WO2023210357A1 - Actuator, and optical device comprising same - Google Patents

Actuator, and optical device comprising same Download PDF

Info

Publication number
WO2023210357A1
WO2023210357A1 PCT/JP2023/014769 JP2023014769W WO2023210357A1 WO 2023210357 A1 WO2023210357 A1 WO 2023210357A1 JP 2023014769 W JP2023014769 W JP 2023014769W WO 2023210357 A1 WO2023210357 A1 WO 2023210357A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
actuator
insulating layer
core layer
magnet
Prior art date
Application number
PCT/JP2023/014769
Other languages
French (fr)
Japanese (ja)
Inventor
真弥 井上
博司 山崎
恭也 大薮
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023210357A1 publication Critical patent/WO2023210357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to an actuator and an optical device equipped with the same.
  • Patent Document 1 describes an optical path shifting device for shifting the optical path of image light in a projector.
  • a plurality of actuators are used to swing the optical member.
  • Each actuator includes a magnet and a coil.
  • a glass plate serving as an optical member is swung by current flowing through the coils of a plurality of actuators.
  • An object of the present invention is to provide an actuator that can be made smaller and thinner, increase the driving force, and suppress the complexity of the manufacturing process, and an optical device equipped with the actuator.
  • An actuator includes a printed circuit board and a magnet, and the printed circuit board has first and second main surfaces facing opposite to each other, and the first main surface and the a core layer formed of a magnetic material and having first and second side surfaces connecting the first and second main surfaces; an insulating layer surrounding one side surface and the second side surface, and the first main surface, the second main surface, the first side surface, and the second side surface of the core layer through the insulating layer. and a winding layer wound around the magnet, and the magnet is provided to be movable relative to the winding layer and the core layer.
  • the magnetic flux that is formed when a current flows through the winding layer of the printed circuit board acts on the magnet.
  • the magnet is thereby driven relative to the winding layer.
  • magnetic flux is formed in a direction parallel to the first and second main surfaces of the core layer. This eliminates the need to increase the area occupied by the windings on the printed circuit board.
  • the magnetic flux density in a plane parallel to the lamination direction increases. This increases the interaction between the magnetic flux formed by the winding layer and the core layer and the magnetic flux formed by the magnet.
  • the winding layer and the core layer can be formed during the manufacturing process of the printed circuit board. Thereby, the manufacturing process of the actuator is not complicated. As a result, the actuator can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
  • the connecting portion may be configured to be deformable so that the first support and the second support are movable relative to each other. In this case, multiple parts of the actuator are integrated in structure.
  • the first support, the second support, and the connecting portion may be formed by a common support plate.
  • the positional relationship between the first support, the second support, and the connecting portion can be maintained with a simple structure. Furthermore, the manufacturing process of the actuator is simplified.
  • the magnet may be arranged so that when a current flows through the winding layer, a magnetic flux passing through the core layer and a magnetic flux within the magnet are aligned in substantially the same direction.
  • the magnet may be arranged so that when a current flows through the winding layer, the magnetic flux passing through the core layer and the magnetic flux within the magnet are substantially parallel.
  • the winding layer and the magnet can be arranged in parallel.
  • the length of the area occupied by the winding layer and the magnet can be reduced.
  • the insulating layer includes a first insulating layer disposed on the first main surface of the core layer and a second insulating layer disposed on the second main surface of the core layer. a third insulating layer disposed on the first side surface of the core layer; and a fourth insulating layer disposed on the second side surface of the core layer; The first, second, third, and fourth insulating layers surround the first main surface, the second main surface, the first side surface, and the second side surface of the core layer. may be placed on top.
  • magnetic flux in a direction parallel to the first and second main surfaces of the core layer is formed with a simple configuration. According to this configuration, since the magnetic flux is more concentrated in the core layer, the magnetic flux density in a plane parallel to the lamination direction increases. This further increases the interaction between the magnetic flux formed by the winding layer and the core layer and the magnetic flux formed by the magnet. Therefore, it becomes possible to further increase the driving force by the winding layer and the core layer.
  • the thickness of the first insulating layer and the thickness of the second insulating layer may be substantially equal.
  • the core layer is arranged at the center of the winding layers in the stacking direction.
  • the distribution of magnetic flux density becomes symmetrical with respect to the core layer in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the first and second insulating layers within the core layer. As a result, it becomes possible to improve the operating performance of the actuator.
  • the thickness of the third insulating layer and the thickness of the fourth insulating layer may be substantially equal.
  • the core layer is arranged at the center of the winding layer.
  • the distribution of magnetic flux density becomes symmetrical with respect to the core layer in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the first and second insulating layers within the core layer. As a result, it becomes possible to further improve the operating performance of the actuator.
  • the magnetic material may include any one of an electromagnetic steel sheet, a silicon steel sheet, iron, or permalloy.
  • An optical device includes the actuator and an optical element movably provided with one of the printed circuit board and the magnet of the actuator.
  • the optical element is driven by the above actuator.
  • the actuator can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
  • the optical device can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
  • (11) a first support that supports one of the printed circuit board and the magnet of the actuator; a second support that supports the other of the printed circuit board and the magnet of the actuator; the optical element is provided on one of the first and second supports; It's okay.
  • the first support and the second support move relative to each other while the connecting portion is deformed by driving the magnet by the winding layer and core layer of the actuator.
  • a plurality of parts of the optical device are integrated with the first support, the second support, and the connecting portion with a simple configuration.
  • the second support has an opening, and the first support is connected to the second support by the connecting portion so as to be located within the opening of the second support.
  • the optical element may be coupled to the first support.
  • the optical element can be easily moved by moving the first support disposed within the opening of the second support relative to the second support using the actuator.
  • the optical element may include an optical member that refracts or reflects light, and the optical member may be provided to change the direction of light by being driven by the actuator.
  • the optical device can be used as a light shifting device.
  • the optical element may include an image sensor, and the image sensor may be provided so that the position and inclination of light reception are changed by being driven by the actuator.
  • the position of light reception and the inclination of light reception can be changed by relative movement of the image sensor. Thereby, changes in the light receiving state of the image sensor due to shaking of the optical device can be corrected.
  • an actuator that can be made smaller and thinner, increase the driving force, and suppress the complexity of the manufacturing process, and an optical device equipped with the actuator.
  • FIG. 1 is a plan view of a printed circuit board in an actuator according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along lines AA and BB of the printed circuit board of FIG.
  • FIG. 3 is a plan view showing an actuator according to one embodiment.
  • FIG. 4 is a sectional view taken along line CC of the actuator shown in FIG.
  • FIG. 5 is a plan view showing the configuration of an optical path shift device including an actuator.
  • FIG. 6 is a sectional view taken along line DD of the optical path shift device of FIG.
  • FIG. 7 is a diagram showing another example of the actuator.
  • FIG. 8 is a diagram showing the configuration of an image sensor arrangement plate including an actuator.
  • FIG. 9 is a diagram showing a modification of the image sensor arrangement plate.
  • FIG. 10 is a diagram showing a modification of the image sensor arrangement plate.
  • FIG. 11 is a sectional view taken along line EE of the image sensor arrangement plate of FIG.
  • FIG. 1 is a plan view of a printed circuit board in an actuator according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along lines AA and BB of the printed circuit board of FIG.
  • the upper part shows a cross-sectional view taken along line AA of the printed circuit board
  • the lower part shows a cross-sectional view taken along line BB of the printed circuit board.
  • printed circuit board 100 includes a core layer 10, a base insulating layer 20, a conductor layer 30, and a cover insulating layer 40.
  • the internal structure of the cover insulating layer 40 is mainly illustrated, and the illustration of the base insulating layer 20 is omitted.
  • the core layer 10 is formed of, for example, a magnetic material with high relative magnetic permeability, and is preferably formed of a soft magnetic material. Magnetic materials include electrical steel sheets, silicon steel sheets, iron, permalloy, and the like.
  • the core layer 10 has a flat plate shape extending in one direction. In this example, the core layer 10 has a rectangular shape.
  • the thickness t1 of the core layer 10 is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • a direction parallel to one side of the core layer 10 and parallel to the upper and lower surfaces of the core layer 10 will be referred to as a first direction. Further, a direction perpendicular to the first direction and parallel to the upper and lower surfaces of the core layer 10 is referred to as a second direction.
  • a pair of opposing sides of the core layer 10 extend in the first direction, and another pair of opposing sides of the core layer 10 extend in the second direction.
  • the core layer 10 is not limited to a rectangular shape, and may have other shapes such as an ellipse or a polygon.
  • the base insulating layer 20 is formed of resin such as polyimide.
  • Base insulating layer 20 is formed to surround core layer 10 .
  • the base insulating layer 20 is formed on the upper surface, the lower surface, both side surfaces parallel to the first direction, and both side surfaces parallel to the second direction (hereinafter referred to as end surfaces) of the core layer 10. be done.
  • the base insulating layer 20 is formed of a base insulating layer 20A that contacts the upper surface of the core layer 10 and a base insulating layer 20B that contacts the lower surface, both side surfaces, and both end surfaces of the core layer 10.
  • the base insulating layer 20A contacts the lower surface and inner surface of a conductor layer 30A that constitutes a part of a winding portion 31a, which will be described later.
  • Base insulating layer 20B contacts the upper surface and inner surface of conductor layer 30B that constitutes another part of winding portion 31a, which will be described later.
  • the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B are, for example, 5 ⁇ m or more and 10 ⁇ m or less.
  • the difference between the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B is preferably 5 ⁇ m or less.
  • the absolute value of the difference between the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B is 50% or less of the thickness t2a of the base insulating layer 20A.
  • the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B are substantially equal. As a result, the distribution of magnetic flux, which will be described later, in a plane perpendicular to the first direction becomes more uniform.
  • the thicknesses t2c and t2d of the base insulating layer 20B on both side surfaces are, for example, 5 ⁇ m or more and 10 ⁇ m or less.
  • the difference between the thicknesses t2c and t2d of the base insulating layer 20B on both sides is preferably 5 ⁇ m or less.
  • the absolute value of the difference between the thicknesses t2c and t2d of the base insulating layer 20B on both sides is 50% or less of the thickness t2c of the base insulating layer 20B.
  • the thicknesses t2c and t2d of the base insulating layer 20B on both sides are substantially equal. Thereby, the distribution of magnetic flux, which will be described later, in a plane parallel to the first direction becomes more uniform.
  • the conductor layer 30 includes a linear winding portion 31a, wires 31b, 31c, and rectangular terminals 31d, 31e.
  • the winding portion 31a is wound around the core layer 10 via the base insulating layer 20.
  • One end of the winding portion 31a is connected to one end of the wiring 31b.
  • the other end of the winding portion 31a is connected to one end of the wiring 31c.
  • the width W1 of the winding portion 31a and the widths W2 and W3 of the wirings 31b and 31c are preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • the width W1 of the winding portion 31a and the widths W2 and W3 of the wirings 31b and 31c are 50 ⁇ m or more and 100 ⁇ m or less.
  • the winding portion 31a and the core layer 10 constitute a coil.
  • the winding portion 31a in FIG. 1 includes a winding portion 31aa that contacts the upper surface and both side surfaces of the base insulating layer 20A and a winding portion 31ab that contacts the lower surface and both side surfaces of the base insulating layer 20B. configured.
  • the thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab are, for example, 6 ⁇ m or more and 50 ⁇ m or less.
  • the difference between the thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab is preferably 10 ⁇ m or less.
  • the absolute value of the difference between the thickness t3a of the winding part 31aa and the thickness t3b of the winding part 31ab is 50% or less of the thickness t3a of the winding part 31aa.
  • the thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab are substantially equal. Thereby, the distribution of magnetic flux, which will be described later, in a plane parallel to the first direction becomes more uniform.
  • only the base insulating layer 20 exists between the core layer 10 and the winding portion 31a. That is, only an insulating layer exists between the core layer 10 and the winding portion 31a, and no other layer such as a magnetic material or a conductive material exists. Further, in this embodiment, only the base insulating layer 20 formed of the same insulating material exists between the core layer 10 and the winding portion 31a.
  • the terminals 31d and 31e are arranged on one end side of the printed circuit board 100 in the first direction.
  • the terminal 31d is connected to the other end of the wiring 31b. Further, the terminal 31d is electrically connected to the external terminal OE1 of the printed circuit board 100 via the conductive wire CL1.
  • Terminal 31e is connected to the other end of wiring 31c. Further, the terminal 31e is electrically connected to an external terminal OE2 of the printed circuit board 100 via a conductive wire CL2.
  • the widths of the terminals 31d and 31e are larger than the widths of the wirings 31b and 31c. Note that the terminals 31d and 31e are not limited to a rectangular shape, but may have other shapes such as a circular shape, an elliptical shape, or a polygonal shape.
  • the direction from the winding portion 31a toward the terminals 31d, 31e will be referred to as one direction
  • the direction away from the winding portion 31a in the opposite direction from the terminals 31d, 31e will be referred to as the other direction.
  • the cover insulating layer 40 is formed to entirely cover the conductor layer 30 and the base insulating layer 20.
  • the cover insulating layer 40 is made of resin such as polyimide.
  • the cover insulating layer 40 includes a cover insulating layer 40A that contacts the upper surface, both side surfaces, and both end surfaces of the winding portion 31aa, and a cover insulating layer 40B that contacts the lower surface, both side surfaces, and both end surfaces of the winding portion 31ab. It is formed.
  • the thickness t4a of the cover insulating layer 40A and the thickness t4b of the cover insulating layer 40B are, for example, 8 ⁇ m or more and 50 ⁇ m or less.
  • the length of the cover insulating layer 40 in one direction (the other direction), that is, the length L1 of the printed circuit board 100 in one direction (the other direction) is, for example, 5000 ⁇ m.
  • the core layer 10 having high relative magnetic permeability is arranged in the internal space of the winding portion 31a, the magnetic flux density becomes high.
  • a magnetic flux B is generated in one direction in the internal space of the winding portion 31a (not shown).
  • the core layer 10 having high relative magnetic permeability is arranged in the internal space of the winding portion 31a, the magnetic flux density becomes high.
  • magnetic flux is formed in a direction parallel to the upper and lower surfaces of the core layer 10 with a simple configuration. According to this configuration, since the magnetic flux is more concentrated in the core layer 10, the magnetic flux density in a plane parallel to the lamination direction increases. This further increases the interaction between the magnetic flux formed by the winding portion 31a and the core layer 10 and the magnetic flux formed by the magnet. Therefore, it becomes possible to further increase the driving force by the winding portion 31a and the core layer 10.
  • the core layer 10 is arranged approximately at the center of the winding portion 31a in the stacking direction. Thereby, the distribution of magnetic flux density becomes symmetrical with respect to the core layer 10 in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the axis formed by the winding portion 31a within the core layer 10.
  • the magnetic body since a material with high magnetic permeability is used as the magnetic body, it is possible to concentrate magnetic flux on the core layer 10 when a current flows through the winding portion 31a.
  • FIG. 3 is a plan view showing an actuator 500 according to one embodiment.
  • FIG. 4 is a sectional view taken along the line CC of the actuator 500 in FIG.
  • the actuator 500 includes the wired circuit board 100 of FIGS. 1 and 2, a metal support 510, a connecting member 520, a magnet 530, and an adhesive layer 540.
  • the metal support 510 includes supports 510a and 510b that are separated from each other. In this example, support 510a is fixed.
  • the support body 510b is provided movably.
  • the supports 510a and 510b are integrally formed by being connected by a connecting member 520.
  • the connecting member 520 has, for example, a spring structure and is configured to be expandable and contractible.
  • the structure including the support body 510a will be referred to as a driving section 550
  • the structure including the support body 510b will be referred to as a driven section 560.
  • the printed circuit board 100 is attached onto the support 510a with an adhesive layer 540a.
  • a magnet 530 is attached to the support body 510b with an adhesive layer 540b.
  • Magnet 530 is, for example, a permanent magnet.
  • Magnet 530 may be an electromagnet.
  • the magnet 530 is arranged so that the S pole faces one end surface of the core layer 10 of the printed circuit board 100.
  • the N pole of the magnet 530 may be arranged to face one end surface of the core layer 10 of the printed circuit board 100.
  • the direction of the magnetic flux passing through the core layer 10 due to the current flowing through the winding portion 31a is the same as the direction in which the S and N poles of the magnet 530 are lined up. In this case, the magnetic field generated by the current flowing through the winding portion 31a effectively acts on the magnetic field generated by the magnet 530.
  • the driven part 560 is moved in the direction indicated by the arrow F1 with respect to the driving part 550 in the actuator 500.
  • the driving section 550 and the driven section 560 in the actuator 500 of this example may be formed on a common printed circuit board.
  • the magnetic flux that is formed when a current flows through the winding portion 31a of the printed circuit board 100 acts on the magnet 530.
  • the magnet 530 is driven relative to the winding portion 31a.
  • magnetic flux is formed in a direction parallel to the upper and lower surfaces of the core layer 10. This eliminates the need to increase the area occupied by the windings on the printed circuit board 100.
  • the magnetic flux density in a plane parallel to the lamination direction increases. This increases the interaction between the magnetic flux formed by the winding portion 31a and the core layer 10 and the magnetic flux formed by the magnet.
  • the winding portion 31a and the core layer 10 can be formed during the manufacturing process of the printed circuit board 100. Thereby, the manufacturing process of actuator 500 is not complicated. As a result, the actuator 500 can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
  • the supports 510a and 510b are integrally formed by being connected by a connecting member 520.
  • the positional relationship between the supports 510a, 510b and the connecting member 520 can be maintained with a simple structure.
  • the manufacturing process of actuator 500 is simplified.
  • the winding portion 31a and the magnet 530 are arranged in parallel, the length of the area occupied by the winding portion 31a and the magnet 530 can be reduced.
  • FIG. 5 is a plan view showing the configuration of an optical path shift device including an actuator.
  • the optical path shifting device 600 is used, for example, in a projector to shift the optical path of projected light.
  • the optical path shift device 600 includes first to third supports 610 to 630 and an optical path conversion plate 640.
  • the first to third supports 610 to 630 are formed into thin plate shapes of various materials such as metal or resin.
  • the first to third supports 610 to 630 are integrally formed of a thin non-magnetic metal plate.
  • Optical path shifting device 600 may be formed as part of a printed circuit board.
  • two axes AX1 and AX2 are defined that are perpendicular to each other on the plane of the first to third supports 610 to 630.
  • the first support body 610 has a rectangular shape. A pair of two sides of the first support body 610 are parallel to the axis AX1, and the other pair of two sides of the first support body 610 are parallel to the axis AX2.
  • a rectangular optical path converting plate 640 for converting the optical path is provided on the first support 610.
  • the optical path conversion plate 640 is formed of a member that refracts or reflects light, such as glass or a mirror. In this example, the optical path conversion plate 640 is made of glass.
  • the first support 610 has an opening. The optical path conversion plate 640 is attached to the opening of the first support 610.
  • the second support 620 is provided to surround the first support 610.
  • the second support 620 includes partial supports 621, 622, 623.
  • the partial support body 621 has a substantially rectangular frame shape surrounding three sides and a part of one side of the first support body 610. A portion of the partial support body 621 that is parallel to the first support body 610 has a spaced apart portion. Partial supports 622, 623 are formed to extend outwardly from the two ends of the spaced apart part of partial support 621.
  • the first support body 610 is connected to the second support body 620 by connection parts 611 and 612 centered on the axis AX1.
  • the connecting portions 611 and 612 have a relatively small width that allows twisting. Thereby, the first support body 610 (optical path conversion plate 640) becomes twistably swingable about the axis AX1 at the connecting portions 611 and 612, as shown by the arrow A1.
  • the third support 630 is provided to surround the second support 620.
  • the third support 630 includes a partial support 631 and a partial convex portion 632.
  • the partial support body 631 is formed to surround the partial support body 621 of the second support body 620.
  • the partial convex portion 632 is formed to be located between the partial supports 622 and 623 of the second support 620.
  • the second support body 620 is supported by the third support body 630 by a connecting portion 613 centered on the axis AX2.
  • the connecting portion 613 has a relatively small width that allows twisting. Thereby, the second support body 620 becomes twistably swingable about the axis AX2 at the connecting portion 613 as shown by the arrow A2.
  • the optical path shift device 600 further includes actuators 500a to 500c.
  • the actuator 500a is formed on a partial convex portion 632 of the third support body 630 and a portion of the first support body 610 that faces the partial convex portion 632.
  • the actuator 500b is formed on a partial support 622 of the second support 620 and a part of a partial support 631 opposite to the partial support 622.
  • the actuator 500c is formed on a partial support 623 of the second support 620 and a part of a partial support 631 opposite to the partial support 623.
  • Each of the actuators 500a to 500c includes the driving section 550 and driven section 560 of FIGS. 3 and 4.
  • the connecting portions 611 and 612 function as the connecting member 520 in FIGS. 3 and 4.
  • the connecting portion 613 functions as the connecting member 520 in FIGS. 3 and 4.
  • FIG. 6 is a cross-sectional view taken along line DD of the optical path shift device 600 of FIG. 5.
  • the actuators 500b and 500c also have a similar configuration.
  • the connecting member 520 in the actuator 500a, the connecting member 520 (see FIGS. 3 and 4) is not provided between the winding portion 31a of the printed circuit board 100 and the magnet 530, and the connecting portion 611 in FIG. , 612 function as connecting members.
  • the connecting portion 613 in FIG. 5 functions as the connecting member 520 in FIGS. 3 and 4.
  • the actuator 500a when an electric signal (current) is supplied to the terminals 31d and 31e, a magnetic flux B is generated. Thereby, the first support body 610 (optical path conversion plate 640) can be twisted and rocked about the axis AX1, as shown by the arrow A1. According to this configuration, the torsional direction of the first support body 610 (optical path conversion plate 640) and the It becomes possible to adjust the twist angle of the second support body 620.
  • the actuator 500b when an electric signal (current) is supplied to the terminals 31d and 31e, the second support body 620 is twistedly swung about the axis AX2, as shown by an arrow A2. .
  • the actuator 500c when an electric signal (current) is supplied to the terminals 31d and 31e, the second support body 620 is twisted and swung about the axis AX2, as shown by the arrow A2. Ru.
  • the actuator 500b and 500c by controlling the supply direction and the magnitude of the electric signal to the terminals 31d and 31e of the actuators 500b and 500c, the torsional direction of the second support body 620 and the It becomes possible to adjust the twisting angle of the support body 630 of 3.
  • the actuators 500a, 500b, and 500c can tilt the optical path conversion plate 640 in any direction about the axes AX1 and AX2.
  • FIG. 7 is a diagram showing another example of the actuator 500a.
  • actuator 500a is provided with bent portions 610a and 630a by bending portions of first support 610 and third support 630 downward at right angles.
  • the bent portions 610a and 630a are provided so as to face each other.
  • a driven portion 560 is provided at the bent portion 610a, and a driving portion 550 is provided at the bent portion 630a.
  • the other actuators 500b and 500c may also be configured similarly to the actuator 500a in FIG. 7.
  • the actuators 500a, 500b, and 500c can tilt the optical path conversion plate 640 in any direction about the axes AX1 and AX2.
  • FIG. 8 is a diagram showing the configuration of an image sensor arrangement plate including an actuator.
  • an image sensor arrangement plate 700 is used, for example, in a camera to implement an image stabilization function.
  • the image sensor arrangement plate 700 includes a first support 720, a second support 730, and connecting portions 740d to 740g.
  • the first support body 720, the second support body 730, and the connecting portions 740d to 740g are formed into thin plate shapes of various materials such as metal or resin.
  • the first support body 720, the second support body 730, and the connecting portions 740d to 740g are integrally formed of a thin plate of non-magnetic metal.
  • Image sensor arrangement board 700 may be formed as part of a printed circuit board. Also in this example, two axes AX1 and AX2 are defined that are perpendicular to each other on the planes of the first and second supports 720 and 730.
  • the first support body 720 has a rectangular shape. A pair of two sides Sa1 and Sa2 of the first support body 720 are parallel to the axis AX1, and the other pair of two sides Sa3 and Sa4 of the first support body 720 are parallel to the axis AX2.
  • An image sensor 710 is provided on the first support 720.
  • the image sensor 710 is, for example, a CCD (charge-coupled device) type image sensor, a CMOS (complementary metal oxide semiconductor) type image sensor, or the like.
  • the second support 730 is provided to surround the first support 720.
  • the second support body 730 has a substantially rectangular frame shape. An opening is formed in the second support 730.
  • the second support body 730 has a pair of inner sides Sb1 and Sb2 parallel to the axis AX1, and protrusions P1 and P2 that protrude inward from the inner sides Sb1 and Sb2, respectively.
  • the second support body 730 also has another pair of inner sides Sb3 and Sb4 parallel to the axis AX2, and protrusions P3 and P4 that project inward from the inner sides Sb3 and Sb4, respectively.
  • the first support body 720 is supported within the opening of the second support body 730 by connecting portions 740d, 740e, 740f, and 740g.
  • the connecting portion 740d extends from the inner side Sb1 of the second support body 730 in the direction of the axis AX2, is bent in the direction of the axis AX1, and is connected to the side Sa3 of the first support body 720.
  • the connecting portion 740e extends from the inner side Sb3 of the second support body 730 in the direction of the axis AX1, is bent in the direction of the axis AX2, and is connected to the side Sa2 of the first support body 720.
  • the connecting portion 740f extends from the inner side Sb2 of the second support body 730 in the direction of the axis AX2, is bent in the direction of the axis AX1, and is connected to the side Sa4 of the first support body 720.
  • the connecting portion 740g extends from the inner side Sb4 of the second support body 730 in the direction of the axis AX1, bends in the direction of the axis AX2, and is connected to the side Sa1 of the first support body 720.
  • the connecting portions 740d to 740g are formed in a curved line shape, so that they can be bent and twisted.
  • Image sensor arrangement plate 700 further includes actuators 500d to 500g.
  • the actuator 500d is formed on the protrusion P1 of the second support 730 and the corner of the first support 720 that faces the protrusion P1.
  • the actuator 500e is formed at a protrusion P3 of the second support 730 and a corner of the first support 720 that faces the protrusion P3.
  • the actuator 500f is formed on the protrusion P2 of the second support 730 and the corner of the first support 720 that faces the protrusion P2.
  • the actuator 500g is formed on the protrusion P4 of the second support 730 and the corner of the first support 720 that faces the protrusion P4.
  • Each of the actuators 500d to 500g includes the driving section 550 and driven section 560 of FIGS. 3 and 4.
  • the connecting portions 740d to 740g function as the connecting members 520 in FIGS. 3 and 4, respectively.
  • the driving parts 550 of the actuators 500e to 500g are mounted on the first support 720
  • the driven parts 560 of the actuators 500e to 500g are mounted on the second support 730.
  • Wires 31b and 31c that connect the winding portion 31a of the driving portion 550 of the actuators 500e to 500g on the first support body 720 and the terminals 31e and 31d in FIG. 1 extend above the connecting portions 740e to 740g, respectively. .
  • the first support body 720 can be tilted about the axes AX1 and AX2 by supplying an electric signal (current) to the terminals 31d and 31e of one or more of the actuators 500d to 500g. At the same time, it becomes possible to move in the rotational direction around the normal line of the upper surface of the first support body 72. Thereby, by controlling the supply direction and magnitude of electrical signals to the terminals 31d and 31e of the actuators 500d to 500g, it becomes possible to move the image sensor 710 as shown by thick arrows A1 and A2, and It becomes possible to rotate the image sensor 710 as shown by the thick arrow A3. As a result, image sensor 710 can be adjusted to any orientation and position.
  • a sensor such as a gyro sensor outputs a signal indicating the amount of movement of the camera.
  • the direction and magnitude of electrical signals supplied to the terminals 31d and 31e of the actuators 500d to 500g are controlled based on the output signals, thereby achieving an image stabilization function.
  • FIG. 9 is a diagram showing a modification of the image sensor arrangement plate 700.
  • a drive unit 550 of ⁇ 500 g may be attached.
  • the image sensor 710 can be adjusted to any direction and position as described above.
  • FIG. 10 is a diagram showing a modification of the image sensor arrangement board 700.
  • FIG. 11 is a cross-sectional view taken along the line EE of the image sensor arrangement plate 700 of FIG.
  • the actuators 500d to 500g of the image sensor arrangement plate 700 are arranged on the first support 720.
  • the driving parts 550 of the actuators 500d to 500g are attached to the first support 720, and the driven parts 560 are arranged above the driving parts 550 and spaced apart from each other.
  • the driven part 560 is fixed, and the driving part 550 is configured to be movable relative to the driven part 560. Even in such a configuration, the image sensor 710 can be adjusted to any direction and position.
  • the optical element (optical path conversion plate 640 (FIG. 5) and image sensor 710 (FIG. 8)) is moved by the actuator 500. Driven.
  • the actuator 500 can be made smaller and thinner, the driving force can be increased, and the manufacturing process can be prevented from becoming complicated.
  • the optical device can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
  • the plurality of connecting members (611 to 613 (FIG. 5), 740d to 740g (FIG. 8)) are deformed and the driving section 550 or the driven section 560 is deformed. moves relatively. This makes it possible to move the optical element in any direction.
  • the optical device is the optical path shift device 600 or the image sensor arrangement plate 700, but the present invention is not limited thereto. It is also possible to construct other optical devices by using other optical elements.
  • a projector can be configured as an optical device by using a light emitting element such as a light emitting diode or a laser diode instead of the optical path conversion plate 640 of the optical path shift device 600.
  • the base insulating layer 20A is an example of the first insulating layer
  • the portion of the base insulating layer 20B formed on the lower surface of the core layer 10 is an example of the second insulating layer
  • the base insulating layer 20B is an example of the second insulating layer.
  • the portions of the insulating layer 20B formed on one side surface and the other side surface of the core layer 10 are examples of the third and fourth insulating layers
  • the winding portion 31a is an example of the winding layer. .
  • the upper surface of the core layer 10 is an example of the first main surface
  • the lower surface of the core layer 10 is an example of the second main surface.
  • the optical path conversion plate 640 and the image sensor 710 are examples of optical elements
  • the optical path conversion plate 640 is an example of an optical member.

Abstract

This actuator comprises: a wiring circuit board; and a magnet. The wiring circuit board includes: a core layer, which has first and second main surfaces that face away from each other, which has first and second lateral surfaces connecting the first and second main surfaces, and which is formed by a magnetic body; an insulating layer that surrounds the first main surface, the second main surface, the first lateral surface, and the second lateral surface of the core layer; and a winding layer that is wound so as to surround the core layer via the insulating layer. The magnet is provided so as to be movable relative to the winding layer and the core layer.

Description

アクチュエータおよびそれを備えた光学装置Actuator and optical device equipped with it
 本発明は、アクチュエータ、およびそれを備えた光学装置に関する。 The present invention relates to an actuator and an optical device equipped with the same.
 特許文献1には、プロジェクタにおいて映像光の光路をずらすための光路シフトデバイスが記載される。光路シフトデバイスでは、光学部材を揺動させるために複数のアクチュエータが用いられる。各アクチュエータは、磁石およびコイルを含む。特許文献1の光路シフトデバイスでは、複数のアクチュエータのコイルに電流が流れることにより光学部材としてガラス板が揺動される。 Patent Document 1 describes an optical path shifting device for shifting the optical path of image light in a projector. In the optical path shift device, a plurality of actuators are used to swing the optical member. Each actuator includes a magnet and a coil. In the optical path shift device disclosed in Patent Document 1, a glass plate serving as an optical member is swung by current flowing through the coils of a plurality of actuators.
特開2020-091343号公報JP2020-091343A
 ここで、アクチュエータの小型化を実現するためには、アクチュエータ内のコイルの巻き数を減少させる必要がある。一方、アクチュエータによる駆動力を向上させるためには、コイルの巻き数を増加させる必要がある。それにより、アクチュエータが大型化するとともに薄型化が妨げられる。このように、アクチュエータを小型化および薄型化することとアクチュエータの駆動力を向上させることとは、互いに相反し、これらを両立させることは容易でない。また、特許文献1に記載されたアクチュエータは、多数の部品により構成されているため、製造工程が複雑である。 Here, in order to reduce the size of the actuator, it is necessary to reduce the number of turns of the coil within the actuator. On the other hand, in order to improve the driving force of the actuator, it is necessary to increase the number of turns of the coil. This increases the size of the actuator and prevents it from being made thinner. As described above, reducing the size and thickness of the actuator and improving the driving force of the actuator are contradictory to each other, and it is not easy to achieve both. Further, since the actuator described in Patent Document 1 is composed of a large number of parts, the manufacturing process is complicated.
 本発明の目的は、小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化が抑制されたアクチュエータおよびそれを備えた光学装置を提供することである。 An object of the present invention is to provide an actuator that can be made smaller and thinner, increase the driving force, and suppress the complexity of the manufacturing process, and an optical device equipped with the actuator.
 (1)一局面に係るアクチュエータは、配線回路基板と、磁石とを備え、前記配線回路基板は、互いに反対を向く第1および第2の主面を有しかつ前記第1の主面と前記第2の主面とを連結する第1および第2の側面を有するとともに、磁性体により形成されるコア層と、前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を取り囲む絶縁層と、前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を前記絶縁層を介して取り囲むように巻き回された巻き線層とを含み、前記磁石は、前記巻き線層および前記コア層に対して相対的に移動可能に設けられる。 (1) An actuator according to one aspect includes a printed circuit board and a magnet, and the printed circuit board has first and second main surfaces facing opposite to each other, and the first main surface and the a core layer formed of a magnetic material and having first and second side surfaces connecting the first and second main surfaces; an insulating layer surrounding one side surface and the second side surface, and the first main surface, the second main surface, the first side surface, and the second side surface of the core layer through the insulating layer. and a winding layer wound around the magnet, and the magnet is provided to be movable relative to the winding layer and the core layer.
 このアクチュエータにおいては、配線回路基板の巻き線層に電流が流れた場合に形成される磁束が磁石に作用する。それにより、磁石が巻き線層に対して相対的に駆動される。この場合、コア層の第1および第2の主面に平行な方向の磁束が形成される。それにより、配線回路基板での巻き線の占有面積を増加させる必要がなくなる。また、コア層に磁束が集中するので、積層方向に平行な面内での磁束密度が増加する。それにより、巻き線層およびコア層により形成される磁束と磁石により形成される磁束との相互作用が増大する。また、配線回路基板の製造工程の過程で巻き線層およびコア層を形成することができる。それにより、アクチュエータの製造工程が複雑化しない。これらの結果、アクチュエータの小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。 In this actuator, the magnetic flux that is formed when a current flows through the winding layer of the printed circuit board acts on the magnet. The magnet is thereby driven relative to the winding layer. In this case, magnetic flux is formed in a direction parallel to the first and second main surfaces of the core layer. This eliminates the need to increase the area occupied by the windings on the printed circuit board. Furthermore, since the magnetic flux is concentrated in the core layer, the magnetic flux density in a plane parallel to the lamination direction increases. This increases the interaction between the magnetic flux formed by the winding layer and the core layer and the magnetic flux formed by the magnet. Further, the winding layer and the core layer can be formed during the manufacturing process of the printed circuit board. Thereby, the manufacturing process of the actuator is not complicated. As a result, the actuator can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
 (2)前記配線回路基板を支持する第1の支持体と、前記磁石を支持する第2の支持体と、前記第1の支持体と前記第2の支持体とを連結する連結部とをさらに備え、前記連結部は、前記第1の支持体と前記第2の支持体とが互いに相対的に移動可能であるように変形可能に構成されてもよい。この場合、アクチュエータの複数の部分が構造で一体化される。 (2) A first support that supports the printed circuit board, a second support that supports the magnet, and a connecting portion that connects the first support and the second support. Furthermore, the connecting portion may be configured to be deformable so that the first support and the second support are movable relative to each other. In this case, multiple parts of the actuator are integrated in structure.
 (3)前記第1の支持体、前記第2の支持体および前記連結部は、共通の支持板により形成されてもよい。 (3) The first support, the second support, and the connecting portion may be formed by a common support plate.
 この場合、第1の支持体、第2の支持体および連結部の位置関係を簡単な構造で保持することができる。また、アクチュエータの製造工程が簡略化される。 In this case, the positional relationship between the first support, the second support, and the connecting portion can be maintained with a simple structure. Furthermore, the manufacturing process of the actuator is simplified.
 (4)前記磁石は、前記巻き線層に電流が流れた場合に前記コア層を通過する磁束と前記磁石内の磁束とが実質的に同じ方向に並ぶように配置されてもよい。 (4) The magnet may be arranged so that when a current flows through the winding layer, a magnetic flux passing through the core layer and a magnetic flux within the magnet are aligned in substantially the same direction.
 この場合、巻き線層に流れる電流により発生する磁束を磁石により発生する磁界に効率的に作用させることが可能になる。 In this case, it becomes possible to cause the magnetic flux generated by the current flowing through the winding layer to efficiently act on the magnetic field generated by the magnet.
 (5)前記磁石は、前記巻き線層に電流が流れた場合に前記コア層を通過する磁束と前記磁石内の磁束とが実質的に並列になるように配置されてもよい。 (5) The magnet may be arranged so that when a current flows through the winding layer, the magnetic flux passing through the core layer and the magnetic flux within the magnet are substantially parallel.
 この場合、巻き線層と磁石とを並列に配置することができる。巻き線層および磁石が占有する領域の長さを小さくすることができる。 In this case, the winding layer and the magnet can be arranged in parallel. The length of the area occupied by the winding layer and the magnet can be reduced.
 (6)前記絶縁層は、前記コア層の前記第1の主面上に配置される第1の絶縁層と、前記コア層の前記第2の主面上に配置される第2の絶縁層と、前記コア層の前記第1の側面上に配置される第3の絶縁層と、前記コア層の前記第2の側面上に配置される第4の絶縁層とを含み、前記巻き線層は、前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を取り囲むように前記第1、第2、第3および第4の絶縁層上に配置されてもよい。 (6) The insulating layer includes a first insulating layer disposed on the first main surface of the core layer and a second insulating layer disposed on the second main surface of the core layer. a third insulating layer disposed on the first side surface of the core layer; and a fourth insulating layer disposed on the second side surface of the core layer; The first, second, third, and fourth insulating layers surround the first main surface, the second main surface, the first side surface, and the second side surface of the core layer. may be placed on top.
 この場合、簡単な構成でコア層の第1および第2の主面に平行な方向の磁束が形成される。この構成によれば、コア層に磁束がより集中するので、積層方向に平行な面内での磁束密度が増加する。それにより、巻き線層およびコア層により形成される磁束と磁石により形成される磁束との相互作用がさらに増大する。したがって、巻き線層およびコア層による駆動力をより増大させることが可能になる。 In this case, magnetic flux in a direction parallel to the first and second main surfaces of the core layer is formed with a simple configuration. According to this configuration, since the magnetic flux is more concentrated in the core layer, the magnetic flux density in a plane parallel to the lamination direction increases. This further increases the interaction between the magnetic flux formed by the winding layer and the core layer and the magnetic flux formed by the magnet. Therefore, it becomes possible to further increase the driving force by the winding layer and the core layer.
 (7)前記第1の絶縁層の厚みと前記第2の絶縁層の厚みとは実質的に等しくてもよい。 (7) The thickness of the first insulating layer and the thickness of the second insulating layer may be substantially equal.
 この場合、配線回路基板において、コア層が積層方向において巻き線層の中心に配置される。それにより、積層方向においてコア層を基準として磁束密度の分布が対称となる。したがって、第1および第2の絶縁層に平行な磁束をコア層内にさらに集中させることが可能になる。その結果、アクチュエータの動作性能を向上させることが可能になる。 In this case, in the printed circuit board, the core layer is arranged at the center of the winding layers in the stacking direction. Thereby, the distribution of magnetic flux density becomes symmetrical with respect to the core layer in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the first and second insulating layers within the core layer. As a result, it becomes possible to improve the operating performance of the actuator.
 (8)前記第3の絶縁層の厚みと前記第4の絶縁層の厚みとは実質的に等しくてもよい。 (8) The thickness of the third insulating layer and the thickness of the fourth insulating layer may be substantially equal.
 この場合、配線回路基板において、コア層が巻き線層の中心に配置される。それにより、積層方向においてコア層を基準として磁束密度の分布が対称となる。したがって、第1および第2の絶縁層に平行な磁束をコア層内にさらに集中させることが可能になる。その結果、アクチュエータの動作性能をさらに向上させることが可能になる。 In this case, in the printed circuit board, the core layer is arranged at the center of the winding layer. Thereby, the distribution of magnetic flux density becomes symmetrical with respect to the core layer in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the first and second insulating layers within the core layer. As a result, it becomes possible to further improve the operating performance of the actuator.
 (9)前記磁性体は、電磁鋼板、ケイ素鋼板、鉄またはパーマロイのいずれかを含んでもよい。 (9) The magnetic material may include any one of an electromagnetic steel sheet, a silicon steel sheet, iron, or permalloy.
 この場合、磁性体として比透磁率の大きい材料が用いられるので、巻き線層に電流が流れた場合にコア層に磁束を集中させることが可能になる。それにより、配線回路基板および磁石の磁界により発生する引力または斥力を増大させることが可能になる。 In this case, since a material with high relative magnetic permeability is used as the magnetic material, it is possible to concentrate magnetic flux in the core layer when current flows through the winding layer. This makes it possible to increase the attractive or repulsive force generated by the printed circuit board and the magnetic field of the magnet.
 (10)他の局面に係る光学装置は、前記アクチュエータと、前記アクチュエータの前記配線回路基板および前記磁石のうち一方とともに移動可能に設けられた光学要素とを備える。 (10) An optical device according to another aspect includes the actuator and an optical element movably provided with one of the printed circuit board and the magnet of the actuator.
 この光学装置によれば、上記のアクチュエータにより光学要素が駆動される。この場合、アクチュエータの小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。その結果、光学装置の小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。 According to this optical device, the optical element is driven by the above actuator. In this case, the actuator can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed. As a result, the optical device can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
 (11)前記アクチュエータの前記配線回路基板および前記磁石のうち一方を支持する第1の支持体と、前記アクチュエータの前記配線回路基板および前記磁石の他方を支持する第2の支持体と、前記第1の支持体と前記第2の支持体とを互いに相対的に連結するとともに変形可能な連結部とをさらに備え、前記光学要素は、前記第1および第2の支持体のうち一方に設けられてもよい。 (11) a first support that supports one of the printed circuit board and the magnet of the actuator; a second support that supports the other of the printed circuit board and the magnet of the actuator; the optical element is provided on one of the first and second supports; It's okay.
 この場合、アクチュエータの巻き線層およびコア層による磁石の駆動により連結部が変形しつつ第1の支持体と第2の支持体とが互いに相対的に移動する。それにより、光学要素が移動する。上記の構成によれば、第1の支持体、第2の支持体および連結部により簡単な構成で光学装置の複数の部分が一体化される。 In this case, the first support and the second support move relative to each other while the connecting portion is deformed by driving the magnet by the winding layer and core layer of the actuator. This causes the optical element to move. According to the above configuration, a plurality of parts of the optical device are integrated with the first support, the second support, and the connecting portion with a simple configuration.
 (12)前記第2の支持体は開口部を有し、前記第1の支持体は、前記第2の支持体の前記開口部内に位置するように、前記連結部により前記第2の支持体に連結され、前記光学要素は、前記第1の支持体に設けられてもよい。 (12) The second support has an opening, and the first support is connected to the second support by the connecting portion so as to be located within the opening of the second support. The optical element may be coupled to the first support.
 この場合、アクチュエータにより第2の支持体の開口部内に配置された第1の支持体を第2の支持体に対して相対的に移動させることにより、光学要素を容易に移動させることができる。 In this case, the optical element can be easily moved by moving the first support disposed within the opening of the second support relative to the second support using the actuator.
 (13)前記光学要素は、光を屈折または反射させる光学部材を含み、前記光学部材は、前記アクチュエータにより駆動されることにより光の方向を変更するように設けられてもよい。 (13) The optical element may include an optical member that refracts or reflects light, and the optical member may be provided to change the direction of light by being driven by the actuator.
 この場合、光学部材の相対的な移動により光の屈性方向および光の反射方向を変更することができる。それにより、光学装置を光シフト装置として用いることができる。 In this case, the direction of light tropism and the direction of reflection of light can be changed by relative movement of the optical members. Thereby, the optical device can be used as a light shifting device.
 (14)前記光学要素は、イメージセンサを含み、前記イメージセンサは、前記アクチュエータにより駆動されることにより受光の位置および傾きが変更されるように設けられてもよい。 (14) The optical element may include an image sensor, and the image sensor may be provided so that the position and inclination of light reception are changed by being driven by the actuator.
 この場合、イメージセンサの相対的な移動により受光の位置および受光の傾きを変更することができる。それにより、光学装置の揺れによるイメージセンサの受光状態の変化を補正することができる。 In this case, the position of light reception and the inclination of light reception can be changed by relative movement of the image sensor. Thereby, changes in the light receiving state of the image sensor due to shaking of the optical device can be corrected.
 本発明によれば、小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化が抑制されたアクチュエータおよびそれを備えた光学装置を提供することが可能になる。 According to the present invention, it is possible to provide an actuator that can be made smaller and thinner, increase the driving force, and suppress the complexity of the manufacturing process, and an optical device equipped with the actuator. .
図1は一実施の形態に係るアクチュエータにおける配線回路基板の平面図である。FIG. 1 is a plan view of a printed circuit board in an actuator according to an embodiment. 図2は図1の配線回路基板のA-A線およびB-B線断面図である。FIG. 2 is a cross-sectional view taken along lines AA and BB of the printed circuit board of FIG. 図3は一実施の形態に係るアクチュエータを示す平面図である。FIG. 3 is a plan view showing an actuator according to one embodiment. 図4は図3のアクチュエータのC-C線断面図である。FIG. 4 is a sectional view taken along line CC of the actuator shown in FIG. 図5はアクチュエータを含む光路シフトデバイスの構成を示す平面図である。FIG. 5 is a plan view showing the configuration of an optical path shift device including an actuator. 図6は図5の光路シフトデバイスのD-D線断面図である。FIG. 6 is a sectional view taken along line DD of the optical path shift device of FIG. 図7はアクチュエータの他の例を示す図である。FIG. 7 is a diagram showing another example of the actuator. 図8はアクチュエータを含むイメージセンサ配置板の構成を示す図である。FIG. 8 is a diagram showing the configuration of an image sensor arrangement plate including an actuator. 図9はイメージセンサ配置板の変形例を示す図である。FIG. 9 is a diagram showing a modification of the image sensor arrangement plate. 図10はイメージセンサ配置板の変形例を示す図である。FIG. 10 is a diagram showing a modification of the image sensor arrangement plate. 図11は図10のイメージセンサ配置板のE-E線断面図である。FIG. 11 is a sectional view taken along line EE of the image sensor arrangement plate of FIG.
 以下、実施の形態に係るアクチュエータおよびそれを用いた光学装置について図面を参照しながら詳細に説明する。 Hereinafter, an actuator according to an embodiment and an optical device using the same will be described in detail with reference to the drawings.
 (1)配線回路基板
 以下、一実施の形態に係るアクチュエータに用いられる配線回路基板について図面を参照しながら詳細に説明する。図1は、一実施の形態に係るアクチュエータにおける配線回路基板の平面図である。図2は、図1の配線回路基板のA-A線およびB-B線断面図である。図2においては、上部に配線回路基板のA-A線断面図が示され、下部に配線回路基板のB-B線断面図が示される。図1および図2に示すように、配線回路基板100は、コア層10、ベース絶縁層20、導体層30およびカバー絶縁層40を含む。図1においては、主としてカバー絶縁層40の内部の構成が図示され、ベース絶縁層20の図示が省略されている。
(1) Wired Circuit Board Hereinafter, a printed circuit board used in an actuator according to an embodiment will be described in detail with reference to the drawings. FIG. 1 is a plan view of a printed circuit board in an actuator according to an embodiment. FIG. 2 is a cross-sectional view taken along lines AA and BB of the printed circuit board of FIG. In FIG. 2, the upper part shows a cross-sectional view taken along line AA of the printed circuit board, and the lower part shows a cross-sectional view taken along line BB of the printed circuit board. As shown in FIGS. 1 and 2, printed circuit board 100 includes a core layer 10, a base insulating layer 20, a conductor layer 30, and a cover insulating layer 40. In FIG. 1, the internal structure of the cover insulating layer 40 is mainly illustrated, and the illustration of the base insulating layer 20 is omitted.
 コア層10は、例えば、高い比透磁率を有する磁性材料により形成され、軟磁性材料により形成されることが好ましい。磁性材料は、電磁鋼板、ケイ素鋼板、鉄またはパーマロイ等を含む。コア層10は、一方向に延びる平板形状を有する。本例では、コア層10は、矩形状を有する。コア層10の厚みt1は、例えば10μm以上300μm以下である。以下、配線回路基板100において、コア層10の一辺に平行でかつコア層10の上面および下面に平行な方向を第1の方向と呼ぶ。また、第1の方向に対して直交しかつコア層10の上面および下面に平行な方向を第2の方向と呼ぶ。 The core layer 10 is formed of, for example, a magnetic material with high relative magnetic permeability, and is preferably formed of a soft magnetic material. Magnetic materials include electrical steel sheets, silicon steel sheets, iron, permalloy, and the like. The core layer 10 has a flat plate shape extending in one direction. In this example, the core layer 10 has a rectangular shape. The thickness t1 of the core layer 10 is, for example, 10 μm or more and 300 μm or less. Hereinafter, in the printed circuit board 100, a direction parallel to one side of the core layer 10 and parallel to the upper and lower surfaces of the core layer 10 will be referred to as a first direction. Further, a direction perpendicular to the first direction and parallel to the upper and lower surfaces of the core layer 10 is referred to as a second direction.
 すなわち、本例では、コア層10の互いに対向する一対の辺が第1の方向に延び、コア層10の互いに対向する他の対の辺が第2の方向に延びる。なお、コア層10は、矩形状に限らず、楕円状または多角形状等の他の形状を有してもよい。 That is, in this example, a pair of opposing sides of the core layer 10 extend in the first direction, and another pair of opposing sides of the core layer 10 extend in the second direction. Note that the core layer 10 is not limited to a rectangular shape, and may have other shapes such as an ellipse or a polygon.
 図2に示すように、ベース絶縁層20は、ポリイミド等の樹脂により形成される。ベース絶縁層20は、コア層10の周囲を取り囲むように形成される。本例では、コア層10の上面上、下面上、第1の方向に平行な両側面上および第2の方向に平行な両側面(以下、端面と呼ぶ。)上にベース絶縁層20が形成される。 As shown in FIG. 2, the base insulating layer 20 is formed of resin such as polyimide. Base insulating layer 20 is formed to surround core layer 10 . In this example, the base insulating layer 20 is formed on the upper surface, the lower surface, both side surfaces parallel to the first direction, and both side surfaces parallel to the second direction (hereinafter referred to as end surfaces) of the core layer 10. be done.
 本例では、ベース絶縁層20は、コア層10の上面に接触するベース絶縁層20Aおよびコア層10の下面、両側面および両端面に接触するベース絶縁層20Bにより形成される。ベース絶縁層20Aは、後述する巻き線部31aの一部を構成する導体層30Aの下面および内側面に接触する。ベース絶縁層20Bは、後述する巻き線部31aの他の一部を構成する導体層30Bの上面および内側面に接触する。 In this example, the base insulating layer 20 is formed of a base insulating layer 20A that contacts the upper surface of the core layer 10 and a base insulating layer 20B that contacts the lower surface, both side surfaces, and both end surfaces of the core layer 10. The base insulating layer 20A contacts the lower surface and inner surface of a conductor layer 30A that constitutes a part of a winding portion 31a, which will be described later. Base insulating layer 20B contacts the upper surface and inner surface of conductor layer 30B that constitutes another part of winding portion 31a, which will be described later.
 ベース絶縁層20Aの厚みt2aおよびベース絶縁層20Bの厚みt2bは、例えば5μm以上10μm以下である。ベース絶縁層20Aの厚みt2aとベース絶縁層20Bの厚みt2bとの差は、5μm以下であることが好ましい。また、ベース絶縁層20Aの厚みt2aとベース絶縁層20Bの厚みt2bとの差の絶対値がベース絶縁層20Aの厚みt2aの50%以下であることが好ましい。それにより、第1の方向に垂直な面内での後述する磁束の分布が均一となる。ベース絶縁層20Aの厚みt2aとベース絶縁層20Bの厚みt2bとは、実質的に等しいことがより好ましい。それにより、第1の方向に垂直な面内での後述する磁束の分布がより均一となる。 The thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B are, for example, 5 μm or more and 10 μm or less. The difference between the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B is preferably 5 μm or less. Further, it is preferable that the absolute value of the difference between the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B is 50% or less of the thickness t2a of the base insulating layer 20A. As a result, the distribution of magnetic flux, which will be described later, in a plane perpendicular to the first direction becomes uniform. More preferably, the thickness t2a of the base insulating layer 20A and the thickness t2b of the base insulating layer 20B are substantially equal. As a result, the distribution of magnetic flux, which will be described later, in a plane perpendicular to the first direction becomes more uniform.
 同様に、両側面におけるベース絶縁層20Bの厚みt2c,t2dは、例えば5μm以上10μm以下である。両側面におけるベース絶縁層20Bの厚みt2c,t2dの差は、5μm以下であることが好ましい。また、両側面におけるベース絶縁層20Bの厚みt2c,t2dの差の絶対値がベース絶縁層20Bの厚みt2cの50%以下であることが好ましい。それにより、第1の方向に平行な面内での後述する磁束の分布が均一となる。両側面におけるベース絶縁層20Bの厚みt2c,t2dは、実質的に等しいことがより好ましい。それにより、第1の方向に平行な面内での後述する磁束の分布がより均一となる。 Similarly, the thicknesses t2c and t2d of the base insulating layer 20B on both side surfaces are, for example, 5 μm or more and 10 μm or less. The difference between the thicknesses t2c and t2d of the base insulating layer 20B on both sides is preferably 5 μm or less. Further, it is preferable that the absolute value of the difference between the thicknesses t2c and t2d of the base insulating layer 20B on both sides is 50% or less of the thickness t2c of the base insulating layer 20B. Thereby, the distribution of magnetic flux, which will be described later, in a plane parallel to the first direction becomes uniform. More preferably, the thicknesses t2c and t2d of the base insulating layer 20B on both sides are substantially equal. Thereby, the distribution of magnetic flux, which will be described later, in a plane parallel to the first direction becomes more uniform.
 図1に示すように、導体層30は、線状の巻き線部31a、配線31b,31cおよび矩形状の端子31d,31eを含む。巻き線部31aは、ベース絶縁層20を介してコア層10に巻回される。巻き線部31aの一端部は、配線31bの一端部に接続される。巻き線部31aの他端部は、配線31cの一端部に接続される。巻き線部31aの幅W1および配線31b,31cの幅W2,W3は、10μm以上500μm以下であることが好ましい。また、巻き線部31aの幅W1および配線31b,31cの幅W2,W3は50μm以上100μm以下であることがより好ましい。本実施の形態では、巻き線部31aおよびコア層10がコイルを構成する。 As shown in FIG. 1, the conductor layer 30 includes a linear winding portion 31a, wires 31b, 31c, and rectangular terminals 31d, 31e. The winding portion 31a is wound around the core layer 10 via the base insulating layer 20. One end of the winding portion 31a is connected to one end of the wiring 31b. The other end of the winding portion 31a is connected to one end of the wiring 31c. The width W1 of the winding portion 31a and the widths W2 and W3 of the wirings 31b and 31c are preferably 10 μm or more and 500 μm or less. Further, it is more preferable that the width W1 of the winding portion 31a and the widths W2 and W3 of the wirings 31b and 31c are 50 μm or more and 100 μm or less. In this embodiment, the winding portion 31a and the core layer 10 constitute a coil.
 図1の巻き線部31aは、図2に示すように、ベース絶縁層20Aの上面および両側面に接触する巻き線部31aaおよびベース絶縁層20Bの下面および両側面に接触する巻き線部31abにより構成される。巻き線部31aaの厚みt3aおよび巻き線部31abの厚みt3bは、例えば6μm以上50μm以下である。巻き線部31aaの厚みt3aと巻き線部31abの厚みt3bとの差は、10μm以下であることが好ましい。また、巻き線部31aaの厚みt3aと巻き線部31abの厚みt3bとの差の絶対値が巻き線部31aaの厚みt3aの50%以下であることが好ましい。それにより、第1の方向に垂直な面内での後述する磁束の分布が均一となる。巻き線部31aaの厚みt3aと巻き線部31abの厚みt3bとは、実質的に等しいことがより好ましい。それにより、第1の方向に平行な面内での後述する磁束の分布がより均一となる。 As shown in FIG. 2, the winding portion 31a in FIG. 1 includes a winding portion 31aa that contacts the upper surface and both side surfaces of the base insulating layer 20A and a winding portion 31ab that contacts the lower surface and both side surfaces of the base insulating layer 20B. configured. The thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab are, for example, 6 μm or more and 50 μm or less. The difference between the thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab is preferably 10 μm or less. Moreover, it is preferable that the absolute value of the difference between the thickness t3a of the winding part 31aa and the thickness t3b of the winding part 31ab is 50% or less of the thickness t3a of the winding part 31aa. As a result, the distribution of magnetic flux, which will be described later, in a plane perpendicular to the first direction becomes uniform. More preferably, the thickness t3a of the winding portion 31aa and the thickness t3b of the winding portion 31ab are substantially equal. Thereby, the distribution of magnetic flux, which will be described later, in a plane parallel to the first direction becomes more uniform.
 本実施の形態では、コア層10と巻き線部31aとの間にベース絶縁層20のみが存在する。すなわち、コア層10と巻き線部31aとの間には、絶縁層のみが存在し、磁性材料または導電材料等の他の層は存在しない。また、本実施の形態では、コア層10と巻き線部31aとの間に同じ絶縁材料により形成されるベース絶縁層20のみが存在する。 In this embodiment, only the base insulating layer 20 exists between the core layer 10 and the winding portion 31a. That is, only an insulating layer exists between the core layer 10 and the winding portion 31a, and no other layer such as a magnetic material or a conductive material exists. Further, in this embodiment, only the base insulating layer 20 formed of the same insulating material exists between the core layer 10 and the winding portion 31a.
 図1に示すように、端子31d,31eは、配線回路基板100の第1の方向における一端側に配置される。端子31dは、配線31bの他端部に接続される。また、端子31dは、配線回路基板100の外部端子OE1に導線CL1を介して電気的に接続される。端子31eは、配線31cの他端部に接続される。また、端子31eは、配線回路基板100の外部端子OE2に導線CL2を介して電気的に接続される。端子31d,31eの幅は、配線31b,31cの幅よりも大きい。なお、端子31d,31eは、矩形状に限らず、円形状、楕円形状または多角形状等の他の形状を有してもよい。 As shown in FIG. 1, the terminals 31d and 31e are arranged on one end side of the printed circuit board 100 in the first direction. The terminal 31d is connected to the other end of the wiring 31b. Further, the terminal 31d is electrically connected to the external terminal OE1 of the printed circuit board 100 via the conductive wire CL1. Terminal 31e is connected to the other end of wiring 31c. Further, the terminal 31e is electrically connected to an external terminal OE2 of the printed circuit board 100 via a conductive wire CL2. The widths of the terminals 31d and 31e are larger than the widths of the wirings 31b and 31c. Note that the terminals 31d and 31e are not limited to a rectangular shape, but may have other shapes such as a circular shape, an elliptical shape, or a polygonal shape.
 以下、配線回路基板100の第1の方向において、巻き線部31aから端子31d,31eに近づく方向を一方向と呼び、巻き線部31aから端子31d,31eと反対に遠ざかる方向を他方向と呼ぶ。 Hereinafter, in the first direction of the printed circuit board 100, the direction from the winding portion 31a toward the terminals 31d, 31e will be referred to as one direction, and the direction away from the winding portion 31a in the opposite direction from the terminals 31d, 31e will be referred to as the other direction. .
 図2に示すように、カバー絶縁層40は、導体層30およびベース絶縁層20を全体的に被覆するように形成される。カバー絶縁層40は、ポリイミド等の樹脂により形成される。本例では、カバー絶縁層40は、巻き線部31aaの上面、両側面および両端面に接触するカバー絶縁層40Aおよび巻き線部31abの下面、両側面および両端面に接触するカバー絶縁層40Bにより形成される。カバー絶縁層40Aの厚みt4aおよびカバー絶縁層40Bの厚みt4bは、例えば8μm以上50μm以下である。図1に示すように、カバー絶縁層40の一方向(他方向)の長さ、すなわち配線回路基板100の一方向(他方向)の長さL1は、例えば5000μmである。 As shown in FIG. 2, the cover insulating layer 40 is formed to entirely cover the conductor layer 30 and the base insulating layer 20. The cover insulating layer 40 is made of resin such as polyimide. In this example, the cover insulating layer 40 includes a cover insulating layer 40A that contacts the upper surface, both side surfaces, and both end surfaces of the winding portion 31aa, and a cover insulating layer 40B that contacts the lower surface, both side surfaces, and both end surfaces of the winding portion 31ab. It is formed. The thickness t4a of the cover insulating layer 40A and the thickness t4b of the cover insulating layer 40B are, for example, 8 μm or more and 50 μm or less. As shown in FIG. 1, the length of the cover insulating layer 40 in one direction (the other direction), that is, the length L1 of the printed circuit board 100 in one direction (the other direction) is, for example, 5000 μm.
 本実施の形態では、巻き線部31aとカバー絶縁層40との間には、磁性材料または導電材料等の他の層は存在しない。すなわち、本実施の形態では、巻き線部31aの外面には、同じ絶縁材料により形成されるカバー絶縁層40のみが存在する。 In this embodiment, there is no other layer such as a magnetic material or a conductive material between the winding portion 31a and the cover insulating layer 40. That is, in this embodiment, only the cover insulating layer 40 formed of the same insulating material is present on the outer surface of the winding portion 31a.
 上記の構成においては、導体層30の端子31dに外部端子OE1から電気信号(電流)が入力されると、電気信号が配線31bを通して巻き線部31aに伝送される。巻き線部31aに伝送された電気信号は、配線31cおよび端子31eを通して導線CL2に導かれた後に外部端子OE2に出力される。この場合、巻き線部31aに流れる電流により、巻き線部31aにより取り囲まれる空間(以下、内部空間と呼ぶ。)に、一点鎖線で示すように、他方向に多数の磁束Bが発生する。この場合、巻き線部31aの内部空間に高い比透磁率を有するコア層10が配置されているので、磁束密度が高くなる。逆に、導体層30の端子31eに外部端子OE2から電気信号が入力されると、巻き線部31aの内部空間に一方向に向かう磁束Bが発生する(図示せず)。この場合にも、巻き線部31aの内部空間に高い比透磁率を有するコア層10が配置されているので、磁束密度が高くなる。 In the above configuration, when an electrical signal (current) is input from the external terminal OE1 to the terminal 31d of the conductor layer 30, the electrical signal is transmitted to the winding portion 31a through the wiring 31b. The electrical signal transmitted to the winding portion 31a is led to the conducting wire CL2 through the wiring 31c and the terminal 31e, and then output to the external terminal OE2. In this case, due to the current flowing through the winding part 31a, a large number of magnetic fluxes B are generated in the other direction in the space surrounded by the winding part 31a (hereinafter referred to as the internal space), as shown by the dashed line. In this case, since the core layer 10 having high relative magnetic permeability is arranged in the internal space of the winding portion 31a, the magnetic flux density becomes high. Conversely, when an electric signal is input from the external terminal OE2 to the terminal 31e of the conductor layer 30, a magnetic flux B is generated in one direction in the internal space of the winding portion 31a (not shown). Also in this case, since the core layer 10 having high relative magnetic permeability is arranged in the internal space of the winding portion 31a, the magnetic flux density becomes high.
 上記の配線回路基板100においては、簡単な構成でコア層10の上面および下面に平行な方向の磁束が形成される。この構成によれば、コア層10に磁束がより集中するので、積層方向に平行な面内での磁束密度が増加する。それにより、巻き線部31aおよびコア層10により形成される磁束と磁石により形成される磁束との相互作用がさらに増大する。したがって、巻き線部31aおよびコア層10による駆動力をより増大させることが可能になる。 In the wired circuit board 100 described above, magnetic flux is formed in a direction parallel to the upper and lower surfaces of the core layer 10 with a simple configuration. According to this configuration, since the magnetic flux is more concentrated in the core layer 10, the magnetic flux density in a plane parallel to the lamination direction increases. This further increases the interaction between the magnetic flux formed by the winding portion 31a and the core layer 10 and the magnetic flux formed by the magnet. Therefore, it becomes possible to further increase the driving force by the winding portion 31a and the core layer 10.
 また、コア層10が積層方向において巻き線部31aの略中心に配置される。それにより、積層方向においてコア層10を基準として磁束密度の分布が対称となる。したがって、巻き線部31aで形成される軸に平行な磁束をコア層10内にさらに集中させることが可能になる。 Further, the core layer 10 is arranged approximately at the center of the winding portion 31a in the stacking direction. Thereby, the distribution of magnetic flux density becomes symmetrical with respect to the core layer 10 in the stacking direction. Therefore, it becomes possible to further concentrate the magnetic flux parallel to the axis formed by the winding portion 31a within the core layer 10.
 さらに、磁性体として透磁率の大きい材料が用いられるので、巻き線部31aに電流が流れた場合にコア層10に磁束を集中させることが可能になる。 Furthermore, since a material with high magnetic permeability is used as the magnetic body, it is possible to concentrate magnetic flux on the core layer 10 when a current flows through the winding portion 31a.
 (2)アクチュエータ
 図3は、一実施の形態に係るアクチュエータ500を示す平面図である。図4は、図3のアクチュエータ500のC-C線断面図である。
(2) Actuator FIG. 3 is a plan view showing an actuator 500 according to one embodiment. FIG. 4 is a sectional view taken along the line CC of the actuator 500 in FIG.
 図3および図4において、アクチュエータ500は、図1および図2の配線回路基板100、金属支持体510、連結部材520、磁石530および接着層540を含む。金属支持体510は、互いに分離された支持体510a,510bを含む。本例では、支持体510aは、固定されている。支持体510bは、移動可能に設けられる。支持体510a,510bは、連結部材520により連結されることにより一体的に形成される。連結部材520は、例えばばね構造を有し、伸縮可能に構成される。以下、支持体510aを含む構造体を駆動部550と呼び、510bを含む構造体を被駆動部560と呼ぶ。 3 and 4, the actuator 500 includes the wired circuit board 100 of FIGS. 1 and 2, a metal support 510, a connecting member 520, a magnet 530, and an adhesive layer 540. The metal support 510 includes supports 510a and 510b that are separated from each other. In this example, support 510a is fixed. The support body 510b is provided movably. The supports 510a and 510b are integrally formed by being connected by a connecting member 520. The connecting member 520 has, for example, a spring structure and is configured to be expandable and contractible. Hereinafter, the structure including the support body 510a will be referred to as a driving section 550, and the structure including the support body 510b will be referred to as a driven section 560.
 図4に示すように、支持体510a上には、接着層540aにより配線回路基板100が取り付けられる。支持体510bには、接着層540bにより磁石530が取り付けられる。磁石530は、例えば永久磁石である。磁石530は、電磁石であってもよい。本例では、磁石530は、S極が配線回路基板100のコア層10の一端面を向くように配置される。なお、アクチュエータ500の用途に応じて、磁石530のN極が配線回路基板100のコア層10の一端面を向くように配置されてもよい。巻き線部31aに流れる電流によりコア層10を通過する磁束の方向と磁石530のS極およびN極が並ぶ方向とが同じであることが好ましい。この場合、巻き線部31aに流れる電流により発生する磁界が磁石530により発生する磁界に効率的に作用する。 As shown in FIG. 4, the printed circuit board 100 is attached onto the support 510a with an adhesive layer 540a. A magnet 530 is attached to the support body 510b with an adhesive layer 540b. Magnet 530 is, for example, a permanent magnet. Magnet 530 may be an electromagnet. In this example, the magnet 530 is arranged so that the S pole faces one end surface of the core layer 10 of the printed circuit board 100. Note that, depending on the use of the actuator 500, the N pole of the magnet 530 may be arranged to face one end surface of the core layer 10 of the printed circuit board 100. It is preferable that the direction of the magnetic flux passing through the core layer 10 due to the current flowing through the winding portion 31a is the same as the direction in which the S and N poles of the magnet 530 are lined up. In this case, the magnetic field generated by the current flowing through the winding portion 31a effectively acts on the magnetic field generated by the magnet 530.
 ここで、上記のように、配線回路基板100の外部端子OE1から電気信号が入力されると、巻き線部31aの内部空間に他方向の磁束Bが発生する。この場合、連結部材520が伸縮可能に構成されるので、磁石530のS極に配線回路基板100内で発生した磁束Bが導かれる。それにより、太い矢印F1で示すように駆動部550に被駆動部560が引き寄せられる。同様に、配線回路基板100の外部端子OE2から電気信号が入力されると、巻き線部31aの内部空間に一方向の磁束Bが発生する(図示せず)。この場合、太い矢印F2で示すように駆動部550から被駆動部560が引き離される。このように、配線回路基板100内の巻き線部31aに入力される電気信号の電流の大きさおよび向きを変化させることにより、アクチュエータ500内の駆動部550に対して被駆動部560を矢印F1または矢印F2の方向に駆動することが可能になる。なお、本例のアクチュエータ500における駆動部550および被駆動部560が共通の配線回路基板上に形成されてもよい。 Here, as described above, when an electrical signal is input from the external terminal OE1 of the printed circuit board 100, magnetic flux B in the other direction is generated in the internal space of the winding portion 31a. In this case, since the connecting member 520 is configured to be expandable and retractable, the magnetic flux B generated within the printed circuit board 100 is guided to the S pole of the magnet 530. As a result, the driven portion 560 is attracted to the driving portion 550 as shown by the thick arrow F1. Similarly, when an electric signal is input from the external terminal OE2 of the printed circuit board 100, a unidirectional magnetic flux B is generated in the internal space of the winding portion 31a (not shown). In this case, the driven portion 560 is separated from the driving portion 550 as indicated by the thick arrow F2. In this way, by changing the magnitude and direction of the current of the electrical signal input to the winding part 31a in the printed circuit board 100, the driven part 560 is moved in the direction indicated by the arrow F1 with respect to the driving part 550 in the actuator 500. Alternatively, it becomes possible to drive in the direction of arrow F2. Note that the driving section 550 and the driven section 560 in the actuator 500 of this example may be formed on a common printed circuit board.
 上記のアクチュエータ500は、配線回路基板100の巻き線部31aに電流が流れた場合に形成される磁束が磁石530に作用する。それにより、磁石530が巻き線部31aに対して相対的に駆動される。この場合、コア層10の上面および下面に平行な方向の磁束が形成される。それにより、配線回路基板100での巻き線の占有面積を増加させる必要がなくなる。また、コア層10に磁束が集中するので、積層方向に平行な面内での磁束密度が増加する。それにより、巻き線部31aおよびコア層10により形成される磁束と磁石により形成される磁束との相互作用が増大する。また、配線回路基板100の製造工程の過程で巻き線部31aおよびコア層10を形成することができる。それにより、アクチュエータ500の製造工程が複雑化しない。これらの結果、アクチュエータ500の小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。 In the actuator 500 described above, the magnetic flux that is formed when a current flows through the winding portion 31a of the printed circuit board 100 acts on the magnet 530. Thereby, the magnet 530 is driven relative to the winding portion 31a. In this case, magnetic flux is formed in a direction parallel to the upper and lower surfaces of the core layer 10. This eliminates the need to increase the area occupied by the windings on the printed circuit board 100. Furthermore, since the magnetic flux is concentrated in the core layer 10, the magnetic flux density in a plane parallel to the lamination direction increases. This increases the interaction between the magnetic flux formed by the winding portion 31a and the core layer 10 and the magnetic flux formed by the magnet. Further, the winding portion 31a and the core layer 10 can be formed during the manufacturing process of the printed circuit board 100. Thereby, the manufacturing process of actuator 500 is not complicated. As a result, the actuator 500 can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
 また、支持体510a,510bは、連結部材520により連結されることにより一体的に形成される。この場合、支持体510a,510bおよび連結部材520の位置関係を簡単な構造で保持することができる。また、アクチュエータ500の製造工程が簡略化される。 Further, the supports 510a and 510b are integrally formed by being connected by a connecting member 520. In this case, the positional relationship between the supports 510a, 510b and the connecting member 520 can be maintained with a simple structure. Furthermore, the manufacturing process of actuator 500 is simplified.
 さらに、巻き線部31aと磁石530とが並列に配置されるので、巻き線部31aおよび磁石530が占有する領域の長さを小さくすることができる。 Furthermore, since the winding portion 31a and the magnet 530 are arranged in parallel, the length of the area occupied by the winding portion 31a and the magnet 530 can be reduced.
 (3)アクチュエータ500を用いた光学装置
 (3-1)光路シフトデバイス
 ここで、図1~図4のアクチュエータ500を用いた光学装置の一例として、光路シフトデバイスについて説明する。
(3) Optical device using actuator 500 (3-1) Optical path shift device Here, an optical path shift device will be described as an example of an optical device using actuator 500 of FIGS. 1 to 4.
 図5は、アクチュエータを含む光路シフトデバイスの構成を示す平面図である。光路シフトデバイス600は、例えばプロジェクタにおいて、投射光の光路をシフトするために用いられる。 FIG. 5 is a plan view showing the configuration of an optical path shift device including an actuator. The optical path shifting device 600 is used, for example, in a projector to shift the optical path of projected light.
 光路シフトデバイス600は、第1~第3の支持体610~630および光路変換板640を含む。第1~第3の支持体610~630は、金属または樹脂等の種々の材料により薄板状に形成される。本例において、第1~第3の支持体610~630は、非磁性体の金属の薄板により一体的に形成される。光路シフトデバイス600は、配線回路基板の一部として形成されてもよい。ここで、第1~第3の支持体610~630の平面上で互いに直交する2つの軸AX1,AX2を定義する。 The optical path shift device 600 includes first to third supports 610 to 630 and an optical path conversion plate 640. The first to third supports 610 to 630 are formed into thin plate shapes of various materials such as metal or resin. In this example, the first to third supports 610 to 630 are integrally formed of a thin non-magnetic metal plate. Optical path shifting device 600 may be formed as part of a printed circuit board. Here, two axes AX1 and AX2 are defined that are perpendicular to each other on the plane of the first to third supports 610 to 630.
 第1の支持体610は、矩形状を有する。第1の支持体610の一対の2辺は、軸AX1に平行であり、第1の支持体610の他対の2辺は、軸AX2に平行である。第1の支持体610上には、光路を変換するための矩形状の光路変換板640が設けられる。光路変換板640は、ガラスまたはミラー等のように光を屈折または反射させる部材により形成される。本例において、光路変換板640は、ガラスにより形成される。この場合、第1の支持体610は、開口部を有する。光路変換板640は、第1の支持体610の開口部に取り付けられる。 The first support body 610 has a rectangular shape. A pair of two sides of the first support body 610 are parallel to the axis AX1, and the other pair of two sides of the first support body 610 are parallel to the axis AX2. A rectangular optical path converting plate 640 for converting the optical path is provided on the first support 610. The optical path conversion plate 640 is formed of a member that refracts or reflects light, such as glass or a mirror. In this example, the optical path conversion plate 640 is made of glass. In this case, the first support 610 has an opening. The optical path conversion plate 640 is attached to the opening of the first support 610.
 第2の支持体620は、第1の支持体610を取り囲むように設けられる。第2の支持体620は、部分支持体621,622,623を含む。部分支持体621は、第1の支持体610の3辺と1辺の一部とを取り囲む略矩形枠形状を有する。部分支持体621のうち第1の支持体610に平行な部分は、離間部分を有する。部分支持体622,623は、部分支持体621の離間部分の2つの端部から外方に向かって延びるように形成される。第1の支持体610は、軸AX1を中心とする連結部611,612により第2の支持体620に連結される。連結部611,612は、捻転可能な比較的小さな幅を有する。それにより、第1の支持体610(光路変換板640)は、連結部611,612において矢印A1で示すように、軸AX1を中心として捩じれるように揺動可能になる。 The second support 620 is provided to surround the first support 610. The second support 620 includes partial supports 621, 622, 623. The partial support body 621 has a substantially rectangular frame shape surrounding three sides and a part of one side of the first support body 610. A portion of the partial support body 621 that is parallel to the first support body 610 has a spaced apart portion. Partial supports 622, 623 are formed to extend outwardly from the two ends of the spaced apart part of partial support 621. The first support body 610 is connected to the second support body 620 by connection parts 611 and 612 centered on the axis AX1. The connecting portions 611 and 612 have a relatively small width that allows twisting. Thereby, the first support body 610 (optical path conversion plate 640) becomes twistably swingable about the axis AX1 at the connecting portions 611 and 612, as shown by the arrow A1.
 第3の支持体630は、第2の支持体620を取り囲むように設けられる。具体的には、第3の支持体630は、部分支持体631および部分凸部632を含む。部分支持体631は、第2の支持体620の部分支持体621を取り囲むように形成される。部分凸部632は、第2の支持体620の部分支持体622,623の間に位置するように形成される。第2の支持体620は、軸AX2を中心とする連結部613により、第3の支持体630に支持される。連結部613は、捻転可能な比較的小さな幅を有する。それにより、第2の支持体620は、連結部613において矢印A2で示すように軸AX2を中心として捩じれるように揺動可能になる。 The third support 630 is provided to surround the second support 620. Specifically, the third support 630 includes a partial support 631 and a partial convex portion 632. The partial support body 631 is formed to surround the partial support body 621 of the second support body 620. The partial convex portion 632 is formed to be located between the partial supports 622 and 623 of the second support 620. The second support body 620 is supported by the third support body 630 by a connecting portion 613 centered on the axis AX2. The connecting portion 613 has a relatively small width that allows twisting. Thereby, the second support body 620 becomes twistably swingable about the axis AX2 at the connecting portion 613 as shown by the arrow A2.
 光路シフトデバイス600は、アクチュエータ500a~500cをさらに含む。本例においては、アクチュエータ500aは、第3の支持体630の部分凸部632と、その部分凸部632に対向する第1の支持体610の一部とに形成される。アクチュエータ500bは、第2の支持体620の部分支持体622と、その部分支持体622に対向する部分支持体631の一部とに形成される。アクチュエータ500cは、第2の支持体620の部分支持体623と、その部分支持体623に対向する部分支持体631の一部とに形成される。 The optical path shift device 600 further includes actuators 500a to 500c. In this example, the actuator 500a is formed on a partial convex portion 632 of the third support body 630 and a portion of the first support body 610 that faces the partial convex portion 632. The actuator 500b is formed on a partial support 622 of the second support 620 and a part of a partial support 631 opposite to the partial support 622. The actuator 500c is formed on a partial support 623 of the second support 620 and a part of a partial support 631 opposite to the partial support 623.
 アクチュエータ500a~500cの各々は、図3および図4の駆動部550および被駆動部560を含む。なお、アクチュエータ500aにおいては、連結部611,612が図3および図4の連結部材520として機能する。また、アクチュエータ500b,500cにおいては、連結部613が図3および図4の連結部材520として機能する。 Each of the actuators 500a to 500c includes the driving section 550 and driven section 560 of FIGS. 3 and 4. Note that in the actuator 500a, the connecting portions 611 and 612 function as the connecting member 520 in FIGS. 3 and 4. Furthermore, in the actuators 500b and 500c, the connecting portion 613 functions as the connecting member 520 in FIGS. 3 and 4.
 図6は、図5の光路シフトデバイス600のD-D線断面図である。なお、図6においては、アクチュエータ500aの構成の一例が示されるが、アクチュエータ500b,500cも同様の構成を有する。図6に示すように、アクチュエータ500aにおいて、配線回路基板100の巻き線部31aと磁石530との間には、連結部材520(図3および4参照)が設けられず、図5の連結部611,612が連結部材として機能する。また、アクチュエータ500b,500cにおいては、図5の連結部613が図3および図4の連結部材520として機能する。 FIG. 6 is a cross-sectional view taken along line DD of the optical path shift device 600 of FIG. 5. Note that although FIG. 6 shows an example of the configuration of the actuator 500a, the actuators 500b and 500c also have a similar configuration. As shown in FIG. 6, in the actuator 500a, the connecting member 520 (see FIGS. 3 and 4) is not provided between the winding portion 31a of the printed circuit board 100 and the magnet 530, and the connecting portion 611 in FIG. , 612 function as connecting members. Furthermore, in the actuators 500b and 500c, the connecting portion 613 in FIG. 5 functions as the connecting member 520 in FIGS. 3 and 4.
 この場合、アクチュエータ500aにおいて、端子31d,31eに電気信号(電流)が供給されると、磁束Bが発生する。それにより、第1の支持体610(光路変換板640)が、矢印A1に示すように、軸AX1を中心として捩じれるように揺動することが可能になる。この構成によれば、アクチュエータ500aの端子31d,31eへの電気信号の供給方向および電気信号の大きさにより第1の支持体610(光路変換板640)の捩じれ方向および軸AX1を中心とした第2の支持体620に対する捩じれ角度を調整することが可能になる。 In this case, in the actuator 500a, when an electric signal (current) is supplied to the terminals 31d and 31e, a magnetic flux B is generated. Thereby, the first support body 610 (optical path conversion plate 640) can be twisted and rocked about the axis AX1, as shown by the arrow A1. According to this configuration, the torsional direction of the first support body 610 (optical path conversion plate 640) and the It becomes possible to adjust the twist angle of the second support body 620.
 また、アクチュエータ500bにおいて、端子31d,31eに電気信号(電流)が供給されると、第2の支持体620が、矢印A2に示すように、軸AX2を中心として捩じれるように揺動される。同様に、アクチュエータ500cにおいて、端子31d,31eに電気信号(電流)が供給されると、第2の支持体620が、矢印A2に示すように、軸AX2を中心として捩じれるように揺動される。この構成によれば、アクチュエータ500b,500cの端子31d,31eへの電気信号の供給方向および電気信号の大きさを制御することにより、第2の支持体620捩じれ方向および軸AX2を中心とした第3の支持体630に対する捩じれ角度を調整することが可能になる。 Further, in the actuator 500b, when an electric signal (current) is supplied to the terminals 31d and 31e, the second support body 620 is twistedly swung about the axis AX2, as shown by an arrow A2. . Similarly, in the actuator 500c, when an electric signal (current) is supplied to the terminals 31d and 31e, the second support body 620 is twisted and swung about the axis AX2, as shown by the arrow A2. Ru. According to this configuration, by controlling the supply direction and the magnitude of the electric signal to the terminals 31d and 31e of the actuators 500b and 500c, the torsional direction of the second support body 620 and the It becomes possible to adjust the twisting angle of the support body 630 of 3.
 これらの結果、アクチュエータ500a,500b,500cにより、光路変換板640を軸AX1,AX2を中心として任意の方向に傾斜させることができる。 As a result, the actuators 500a, 500b, and 500c can tilt the optical path conversion plate 640 in any direction about the axes AX1 and AX2.
 図7は、アクチュエータ500aの他の例を示す図である。図7に示すように、アクチュエータ500aには、第1の支持体610および第3の支持体630の一部が下方に直角に屈曲することにより屈曲部610a,630aが設けられる。屈曲部610a,630aは、互いに対向するように設けられる。屈曲部610aに被駆動部560が設けられ、屈曲部630aに駆動部550が設けられる。他のアクチュエータ500b,500cも図7のアクチュエータ500aと同様に構成されてもよい。図7の例においても、アクチュエータ500a,500b,500cにより、光路変換板640を軸AX1,AX2を中心として任意の方向に傾斜させることができる。 FIG. 7 is a diagram showing another example of the actuator 500a. As shown in FIG. 7, actuator 500a is provided with bent portions 610a and 630a by bending portions of first support 610 and third support 630 downward at right angles. The bent portions 610a and 630a are provided so as to face each other. A driven portion 560 is provided at the bent portion 610a, and a driving portion 550 is provided at the bent portion 630a. The other actuators 500b and 500c may also be configured similarly to the actuator 500a in FIG. 7. Also in the example of FIG. 7, the actuators 500a, 500b, and 500c can tilt the optical path conversion plate 640 in any direction about the axes AX1 and AX2.
 (3-2)カメラ用イメージセンサ配置板
 次に、図1~図4のアクチュエータ500を用いた光学装置の他の例として、カメラ用イメージセンサ配置板について説明する。
(3-2) Camera Image Sensor Arrangement Board Next, an image sensor arrangement board for a camera will be described as another example of an optical device using the actuator 500 shown in FIGS. 1 to 4.
 図8は、アクチュエータを含むイメージセンサ配置板の構成を示す図である。図8において、イメージセンサ配置板700は、例えば、カメラにおいて、手振れ補正機能を実現するために用いられる。イメージセンサ配置板700は、第1の支持体720、第2の支持体730および連結部740d~740gを含む。第1の支持体720、第2の支持体730および連結部740d~740gは、金属または樹脂等の種々の材料により薄板状に形成される。本例において、第1の支持体720、第2の支持体730および連結部740d~740gは、非磁性体の金属の薄板により一体的に形成される。イメージセンサ配置板700は、配線回路基板の一部として形成されてもよい。本例においても、第1および第2の支持体720,730の平面上で互いに直交する2つの軸AX1,AX2を定義する。 FIG. 8 is a diagram showing the configuration of an image sensor arrangement plate including an actuator. In FIG. 8, an image sensor arrangement plate 700 is used, for example, in a camera to implement an image stabilization function. The image sensor arrangement plate 700 includes a first support 720, a second support 730, and connecting portions 740d to 740g. The first support body 720, the second support body 730, and the connecting portions 740d to 740g are formed into thin plate shapes of various materials such as metal or resin. In this example, the first support body 720, the second support body 730, and the connecting portions 740d to 740g are integrally formed of a thin plate of non-magnetic metal. Image sensor arrangement board 700 may be formed as part of a printed circuit board. Also in this example, two axes AX1 and AX2 are defined that are perpendicular to each other on the planes of the first and second supports 720 and 730.
 第1の支持体720は、矩形状を有する。第1の支持体720の一対の2辺Sa1,Sa2は、軸AX1に平行であり、第1の支持体720の他対の2辺Sa3,Sa4は、軸AX2に平行である。第1の支持体720上には、イメージセンサ710が設けられる。イメージセンサ710は、例えばCCD(charge-coupled device)型イメージセンサ、またはCMOS(complementary metal oxide semiconductor)型イメージセンサ等である。 The first support body 720 has a rectangular shape. A pair of two sides Sa1 and Sa2 of the first support body 720 are parallel to the axis AX1, and the other pair of two sides Sa3 and Sa4 of the first support body 720 are parallel to the axis AX2. An image sensor 710 is provided on the first support 720. The image sensor 710 is, for example, a CCD (charge-coupled device) type image sensor, a CMOS (complementary metal oxide semiconductor) type image sensor, or the like.
 第2の支持体730は、第1の支持体720を取り囲むように設けられる。第2の支持体730は、略矩形枠形状を有する。第2の支持体730には、開口部が形成される。第2の支持体730は、軸AX1に平行な一対の内辺Sb1,Sb2を有し、かつ内辺Sb1,Sb2から内方に突出する突出部P1,P2をそれぞれ有する。また、第2の支持体730は、軸AX2に平行な他の一対の内辺Sb3,Sb4を有し、かつ内辺Sb3,Sb4から内方に突出する突出部P3,P4をそれぞれ有する。 The second support 730 is provided to surround the first support 720. The second support body 730 has a substantially rectangular frame shape. An opening is formed in the second support 730. The second support body 730 has a pair of inner sides Sb1 and Sb2 parallel to the axis AX1, and protrusions P1 and P2 that protrude inward from the inner sides Sb1 and Sb2, respectively. The second support body 730 also has another pair of inner sides Sb3 and Sb4 parallel to the axis AX2, and protrusions P3 and P4 that project inward from the inner sides Sb3 and Sb4, respectively.
 第1の支持体720は、連結部740d,740e,740f,740gにより第2の支持体730の開口部内で支持される。連結部740dは、第2の支持体730の内辺Sb1から軸AX2の方向に延び、軸AX1の方向に屈曲し、第1の支持体720の辺Sa3に連結される。連結部740eは、第2の支持体730の内辺Sb3から軸AX1の方向に延び、軸AX2の方向に屈曲し、第1の支持体720の辺Sa2に連結される。連結部740fは、第2の支持体730の内辺Sb2から軸AX2の方向に延び、軸AX1の方向に屈曲し、第1の支持体720の辺Sa4に連結される。連結部740gは、第2の支持体730の内辺Sb4から軸AX1の方向に延び、軸AX2の方向に屈曲し、第1の支持体720の辺Sa1に連結される。連結部740d~740gは、屈曲線状に形成されているので、湾曲および捻転可能である。 The first support body 720 is supported within the opening of the second support body 730 by connecting portions 740d, 740e, 740f, and 740g. The connecting portion 740d extends from the inner side Sb1 of the second support body 730 in the direction of the axis AX2, is bent in the direction of the axis AX1, and is connected to the side Sa3 of the first support body 720. The connecting portion 740e extends from the inner side Sb3 of the second support body 730 in the direction of the axis AX1, is bent in the direction of the axis AX2, and is connected to the side Sa2 of the first support body 720. The connecting portion 740f extends from the inner side Sb2 of the second support body 730 in the direction of the axis AX2, is bent in the direction of the axis AX1, and is connected to the side Sa4 of the first support body 720. The connecting portion 740g extends from the inner side Sb4 of the second support body 730 in the direction of the axis AX1, bends in the direction of the axis AX2, and is connected to the side Sa1 of the first support body 720. The connecting portions 740d to 740g are formed in a curved line shape, so that they can be bent and twisted.
 本例においては、第2の支持体730は固定されているものとする。イメージセンサ配置板700は、アクチュエータ500d~500gをさらに含む。本例においては、アクチュエータ500dは、第2の支持体730の突出部P1と、その突出部P1に対向する第1の支持体720の角部とに形成される。アクチュエータ500eは、第2の支持体730の突出部P3と、その突出部P3に対向する第1の支持体720の角部とに形成される。アクチュエータ500fは、第2の支持体730の突出部P2と、その突出部P2に対向する第1の支持体720の角部とに形成される。アクチュエータ500gは、第2の支持体730の突出部P4と、その突出部P4に対向する第1の支持体720の角部とに形成される。 In this example, it is assumed that the second support body 730 is fixed. Image sensor arrangement plate 700 further includes actuators 500d to 500g. In this example, the actuator 500d is formed on the protrusion P1 of the second support 730 and the corner of the first support 720 that faces the protrusion P1. The actuator 500e is formed at a protrusion P3 of the second support 730 and a corner of the first support 720 that faces the protrusion P3. The actuator 500f is formed on the protrusion P2 of the second support 730 and the corner of the first support 720 that faces the protrusion P2. The actuator 500g is formed on the protrusion P4 of the second support 730 and the corner of the first support 720 that faces the protrusion P4.
 アクチュエータ500d~500gの各々は、図3および図4の駆動部550および被駆動部560を含む。なお、アクチュエータ500d~500gにおいては、連結部740d~740gがそれぞれ図3および図4の連結部材520として機能する。本例では、第1の支持体720上にアクチュエータ500e~500gの駆動部550が取り付けられ、第2の支持体730上にアクチュエータ500e~500gの被駆動部560が取り付けられている。 Each of the actuators 500d to 500g includes the driving section 550 and driven section 560 of FIGS. 3 and 4. Note that in the actuators 500d to 500g, the connecting portions 740d to 740g function as the connecting members 520 in FIGS. 3 and 4, respectively. In this example, the driving parts 550 of the actuators 500e to 500g are mounted on the first support 720, and the driven parts 560 of the actuators 500e to 500g are mounted on the second support 730.
 第1の支持体720上のアクチュエータ500e~500gの駆動部550の図1の巻き線部31aと端子31e,31dとを接続する配線31b,31cは、それぞれ連結部740e~740g上に延びている。 Wires 31b and 31c that connect the winding portion 31a of the driving portion 550 of the actuators 500e to 500g on the first support body 720 and the terminals 31e and 31d in FIG. 1 extend above the connecting portions 740e to 740g, respectively. .
 この構成によれば、アクチュエータ500d~500gのうち一または複数のアクチュエータの端子31d,31eに電気信号(電流)を供給することにより、第1の支持体720が軸AX1,AX2を中心として傾斜可能となるとともに、第1の支持体72の上面の法線を中心とする回転方向に移動可能となる。それにより、アクチュエータ500d~500gの端子31d,31eへの電気信号の供給方向および大きさを制御することにより、イメージセンサ710を太線矢印A1,A2で示すように移動させることが可能になるとともに、イメージセンサ710を太線矢印A3で示すように回転させることが可能になる。その結果、イメージセンサ710を任意の向きおよび位置に調整することができる。 According to this configuration, the first support body 720 can be tilted about the axes AX1 and AX2 by supplying an electric signal (current) to the terminals 31d and 31e of one or more of the actuators 500d to 500g. At the same time, it becomes possible to move in the rotational direction around the normal line of the upper surface of the first support body 72. Thereby, by controlling the supply direction and magnitude of electrical signals to the terminals 31d and 31e of the actuators 500d to 500g, it becomes possible to move the image sensor 710 as shown by thick arrows A1 and A2, and It becomes possible to rotate the image sensor 710 as shown by the thick arrow A3. As a result, image sensor 710 can be adjusted to any orientation and position.
 なお、イメージセンサ配置板700を搭載する例えばカメラ(図示せず)においては、例えばジャイロセンサ等のセンサが、カメラの移動量を示す信号を出力する。カメラにおいては、アクチュエータ500d~500gの端子31d,31eへの電気信号の供給方向および大きさがこの出力信号に基づいて制御されることにより、手振れ補正機能が実現する。 Note that in, for example, a camera (not shown) on which the image sensor arrangement plate 700 is mounted, a sensor such as a gyro sensor outputs a signal indicating the amount of movement of the camera. In the camera, the direction and magnitude of electrical signals supplied to the terminals 31d and 31e of the actuators 500d to 500g are controlled based on the output signals, thereby achieving an image stabilization function.
 図9は、イメージセンサ配置板700の変形例を示す図である。なお、図8のイメージセンサ配置板700は、図9に示すように、第1の支持体720上にアクチュエータ500e~500gの被駆動部560が取り付けられ、第2の支持体730上にアクチュエータ500e~500gの駆動部550が取り付けられてもよい。この構成においても、上記と同様に、イメージセンサ710を任意の向きおよび位置に調整することができる。 FIG. 9 is a diagram showing a modification of the image sensor arrangement plate 700. In the image sensor arrangement plate 700 of FIG. 8, as shown in FIG. A drive unit 550 of ~500 g may be attached. Also in this configuration, the image sensor 710 can be adjusted to any direction and position as described above.
 (3-3)カメラ用イメージセンサ配置板の変形例
 図10は、イメージセンサ配置板700の変形例を示す図である。図11は、図10のイメージセンサ配置板700のE-E線断面図である。図10および図11の例では、イメージセンサ配置板700のアクチュエータ500d~500gが第1の支持体720上に配置されている。図10に示すように、アクチュエータ500d~500gの駆動部550が第1の支持体720に取り付けられ、被駆動部560が駆動部550の上方に離間するように配置されている。本例では、被駆動部560が固定され、駆動部550が被駆動部560に対して相対的に移動可能に構成されている。このような構成においても、イメージセンサ710を任意の向きおよび位置に調整することができる。
(3-3) Modification of camera image sensor arrangement plate FIG. 10 is a diagram showing a modification of the image sensor arrangement board 700. FIG. 11 is a cross-sectional view taken along the line EE of the image sensor arrangement plate 700 of FIG. In the example of FIGS. 10 and 11, the actuators 500d to 500g of the image sensor arrangement plate 700 are arranged on the first support 720. As shown in FIG. 10, the driving parts 550 of the actuators 500d to 500g are attached to the first support 720, and the driven parts 560 are arranged above the driving parts 550 and spaced apart from each other. In this example, the driven part 560 is fixed, and the driving part 550 is configured to be movable relative to the driven part 560. Even in such a configuration, the image sensor 710 can be adjusted to any direction and position.
 (3-4)効果
 上記の光学装置(光路シフトデバイス600およびイメージセンサ配置板700)によれば、アクチュエータ500により光学要素(光路変換板640(図5)およびイメージセンサ710(図8))が駆動される。この場合、アクチュエータ500の小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。その結果、光学装置の小型化および薄型化が可能であるとともに、駆動力の増加が可能でかつ製造工程の複雑化を抑制することが可能となる。
(3-4) Effect According to the above optical device (optical path shift device 600 and image sensor arrangement plate 700), the optical element (optical path conversion plate 640 (FIG. 5) and image sensor 710 (FIG. 8)) is moved by the actuator 500. Driven. In this case, the actuator 500 can be made smaller and thinner, the driving force can be increased, and the manufacturing process can be prevented from becoming complicated. As a result, the optical device can be made smaller and thinner, the driving force can be increased, and the complexity of the manufacturing process can be suppressed.
 また、アクチュエータ500の駆動部550または被駆動部560の駆動により、複数の連結部材(611~613(図5),740d~740g(図8))が変形しつつ駆動部550または被駆動部560が相対的に移動する。それにより、光学要素を任意の方向に移動させることが可能になる。 Further, by driving the driving section 550 or the driven section 560 of the actuator 500, the plurality of connecting members (611 to 613 (FIG. 5), 740d to 740g (FIG. 8)) are deformed and the driving section 550 or the driven section 560 is deformed. moves relatively. This makes it possible to move the optical element in any direction.
 (4)他の実施の形態
 上記実施の形態では、光学装置が光路シフトデバイス600またはイメージセンサ配置板700である例が示されているが、本発明はこれに限定されない。他の光学要素を用いることにより他の光学装置を構成することも可能である。例えば、光路シフトデバイス600の光路変換板640の代わりに発光ダイオードまたはレーザダイオード等の発光素子を用いることにより光学装置としてプロジェクタを構成することもできる。
(4) Other Embodiments In the embodiments described above, examples are shown in which the optical device is the optical path shift device 600 or the image sensor arrangement plate 700, but the present invention is not limited thereto. It is also possible to construct other optical devices by using other optical elements. For example, a projector can be configured as an optical device by using a light emitting element such as a light emitting diode or a laser diode instead of the optical path conversion plate 640 of the optical path shift device 600.
 (5)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明する。上記実施の形態では、ベース絶縁層20Aが第1の絶縁層の例であり、ベース絶縁層20Bのうちコア層10の下面上に形成される部分が第2の絶縁層の例であり、ベース絶縁層20Bのうちコア層10の一方の側面上および他方の側面上にそれぞれ形成される部分が第3および第4の絶縁層の例であり、巻き線部31aが巻き線層の例である。また、コア層10の上面が第1の主面の例であり、コア層10の下面が第2の主面の例である。また、光路変換板640およびイメージセンサ710が光学要素の例であり、光路変換板640が光学部材の例である。
 
(5) Correspondence between each component of the claims and each part of the embodiment Below, an example of the correspondence between each component of the claim and each element of the embodiment will be described. In the above embodiment, the base insulating layer 20A is an example of the first insulating layer, the portion of the base insulating layer 20B formed on the lower surface of the core layer 10 is an example of the second insulating layer, and the base insulating layer 20B is an example of the second insulating layer. The portions of the insulating layer 20B formed on one side surface and the other side surface of the core layer 10 are examples of the third and fourth insulating layers, and the winding portion 31a is an example of the winding layer. . Further, the upper surface of the core layer 10 is an example of the first main surface, and the lower surface of the core layer 10 is an example of the second main surface. Further, the optical path conversion plate 640 and the image sensor 710 are examples of optical elements, and the optical path conversion plate 640 is an example of an optical member.

Claims (14)

  1. 配線回路基板と、
     磁石とを備え、
     前記配線回路基板は、
     互いに反対を向く第1および第2の主面を有しかつ前記第1の主面と前記第2の主面とを連結する第1および第2の側面を有するとともに、磁性体により形成されるコア層と、
     前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を取り囲む絶縁層と、
     前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を前記絶縁層を介して取り囲むように巻き回された巻き線層とを含み、
     前記磁石は、前記巻き線層および前記コア層に対して相対的に移動可能に設けられた、アクチュエータ。
    a wired circuit board;
    Equipped with a magnet,
    The printed circuit board includes:
    It has first and second main surfaces facing opposite to each other, first and second side surfaces connecting the first main surface and the second main surface, and is made of a magnetic material. a core layer;
    an insulating layer surrounding the first main surface, the second main surface, the first side surface, and the second side surface of the core layer;
    a wire-wound layer wound to surround the first main surface, the second main surface, the first side surface, and the second side surface of the core layer with the insulating layer interposed therebetween;
    The actuator is configured such that the magnet is movable relative to the winding layer and the core layer.
  2. 前記配線回路基板を支持する第1の支持体と、
     前記磁石を支持する第2の支持体と、
     前記第1の支持体と前記第2の支持体とを連結する連結部とをさらに備え、
     前記連結部は、前記第1の支持体と前記第2の支持体とが互いに相対的に移動可能であるように変形可能に構成される、請求項1記載のアクチュエータ。
    a first support that supports the printed circuit board;
    a second support that supports the magnet;
    Further comprising a connecting portion connecting the first support and the second support,
    The actuator according to claim 1, wherein the connecting portion is configured to be deformable so that the first support and the second support are movable relative to each other.
  3. 前記第1の支持体、前記第2の支持体および前記連結部は、共通の支持板により形成される、請求項2記載のアクチュエータ。 The actuator according to claim 2, wherein the first support, the second support, and the connecting portion are formed by a common support plate.
  4. 前記磁石は、前記巻き線層に電流が流れた場合に前記コア層を通過する磁束と前記磁石内の磁束とが実質的に同じ方向に並ぶように配置される、請求項1~3のいずれか一項に記載のアクチュエータ。 The magnet is arranged so that when a current flows through the winding layer, the magnetic flux passing through the core layer and the magnetic flux within the magnet are aligned in substantially the same direction. The actuator according to item 1.
  5. 前記磁石は、前記巻き線層に電流が流れた場合に前記コア層を通過する磁束と前記磁石内の磁束とが実質的に並列になるように配置される、請求項1~3のいずれか一項に記載のアクチュエータ。 The magnet is arranged such that when a current flows through the winding layer, the magnetic flux passing through the core layer and the magnetic flux within the magnet are substantially parallel to each other. The actuator according to item 1.
  6. 前記絶縁層は、
     前記コア層の前記第1の主面上に配置される第1の絶縁層と、
     前記コア層の前記第2の主面上に配置される第2の絶縁層と、
     前記コア層の前記第1の側面上に配置される第3の絶縁層と、
     前記コア層の前記第2の側面上に配置される第4の絶縁層とを含み、
     前記巻き線層は、前記コア層の前記第1の主面、前記第2の主面、前記第1の側面および前記第2の側面を取り囲むように前記第1、第2、第3および第4の絶縁層上に配置された、請求項1~5のいずれか一項に記載のアクチュエータ。
    The insulating layer is
    a first insulating layer disposed on the first main surface of the core layer;
    a second insulating layer disposed on the second main surface of the core layer;
    a third insulating layer disposed on the first side surface of the core layer;
    a fourth insulating layer disposed on the second side surface of the core layer,
    The winding layer surrounds the first main surface, the second main surface, the first side surface, and the second side surface of the core layer. 6. The actuator according to claim 1, wherein the actuator is arranged on an insulating layer of 4.
  7. 前記第1の絶縁層の厚みと前記第2の絶縁層の厚みとは実質的に等しい、請求項6記載のアクチュエータ。 7. The actuator according to claim 6, wherein the thickness of the first insulating layer and the thickness of the second insulating layer are substantially equal.
  8. 前記第3の絶縁層の厚みと前記第4の絶縁層の厚みとは実質的に等しい、請求項7記載のアクチュエータ。 The actuator according to claim 7, wherein the thickness of the third insulating layer and the thickness of the fourth insulating layer are substantially equal.
  9. 前記磁性体は、電磁鋼板、ケイ素鋼板、鉄またはパーマロイのいずれかを含む、請求項1~8のいずれか一項に記載のアクチュエータ。 The actuator according to any one of claims 1 to 8, wherein the magnetic material includes any one of an electromagnetic steel plate, a silicon steel plate, iron, and permalloy.
  10. 請求項1~9のいずれか一項に記載のアクチュエータと、
     前記アクチュエータの前記配線回路基板および前記磁石のうち一方とともに移動可能に設けられた光学要素とを備えた、光学装置。
    The actuator according to any one of claims 1 to 9,
    An optical device comprising: an optical element movably provided with one of the printed circuit board and the magnet of the actuator.
  11. 前記アクチュエータの前記配線回路基板および前記磁石のうち一方を支持する第1の支持体と、
     前記アクチュエータの前記配線回路基板および前記磁石の他方を支持する第2の支持体と、
     前記第1の支持体と前記第2の支持体とを互いに相対的に連結するとともに変形可能な連結部とをさらに備え、
     前記光学要素は、前記第1および第2の支持体のうち一方に設けられた、請求項10記載の光学装置。
    a first support that supports one of the printed circuit board and the magnet of the actuator;
    a second support that supports the other of the printed circuit board and the magnet of the actuator;
    further comprising a connecting portion that connects the first support body and the second support body relatively to each other and is deformable;
    The optical device according to claim 10, wherein the optical element is provided on one of the first and second supports.
  12. 前記第2の支持体は開口部を有し、
     前記第1の支持体は、前記第2の支持体の前記開口部内に位置するように、前記連結部により前記第2の支持体に連結され、
     前記光学要素は、前記第1の支持体に設けられた、請求項11記載の光学装置。
    the second support has an opening;
    The first support is connected to the second support by the connection part so as to be located within the opening of the second support,
    The optical device according to claim 11, wherein the optical element is provided on the first support.
  13. 前記光学要素は、光を屈折または反射させる光学部材を含み、
     前記光学部材は、前記アクチュエータにより駆動されることにより光の方向を変更するように設けられる、請求項10~12のいずれか一項に記載の光学装置。
    The optical element includes an optical member that refracts or reflects light,
    The optical device according to any one of claims 10 to 12, wherein the optical member is provided to change the direction of light by being driven by the actuator.
  14. 前記光学要素は、イメージセンサを含み、
     前記イメージセンサは、前記アクチュエータにより駆動されることにより受光の位置および傾きが変更されるように設けられた、請求項10~12のいずれか一項に記載の光学装置。
     
    the optical element includes an image sensor;
    The optical device according to any one of claims 10 to 12, wherein the image sensor is provided so that the position and inclination of light reception can be changed by being driven by the actuator.
PCT/JP2023/014769 2022-04-28 2023-04-11 Actuator, and optical device comprising same WO2023210357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075138 2022-04-28
JP2022-075138 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210357A1 true WO2023210357A1 (en) 2023-11-02

Family

ID=88518464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014769 WO2023210357A1 (en) 2022-04-28 2023-04-11 Actuator, and optical device comprising same

Country Status (2)

Country Link
TW (1) TW202347929A (en)
WO (1) WO2023210357A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071299A (en) * 1999-09-03 2001-03-21 Canon Inc Solenoid actuator, optical scanner and manufacturing method of the same
WO2010103831A1 (en) * 2009-03-10 2010-09-16 三洋電機株式会社 Vibration motor and portable apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071299A (en) * 1999-09-03 2001-03-21 Canon Inc Solenoid actuator, optical scanner and manufacturing method of the same
WO2010103831A1 (en) * 2009-03-10 2010-09-16 三洋電機株式会社 Vibration motor and portable apparatus

Also Published As

Publication number Publication date
TW202347929A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US7675566B2 (en) Camera module
TWI569058B (en) Lens driving device with 3d elastic support structure
KR101494823B1 (en) Camera module
US10549981B2 (en) Mirror drive device and method for producing same
JP6805225B2 (en) Drive
US20060275032A1 (en) Actuator for mobile terminal
US7224507B2 (en) Optical deflector
WO2015092907A1 (en) Drive device
JP4693510B2 (en) Objective lens drive
JP4262583B2 (en) 2D optical deflector
JP6797704B2 (en) Electromagnetic drive module and lens drive device using it
CN215073101U (en) Flexible circuit board and camera module
WO2023210357A1 (en) Actuator, and optical device comprising same
CN112969296A (en) Flexible circuit board, camera module and assembly method of flexible circuit board
JP6439213B2 (en) Multilayer coil, lens driving device, camera device and electronic device
JP4286553B2 (en) Planar type actuator
WO2014162521A1 (en) Actuator
JP6549020B2 (en) Lens drive
CN114710002A (en) Three-dimensional spring combined by plane elastic pieces
JP2023530250A (en) Shape memory alloy actuator and method
WO2011021489A1 (en) Lens drive device
JP2011128173A (en) Mems actuator
JP2023133335A (en) optical module
WO2013168269A1 (en) Drive device
JP2023095943A (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796101

Country of ref document: EP

Kind code of ref document: A1