WO2023210297A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2023210297A1
WO2023210297A1 PCT/JP2023/014279 JP2023014279W WO2023210297A1 WO 2023210297 A1 WO2023210297 A1 WO 2023210297A1 JP 2023014279 W JP2023014279 W JP 2023014279W WO 2023210297 A1 WO2023210297 A1 WO 2023210297A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
image
beam splitter
polarized light
Prior art date
Application number
PCT/JP2023/014279
Other languages
French (fr)
Japanese (ja)
Inventor
正年 佐名川
Original Assignee
日本カーバイド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カーバイド工業株式会社 filed Critical 日本カーバイド工業株式会社
Publication of WO2023210297A1 publication Critical patent/WO2023210297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present invention relates to an image display device.
  • Patent Document 1 listed below discloses an image display device installed in a reception/payment machine for hospitals.
  • the reception and payment machine allows the user, the patient, to select the medical department to be examined and process the reception process, and to pay the consultation fee, confirms the consultation fee and inserts cash corresponding to the payment amount to process the payment. It is a device.
  • Such a reception and payment machine is equipped with an information presentation display that displays images showing various information necessary for reception processing and payment processing.
  • the image display device in the reception/payment machine displays buttons for "reception" and "payment” as an aerial image.
  • the image display device Since the image display device is provided away from the display for information presentation and to the side of the display, the button as an aerial image is displayed away from the image of the display for information presentation and to the side of the image. .
  • the image display device also includes a reflected light distance sensor, which detects the movement of the patient's hand over the "reception" and "payment” buttons. In such a reception/payment machine, a patient confirms an image on a display for presenting information, and then places his/her hand over a button as an aerial image to perform reception processing and payment processing.
  • the aerial image is displayed on the side of the image away from the image on the display for presenting information, but it is desirable to bring the aerial image and the image closer to each other so that they can be easily viewed at the same time. There is a request.
  • an object of the present invention is to provide an image display device that can bring an aerial image and a display image closer to each other so that they can be easily viewed simultaneously.
  • the image display device of the present invention includes a first display that emits first light constituting a first image, and a first display that reflects a part of the first light that is emitted from the first display.
  • the beam splitter transmits a portion of the first light that is retroreflected by the retroreflective member
  • the second display transmits a portion of the first light that is retroreflected by the retroreflective member and passes through the beam splitter.
  • the device is characterized in that at least a portion of the first light transmitted therethrough is transmitted, and the second light is emitted from a surface on the front side in the traveling direction of the first light transmitted through the second display.
  • the first light travels toward the beam splitter while spreading from the first display, and a portion of the first light is reflected by the beam splitter toward the retroreflective member.
  • the first light traveling to the retroreflective member is retroreflected by the retroreflector, and a portion of the retroreflected first light passes through the beam splitter.
  • the first light travels toward the second display while being converged by retroreflection, at least a portion of the traveling first light passes through the second display, and a first image is formed at a predetermined position in the air. and an aerial image is displayed.
  • This aerial image is an image that is approximately plane symmetrical to the first image displayed on the first display with respect to the surface including the reflective surface of the beam splitter, and is approximately symmetrical to the first image displayed on the first display.
  • the second display Located in a symmetrical position.
  • the second display emits second light constituting the second image from a surface on the front side in the traveling direction of the first light that passes through the second display. In this way, the first light and the second light are emitted from the second display. Therefore, according to this image display device, the first light passes through the side of the second display without passing through the second display, and the aerial image is separated from the second image on the second display and is moved to the side of the second image. Compared to the case where the aerial image and the second image on the second display are displayed closer to each other, it is possible to make it easier to view each at the same time.
  • the image display device of the present invention includes: a first display that emits first light constituting a first image; a beam splitter that transmits a part of the first light emitted from the first display; comprising a retroreflective member that retroreflects the first light transmitted through the beam splitter, and a light-transmissive second display that emits second light constituting a second image and transmits the first light,
  • the beam splitter reflects a portion of the first light retroreflected by the retroreflective member toward the second display
  • the second display reflects a portion of the first light retroreflected by the retroreflective member to the beam splitter.
  • the display is characterized in that at least a portion of the first light reflected by the display is transmitted through the display, and the second light is emitted from a surface on the front side in the traveling direction of the first light that is transmitted through the second display.
  • the first light travels toward the beam splitter while spreading from the first display, and a portion of the first light passes through the beam splitter and travels to the retroreflective member.
  • the first light that travels to the retroreflective member is retroreflected by the retroreflector, and travels to the beam splitter while being converged by the retroreflection.
  • a portion of the first light is reflected toward the second display by the beam splitter, at least a portion of the reflected first light is transmitted through the second display, and a first image is formed at a predetermined position in the air;
  • An aerial image is displayed.
  • This aerial image is an image that is approximately plane symmetrical to the first image displayed on the first display with respect to the surface including the reflective surface of the beam splitter, and is approximately symmetrical to the first image displayed on the first display.
  • the second display Located in a symmetrical position.
  • the second display emits second light constituting the second image from a surface on the front side in the traveling direction of the first light that passes through the second display. In this way, the first light and the second light are emitted from the second display. Therefore, according to this image display device, the first light passes through the side of the second display without passing through the second display, and the aerial image is separated from the second image on the second display and is moved to the side of the second image. Compared to the case where the aerial image and the second image on the second display are displayed closer to each other, it is possible to make it easier to view each at the same time.
  • the luminous intensity of the first light emitted from the first display may be higher than the luminous intensity of the second light emitted from the second display.
  • the aerial image is prevented from becoming darker than the second image. This can prevent the aerial image from becoming difficult to see.
  • the luminous intensity of the first light emitted from the first display may be greater than or equal to twice the luminous intensity of the second light emitted from the second display and less than or equal to 20 times.
  • the display device may further include a detection sensor that detects the presence or absence of an object between the imaging position of the first light transmitted through the second display and the second display.
  • the detection sensor detects the hand or fingers that are between the imaging position and the second display.
  • the first image of the first light transmitted through the second display can be used as if it were a button, and the detection sensor can detect the depression operation of the button.
  • the second display when the second display is viewed from the front, the second display emits the second light from at least a portion of the second display outside the projection area of the first image.
  • the user of the image display device 10 often views the second display straight on.
  • the second light is emitted from the projection area of the first image
  • the second light overlaps the aerial image, making the aerial image difficult to see depending on the content and color of the second image.
  • the second light can be suppressed from overlapping the aerial image, and the aerial image can be prevented from becoming difficult to see due to the second light. Can be suppressed.
  • the beam splitter when the beam splitter reflects a part of the first light emitted from the first display, the beam splitter may be provided between the second display and the retroreflective member.
  • the beam splitter when the beam splitter reflects a part of the first light emitted from the first display, the beam splitter may be placed on the second display.
  • an image display device that brings an aerial image and a display image closer to each other so that they can be easily viewed at the same time.
  • FIG. 1 is a diagram schematically showing a cross section of an image display device according to a first embodiment of the present invention. It is a figure which shows roughly the cross section of the image display apparatus in the modification of 1st Embodiment.
  • FIG. 7 is a diagram schematically showing a cross section of an image display device according to a second embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a cross section of an image display device of this embodiment.
  • the image display device 10 is used, for example, as a touch panel in a billboard, a reception/payment machine for hospitals, an automatic teller machine, or the like.
  • the image display device 10 includes a housing 20, a first display 30, a beam splitter 40, a ⁇ /4 wavelength plate 50, a retroreflective member 60, a second display 70, and a detection sensor 80.
  • the casing 20 of this embodiment is configured in a box shape with an opening at the front, and a plate-shaped second display 70 is fixed to the casing 20 so as to close the opening.
  • a plate-shaped second display 70 is fixed to the casing 20 so as to close the opening.
  • an internal space surrounded by the housing 20 and the second display 70 is formed, and the first display 30, the beam splitter 40, the ⁇ /4 wavelength plate 50, and the retroreflective member 60 are housed in the internal space.
  • the detection sensor 80 is arranged outside the internal space and fixed to the housing 20.
  • the first display 30 includes a display surface 30S that emits first light constituting the first image F1 toward the beam splitter 40.
  • the first image F1 is virtually shown by a broken line.
  • the first image F1 may be a still image or a moving image.
  • the first light of this embodiment is the first linearly polarized light L1a whose trajectory in a plane perpendicular to the traveling direction of the light is approximately a straight line.
  • the first display 30 is, for example, a liquid crystal display, and is fixed to the first pedestal plate 21, and the first pedestal plate 21 is fixed to the upper wall and side wall of the housing 20 in a bracing manner.
  • the first display 30 is arranged such that the first linearly polarized light L1a obliquely enters the surface of the beam splitter 40 on the first display 30 side.
  • the beam splitter 40 is a plate-like member.
  • the beam splitter 40 of this embodiment is provided between the second display 70 and the retroreflective member 60. Specifically, the beam splitter 40 is arranged on the back surface of the second display 70 on the retroreflective member 60 side.
  • Beam splitter 40 reflects a portion of the first light from first display 30 . Since the first light in this embodiment is the first linearly polarized light L1a, the beam splitter 40 reflects a part of the first linearly polarized light L1a from the first display 30. Furthermore, the beam splitter 40 transmits the second linearly polarized light L1c whose polarization direction is different from the polarization direction of the first linearly polarized light L1a and is substantially perpendicular.
  • Such a beam splitter 40 includes an absorptive polarizing plate 41 disposed on the back surface of the second display 70 on the retroreflective member 60 side, and a reflective polarizing plate 43 disposed on the absorptive polarizing plate 41.
  • the absorption type polarizing plate 41 is composed of, for example, a film made of polyvinyl alcohol dyed with iodine, and a protective film made of triacetylcellulose laminated on both or one side of the film.
  • the reflective polarizing plate 43 is composed of, for example, a multilayer laminate or a wire grid polarizing plate represented by DBEF and APF manufactured by 3M Company.
  • the polarization axis of the reflective polarizing plate 43 is approximately parallel to the polarization axis of the absorptive polarizing plate 41, and along the polarization direction of the first linearly polarized light L1a.
  • the reflective polarizing plate 43 reflects a portion of the first linearly polarized light L1a toward the ⁇ /4 wavelength plate 50 and transmits the second linearly polarized light L1c.
  • the absorption type polarizing plate 41 transmits the second linearly polarized light L1c.
  • the ⁇ /4 wavelength plate 50 is a plate-like member, and is arranged between the beam splitter 40 and the retroreflective member 60.
  • the ⁇ /4 wavelength plate 50 of this embodiment is fixed and integrated with the surface of the retroreflective member 60 on the beam splitter 40 side.
  • the ⁇ /4 wavelength plate 50 transmits the first linearly polarized light L1a reflected by the beam splitter 40, and the trajectory of the first linearly polarized light L1a in a plane perpendicular to the traveling direction of the light is approximately The light is converted into circularly polarized light L1b.
  • the circularly polarized light L1b may be elliptically polarized light whose trajectory in a plane perpendicular to the traveling direction of the light is approximately elliptical.
  • the ⁇ /4 wavelength plate 50 of this embodiment is preferably arranged so that the first linearly polarized light L1a is approximately perpendicularly incident on the surface on the beam splitter 40 side.
  • the retroreflective member 60 is a plate-like member and is fixed to the second pedestal plate 23, and the second pedestal plate 23 is fixed to the lower wall and side wall of the casing 20 in a bracing manner.
  • a retroreflective member 60 is arranged so that light from the beam splitter 40 side enters the retroreflective member 60 perpendicularly.
  • the retroreflective member 60 reflects the light incident on the retroreflective member 60 in a direction opposite to the incident direction of the light. Examples of such a retroreflective member 60 include a corner cube type and a spherical type retroreflective member.
  • the retroreflective member 60 absorbs light traveling from the beam splitter 40 to the retroreflective member 60 via the ⁇ /4 wavelength plate 50. is retroreflected toward the beam splitter 40 via the ⁇ /4 wavelength plate 50.
  • the retroreflection member 60 of this embodiment retroreflects the circularly polarized light L1b converted by the ⁇ /4 wavelength plate 50.
  • the retroreflected circularly polarized light L1b passes through the ⁇ /4 wavelength plate 50 again, is converted into the second linearly polarized light L1c, and proceeds to the beam splitter 40.
  • the beam splitter 40 transmits a part of the second linearly polarized light L1c, which is the first light that has been retroreflected by the retroreflection member 60, and at least the second linearly polarized light L1c, which is the first light that has passed through the beam splitter 40. A portion proceeds to the second display 70.
  • the second display 70 emits second light L2 that forms a second image.
  • the second image may be a still image or a moving image.
  • the second display 70 of this embodiment includes, for example, a first transparent substrate made of glass, a first transparent electrode, an OLED layer made of an OLED element, a second transparent electrode, a second transparent substrate having the same structure as the first transparent substrate, etc. It is an OLED panel equipped with.
  • a plurality of first transparent electrodes are provided on the transparent substrate at intervals in the plane direction of the first transparent substrate, the OLED layer is individually arranged on the plurality of first transparent electrodes, and the second transparent electrode is formed on the OLED layer. Each is placed individually on the top.
  • the second transparent substrate is placed on the second transparent electrode, and the beam splitter 40 is placed on the opposite side of the second transparent substrate from the second transparent electrode.
  • the beam splitter 40 is arranged on the second display 70, and the second display 70 is arranged on the opposite side to the retroreflective member 60 side with respect to the beam splitter 40.
  • the second display 70 is larger than the first display 30.
  • the second light L2 is emitted from the OLED layer by applying a voltage between the first transparent electrode and the second transparent electrode.
  • the second light L2 passes through each of the first transparent electrode and the second transparent electrode, and is emitted from both sides of the second display 70. That is, the second display 70 emits the second light L2 toward the air in front of the second display 70 and toward the inner space of the housing 20.
  • illustration of the second light L2 emitted toward the internal space of the housing 20 is omitted for clarity of illustration.
  • the second display 70 is also a light-transmissive display that transmits at least a portion of the second linearly polarized light L1c, which is the first light that is retroreflected by the retroreflection member 60 and transmitted through the beam splitter 40.
  • the second linearly polarized light L1c transmitted through the second display 70 travels into the air in front of the second display 70.
  • the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image.
  • the first image F2 as an aerial image is virtually shown by a broken line.
  • the second display 70 emits the second light L2 to the air in front of the second display 70, and for the second light L2, a second linearly polarized light is transmitted through the second display 70.
  • the second light L2 is emitted from the front surface of L1c in the traveling direction.
  • the second display 70 emits the second light L2 from at least a part of the outside of the projection area AR of the first image F2 of the second display 70, and The second light L2 is not emitted from the projection area AR of the display 70.
  • the second image formed by the second light L2 emitted in this way is displayed as a background image for the first image F2 as an aerial image.
  • the luminous intensity of the first light is made higher than the luminous intensity of the second light L2.
  • the luminous intensity of the first light is preferably 2 times or more and 20 times or less than the luminous intensity of the second light L2, and more preferably 5 times or more and 10 times or less than the luminous intensity of the second light L2.
  • the detection sensor 80 is arranged outside the second display 70 when the second display 70 is viewed from the front, and FIG. 1 shows an example in which it is arranged below the second display 70.
  • the detection sensor 80 detects an area parallel to the second display 70 including a part of the first image F2 displayed by imaging the first light transmitted through the second display 70 and which is farthest from the second display 70. The presence or absence of an object to be detected in the area between the two displays 70 is detected. That is, the detection sensor 80 detects the presence or absence of an object in the area between the second display 70 and the imaging position of the first light transmitted through the second display 70 .
  • the detection sensor 80 of this embodiment includes a plurality of reflected light distance sensors. Each reflected light distance sensor is a distance sensor that includes a light emitting element and a light receiving element and can detect the distance to an object located in the optical axis direction of the light emitting element and the light receiving element.
  • the light emitting element is, for example, an infrared light emitting element.
  • FIG. 1 in the light emitted from each light emitting element, an area parallel to the second display 70 including a part of the first image F2 that is farthest from the second display 70 and the second display 70, respectively.
  • the closest light is indicated by an arrow.
  • light is also emitted between the two arrows indicating light in FIG. 1, but for clarity of illustration, the arrow indicating light between the two arrows is omitted.
  • the plurality of reflected light distance sensors are arranged in a line along the direction perpendicular to the second display 70.
  • the first linearly polarized light L1a travels from the first display 30 toward the beam splitter 40 while spreading, and a portion of the first linearly polarized light L1a is directed toward the ⁇ /4 wavelength plate 50 by the reflective polarizing plate 43 of the beam splitter 40. reflected. Note that in FIG. 1, illustration of the spread of the first linearly polarized light L1a is omitted for clarity of illustration.
  • the reflected first linearly polarized light L1a passes through the ⁇ /4 wavelength plate 50 and is converted into circularly polarized light L1b.
  • This circularly polarized light L1b is, for example, right-handed circularly polarized light whose trajectory in a plane perpendicular to the direction of travel of the light is a clockwise circular trajectory when viewed from the direction of travel of the light.
  • the circularly polarized light L1b which is right-handed circularly polarized light, is retroreflected by the retroreflection member 60 and travels while converging due to the retroreflection. Note that in FIG. 1, illustration of the convergence of the circularly polarized light L1b is omitted for clarity of illustration. Due to retroreflection, the circularly polarized light L1b becomes left-handed circularly polarized light whose trajectory in a plane perpendicular to the direction of travel of the light is a counterclockwise circular trajectory when viewed from the direction of travel of the light.
  • the circularly polarized light L1b which is the left-handed circularly polarized light, passes through the ⁇ /4 wavelength plate 50 and is converted into the second linearly polarized light L1c.
  • a portion of the second linearly polarized light L1c passes through the reflective polarizing plate 43 and the absorption polarizing plate 41 of the beam splitter 40.
  • At least a portion of the second linearly polarized light L1c that has passed through the beam splitter 40 also passes through the second display 70.
  • the second linearly polarized light L1c transmitted through the second display 70 travels into the air in front of the second display 70. Then, the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image.
  • This aerial image is an image that is approximately plane symmetrical to the first image F1 displayed on the first display 30 with respect to the surface including the reflective surface of the reflective polarizing plate 43 of the beam splitter 40, and It is located at a position that is approximately plane symmetrical to the first image F1 displayed at 30.
  • This aerial image is used as a button as described later.
  • a part of the second light L2 emitted from the second display 70 is emitted from the front surface on the front side in the traveling direction of the second linearly polarized light L1c, which is the first light that passes through the second display 70.
  • the second display 70 When viewing the second display 70 from the front, the second display 70 emits the second light L2 from at least a part of the outside of the projection area AR of the first image F2 of the second display 70, and from the projection area AR. does not emit the second light L2.
  • a user of the image display device 10 often views the second display 70 from the front.
  • the second display 70 When the second display 70 is viewed from the front, when the second light L2 is emitted from the projection area AR of the first image F2, the second light L2 overlaps the first image F2 as an aerial image, and the content of the second image is Aerial images may be difficult to see depending on the color, etc.
  • the second light L2 can be suppressed from overlapping the aerial image, and the aerial image is It can be prevented from becoming difficult to see.
  • the other part of the second light L2 emitted from the second display 70 passes through the second transparent electrode and the second transparent substrate from the OLED layer, and enters the housing 20. Proceed towards the interior space.
  • the first linearly polarized light of this second light L2 is absorbed by the absorption polarizing plate 41.
  • the second linearly polarized light of the second light L2 is transmitted through the absorption polarizing plate 41.
  • This second linearly polarized light further passes through the reflective polarizing plate 43 and proceeds to the ⁇ /4 wavelength plate 50.
  • the second linearly polarized light passes through the ⁇ /4 wavelength plate 50 and is converted into circularly polarized light.
  • This circularly polarized light is, for example, right-handed circularly polarized light.
  • This right-handed circularly polarized light is retroreflected by the retroreflection member 60 and becomes left-handed circularly polarized light.
  • This circularly polarized light which is left-handed circularly polarized light, is transmitted through the ⁇ /4 wavelength plate 50 and converted into first linearly polarized light.
  • the first linearly polarized light is reflected by the reflective polarizing plate 43 and is suppressed from being emitted from the second display 70 into the air.
  • the detection sensor 80 inputs and outputs light in an area between the second display 70 and an area parallel to the second display 70 that includes the part of the first image F2 that is farthest from the second display 70. Then, the detection sensor 80 can acquire distance information between the detection sensor 80 and the object when the object is present in the area between the above-described parallel area and the second display 70. Therefore, when the object is the hand or fingers of the user of the image display device 10, the detection sensor 80 detects the hand or fingers located in the area between the parallel area and the second display 70. and obtains distance information to hands and fingers. Thereby, the first image F2 of the first light transmitted through the second display 70 can be used as if it were a button, and the detection sensor 80 can detect the depression operation of the button.
  • the beam splitter 40 transmits a portion of the first light that is retroreflected by the retroreflection member 60.
  • the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40, and the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40, and the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40.
  • the second light L2 is emitted from the surface.
  • the first light travels toward the beam splitter 40 while spreading from the first display 30, and a portion of the first light is reflected by the beam splitter 40 toward the retroreflective member 60.
  • the first light traveling to the retroreflective member 60 is retroreflected by the retroreflector 60, and a portion of the retroreflected first light is transmitted through the beam splitter 40.
  • Such first light travels toward the second display 70 while being converged by retroreflection, and at least a portion of the traveling first light passes through the second display 70, and a first image F1 is placed at a predetermined position in the air. is imaged, and an aerial image is displayed as the first image F2.
  • This aerial image is an image having a shape that is approximately plane symmetrical to the first image displayed on the first display 30 with respect to the surface including the reflective surface of the beam splitter 40, and the first image displayed on the first display 30 It is located in a position that is approximately symmetrical to the image.
  • the second display 70 emits the second light L2 constituting the second image from the front surface in the traveling direction of the first light that passes through the second display 70. In this way, the first light and the second light L2 are emitted from the second display 70. Therefore, according to this image display device 10, the first light passes through the sides of the second display 70 without passing through the second display 70, and the aerial image is separated from the second image on the second display 70. Compared to the case where the two images are displayed on the sides, the aerial image and the second image on the second display 70 can be brought closer to each other, making it easier to view each at the same time.
  • the luminous intensity of the first light emitted from the first display 30 is higher than the luminous intensity of the second light L2 emitted from the second display 70.
  • the aerial image becomes darker than the second image compared to a case where the luminous intensity of the first light emitted from the first display 30 is less than or equal to the luminous intensity of the second light L2 emitted from the second display 70. This can prevent the aerial image from becoming difficult to see.
  • the luminous intensity of the first light emitted from the first display 30 does not need to be higher than the luminous intensity of the second light L2 emitted from the second display 70.
  • the luminous intensity of the first light emitted from the first display 30 is greater than or equal to twice the luminous intensity of the second light L2 emitted from the second display 70 and less than or equal to 20 times, but does not need to be limited thereto.
  • FIG. 2 is a diagram schematically showing a cross section of the image display device 10 of this modification.
  • the image display device 10 of this modification differs from the first embodiment in the arrangement of each component of the image display device 10, and the different points will be described below.
  • the first display 30 is fixed to the bottom wall of the housing 20 extending generally horizontally, and the retroreflective member 60 to which the ⁇ /4 wavelength plate 50 is attached extends generally vertically. It is fixed to the side wall of the housing 20.
  • the beam splitter 40 is arranged above the display surface 30S of the first display 30 and is inclined with respect to the display surface 30S.
  • the angle ⁇ 1 between the outer surface of the beam splitter 40 on the side opposite to the display surface 30S and the display surface 30S, and the angle ⁇ 2 between the outer surface and the upper wall of the housing 20 are approximately 45 degrees.
  • the outer surface only needs to be inclined with respect to the display surface 30S, and the angles ⁇ 1 and ⁇ 2 are not particularly limited.
  • a support portion 21A is integrally provided on the bottom wall of the casing 20, and a support portion 23A is integrally provided on the top wall of the casing 20.
  • An end of the beam splitter 40 on the bottom wall side of the casing 20 is fixed to the support portion 21A, and an end of the beam splitter 40 on the top wall side of the casing 20 is fixed to the support portion 23A.
  • the second display 70 of this modification is located away from the beam splitter 40 and on the opposite side of the retroreflective member 60 with respect to the beam splitter 40.
  • the detection sensor 80 of this modification is a capacitive proximity sensor, unlike the first embodiment.
  • Examples of the capacitive proximity type sensor include a surface type capacitive type sensor and a projected type capacitive type sensor.
  • a surface-type capacitive sensor includes a transparent substrate made of glass, a transparent electrode film disposed on the transparent substrate, and a transparent protective cover covering the transparent electrode film.
  • a projected capacitive sensor includes a transparent substrate, an electrode pattern layer in which a plurality of transparent electrode layers arranged on the transparent substrate are arranged in a specific pattern, and a transparent protective cover that covers the electrode pattern layer.
  • the detection sensor 80 detects the imaging position of the first light that has passed through the second display 70 and the second display 70 when an object such as the user's hand or finger, which is a conductor, passes through the second display 70 as described in the first embodiment. , the object is detected based on the change in capacitance between the object and the transparent electrode film or transparent electrode pattern layer.
  • Detection sensor 80 is arranged on the back surface of second display 70. Further, the detection sensor 80 overlaps the entire projection area AR, but may overlap at least a portion of the projection area AR. Note that the detection sensor 80 may be arranged over the entire back surface of the second display 70 and may also be located outside the projection area AR.
  • the first light and the second light L2 in this modification proceed in the same way as in the first embodiment, so a description thereof will be omitted. Even with the image display device 10 having such a configuration, the same effects as the image display device 10 of the first embodiment can be obtained.
  • FIG. 3 is a diagram schematically showing a cross section of the image display device 10 of this embodiment.
  • the image display device 10 of this embodiment differs from the first embodiment in the arrangement of each component of the image display device 10, and the different points will be described below.
  • the first display 30 and the retroreflective member 60 to which the ⁇ /4 wavelength plate 50 is attached are placed on opposite sides of the beam splitter 40, and the beam splitter 40 is spaced apart from the second display 70. It is located.
  • the first display 30, the beam splitter 40, the ⁇ /4 wavelength plate 50, and the retroreflective member 60 are not arranged in the internal space of the housing 20.
  • the configuration of the beam splitter 40 is different as will be described later.
  • the first light emitted by the first display 30 of this embodiment is the second linearly polarized light L1c.
  • the first display 30 is fixed to a plate-shaped first pedestal plate 21 that extends generally in the horizontal direction.
  • the first pedestal plate 21 is provided with a support portion 21A integrally with the first pedestal plate 21.
  • the beam splitter 40 is arranged above the first pedestal plate 21 and the first display 30, and is inclined with respect to the display surface 30S of the first display 30. An end of the beam splitter 40 on the first pedestal plate 21 side is fixed to the support portion 21A.
  • a plate-shaped second pedestal plate 23 that is inclined with respect to the beam splitter 40 is arranged.
  • the second pedestal plate 23 is disposed above the beam splitter 40 and extends generally horizontally.
  • the retroreflective member 60 is fixed to the second pedestal plate 23.
  • a support portion 23A is provided integrally with the second pedestal plate 23, and an end portion of the beam splitter 40 on the second pedestal plate 23 side is fixed to the support portion 23A.
  • the second pedestal plate 23 to which the retroreflective member 60 is attached in this way is supported by the beam splitter 40, and this beam splitter 40 is also supported by the first pedestal plate 21. Therefore, the beam splitter 40 of this embodiment has a strength capable of supporting the second pedestal plate 23.
  • the beam splitter 40 of this embodiment does not include the absorption polarizing plate 41 like the first embodiment, but includes a reflective polarizing plate 43.
  • the reflective polarizing plate 43 of this embodiment transmits the second linearly polarized light L1c emitted from the first display 30 and reflects the first linearly polarized light L1a on the outer surface on the opposite side to the first display 30 side.
  • the display surface 30S of the first display 30 faces the retroreflective member 60, and the angle ⁇ 1 between the outer surface of the beam splitter 40 on the retroreflective member 60 side and the display surface 30S, and the angle ⁇ 1 between the surface of the retroreflective member 60 and the outer surface.
  • the angle ⁇ 2 is approximately 45 degrees.
  • the display surface 30S of the first display 30 may be inclined with respect to the retroreflective member 60.
  • the outer surface only needs to be inclined with respect to the display surface 30S, and the angles ⁇ 1 and ⁇ 2 are not particularly limited.
  • the first pedestal plate 21 and the second pedestal plate 23 are separated by a predetermined interval, and the first pedestal plate 21 and the second pedestal plate 23 on the first display 30 side with respect to the beam splitter 40 are separated from each other by a predetermined interval.
  • An opening 25 is formed between the two pedestal plates 23.
  • an opening is formed between the first pedestal plate 21 and the second pedestal plate 23 on the retroreflective member 60 side with respect to the beam splitter 40, and the opening is covered by the second display 70.
  • the second linearly polarized light L1c travels from the first display 30 toward the beam splitter 40 while spreading.
  • FIG. 3 for clarity of illustration, illustration of the spread of the second linearly polarized light L1c is omitted, and the first image F1 is virtually shown with a broken line.
  • a portion of the second linearly polarized light L1c passes through the beam splitter 40 and the ⁇ /4 wavelength plate 50, and is converted into the circularly polarized light L1b, which is right-handed circularly polarized light, when passing through the ⁇ /4 wavelength plate 50.
  • the circularly polarized light L1b which is right-handed circularly polarized light, is retroreflected by the retroreflective member 60, travels while converging due to the retroreflection, and becomes left-handed circularly polarized light by the retroreflection. Note that in FIG. 3, illustration of the convergence of the circularly polarized light L1b is omitted for clarity of illustration.
  • the circularly polarized light L1b which is left-handed circularly polarized light, passes through the ⁇ /4 wavelength plate 50 and is converted into the first linearly polarized light L1a.
  • the first linearly polarized light L1a travels to the beam splitter 40, and a portion of the first linearly polarized light L1a that travels to the beam splitter 40 is reflected by the reflective polarizing plate 43 of the beam splitter 40. At least a portion of the first linearly polarized light L1a reflected by the beam splitter 40 passes through the second display 70 and travels into the air in front of the second display 70. Then, the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image. In addition, in FIG. 3, the first image F2 as an aerial image is virtually shown by a broken line.
  • a part of the second light L2 emitted from the second display 70 is transmitted from the front surface on the front side in the traveling direction of the first linearly polarized light L1a, which is the first light that passes through the second display 70. Emits light.
  • the second display 70 is one of the second displays 70.
  • the second light L2 is emitted from outside the projection area AR of the first image F2.
  • the second display 70 does not emit the second light L2 from the projection area AR of the first image F2.
  • the other part of the second light L2 emitted from the second display 70 travels from the second display 70 toward the beam splitter 40.
  • the first linearly polarized light of this second light L2 is reflected by the reflective polarizing plate 43 and proceeds to the ⁇ /4 wavelength plate 50.
  • the first linearly polarized light passes through the ⁇ /4 wavelength plate 50 and is converted into circularly polarized light, which is, for example, right-handed circularly polarized light.
  • This right-handed circularly polarized light is retroreflected by the retroreflection member 60 and becomes left-handed circularly polarized light.
  • This left-handed circularly polarized light passes through the ⁇ /4 wavelength plate 50 and is converted into second linearly polarized light.
  • the second linearly polarized light passes through the beam splitter 40 and proceeds to the first display 30, and is suppressed from being emitted into the air from the second display 70.
  • the second linearly polarized light of the second light L2 traveling from the second display 70 toward the beam splitter 40 is transmitted through the reflective polarizing plate 43 of the beam splitter 40, passes through the aperture 25, and passes through the second display 70. Emission into the air is suppressed.
  • the beam splitter 40 reflects a portion of the first light retroreflected by the retroreflection member 60 toward the second display.
  • the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and reflected by the beam splitter 40, and is located at the front side in the traveling direction of the first light that is transmitted through the second display 70.
  • the second light L2 is emitted from the surface. Even with the image display device 10 having such a configuration, the same effects as the image display device 10 of the first embodiment can be obtained.
  • the first light passes through the side of the second display 70 without passing through the second display 70, and the aerial image is separated from the second image on the second display 70 and Compared to the case where the two images are displayed on the sides, the aerial image and the second image on the second display 70 can be brought closer to each other, making it easier to view each at the same time.
  • the housing 20 may be of any type as long as it can accommodate the first display 30, the beam splitter 40, the ⁇ /4 wavelength plate 50, and the retroreflective member 60 in its internal space.
  • the opening of the housing 20 does not need to be provided at the front of the housing 20.
  • the beam splitter 40 may close the opening of the housing 20.
  • the absorption type polarizing plate 41 is not provided in the beam splitter 40, and the first straight line of the second light L2 emitted from the second display 70 toward the beam splitter 40 The polarized light may be reflected by the reflective polarizing plate 43.
  • the absorptive polarizing plate 41 and the reflective polarizing plate 43 may be arranged apart from each other, and the absorptive polarizing plate 41 is located between the second display 70 and the reflective polarizing plate 43. It is sufficient if it is placed in .
  • the beam splitter 40 may be placed away from the back surface of the second display 70.
  • the beam splitter 40 may be arranged, for example, on the surface of the second display 70 opposite to the retroreflective member 60.
  • the beam splitter 40 may be placed in front of the second display 70 in the traveling direction of the first light, and may be placed further away from the retroreflective member 60 than the second display 70 is.
  • the detection sensor 80 of the modification of the first embodiment may be placed on the front surface of the second display 70, or may be placed on either the front side or the back side of the second display 70. It may also be provided apart from the display 70.
  • the detection sensor 80 of the modification may be provided in place of the detection sensor 80 including the reflected light distance sensor in the image display device 10 of the first embodiment or the second embodiment.
  • a detection sensor 80 including the reflected light distance sensor of the first embodiment may be provided instead of the detection sensor 80 of the modification.
  • an absorption type polarizing plate may be provided on the surface of the reflective polarizing plate 43 on the first display 30 side.
  • the second linearly polarized light L1c passes through the absorption polarizing plate and the reflective polarizing plate 43.
  • the first linearly polarized light L1a is absorbed by the absorption type polarizing plate. Therefore, the contrast of the aerial image may be high.
  • the absorption type polarizing plate may be provided on the back surface of the second display 70 or on the back surface side of the second display 70 away from the back surface. In this case, this absorption type polarizing plate transmits the first linearly polarized light L1a reflected by the beam splitter 40 and absorbs light other than the first linearly polarized light L1a.
  • the beam splitter 40 may be a half mirror.
  • the first light does not need to be the first linearly polarized light L1a, and may be light polarized in all directions, for example, and if the first light is such light, the ⁇ /4 wavelength plate 50 is not provided. It's okay.
  • the ⁇ /4 wavelength plate 50 may be disposed between the beam splitter 40 and the retroreflective member 60.
  • the first display 30 may emit first light including first linearly polarized light L1a and second linearly polarized light L1c.
  • the second linearly polarized light L1c passes through the beam splitter 40 and the second display 70, but it may be wasted because it does not constitute the first image F2. Therefore, it is preferable that the first display 30 emits the first linearly polarized light L1a as in the first embodiment.
  • the first linearly polarized light L1a is reflected by the reflective polarizing plate 43 of the beam splitter 40 toward the opening 25 on the opposite side to the second display 70, and does not constitute the first image F2. , it may be wasted.
  • the first display 30 emits the second linearly polarized light L1c as in the second embodiment. Furthermore, in the first and second embodiments, if a ⁇ /2 wavelength plate is disposed on the first display 30, the first display 30 may emit circularly polarized first light.
  • a reflective electrode may be provided instead of the second transparent electrode.
  • the reflective electrode reflects the second light L2 from the OLED layer toward the first transparent electrode.
  • the second light L2 does not have to be emitted from the second display 70 toward the beam splitter 40 side.
  • at least a portion of the first light from the beam splitter 40 side passes through gaps between adjacent first transparent electrodes, gaps between adjacent OLED layers, and gaps between adjacent reflective electrodes. The first light that has passed through these gaps passes through the first transparent substrate and travels into the air in front of the second display 70 .
  • the configuration of the second display 70 is not particularly limited as long as it is a light-transmissive display that allows the first light to pass therethrough as described above.
  • the second display 70 may be a reflective liquid crystal display having a transmissive area through which a backlight passes.
  • the aerial image is formed by the first light passing through the transmission region.
  • An example of such a second display 70 is a display using an advanced TFT (Thin Film Transistor Liquid Crystal) liquid crystal manufactured by Sharp Corporation.
  • the first display 30 emits the first light from at least a portion of the display surface 30S, and the first image F1 is displayed on at least a portion of the front surface of the first display 30.
  • the second display 70 does not emit the second light L2 from the projection area AR, it may further emit the second light L2 from at least a part of the projection area AR. Therefore, it is sufficient that the second display 70 emits the second light L2 from at least a portion of the front surface of the second display 70, and that the second image is displayed on at least a portion of the front surface of the second display 70. It is preferable that the second light L2 emitted from the projection area AR has a single color.
  • the luminous intensity of the second light L2 emitted from the projection area AR may be higher than the luminous intensity of the second light L2 emitted from outside the projection area AR, or may be lower than the luminous intensity.
  • the brightness of the first image F2 formed by the first light transmitted through the second display 70 is preferably higher than the brightness of the second image, but may be lower than the brightness of the second image. In other words, it is preferable that the first image F2 is visually brighter than the second image, but even if the first image F2 has the same brightness as the second image, it is visually darker than the second image. It's okay.
  • the detection sensor 80 may not be provided.
  • an image display device that can bring an aerial image and a display image closer to each other so that they can be easily viewed at the same time, and can be used for billboards and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An image display device (10) comprises a first display (30), a beam splitter (40), a retroreflection member (60), and a second display (70). The beam splitter (40) transmits a portion of first light that is retroreflected by the retroreflection member (60). The second display (70) transmits at least a portion of the first light that is retroreflected by the retroreflection member (60) and passes through the beam splitter (40), and emits second light from a front surface thereof with respect to the travel direction of the first light that passes through the second display (70).

Description

画像表示装置image display device
 本発明は、画像表示装置に関する。 The present invention relates to an image display device.
 近年では、ディスプレイからの画像を空中に結像して空中像を表示する画像表示装置が普及し始めている。下記特許文献1には、病院向けの受付精算機に設けられる画像表示装置が開示されている。受付精算機は、利用者である患者が受診する診療科を選択して受付処理を行ったり、受診料の精算のために受診額を確認して精算金額に当たる現金を投入して精算処理を行う装置である。このような受付精算機は、受付処理や精算処理のために必要な各種の情報を示す画像を表示する情報提示用のディスプレイを備えている。受付精算機における画像表示装置は、空中像として「受付」及び「精算」のボタンを表示する。画像表示装置は、情報提示用のディスプレイから離れて当該ディスプレイの側方に設けられているため、空中像としてのボタンは情報提示用のディスプレイの画像から離れて当該画像の側方に表示される。また、画像表示装置は、反射光距離センサを備えており、当該センサによって患者が手を「受付」及び「精算」のボタンにかざす動作を検出する。このような受付精算機では、患者は、情報提示用のディスプレイの画像を確認した後、空中像としてのボタンに手をかざして、受付処理や精算処理を行うこととしている。 In recent years, image display devices that display an aerial image by forming an image from a display in the air have become popular. Patent Document 1 listed below discloses an image display device installed in a reception/payment machine for hospitals. The reception and payment machine allows the user, the patient, to select the medical department to be examined and process the reception process, and to pay the consultation fee, confirms the consultation fee and inserts cash corresponding to the payment amount to process the payment. It is a device. Such a reception and payment machine is equipped with an information presentation display that displays images showing various information necessary for reception processing and payment processing. The image display device in the reception/payment machine displays buttons for "reception" and "payment" as an aerial image. Since the image display device is provided away from the display for information presentation and to the side of the display, the button as an aerial image is displayed away from the image of the display for information presentation and to the side of the image. . The image display device also includes a reflected light distance sensor, which detects the movement of the patient's hand over the "reception" and "payment" buttons. In such a reception/payment machine, a patient confirms an image on a display for presenting information, and then places his/her hand over a button as an aerial image to perform reception processing and payment processing.
特開2022-7868号公報Japanese Patent Application Publication No. 2022-7868
 特許文献1の画像表示装置では、空中像は情報提示用のディスプレイの画像から離れて当該画像の側方に表示されるが、空中像及び当該画像を互いに近づけてそれぞれを同時に視認させ易くさせたいとの要望がある。 In the image display device of Patent Document 1, the aerial image is displayed on the side of the image away from the image on the display for presenting information, but it is desirable to bring the aerial image and the image closer to each other so that they can be easily viewed at the same time. There is a request.
 そこで本発明は、空中像及びディスプレイの画像を互いに近づけてそれぞれを同時に視認させ易くし得る画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an image display device that can bring an aerial image and a display image closer to each other so that they can be easily viewed simultaneously.
 上記目的の達成のため、本発明の画像表示装置は、第1画像を構成する第1光を出射する第1ディスプレイと、前記第1ディスプレイから出射された前記第1光の一部を反射するビームスプリッターと、前記ビームスプリッターで反射された前記第1光を再帰反射する再帰反射部材と、第2画像を構成する第2光を出射し、前記第1光を透過する光透過性の第2ディスプレイと、を備え、前記ビームスプリッターは、前記再帰反射部材によって再帰反射された前記第1光の一部を透過し、前記第2ディスプレイは、前記再帰反射部材によって再帰反射されて前記ビームスプリッターを透過する前記第1光の少なくとも一部を透過し、前記第2ディスプレイを透過する当該第1光の進行方向前側の面から前記第2光を出射することを特徴とするものである。 In order to achieve the above object, the image display device of the present invention includes a first display that emits first light constituting a first image, and a first display that reflects a part of the first light that is emitted from the first display. a beam splitter, a retroreflective member that retroreflects the first light reflected by the beam splitter, and a light-transmissive second light that emits a second light constituting a second image and transmits the first light. a display, the beam splitter transmits a portion of the first light that is retroreflected by the retroreflective member, and the second display transmits a portion of the first light that is retroreflected by the retroreflective member and passes through the beam splitter. The device is characterized in that at least a portion of the first light transmitted therethrough is transmitted, and the second light is emitted from a surface on the front side in the traveling direction of the first light transmitted through the second display.
 この画像表示装置では、第1光は第1ディスプレイから広がりながらビームスプリッターに向かって進行し、第1光の一部はビームスプリッターによって再帰反射部材に向かって反射される。再帰反射部材に進行する第1光は再帰反射部材によって再帰反射され、再帰反射された第1光の一部はビームスプリッターを透過する。このような第1光は再帰反射によって収束しながら第2ディスプレイに向かって進行し、進行する第1光の少なくとも一部は第2ディスプレイを透過し、空中の所定位置に第1画像が結像され、空中像が表示される。この空中像は、ビームスプリッターにおける反射面を含む面を基準として、第1ディスプレイに表示される第1画像と概ね面対称の形状の像であり、第1ディスプレイに表示される第1画像と概ね面対称の位置に位置する。第2ディスプレイは、第2画像を構成する第2光を、第2ディスプレイを透過する第1光の進行方向前側の面から出射する。このように、第2ディスプレイからは第1光及び第2光が出射する。従って、この画像表示装置によれば、第1光が第2ディスプレイを透過せずに第2ディスプレイの側方を通過して空中像が第2ディスプレイの第2画像から離れて第2画像の側方に表示される場合に比べて、空中像及び第2ディスプレイの第2画像を互いに近づけてそれぞれを同時に視認させ易くし得る。 In this image display device, the first light travels toward the beam splitter while spreading from the first display, and a portion of the first light is reflected by the beam splitter toward the retroreflective member. The first light traveling to the retroreflective member is retroreflected by the retroreflector, and a portion of the retroreflected first light passes through the beam splitter. The first light travels toward the second display while being converged by retroreflection, at least a portion of the traveling first light passes through the second display, and a first image is formed at a predetermined position in the air. and an aerial image is displayed. This aerial image is an image that is approximately plane symmetrical to the first image displayed on the first display with respect to the surface including the reflective surface of the beam splitter, and is approximately symmetrical to the first image displayed on the first display. Located in a symmetrical position. The second display emits second light constituting the second image from a surface on the front side in the traveling direction of the first light that passes through the second display. In this way, the first light and the second light are emitted from the second display. Therefore, according to this image display device, the first light passes through the side of the second display without passing through the second display, and the aerial image is separated from the second image on the second display and is moved to the side of the second image. Compared to the case where the aerial image and the second image on the second display are displayed closer to each other, it is possible to make it easier to view each at the same time.
 或いは、本発明の画像表示装置は、第1画像を構成する第1光を出射する第1ディスプレイと、前記第1ディスプレイから出射された前記第1光の一部を透過するビームスプリッターと、前記ビームスプリッターを透過した前記第1光を再帰反射する再帰反射部材と、第2画像を構成する第2光を出射し、前記第1光を透過する光透過性の第2ディスプレイと、を備え、前記ビームスプリッターは、前記再帰反射部材によって再帰反射された前記第1光の一部を前記第2ディスプレイに向けて反射し、前記第2ディスプレイは、前記再帰反射部材によって再帰反射されて前記ビームスプリッターで反射される前記第1光の少なくとも一部を透過し、前記第2ディスプレイを透過する当該第1光の進行方向前側の面から前記第2光を出射することを特徴とするものである。 Alternatively, the image display device of the present invention includes: a first display that emits first light constituting a first image; a beam splitter that transmits a part of the first light emitted from the first display; comprising a retroreflective member that retroreflects the first light transmitted through the beam splitter, and a light-transmissive second display that emits second light constituting a second image and transmits the first light, The beam splitter reflects a portion of the first light retroreflected by the retroreflective member toward the second display, and the second display reflects a portion of the first light retroreflected by the retroreflective member to the beam splitter. The display is characterized in that at least a portion of the first light reflected by the display is transmitted through the display, and the second light is emitted from a surface on the front side in the traveling direction of the first light that is transmitted through the second display.
 この画像表示装置では、第1光は第1ディスプレイから広がりながらビームスプリッターに向かって進行し、第1光の一部はビームスプリッターを透過して再帰反射部材に進行する。再帰反射部材に進行する第1光は、再帰反射部材によって再帰反射され、再帰反射によって収束しながらビームスプリッターに進行する。そして第1光の一部はビームスプリッターによって第2ディスプレイに向かって反射され、反射する第1光の少なくとも一部は第2ディスプレイを透過し、空中の所定位置に第1画像が結像され、空中像が表示される。この空中像は、ビームスプリッターにおける反射面を含む面を基準として、第1ディスプレイに表示される第1画像と概ね面対称の形状の像であり、第1ディスプレイに表示される第1画像と概ね面対称の位置に位置する。第2ディスプレイは、第2画像を構成する第2光を、第2ディスプレイを透過する第1光の進行方向前側の面から出射する。このように、第2ディスプレイからは第1光及び第2光が出射する。従って、この画像表示装置によれば、第1光が第2ディスプレイを透過せずに第2ディスプレイの側方を通過して空中像が第2ディスプレイの第2画像から離れて第2画像の側方に表示される場合に比べて、空中像及び第2ディスプレイの第2画像を互いに近づけてそれぞれを同時に視認させ易くし得る。 In this image display device, the first light travels toward the beam splitter while spreading from the first display, and a portion of the first light passes through the beam splitter and travels to the retroreflective member. The first light that travels to the retroreflective member is retroreflected by the retroreflector, and travels to the beam splitter while being converged by the retroreflection. A portion of the first light is reflected toward the second display by the beam splitter, at least a portion of the reflected first light is transmitted through the second display, and a first image is formed at a predetermined position in the air; An aerial image is displayed. This aerial image is an image that is approximately plane symmetrical to the first image displayed on the first display with respect to the surface including the reflective surface of the beam splitter, and is approximately symmetrical to the first image displayed on the first display. Located in a symmetrical position. The second display emits second light constituting the second image from a surface on the front side in the traveling direction of the first light that passes through the second display. In this way, the first light and the second light are emitted from the second display. Therefore, according to this image display device, the first light passes through the side of the second display without passing through the second display, and the aerial image is separated from the second image on the second display and is moved to the side of the second image. Compared to the case where the aerial image and the second image on the second display are displayed closer to each other, it is possible to make it easier to view each at the same time.
 また、前記第1ディスプレイから出射する前記第1光の光度は、前記第2ディスプレイから出射する前記第2光の光度よりも高くてもよい。 Furthermore, the luminous intensity of the first light emitted from the first display may be higher than the luminous intensity of the second light emitted from the second display.
 この構成によれば、第1ディスプレイから出射する第1光の光度が第2ディスプレイから出射する第2光の光度以下である場合に比べて、空中像が第2画像よりも暗くなることが抑制され得、空中像が見難くなることが抑制され得る。 According to this configuration, compared to a case where the luminous intensity of the first light emitted from the first display is equal to or less than the luminous intensity of the second light emitted from the second display, the aerial image is prevented from becoming darker than the second image. This can prevent the aerial image from becoming difficult to see.
 また、前記第1ディスプレイから出射する前記第1光の光度は、前記第2ディスプレイから出射する前記第2光の光度の2倍以上20倍以下であってもよい。 Furthermore, the luminous intensity of the first light emitted from the first display may be greater than or equal to twice the luminous intensity of the second light emitted from the second display and less than or equal to 20 times.
 また、前記第2ディスプレイを透過した前記第1光の結像位置と前記第2ディスプレイとの間における物体の有無を検出する検出センサをさらに備えてもよい。 The display device may further include a detection sensor that detects the presence or absence of an object between the imaging position of the first light transmitted through the second display and the second display.
 例えば物体が手や手の指である場合、検出センサは、結像位置と第2ディスプレイとの間に入った手や指を検出する。これにより、第2ディスプレイを透過した第1光の第1画像をあたかもボタンとして利用し得、検出センサによってボタンの押し下げ操作を検出し得る。 For example, if the object is a hand or fingers, the detection sensor detects the hand or fingers that are between the imaging position and the second display. As a result, the first image of the first light transmitted through the second display can be used as if it were a button, and the detection sensor can detect the depression operation of the button.
 また、前記第2ディスプレイを正面視する場合、前記第2ディスプレイは、前記第2ディスプレイのうちの前記第1画像の射影領域の外側の少なくとも一部から前記第2光を出射する。 Furthermore, when the second display is viewed from the front, the second display emits the second light from at least a portion of the second display outside the projection area of the first image.
 この画像表示装置では、画像表示装置10の利用者が第2ディスプレイを正面視することが多い。第2ディスプレイを正面視する際に、第2光が第1画像の射影領域から出射すると、第2光が空中像に重なり、第2画像の内容や色等によっては空中像が見難くなることがある。この構成によれば、第2光が第1画像の射影領域から出射する場合に比べて、第2光が空中像に重なることが抑制され得、空中像が第2光によって見難くなることが抑制され得る。 In this image display device, the user of the image display device 10 often views the second display straight on. When viewing the second display from the front, if the second light is emitted from the projection area of the first image, the second light overlaps the aerial image, making the aerial image difficult to see depending on the content and color of the second image. There is. According to this configuration, compared to the case where the second light is emitted from the projection area of the first image, the second light can be suppressed from overlapping the aerial image, and the aerial image can be prevented from becoming difficult to see due to the second light. Can be suppressed.
 また、ビームスプリッターが第1ディスプレイから出射された第1光の一部を反射する場合、前記ビームスプリッターは、前記第2ディスプレイと前記再帰反射部材との間に設けられてもよい。 Furthermore, when the beam splitter reflects a part of the first light emitted from the first display, the beam splitter may be provided between the second display and the retroreflective member.
 また、ビームスプリッターが第1ディスプレイから出射された第1光の一部を反射する場合、前記ビームスプリッターは、前記第2ディスプレイ上に配置されてもよい。 Furthermore, when the beam splitter reflects a part of the first light emitted from the first display, the beam splitter may be placed on the second display.
 以上のように本発明によれば、空中像及びディスプレイの画像を互いに近づけてそれぞれを同時に視認させ易くし得る画像表示装置を提供できる。 As described above, according to the present invention, it is possible to provide an image display device that brings an aerial image and a display image closer to each other so that they can be easily viewed at the same time.
本発明の第1実施形態における画像表示装置の断面を概略的に示す図である。1 is a diagram schematically showing a cross section of an image display device according to a first embodiment of the present invention. 第1実施形態の変形例における画像表示装置の断面を概略的に示す図である。It is a figure which shows roughly the cross section of the image display apparatus in the modification of 1st Embodiment. 本発明の第2実施形態における画像表示装置の断面を概略的に示す図である。FIG. 7 is a diagram schematically showing a cross section of an image display device according to a second embodiment of the present invention.
 以下、本発明に係る画像表示装置の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、本発明は、以下に例示する実施形態における構成要素を適宜組み合わせてもよい。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。また、図面では、見易さのため、同様の構成要素については一部にのみ参照符号が付され、一部参照符号が省略される場合がある。 Hereinafter, preferred embodiments of the image display device according to the present invention will be described in detail with reference to the drawings. The embodiments illustrated below are provided to facilitate understanding of the present invention, and are not intended to be interpreted as limiting the present invention. The present invention can be modified and improved without departing from its spirit. Furthermore, the present invention may be implemented by appropriately combining constituent elements in the embodiments illustrated below. Note that in the drawings referred to below, the dimensions of each member may be shown with different dimensions to facilitate understanding. Furthermore, in the drawings, for ease of viewing, only some of the similar components are given reference numerals, and some of the reference numerals may be omitted.
 (第1実施形態)
 図1は、本実施形態の画像表示装置の断面を概略的に示す図である。画像表示装置10は、例えば、看板、病院向けの受付精算機や現金自動支払機等におけるタッチパネルとして用いられる。画像表示装置10は、筐体20と、第1ディスプレイ30と、ビームスプリッター40と、λ/4波長板50と、再帰反射部材60と、第2ディスプレイ70と、検出センサ80とを備える。
(First embodiment)
FIG. 1 is a diagram schematically showing a cross section of an image display device of this embodiment. The image display device 10 is used, for example, as a touch panel in a billboard, a reception/payment machine for hospitals, an automatic teller machine, or the like. The image display device 10 includes a housing 20, a first display 30, a beam splitter 40, a λ/4 wavelength plate 50, a retroreflective member 60, a second display 70, and a detection sensor 80.
 本実施形態の筐体20は前方に開口を有する箱状に構成され、当該開口を塞ぐように板状の第2ディスプレイ70が筐体20に固定される。こうして筐体20及び第2ディスプレイ70によって囲まれる内部空間が形成され、当該内部空間には第1ディスプレイ30とビームスプリッター40とλ/4波長板50と再帰反射部材60とが収容される。検出センサ80は、当該内部空間の外側に配置されて筐体20に固定される。 The casing 20 of this embodiment is configured in a box shape with an opening at the front, and a plate-shaped second display 70 is fixed to the casing 20 so as to close the opening. In this way, an internal space surrounded by the housing 20 and the second display 70 is formed, and the first display 30, the beam splitter 40, the λ/4 wavelength plate 50, and the retroreflective member 60 are housed in the internal space. The detection sensor 80 is arranged outside the internal space and fixed to the housing 20.
 第1ディスプレイ30は、第1画像F1を構成する第1光をビームスプリッター40に向けて出射する表示面30Sを含む。図1では、第1画像F1を仮想的に破線で示している。第1画像F1は、静止画でも動画でもよい。本実施形態の第1光は、当該光の進行方向に対して垂直な面内での当該光の軌跡が概ね直線となる第1直線偏光L1aとされる。第1ディスプレイ30は、例えば、液晶ディスプレイであり、第1台座板21に固定され、第1台座板21は筐体20の上壁と側壁とに筋交い状に固定される。このような第1ディスプレイ30は、第1直線偏光L1aがビームスプリッター40の第1ディスプレイ30側の面に斜めに入射するように配置される。 The first display 30 includes a display surface 30S that emits first light constituting the first image F1 toward the beam splitter 40. In FIG. 1, the first image F1 is virtually shown by a broken line. The first image F1 may be a still image or a moving image. The first light of this embodiment is the first linearly polarized light L1a whose trajectory in a plane perpendicular to the traveling direction of the light is approximately a straight line. The first display 30 is, for example, a liquid crystal display, and is fixed to the first pedestal plate 21, and the first pedestal plate 21 is fixed to the upper wall and side wall of the housing 20 in a bracing manner. The first display 30 is arranged such that the first linearly polarized light L1a obliquely enters the surface of the beam splitter 40 on the first display 30 side.
 ビームスプリッター40は、板状部材である。本実施形態のビームスプリッター40は、第2ディスプレイ70と再帰反射部材60との間に設けられる。具体的には、ビームスプリッター40は、第2ディスプレイ70のうちの再帰反射部材60側の裏面上に配置される。ビームスプリッター40は、第1ディスプレイ30からの第1光の一部を反射する。本実施形態の第1光は第1直線偏光L1aとされるため、ビームスプリッター40は第1ディスプレイ30からの第1直線偏光L1aの一部を反射する。また、ビームスプリッター40は、偏光方向が第1直線偏光L1aの偏光方向と異なり概ね垂直な第2直線偏光L1cを透過する。このようなビームスプリッター40は、第2ディスプレイ70のうちの再帰反射部材60側の裏面に配置される吸収型偏光板41と、吸収型偏光板41に配置される反射型偏光板43とを含む。吸収型偏光板41は、例えば、ヨウ素で染色したポリビニルアルコールから成るフィルムと、当該フィルムの両面または片面に積層されたトリアセチルセルロースから成る保護フィルムとからなる。反射型偏光板43は、例えば、3M社製の商品名DBEF、APFに代表される多層積層体やワイヤグリッド偏光板から構成される。反射型偏光板43の偏光軸は、吸収型偏光板41の偏光軸と概ね平行であり、第1直線偏光L1aの偏光方向に沿っている。反射型偏光板43は、第1直線偏光L1aの一部をλ/4波長板50に向けて反射し、第2直線偏光L1cを透過する。吸収型偏光板41は、第2直線偏光L1cを透過する。 The beam splitter 40 is a plate-like member. The beam splitter 40 of this embodiment is provided between the second display 70 and the retroreflective member 60. Specifically, the beam splitter 40 is arranged on the back surface of the second display 70 on the retroreflective member 60 side. Beam splitter 40 reflects a portion of the first light from first display 30 . Since the first light in this embodiment is the first linearly polarized light L1a, the beam splitter 40 reflects a part of the first linearly polarized light L1a from the first display 30. Furthermore, the beam splitter 40 transmits the second linearly polarized light L1c whose polarization direction is different from the polarization direction of the first linearly polarized light L1a and is substantially perpendicular. Such a beam splitter 40 includes an absorptive polarizing plate 41 disposed on the back surface of the second display 70 on the retroreflective member 60 side, and a reflective polarizing plate 43 disposed on the absorptive polarizing plate 41. . The absorption type polarizing plate 41 is composed of, for example, a film made of polyvinyl alcohol dyed with iodine, and a protective film made of triacetylcellulose laminated on both or one side of the film. The reflective polarizing plate 43 is composed of, for example, a multilayer laminate or a wire grid polarizing plate represented by DBEF and APF manufactured by 3M Company. The polarization axis of the reflective polarizing plate 43 is approximately parallel to the polarization axis of the absorptive polarizing plate 41, and along the polarization direction of the first linearly polarized light L1a. The reflective polarizing plate 43 reflects a portion of the first linearly polarized light L1a toward the λ/4 wavelength plate 50 and transmits the second linearly polarized light L1c. The absorption type polarizing plate 41 transmits the second linearly polarized light L1c.
 λ/4波長板50は、板状部材であり、ビームスプリッター40と再帰反射部材60との間に配置される。本実施形態のλ/4波長板50は、再帰反射部材60のうちのビームスプリッター40側の表面に固定されて一体化されている。λ/4波長板50は、ビームスプリッター40で反射された第1直線偏光L1aを透過し、当該第1直線偏光L1aを光の進行方向に対して垂直な面内での当該光の軌跡が概ね円となる円偏光L1bに変換する。なお、円偏光L1bは、光の進行方向に対して垂直な面内での当該光の軌跡が概ね楕円となる楕円偏光であっても良い。本実施形態のλ/4波長板50は、第1直線偏光L1aがビームスプリッター40側の面に概ね垂直に入射するように配置されるのが好ましい。 The λ/4 wavelength plate 50 is a plate-like member, and is arranged between the beam splitter 40 and the retroreflective member 60. The λ/4 wavelength plate 50 of this embodiment is fixed and integrated with the surface of the retroreflective member 60 on the beam splitter 40 side. The λ/4 wavelength plate 50 transmits the first linearly polarized light L1a reflected by the beam splitter 40, and the trajectory of the first linearly polarized light L1a in a plane perpendicular to the traveling direction of the light is approximately The light is converted into circularly polarized light L1b. Note that the circularly polarized light L1b may be elliptically polarized light whose trajectory in a plane perpendicular to the traveling direction of the light is approximately elliptical. The λ/4 wavelength plate 50 of this embodiment is preferably arranged so that the first linearly polarized light L1a is approximately perpendicularly incident on the surface on the beam splitter 40 side.
 再帰反射部材60は、板状部材であり、第2台座板23に固定され、第2台座板23は筐体20の下壁と側壁とに筋交い状に固定される。このような再帰反射部材60は、ビームスプリッター40側からの光が再帰反射部材60に垂直に入射するように配置される。再帰反射部材60は、再帰反射部材60に入射する光を当該光の入射方向とは逆方向に反射する。このような再帰反射部材60としては、例えば、コーナーキューブタイプや球状タイプの再帰反射部材が挙げられる。再帰反射部材60には上記したようにλ/4波長板50が配置されるため、再帰反射部材60は、ビームスプリッター40からλ/4波長板50を経由して再帰反射部材60に進行した光をλ/4波長板50を経由してビームスプリッター40に向けて再帰反射する。本実施形態の再帰反射部材60は、λ/4波長板50で変換された円偏光L1bを再帰反射する。詳細については後述するが、再帰反射された円偏光L1bは、再びλ/4波長板50を透過し、その際に第2直線偏光L1cに変換され、ビームスプリッター40に進行する。そして、ビームスプリッター40は再帰反射部材60によって再帰反射された第1光である第2直線偏光L1cの一部を透過し、ビームスプリッター40を透過した第1光である第2直線偏光L1cの少なくとも一部は第2ディスプレイ70に進行する。 The retroreflective member 60 is a plate-like member and is fixed to the second pedestal plate 23, and the second pedestal plate 23 is fixed to the lower wall and side wall of the casing 20 in a bracing manner. Such a retroreflective member 60 is arranged so that light from the beam splitter 40 side enters the retroreflective member 60 perpendicularly. The retroreflective member 60 reflects the light incident on the retroreflective member 60 in a direction opposite to the incident direction of the light. Examples of such a retroreflective member 60 include a corner cube type and a spherical type retroreflective member. Since the λ/4 wavelength plate 50 is disposed on the retroreflective member 60 as described above, the retroreflective member 60 absorbs light traveling from the beam splitter 40 to the retroreflective member 60 via the λ/4 wavelength plate 50. is retroreflected toward the beam splitter 40 via the λ/4 wavelength plate 50. The retroreflection member 60 of this embodiment retroreflects the circularly polarized light L1b converted by the λ/4 wavelength plate 50. Although details will be described later, the retroreflected circularly polarized light L1b passes through the λ/4 wavelength plate 50 again, is converted into the second linearly polarized light L1c, and proceeds to the beam splitter 40. The beam splitter 40 transmits a part of the second linearly polarized light L1c, which is the first light that has been retroreflected by the retroreflection member 60, and at least the second linearly polarized light L1c, which is the first light that has passed through the beam splitter 40. A portion proceeds to the second display 70.
 第2ディスプレイ70は、第2画像を構成する第2光L2を出射する。第2画像は、静止画でも動画でもよい。本実施形態の第2ディスプレイ70は、例えばガラスから成る第1透明基板、第1透明電極、OLED素子からなるOLED層、第2透明電極、及び第1透明基板と同じ構成の第2透明基板等を備えるOLEDパネルである。第1透明電極は第1透明基板の面方向において間隔をあけて透明基板に複数設けられており、OLED層は複数の第1透明電極上にそれぞれ個別に配置され、第2透明電極はOLED層上にそれぞれ個別に配置される。第2透明基板は第2透明電極に配置され、第2透明基板のうちの第2透明電極とは反対側にはビームスプリッター40が配置される。このように第2ディスプレイ70上にはビームスプリッター40が配置され、第2ディスプレイ70はビームスプリッター40を基準として再帰反射部材60側と反対側に配置される。第2ディスプレイ70は、第1ディスプレイ30よりも大きい。 The second display 70 emits second light L2 that forms a second image. The second image may be a still image or a moving image. The second display 70 of this embodiment includes, for example, a first transparent substrate made of glass, a first transparent electrode, an OLED layer made of an OLED element, a second transparent electrode, a second transparent substrate having the same structure as the first transparent substrate, etc. It is an OLED panel equipped with. A plurality of first transparent electrodes are provided on the transparent substrate at intervals in the plane direction of the first transparent substrate, the OLED layer is individually arranged on the plurality of first transparent electrodes, and the second transparent electrode is formed on the OLED layer. Each is placed individually on the top. The second transparent substrate is placed on the second transparent electrode, and the beam splitter 40 is placed on the opposite side of the second transparent substrate from the second transparent electrode. In this way, the beam splitter 40 is arranged on the second display 70, and the second display 70 is arranged on the opposite side to the retroreflective member 60 side with respect to the beam splitter 40. The second display 70 is larger than the first display 30.
 第2ディスプレイ70では、第1透明電極と第2透明電極との間に電圧を印加することでOLED層から第2光L2が出射される。第2光L2は、第1透明電極及び第2透明電極のそれぞれを透過し、第2ディスプレイ70の両面から出射される。つまり、第2ディスプレイ70は、第2ディスプレイ70の前方の空中側及び筐体20の内部空間側に向かって第2光L2を出射する。図1では、図示の明瞭化のために、筐体20の内部空間に向かって出射する第2光L2の図示を省略している。 In the second display 70, the second light L2 is emitted from the OLED layer by applying a voltage between the first transparent electrode and the second transparent electrode. The second light L2 passes through each of the first transparent electrode and the second transparent electrode, and is emitted from both sides of the second display 70. That is, the second display 70 emits the second light L2 toward the air in front of the second display 70 and toward the inner space of the housing 20. In FIG. 1, illustration of the second light L2 emitted toward the internal space of the housing 20 is omitted for clarity of illustration.
 また、第2ディスプレイ70は、再帰反射部材60によって再帰反射されてビームスプリッター40を透過する第1光である第2直線偏光L1cの少なくとも一部を透過する光透過性のディスプレイでもある。第2ディスプレイ70を透過した第2直線偏光L1cは、第2ディスプレイ70の前方の空中に進行する。そして、空中の所定位置に第1画像F1が結像され、空中像としての第1画像F2が表示される。なお、図1では、空中像としての第1画像F2を仮想的に破線で示している。上記したように第2ディスプレイ70は、第2ディスプレイ70の前方の空中側に第2光L2を出射しており、当該第2光L2に対して、第2ディスプレイ70を透過する第2直線偏光L1cの進行方向前側の表面から第2光L2を出射する。また、第2ディスプレイ70を正面視する場合、第2ディスプレイ70は、第2ディスプレイ70のうちの第1画像F2の射影領域ARの外側の少なくとも一部から第2光L2を出射し、第2ディスプレイ70のうちの射影領域ARからは第2光L2を出射しない。このように出射する第2光L2によって構成される第2画像は、空中像としての第1画像F2に対する背景画像として表示される。 The second display 70 is also a light-transmissive display that transmits at least a portion of the second linearly polarized light L1c, which is the first light that is retroreflected by the retroreflection member 60 and transmitted through the beam splitter 40. The second linearly polarized light L1c transmitted through the second display 70 travels into the air in front of the second display 70. Then, the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image. In addition, in FIG. 1, the first image F2 as an aerial image is virtually shown by a broken line. As described above, the second display 70 emits the second light L2 to the air in front of the second display 70, and for the second light L2, a second linearly polarized light is transmitted through the second display 70. The second light L2 is emitted from the front surface of L1c in the traveling direction. Further, when the second display 70 is viewed from the front, the second display 70 emits the second light L2 from at least a part of the outside of the projection area AR of the first image F2 of the second display 70, and The second light L2 is not emitted from the projection area AR of the display 70. The second image formed by the second light L2 emitted in this way is displayed as a background image for the first image F2 as an aerial image.
 第2ディスプレイ70から出射する第2光L2の光度と第1ディスプレイ30から出射する第1光の光度とを互いに比較すると、第1光の光度は、第2光L2の光度よりも高くされる。例えば、第1光の光度は、第2光L2の光度の2倍以上20倍以下であることが好ましく、第2光L2の光度の5倍以上10倍以下であることがより好ましい。 Comparing the luminous intensity of the second light L2 emitted from the second display 70 and the luminous intensity of the first light emitted from the first display 30, the luminous intensity of the first light is made higher than the luminous intensity of the second light L2. For example, the luminous intensity of the first light is preferably 2 times or more and 20 times or less than the luminous intensity of the second light L2, and more preferably 5 times or more and 10 times or less than the luminous intensity of the second light L2.
 検出センサ80は、第2ディスプレイ70を正面視する場合に第2ディスプレイ70よりも外側に配置されており、図1では第2ディスプレイ70よりも下方に配置されている例を示している。 The detection sensor 80 is arranged outside the second display 70 when the second display 70 is viewed from the front, and FIG. 1 shows an example in which it is arranged below the second display 70.
 検出センサ80は、第2ディスプレイ70を透過した第1光の結像によって表示される第1画像F2のうちの第2ディスプレイ70から最も離れた部位を含む第2ディスプレイ70に平行な領域と第2ディスプレイ70との間の領域における検出対象である物体の有無を検出する。つまり、検出センサ80は、第2ディスプレイ70を透過した第1光の結像位置と第2ディスプレイ70との間の領域における物体の有無を検出する。本実施形態の検出センサ80は、複数の反射光距離センサを含む。それぞれの反射光距離センサは、発光素子及び受光素子を含み、発光素子及び受光素子の光軸方向に位置する物体までの距離を検出することができる距離センサである。発光素子は例えば赤外線発光素子である。図1では、それぞれの発光素子から出射される光において、第1画像F2のうちの第2ディスプレイ70から最も離れた部位を含む第2ディスプレイ70に平行な領域と第2ディスプレイ70とのそれぞれに最も近い光を矢印で示している。本実施形態では、図1にて光を示す2つの矢印の間においても光が出射されているが、図示の明瞭化のために2つの矢印の間における光を示す矢印の図示を省略している。複数の反射光距離センサは、第2ディスプレイ70に垂直な方向に沿って並んで配置される。 The detection sensor 80 detects an area parallel to the second display 70 including a part of the first image F2 displayed by imaging the first light transmitted through the second display 70 and which is farthest from the second display 70. The presence or absence of an object to be detected in the area between the two displays 70 is detected. That is, the detection sensor 80 detects the presence or absence of an object in the area between the second display 70 and the imaging position of the first light transmitted through the second display 70 . The detection sensor 80 of this embodiment includes a plurality of reflected light distance sensors. Each reflected light distance sensor is a distance sensor that includes a light emitting element and a light receiving element and can detect the distance to an object located in the optical axis direction of the light emitting element and the light receiving element. The light emitting element is, for example, an infrared light emitting element. In FIG. 1, in the light emitted from each light emitting element, an area parallel to the second display 70 including a part of the first image F2 that is farthest from the second display 70 and the second display 70, respectively. The closest light is indicated by an arrow. In this embodiment, light is also emitted between the two arrows indicating light in FIG. 1, but for clarity of illustration, the arrow indicating light between the two arrows is omitted. There is. The plurality of reflected light distance sensors are arranged in a line along the direction perpendicular to the second display 70.
 次に、本実施形態の画像表示装置10による画像の結像について説明する。 Next, image formation by the image display device 10 of this embodiment will be described.
 第1直線偏光L1aは第1ディスプレイ30からビームスプリッター40に向かって広がりながら進行し、第1直線偏光L1aの一部はビームスプリッター40の反射型偏光板43によってλ/4波長板50に向かって反射される。なお、図1では、図示の明瞭化のために、第1直線偏光L1aの広がりの図示を省略している。反射された第1直線偏光L1aは、λ/4波長板50を透過して、円偏光L1bに変換される。この円偏光L1bは、例えば光の進行方向に対して垂直な面内での軌跡が当該光の進行方向側から見て時計回りに円を描く軌跡である右円偏光である。 The first linearly polarized light L1a travels from the first display 30 toward the beam splitter 40 while spreading, and a portion of the first linearly polarized light L1a is directed toward the λ/4 wavelength plate 50 by the reflective polarizing plate 43 of the beam splitter 40. reflected. Note that in FIG. 1, illustration of the spread of the first linearly polarized light L1a is omitted for clarity of illustration. The reflected first linearly polarized light L1a passes through the λ/4 wavelength plate 50 and is converted into circularly polarized light L1b. This circularly polarized light L1b is, for example, right-handed circularly polarized light whose trajectory in a plane perpendicular to the direction of travel of the light is a clockwise circular trajectory when viewed from the direction of travel of the light.
 右円偏光である円偏光L1bは、再帰反射部材60で再帰反射され、再帰反射によって収束しながら進行する。なお、図1では、図示の明瞭化のために、円偏光L1bの収束の図示を省略している。円偏光L1bは、再帰反射によって、光の進行方向に対して垂直な面内での軌跡が当該光の進行方向側から見て反時計回りに円を描く軌跡である左円偏光となる。この左円偏光である円偏光L1bは、λ/4波長板50を透過して、第2直線偏光L1cに変換される。第2直線偏光L1cの一部は、ビームスプリッター40の反射型偏光板43及び吸収型偏光板41を透過する。ビームスプリッター40を透過した第2直線偏光L1cの少なくとも一部は、第2ディスプレイ70も透過する。第2ディスプレイ70を透過した第2直線偏光L1cは、第2ディスプレイ70の前方の空中に進行する。そして、空中の所定位置に第1画像F1が結像され、空中像としての第1画像F2が表示される。この空中像は、ビームスプリッター40の反射型偏光板43における反射面を含む面を基準として、第1ディスプレイ30に表示される第1画像F1と概ね面対称の形状の像であり、第1ディスプレイ30に表示される第1画像F1と概ね面対称の位置に位置する。この空中像は、後述するようにボタンとして利用される。 The circularly polarized light L1b, which is right-handed circularly polarized light, is retroreflected by the retroreflection member 60 and travels while converging due to the retroreflection. Note that in FIG. 1, illustration of the convergence of the circularly polarized light L1b is omitted for clarity of illustration. Due to retroreflection, the circularly polarized light L1b becomes left-handed circularly polarized light whose trajectory in a plane perpendicular to the direction of travel of the light is a counterclockwise circular trajectory when viewed from the direction of travel of the light. The circularly polarized light L1b, which is the left-handed circularly polarized light, passes through the λ/4 wavelength plate 50 and is converted into the second linearly polarized light L1c. A portion of the second linearly polarized light L1c passes through the reflective polarizing plate 43 and the absorption polarizing plate 41 of the beam splitter 40. At least a portion of the second linearly polarized light L1c that has passed through the beam splitter 40 also passes through the second display 70. The second linearly polarized light L1c transmitted through the second display 70 travels into the air in front of the second display 70. Then, the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image. This aerial image is an image that is approximately plane symmetrical to the first image F1 displayed on the first display 30 with respect to the surface including the reflective surface of the reflective polarizing plate 43 of the beam splitter 40, and It is located at a position that is approximately plane symmetrical to the first image F1 displayed at 30. This aerial image is used as a button as described later.
 また、第2ディスプレイ70から出射される第2光L2の一部は、第2ディスプレイ70を透過する第1光である第2直線偏光L1cの進行方向の前側の前面から出射する。 Further, a part of the second light L2 emitted from the second display 70 is emitted from the front surface on the front side in the traveling direction of the second linearly polarized light L1c, which is the first light that passes through the second display 70.
 第2ディスプレイ70を正面視する場合、第2ディスプレイ70は、第2ディスプレイ70のうちの第1画像F2の射影領域ARの外側の少なくとも一部から第2光L2を出射し、射影領域ARからは第2光L2を出射しない。この画像表示装置10では、画像表示装置10の利用者が第2ディスプレイ70を正面視することが多い。第2ディスプレイ70を正面視する際に、第2光L2が第1画像F2の射影領域ARから出射すると、第2光L2が空中像としての第1画像F2に重なり、第2画像の内容や色等によっては空中像が見難くなることがある。この構成によれば、第2光L2が第1画像F2の射影領域ARから出射する場合に比べて、第2光L2が空中像に重なることが抑制され得、空中像が第2光L2によって見難くなることが抑制され得る。 When viewing the second display 70 from the front, the second display 70 emits the second light L2 from at least a part of the outside of the projection area AR of the first image F2 of the second display 70, and from the projection area AR. does not emit the second light L2. In this image display device 10, a user of the image display device 10 often views the second display 70 from the front. When the second display 70 is viewed from the front, when the second light L2 is emitted from the projection area AR of the first image F2, the second light L2 overlaps the first image F2 as an aerial image, and the content of the second image is Aerial images may be difficult to see depending on the color, etc. According to this configuration, compared to the case where the second light L2 is emitted from the projection area AR of the first image F2, the second light L2 can be suppressed from overlapping the aerial image, and the aerial image is It can be prevented from becoming difficult to see.
 ところで、図示による説明は省略するが、第2ディスプレイ70から出射される第2光L2の他の一部は、OLED層から第2透明電極及び第2透明基板を透過して、筐体20の内部空間に向けて進行する。この第2光L2のうちの第1直線偏光は、吸収型偏光板41によって吸収される。これに対して、第2光L2のうちの第2直線偏光は、吸収型偏光板41を透過する。この第2直線偏光は、反射型偏光板43をさらに透過し、λ/4波長板50に進行する。第2直線偏光は、λ/4波長板50を透過して、円偏光に変換される。この円偏光は、例えば右円偏光である。この右円偏光である円偏光は、再帰反射部材60で再帰反射され、左円偏光となる。この左円偏光である円偏光は、λ/4波長板50を透過して、第1直線偏光に変換される。第1直線偏光は、反射型偏光板43によって反射されて、第2ディスプレイ70から空中への出射を抑制される。 By the way, although explanations using illustrations are omitted, the other part of the second light L2 emitted from the second display 70 passes through the second transparent electrode and the second transparent substrate from the OLED layer, and enters the housing 20. Proceed towards the interior space. The first linearly polarized light of this second light L2 is absorbed by the absorption polarizing plate 41. On the other hand, the second linearly polarized light of the second light L2 is transmitted through the absorption polarizing plate 41. This second linearly polarized light further passes through the reflective polarizing plate 43 and proceeds to the λ/4 wavelength plate 50. The second linearly polarized light passes through the λ/4 wavelength plate 50 and is converted into circularly polarized light. This circularly polarized light is, for example, right-handed circularly polarized light. This right-handed circularly polarized light is retroreflected by the retroreflection member 60 and becomes left-handed circularly polarized light. This circularly polarized light, which is left-handed circularly polarized light, is transmitted through the λ/4 wavelength plate 50 and converted into first linearly polarized light. The first linearly polarized light is reflected by the reflective polarizing plate 43 and is suppressed from being emitted from the second display 70 into the air.
 検出センサ80は、第1画像F2のうちの第2ディスプレイ70から最も離れた部位を含む第2ディスプレイ70に平行な領域と第2ディスプレイ70との間の領域で光を入出射する。そして、検出センサ80は、上記した平行な領域と第2ディスプレイ70との間の領域に物体が存在するときの検出センサ80と物体までの距離情報を取得することができる。このため、物体が画像表示装置10の利用者の手や手の指である場合、検出センサ80は、上記した平行な領域と第2ディスプレイ70との間の領域に位置する手や指を検出し、手や指までの距離情報を取得する。これにより、第2ディスプレイ70を透過した第1光の第1画像F2をあたかもボタンとして利用し得、検出センサ80によってボタンの押し下げ操作を検出し得る。 The detection sensor 80 inputs and outputs light in an area between the second display 70 and an area parallel to the second display 70 that includes the part of the first image F2 that is farthest from the second display 70. Then, the detection sensor 80 can acquire distance information between the detection sensor 80 and the object when the object is present in the area between the above-described parallel area and the second display 70. Therefore, when the object is the hand or fingers of the user of the image display device 10, the detection sensor 80 detects the hand or fingers located in the area between the parallel area and the second display 70. and obtains distance information to hands and fingers. Thereby, the first image F2 of the first light transmitted through the second display 70 can be used as if it were a button, and the detection sensor 80 can detect the depression operation of the button.
 以上説明したように、本実施形態の画像表示装置10では、ビームスプリッター40は、再帰反射部材60によって再帰反射された第1光の一部を透過する。また、第2ディスプレイ70は、再帰反射部材60によって再帰反射されてビームスプリッター40を透過する第1光の少なくとも一部を透過し、第2ディスプレイ70を透過する当該第1光の進行方向前側の面から第2光L2を出射する。 As described above, in the image display device 10 of this embodiment, the beam splitter 40 transmits a portion of the first light that is retroreflected by the retroreflection member 60. Further, the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40, and the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40, and the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and passes through the beam splitter 40. The second light L2 is emitted from the surface.
 この画像表示装置10では、第1光は第1ディスプレイ30から広がりながらビームスプリッター40に向かって進行し、第1光の一部はビームスプリッター40によって再帰反射部材60に向かって反射される。再帰反射部材60に進行する第1光は再帰反射部材60によって再帰反射され、再帰反射された第1光の一部はビームスプリッター40を透過する。このような第1光は再帰反射によって収束しながら第2ディスプレイ70に向かって進行し、進行する第1光の少なくとも一部は第2ディスプレイ70を透過し、空中の所定位置に第1画像F1が結像され、第1画像F2として空中像が表示される。この空中像は、ビームスプリッター40における反射面を含む面を基準として、第1ディスプレイ30に表示される第1画像と概ね面対称の形状の像であり、第1ディスプレイ30に表示される第1画像と概ね面対称の位置に位置する。第2ディスプレイ70は、第2画像を構成する第2光L2を、第2ディスプレイ70を透過する第1光の進行方向前側の面から出射する。このように、第2ディスプレイ70からは第1光及び第2光L2が出射する。従って、この画像表示装置10によれば、第1光が第2ディスプレイ70を透過せずに第2ディスプレイ70の側方を通過して空中像が第2ディスプレイ70の第2画像から離れて第2画像の側方に表示される場合に比べて、空中像及び第2ディスプレイ70の第2画像を互いに近づけてそれぞれを同時に視認させ易くし得る。 In this image display device 10, the first light travels toward the beam splitter 40 while spreading from the first display 30, and a portion of the first light is reflected by the beam splitter 40 toward the retroreflective member 60. The first light traveling to the retroreflective member 60 is retroreflected by the retroreflector 60, and a portion of the retroreflected first light is transmitted through the beam splitter 40. Such first light travels toward the second display 70 while being converged by retroreflection, and at least a portion of the traveling first light passes through the second display 70, and a first image F1 is placed at a predetermined position in the air. is imaged, and an aerial image is displayed as the first image F2. This aerial image is an image having a shape that is approximately plane symmetrical to the first image displayed on the first display 30 with respect to the surface including the reflective surface of the beam splitter 40, and the first image displayed on the first display 30 It is located in a position that is approximately symmetrical to the image. The second display 70 emits the second light L2 constituting the second image from the front surface in the traveling direction of the first light that passes through the second display 70. In this way, the first light and the second light L2 are emitted from the second display 70. Therefore, according to this image display device 10, the first light passes through the sides of the second display 70 without passing through the second display 70, and the aerial image is separated from the second image on the second display 70. Compared to the case where the two images are displayed on the sides, the aerial image and the second image on the second display 70 can be brought closer to each other, making it easier to view each at the same time.
 また、この画像表示装置10では、第1ディスプレイ30から出射する第1光の光度は、第2ディスプレイ70から出射する第2光L2の光度よりも高い。この構成によれば、第1ディスプレイ30から出射する第1光の光度が第2ディスプレイ70から出射する第2光L2の光度以下である場合に比べて、空中像が第2画像よりも暗くなることが抑制され得、空中像が見難くなることが抑制され得る。なお、第1ディスプレイ30から出射する第1光の光度は、第2ディスプレイ70から出射する第2光L2の光度よりも高くなくてもよい。また、第1ディスプレイ30から出射する第1光の光度は、第2ディスプレイ70から出射する第2光L2の光度の2倍以上20倍以下であるが、これに限定される必要はない。 Furthermore, in this image display device 10, the luminous intensity of the first light emitted from the first display 30 is higher than the luminous intensity of the second light L2 emitted from the second display 70. According to this configuration, the aerial image becomes darker than the second image compared to a case where the luminous intensity of the first light emitted from the first display 30 is less than or equal to the luminous intensity of the second light L2 emitted from the second display 70. This can prevent the aerial image from becoming difficult to see. Note that the luminous intensity of the first light emitted from the first display 30 does not need to be higher than the luminous intensity of the second light L2 emitted from the second display 70. Further, the luminous intensity of the first light emitted from the first display 30 is greater than or equal to twice the luminous intensity of the second light L2 emitted from the second display 70 and less than or equal to 20 times, but does not need to be limited thereto.
 次に、本実施形態の変形例について説明する。図2は、本変形例の画像表示装置10の断面を概略的に示す図である。本変形例の画像表示装置10では、画像表示装置10の各構成部材の配置が第1実施形態とは異なり、異なる点について以下に説明する。 Next, a modification of this embodiment will be described. FIG. 2 is a diagram schematically showing a cross section of the image display device 10 of this modification. The image display device 10 of this modification differs from the first embodiment in the arrangement of each component of the image display device 10, and the different points will be described below.
 本変形例では、第1ディスプレイ30は概ね水平方向に延在している筐体20の底壁に固定され、λ/4波長板50が取り付けられる再帰反射部材60は概ね鉛直方向に延在している筐体20の側壁に固定されている。 In this modification, the first display 30 is fixed to the bottom wall of the housing 20 extending generally horizontally, and the retroreflective member 60 to which the λ/4 wavelength plate 50 is attached extends generally vertically. It is fixed to the side wall of the housing 20.
 ビームスプリッター40は、第1ディスプレイ30の表示面30Sよりも上方側に配置され、表示面30Sに対して傾斜している。ビームスプリッター40における表示面30S側とは反対側の外面と表示面30Sとのなす角度θ1及び当該外面と筐体20の上壁とのなす角度θ2は、概ね45度とされている。外面は表示面30Sに対して傾斜していればよく、角度θ1,θ2は特に限定されるものではない。筐体20の底壁には支持部21Aが、筐体20の上壁には支持部23Aがそれぞれ一体に設けられている。支持部21Aにはビームスプリッター40における筐体20の底壁側の端部が、支持部23Aにはビームスプリッター40における筐体20の上壁側の端部がそれぞれ固定されている。 The beam splitter 40 is arranged above the display surface 30S of the first display 30 and is inclined with respect to the display surface 30S. The angle θ1 between the outer surface of the beam splitter 40 on the side opposite to the display surface 30S and the display surface 30S, and the angle θ2 between the outer surface and the upper wall of the housing 20 are approximately 45 degrees. The outer surface only needs to be inclined with respect to the display surface 30S, and the angles θ1 and θ2 are not particularly limited. A support portion 21A is integrally provided on the bottom wall of the casing 20, and a support portion 23A is integrally provided on the top wall of the casing 20. An end of the beam splitter 40 on the bottom wall side of the casing 20 is fixed to the support portion 21A, and an end of the beam splitter 40 on the top wall side of the casing 20 is fixed to the support portion 23A.
 本変形例の第2ディスプレイ70は、ビームスプリッター40から離れており、ビームスプリッター40を基準として再帰反射部材60側と反対側に配置される。 The second display 70 of this modification is located away from the beam splitter 40 and on the opposite side of the retroreflective member 60 with respect to the beam splitter 40.
 また、本変形例の検出センサ80は、第1実施形態とは異なり、静電容量近接型のセンサである。静電容量近接型のセンサとして、例えば、表面型静電容量方式のセンサや投影型静電容量方式のセンサが挙げられる。表面型静電容量方式のセンサは、ガラスから成る透明基板と透明基板上に配置される透明電極膜と透明電極膜を覆う透明の保護カバーとを含む。投影型静電容量方式のセンサは、透明基板と透明基板上に配置される複数の透明電極層が特定のパターンで並ぶ電極パターン層と電極パターン層を覆う透明の保護カバーとを含む。検出センサ80は、導電体である利用者の手や手の指のなどの物体が第1実施形態で説明したように第2ディスプレイ70を透過した第1光の結像位置と第2ディスプレイ70との間の領域に位置する場合、物体と透明電極膜や透明電極パターン層との間の静電容量の変化に基づいて物体を検出する。検出センサ80は、第2ディスプレイ70の裏面上に配置される。また、検出センサ80は、射影領域AR全体に重なるが、射影領域ARの少なくとも一部に重なっていてもよい。なお、検出センサ80は、第2ディスプレイ70の裏面全体に渡って配置され、射影領域ARの外側にも位置していてもよい。 Furthermore, the detection sensor 80 of this modification is a capacitive proximity sensor, unlike the first embodiment. Examples of the capacitive proximity type sensor include a surface type capacitive type sensor and a projected type capacitive type sensor. A surface-type capacitive sensor includes a transparent substrate made of glass, a transparent electrode film disposed on the transparent substrate, and a transparent protective cover covering the transparent electrode film. A projected capacitive sensor includes a transparent substrate, an electrode pattern layer in which a plurality of transparent electrode layers arranged on the transparent substrate are arranged in a specific pattern, and a transparent protective cover that covers the electrode pattern layer. The detection sensor 80 detects the imaging position of the first light that has passed through the second display 70 and the second display 70 when an object such as the user's hand or finger, which is a conductor, passes through the second display 70 as described in the first embodiment. , the object is detected based on the change in capacitance between the object and the transparent electrode film or transparent electrode pattern layer. Detection sensor 80 is arranged on the back surface of second display 70. Further, the detection sensor 80 overlaps the entire projection area AR, but may overlap at least a portion of the projection area AR. Note that the detection sensor 80 may be arranged over the entire back surface of the second display 70 and may also be located outside the projection area AR.
 本変形例の第1光及び第2光L2は、第1実施形態と同様に進行するため、説明を省略する。このような構成の画像表示装置10であっても、第1実施形態の画像表示装置10と同様の効果を得られる。 The first light and the second light L2 in this modification proceed in the same way as in the first embodiment, so a description thereof will be omitted. Even with the image display device 10 having such a configuration, the same effects as the image display device 10 of the first embodiment can be obtained.
 (第2実施形態)
 次に、本発明の第2実施形態について図3を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to FIG. Note that components that are the same or equivalent to those in the first embodiment are given the same reference numerals and redundant explanations will be omitted, unless otherwise specified.
 図3は、本実施形態の画像表示装置10の断面を概略的に示す図である。本実施形態の画像表示装置10では、画像表示装置10の各構成部材の配置が第1実施形態とは異なり、異なる点について以下に説明する。本実施形態では、第1ディスプレイ30と、λ/4波長板50が取り付けられる再帰反射部材60とはビームスプリッター40を挟んで互いに反対側に配置され、ビームスプリッター40は第2ディスプレイ70から離れて配置されている。また、第1ディスプレイ30と、ビームスプリッター40と、λ/4波長板50と、再帰反射部材60とは、筐体20の内部空間に配置されていない。また、ビームスプリッター40の構成が後述するように異なる。 FIG. 3 is a diagram schematically showing a cross section of the image display device 10 of this embodiment. The image display device 10 of this embodiment differs from the first embodiment in the arrangement of each component of the image display device 10, and the different points will be described below. In this embodiment, the first display 30 and the retroreflective member 60 to which the λ/4 wavelength plate 50 is attached are placed on opposite sides of the beam splitter 40, and the beam splitter 40 is spaced apart from the second display 70. It is located. Further, the first display 30, the beam splitter 40, the λ/4 wavelength plate 50, and the retroreflective member 60 are not arranged in the internal space of the housing 20. Furthermore, the configuration of the beam splitter 40 is different as will be described later.
 本実施形態の第1ディスプレイ30が出射する第1光は、第2直線偏光L1cとされる。本実施形態では、第1ディスプレイ30は、概ね水平方向に延在する板状の第1台座板21に固定される。第1台座板21には、支持部21Aが第1台座板21と一体に設けられている。ビームスプリッター40は、第1台座板21及び第1ディスプレイ30よりも上方側に配置され、第1ディスプレイ30の表示面30Sに対して傾斜している。ビームスプリッター40における第1台座板21側の端部が支持部21Aに固定される。 The first light emitted by the first display 30 of this embodiment is the second linearly polarized light L1c. In this embodiment, the first display 30 is fixed to a plate-shaped first pedestal plate 21 that extends generally in the horizontal direction. The first pedestal plate 21 is provided with a support portion 21A integrally with the first pedestal plate 21. The beam splitter 40 is arranged above the first pedestal plate 21 and the first display 30, and is inclined with respect to the display surface 30S of the first display 30. An end of the beam splitter 40 on the first pedestal plate 21 side is fixed to the support portion 21A.
 ビームスプリッター40を基準として第1ディスプレイ30側と反対側には、ビームスプリッター40に対して傾斜する板状の第2台座板23が配置される。第2台座板23は、ビームスプリッター40よりも上方側に配置され、概ね水平方向に延在している。再帰反射部材60は、第2台座板23に固定される。第2台座板23には、支持部23Aが第2台座板23と一体に設けられており、ビームスプリッター40における第2台座板23側の端部が支持部23Aに固定される。 On the side opposite to the first display 30 with respect to the beam splitter 40, a plate-shaped second pedestal plate 23 that is inclined with respect to the beam splitter 40 is arranged. The second pedestal plate 23 is disposed above the beam splitter 40 and extends generally horizontally. The retroreflective member 60 is fixed to the second pedestal plate 23. A support portion 23A is provided integrally with the second pedestal plate 23, and an end portion of the beam splitter 40 on the second pedestal plate 23 side is fixed to the support portion 23A.
 このようにして再帰反射部材60が取り付けられる第2台座板23は、ビームスプリッター40によって支持され、このビームスプリッター40は第1台座板21によっても支持されている。このため、本実施形態のビームスプリッター40は第2台座板23を支持し得る強度を有している。 The second pedestal plate 23 to which the retroreflective member 60 is attached in this way is supported by the beam splitter 40, and this beam splitter 40 is also supported by the first pedestal plate 21. Therefore, the beam splitter 40 of this embodiment has a strength capable of supporting the second pedestal plate 23.
 また、本実施形態のビームスプリッター40は、第1実施形態のように吸収型偏光板41を含まず、反射型偏光板43を含む。本実施形態の反射型偏光板43は、第1ディスプレイ30から出射される第2直線偏光L1cを透過し、第1直線偏光L1aを第1ディスプレイ30側と反対側の外面で反射する。 Furthermore, the beam splitter 40 of this embodiment does not include the absorption polarizing plate 41 like the first embodiment, but includes a reflective polarizing plate 43. The reflective polarizing plate 43 of this embodiment transmits the second linearly polarized light L1c emitted from the first display 30 and reflects the first linearly polarized light L1a on the outer surface on the opposite side to the first display 30 side.
 第1ディスプレイ30の表示面30Sは再帰反射部材60と対向し、ビームスプリッター40における再帰反射部材60側の外面と表示面30Sとのなす角度θ1及び再帰反射部材60の表面と当該外面とのなす角度θ2は、概ね45度とされている。なお、第1ディスプレイ30の表示面30Sは、再帰反射部材60に対して傾斜していても良い。また、外面は表示面30Sに対して傾斜していればよく、角度θ1,θ2は特に限定されるものではない。 The display surface 30S of the first display 30 faces the retroreflective member 60, and the angle θ1 between the outer surface of the beam splitter 40 on the retroreflective member 60 side and the display surface 30S, and the angle θ1 between the surface of the retroreflective member 60 and the outer surface. The angle θ2 is approximately 45 degrees. Note that the display surface 30S of the first display 30 may be inclined with respect to the retroreflective member 60. Further, the outer surface only needs to be inclined with respect to the display surface 30S, and the angles θ1 and θ2 are not particularly limited.
 また、本実施形態では、第1台座板21と第2台座板23とは所定の間隔をあけて離間しており、ビームスプリッター40を基準として第1ディスプレイ30側における第1台座板21と第2台座板23との間には開口25が形成されている。一方、ビームスプリッター40を基準として再帰反射部材60側における第1台座板21と第2台座板23との間には開口が形成され、当該開口は第2ディスプレイ70によって覆われている。 Further, in the present embodiment, the first pedestal plate 21 and the second pedestal plate 23 are separated by a predetermined interval, and the first pedestal plate 21 and the second pedestal plate 23 on the first display 30 side with respect to the beam splitter 40 are separated from each other by a predetermined interval. An opening 25 is formed between the two pedestal plates 23. On the other hand, an opening is formed between the first pedestal plate 21 and the second pedestal plate 23 on the retroreflective member 60 side with respect to the beam splitter 40, and the opening is covered by the second display 70.
 本実施形態の画像表示装置10では、第2直線偏光L1cは第1ディスプレイ30からビームスプリッター40に向かって広がりながら進行する。なお、図3では、図示の明瞭化のために、第2直線偏光L1cの広がりの図示を省略し、第1画像F1を仮想的に破線で示している。第2直線偏光L1cの一部は、ビームスプリッター40及びλ/4波長板50を透過し、λ/4波長板50を透過する際に右円偏光である円偏光L1bに変換される。この右円偏光である円偏光L1bは、再帰反射部材60で再帰反射され、再帰反射によって収束しながら進行し、再帰反射によって左円偏光となる。なお、図3では、図示の明瞭化のために、円偏光L1bの収束の図示を省略している。左円偏光である円偏光L1bは、λ/4波長板50を透過して第1直線偏光L1aに変換される。第1直線偏光L1aはビームスプリッター40に進行し、ビームスプリッター40に進行した第1直線偏光L1aの一部はビームスプリッター40の反射型偏光板43によって反射される。ビームスプリッター40で反射された第1直線偏光L1aの少なくとも一部は、第2ディスプレイ70を透過して第2ディスプレイ70の前方の空中に進行する。そして、空中の所定位置に第1画像F1が結像され、空中像としての第1画像F2が表示される。なお、図3では、空中像としての第1画像F2を仮想的に破線で示している。 In the image display device 10 of this embodiment, the second linearly polarized light L1c travels from the first display 30 toward the beam splitter 40 while spreading. In addition, in FIG. 3, for clarity of illustration, illustration of the spread of the second linearly polarized light L1c is omitted, and the first image F1 is virtually shown with a broken line. A portion of the second linearly polarized light L1c passes through the beam splitter 40 and the λ/4 wavelength plate 50, and is converted into the circularly polarized light L1b, which is right-handed circularly polarized light, when passing through the λ/4 wavelength plate 50. The circularly polarized light L1b, which is right-handed circularly polarized light, is retroreflected by the retroreflective member 60, travels while converging due to the retroreflection, and becomes left-handed circularly polarized light by the retroreflection. Note that in FIG. 3, illustration of the convergence of the circularly polarized light L1b is omitted for clarity of illustration. The circularly polarized light L1b, which is left-handed circularly polarized light, passes through the λ/4 wavelength plate 50 and is converted into the first linearly polarized light L1a. The first linearly polarized light L1a travels to the beam splitter 40, and a portion of the first linearly polarized light L1a that travels to the beam splitter 40 is reflected by the reflective polarizing plate 43 of the beam splitter 40. At least a portion of the first linearly polarized light L1a reflected by the beam splitter 40 passes through the second display 70 and travels into the air in front of the second display 70. Then, the first image F1 is formed at a predetermined position in the air, and the first image F2 is displayed as an aerial image. In addition, in FIG. 3, the first image F2 as an aerial image is virtually shown by a broken line.
 第2ディスプレイ70から出射される第2光L2の一部は、第1実施形態と同様に、第2ディスプレイ70を透過する第1光である第1直線偏光L1aの進行方向の前側の前面から出射する。本実施形態においても、第2ディスプレイ70を透過した第1光である第1直線偏光L1aによって構成される第1画像F2を正面視する場合、第2ディスプレイ70は、第2ディスプレイ70のうちの第1画像F2の射影領域ARの外側から第2光L2を出射する。また、本実施形態においても、第2ディスプレイ70は、第1画像F2の射影領域ARから第2光L2を出射しない。 Similar to the first embodiment, a part of the second light L2 emitted from the second display 70 is transmitted from the front surface on the front side in the traveling direction of the first linearly polarized light L1a, which is the first light that passes through the second display 70. Emits light. Also in this embodiment, when the first image F2 formed by the first linearly polarized light L1a, which is the first light transmitted through the second display 70, is viewed from the front, the second display 70 is one of the second displays 70. The second light L2 is emitted from outside the projection area AR of the first image F2. Also in this embodiment, the second display 70 does not emit the second light L2 from the projection area AR of the first image F2.
 また、図示による説明は省略するが、第2ディスプレイ70から出射される第2光L2の他の一部は、第2ディスプレイ70からビームスプリッター40に向かって進行する。この第2光L2のうちの第1直線偏光は反射型偏光板43によって反射されて、λ/4波長板50に進行する。第1直線偏光は、λ/4波長板50を透過して、例えば右円偏光である円偏光に変換される。この右円偏光である円偏光は、再帰反射部材60で再帰反射され、左円偏光となる。この左円偏光である円偏光は、λ/4波長板50を透過して、第2直線偏光に変換される。第2直線偏光は、ビームスプリッター40を透過して第1ディスプレイ30に進行し、第2ディスプレイ70から空中への出射を抑制される。第2ディスプレイ70からビームスプリッター40に向かって進行する第2光L2のうちの第2直線偏光は、ビームスプリッター40の反射型偏光板43を透過して、開口25を通過し、第2ディスプレイ70から空中への出射を抑制される。 Further, although explanations using illustrations are omitted, the other part of the second light L2 emitted from the second display 70 travels from the second display 70 toward the beam splitter 40. The first linearly polarized light of this second light L2 is reflected by the reflective polarizing plate 43 and proceeds to the λ/4 wavelength plate 50. The first linearly polarized light passes through the λ/4 wavelength plate 50 and is converted into circularly polarized light, which is, for example, right-handed circularly polarized light. This right-handed circularly polarized light is retroreflected by the retroreflection member 60 and becomes left-handed circularly polarized light. This left-handed circularly polarized light passes through the λ/4 wavelength plate 50 and is converted into second linearly polarized light. The second linearly polarized light passes through the beam splitter 40 and proceeds to the first display 30, and is suppressed from being emitted into the air from the second display 70. The second linearly polarized light of the second light L2 traveling from the second display 70 toward the beam splitter 40 is transmitted through the reflective polarizing plate 43 of the beam splitter 40, passes through the aperture 25, and passes through the second display 70. Emission into the air is suppressed.
 以上説明したように、本実施形態の画像表示装置10では、ビームスプリッター40は、再帰反射部材60によって再帰反射された第1光の一部を第2ディスプレイに向けて反射する。また、第2ディスプレイ70は、再帰反射部材60によって再帰反射されてビームスプリッター40で反射された第1光の少なくとも一部を透過し、第2ディスプレイ70を透過する当該第1光の進行方向前側の面から第2光L2を出射する。このような構成の画像表示装置10であっても、第1実施形態の画像表示装置10と同様の効果が得られる。つまり、この画像表示装置10によれば、第1光が第2ディスプレイ70を透過せずに第2ディスプレイ70の側方を通過して空中像が第2ディスプレイ70の第2画像から離れて第2画像の側方に表示される場合に比べて、空中像及び第2ディスプレイ70の第2画像を互いに近づけてそれぞれを同時に視認させ易くし得る。 As described above, in the image display device 10 of this embodiment, the beam splitter 40 reflects a portion of the first light retroreflected by the retroreflection member 60 toward the second display. Further, the second display 70 transmits at least a portion of the first light that is retroreflected by the retroreflection member 60 and reflected by the beam splitter 40, and is located at the front side in the traveling direction of the first light that is transmitted through the second display 70. The second light L2 is emitted from the surface. Even with the image display device 10 having such a configuration, the same effects as the image display device 10 of the first embodiment can be obtained. In other words, according to this image display device 10, the first light passes through the side of the second display 70 without passing through the second display 70, and the aerial image is separated from the second image on the second display 70 and Compared to the case where the two images are displayed on the sides, the aerial image and the second image on the second display 70 can be brought closer to each other, making it easier to view each at the same time.
 以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。 Although the present invention has been described above using the above embodiments as examples, the present invention is not limited to these.
 第1実施形態及び変形例では、筐体20は、内部空間に第1ディスプレイ30とビームスプリッター40とλ/4波長板50と再帰反射部材60とを収容できるものであればよい。筐体20の開口は、筐体20の前方に設けられている必要はない。また、筐体20の開口をビームスプリッター40が塞いでもよい。 In the first embodiment and the modified example, the housing 20 may be of any type as long as it can accommodate the first display 30, the beam splitter 40, the λ/4 wavelength plate 50, and the retroreflective member 60 in its internal space. The opening of the housing 20 does not need to be provided at the front of the housing 20. Moreover, the beam splitter 40 may close the opening of the housing 20.
 第1実施形態及び変形例では、ビームスプリッター40において、吸収型偏光板41が設けられておらず、第2ディスプレイ70からビームスプリッター40に向かって出射される第2光L2のうちの第1直線偏光は反射型偏光板43によって反射されてもよい。 In the first embodiment and the modified example, the absorption type polarizing plate 41 is not provided in the beam splitter 40, and the first straight line of the second light L2 emitted from the second display 70 toward the beam splitter 40 The polarized light may be reflected by the reflective polarizing plate 43.
 第1実施形態及び変形例では、吸収型偏光板41と反射型偏光板43とは互いに離れて配置されてもよく、吸収型偏光板41は第2ディスプレイ70と反射型偏光板43との間に配置されていればよい。 In the first embodiment and the modified example, the absorptive polarizing plate 41 and the reflective polarizing plate 43 may be arranged apart from each other, and the absorptive polarizing plate 41 is located between the second display 70 and the reflective polarizing plate 43. It is sufficient if it is placed in .
 第1実施形態では、ビームスプリッター40は、第2ディスプレイ70の裏面から離れて配置されていてもよい。或いは、ビームスプリッター40は、例えば、第2ディスプレイ70のうちの再帰反射部材60とは反対側の表面に配置されてもよい。或いは、ビームスプリッター40は、第1光の進行方向における第2ディスプレイ70の前方に配置され、第2ディスプレイ70よりも再帰反射部材60から離れて配置されてもよい。 In the first embodiment, the beam splitter 40 may be placed away from the back surface of the second display 70. Alternatively, the beam splitter 40 may be arranged, for example, on the surface of the second display 70 opposite to the retroreflective member 60. Alternatively, the beam splitter 40 may be placed in front of the second display 70 in the traveling direction of the first light, and may be placed further away from the retroreflective member 60 than the second display 70 is.
 第1実施形態の変形例の検出センサ80は、第2ディスプレイ70の表面上に配置されてもよいし、第2ディスプレイ70の表面側また裏面側のどちらに配置される場合あっても第2ディスプレイ70から離れて設けられてもよい。変形例の検出センサ80は、第1実施形態や第2実施形態の画像表示装置10において、反射光距離センサを含む検出センサ80の代わりに設けられてもよい。或いは、変形例の画像表示装置10において、変形例の検出センサ80の代わりに、第1実施形態の反射光距離センサを含む検出センサ80が設けられてもよい。 The detection sensor 80 of the modification of the first embodiment may be placed on the front surface of the second display 70, or may be placed on either the front side or the back side of the second display 70. It may also be provided apart from the display 70. The detection sensor 80 of the modification may be provided in place of the detection sensor 80 including the reflected light distance sensor in the image display device 10 of the first embodiment or the second embodiment. Alternatively, in the image display device 10 of the modification, a detection sensor 80 including the reflected light distance sensor of the first embodiment may be provided instead of the detection sensor 80 of the modification.
 第2実施形態では、反射型偏光板43のうちの第1ディスプレイ30側の面に吸収型偏光板が設けられてもよい。この場合、例えば、第1ディスプレイ30が第1直線偏光L1aと第2直線偏光L1cとを含む第1光を出射すると、第2直線偏光L1cは吸収型偏光板及び反射型偏光板43を透過するが、第1直線偏光L1aは吸収型偏光板に吸収される。このため、空中像のコントラストが高くなり得る。 In the second embodiment, an absorption type polarizing plate may be provided on the surface of the reflective polarizing plate 43 on the first display 30 side. In this case, for example, when the first display 30 emits the first light including the first linearly polarized light L1a and the second linearly polarized light L1c, the second linearly polarized light L1c passes through the absorption polarizing plate and the reflective polarizing plate 43. However, the first linearly polarized light L1a is absorbed by the absorption type polarizing plate. Therefore, the contrast of the aerial image may be high.
 また、第2実施形態では、吸収型偏光板が第2ディスプレイ70の裏面や第2ディスプレイ70の裏面側において裏面から離れて設けられてもよい。この場合、この吸収型偏光板は、ビームスプリッター40で反射された第1直線偏光L1aを透過し、第1直線偏光L1a以外の光を吸収する。 Furthermore, in the second embodiment, the absorption type polarizing plate may be provided on the back surface of the second display 70 or on the back surface side of the second display 70 away from the back surface. In this case, this absorption type polarizing plate transmits the first linearly polarized light L1a reflected by the beam splitter 40 and absorbs light other than the first linearly polarized light L1a.
 例えば、ビームスプリッター40は、ハーフミラーであってもよい。この場合、第1光は第1直線偏光L1aでなくてもよく例えば全方向に偏光する光でもよく、第1光がこのような光であるならばλ/4波長板50は設けられていなくてもよい。 For example, the beam splitter 40 may be a half mirror. In this case, the first light does not need to be the first linearly polarized light L1a, and may be light polarized in all directions, for example, and if the first light is such light, the λ/4 wavelength plate 50 is not provided. It's okay.
 λ/4波長板50は、ビームスプリッター40と再帰反射部材60との間に配置されていればよい。 The λ/4 wavelength plate 50 may be disposed between the beam splitter 40 and the retroreflective member 60.
 第1ディスプレイ30は第1直線偏光L1aと第2直線偏光L1cとを含む第1光を出射してもよい。なお、第1実施形態では、第2直線偏光L1cは、ビームスプリッター40及び第2ディスプレイ70を透過するが、第1画像F2を構成しないため、無駄となることがある。このため、第1ディスプレイ30は、第1実施形態のように第1直線偏光L1aを出射することが好ましい。また、第2実施形態では、第1直線偏光L1aは、ビームスプリッター40の反射型偏光板43によって第2ディスプレイ70とは反対側の開口25に向かって反射され、第1画像F2を構成しないため、無駄となることがある。このため、第1ディスプレイ30は、第2実施形態のように第2直線偏光L1cを出射することが好ましい。また、第1,2実施形態では、第1ディスプレイ30にλ/2波長板が配置されれば、第1ディスプレイ30は円偏光の第1光を出射してもよい。 The first display 30 may emit first light including first linearly polarized light L1a and second linearly polarized light L1c. Note that in the first embodiment, the second linearly polarized light L1c passes through the beam splitter 40 and the second display 70, but it may be wasted because it does not constitute the first image F2. Therefore, it is preferable that the first display 30 emits the first linearly polarized light L1a as in the first embodiment. Further, in the second embodiment, the first linearly polarized light L1a is reflected by the reflective polarizing plate 43 of the beam splitter 40 toward the opening 25 on the opposite side to the second display 70, and does not constitute the first image F2. , it may be wasted. Therefore, it is preferable that the first display 30 emits the second linearly polarized light L1c as in the second embodiment. Furthermore, in the first and second embodiments, if a λ/2 wavelength plate is disposed on the first display 30, the first display 30 may emit circularly polarized first light.
 第2ディスプレイ70では、第2透明電極の代わりに反射電極が設けられてもよい。反射電極は、OLED層からの第2光L2を第1透明電極側に反射する。このように、第2ディスプレイ70では、第2光L2が第2ディスプレイ70からビームスプリッター40側に向かって出射されなくてもよい。この場合、ビームスプリッター40側からの第1光の少なくとも一部は、互いに隣り合う第1透明電極の隙間、互いに隣り合うOLED層の隙間、及び互いに隣り合う反射電極の隙間を通過する。これら隙間を通過した第1光は、第1透明基板を透過して第2ディスプレイ70の前方の空中に進行する。また、第2ディスプレイ70は、上記したように第1光が透過する光透過性のディスプレイであれば、その構成は特に限定されない。また、第2ディスプレイ70は、バックライトが透過する透過領域を有する反射型の液晶ディスプレイであってもよい。この場合、空中像は、第1光が透過領域を透過することで、形成される。このような第2ディスプレイ70としては、例えば、シャープ社製のアドバンストTFT(Thin Film Transistor Liquid Crystal)液晶を用いるディスプレイが挙げられる。 In the second display 70, a reflective electrode may be provided instead of the second transparent electrode. The reflective electrode reflects the second light L2 from the OLED layer toward the first transparent electrode. In this way, in the second display 70, the second light L2 does not have to be emitted from the second display 70 toward the beam splitter 40 side. In this case, at least a portion of the first light from the beam splitter 40 side passes through gaps between adjacent first transparent electrodes, gaps between adjacent OLED layers, and gaps between adjacent reflective electrodes. The first light that has passed through these gaps passes through the first transparent substrate and travels into the air in front of the second display 70 . Further, the configuration of the second display 70 is not particularly limited as long as it is a light-transmissive display that allows the first light to pass therethrough as described above. Further, the second display 70 may be a reflective liquid crystal display having a transmissive area through which a backlight passes. In this case, the aerial image is formed by the first light passing through the transmission region. An example of such a second display 70 is a display using an advanced TFT (Thin Film Transistor Liquid Crystal) liquid crystal manufactured by Sharp Corporation.
 第1ディスプレイ30は表示面30Sの少なくとも一部から第1光を出射し、第1画像F1は第1ディスプレイ30の前面の少なくとも一部に表示されていればよい。第2ディスプレイ70は、射影領域ARから第2光L2を出射しないとしたが、射影領域ARの少なくも一部から第2光L2をさらに出射してもよい。従って、第2ディスプレイ70は第2ディスプレイ70の前面の少なくとも一部から第2光L2を出射し、第2画像は第2ディスプレイ70の前面の少なくとも一部に表示されていればよい。射影領域ARから出射する第2光L2は、単一色であることが好ましい。射影領域ARから出射する第2光L2の光度は、射影領域ARの外側から出射する第2光L2の光度よりも高くてもよいし、当該光度以下であってもよい。第2ディスプレイ70を透過した第1光によって構成される第1画像F2の輝度は、第2画像の輝度よりも高いことが好ましいが、第2画像の輝度以下であってもよい。つまり、第1画像F2は、人間の視覚的に第2画像より明るいことが好ましいが、人間の視覚的に第2画像と同じ明るさであっても、人間の視覚的に第2画像より暗くてもよい。 It is sufficient that the first display 30 emits the first light from at least a portion of the display surface 30S, and the first image F1 is displayed on at least a portion of the front surface of the first display 30. Although the second display 70 does not emit the second light L2 from the projection area AR, it may further emit the second light L2 from at least a part of the projection area AR. Therefore, it is sufficient that the second display 70 emits the second light L2 from at least a portion of the front surface of the second display 70, and that the second image is displayed on at least a portion of the front surface of the second display 70. It is preferable that the second light L2 emitted from the projection area AR has a single color. The luminous intensity of the second light L2 emitted from the projection area AR may be higher than the luminous intensity of the second light L2 emitted from outside the projection area AR, or may be lower than the luminous intensity. The brightness of the first image F2 formed by the first light transmitted through the second display 70 is preferably higher than the brightness of the second image, but may be lower than the brightness of the second image. In other words, it is preferable that the first image F2 is visually brighter than the second image, but even if the first image F2 has the same brightness as the second image, it is visually darker than the second image. It's okay.
 検出センサ80は、設けられていなくてもよい。 The detection sensor 80 may not be provided.
 本発明によれば、空中像及びディスプレイの画像を互いに近づけてそれぞれを同時に視認させ易くし得る画像表示装置を提供し、看板等に利用可能である。

 
According to the present invention, there is provided an image display device that can bring an aerial image and a display image closer to each other so that they can be easily viewed at the same time, and can be used for billboards and the like.

Claims (8)

  1.  第1画像を構成する第1光を出射する第1ディスプレイと、
     前記第1ディスプレイから出射された前記第1光の一部を反射するビームスプリッターと、
     前記ビームスプリッターで反射された前記第1光を再帰反射する再帰反射部材と、
     第2画像を構成する第2光を出射し、前記第1光を透過する光透過性の第2ディスプレイと、
     を備え、
     前記ビームスプリッターは、前記再帰反射部材によって再帰反射された前記第1光の一部を透過し、
     前記第2ディスプレイは、前記再帰反射部材によって再帰反射されて前記ビームスプリッターを透過する前記第1光の少なくとも一部を透過し、前記第2ディスプレイを透過する当該第1光の進行方向前側の面から前記第2光を出射する
    ことを特徴とする画像表示装置。
    a first display that emits first light constituting a first image;
    a beam splitter that reflects a portion of the first light emitted from the first display;
    a retroreflective member that retroreflects the first light reflected by the beam splitter;
    a light-transmissive second display that emits second light constituting a second image and transmits the first light;
    Equipped with
    The beam splitter transmits a portion of the first light retroreflected by the retroreflection member,
    The second display transmits at least a portion of the first light that is retroreflected by the retroreflective member and passes through the beam splitter, and the second display has a front surface in the traveling direction of the first light that is transmitted through the second display. An image display device characterized in that the second light is emitted from an image display device.
  2.  第1画像を構成する第1光を出射する第1ディスプレイと、
     前記第1ディスプレイから出射された前記第1光の一部を透過するビームスプリッターと、
     前記ビームスプリッターを透過した前記第1光を再帰反射する再帰反射部材と、
     第2画像を構成する第2光を出射し、前記第1光を透過する光透過性の第2ディスプレイと、
     を備え、
     前記ビームスプリッターは、前記再帰反射部材によって再帰反射された前記第1光の一部を前記第2ディスプレイに向けて反射し、
     前記第2ディスプレイは、前記再帰反射部材によって再帰反射されて前記ビームスプリッターで反射される前記第1光の少なくとも一部を透過し、前記第2ディスプレイを透過する当該第1光の進行方向前側の面から前記第2光を出射する
    ことを特徴とする画像表示装置。
    a first display that emits first light constituting a first image;
    a beam splitter that transmits a portion of the first light emitted from the first display;
    a retroreflective member that retroreflects the first light transmitted through the beam splitter;
    a light-transmissive second display that emits second light constituting a second image and transmits the first light;
    Equipped with
    The beam splitter reflects a portion of the first light retroreflected by the retroreflective member toward the second display,
    The second display transmits at least a portion of the first light that is retroreflected by the retroreflective member and reflected by the beam splitter, and the second display transmits at least a portion of the first light that is retroreflected by the retroreflective member and reflected by the beam splitter. An image display device characterized in that the second light is emitted from a surface.
  3.  前記第1ディスプレイから出射する前記第1光の光度は、前記第2ディスプレイから出射する前記第2光の光度よりも高い
    ことを特徴とする請求項1または2に記載の画像表示装置。
    The image display device according to claim 1 or 2, wherein the luminous intensity of the first light emitted from the first display is higher than the luminous intensity of the second light emitted from the second display.
  4.  前記第1ディスプレイから出射する前記第1光の光度は、前記第2ディスプレイから出射する前記第2光の光度の2倍以上20倍以下である
    ことを特徴とする請求項3に記載の画像表示装置。
    The image display according to claim 3, wherein the luminous intensity of the first light emitted from the first display is 2 times or more and 20 times or less than the luminous intensity of the second light emitted from the second display. Device.
  5.  前記第2ディスプレイを透過した前記第1光の結像位置と前記第2ディスプレイとの間における物体の有無を検出する検出センサをさらに備える
    ことを特徴とする請求項1または2に記載の画像表示装置。
    The image display according to claim 1 or 2, further comprising a detection sensor that detects the presence or absence of an object between the imaging position of the first light transmitted through the second display and the second display. Device.
  6.  前記第2ディスプレイを透過した前記第1光によって構成される前記第1画像を正面視する場合、前記第2ディスプレイは、前記第1画像の射影領域の外側の少なくとも一部から前記第2光を出射する
    ことを特徴とする請求項1または2に記載の画像表示装置。
    When the first image formed by the first light transmitted through the second display is viewed from the front, the second display emits the second light from at least a portion outside the projection area of the first image. The image display device according to claim 1 or 2, wherein the image display device emits light.
  7.  前記ビームスプリッターは、前記第2ディスプレイと前記再帰反射部材との間に設けられる
    ことを特徴とする請求項1に記載の画像表示装置。
    The image display device according to claim 1, wherein the beam splitter is provided between the second display and the retroreflective member.
  8.  前記ビームスプリッターは、前記第2ディスプレイ上に配置される
    ことを特徴とする請求項7に記載の画像表示装置。
    The image display device according to claim 7, wherein the beam splitter is arranged on the second display.
PCT/JP2023/014279 2022-04-25 2023-04-06 Image display device WO2023210297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071930A JP7356535B1 (en) 2022-04-25 2022-04-25 image display device
JP2022-071930 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210297A1 true WO2023210297A1 (en) 2023-11-02

Family

ID=88198250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014279 WO2023210297A1 (en) 2022-04-25 2023-04-06 Image display device

Country Status (2)

Country Link
JP (1) JP7356535B1 (en)
WO (1) WO2023210297A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051480A1 (en) * 2014-09-29 2016-04-07 日立マクセル株式会社 Display device and apparatus incorporating same
US20180188548A1 (en) * 2017-01-05 2018-07-05 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
JP2019207370A (en) * 2018-05-30 2019-12-05 日本カーバイド工業株式会社 Image display device
JP2019219560A (en) * 2018-06-21 2019-12-26 凸版印刷株式会社 Aerial display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051480A1 (en) * 2014-09-29 2016-04-07 日立マクセル株式会社 Display device and apparatus incorporating same
US20180188548A1 (en) * 2017-01-05 2018-07-05 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
JP2019207370A (en) * 2018-05-30 2019-12-05 日本カーバイド工業株式会社 Image display device
JP2019219560A (en) * 2018-06-21 2019-12-26 凸版印刷株式会社 Aerial display device

Also Published As

Publication number Publication date
JP2023161494A (en) 2023-11-07
JP7356535B1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US7515143B2 (en) Uniform illumination of interactive display panel
TWI228196B (en) Liquid crystal display device and electronic apparatus
JP5427961B2 (en) Desktop display system
EP3165961B1 (en) Display apparatus providing borderless display effect
US10718944B2 (en) Near-eye display device with phase modulation
CN102162924A (en) Image observation apparatus and image observation system
CN103189823A (en) Interactive polarization-preserving projection display
TW201504743A (en) Portable display device
WO2017090358A1 (en) Display apparatus
WO2015151799A1 (en) Electronic device
JP2010127671A (en) Position detector and electro-optical device
EP3783528A1 (en) All-screen optical component and electronic device
KR101406891B1 (en) Display apparatus
WO2019030991A1 (en) Aerial image display device
US11506886B2 (en) Spatial image display touch device
JP2008191261A (en) Liquid crystal display device
JP7356535B1 (en) image display device
JP2019133284A (en) Non-contact input device
JP2014238477A (en) Head-up display device
CA3163674A1 (en) Optical systems and methods for eye tracking based on redirecting light from eye using an optical arrangement associated with a light-guide optical element
JP2018038808A (en) Apparatus for extracorporeal blood treatment comprising monitor unit
US20220373818A1 (en) Display device
JP2020034965A (en) Light emission apparatus and image display system
JP2019056737A (en) Aerial image display device
JP2012173138A (en) Optical position detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796043

Country of ref document: EP

Kind code of ref document: A1