, AlCu, and Ti are laminated in order from the bottom, and a Ti layer formed on the first electrode layer group from the bottom. , AlCu, Ti, Pt, and Ti are laminated in this order. The Ti layer at the boundary between the two may be shared.
 本実施形態においては、第1リフレクタ電極40のリフレクタ電極指41が伸びる方向と、第1配線9の線状部91a~91gが伸びる方向が、いずれも、弾性波フィルタ100の縦方向Yに配置されている。したがって、本実施形態においては、第1配線9の線状部91a~91gを、リフレクタ電極のリフレクタ電極指として利用(援用)することができる。この場合には、第1リフレクタ電極40のリフレクタ電極指41の数を減らすことができる場合がある。なお、第1配線9の線状部91a~91gを、リフレクタ電極のリフレクタ電極指として利用する場合には、第1配線9の線状部91a~91gどうしの間のピッチ、および、第1リフレクタ電極40と線状部91aの間のピッチを、第1リフレクタ電極40のリフレクタ電極指41どうしの間のピッチと同じにすることが好ましい。 In this embodiment, the direction in which the reflector electrode fingers 41 of the first reflector electrode 40 extend and the direction in which the linear portions 91a to 91g of the first wiring 9 extend are both arranged in the vertical direction Y of the acoustic wave filter 100. has been done. Therefore, in this embodiment, the linear portions 91a to 91g of the first wiring 9 can be used (aided) as reflector electrode fingers of the reflector electrode. In this case, the number of reflector electrode fingers 41 of the first reflector electrode 40 may be reduced. Note that when the linear portions 91a to 91g of the first wiring 9 are used as reflector electrode fingers of the reflector electrode, the pitch between the linear portions 91a to 91g of the first wiring 9 and the first reflector It is preferable that the pitch between the electrode 40 and the linear portion 91a be the same as the pitch between the reflector electrode fingers 41 of the first reflector electrode 40.
 本実施形態においては、第1リフレクタ電極40と、第1配線9の線状部91aとが対向している領域が長いため、第1リフレクタ電極40の熱を、第1配線9を経由して効率的にバンプ5に放熱させることができる。 In this embodiment, since the region where the first reflector electrode 40 and the linear portion 91a of the first wiring 9 face each other is long, the heat of the first reflector electrode 40 is transferred via the first wiring 9. Heat can be efficiently radiated to the bumps 5.
 ミアンダ配線領域60において、第1配線9が設けられている部分を配線パターン部とし、第1配線9が設けられていない部分を非配線パターン部としたとき、配線パターン部の総面積と非配線パターン部の総面積との比率は任意である。ただし、ミアンダ配線領域60の面積が一定のとき、配線パターン部の総面積を、非配線パターン部の総面積よりも、大きくすればするほど、第1配線9による放熱効率が向上する。また、ミアンダ配線領域60の面積、および、配線(線状部)の間隔が一定のとき、配線パターン部の総面積を、非配線パターン部の総面積よりも、小さくすればするほど、第1配線9の幅を小さくすることができ、第1配線9の長さを長くすることができるため、第1配線9のインピーダンスを大きくすることができ、IDT電極30と第1リフレクタ電極40の間の不要容量の発生をより抑制することができる。 In the meander wiring region 60, when the part where the first wiring 9 is provided is defined as a wiring pattern part, and the part where the first wiring 9 is not provided is defined as a non-wiring pattern part, the total area of the wiring pattern part and the non-wiring pattern part are The ratio to the total area of the pattern portion is arbitrary. However, when the area of the meander wiring region 60 is constant, the heat dissipation efficiency by the first wiring 9 improves as the total area of the wiring pattern portion is made larger than the total area of the non-wiring pattern portion. Further, when the area of the meander wiring region 60 and the interval between the wiring (linear parts) are constant, the smaller the total area of the wiring pattern part is than the total area of the non-wiring pattern part, the more the first Since the width of the wiring 9 can be reduced and the length of the first wiring 9 can be increased, the impedance of the first wiring 9 can be increased, and the impedance between the IDT electrode 30 and the first reflector electrode 40 can be increased. The generation of unnecessary capacity can be further suppressed.
 本実施形態の弾性波フィルタ100においては、送信側フィルタ10の直列腕共振子S13の第1リフレクタ電極40を、第1配線9によって、グランド端子Gであるバンプ5に接続した。ただし、どの共振子のどのリフレクタ電極を第1配線によってバンプに接続するかは任意であり、他の共振子のリフレクタ電極をバンプに接続してもよい。また、複数の共振子のリフレクタ電極をバンプに接続してもよい。また、共振子の一方のリフレクタ電極をバンプに接続するのではなく、両方のリフレクタ電極をバンプに接続してもよい。 In the elastic wave filter 100 of this embodiment, the first reflector electrode 40 of the series arm resonator S13 of the transmitting filter 10 is connected to the bump 5, which is the ground terminal G, via the first wiring 9. However, which reflector electrode of which resonator is connected to the bump by the first wiring is arbitrary, and reflector electrodes of other resonators may be connected to the bump. Further, reflector electrodes of a plurality of resonators may be connected to the bump. Furthermore, instead of connecting one reflector electrode of the resonator to the bump, both reflector electrodes may be connected to the bump.
 ただし、どの共振子のリフレクタ電極を第1配線によってバンプに接続するかについては、その弾性波フィルタにおいて、IDT電極の発熱量の多い共振子のリフレクタ電極を第1配線によってバンプに接続することが好ましい。たとえば、弾性波フィルタがラダー型フィルタであれば、直列腕共振子の中で反共振周波数が最も低い直列腕共振子や、並列腕共振子の中で共振周波数が最も高い並列腕共振子において、リフレクタ電極を第1配線によってバンプに接続することが好ましい。また、直列腕共振子の中でIDT電極のIDT電極指のピッチが最も大きい直列腕共振子や、並列腕共振子の中でIDT電極のIDT電極指のピッチが最も小さい並列腕共振子において、リフレクタ電極を第1配線によってバンプに接続することが好ましい。 However, regarding which resonator's reflector electrode should be connected to the bump by the first wiring, in the acoustic wave filter, the reflector electrode of the resonator whose IDT electrode generates a large amount of heat should be connected to the bump by the first wiring. preferable. For example, if the elastic wave filter is a ladder type filter, the series arm resonator with the lowest anti-resonance frequency among the series arm resonators, and the parallel arm resonator with the highest resonant frequency among the parallel arm resonators, Preferably, the reflector electrode is connected to the bump by a first wiring. In addition, in a series arm resonator in which the pitch of the IDT electrode fingers of the IDT electrode is the largest among the series arm resonators, and in a parallel arm resonator in which the pitch of the IDT electrode fingers of the IDT electrode is the smallest among the parallel arm resonators, Preferably, the reflector electrode is connected to the bump by a first wiring.
 本実施形態の弾性波フィルタ100に、更に構成を追加してもよい。たとえば、基板1の、直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23、キャパシタC0、C1、キャンセル回路6、ダブルモードSAWフィルタ7、配線8、第1配線9を形成した部分の上に、1層の誘電体層(絶縁体層)、または、多層の誘電体層を形成してもよい。また、誘電体層の層間や、誘電体層の上に、更に配線8を形成してもよい。 Further configurations may be added to the elastic wave filter 100 of this embodiment. For example, on the board 1, series arm resonators S11 to S15, S21, S22, parallel arm resonators P11 to P14, P21 to P23, capacitors C0 and C1, canceling circuit 6, double mode SAW filter 7, wiring 8, first A single dielectric layer (insulator layer) or multiple dielectric layers may be formed on the portion where the wiring 9 is formed. Moreover, the wiring 8 may be further formed between the dielectric layers or on the dielectric layer.
(実験1)
 本発明の有効性を確認するために、以下の実験1を実施した。
(Experiment 1)
In order to confirm the effectiveness of the present invention, the following Experiment 1 was conducted.
 図4に示すように、実施例として、本実施形態の弾性波フィルタ100を作製した。実施例は、第1リフレクタ電極40が、第1配線9によって、グランド端子Gであるバンプ5に接続されている。 As shown in FIG. 4, as an example, an elastic wave filter 100 of this embodiment was manufactured. In the embodiment, the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, via the first wiring 9.
 比較例1を作製した。比較例1は、弾性波フィルタ100の構成の一部を変更し、第1配線9を省略して、第1リフレクタ電極40を、グランド端子Gであるバンプ5に接続していない。 Comparative Example 1 was produced. In Comparative Example 1, a part of the configuration of the elastic wave filter 100 is changed, the first wiring 9 is omitted, and the first reflector electrode 40 is not connected to the bump 5, which is the ground terminal G.
 比較例2を作製した。比較例2も、弾性波フィルタ100の構成の一部を変更し、第1配線9を省略し、代わりに矩形の面積が大きい面状配線99を設けた。そして、第1リフレクタ電極40を、面状配線99によって、グランド端子Gであるバンプ5に接続した。 Comparative Example 2 was produced. In Comparative Example 2, a part of the configuration of the elastic wave filter 100 was also changed, the first wiring 9 was omitted, and a planar wiring 99 having a large rectangular area was provided instead. Then, the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by a planar wiring 99.
 IDT電極30で発生した熱を放熱させる能力は、第1リフレクタ電極40を面状配線99によってグランド端子Gであるバンプ5に接続した、比較例2が最も優れている。そして、第1リフレクタ電極40を第1配線9によってグランド端子Gであるバンプ5に接続した、実施例が2番目に優れている。そして、第1リフレクタ電極40とグランド端子Gであるバンプ5とを接続していない比較例1が、IDT電極30で発生した熱を放熱させる能力において、最も劣っている。 Comparative Example 2, in which the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by the planar wiring 99 was the most excellent in the ability to radiate the heat generated in the IDT electrode 30. The second example is the one in which the first reflector electrode 40 is connected to the bump 5, which is the ground terminal G, by the first wiring 9. Comparative example 1, in which the first reflector electrode 40 and the bump 5 serving as the ground terminal G are not connected, has the lowest ability to dissipate the heat generated in the IDT electrode 30.
 実施例、比較例1、比較例2の各弾性波フィルタについて、送信側フィルタ10の反射特性を測定した。 For each of the elastic wave filters of Example, Comparative Example 1, and Comparative Example 2, the reflection characteristics of the transmitting filter 10 were measured.
 図5に、測定結果を示す。なお、図5において、実線のグラフが実施例、一点鎖線のグラフが比較例1、二点鎖線のグラフが比較例2である。 Figure 5 shows the measurement results. In FIG. 5, the solid line graph is the example, the one-dot chain line graph is Comparative Example 1, and the two-dot chain line graph is Comparative Example 2.
 図5から分かるように、比較例1の反射特性が最も優れている(反射が小さい)。これは、第1リフレクタ電極40をグランド端子Gであるバンプ5に接続しなかったため、IDT電極30と第1リフレクタ電極40の間に電位差が発生せず(あるいは非常に小さな電位差しか発生せず)、IDT電極30と第1リフレクタ電極40の間に不要容量が発生しなかった(あるいは非常に小さな不要容量しか発生しなかった)からであると考えられる。 As can be seen from FIG. 5, the reflection characteristics of Comparative Example 1 are the best (reflection is small). This is because the first reflector electrode 40 was not connected to the bump 5, which is the ground terminal G, so no potential difference (or only a very small potential difference) occurred between the IDT electrode 30 and the first reflector electrode 40. This is considered to be because no unnecessary capacitance was generated between the IDT electrode 30 and the first reflector electrode 40 (or only a very small unnecessary capacitance was generated).
 これに対し、実施例と、比較例2は、比較例1に比べて反射特性が低下している。しかしながら、反射特性の低下の程度が、比較例1は大きく、実施例は小さい。比較例1において、反射特性が大きく低下したのは、第1リフレクタ電極40とグランド端子Gであるバンプ5とを、インピーダンスが大きくない面状配線99によって接続したため、IDT電極30と第1リフレクタ電極40の間に大きな電位差が発生し、IDT電極30と第1リフレクタ電極40の間に大きな不要容量が発生したからではないかと考えられる。これに対して、実施例において、反射特性の低下が小さかったのは、第1リフレクタ電極40とグランド端子Gであるバンプ5とを、インピーダンスが大きな第1配線9によって接続したことにより、IDT電極30と第1リフレクタ電極40の間の電位差の発生が抑制され、IDT電極30と第1リフレクタ電極40の間の不要容量の発生が抑制されたからではないかと考えられる。 On the other hand, in Examples and Comparative Example 2, the reflection characteristics are lower than in Comparative Example 1. However, the degree of decrease in reflection characteristics is large in Comparative Example 1 and small in Examples. In Comparative Example 1, the reflection characteristics were significantly reduced because the first reflector electrode 40 and the bump 5, which is the ground terminal G, were connected by a planar wiring 99 whose impedance was not large. This is considered to be because a large potential difference was generated between the IDT electrode 30 and the first reflector electrode 40, and a large unnecessary capacitance was generated between the IDT electrode 30 and the first reflector electrode 40. On the other hand, in the example, the decline in reflection characteristics was small because the first reflector electrode 40 and the bump 5, which is the ground terminal G, were connected by the first wiring 9 having a large impedance. This is considered to be because the generation of a potential difference between the IDT electrode 30 and the first reflector electrode 40 was suppressed, and the generation of unnecessary capacitance between the IDT electrode 30 and the first reflector electrode 40 was suppressed.
 以上より、IDT電極で発生した熱を、効率的にバンプに放熱しながら、IDT電極とリフレクタ電極との間の不要容量の発生を抑制し、特性の低下を抑制するためには、本発明が有効であることが確認できた。 From the above, the present invention is effective in efficiently dissipating the heat generated in the IDT electrode to the bump, while suppressing the generation of unnecessary capacitance between the IDT electrode and the reflector electrode, and suppressing the deterioration of characteristics. It was confirmed that it is effective.
[第2実施形態]
 図6に、第2実施形態にかかる弾性波フィルタ200を示す。ただし、図6は、弾性波フィルタ200の要部平面図である。
[Second embodiment]
FIG. 6 shows an elastic wave filter 200 according to the second embodiment. However, FIG. 6 is a plan view of essential parts of the elastic wave filter 200.
 第2実施形態にかかる弾性波フィルタ200は、第1実施形態にかかる弾性波フィルタ100の構成の一部に変更を加えた。具体的には、弾性波フィルタ100では、第1配線9の線状部91a、91b、91c、91d、91e、91f、91gの伸びる方向を、弾性波フィルタ100の縦方向Yにしていた。弾性波フィルタ100では、第1配線29の線状部94a、94b、94c、94d、94e、94f、94g、94h、94iの伸びる方向を、弾性波フィルタ100の横方向Xにした。そして、線状部94a~94iを折返し部95a~95hで接続した。ただし、ミアンダ配線領域60の形状、大きさは弾性波フィルタ100と同じにし、その代わりに、弾性波フィルタ100と比べて、線状部94a~94iの長さを短くするとともに、線状部94a~94iの数、および、折返し部95a~95hの数を増やした。 The elastic wave filter 200 according to the second embodiment has a part of the configuration of the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 100, the direction in which the linear portions 91a, 91b, 91c, 91d, 91e, 91f, and 91g of the first wiring 9 extend is the longitudinal direction Y of the elastic wave filter 100. In the elastic wave filter 100, the direction in which the linear portions 94a, 94b, 94c, 94d, 94e, 94f, 94g, 94h, and 94i of the first wiring 29 extend is the lateral direction X of the elastic wave filter 100. Then, the linear portions 94a to 94i were connected by folded portions 95a to 95h. However, the shape and size of the meander wiring region 60 are the same as those of the elastic wave filter 100, and instead, the lengths of the linear portions 94a to 94i are shortened compared to the elastic wave filter 100, and the linear portion 94a is .about.94i and the number of folded portions 95a to 95h were increased.
 弾性波フィルタ200においては、ミアンダ配線領域60の第1辺の内側に折返し部95b、95d、95f、95hが並べて配置され、第2辺62の内側に線状部94iが配置され、第3辺63の内側に折返し部95a、95c、95e、95gが並べて配置され、第4辺64の内側に線状部94aが配置されている。 In the elastic wave filter 200, the folded portions 95b, 95d, 95f, and 95h are arranged side by side on the inside of the first side of the meander wiring region 60, the linear portion 94i is arranged on the inside of the second side 62, and the folded portions 94i are arranged on the inside of the second side 62, The folded parts 95a, 95c, 95e, and 95g are arranged side by side inside the fourth side 63, and the linear part 94a is arranged inside the fourth side 64.
 弾性波フィルタ200は、弾性波フィルタ100に比べて、第1リフレクタ電極40とバンプ5との間に発生する不要容量(浮遊容量)が低減されるという特長をもつ。第1リフレクタ電極40とバンプ5との間に発生する不要容量は、第1配線の各線状部間で発生した不要容量が直列に接続されたものからなるが、この第1リフレクタ電極40とバンプ5との間に発生する不要容量も、弾性波フィルタの特性を低下させたり変動させたりする要因となるため、小さいことが好ましい。 The elastic wave filter 200 has a feature that, compared to the elastic wave filter 100, unnecessary capacitance (stray capacitance) generated between the first reflector electrode 40 and the bump 5 is reduced. The unnecessary capacitance generated between the first reflector electrode 40 and the bump 5 is made up of the unnecessary capacitance generated between each linear portion of the first wiring connected in series. The unnecessary capacitance generated between the elastic wave filter and the elastic wave filter 5 is also a factor that deteriorates or fluctuates the characteristics of the elastic wave filter, so it is preferable that the unnecessary capacitance is small.
 弾性波フィルタ200は、線状部94a~94iの長さが、弾性波フィルタ100の線状部91a~91gの長さよりも短い。また、弾性波フィルタ200は、折返し部95a~95hによって折り返された線状部94a~94iの数が、弾性波フィルタ100の折返し部92a~92fによって折り返された線状部91a~91gの数よりも多い。したがって、各線状部間で発生した不要容量が直列に接続された、第1リフレクタ電極40とバンプ5との間に発生する不要容量は、弾性波フィルタ200の方が、弾性波フィルタ100よりも小さい。したがって、弾性波フィルタ200は、弾性波フィルタ100に比べて、第1リフレクタ電極40とバンプ5との間に発生する不要容量による特性の低下や変動が抑制されている。 In the elastic wave filter 200, the lengths of the linear parts 94a to 94i are shorter than the lengths of the linear parts 91a to 91g of the elastic wave filter 100. Further, in the elastic wave filter 200, the number of linear parts 94a to 94i folded back by the folding parts 95a to 95h is greater than the number of linear parts 91a to 91g folded back by the folding parts 92a to 92f of the elastic wave filter 100. There are also many. Therefore, the unnecessary capacitance generated between the first reflector electrode 40 and the bump 5, in which the unnecessary capacitance generated between each linear portion is connected in series, is smaller in the elastic wave filter 200 than in the elastic wave filter 100. small. Therefore, in the elastic wave filter 200, as compared to the elastic wave filter 100, deterioration and fluctuation in characteristics due to unnecessary capacitance generated between the first reflector electrode 40 and the bump 5 are suppressed.
[第3実施形態]
 図7に、第3実施形態にかかる弾性波フィルタ300を示す。ただし、図7は、弾性波フィルタ300の要部平面図である。
[Third embodiment]
FIG. 7 shows an elastic wave filter 300 according to a third embodiment. However, FIG. 7 is a plan view of essential parts of the elastic wave filter 300.
 第3実施形態にかかる弾性波フィルタ300は、第1実施形態にかかる弾性波フィルタ100に新たな構成を追加した。具体的には、弾性波フィルタ100では、第1リフレクタ電極40だけが、第1配線9によってグランド端子Gであるバンプ5に接続されていた。これに対し、弾性波フィルタ300では、第2リフレクタ電極50についても、別の第1配線9によって、別のグランド端子Gであるバンプ5に接続した。 The elastic wave filter 300 according to the third embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 100, only the first reflector electrode 40 was connected to the bump 5, which is the ground terminal G, by the first wiring 9. On the other hand, in the elastic wave filter 300, the second reflector electrode 50 is also connected to the bump 5, which is another ground terminal G, through another first wiring 9.
 弾性波フィルタ300は、弾性波フィルタ100に比べて、IDT30において発生する熱を放熱させる効率が、より向上している。 Compared to the elastic wave filter 100, the elastic wave filter 300 has improved efficiency in dissipating heat generated in the IDT 30.
[第4実施形態]
 図8に、第4実施形態にかかる弾性波フィルタ400を示す。ただし、図8は、弾性波フィルタ400の要部平面図である。
[Fourth embodiment]
FIG. 8 shows an elastic wave filter 400 according to a fourth embodiment. However, FIG. 8 is a plan view of essential parts of the elastic wave filter 400.
 第4実施形態にかかる弾性波フィルタ400は、第1実施形態にかかる弾性波フィルタ100の構成の一部に変更を加えた。具体的には、弾性波フィルタ400は、IDT電極30の第1バスバー33に凸部33aを形成し、第2バスバー34に凸部34aを形成し、第1リフレクタ電極40の第3バスバー42に凹部42aを形成し、第4バスバー43に凹部43aを形成し、凸部33aと凹部42aとを間隔を空けて嵌合させ、凸部34aと凹部43aとを間隔を空けて嵌合させた。 The elastic wave filter 400 according to the fourth embodiment has a part of the configuration of the elastic wave filter 100 according to the first embodiment. Specifically, the elastic wave filter 400 includes a convex portion 33a formed on the first bus bar 33 of the IDT electrode 30, a convex portion 34a formed on the second bus bar 34, and a convex portion 34a formed on the third bus bar 42 of the first reflector electrode 40. A recess 42a was formed, a recess 43a was formed in the fourth bus bar 43, the protrusion 33a and the recess 42a were fitted with a space between them, and the protrusion 34a and the recess 43a were fitted with a space between them.
 なお、上記の構成に代えて、第1バスバー33、第2バスバー34に、それぞれ凹部を設け、第3バスバー42、第4バスバー43に、それぞれ凸部を設け、これらの凹部と凸部とを嵌合させてもよい。 Note that instead of the above configuration, the first bus bar 33 and the second bus bar 34 are each provided with a concave portion, the third bus bar 42 and the fourth bus bar 43 are each provided with a convex portion, and these concave portions and convex portions are connected. They may be fitted together.
 弾性波フィルタ400は、弾性波フィルタ100に比べて、IDT電極30の熱を第1リフレクタ電極40に放熱させる効率が向上しており、IDT電極30で発生した熱を放熱させる総合的な効率が、更に向上している。 Compared to the acoustic wave filter 100, the acoustic wave filter 400 has improved efficiency in dissipating heat from the IDT electrode 30 to the first reflector electrode 40, and has improved overall efficiency in dissipating heat generated in the IDT electrode 30. , has further improved.
[第5実施形態]
 図9に、第5実施形態にかかる弾性波フィルタ500を示す。ただし、図9は、弾性波フィルタ500の要部平面図である。
[Fifth embodiment]
FIG. 9 shows an elastic wave filter 500 according to the fifth embodiment. However, FIG. 9 is a plan view of essential parts of the elastic wave filter 500.
 第5実施形態にかかる弾性波フィルタ500は、第1実施形態にかかる弾性波フィルタ100に新たな構成を追加した。具体的には、弾性波フィルタ500は、IDT電極30の第1バスバー33に凸部33aを形成し、第2バスバー34に凸部34aを形成した。そして、凸部33aを間に絶縁層81を介在させたうえで第1リフレクタ電極40の第3バスバー42に重ね、凸部34aを間に絶縁層81を介在させたうえで第1リフレクタ電極40の第4バスバー43に重ねた。 The elastic wave filter 500 according to the fifth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 500, a protrusion 33a is formed on the first bus bar 33 of the IDT electrode 30, and a protrusion 34a is formed on the second bus bar 34. Then, the convex portion 33a is stacked on the third bus bar 42 of the first reflector electrode 40 with an insulating layer 81 interposed therebetween, and the convex portion 34a is stacked on the third bus bar 42 of the first reflector electrode 40 with an insulating layer 81 interposed therebetween. It was stacked on the fourth bus bar 43 of.
 弾性波フィルタ500は、弾性波フィルタ100に比べて、IDT電極30の熱を第1リフレクタ電極40に放熱させる効率が向上しており、IDT電極30で発生した熱を放熱させる総合的な効率が、更に向上している。 Compared to the elastic wave filter 100, the acoustic wave filter 500 has improved efficiency in dissipating heat from the IDT electrode 30 to the first reflector electrode 40, and has improved overall efficiency in dissipating heat generated in the IDT electrode 30. , has further improved.
[第6実施形態]
 図10に、第6実施形態にかかる弾性波フィルタ600を示す。ただし、図10は、弾性波フィルタ600の要部平面図である。
[Sixth embodiment]
FIG. 10 shows an elastic wave filter 600 according to the sixth embodiment. However, FIG. 10 is a plan view of essential parts of the elastic wave filter 600.
 第6実施形態にかかる弾性波フィルタ600は、第1実施形態にかかる弾性波フィルタ100に新たな構成を追加した。具体的には、弾性波フィルタ600は、基板1の第1配線9を形成する領域に、まず、矩形の面積が大きい面状配線85を設け、その上に絶縁層86を設けた。そして、絶縁層86の上に、第1配線9を形成した。面状配線85は、どこにも接続されておらず、浮き電極になっている。 The elastic wave filter 600 according to the sixth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the acoustic wave filter 600, a rectangular planar wiring 85 having a large area is first provided in a region of the substrate 1 where the first wiring 9 is to be formed, and an insulating layer 86 is provided thereon. Then, the first wiring 9 was formed on the insulating layer 86. The planar wiring 85 is not connected to anything and is a floating electrode.
 弾性波フィルタ600は、弾性波フィルタ100に比べて、第1リフレクタ電極40の熱を放熱させる効率が向上しており、IDT電極30で発生した熱を放熱させる総合的な効率が、更に向上している。 Compared to the elastic wave filter 100, the elastic wave filter 600 has improved efficiency in dissipating heat from the first reflector electrode 40, and further improves overall efficiency in dissipating heat generated in the IDT electrode 30. ing.
[第7実施形態]
 図11に、第7実施形態にかかる弾性波フィルタ700を示す。ただし、図11は、弾性波フィルタ700の説明図(要部断面図)である。
[Seventh embodiment]
FIG. 11 shows an elastic wave filter 700 according to a seventh embodiment. However, FIG. 11 is an explanatory diagram (a sectional view of a main part) of the elastic wave filter 700.
 第7実施形態にかかる弾性波フィルタ700は、第1実施形態にかかる弾性波フィルタ100に新たな構成を追加した。具体的には、弾性波フィルタ700は、弾性波フィルタ100の、直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23、キャパシタC0、C1、キャンセル回路6、ダブルモードSAWフィルタ7、配線8、第1配線9などを形成した基板1の上の所定の部分に、第1誘電体層(絶縁体層)71と、第2誘電体層(絶縁体層)72とを形成した。また、第1誘電体層71と第2誘電体層72との層間に、更に配線8を形成した。 The elastic wave filter 700 according to the seventh embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, the elastic wave filter 700 includes the series arm resonators S11 to S15, S21, S22, the parallel arm resonators P11 to P14, P21 to P23, the capacitors C0 and C1, the cancellation circuit 6, A first dielectric layer (insulator layer) 71 and a second dielectric layer (insulator layer) are formed on a predetermined portion of the substrate 1 on which the double mode SAW filter 7, wiring 8, first wiring 9, etc. are formed. 72 was formed. Further, a wiring 8 was further formed between the first dielectric layer 71 and the second dielectric layer 72.
 第1誘電体層71、第2誘電体層72の材質は任意であるが、たとえば、SiOを使用することができる。 Although the first dielectric layer 71 and the second dielectric layer 72 may be made of any material, for example, SiO 2 can be used.
 弾性波フィルタ700においては、共振子を形成している領域の第1誘電体層71と第2誘電体層72の合計の厚さ寸法D1を、その他の領域の第1誘電体層71と第2誘電体層72の合計の厚さ寸法D2よりも、小さくしている。共振子を形成している領域の第1誘電体層71と第2誘電体層72の合計の厚さ寸法D1を小さくしたのは、第1誘電体層71、第2誘電体層72によって、IDT電極30の励振が抑制されることがないようにするためである。その他の領域の第1誘電体層71と第2誘電体層72の合計の厚さ寸法D2を大きくしたのは、第1誘電体層71、第2誘電体層72を利用(経由)して、IDT電極30で発生した熱を外部に放熱させるためである。 In the acoustic wave filter 700, the total thickness dimension D1 of the first dielectric layer 71 and the second dielectric layer 72 in the region forming the resonator is set to The total thickness dimension D2 of the two dielectric layers 72 is made smaller. The reason why the total thickness dimension D1 of the first dielectric layer 71 and the second dielectric layer 72 in the region forming the resonator is reduced is because the first dielectric layer 71 and the second dielectric layer 72 This is to prevent the excitation of the IDT electrode 30 from being suppressed. The total thickness dimension D2 of the first dielectric layer 71 and the second dielectric layer 72 in other areas was increased by using (via) the first dielectric layer 71 and the second dielectric layer 72. This is to radiate heat generated in the IDT electrode 30 to the outside.
 弾性波フィルタ700は、第1誘電体層71、第2誘電体層72を形成したことによって、放熱効果が更に向上している。また、弾性波フィルタ700は、第1誘電体層71、第2誘電体層72を形成したことによって、直列腕共振子S11~S15、S21、S22、並列腕共振子P11~P14、P21~P23、キャパシタC0、C1、キャンセル回路6、ダブルモードSAWフィルタ7、配線8、第1配線9などが、外部から保護されている。また、弾性波フィルタ700は、第1誘電体層71、第2誘電体層72を形成したことによって、配線8の立体配線が可能になっている。 The heat dissipation effect of the elastic wave filter 700 is further improved by forming the first dielectric layer 71 and the second dielectric layer 72. Furthermore, by forming the first dielectric layer 71 and the second dielectric layer 72, the elastic wave filter 700 includes series arm resonators S11 to S15, S21, S22, parallel arm resonators P11 to P14, P21 to P23. , capacitors C0, C1, cancel circuit 6, double mode SAW filter 7, wiring 8, first wiring 9, etc. are protected from the outside. In addition, in the acoustic wave filter 700, by forming the first dielectric layer 71 and the second dielectric layer 72, three-dimensional wiring of the wiring 8 is possible.
[第8実施形態]
 図12に、第8実施形態にかかる弾性波フィルタ800を示す。ただし、図12は、弾性波フィルタ800の要部平面図である。
[Eighth embodiment]
FIG. 12 shows an elastic wave filter 800 according to the eighth embodiment. However, FIG. 12 is a plan view of essential parts of the elastic wave filter 800.
 第8実施形態にかかる弾性波フィルタ800は、第1実施形態にかかる弾性波フィルタ100に新たな構成を追加した。具体的には、弾性波フィルタ800は、ミアンダ配線領域60内において、第1配線9に、配線欠落部93を形成した。 The elastic wave filter 800 according to the eighth embodiment has a new configuration added to the elastic wave filter 100 according to the first embodiment. Specifically, in the elastic wave filter 800, a wiring missing portion 93 is formed in the first wiring 9 within the meander wiring region 60.
 弾性波フィルタ800は、弾性波フィルタ100に比べて、IDT電極30と第1リフレクタ電極40の間の電位差をより小さくすることができ、IDT電極30と第1リフレクタ電極40の間の不要容量の発生をより抑制することができる。なお、配線欠落部93の間隔は、良好な放熱性を維持するためには、IDT電極30と第1リフレクタ電極40の間の間隔よりも小さい程度であることが好ましい。 The elastic wave filter 800 can make the potential difference between the IDT electrode 30 and the first reflector electrode 40 smaller than the elastic wave filter 100, and can reduce unnecessary capacitance between the IDT electrode 30 and the first reflector electrode 40. The occurrence can be further suppressed. Note that the interval between the wiring missing portions 93 is preferably smaller than the interval between the IDT electrode 30 and the first reflector electrode 40 in order to maintain good heat dissipation.
 以上、実施形態にかかる弾性波フィルタ100、200、300、400、500、600、700、800について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って種々の変更をなすことができる。 The elastic wave filters 100, 200, 300, 400, 500, 600, 700, and 800 according to the embodiments have been described above. However, the present invention is not limited to the content described above, and various changes can be made in accordance with the spirit of the invention.
 たとえば、上記実施形態では、弾性波フィルタとして、2つの弾性波フィルタを含むデュプレクサを示したが、弾性波フィルタはデュプレクサには限られず、単一の弾性波フィルタであってもよい。また、上記実施形態では、弾性波フィルタがラダー型フィルタであったが、弾性波フィルタはラダー型フィルタには限られない。 For example, in the above embodiment, a duplexer including two elastic wave filters is shown as the elastic wave filter, but the elastic wave filter is not limited to a duplexer, and may be a single elastic wave filter. Further, in the above embodiment, the elastic wave filter is a ladder type filter, but the elastic wave filter is not limited to a ladder type filter.
 また、上記実施形態で示したミアンダ配線領域の形状や大きさは例示であり、適宜、形状や大きさを変更することができる。 Further, the shape and size of the meander wiring region shown in the above embodiments are merely examples, and the shape and size can be changed as appropriate.
 本発明の一実施態様にかかる弾性波フィルタは、「課題を解決するための手段」の欄に記載したとおりである。 The elastic wave filter according to one embodiment of the present invention is as described in the "Means for Solving the Problems" section.
 この弾性波フィルタにおいて、第1配線は、少なくとも2つの折返し部を備え、第1配線によって、基板上に、矩形のミアンダ配線領域が形成されることも好ましい。この場合には、第1配線の長さを長くすることが可能であり、第1配線のインピーダンスを大きくすることが可能であるため、IDT電極とリフレクタ電極の間の不要容量の発生をより抑制することが可能である。 In this elastic wave filter, it is also preferable that the first wiring includes at least two folded portions, and that a rectangular meander wiring region is formed on the substrate by the first wiring. In this case, it is possible to increase the length of the first wiring and increase the impedance of the first wiring, so it is possible to further suppress the generation of unnecessary capacitance between the IDT electrode and the reflector electrode. It is possible to do so.
 ミアンダ配線領域は、第1配線が設けられた配線パターン部と、第1配線が設けられていない非配線パターン部とからなり、配線パターン部の総面積が、非配線パターン部の総面積よりも大きいことも好ましい。この場合において、ミアンダ配線領域の面積が一定のとき、配線パターン部の総面積を、非配線パターン部の総面積よりも、大きくすればするほど、第1配線による放熱効率が向上する。 The meander wiring area consists of a wiring pattern portion where the first wiring is provided and a non-wiring pattern portion where the first wiring is not provided, and the total area of the wiring pattern portion is larger than the total area of the non-wiring pattern portion. It is also preferable that it is large. In this case, when the area of the meander wiring region is constant, the larger the total area of the wiring pattern portion is than the total area of the non-wiring pattern portion, the more the heat dissipation efficiency by the first wiring improves.
 ミアンダ配線領域は、配線が設けられた配線パターン部と、配線が設けられていない非配線パターン部とからなり、配線パターン部の総面積が、非配線パターン部の総面積よりも小さいことも好ましい。この場合において、ミアンダ配線領域の面積、および、配線(線状部)の間隔が一定のとき、配線パターン部の総面積を、非配線パターン部の総面積よりも、小さくすればするほど、第1配線の幅を小さくすることができ、第1配線の長さを長くすることができるため、第1配線のインピーダンスを大きくすることができ、IDT電極とリフレクタ電極の間の不要容量の発生をより抑制することができる。 The meandering wiring region consists of a wiring pattern portion provided with wiring and a non-wiring pattern portion not provided with wiring, and it is also preferable that the total area of the wiring pattern portion is smaller than the total area of the non-wiring pattern portion. . In this case, when the area of the meander wiring region and the interval between the wiring (linear parts) are constant, the smaller the total area of the wiring pattern part is than the total area of the non-wiring pattern part, the more Since the width of one wiring can be reduced and the length of the first wiring can be increased, the impedance of the first wiring can be increased, and unnecessary capacitance between the IDT electrode and the reflector electrode can be reduced. This can be further suppressed.
 ミアンダ配線領域の外縁は、順に直角に繋がる第1辺、第2辺、第3辺、第4辺を備え、第1辺および第3辺は、IDT電極指が伸びる方向に伸び、第1辺は前記第3辺よりも、リフレクタ電極の近くに配置され、第2辺の内側に、複数の前記折返し部が並べて配置され、第4辺の内側に、別の複数の折返し部が並べて配置されることも好ましい。この場合には、リフレクタ電極のリフレクタ電極指が伸びる方向と、第1配線の線状部が伸びる方向が一致するため、第1配線の線状部を、リフレクタ電極のリフレクタ電極指として利用(援用)することができる。この場合において、リフレクタ電極指どうしの間のピッチと、第1配線の線状部どうしの間のピッチとが等しいことも好ましい。 The outer edge of the meander wiring area has a first side, a second side, a third side, and a fourth side that are connected at right angles in order, and the first side and the third side extend in the direction in which the IDT electrode finger extends, and the first side are arranged closer to the reflector electrode than the third side, a plurality of the folded parts are arranged side by side inside the second side, and another plurality of folded parts are arranged side by side inside the fourth side. It is also preferable that In this case, since the direction in which the reflector electrode fingers of the reflector electrode extend and the direction in which the linear portions of the first wiring extend are the same, the linear portions of the first wiring are used as the reflector electrode fingers of the reflector electrode. )can do. In this case, it is also preferable that the pitch between the reflector electrode fingers is equal to the pitch between the linear parts of the first wiring.
 ミアンダ配線領域の外縁は、順に直角に繋がる第1辺、第2辺、第3辺、第4辺を備え、第1辺および第3辺は、IDT電極指が伸びる方向に伸び、第1辺は第3辺よりも、リフレクタ電極の近くに配置され、第1辺の内側に、複数の折返し部が並べて配置され、第4辺の内側に、別の複数の折返し部が並べて配置されることも好ましい。第1辺、第3辺の長さが、第2辺、第4辺の長さよりも長い場合、上記の配置にした方が、各線状部の長さを短くすることができ、折返し部によって折り返される線状部の数を増やすことができるため、リフレクタ電極とバンプとの間に発生する不要容量を小さくすることができ、この不要容量による特性の低下や変動を抑制することができる。この場合において、リフレクタ電極指どうしの間のピッチと、第1配線の線状部どうしの間のピッチとが等しいことも好ましい。 The outer edge of the meander wiring area has a first side, a second side, a third side, and a fourth side that are connected at right angles in order, and the first side and the third side extend in the direction in which the IDT electrode finger extends, and the first side is arranged closer to the reflector electrode than the third side, a plurality of folded parts are arranged side by side inside the first side, and another plurality of folded parts are arranged side by side inside the fourth side. is also preferable. If the lengths of the first side and third side are longer than the lengths of the second side and fourth side, the above arrangement can shorten the length of each linear part, and the folded part Since the number of folded linear parts can be increased, unnecessary capacitance generated between the reflector electrode and the bump can be reduced, and deterioration and fluctuation of characteristics due to this unnecessary capacitance can be suppressed. In this case, it is also preferable that the pitch between the reflector electrode fingers is equal to the pitch between the linear parts of the first wiring.
 IDT電極が、第1バスバーと第2バスバーとを備え、リフレクタ電極が、第3バスバーと第4バスバーとを備え、第1バスバーと第3バスバーとが、間隔を空けて、相互に嵌合して配置され、第2バスバーと第4バスバーとが、間隔を空けて、相互に嵌合して配置されることも好ましい。この場合には、IDT電極の熱をリフレクタ電極に放熱させる効率が向上するため、IDT電極で発生した熱を放熱させる総合的な効率が、更に向上する。 The IDT electrode includes a first bus bar and a second bus bar, the reflector electrode includes a third bus bar and a fourth bus bar, and the first bus bar and the third bus bar fit into each other with a space between them. It is also preferable that the second bus bar and the fourth bus bar are arranged so as to fit into each other with a space between them. In this case, the efficiency of dissipating the heat of the IDT electrode to the reflector electrode is improved, so the overall efficiency of dissipating the heat generated in the IDT electrode is further improved.
 IDT電極が、第1バスバーと第2バスバーとを備え、リフレクタ電極が、第3バスバーと第4バスバーとを備え、第1バスバーと第3バスバーとが、絶縁層を介して、部分的に積層して配置され、第2バスバーと第4バスバーとが、絶縁層を介して、部分的に積層して配置されることも好ましい。この場合には、IDT電極の熱をリフレクタ電極に放熱させる効率が向上するため、IDT電極で発生した熱を放熱させる総合的な効率が、更に向上する。 The IDT electrode includes a first bus bar and a second bus bar, the reflector electrode includes a third bus bar and a fourth bus bar, and the first bus bar and the third bus bar are partially laminated with an insulating layer interposed therebetween. It is also preferable that the second bus bar and the fourth bus bar are arranged so as to be partially laminated with an insulating layer interposed therebetween. In this case, the efficiency of dissipating the heat of the IDT electrode to the reflector electrode is improved, so the overall efficiency of dissipating the heat generated in the IDT electrode is further improved.
 第1配線の途中に、配線パターンが欠落した配線欠落部が形成されることも好ましい。この場合には、IDT電極とリフレクタ電極の間の電位差をより小さくすることができ、IDT電極とリフレクタ電極の間の不要容量の発生をより抑制することができる。なお、配線欠落部の間隔は、良好な放熱性を維持するためには、IDT電極とリフレクタ電極の間の間隔よりも小さいことが好ましい。 It is also preferable that a wiring missing part where the wiring pattern is missing is formed in the middle of the first wiring. In this case, the potential difference between the IDT electrode and the reflector electrode can be made smaller, and the generation of unnecessary capacitance between the IDT electrode and the reflector electrode can be further suppressed. Note that, in order to maintain good heat dissipation, the interval between the wiring missing parts is preferably smaller than the interval between the IDT electrode and the reflector electrode.
 複数の共振子によってラダー型フィルタが構成され、ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、直列腕共振子において、反共振周波数が最も低い直列腕共振子のリフレクタ電極が、第1配線によってバンプに接続されることも好ましい。この場合には、発熱量の大きい共振子のIDT電極で発生した熱を、効率的に放熱させることができる。 A ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator. , is also preferably connected to the bump by the first wiring. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
 複数の共振子によってラダー型フィルタが構成され、ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、直列腕共振子において、IDT電極のIDT電極指どうしの間のピッチが最も大きい直列腕共振子のリフレクタ電極が、第1配線によってバンプに接続されることも好ましい。この場合には、発熱量の大きい共振子のIDT電極で発生した熱を、効率的に放熱させることができる。 A ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and the pitch between the IDT electrode fingers of the IDT electrodes is the largest among the series arm resonators. It is also preferable that the reflector electrode of the series arm resonator is connected to the bump by the first wiring. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
 複数の共振子によってラダー型フィルタが構成され、ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、並列腕共振子において、共振周波数が最も高い並列腕共振子のリフレクタ電極が、第1配線によってバンプに接続されることも好ましい。この場合には、発熱量の大きい共振子のIDT電極で発生した熱を、効率的に放熱させることができる。 A ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and in the parallel arm resonator, the reflector electrode of the parallel arm resonator having the highest resonance frequency is It is also preferable that the first wiring be connected to the bump. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
 複数の共振子によってラダー型フィルタが構成され、ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、並列腕共振子において、IDT電極のIDT電極指どうしの間のピッチが最も小さい並列腕共振子のリフレクタ電極が、第1配線によってバンプに接続されることも好ましい。この場合には、発熱量の大きい共振子のIDT電極で発生した熱を、効率的に放熱させることができる。 A ladder type filter is configured by a plurality of resonators, and the ladder type filter includes a series arm resonator and a parallel arm resonator, and the pitch between the IDT electrode fingers of the IDT electrodes is the smallest in the parallel arm resonator. It is also preferable that the reflector electrode of the parallel arm resonator is connected to the bump by the first wiring. In this case, the heat generated in the IDT electrode of the resonator, which generates a large amount of heat, can be efficiently radiated.
1・・・基板
2・・・バンプ(アンテナ側端子Ant)
3・・・バンプ(送信側端子Tx)
4・・・バンプ(受信側端子Rx)
5・・・バンプ(グランド端子G)
8・・・配線
9・・・第1配線
91a~91g、94a~94i・・・線状部
92a~92f、95a~95h・・・折返し部
93・・・配線欠落部
10・・・送信側フィルタ
20・・・受信側フィルタ
30・・・IDT電極
31・・・第1IDT電極指
32・・・第2IDT電極指
33・・・第1バスバー
34・・・第2バスバー
40・・・第1リフレクタ電極
41・・・リフレクタ電極指
42・・・第3バスバー
43・・・第4バスバー
50・・・第2リフレクタ電極
51・・・リフレクタ電極指
52・・・第5バスバー
53・・・第6バスバー
60・・・ミアンダ配線領域
61・・・第1辺
62・・・第2辺
63・・・第3辺
64・・・第4辺
71・・・第1誘電体層
72・・・第2誘電体層
81、86・・・絶縁層
85・・・面状配線
X・・・弾性波フィルタの横方向
Y・・・弾性波フィルタの縦方向
1... Board 2... Bump (antenna side terminal Ant)
3... Bump (transmission side terminal Tx)
4... Bump (receiving side terminal Rx)
5... Bump (ground terminal G)
8... Wiring 9... First wiring 91a to 91g, 94a to 94i... Linear parts 92a to 92f, 95a to 95h... Turned part 93... Wiring missing part 10... Transmission side Filter 20...Reception side filter 30...IDT electrode 31...First IDT electrode finger 32...Second IDT electrode finger 33...First bus bar 34...Second bus bar 40...First Reflector electrode 41... Reflector electrode finger 42... Third bus bar 43... Fourth bus bar 50... Second reflector electrode 51... Reflector electrode finger 52... Fifth bus bar 53... 6 bus bar 60...meander wiring area 61...first side 62...second side 63...third side 64...fourth side 71...first dielectric layer 72... Second dielectric layers 81, 86... Insulating layer 85... Planar wiring X... Horizontal direction of elastic wave filter Y... Vertical direction of elastic wave filter

Claims (15)

  1.  基板と、
     前記基板上に形成された少なくとも1つの共振子と、
     前記基板上に形成された複数のバンプと、
     前記基板上に形成された複数の配線と、を備えた弾性波フィルタであって、
     前記共振子は、IDT電極指を有するIDT電極と、前記IDT電極指が伸びる方向に対して直角の方向において、前記IDT電極の両側に形成された1対のリフレクタ電極とを備え、
     前記リフレクタ電極は、複数のリフレクタ電極指を備え、
     少なくとも1つの前記共振子は、少なくとも一方の前記リフレクタ電極が、第1配線によって前記バンプに接続され、
     前記第1配線は、少なくとも2つの線状部を備え、
     前記第1配線は、並んで配置された2つの前記線状部を折り返す折返し部を、少なくとも1つ備えている、
     弾性波フィルタ。
    A substrate and
    at least one resonator formed on the substrate;
    a plurality of bumps formed on the substrate;
    An acoustic wave filter comprising a plurality of wirings formed on the substrate,
    The resonator includes an IDT electrode having IDT electrode fingers, and a pair of reflector electrodes formed on both sides of the IDT electrode in a direction perpendicular to a direction in which the IDT electrode fingers extend,
    The reflector electrode includes a plurality of reflector electrode fingers,
    At least one of the resonators has at least one of the reflector electrodes connected to the bump by a first wiring,
    The first wiring includes at least two linear parts,
    The first wiring includes at least one folding portion that folds back the two linear portions arranged side by side.
    elastic wave filter.
  2.  前記第1配線は、少なくとも2つの前記折返し部を備え、
     前記第1配線によって、前記基板上に、矩形のミアンダ配線領域が形成された、
     請求項1に記載された弾性波フィルタ。
    The first wiring includes at least two of the folded parts,
    A rectangular meander wiring area is formed on the substrate by the first wiring,
    The elastic wave filter according to claim 1.
  3.  前記ミアンダ配線領域は、前記第1配線が設けられた配線パターン部と、前記第1配線が設けられていない非配線パターン部とからなり、
     前記配線パターン部の総面積が、前記非配線パターン部の総面積よりも大きい、
     請求項2に記載された弾性波フィルタ。
    The meander wiring area includes a wiring pattern portion where the first wiring is provided and a non-wiring pattern portion where the first wiring is not provided,
    The total area of the wiring pattern portion is larger than the total area of the non-wiring pattern portion.
    The elastic wave filter according to claim 2.
  4.  前記ミアンダ配線領域は、前記配線が設けられた配線パターン部と、前記配線が設けられていない非配線パターン部とからなり、
     前記配線パターン部の総面積が、前記非配線パターン部の総面積よりも小さい、
     請求項2に記載された弾性波フィルタ。
    The meander wiring area includes a wiring pattern portion where the wiring is provided and a non-wiring pattern portion where the wiring is not provided,
    The total area of the wiring pattern portion is smaller than the total area of the non-wiring pattern portion.
    The elastic wave filter according to claim 2.
  5.  前記ミアンダ配線領域の外縁は、順に直角に繋がる第1辺、第2辺、第3辺、第4辺を備え、
     前記第1辺および前記第3辺は、前記IDT電極指が伸びる方向に伸び、
     前記第1辺は前記第3辺よりも、前記リフレクタ電極の近くに配置され、
     前記第2辺の内側に、複数の前記折返し部が並べて配置され、
     前記第4辺の内側に、別の複数の前記折返し部が並べて配置された、
     請求項2ないし4のいずれか1項に記載された弾性波フィルタ。
    The outer edge of the meander wiring region includes a first side, a second side, a third side, and a fourth side that are connected at right angles in order,
    The first side and the third side extend in a direction in which the IDT electrode finger extends,
    the first side is arranged closer to the reflector electrode than the third side,
    A plurality of the folded parts are arranged side by side inside the second side,
    Another plurality of folded portions are arranged side by side inside the fourth side.
    An elastic wave filter according to any one of claims 2 to 4.
  6.  前記ミアンダ配線領域の外縁は、順に直角に繋がる第1辺、第2辺、第3辺、第4辺を備え、
     前記第1辺および前記第3辺は、前記IDT電極指が伸びる方向に伸び、
     前記第1辺は前記第3辺よりも、前記リフレクタ電極の近くに配置され、
     前記第1辺の内側に、複数の前記折返し部が並べて配置され、
     前記第3辺の内側に、別の複数の前記折返し部が並べて配置された、
     請求項2ないし4のいずれか1項に記載された弾性波フィルタ。
    The outer edge of the meander wiring region includes a first side, a second side, a third side, and a fourth side that are connected at right angles in order,
    The first side and the third side extend in a direction in which the IDT electrode finger extends,
    the first side is arranged closer to the reflector electrode than the third side,
    A plurality of folded portions are arranged side by side inside the first side,
    Another plurality of folded portions are arranged side by side inside the third side.
    An elastic wave filter according to any one of claims 2 to 4.
  7.  前記リフレクタ電極指どうしの間のピッチと、前記第1配線の前記線状部どうしの間のピッチとが等しい、
     請求項1ないし6のいずれか1項に記載された弾性波フィルタ。
    the pitch between the reflector electrode fingers and the pitch between the linear portions of the first wiring are equal;
    An elastic wave filter according to any one of claims 1 to 6.
  8.  前記IDT電極が、第1バスバーと第2バスバーとを備え、
     前記リフレクタ電極が、第3バスバーと第4バスバーとを備え、
     前記第1バスバーと前記第3バスバーとが、間隔を空けて、相互に嵌合して配置され、
     前記第2バスバーと前記第4バスバーとが、間隔を空けて、相互に嵌合して配置された、
     請求項1ないし7のいずれか1項に記載された弾性波フィルタ。
    The IDT electrode includes a first bus bar and a second bus bar,
    The reflector electrode includes a third bus bar and a fourth bus bar,
    the first bus bar and the third bus bar are arranged to fit into each other with a space between them;
    The second bus bar and the fourth bus bar are arranged to fit into each other with a gap between them.
    An elastic wave filter according to any one of claims 1 to 7.
  9.  前記IDT電極が、第1バスバーと第2バスバーとを備え、
     前記リフレクタ電極が、第3バスバーと第4バスバーとを備え、
     前記第1バスバーと前記第3バスバーとが、絶縁層を介して、部分的に積層して配置され、
     前記第2バスバーと前記第4バスバーとが、絶縁層を介して、部分的に積層して配置された、
     請求項1ないし7のいずれか1項に記載された弾性波フィルタ。
    The IDT electrode includes a first bus bar and a second bus bar,
    The reflector electrode includes a third bus bar and a fourth bus bar,
    the first bus bar and the third bus bar are arranged in a partially laminated manner with an insulating layer interposed therebetween;
    The second bus bar and the fourth bus bar are arranged in a partially laminated manner with an insulating layer interposed therebetween.
    An elastic wave filter according to any one of claims 1 to 7.
  10.  前記第1配線の途中に、配線パターンが欠落した配線欠落部が形成された、
     請求項1ないし9のいずれか1項に記載された弾性波フィルタ。
    A wiring missing part where the wiring pattern is missing is formed in the middle of the first wiring,
    An elastic wave filter according to any one of claims 1 to 9.
  11.  前記配線欠落部の間隔が、前記IDT電極と前記リフレクタ電極の間の間隔よりも小さい、
     請求項10に記載された弾性波フィルタ。
    The distance between the missing wiring portions is smaller than the distance between the IDT electrode and the reflector electrode.
    The elastic wave filter according to claim 10.
  12.  複数の前記共振子によってラダー型フィルタが構成され、
     前記ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、
     前記直列腕共振子において、反共振周波数が最も低い直列腕共振子の前記リフレクタ電極が、前記第1配線によって前記バンプに接続された、
     請求項1ないし11のいずれか1項に記載された弾性波フィルタ。
    A ladder filter is configured by the plurality of resonators,
    The ladder type filter includes a series arm resonator and a parallel arm resonator,
    In the series arm resonator, the reflector electrode of the series arm resonator having the lowest anti-resonance frequency is connected to the bump by the first wiring.
    An elastic wave filter according to any one of claims 1 to 11.
  13.  複数の前記共振子によってラダー型フィルタが構成され、
     前記ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、
     前記直列腕共振子において、前記IDT電極の前記IDT電極指どうしの間のピッチが最も大きい直列腕共振子の前記リフレクタ電極が、前記第1配線によって前記バンプに接続された、
     請求項1ないし12のいずれか1項に記載された弾性波フィルタ。
    A ladder filter is configured by the plurality of resonators,
    The ladder type filter includes a series arm resonator and a parallel arm resonator,
    In the series arm resonator, the reflector electrode of the series arm resonator having the largest pitch between the IDT electrode fingers of the IDT electrodes is connected to the bump by the first wiring.
    An elastic wave filter according to any one of claims 1 to 12.
  14.  複数の前記共振子によってラダー型フィルタが構成され、
     前記ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、
     前記並列腕共振子において、共振周波数が最も高い並列腕共振子の前記リフレクタ電極が、前記第1配線によって前記バンプに接続された、
     請求項1ないし13のいずれか1項に記載された弾性波フィルタ。
    A ladder filter is configured by the plurality of resonators,
    The ladder type filter includes a series arm resonator and a parallel arm resonator,
    In the parallel arm resonator, the reflector electrode of the parallel arm resonator having the highest resonance frequency is connected to the bump by the first wiring.
    An elastic wave filter according to any one of claims 1 to 13.
  15.  複数の前記共振子によってラダー型フィルタが構成され、
     前記ラダー型フィルタは、直列腕共振子と並列腕共振子とを備え、
     前記並列腕共振子において、前記IDT電極の前記IDT電極指どうしの間のピッチが最も小さい並列腕共振子の前記リフレクタ電極が、前記第1配線によって前記バンプに接続された、
     請求項1ないし14のいずれか1項に記載された弾性波フィルタ。
      
    A ladder filter is configured by the plurality of resonators,
    The ladder type filter includes a series arm resonator and a parallel arm resonator,
    In the parallel arm resonator, the reflector electrode of the parallel arm resonator having the smallest pitch between the IDT electrode fingers of the IDT electrode is connected to the bump by the first wiring.
    An elastic wave filter according to any one of claims 1 to 14.
PCT/JP2023/015010 2022-04-27 2023-04-13 Elastic wave filter WO2023210393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073908 2022-04-27
JP2022073908 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210393A1 true WO2023210393A1 (en) 2023-11-02

Family

ID=88518499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015010 WO2023210393A1 (en) 2022-04-27 2023-04-13 Elastic wave filter

Country Status (1)

Country Link
WO (1) WO2023210393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200363A (en) * 1997-01-09 1998-07-31 Toshiba Corp Surface acoustic wave device and manufacture of the same
JP2005020634A (en) * 2003-06-27 2005-01-20 Kyocera Corp Surface acoustic wave element
JP2017022501A (en) * 2015-07-08 2017-01-26 太陽誘電株式会社 Acoustic wave device, branching filter, and module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200363A (en) * 1997-01-09 1998-07-31 Toshiba Corp Surface acoustic wave device and manufacture of the same
JP2005020634A (en) * 2003-06-27 2005-01-20 Kyocera Corp Surface acoustic wave element
JP2017022501A (en) * 2015-07-08 2017-01-26 太陽誘電株式会社 Acoustic wave device, branching filter, and module

Similar Documents

Publication Publication Date Title
US10469055B2 (en) Filter device including longitudinally coupled resonator elastic wave filter and elastic wave resonator
JP6547617B2 (en) Electronic parts
EP2141805B1 (en) Resonator device, filter including the same, and duplexer
US8710940B2 (en) Elastic wave device having a capacitive electrode on the piezoelectric substrate
JP5423931B2 (en) Elastic wave splitter
US8421560B2 (en) Boundary acoustic wave resonator and ladder filter
EP1482639A2 (en) Surface acoustic wave filters and duplexers including the same
JP6010350B2 (en) Elastic wave device
US10812043B2 (en) Acoustic wave filter device
US20100176900A1 (en) Surface acoustic wave resonator and ladder-type filter
US10622964B2 (en) Elastic wave device
CN111149293B (en) Elastic wave filter device
US11362643B2 (en) Multiplexer
US20220360252A1 (en) Acoustic wave device, and ladder filter including the same
US8686809B2 (en) Ladder-type filter including a dielectric film having a side surface with a heightwise inclination
WO2023210393A1 (en) Elastic wave filter
JP6832737B2 (en) Surface acoustic wave resonators, demultiplexers and communication devices
JPH06164309A (en) Surface acoustic wave filter
WO2018142812A1 (en) Acoustic wave device, duplexer, and filter device
WO2022019072A1 (en) Acoustic wave filter, and multiplexer
JP6642385B2 (en) Surface acoustic wave filter
WO2018123545A1 (en) Multiplexer
WO2023210353A1 (en) Composite filter device
US20240275362A1 (en) Filter device and multiplexer
JP5862210B2 (en) High frequency electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796137

Country of ref document: EP

Kind code of ref document: A1