WO2023210285A1 - Joined body, and method for manufacturing joined body - Google Patents

Joined body, and method for manufacturing joined body Download PDF

Info

Publication number
WO2023210285A1
WO2023210285A1 PCT/JP2023/014179 JP2023014179W WO2023210285A1 WO 2023210285 A1 WO2023210285 A1 WO 2023210285A1 JP 2023014179 W JP2023014179 W JP 2023014179W WO 2023210285 A1 WO2023210285 A1 WO 2023210285A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copper
thiol
thermosetting
film
Prior art date
Application number
PCT/JP2023/014179
Other languages
French (fr)
Japanese (ja)
Inventor
基治 芳我
帥捷 趙
Original Assignee
株式会社ダイセル
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人大阪大学 filed Critical 株式会社ダイセル
Publication of WO2023210285A1 publication Critical patent/WO2023210285A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present disclosure relates to a bonded body and a method for manufacturing the bonded body.
  • a multilayer printed circuit board is made by laminating an inner layer board on which a pattern is formed and a copper-clad laminate for the outer layer via a prepreg (a thermosetting composition in which fibers are impregnated with a thermosetting compound (e.g., epoxide)).
  • the prepreg (thermosetting composition) can then be produced by thermosetting the prepreg (thermosetting composition).
  • the copper used for the copper-clad laminate for the outer layer has been immersed in an alkaline solution to form uneven surfaces. Copper with (convex and concave) formed therein is used. Since the recesses are formed on the surface of the copper, when the prepreg is heated and thermosetted, a thermosetting compound flows into the recesses and the prepreg is thermosetted, and the anchor effect causes the prepreg to harden. The adhesive strength between the cured product and copper increases.
  • thermosetting composition a further method for increasing the bonding strength between copper and a cured product of a thermosetting composition may be required.
  • Non-Patent Document 1 a method of bonding copper and a cured product of a thermosetting composition using a silane coupling agent has attracted attention (for example, Non-Patent Document 1).
  • Non-Patent Document 1 In the method described in Non-Patent Document 1, first, the surface of copper is subjected to UV/ozone treatment to oxidize the copper and form copper hydroxide (Cu(OH) 2 ) on the surface of the copper. Next, by applying a silane coupling agent to the surface on which copper hydroxide (Cu(OH) 2 ) is formed, a bonding reaction between the copper hydroxide (Cu(OH) 2 ) and the silane coupling agent is caused. . Then, epoxide, which is a thermosetting compound, is applied to the surface coated with the silane coupling agent, and by heating the epoxide, the epoxide is cured while causing a bonding reaction between the silane coupling agent and the epoxide. Thereby, a bonded body in which copper and the cured epoxide are bonded can be obtained.
  • a silane coupling agent which is a thermosetting compound
  • an object of the present disclosure is to provide a bonded body with high bonding strength between a cured product of a thermosetting composition and copper.
  • the second aspect of the present disclosure is a method for manufacturing a bonded body, which comprises fabricating a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film, The zygote is the zygote, a step (A) of bonding the thiol and the copper to form the film by providing a bonding agent containing the thiol on the surface of the copper; A step of providing the thermosetting composition on the film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ( B).
  • the bonded body according to this embodiment is a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film.
  • the membrane is made of thiol.
  • the thiol is a compound having at least one first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1).
  • Z-R-SH...(1) In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.
  • the thermosetting composition contains a thermosetting compound.
  • the thermosetting compound has a second functional group that can react with the first functional group.
  • the thiol can be bonded to the copper through a thiol group contained in the thiol, and can be bonded to the thermosetting compound through the first functional group contained in the thiol. Therefore, according to the present disclosure, a bonded body with high bonding strength between a cured product of a thermosetting composition and copper can be provided without controlling the oxidation treatment of copper.
  • the thiol can be bonded to the copper using a thiol group contained in the thiol.
  • the thiol group (-SH) contained in thiol has a smaller functional group size than the trialkoxysilyl group (-Si(OR) 3 ) contained in the silane coupling agent, so thiol is attached to the copper surface. Many can be joined. As a result, the bonding strength between the cured product of the thermosetting composition and copper increases.
  • Examples of the shape of the copper include a plate shape and a rod shape.
  • the surface of the copper that is to be joined to the cured product via the film is not oxidized.
  • the surface of the copper may be oxidized by acid or moisture in the air.
  • the surface of the copper may contain an oxide film (copper oxide).
  • the surface portion of the copper may include an oxide film.
  • the oxide film is removed from the surface of the copper.
  • the thiol is a compound having at least one first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1).
  • Z-R-SH...(1) (In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
  • the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the amino group in the first functional group may be "-NH 2 ", "-NHR'", “-NR''R'', or "- It may be N + R''''R''''''.
  • R' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R'' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R'' may be the same as R''' or different from R'''.
  • R'''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R''''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R'''''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R'''' may be the same as R''''' or different from R'''''.
  • R'''' may be the same as R''''' or different from R'''''.
  • R''''' may be the same as R''''' or different from R'''''.
  • the amino group in the first functional group is preferably "-NH 2 " or "-NHR'", more preferably "-NH 2 ".
  • a carboxy group is preferable as the first functional group from the viewpoint of increasing the bonding strength and reducing fluctuations in the bonding strength (from the viewpoint of stabilizing quality).
  • the carbon number of R in the formula (1) is preferably 1 to 15, more preferably 2 to 10.
  • R in the formula (1) preferably contains a carbon-carbon unsaturated bond.
  • the joined body according to this embodiment has excellent heat resistance because R in the above formula (1) includes a carbon-carbon unsaturated bond.
  • R in the formula (1) preferably contains a benzene ring, more preferably a benzene ring.
  • Examples of thiols in which R in the formula (1) is a benzene ring include 4-aminothiophenol (4-ATP) (formula (1-1) below), 4-mercaptobenzoic acid (MBA) (formula (1-2)), etc.
  • R in the above formula (1) also includes a linear hydrocarbon group (-(CH 2 ) n -).
  • thiols in which R in the formula (1) is a linear hydrocarbon group include 3-mercaptopropionic acid (3-MPA) (formula (1-3) below), 6-mercaptohexanoic acid ( MHA) (formula (1-4) below), 8-mercaptooctanoic acid (MOA) (formula (1-5) below), 11-mercaptoundecanoic acid (MUA) (formula (1-6) below), 6- Examples include mercapto-1-hexanol (MCH) (formula (1-7) below).
  • the thiol is preferably 3-mercaptopropionic acid (3-MPA).
  • Thiols form a self-assembled molecular film on the copper surface. Due to this self-organization, the compounds contained in the thiol are arranged at high density and react with the thermosetting compound (second functional group) and copper, thereby providing high bonding strength.
  • the self-organization of thiols is affected by steric hindrance due to the molecular structure of thiols. From the viewpoint of low steric hindrance, thiols in which R in the formula (1) is a linear hydrocarbon group are preferred.
  • thermosetting compound Furthermore, the reactivity between a thiol and a thermosetting compound is considered to be influenced not only by the molecular structure of the thiol but also by the molecular structure of the thermosetting compound. According to the studies of the present disclosure, thiols with relatively short molecular chains are preferable for thermosetting compounds in which the second functional group is a glycidyl group, and thiols in which the second functional group is a cycloaliphatic epoxy group are preferable. For thermosetting compounds, thiols with relatively long molecular chains are preferred.
  • the molecular length of thiol determined by molecular structure modeling software is preferably less than 0.9 nm for thermosetting compounds whose second functional group is a glycidyl group, and is preferably 0.5 to 0.8 nm. It may be 0.5 to 0.7 nm.
  • the thickness is preferably 0.9 nm or more, may be 0.9 to 1.5 nm, and may be 0.9 to 1.4 nm. It may be between 0.9 and 1.3 nm.
  • the thickness of the film formed of the thiol is preferably 2.0 to 10 nm, more preferably 2.0 to 5.0 nm.
  • the film may contain dissolved matter (copper, copper oxide, etc.) from the surface portion of the copper.
  • thermosetting composition contains a thermosetting compound.
  • the thermosetting compound has a second functional group that can react with the first functional group.
  • the second functional group more preferably has an epoxy group and/or a hydroxyl group, and particularly preferably has an epoxy group.
  • the second functional group has the epoxy group by having a glycidyl group and/or an alicyclic epoxy group.
  • thermosetting compound having an epoxy group has one or more epoxy groups, preferably two or more epoxy groups.
  • examples of the thermosetting compound having an epoxy group include a compound represented by the following formula (2), a compound represented by the following formula (3), and the like.
  • R 1 represents a hydrogen atom or a monovalent hydrocarbon group.
  • R 2 is the same as or different from R 1 and represents a hydrogen atom or a monovalent hydrocarbon group.
  • R 3 represents a divalent hydrocarbon group.
  • R 4 is the same as or different from R 3 and represents a divalent hydrocarbon group.
  • X represents a single bond or a connecting group.
  • the monovalent hydrocarbon group is preferably a monovalent aliphatic hydrocarbon group.
  • the monovalent hydrocarbon group preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • Examples of the carbon number of the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, and decyl group. and dodecyl group.
  • divalent hydrocarbon group examples include a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group, and a divalent aromatic hydrocarbon group.
  • the divalent aliphatic hydrocarbon group may be linear or branched.
  • the divalent aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • Examples of the divalent aliphatic hydrocarbon group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • the divalent alicyclic hydrocarbon group preferably has 3 to 12 carbon atoms, more preferably 3 to 10 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • the divalent alicyclic hydrocarbon group is preferably a 3- to 10-membered alicyclic hydrocarbon group, more preferably a 3- to 6-membered alicyclic hydrocarbon group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1 , 4-cyclohexylene group, etc.
  • the divalent aromatic hydrocarbon group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the divalent aromatic hydrocarbon group include a phenylene group (e.g., o-phenylene group, m-phenylene group, p-phenylene group), phenylenebis(methylene) group (e.g., 1,2-phenylenebis). (methylene) group, 1,3-phenylenebis(methylene) group, 1,4-phenylenebis(methylene) group), biphenylene group, naphthylene group, binaphthylene group, anthracenylene group, phenanthrylene group, etc.
  • a phenylene group e.g., o-phenylene group, m-phenylene group, p-phenylene group
  • phenylenebis(methylene) group e.g., 1,2-phenylenebis.
  • Examples of the compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-3).
  • X represents a single bond or a connecting group.
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group (-CO-), an ether bond (-O-), Examples include an ester bond (-COO-), a carbonate group (-O-CO-O-), an amide group (-CONH-), and the like.
  • the connecting group include groups in which a plurality of these are connected.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, and 1,3-cyclopentylene group. Examples include cycloalkylene groups such as cyclohexylene group and 1,4-cyclohexylene group.
  • alkenylene groups in which part or all of the carbon-carbon double bonds are epoxidized include linear or Examples include branched alkenylene groups.
  • Examples of linear or branched alkenylene groups having 2 to 8 carbon atoms include vinylene group, propenylene group, 1-butenylene group, 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group. Examples include groups.
  • the above-mentioned epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, and more preferably an alkenylene group having 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. .
  • a substituent eg, an alkyl group having 1 to 10 carbon atoms, etc.
  • a substituent may be bonded to the cyclohexene oxide group in (3) above.
  • Typical examples of the compound represented by the formula (3) include compounds in which X in the formula (3) is a group containing an ester bond, (3,4,3',4'-diepoxy) Examples include cyclohexyl, 1,2-epoxy-1,2-bis(3,4-epoxycyclohexan-1-yl)ethane, and the like.
  • Examples of the compound in which X in the formula (3) is a group containing an ester bond include compounds represented by any of the following formulas (3-1) to (3-5).
  • the thermosetting compound preferably contains a saturated or unsaturated cyclic hydrocarbon group.
  • the cyclic hydrocarbon group may include a heteroatom (eg, nitrogen (N), sulfur (S), etc.).
  • the cyclic hydrocarbon group is a concept that also includes polycyclic aromatic groups (eg, naphthalene skeleton). It is preferable that the thermosetting compound has at least one of a five-membered ring and a six-membered ring as the cyclic hydrocarbon group. Moreover, it is more preferable that the thermosetting compound has a six-membered ring as the cyclic hydrocarbon group. Furthermore, it is particularly preferable that the thermosetting compound has only a six-membered ring as the cyclic hydrocarbon group.
  • the six-membered ring is preferably a benzene skeleton or a cyclohexane skeleton.
  • the cyclic hydrocarbon group does not contain a heteroatom.
  • the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • Thermosetting compounds having hydroxyl groups include bisphenol, phenol novolak, cresol novolak, cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, dimethyldicyclohexylmethanediol, ethylene glycol, propylene glycol, butanediol. , pentanediol, hexanediol, polyester polyol, polyether polyol, and the like.
  • bisphenols examples include bisphenol A, bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, and bisphenol Z. can be mentioned.
  • thermosetting composition preferably contains the thermosetting compound in an amount of 30 to 90% by weight, more preferably 50 to 95% by weight.
  • thermosetting composition may further contain a curing agent for curing the epoxy compound.
  • curing agent examples include acid anhydride curing agents, amine curing agents, phenol curing agents, and the like.
  • acid anhydride curing agent examples include phthalic anhydride (formula (4) below), methyltetrahydrophthalic anhydride (for example, 4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), and methylhexanhydride.
  • phthalic anhydride formula (4) below
  • methyltetrahydrophthalic anhydride for example, 4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.
  • methylhexanhydride examples include methylhexanhydride.
  • Hydrophthalic anhydride e.g.
  • Examples of the amine curing agent include aliphatic polyamines, alicyclic polyamines, aromatic polyamines, and the like.
  • Examples of the aliphatic polyamine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylene diamine, diethylaminopropylamine, and polypropylenetriamine.
  • alicyclic polyamine examples include menzendiamine, isophoronediamine, bis(4-amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, 3,9 -bis(3-aminopropyl)-3,4,8,10-tetraoxaspiro[5,5]undecane and the like.
  • aromatic polyamine examples include m-phenylene diamine, p-phenylene diamine, tolylene-2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, and 3,5-diethyltolylene.
  • phenolic curing agent examples include novolac type phenol resin, novolac type cresol resin, p-xylylene modified phenol resin, p-xylylene/m-xylylene modified phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, Examples include triphenolpropane.
  • thermosetting composition preferably contains 1 to 10 parts by weight, more preferably 2 to 7 parts by weight of the curing agent based on 100 parts by weight of the thermosetting compound.
  • the thermosetting composition may be a prepreg, that is, may further contain fibers.
  • the fibers include carbon fibers, glass fibers, aramid fibers, boron fibers, polyparaphenylene benzobis oxazole (PBO) fibers, polyethylene fibers, alumina fibers, and silicon carbide fibers.
  • the fibers may be included in the thermosetting composition in the form of a woven fabric, or may be included in the thermosetting composition in the form of a nonwoven fabric, or the fibers may be heated in a loose state. It may be included in the curable composition.
  • the fibers may be monofilaments or multifilaments.
  • the fineness of the single fibers of the fibers is preferably 0.2 to 2.0 dtex, more preferably 0.4 to 1.8 dtex.
  • the number of filaments in the fiber is preferably 2,500 to 50,000.
  • the thermosetting composition may contain a curing accelerator.
  • the curing accelerator include tetraphenylphosphonium tetraphenylborate, imidazoles, triphenylphosphate (TPP), and amine curing accelerators.
  • TPP triphenylphosphate
  • the amine curing accelerator include boron trifluoride monoethylamine.
  • the thermosetting composition may contain an inorganic filler.
  • the inorganic filler include silica filler, boron nitride filler, aluminum nitride filler, silicon nitride filler, gallium nitride filler, alumina filler, silicon carbide filler, magnesium oxide filler, and diamond filler.
  • thermosetting composition may contain a mold release agent from the viewpoint of adjusting mold release properties, adhesion properties, imprintability, and the like.
  • the mold release agent include higher fatty acids, higher fatty acid esters, higher fatty acid calcium, and specific examples include carnauba wax and polyethylene wax.
  • the thermosetting composition may contain a modifier (also referred to as a "stress reducing agent").
  • a modifier include butadiene rubber, silicone compounds, and the like.
  • the butadiene rubber include methyl acrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, and the like.
  • thermosetting composition may contain other additives.
  • other additives include flame retardants, pigments, and ion trapping agents.
  • flame retardant include organic phosphorus compounds, antimony oxide, aluminum hydroxide, magnesium hydroxide, and the like.
  • pigment include carbon black and the like.
  • ion trapping agent include hydrotalcites, bismuth hydroxide, and the like.
  • the joined body according to this embodiment is constructed as described above, and next, a method for manufacturing the joined body according to this embodiment will be explained.
  • the method for manufacturing a bonded body according to this embodiment is a method for producing the bonded body.
  • the method for manufacturing a bonded body according to the present embodiment includes a step (A) of forming the film by bonding the thiol and the copper by providing a bonding agent containing the thiol on the surface of copper; Step (B) of providing the thermosetting composition on a film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ).
  • the method for manufacturing a bonded body according to the present embodiment preferably includes a step (C) of removing an oxide film from the surface of copper before the step (A).
  • step (C) the surface of the copper is brought into contact with acetone, the surface of the copper that has been brought into contact with the acetone is brought into contact with alcohol, and the copper that has been brought into contact with the alcohol is ultrasonically cleaned in pure water to remove the copper. Remove oil from surfaces.
  • the alcohol include isopropyl alcohol (IPA) and ethanol.
  • the oxide film is removed from the surface of the copper by bringing the ultrasonically cleaned copper into contact with an acid aqueous solution.
  • the acid in the acid aqueous solution include sulfuric acid, nitric acid, and hydrochloric acid.
  • a thiol-containing alcohol solution is obtained by dissolving thiol in alcohol.
  • the alcohol include ethanol.
  • the thiol-containing alcohol solution contains thiol, preferably 0.2 to 5.0 mM, more preferably 1.0 to 2.0 mM.
  • a film is formed on the surface of the copper by bringing the thiol-containing alcohol solution into contact with the surface of the copper.
  • thermosetting composition is provided on the film, and the thermosetting composition is heated.
  • the heating temperature and heating time may be adjusted as appropriate depending on the thermosetting composition, and the heating temperature is, for example, 100 to 150° C., and the heating time is, for example, 2 to 5 hours.
  • the film is formed of thiol
  • the thiol is a compound having at least one kind of first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1)
  • the thermosetting composition contains a thermosetting compound,
  • the thermosetting compound has a second functional group capable of reacting with the first functional group.
  • Z-R-SH is an organic group having 1 to 20 carbon atoms.
  • thermosetting compound contains a saturated or unsaturated cyclic hydrocarbon group.
  • a method for producing a bonded body comprising: producing a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film, The zygote is the zygote according to any one of items 1 to 10, a step (A) of bonding the thiol and the copper to form the film by providing a bonding agent containing the thiol on the surface of the copper; A step of providing the thermosetting composition on the film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ( B) A method for manufacturing a joined body, comprising:
  • thermosetting compound ⁇ Bisphenol A diglycidyl ether (YD-128 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) (formula (2-1) below)
  • Example 1-1 The prepared copper plate is immersed in acetone for 5 minutes, the copper plate immersed in acetone is immersed in ethanol for 5 minutes, and the copper plate immersed in ethanol is immersed in pure water and ultrasonic cleaning is performed for 5 minutes.
  • the surface of the copper plate was cleaned (oil was removed from the surface of the copper).
  • the cleaned copper plate was immersed in a sulfuric acid aqueous solution (sulfuric acid concentration: 5% by weight) for 30 seconds to remove the oxide film from the surface of the copper plate.
  • a thiol-containing ethanol solution (thiol: 4-aminothiophenol (4-ATP), thiol concentration: 2 mM) was obtained. Then, the copper plate from which the oxide film had been removed was immersed in the thiol-containing ethanol solution for 1 hour to form a film on the surface of the copper plate. Next, the copper plate on which the film was formed was set in a mold. Further, a thermosetting composition was obtained by mixing bisphenol A diglycidyl ether, which is a thermosetting compound, and the curing agent.
  • the amount of curing agent was 80 parts by weight based on 100 parts by weight of the thermosetting compound. Then, within the mold, the thermosetting composition was injected onto the surface of the copper plate on which the film was formed. Next, the mold is heated in an oven at 120°C for 2 hours and further heated at 150°C for 3 hours to produce five cylindrical cured products of the thermosetting composition on the surface of the copper plate. A conjugate was obtained. Note that the diameter of the cylindrical cured product was 4 mm, and the height of the cylindrical cured product was 5 mm. Further, the surface of the copper plate on which the film was formed was in contact with the circular surface of the cured product, and the copper plate and the cured product were joined.
  • Example 1-2 4-mercaptobenzoic acid (MBA) was used as the thiol, the concentration of thiol in the thiol-containing ethanol solution was 5mM, and the copper plate from which the oxide film was removed was immersed in the thiol-containing ethanol solution for 5 hours.
  • a bonded body was obtained in the same manner as in Example 1-1 except for the following.
  • Example 1-3 A conjugate was obtained in the same manner as in Example 1-1 except that 3-mercaptopropionic acid (3-MPA) was used as the thiol.
  • Example 1-4 A conjugate was obtained in the same manner as in Example 1-1 except that 8-mercaptooctanoic acid (MOA) was used as the thiol.
  • MOA 8-mercaptooctanoic acid
  • Example 1-5 A conjugate was obtained in the same manner as in Example 1-1 except that 11-mercaptoundecanoic acid (MUA) was used as the thiol.
  • UAA 11-mercaptoundecanoic acid
  • Example 1-6 A conjugate was obtained in the same manner as in Example 1-1 except that 6-mercapto-1-hexanol (MCH) was used as the thiol.
  • MCH 6-mercapto-1-hexanol
  • Example 1-1 The prepared copper plate was immersed in ethanol and subjected to ultrasonic cleaning for 5 minutes to clean the surface of the copper plate. Then, a bonded body was obtained in the same manner as in Example 1-1 except that a cleaned copper plate was set in the mold instead of the copper plate on which the film was formed.
  • Example 1-2 The prepared copper plate was immersed in ethanol and subjected to ultrasonic cleaning for 5 minutes to clean the surface of the copper plate. Further, by dissolving the silane coupling agent in pure water, a silane coupling agent-containing aqueous solution (silane coupling agent concentration: 1% by weight) was obtained. Then, the washed copper plate was immersed in the silane coupling agent-containing aqueous solution for 20 minutes. Next, the immersed copper plate was heated at 100° C. for 10 minutes (by dehydration condensation of the silane coupling agent and copper oxide) to form a film on the surface of the copper plate. Then, a bonded body was obtained in the same manner as in Example 1-1 except that the copper plate on which a film was formed with a silane coupling agent was used.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-2, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-3, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-4, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-5, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as Comparative Example 1-1 except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • thermosetting compound 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Comparative Example 1-2, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
  • Example 1-1 As shown in Table 1, from a comparison of Examples 1-1 and 1-2 in which the thiol contains an aromatic ring, in the conjugate of Example 1-2 in which the first functional group is a carboxyl group, the first The average value of bonding strength was higher than that of Example 1-1 in which the functional group of No. 1 was an amino group. Furthermore, from a comparison of Examples 1-3 to 1-6 in which the thiol does not contain an aromatic ring, in the conjugate of Example 1-6 in which the first functional group is a hydroxy group, the first functional group is a carboxyl group. The average value of bonding strength was higher than that of Examples 1-3 to 1-5. Therefore, from the viewpoint of bonding strength, it can be seen that a carboxy group is preferable as the first functional group when it has an aromatic ring, and a hydroxy group is preferable as the first functional group when it does not contain an aromatic ring.
  • Example 1-1 As shown in Table 1, from a comparison of Examples 1-1 and 1-2 in which the thiol contains an aromatic ring, in the conjugate of Example 1-2 in which the first functional group is a carboxyl group, the first The coefficient of variation of bonding strength was lower than that of Example 1-1 in which the functional group 1 was an amino group. Furthermore, from a comparison of Examples 1-3 to 1-6 in which the thiol does not contain an aromatic ring, in the conjugate of Example 1-6 in which the first functional group is a hydroxy group, the first functional group is a carboxyl group. The coefficient of variation of bonding strength was lower than that of Examples 1-3 to 1-5. Therefore, from the viewpoint of stabilizing quality, it can be seen that a carboxy group is preferable as the first functional group when an aromatic ring is present, and a hydroxy group is preferable as the first functional group when an aromatic ring is not included.
  • thermosetting compound (YD128) having a glycidyl group as the second functional group
  • MCH 6-mercapto-1-hexanol
  • the coefficient of variation of bond strength was lower.
  • thiols whose first functional group is a carboxyl group the coefficient of variation of bonding strength was low in Example 1-3, which was 3-mercaptopropionic acid (3-MPA) having 3 carbon atoms.
  • thermosetting compound CEL2021P
  • Example 2-4 in which the thiol was 8-mercaptooctanoic acid (MOA)
  • MOA 8-mercaptooctanoic acid
  • the coefficient of variation in bond strength was lower than in Examples 2-2 and 2-3 in which other thiols were used. Therefore, from the viewpoint of stabilizing quality, a thiol with a relatively short molecular chain is preferable for a thermosetting compound in which the second functional group is a glycidyl group, and a thiol in which the second functional group is an alicyclic epoxy group is preferable. It can be seen that thiols with relatively long molecular chains are preferable for certain thermosetting compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present disclosure provides a joined body in which copper and a cured product of a thermosetting composition are joined by a film, wherein: the film is formed from a thiol; the thiol is a prescribed compound having at least one first functional group selected from amino groups, carboxy groups, and hydroxyl groups; the thermosetting composition contains a thermosetting compound; and the thermosetting compound has a second functional group capable of reacting with the first functional group.

Description

接合体、及び、接合体の製造方法Joined body and method for manufacturing the joined body
 本開示は、接合体、及び、接合体の製造方法に関する。 The present disclosure relates to a bonded body and a method for manufacturing the bonded body.
 多層プリント基板は、パターンが形成された内層基板と、外層用銅張積層板とをプリプレグ(繊維に熱硬化性化合物(例えば、エポキシド)を含侵させた熱硬化性組成物)を介して積層させ、そして、該プリプレグ(熱硬化性組成物)を熱硬化させることで作製することができる。 A multilayer printed circuit board is made by laminating an inner layer board on which a pattern is formed and a copper-clad laminate for the outer layer via a prepreg (a thermosetting composition in which fibers are impregnated with a thermosetting compound (e.g., epoxide)). The prepreg (thermosetting composition) can then be produced by thermosetting the prepreg (thermosetting composition).
 従来、外層用銅張積層板の銅と、プリプレグの硬化物との接合強度を固めるべく、外層用銅張積層板に用いる銅としては、アルカリ溶液に浸漬される等して、表面に凹凸部(凸部及び凹部)が形成された銅が用いられている。
 該銅の表面に凹部が形成されていることにより、前記プリプレグを加熱して熱硬化させた際に、熱硬化性化合物が該凹部に流入して前記プリプレグが熱硬化し、アンカー効果によって前記プリプレグの硬化物と銅との接着強度が高まる。
Conventionally, in order to strengthen the bonding strength between the copper of the copper-clad laminate for the outer layer and the cured prepreg, the copper used for the copper-clad laminate for the outer layer has been immersed in an alkaline solution to form uneven surfaces. Copper with (convex and concave) formed therein is used.
Since the recesses are formed on the surface of the copper, when the prepreg is heated and thermosetted, a thermosetting compound flows into the recesses and the prepreg is thermosetted, and the anchor effect causes the prepreg to harden. The adhesive strength between the cured product and copper increases.
 ところで、多層プリント基板において、交流電流が導体を流れる際に、表皮効果によって導体の表面で電流密度が高くなる。また、周波数が高くなるほど電流が導体の表面に集中する。
 しかし、前記多層プリント基板における導体たる前記銅の表面に、凹凸部が形成されていると、伝送損失が大きくなる。
 また、近年、高周波数の電波(例えば、100GHz以上)を用いる次世代移動通信システム(例えば、第6世代移動通信システム(6G)(電波:例えば、100GHz~3THz))が求められており、次世代移動通信システムでは、銅の表面の凹凸部による伝送損失がより一層大きくなる。
 そういったことから、銅の表面に凹凸部を形成する方法以外に、外層用銅張積層板の銅と、プリプレグ(熱硬化性組成物)の硬化物との接合強度を高める更なる方法が求められている。
By the way, in a multilayer printed circuit board, when an alternating current flows through a conductor, the current density becomes high on the surface of the conductor due to the skin effect. Furthermore, the higher the frequency, the more the current concentrates on the surface of the conductor.
However, if uneven portions are formed on the surface of the copper, which is a conductor in the multilayer printed circuit board, transmission loss increases.
In addition, in recent years, there has been a demand for next-generation mobile communication systems (e.g., 6th generation mobile communication systems (6G) (radio waves: e.g., 100GHz to 3THz)) that use high-frequency radio waves (e.g., 100GHz or higher). In next-generation mobile communication systems, transmission loss due to unevenness on the copper surface becomes even greater.
For this reason, in addition to forming irregularities on the copper surface, there is a need for a further method to increase the bonding strength between the copper of the copper-clad laminate for the outer layer and the cured prepreg (thermosetting composition). ing.
 また、前記多層プリント基板以外(例えば、パワーデバイス、パワーモジュール等)でも、銅と、熱硬化性組成物の硬化物との接合強度を高める更なる方法が求められ得る。 In addition, other than the multilayer printed circuit boards (for example, power devices, power modules, etc.), a further method for increasing the bonding strength between copper and a cured product of a thermosetting composition may be required.
 近年、シランカップリング剤を用いて、銅と、熱硬化性組成物の硬化物とを接合する方法が注目されている(例えば、非特許文献1)。 In recent years, a method of bonding copper and a cured product of a thermosetting composition using a silane coupling agent has attracted attention (for example, Non-Patent Document 1).
 非特許文献1に記載の方法では、まず、銅の表面をUV/オゾン処理することにより、銅を酸化させて銅の表面に水酸化銅(Cu(OH))を形成する。
 次に、水酸化銅(Cu(OH))が形成された前記表面にシランカップリング剤を塗布することにより、水酸化銅(Cu(OH))とシランカップリング剤とを結合反応させる。
 そして、シランカップリング剤が塗布された前記表面に熱硬化性化合物たるエポキシドを塗布し、該エポキシドを加熱することにより、シランカップリング剤とエポキシドとを結合反応させつつ、該エポキシドを硬化させる。
 これにより、銅と、エポキシドの硬化物とが接合された接合体を得ることができる。
In the method described in Non-Patent Document 1, first, the surface of copper is subjected to UV/ozone treatment to oxidize the copper and form copper hydroxide (Cu(OH) 2 ) on the surface of the copper.
Next, by applying a silane coupling agent to the surface on which copper hydroxide (Cu(OH) 2 ) is formed, a bonding reaction between the copper hydroxide (Cu(OH) 2 ) and the silane coupling agent is caused. .
Then, epoxide, which is a thermosetting compound, is applied to the surface coated with the silane coupling agent, and by heating the epoxide, the epoxide is cured while causing a bonding reaction between the silane coupling agent and the epoxide.
Thereby, a bonded body in which copper and the cured epoxide are bonded can be obtained.
 しかし、シランカップリング剤による斯かる接合では、銅の表面部分を十分に酸化させないと、銅とシランカップリング剤との接合が不十分になってしまい、その結果、銅と硬化物との接合が不十分になってしまうおそれがある。
 一方で、銅の表面を過剰に酸化させてしまうと、銅本来の特性を十分に発揮できない(銅の強度が低下するなど)などの問題が生じ得る。
 すなわち、銅の酸化処理のコントロールが難しいという問題がある。
However, in such bonding using a silane coupling agent, if the surface portion of the copper is not sufficiently oxidized, the bond between the copper and the silane coupling agent will be insufficient, and as a result, the bond between the copper and the cured product will be insufficient. may become insufficient.
On the other hand, if the surface of copper is excessively oxidized, problems may occur, such as the inability to fully exhibit the inherent properties of copper (such as a decrease in the strength of copper).
That is, there is a problem in that it is difficult to control the oxidation treatment of copper.
 従って、銅の酸化処理のコントロールをせずに、熱硬化性組成物の硬化物と銅との接合強度が高い接合体を得ることが求められ得る。 Therefore, it may be required to obtain a bonded body with high bonding strength between a cured product of a thermosetting composition and copper without controlling the oxidation treatment of copper.
 そこで、本開示は、熱硬化性組成物の硬化物と銅との接合強度が高い接合体を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a bonded body with high bonding strength between a cured product of a thermosetting composition and copper.
 本開示の第一は、熱硬化性組成物の硬化物と銅とが膜で接合された接合体であって、
前記膜は、チオールによって形成されており、
前記チオールは、アミノ基、カルボキシ基、及び、水酸基から選ばれる少なくとも1種の第1の官能基を有し、下記式(1)で表される化合物であり、
前記熱硬化性組成物は、熱硬化性化合物を含有し、
前記熱硬化性化合物は、前記第1の官能基と反応可能な第2の官能基を有する、接合体に関する。
 Z-R-SH   ・・・(1)
(前記式(1)中、Zは、前記第1の官能基であり、Rは、炭素数が1~20である有機基である。)
A first aspect of the present disclosure is a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
The film is formed of thiol,
The thiol is a compound having at least one kind of first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1),
The thermosetting composition contains a thermosetting compound,
The thermosetting compound relates to a conjugate having a second functional group capable of reacting with the first functional group.
Z-R-SH...(1)
(In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
 本開示の第二は、熱硬化性組成物の硬化物と銅とが膜で接合された接合体を作製する、接合体の製造方法であって、
前記接合体が、前記接合体であり、
前記チオールを含有する接合剤を銅の表面に設けることにより、前記チオールと前記銅とを結合させて前記膜を形成する工程(A)と、
前記膜に前記熱硬化性組成物を設け、該熱硬化性組成物を加熱することにより、前記チオールと前記熱硬化性組成物とを結合させるとともに、前記熱硬化性組成物を硬化させる工程(B)と
を有する、接合体の製造方法に関する。
The second aspect of the present disclosure is a method for manufacturing a bonded body, which comprises fabricating a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
The zygote is the zygote,
a step (A) of bonding the thiol and the copper to form the film by providing a bonding agent containing the thiol on the surface of the copper;
A step of providing the thermosetting composition on the film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ( B).
 本開示によれば、熱硬化性組成物の硬化物と銅との接合強度が高い接合体を提供し得る。 According to the present disclosure, it is possible to provide a bonded body with high bonding strength between a cured product of a thermosetting composition and copper.
 以下、本開示の一実施形態について説明する。 An embodiment of the present disclosure will be described below.
 なお、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
Note that the configurations and combinations thereof in each embodiment are merely examples, and additions, omissions, substitutions, and other changes to the configurations can be made as appropriate without departing from the gist of the present disclosure. This disclosure is not limited by the embodiments, but only by the scope of the claims.
Additionally, each aspect disclosed herein can be combined with any other feature disclosed herein.
 本実施形態に係る接合体は、熱硬化性組成物の硬化物と銅とが膜で接合された接合体である。
 前記膜は、チオールによって形成されている。
 前記チオールは、アミノ基、カルボキシ基、及び、水酸基から選ばれる少なくとも1種の第1の官能基を有し、下記式(1)で表される化合物である。
 Z-R-SH   ・・・(1)
(前記式(1)中、Zは、前記第1の官能基であり、Rは、炭素数が1~20である有機基である。)
 前記熱硬化性組成物は、熱硬化性化合物を含有する。
 前記熱硬化性化合物は、前記第1の官能基と反応可能な第2の官能基を有する。
The bonded body according to this embodiment is a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film.
The membrane is made of thiol.
The thiol is a compound having at least one first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1).
Z-R-SH...(1)
(In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
The thermosetting composition contains a thermosetting compound.
The thermosetting compound has a second functional group that can react with the first functional group.
 前記チオールは、前記チオールに含まれるチオール基で前記銅と結合でき、前記チオールに含まれる前記第1の官能基で前記熱硬化性化合物と結合できる。
 従って、本開示によれば、銅の酸化処理のコントロールをせずに、熱硬化性組成物の硬化物と銅との接合強度が高い接合体を提供し得る。
The thiol can be bonded to the copper through a thiol group contained in the thiol, and can be bonded to the thermosetting compound through the first functional group contained in the thiol.
Therefore, according to the present disclosure, a bonded body with high bonding strength between a cured product of a thermosetting composition and copper can be provided without controlling the oxidation treatment of copper.
 また、前記銅の表面が酸化処理されていなくても、前記チオールは、前記チオールに含まれるチオール基で前記銅と結合できる。 Furthermore, even if the surface of the copper is not oxidized, the thiol can be bonded to the copper using a thiol group contained in the thiol.
 さらに、チオールに含まれるチオール基(-SH)は、シランカップリング剤に含まれるトリアルコキシシリル基(-Si(OR))よりも官能基のサイズが小さいため、チオールは、銅の表面に多く接合することができる。その結果、熱硬化性組成物の硬化物と銅との接合強度が高くなる。 Furthermore, the thiol group (-SH) contained in thiol has a smaller functional group size than the trialkoxysilyl group (-Si(OR) 3 ) contained in the silane coupling agent, so thiol is attached to the copper surface. Many can be joined. As a result, the bonding strength between the cured product of the thermosetting composition and copper increases.
 また、シランカップリング剤を用いた場合には、銅の表面の酸化の状態に起因して接合強度のバラツキが大きくなるが、本開示によれば、接合強度のバラツキが抑制されやすくなる。すなわち、本開示によれば、品質が安定した接合体を提供し得る。言い換えれば、量産性に優れる接合体を提供し得る。 Furthermore, when a silane coupling agent is used, variations in bonding strength increase due to the oxidation state of the copper surface, but according to the present disclosure, variations in bonding strength can be easily suppressed. That is, according to the present disclosure, it is possible to provide a joined body with stable quality. In other words, it is possible to provide a bonded body that is highly mass-producible.
 前記銅の形状としては、板状、棒状などが挙げられる。
 前記銅の表面であって前記膜を介して前記硬化物と接合される表面は、酸化処理されていないことが好ましい。
Examples of the shape of the copper include a plate shape and a rod shape.
Preferably, the surface of the copper that is to be joined to the cured product via the film is not oxidized.
 また、銅の表面は、酸化処理されていなくても、銅の表面部分が空気中の酸や水分で酸化されることがあり、すなわち、銅の表面部分が酸化膜(酸化銅)を含んでいることがある。
 前記銅の表面部分は、酸化膜を含んでいてもよい。
 銅の表面から酸化膜が除去されていることが好ましい。
Additionally, even if the copper surface has not been oxidized, the surface of the copper may be oxidized by acid or moisture in the air.In other words, the surface of the copper may contain an oxide film (copper oxide). Sometimes there are.
The surface portion of the copper may include an oxide film.
Preferably, the oxide film is removed from the surface of the copper.
 前記チオールは、アミノ基、カルボキシ基、及び、水酸基から選ばれる少なくとも1種の第1の官能基を有し、下記式(1)で表される化合物である。
 Z-R-SH   ・・・(1)
(前記式(1)中、Zは、前記第1の官能基であり、Rは、炭素数が1~20である有機基である。)
The thiol is a compound having at least one first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1).
Z-R-SH...(1)
(In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
 第1の官能基において、水酸基は、アルコール性水酸基であってもよく、フェノール性水酸基であってもよい。 In the first functional group, the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
 第1の官能基におけるアミノ基は、「-NH」であってもよく、「-NHR’」であってもよく、「-NR’’R’’’」であってもよく、「-NR’’’’R’’’’’R’’’’’’」であってもよい。
 R’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。
 R’’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。R’’’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。R’’は、R’’’と同じであってもよく、また、R’’’と異なっていてもよい。
 R’’’’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。R’’’’’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。R’’’’’’は、アルキル基であり、該アルキル基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。R’’’’は、R’’’’’と同じであってもよく、また、R’’’’’と異なっていてもよい。R’’’’は、R’’’’’’と同じであってもよく、また、R’’’’’’と異なっていてもよい。R’’’’’は、R’’’’’’と同じであってもよく、また、R’’’’’’と異なっていてもよい。
 第1の官能基におけるアミノ基としては、好ましくは「-NH」、「-NHR’」であり、より好ましくは「-NH」である。
The amino group in the first functional group may be "-NH 2 ", "-NHR'", "-NR''R''', or "- It may be N + R''''R'''''R''''''.
R' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
R'' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. R''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. R'' may be the same as R''' or different from R'''.
R'''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. R''''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. R'''''' is an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. R'''' may be the same as R''''' or different from R'''''. R'''' may be the same as R'''''' or different from R''''''. R''''' may be the same as R'''''' or different from R''''''.
The amino group in the first functional group is preferably "-NH 2 " or "-NHR'", more preferably "-NH 2 ".
 接合強度を高めるという観点、及び、接合強度の変動を小さくするという観点(品質を安定化させる観点)から、前記第1の官能基としては、カルボキシ基が好ましい。 A carboxy group is preferable as the first functional group from the viewpoint of increasing the bonding strength and reducing fluctuations in the bonding strength (from the viewpoint of stabilizing quality).
 前記式(1)中のRの炭素数は、好ましくは1~15、より好ましくは2~10である。 The carbon number of R in the formula (1) is preferably 1 to 15, more preferably 2 to 10.
 前記式(1)中のRは、炭素-炭素不飽和結合を含むことが好ましい。
 本実施形態に係る接合体は、前記式(1)中のRが炭素-炭素不飽和結合を含むことにより、耐熱性に優れたものとなる。
 前記式(1)中のRは、ベンゼン環を含むことが好ましく、ベンゼン環であることがより好ましい。
 前記式(1)中のRがベンゼン環であるチオールとしては、例えば、4-アミノチオフェノール(4-ATP)(下記式(1-1))、4-メルカプト安息香酸(MBA)(下記式(1-2))などが挙げられる。
R in the formula (1) preferably contains a carbon-carbon unsaturated bond.
The joined body according to this embodiment has excellent heat resistance because R in the above formula (1) includes a carbon-carbon unsaturated bond.
R in the formula (1) preferably contains a benzene ring, more preferably a benzene ring.
Examples of thiols in which R in the formula (1) is a benzene ring include 4-aminothiophenol (4-ATP) (formula (1-1) below), 4-mercaptobenzoic acid (MBA) (formula (1-2)), etc.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記式(1)中のRとしては、直鎖状の炭化水素基(-(CH-)も挙げられる。
 前記式(1)中のRが直鎖状の炭化水素基であるチオールとしては、例えば、3-メルカプトプロピオン酸(3-MPA)(下記式(1-3))、6-メルカプトヘキサン酸(MHA)(下記式(1-4))、8-メルカプトオクタン酸(MOA)(下記式(1-5))、11-メルカプトウンデカン酸(MUA)(下記式(1-6))、6-メルカプト-1-ヘキサノール(MCH)(下記式(1-7))などが挙げられる。
R in the above formula (1) also includes a linear hydrocarbon group (-(CH 2 ) n -).
Examples of thiols in which R in the formula (1) is a linear hydrocarbon group include 3-mercaptopropionic acid (3-MPA) (formula (1-3) below), 6-mercaptohexanoic acid ( MHA) (formula (1-4) below), 8-mercaptooctanoic acid (MOA) (formula (1-5) below), 11-mercaptoundecanoic acid (MUA) (formula (1-6) below), 6- Examples include mercapto-1-hexanol (MCH) (formula (1-7) below).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 接合強度の変動を小さくするという観点(品質を安定化させる観点)から、前記チオールとしては、3-メルカプトプロピオン酸(3-MPA)が好ましい。 From the viewpoint of reducing fluctuations in bonding strength (from the viewpoint of stabilizing quality), the thiol is preferably 3-mercaptopropionic acid (3-MPA).
 チオールは、銅表面に自己組織化分子膜を形成する。この自己組織化により、チオールに含まれる化合物が高密度で配列して、熱硬化性化合物(第2の官能基)及び銅と反応することで、高い接合強度が得られる。チオールの自己組織化には、チオールの分子構造による立体障害が影響する。立体障害が小さいとの観点から、前記式(1)中のRが直鎖状の炭化水素基であるチオールが好ましい。 Thiols form a self-assembled molecular film on the copper surface. Due to this self-organization, the compounds contained in the thiol are arranged at high density and react with the thermosetting compound (second functional group) and copper, thereby providing high bonding strength. The self-organization of thiols is affected by steric hindrance due to the molecular structure of thiols. From the viewpoint of low steric hindrance, thiols in which R in the formula (1) is a linear hydrocarbon group are preferred.
 さらに、チオールと熱硬化性化合物との反応性は、チオールの分子構造に加えて、熱硬化性化合物の分子構造も影響すると考えられる。本開示者らの検討によれば、第2の官能基がグリシジル基である熱硬化性化合物に対しては、分子鎖が比較的短いチオールが好ましく、第2の官能基が脂環式エポキシ基である熱硬化性化合物に対しては、分子鎖が比較的長いチオールが好ましい。
 例えば、分子構造モデリングソフトにより求められるチオールの分子長さは、第2の官能基がグリシジル基である熱硬化性化合物に対しては0.9nm未満が好ましく、0.5~0.8nmであってよく、0.5~0.7nmであってよい。また、第2の官能基が脂環式エポキシ基である熱硬化性化合物に対しては0.9nm以上が好ましく、0.9~1.5nmであってよく、0.9~1.4nmであってよく、0.9~1.3nmであってよい。
Furthermore, the reactivity between a thiol and a thermosetting compound is considered to be influenced not only by the molecular structure of the thiol but also by the molecular structure of the thermosetting compound. According to the studies of the present disclosure, thiols with relatively short molecular chains are preferable for thermosetting compounds in which the second functional group is a glycidyl group, and thiols in which the second functional group is a cycloaliphatic epoxy group are preferable. For thermosetting compounds, thiols with relatively long molecular chains are preferred.
For example, the molecular length of thiol determined by molecular structure modeling software is preferably less than 0.9 nm for thermosetting compounds whose second functional group is a glycidyl group, and is preferably 0.5 to 0.8 nm. It may be 0.5 to 0.7 nm. Further, for a thermosetting compound in which the second functional group is an alicyclic epoxy group, the thickness is preferably 0.9 nm or more, may be 0.9 to 1.5 nm, and may be 0.9 to 1.4 nm. It may be between 0.9 and 1.3 nm.
 前記チオールで形成された前記膜の厚みは、好ましくは2.0~10nm、より好ましくは2.0~5.0nmである。
 前記膜は、銅の表面部分からの溶解物(銅、酸化銅など)を含んでいてもよい。
The thickness of the film formed of the thiol is preferably 2.0 to 10 nm, more preferably 2.0 to 5.0 nm.
The film may contain dissolved matter (copper, copper oxide, etc.) from the surface portion of the copper.
 前記熱硬化性組成物は、熱硬化性化合物を含有する。 The thermosetting composition contains a thermosetting compound.
 前記熱硬化性化合物は、前記第1の官能基と反応可能な第2の官能基を有する。
 前記第2の官能基は、エポキシ基及び/又は水酸基を有することがより好ましく、エポキシ基を有することが特に好ましい。
 また、前記第2の官能基は、グリシジル基及び/又は脂環式エポキシ基を有することにより、前記エポキシ基を有することが好ましい。
The thermosetting compound has a second functional group that can react with the first functional group.
The second functional group more preferably has an epoxy group and/or a hydroxyl group, and particularly preferably has an epoxy group.
Moreover, it is preferable that the second functional group has the epoxy group by having a glycidyl group and/or an alicyclic epoxy group.
 エポキシ基を有する熱硬化性化合物は、1以上のエポキシ基を有し、好ましくは2以上のエポキシ基を有する。
 エポキシ基を有する熱硬化性化合物は、例えば、下記式(2)で表される化合物、下記式(3)で表される化合物等が挙げられる。
The thermosetting compound having an epoxy group has one or more epoxy groups, preferably two or more epoxy groups.
Examples of the thermosetting compound having an epoxy group include a compound represented by the following formula (2), a compound represented by the following formula (3), and the like.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記式(2)中、Rは、水素原子又は1価の炭化水素基を示す。また、Rは、Rと同一又は異なって、水素原子又は1価の炭化水素基を示す。さらに、Rは、2価の炭化水素基を示す。また、Rは、Rと同一又は異なって、2価の炭化水素基を示す。 In the formula (2), R 1 represents a hydrogen atom or a monovalent hydrocarbon group. Moreover, R 2 is the same as or different from R 1 and represents a hydrogen atom or a monovalent hydrocarbon group. Furthermore, R 3 represents a divalent hydrocarbon group. Moreover, R 4 is the same as or different from R 3 and represents a divalent hydrocarbon group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記式(3)中、Xは、単結合又は連結基を示す。 In the formula (3), X represents a single bond or a connecting group.
 前記式(2)において、前記1価の炭化水素基としては、1価の脂肪族炭化水素基が好ましい。
 また、前記1価の炭化水素基の炭素数は、好ましくは1~12、より好ましくは1~10、さらに好ましくは1~5、特に好ましくは1~3である。
 前記1価の炭化水素基の炭素数としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基が挙げられる。
In the formula (2), the monovalent hydrocarbon group is preferably a monovalent aliphatic hydrocarbon group.
The monovalent hydrocarbon group preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
Examples of the carbon number of the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, and decyl group. and dodecyl group.
 前記2価の炭化水素基としては、例えば、2価の脂肪族炭化水素基、2価の脂環式炭化水素基、2価の芳香族炭化水素基が挙げられる。 Examples of the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group, and a divalent aromatic hydrocarbon group.
 前記2価の脂肪族炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 該2価の脂肪族炭化水素基の炭素数は、好ましくは1~10、より好ましくは1~5である。
 該2価の脂肪族炭化水素基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基などが挙げられる。
The divalent aliphatic hydrocarbon group may be linear or branched.
The divalent aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
Examples of the divalent aliphatic hydrocarbon group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
 前記2価の脂環式炭化水素基の炭素数は、好ましくは3~12、より好ましくは3~10、さらに好ましくは3~6である。
 前記2価の脂環式炭化水素基は、3~10員環の脂環式炭化水素基であることが好ましく、3~6員環の脂環式炭化水素基であることがより好ましい。
 前記2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基等が挙げられる。
The divalent alicyclic hydrocarbon group preferably has 3 to 12 carbon atoms, more preferably 3 to 10 carbon atoms, and still more preferably 3 to 6 carbon atoms.
The divalent alicyclic hydrocarbon group is preferably a 3- to 10-membered alicyclic hydrocarbon group, more preferably a 3- to 6-membered alicyclic hydrocarbon group.
Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1 , 4-cyclohexylene group, etc.
 前記2価の芳香族炭化水素基の炭素数は、好ましくは6~14、より好ましくは6~10である。
 前記2価の芳香族炭化水素基としては、例えば、フェニレン基(例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基)、フェニレンビス(メチレン)基(例えば、1,2-フェニレンビス(メチレン)基、1,3-フェニレンビス(メチレン)基、1,4-フェニレンビス(メチレン)基)、ビフェニレン基、ナフチレン基、ビナフチレン基、アントラセニレン基、フェナントリレン基等が挙げられる。
The divalent aromatic hydrocarbon group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms.
Examples of the divalent aromatic hydrocarbon group include a phenylene group (e.g., o-phenylene group, m-phenylene group, p-phenylene group), phenylenebis(methylene) group (e.g., 1,2-phenylenebis). (methylene) group, 1,3-phenylenebis(methylene) group, 1,4-phenylenebis(methylene) group), biphenylene group, naphthylene group, binaphthylene group, anthracenylene group, phenanthrylene group, etc.
 前記式(2)で表される化合物としては、例えば、下記式(2-1)~(2-3)で表される化合物が挙げられる。 Examples of the compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記式(3)中、Xは単結合又は連結基を示す。
 前記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、カーボネート基(-O-CO-O-)、アミド基(-CONH-)等が挙げられる。また、前記連結基としては、これらが複数個連結した基も挙げられる。
In the formula (3), X represents a single bond or a connecting group.
Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group (-CO-), an ether bond (-O-), Examples include an ester bond (-COO-), a carbonate group (-O-CO-O-), an amide group (-CONH-), and the like. Furthermore, examples of the connecting group include groups in which a plurality of these are connected.
 上記二価の炭化水素基としては、例えば、炭素数1~18の直鎖状又は分岐鎖状のアルキレン基、炭素数3~18の二価の脂環式炭化水素基等が挙げられる。
 炭素数1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。
 炭素数3~18の二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基等のシクロアルキレン基が挙げられる。
Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, and the like.
Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
Examples of the divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, and 1,3-cyclopentylene group. Examples include cycloalkylene groups such as cyclohexylene group and 1,4-cyclohexylene group.
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(以下、「エポキシ化アルケニレン基」ともいう。)におけるアルケニレン基としては、例えば、炭素数2~8の直鎖状又は分岐鎖状のアルケニレン基等が挙げられる。
 炭素数2~8の直鎖状又は分岐鎖状のアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等が挙げられる。
 上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基がより好ましい。
Examples of alkenylene groups in which part or all of the carbon-carbon double bonds are epoxidized (hereinafter also referred to as "epoxidized alkenylene groups") include linear or Examples include branched alkenylene groups.
Examples of linear or branched alkenylene groups having 2 to 8 carbon atoms include vinylene group, propenylene group, 1-butenylene group, 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group. Examples include groups.
The above-mentioned epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, and more preferably an alkenylene group having 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. .
 前記(3)中のシクロヘキセンオキシド基には、置換基(例えば、炭素数1~10のアルキル基等)が結合していても良い。 A substituent (eg, an alkyl group having 1 to 10 carbon atoms, etc.) may be bonded to the cyclohexene oxide group in (3) above.
 前記式(3)で表される化合物の代表的な例としては、前記式(3)中のXがエステル結合を含む基である化合物、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン等が挙げられる。
 前記式(3)中のXがエステル結合を含む基である化合物としては、下記式(3-1)~(3-5)の何れかで表される化合物等が挙げられる。
Typical examples of the compound represented by the formula (3) include compounds in which X in the formula (3) is a group containing an ester bond, (3,4,3',4'-diepoxy) Examples include cyclohexyl, 1,2-epoxy-1,2-bis(3,4-epoxycyclohexan-1-yl)ethane, and the like.
Examples of the compound in which X in the formula (3) is a group containing an ester bond include compounds represented by any of the following formulas (3-1) to (3-5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記熱硬化性化合物は、飽和また不飽和の環状炭化水素基を含むことが好ましい。
 該環状炭化水素基は、ヘテロ原子(例えば、窒素(N)、硫黄(S)など)を含んでもよい。
 該環状炭化水素基は、多環芳香族基(例えば、ナフタレン骨格)なども含む概念である。
 前記熱硬化性化合物は、前記環状炭化水素基として、五員環及び六員環の少なくとも何れか一方を有することが好ましい。
 また、前記熱硬化性化合物は、前記環状炭化水素基として、六員環を有することがより好ましい。
 さらに、前記熱硬化性化合物は、前記環状炭化水素基として、六員環のみを有することが特に好ましい。
 前記六員環としては、ベンゼン骨格、シクロヘキサン骨格が好ましい。
 前記環状炭化水素基は、ヘテロ原子を含まないことが好ましい。
The thermosetting compound preferably contains a saturated or unsaturated cyclic hydrocarbon group.
The cyclic hydrocarbon group may include a heteroatom (eg, nitrogen (N), sulfur (S), etc.).
The cyclic hydrocarbon group is a concept that also includes polycyclic aromatic groups (eg, naphthalene skeleton).
It is preferable that the thermosetting compound has at least one of a five-membered ring and a six-membered ring as the cyclic hydrocarbon group.
Moreover, it is more preferable that the thermosetting compound has a six-membered ring as the cyclic hydrocarbon group.
Furthermore, it is particularly preferable that the thermosetting compound has only a six-membered ring as the cyclic hydrocarbon group.
The six-membered ring is preferably a benzene skeleton or a cyclohexane skeleton.
Preferably, the cyclic hydrocarbon group does not contain a heteroatom.
 前記第2の官能基において、水酸基は、アルコール性水酸基であってもよく、フェノール性水酸基であってもよい。
 水酸基を有する熱硬化性化合物(水酸基含有化合物)としては、ビスフェノール、フェノールノボラック、クレゾールノボラック、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロヘキシルメタンジオール、ジメチルジシクロヘキシルメタンジオール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。
 前記ビスフェノールとしては、ビスフェノールA、ビスフェノールAF、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZなどが挙げられる。
In the second functional group, the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
Thermosetting compounds having hydroxyl groups (hydroxyl group-containing compounds) include bisphenol, phenol novolak, cresol novolak, cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, dimethyldicyclohexylmethanediol, ethylene glycol, propylene glycol, butanediol. , pentanediol, hexanediol, polyester polyol, polyether polyol, and the like.
Examples of the bisphenols include bisphenol A, bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, and bisphenol Z. can be mentioned.
 前記熱硬化性組成物は、前記熱硬化性化合物は、好ましくは30~90重量%、より好ましくは50~95重量%含有する。 The thermosetting composition preferably contains the thermosetting compound in an amount of 30 to 90% by weight, more preferably 50 to 95% by weight.
 前記熱硬化性化合物が、エポキシ化合物である場合には、前記熱硬化性組成物は、該エポキシ化合物を硬化させる硬化剤をさらに含有してもよい。 When the thermosetting compound is an epoxy compound, the thermosetting composition may further contain a curing agent for curing the epoxy compound.
 前記硬化剤としては、例えば、酸無水物硬化剤、アミン系硬化剤、フェノール系硬化剤などが挙げられる。 Examples of the curing agent include acid anhydride curing agents, amine curing agents, phenol curing agents, and the like.
 前記酸無水物硬化剤としては、例えば、無水フタル酸(下記式(4))、メチルテトラヒドロ無水フタル酸(例えば、4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(例えば、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン-無水マレイン酸共重合体等が挙げられる。 Examples of the acid anhydride curing agent include phthalic anhydride (formula (4) below), methyltetrahydrophthalic anhydride (for example, 4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), and methylhexanhydride. Hydrophthalic anhydride (e.g. 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, etc.), dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydro Phthalic anhydride, methylcyclohexenedicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic anhydride, nadic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride, 4-(4- Methyl-3-pentenyl)tetrahydrophthalic anhydride, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanedioic anhydride, methylcyclohexenetetracarboxylic anhydride, vinyl ether-maleic anhydride copolymer, alkylstyrene-maleic anhydride Examples include acid copolymers.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記アミン系硬化剤としては、例えば、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミン等が挙げられる。
 前記脂肪族ポリアミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等が挙げられる。
 前記脂環式ポリアミンとしては、例えば、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-3,4,8,10-テトラオキサスピロ[5,5]ウンデカン等が挙げられる。
 前記芳香族ポリアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、トリレン-2,4-ジアミン、トリレン-2,6-ジアミン、メシチレン-2,4-ジアミン、3,5-ジエチルトリレン-2,4-ジアミン、3,5-ジエチルトリレン-2,6-ジアミン、ビフェニレンジアミン、4,4-ジアミノジフェニルメタン、2,5-ナフチレンジアミン、2,6-ナフチレンジアミン等が挙げられる。
Examples of the amine curing agent include aliphatic polyamines, alicyclic polyamines, aromatic polyamines, and the like.
Examples of the aliphatic polyamine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylene diamine, diethylaminopropylamine, and polypropylenetriamine.
Examples of the alicyclic polyamine include menzendiamine, isophoronediamine, bis(4-amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, N-aminoethylpiperazine, 3,9 -bis(3-aminopropyl)-3,4,8,10-tetraoxaspiro[5,5]undecane and the like.
Examples of the aromatic polyamine include m-phenylene diamine, p-phenylene diamine, tolylene-2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, and 3,5-diethyltolylene. -2,4-diamine, 3,5-diethyltolylene-2,6-diamine, biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, 2,6-naphthylenediamine, etc. .
 前記フェノール系硬化剤としては、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、p-キシリレン変性フェノール樹脂、p-キシリレン・m-キシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパン等が挙げられる。 Examples of the phenolic curing agent include novolac type phenol resin, novolac type cresol resin, p-xylylene modified phenol resin, p-xylylene/m-xylylene modified phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, Examples include triphenolpropane.
 前記熱硬化性組成物は、前記熱硬化性化合物100重量部に対して前記硬化剤を、好ましくは1~10重量部、より好ましくは2~7重量部含有する。 The thermosetting composition preferably contains 1 to 10 parts by weight, more preferably 2 to 7 parts by weight of the curing agent based on 100 parts by weight of the thermosetting compound.
 前記熱硬化性組成物は、プリプレグであってもよく、すなわち、繊維をさらに含有してもよい。
 前記繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリパラフェニレン・ベンゾビス・オキサゾール(PBO)繊維、ポリエチレン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられる。
 前記繊維は、織布の形態で熱硬化性組成物に含まれていてもよく、また、不織布の形態で熱硬化性組成物に含まれていてもよく、また、繊維がバラバラの状態で熱硬化性組成物に含まれていてもよい。
The thermosetting composition may be a prepreg, that is, may further contain fibers.
Examples of the fibers include carbon fibers, glass fibers, aramid fibers, boron fibers, polyparaphenylene benzobis oxazole (PBO) fibers, polyethylene fibers, alumina fibers, and silicon carbide fibers.
The fibers may be included in the thermosetting composition in the form of a woven fabric, or may be included in the thermosetting composition in the form of a nonwoven fabric, or the fibers may be heated in a loose state. It may be included in the curable composition.
 前記繊維は、モノフィラメントであってもよく、マルチフィラメントであってもよい。
 前記繊維の単繊維の繊度は、好ましくは0.2~2.0dtex、より好ましくは0.4~1.8dtexである。
The fibers may be monofilaments or multifilaments.
The fineness of the single fibers of the fibers is preferably 0.2 to 2.0 dtex, more preferably 0.4 to 1.8 dtex.
 前記繊維がマルチフィラメントである場合、前記繊維におけるフィラメント数は、2500~50000本であることが好ましい。 When the fiber is a multifilament, the number of filaments in the fiber is preferably 2,500 to 50,000.
 硬化性、保存性などを調整する観点から、前記熱硬化性組成物は、硬化促進剤を含有してもよい。
 前記硬化促進剤としては、例えば、テトラフェニルホスホニウム テトラフェニルボレート(Tetraphenylphosphonium tetraphenylborate)、イミダゾール類、トリフェニルフォスフェイト(TPP)、アミン系硬化促進剤などが挙げられる。該アミン系硬化促進剤としては、例えば、三フッ化ホウ素モノエチルアミンなどが挙げられる。
From the viewpoint of adjusting curability, storage stability, etc., the thermosetting composition may contain a curing accelerator.
Examples of the curing accelerator include tetraphenylphosphonium tetraphenylborate, imidazoles, triphenylphosphate (TPP), and amine curing accelerators. Examples of the amine curing accelerator include boron trifluoride monoethylamine.
 また、成形収縮率、熱膨張係数、熱伝導性、機械的強度などを調整する観点から、前記熱硬化性組成物は、無機フィラーを含有してもよい。
 前記無機フィラーとしては、例えば、シリカフィラー、窒化ホウ素フィラー、窒化アルミニウムフィラー、窒化ケイ素フィラー、窒化ガリウムフィラー、アルミナフィラー、炭化ケイ素フィラー、酸化マグネシウムフィラー、ダイヤモンドフィラー等が挙げられる。
Moreover, from the viewpoint of adjusting molding shrinkage rate, coefficient of thermal expansion, thermal conductivity, mechanical strength, etc., the thermosetting composition may contain an inorganic filler.
Examples of the inorganic filler include silica filler, boron nitride filler, aluminum nitride filler, silicon nitride filler, gallium nitride filler, alumina filler, silicon carbide filler, magnesium oxide filler, and diamond filler.
 さらに、離型性、接着性、捺印性などを調整する観点から、前記熱硬化性組成物は、離型剤を含有してもよい。
 前記離型剤としては、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸カルシウムなどが挙げられ、具体的には、カルナバワックス、ポリエチレン系ワックスなどが挙げられる。
Furthermore, the thermosetting composition may contain a mold release agent from the viewpoint of adjusting mold release properties, adhesion properties, imprintability, and the like.
Examples of the mold release agent include higher fatty acids, higher fatty acid esters, higher fatty acid calcium, and specific examples include carnauba wax and polyethylene wax.
 また、硬化物を低応力化(低弾性化)させる観点から、前記熱硬化性組成物は、改質剤(「低応力化剤」とも呼ばれる。)を含有してもよい。
 前記改質剤としては、例えば、ブタジエン系ゴム、シリコーン化合物等が挙げられる。
 該ブタジエン系ゴムとしては、アクリル酸メチル-ブタジエン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体等が挙げられる。
Moreover, from the viewpoint of reducing the stress (lower elasticity) of the cured product, the thermosetting composition may contain a modifier (also referred to as a "stress reducing agent").
Examples of the modifier include butadiene rubber, silicone compounds, and the like.
Examples of the butadiene rubber include methyl acrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, and the like.
 また、前記熱硬化性組成物は、その他の添加剤を含有してもよい。
 その他の添加剤としては、例えば、難燃剤、顔料、イオントラップ剤などが挙げられる。
 前記難燃剤としては、例えば、有機リン化合物、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
 前記顔料としては、例えば、カーボンブラック等が挙げられる。
 前記イオントラップ剤としては、例えば、ハイドロタルサイト類、水酸化ビスマス等が挙げられる。
Moreover, the thermosetting composition may contain other additives.
Examples of other additives include flame retardants, pigments, and ion trapping agents.
Examples of the flame retardant include organic phosphorus compounds, antimony oxide, aluminum hydroxide, magnesium hydroxide, and the like.
Examples of the pigment include carbon black and the like.
Examples of the ion trapping agent include hydrotalcites, bismuth hydroxide, and the like.
 本実施形態に係る接合体は、上記の如く構成されているが、次に、本実施形態に係る接合体の製造方法について説明する。 The joined body according to this embodiment is constructed as described above, and next, a method for manufacturing the joined body according to this embodiment will be explained.
 本実施形態に係る接合体の製造方法は、前記接合体を作製する方法である。
 本実施形態に係る接合体の製造方法は、前記チオールを含有する接合剤を銅の表面に設けることにより、前記チオールと前記銅とを結合させて前記膜を形成する工程(A)と、前記膜に前記熱硬化性組成物を設け、該熱硬化性組成物を加熱することにより、前記チオールと前記熱硬化性組成物とを結合させるとともに、前記熱硬化性組成物を硬化させる工程(B)とを有する。
 また、本実施形態に係る接合体の製造方法は、前記工程(A)の前に、銅の表面から酸化膜を除去する工程(C)を有することが好ましい。
The method for manufacturing a bonded body according to this embodiment is a method for producing the bonded body.
The method for manufacturing a bonded body according to the present embodiment includes a step (A) of forming the film by bonding the thiol and the copper by providing a bonding agent containing the thiol on the surface of copper; Step (B) of providing the thermosetting composition on a film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ).
Further, the method for manufacturing a bonded body according to the present embodiment preferably includes a step (C) of removing an oxide film from the surface of copper before the step (A).
 前記工程(C)では、銅の表面をアセトンに接触させ、アセトンに接触させた銅の表面をアルコールに接触させ、アルコールに接触させた銅を純水中で超音波洗浄することで、銅の表面から油分を除去する。
 該アルコールとしては、例えば、イソプロピルアルコール(IPA)、エタノールなどが挙げられる。
 そして、前記工程(C)では、超音波洗浄した銅を酸水溶液に接触させることにより、銅の表面から酸化膜を除去する。
 該酸水溶液における酸としては、例えば、硫酸、硝酸、塩酸などが挙げられる。
In step (C), the surface of the copper is brought into contact with acetone, the surface of the copper that has been brought into contact with the acetone is brought into contact with alcohol, and the copper that has been brought into contact with the alcohol is ultrasonically cleaned in pure water to remove the copper. Remove oil from surfaces.
Examples of the alcohol include isopropyl alcohol (IPA) and ethanol.
Then, in the step (C), the oxide film is removed from the surface of the copper by bringing the ultrasonically cleaned copper into contact with an acid aqueous solution.
Examples of the acid in the acid aqueous solution include sulfuric acid, nitric acid, and hydrochloric acid.
 前記工程(A)では、チオールをアルコールに溶解することにより、チオール含有アルコール溶液を得る。
 該アルコールとしては、例えば、エタノールなどが挙げられる。
 チオール含有アルコール溶液は、チオールを、好ましくは0.2~5.0mM、より好ましくは1.0~2.0mM含有する。
 次に、前記銅の表面にチオール含有アルコール溶液を接触させることにより、銅の表面に膜を形成する。
In the step (A), a thiol-containing alcohol solution is obtained by dissolving thiol in alcohol.
Examples of the alcohol include ethanol.
The thiol-containing alcohol solution contains thiol, preferably 0.2 to 5.0 mM, more preferably 1.0 to 2.0 mM.
Next, a film is formed on the surface of the copper by bringing the thiol-containing alcohol solution into contact with the surface of the copper.
 前記工程(B)では、前記膜に前記熱硬化性組成物を設け、該熱硬化性組成物を加熱する。
 加熱温度及び加熱時間は、熱硬化性組成物によって適宜調整すればよいが、加熱温度は、例えば、100~150℃、加熱時間は、例えば、2~5時間である。
In the step (B), the thermosetting composition is provided on the film, and the thermosetting composition is heated.
The heating temperature and heating time may be adjusted as appropriate depending on the thermosetting composition, and the heating temperature is, for example, 100 to 150° C., and the heating time is, for example, 2 to 5 hours.
〔開示項目〕
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
〔項目1〕
 熱硬化性組成物の硬化物と銅とが膜で接合された接合体であって、
前記膜は、チオールによって形成されており、
前記チオールは、アミノ基、カルボキシ基、及び、水酸基から選ばれる少なくとも1種の第1の官能基を有し、下記式(1)で表される化合物であり、
前記熱硬化性組成物は、熱硬化性化合物を含有し、
前記熱硬化性化合物は、前記第1の官能基と反応可能な第2の官能基を有する、接合体。
 Z-R-SH   ・・・(1)
(前記式(1)中、Zは、前記第1の官能基であり、Rは、炭素数が1~20である有機基である。)
[Item 1]
A bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
The film is formed of thiol,
The thiol is a compound having at least one kind of first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1),
The thermosetting composition contains a thermosetting compound,
The thermosetting compound has a second functional group capable of reacting with the first functional group.
Z-R-SH...(1)
(In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
〔項目2〕
 前記式(1)中のRの炭素数が4~10である、項目1に記載の接合体。
[Item 2]
The conjugate according to item 1, wherein R in the formula (1) has 4 to 10 carbon atoms.
〔項目3〕
 前記式(1)中のRが炭素-炭素不飽和結合を含む、請求項1又は2に記載の接合体。
[Item 3]
The conjugate according to claim 1 or 2, wherein R in the formula (1) includes a carbon-carbon unsaturated bond.
〔項目4〕
 前記式(1)中のRがベンゼン環を含む、項目3に記載の接合体。
[Item 4]
The conjugate according to item 3, wherein R in the formula (1) includes a benzene ring.
〔項目5〕
 前記式(1)中のRがベンゼン環である、項目4に記載の接合体。
[Item 5]
The conjugate according to item 4, wherein R in the formula (1) is a benzene ring.
〔項目6〕
 前記第2の官能基は、水酸基及び/又はエポキシ基を有する、項目1~5の何れかに記載の接合体。
[Item 6]
The conjugate according to any one of items 1 to 5, wherein the second functional group has a hydroxyl group and/or an epoxy group.
〔項目7〕
 前記第2の官能基は、グリシジル基及び/又は脂環式エポキシ基を有することにより、前記エポキシ基を有する、項目6に記載の接合体。
[Item 7]
The conjugate according to item 6, wherein the second functional group has the epoxy group by having a glycidyl group and/or an alicyclic epoxy group.
〔項目8〕
 前記熱硬化性化合物が、飽和また不飽和の環状炭化水素基を含む、項目1~7の何れかに記載の接合体。
[Item 8]
The conjugate according to any one of items 1 to 7, wherein the thermosetting compound contains a saturated or unsaturated cyclic hydrocarbon group.
〔項目9〕
 前記銅は、酸化処理されていない銅である、項目1~8の何れかに記載の接合体。
[Item 9]
The joined body according to any one of items 1 to 8, wherein the copper is copper that has not been oxidized.
〔項目10〕
 前記膜の厚さは、2.0~5.0nmである、項目1~9の何れかに記載の接合体。
[Item 10]
The conjugate according to any one of items 1 to 9, wherein the film has a thickness of 2.0 to 5.0 nm.
〔項目11〕
 熱硬化性組成物の硬化物と銅とが膜で接合された接合体を作製する、接合体の製造方法であって、
前記接合体が、項目1~10の何れかに記載の接合体であり、
前記チオールを含有する接合剤を銅の表面に設けることにより、前記チオールと前記銅とを結合させて前記膜を形成する工程(A)と、
前記膜に前記熱硬化性組成物を設け、該熱硬化性組成物を加熱することにより、前記チオールと前記熱硬化性組成物とを結合させるとともに、前記熱硬化性組成物を硬化させる工程(B)と
を有する、接合体の製造方法。
[Item 11]
A method for producing a bonded body, the method comprising: producing a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
The zygote is the zygote according to any one of items 1 to 10,
a step (A) of bonding the thiol and the copper to form the film by providing a bonding agent containing the thiol on the surface of the copper;
A step of providing the thermosetting composition on the film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ( B) A method for manufacturing a joined body, comprising:
 次に、実施例及び比較例を挙げて本開示についてさらに具体的に説明する。なお、本開示はこれらの実施例に何ら限定されるものではない。 Next, the present disclosure will be described in more detail with reference to Examples and Comparative Examples. Note that the present disclosure is not limited to these examples in any way.
 実施例及び比較例の接合体を作製するために、下記の材料を用意した。なお、チオールの分子長さは分子構造モデリングソフトにより求めたものである。 The following materials were prepared in order to produce the joined bodies of Examples and Comparative Examples. Note that the molecular length of thiol was determined using molecular structure modeling software.
(銅板)
・JIS H3100:2018に規定の無酸素銅(合金番号:C1020)の板であって、バフ研磨により鏡面仕上げされた板(市販品)
 なお、該バフ研磨では、最初に粒径が大きい粒子状の研磨剤を用い、徐々に粒径が小さい粒子状の研磨剤を用いていき、最後に#800の粒子状の研磨剤を用いた。
(copper plate)
- A plate of oxygen-free copper (alloy number: C1020) specified in JIS H3100:2018, which has been buffed to a mirror finish (commercially available)
In addition, in this buffing, a particulate abrasive with a large particle size was used first, a particulate abrasive with a smaller particle size was gradually used, and finally a particulate abrasive of #800 was used. .
(チオール)
・4-アミノチオフェノール(4-ATP)(下記式(1-1)、分子長さ0.6399nm)
・4-メルカプト安息香酸(MBA)(下記式(1-2)、分子長さ0.7300nm)
・3-メルカプトプロピオン酸(3-MPA)(下記式(1-3)、分子長さ0.5325nm)
・8-メルカプトオクタン酸(MOA)(下記式(1-4)、分子長さ1.0368nm)
・11-メルカプトウンデカン酸(MUA)(下記式(1-5)、分子長さ1.2836nm)
・6-メルカプト-1-ヘキサノール(MCH)(下記式(1-6)、分子長さ0.9051nm)
(thiol)
・4-aminothiophenol (4-ATP) (formula (1-1) below, molecular length 0.6399 nm)
・4-Mercaptobenzoic acid (MBA) (formula (1-2) below, molecular length 0.7300 nm)
・3-mercaptopropionic acid (3-MPA) (formula (1-3) below, molecular length 0.5325 nm)
・8-Mercaptooctanoic acid (MOA) (formula (1-4) below, molecular length 1.0368 nm)
・11-mercaptoundecanoic acid (MUA) (formula (1-5) below, molecular length 1.2836 nm)
・6-mercapto-1-hexanol (MCH) (formula (1-6) below, molecular length 0.9051 nm)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(熱硬化性化合物)
・ビスフェノールAジグリシジルエーテル(新日鐡住金化学社製のYD-128)(下記式(2-1))
(thermosetting compound)
・Bisphenol A diglycidyl ether (YD-128 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) (formula (2-1) below)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
・3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))(下記式(3-1)) ・3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) (formula (3-1) below)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(硬化剤)
・酸無水物硬化剤:無水フタル酸(下記式(4))
(hardening agent)
・Acid anhydride curing agent: Phthalic anhydride (formula (4) below)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(シランカップリング剤)
・(3-アミノプロピル)トリメトキシシラン(AMMO)(下記式(5))
(Silane coupling agent)
・(3-aminopropyl)trimethoxysilane (AMMO) (formula (5) below)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(実施例1-1)
 用意した前記銅板をアセトンに5分間浸漬し、アセトンに浸漬した前記銅板をエタノールに5分間浸漬し、エタノールに浸漬した前記銅板を純水に浸漬させた状態で超音波洗浄を5分間実施することにより、銅板の表面を洗浄した(銅の表面から油分を除去した。)。
 次に、洗浄した銅板を硫酸水溶液(硫酸の濃度:5重量%)に30秒間浸漬させることにより、銅板の表面から酸化膜を除去した。
 また、チオールたる4-アミノチオフェノール(4-ATP)をエタノールに溶解することにより、チオール含有エタノール溶液(チオール:4-アミノチオフェノール(4-ATP)、チオールの濃度:2mM)を得た。
 そして、酸化膜を除去した銅板を前記チオール含有エタノール溶液に1時間浸漬させることにより、銅板の表面に膜を形成した。
 次に、膜が形成された銅板を金型内にセットした。
 また、熱硬化性化合物たるビスフェノールAジグリシジルエーテルと、前記硬化剤とを混合することにより、熱硬化性組成物を得た。なお、硬化剤の量については、熱硬化性化合物100重量部に対して80重量部とした。
 そして、金型内で、膜が形成された銅板の表面に前記熱硬化性組成物を注入した。
 次に、該金型をオーブンで120℃で2時間加熱し、さらに、150℃で3時間加熱して、銅板の表面に前記熱硬化性組成物の円柱状の硬化物を5つ作製することにより、接合体を得た。
 なお、円柱状の硬化物の直径は4mmであり、円柱状の硬化物の高さは5mmであった。また、膜が形成された銅板の表面と、硬化物の円形状の面とが接して、銅板と硬化物とが接合された。
(Example 1-1)
The prepared copper plate is immersed in acetone for 5 minutes, the copper plate immersed in acetone is immersed in ethanol for 5 minutes, and the copper plate immersed in ethanol is immersed in pure water and ultrasonic cleaning is performed for 5 minutes. The surface of the copper plate was cleaned (oil was removed from the surface of the copper).
Next, the cleaned copper plate was immersed in a sulfuric acid aqueous solution (sulfuric acid concentration: 5% by weight) for 30 seconds to remove the oxide film from the surface of the copper plate.
Further, by dissolving 4-aminothiophenol (4-ATP), which is a thiol, in ethanol, a thiol-containing ethanol solution (thiol: 4-aminothiophenol (4-ATP), thiol concentration: 2 mM) was obtained.
Then, the copper plate from which the oxide film had been removed was immersed in the thiol-containing ethanol solution for 1 hour to form a film on the surface of the copper plate.
Next, the copper plate on which the film was formed was set in a mold.
Further, a thermosetting composition was obtained by mixing bisphenol A diglycidyl ether, which is a thermosetting compound, and the curing agent. The amount of curing agent was 80 parts by weight based on 100 parts by weight of the thermosetting compound.
Then, within the mold, the thermosetting composition was injected onto the surface of the copper plate on which the film was formed.
Next, the mold is heated in an oven at 120°C for 2 hours and further heated at 150°C for 3 hours to produce five cylindrical cured products of the thermosetting composition on the surface of the copper plate. A conjugate was obtained.
Note that the diameter of the cylindrical cured product was 4 mm, and the height of the cylindrical cured product was 5 mm. Further, the surface of the copper plate on which the film was formed was in contact with the circular surface of the cured product, and the copper plate and the cured product were joined.
(実施例1-2)
 チオールとして4-メルカプト安息香酸(MBA)を用いたこと、チオール含有エタノール溶液におけるチオールの濃度を5mMとしたこと、及び、酸化膜を除去した銅板を前記チオール含有エタノール溶液に浸漬させる時間を5時間としたこと以外は、実施例1-1と同様にして、接合体を得た。
(Example 1-2)
4-mercaptobenzoic acid (MBA) was used as the thiol, the concentration of thiol in the thiol-containing ethanol solution was 5mM, and the copper plate from which the oxide film was removed was immersed in the thiol-containing ethanol solution for 5 hours. A bonded body was obtained in the same manner as in Example 1-1 except for the following.
(実施例1-3)
 チオールとして3-メルカプトプロピオン酸(3-MPA)を用いたこと以外は、実施例1-1と同様にして、接合体を得た。
(Example 1-3)
A conjugate was obtained in the same manner as in Example 1-1 except that 3-mercaptopropionic acid (3-MPA) was used as the thiol.
(実施例1-4)
 チオールとして8-メルカプトオクタン酸(MOA)を用いたこと以外は、実施例1-1と同様にして、接合体を得た。
(Example 1-4)
A conjugate was obtained in the same manner as in Example 1-1 except that 8-mercaptooctanoic acid (MOA) was used as the thiol.
(実施例1-5)
 チオールとして11-メルカプトウンデカン酸(MUA)を用いたこと以外は、実施例1-1と同様にして、接合体を得た。
(Example 1-5)
A conjugate was obtained in the same manner as in Example 1-1 except that 11-mercaptoundecanoic acid (MUA) was used as the thiol.
(実施例1-6)
 チオールとして6-メルカプト-1-ヘキサノール(MCH)を用いたこと以外は、実施例1-1と同様にして、接合体を得た。
(Example 1-6)
A conjugate was obtained in the same manner as in Example 1-1 except that 6-mercapto-1-hexanol (MCH) was used as the thiol.
(比較例1-1)
 用意した前記銅板をエタノールに浸漬させた状態で超音波洗浄を5分間実施することにより、銅板の表面を洗浄した。
 そして、膜が形成された銅板の代わりに、洗浄した銅板を金型内にセットしたこと以外は、実施例1-1と同様にして、接合体を得た。
(Comparative example 1-1)
The prepared copper plate was immersed in ethanol and subjected to ultrasonic cleaning for 5 minutes to clean the surface of the copper plate.
Then, a bonded body was obtained in the same manner as in Example 1-1 except that a cleaned copper plate was set in the mold instead of the copper plate on which the film was formed.
(比較例1-2)
 用意した前記銅板をエタノールに浸漬させた状態で超音波洗浄を5分間実施することにより、銅板の表面を洗浄した。
 また、前記シランカップリング剤を純水に溶解することにより、シランカップリング剤含有水溶液(シランカップリング剤の濃度:1重量%)を得た。
 そして、洗浄した銅板を前記シランカップリング剤含有水溶液に20分間浸漬した。
 次に、浸漬した銅板を100℃で10分間加熱させることにより(シランカップリング剤と酸化銅とを脱水縮合させることにより)、銅板の表面に膜を形成した。
 そして、シランカップリング剤で膜を形成した該銅板を用いたこと以外は、実施例1-1と同様にして、接合体を得た。
(Comparative example 1-2)
The prepared copper plate was immersed in ethanol and subjected to ultrasonic cleaning for 5 minutes to clean the surface of the copper plate.
Further, by dissolving the silane coupling agent in pure water, a silane coupling agent-containing aqueous solution (silane coupling agent concentration: 1% by weight) was obtained.
Then, the washed copper plate was immersed in the silane coupling agent-containing aqueous solution for 20 minutes.
Next, the immersed copper plate was heated at 100° C. for 10 minutes (by dehydration condensation of the silane coupling agent and copper oxide) to form a film on the surface of the copper plate.
Then, a bonded body was obtained in the same manner as in Example 1-1 except that the copper plate on which a film was formed with a silane coupling agent was used.
(参考例1-1)
 用意した前記銅板をエタノールに浸漬させた状態で超音波洗浄を5分間実施することにより、銅板の表面を洗浄した。
 そして、洗浄した銅板を、200℃のオーブンで60分間大気環境下で加熱し、銅板の表面部分を酸化させた。
 次に、洗浄した銅板の代わりに、表面部分を酸化させた銅板を前記シランカップリング剤含有水溶液に浸漬させたこと以外は、比較例1-2と同様にして、接合体を得た。
(Reference example 1-1)
The prepared copper plate was immersed in ethanol and subjected to ultrasonic cleaning for 5 minutes to clean the surface of the copper plate.
The cleaned copper plate was then heated in an oven at 200° C. for 60 minutes in an atmospheric environment to oxidize the surface portion of the copper plate.
Next, a bonded body was obtained in the same manner as Comparative Example 1-2, except that instead of the washed copper plate, a copper plate whose surface portion was oxidized was immersed in the aqueous solution containing the silane coupling agent.
(実施例2-2)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、実施例1-2と同様にして、接合体を得た。
(Example 2-2)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-2, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(実施例2-3)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、実施例1-3と同様にして、接合体を得た。
(Example 2-3)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-3, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(実施例2-4)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、実施例1-4と同様にして、接合体を得た。
(Example 2-4)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-4, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(実施例2-5)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、実施例1-5と同様にして、接合体を得た。
(Example 2-5)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Example 1-5, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(比較例2-1)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、比較例1-1と同様にして、接合体を得た。
(Comparative example 2-1)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as Comparative Example 1-1 except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(比較例2-2)
 熱硬化性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製のセロキサイド2021P(CEL2021P))を用いたこと、及び、硬化剤の量については、熱硬化性化合物100重量部に対して110重量部としたこと以外は、比較例1-2と同様にして、接合体を得た。
(Comparative example 2-2)
As the thermosetting compound, 3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2021P (CEL2021P) manufactured by Daicel) was used, and the amount of curing agent was A bonded body was obtained in the same manner as in Comparative Example 1-2, except that the amount was 110 parts by weight based on 100 parts by weight of the compound.
(接合強度の測定)
 実施例及び比較例の接合体に対して、ボンドテスター(Nordonson Dage社製のDage-4000)を用いて、Shear試験を下記条件で実施することにより、熱硬化性組成物の硬化物と銅との接合強度を5つ分測定した。
  ヘッドと膜との距離:200μm
  ヘッドのスピード:50μm/s
 接合強度の平均値(算術平均値)、標準偏差、及び、変動係数を下記表1、2に示す。
 なお、変動係数は、下記式で求めた。
  変動係数(%)=(標準偏差/平均値)×100%
(Measurement of joint strength)
By conducting a Shear test on the bonded bodies of Examples and Comparative Examples using a bond tester (Dage-4000 manufactured by Nordonson Dage) under the following conditions, the cured product of the thermosetting composition and copper were tested. The bonding strength of five samples was measured.
Distance between head and membrane: 200μm
Head speed: 50μm/s
The average value (arithmetic mean value), standard deviation, and coefficient of variation of bond strength are shown in Tables 1 and 2 below.
Note that the coefficient of variation was determined using the following formula.
Coefficient of variation (%) = (standard deviation/average value) x 100%
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表1に示すように、本開示の範囲内である実施例1-1~1-6の接合体では、膜がない比較例1-1、膜をシランカップリング剤たるAMMOで形成した比較例1-2に比べて、接合強度の平均値が高かった。
 また、表2に示すように、本開示の範囲内である実施例2-2~2-5の接合体では、膜がない比較例2-1、膜をシランカップリング剤たるAMMOで形成した比較例2-2に比べて、接合強度の平均値が高かった。
 従って、本開示によれば、熱硬化性組成物の硬化物と銅との接合強度が高い接合体を提供し得ることが分かる。
As shown in Table 1, in the joined bodies of Examples 1-1 to 1-6 within the scope of the present disclosure, Comparative Example 1-1 without a film and Comparative Example in which the film was formed with AMMO, which is a silane coupling agent. The average value of bonding strength was higher than that of Sample 1-2.
Furthermore, as shown in Table 2, in the joined bodies of Examples 2-2 to 2-5, which are within the scope of the present disclosure, in Comparative Example 2-1, which did not have a film, and in which the film was formed with AMMO, which is a silane coupling agent. The average value of bonding strength was higher than that of Comparative Example 2-2.
Therefore, according to the present disclosure, it is possible to provide a bonded body with high bonding strength between the cured product of the thermosetting composition and copper.
 表1に示すように、チオールが芳香環を含む実施例1-1と実施例1-2との対比から、第1の官能基がカルボキシ基である実施例1-2の接合体では、第1の官能基がアミノ基である実施例1-1に比べて、接合強度の平均値が高かった。また、チオールが芳香環を含まない実施例1-3~1-6の対比から、第1の官能基がヒドロキシ基である実施例1-6の接合体では、第1の官能基がカルボキシ基である実施例1-3~1-5に比べて、接合強度の平均値が高かった。
 従って、接合強度の観点から、芳香環を有する場合の第1の官能基としてはカルボキシ基が好ましく、芳香環を含まない場合の第1の官能基としてはヒドロキシ基が好ましいことがわかる。
As shown in Table 1, from a comparison of Examples 1-1 and 1-2 in which the thiol contains an aromatic ring, in the conjugate of Example 1-2 in which the first functional group is a carboxyl group, the first The average value of bonding strength was higher than that of Example 1-1 in which the functional group of No. 1 was an amino group. Furthermore, from a comparison of Examples 1-3 to 1-6 in which the thiol does not contain an aromatic ring, in the conjugate of Example 1-6 in which the first functional group is a hydroxy group, the first functional group is a carboxyl group. The average value of bonding strength was higher than that of Examples 1-3 to 1-5.
Therefore, from the viewpoint of bonding strength, it can be seen that a carboxy group is preferable as the first functional group when it has an aromatic ring, and a hydroxy group is preferable as the first functional group when it does not contain an aromatic ring.
 表1に示すように、本開示の範囲内である実施例1-1~1-6の接合体では、膜がない比較例1-1、膜をシランカップリング剤たるAMMOで形成した比較例1-2に比べて、接合強度の変動係数が低かった。
 また、表2に示すように、本開示の範囲内である実施例2-2~2-5の接合体では、膜がない比較例2-1、膜をシランカップリング剤たるAMMOで形成した比較例2-2に比べて、接合強度の変動係数が低い傾向にあった。
 従って、本開示によれば、熱硬化性組成物の硬化物と銅との接合強度の変動が小さい接合体を提供し得ることが分かる。すなわち、品質が安定した接合体を提供し得ることがわかる。言い換えれば、量産性に優れる接合体を提供し得ることがわかる。
As shown in Table 1, in the joined bodies of Examples 1-1 to 1-6 within the scope of the present disclosure, Comparative Example 1-1 without a film and Comparative Example in which the film was formed with AMMO, which is a silane coupling agent. Compared to 1-2, the coefficient of variation of bonding strength was lower.
In addition, as shown in Table 2, in the joined bodies of Examples 2-2 to 2-5, which are within the scope of the present disclosure, in Comparative Example 2-1, which did not have a film, and in which the film was formed with AMMO, which is a silane coupling agent. Compared to Comparative Example 2-2, the coefficient of variation in bonding strength tended to be lower.
Therefore, it can be seen that according to the present disclosure, it is possible to provide a bonded body in which the bonding strength between the cured product of the thermosetting composition and copper has small fluctuations. That is, it can be seen that a bonded body with stable quality can be provided. In other words, it can be seen that a bonded body with excellent mass productivity can be provided.
 表1に示すように、チオールが芳香環を含む実施例1-1と実施例1-2との対比から、第1の官能基がカルボキシ基である実施例1-2の接合体では、第1の官能基がアミノ基である実施例1-1に比べて、接合強度の変動係数が低かった。また、チオールが芳香環を含まない実施例1-3~1-6の対比から、第1の官能基がヒドロキシ基である実施例1-6の接合体では、第1の官能基がカルボキシ基である実施例1-3~1-5に比べて、接合強度の変動係数が低かった。
 従って、品質を安定させる観点から、芳香環を有する場合の第1の官能基としてはカルボキシ基が好ましく、芳香環を含まない場合の第1の官能基としてはヒドロキシ基が好ましいことがわかる。
As shown in Table 1, from a comparison of Examples 1-1 and 1-2 in which the thiol contains an aromatic ring, in the conjugate of Example 1-2 in which the first functional group is a carboxyl group, the first The coefficient of variation of bonding strength was lower than that of Example 1-1 in which the functional group 1 was an amino group. Furthermore, from a comparison of Examples 1-3 to 1-6 in which the thiol does not contain an aromatic ring, in the conjugate of Example 1-6 in which the first functional group is a hydroxy group, the first functional group is a carboxyl group. The coefficient of variation of bonding strength was lower than that of Examples 1-3 to 1-5.
Therefore, from the viewpoint of stabilizing quality, it can be seen that a carboxy group is preferable as the first functional group when an aromatic ring is present, and a hydroxy group is preferable as the first functional group when an aromatic ring is not included.
 表1に示すように、第2の官能基としてグリシジル基を有する熱硬化性化合物(YD128)を使用した場合、チオールが6-メルカプト-1-ヘキサノール(MCH)である実施例1-6の接合体では、他のチオールを用いた実施例1-1~1-5に比べて、接合強度の変動係数が低かった。また、第1の官能基がカルボキシ基であるチオールでは、炭素数が3である3-メルカプトプロピオン酸(3-MPA)である実施例1-3において、接合強度の変動係数が低かった。
 表2に示すように、第2の官能基として脂環式エポキシ基を有する熱硬化性化合物(CEL2021P)を使用した場合、チオールが8-メルカプトオクタン酸(MOA)である実施例2-4の接合体では、他のチオールを用いた実施例2-2及び2-3に比べて、接合強度の変動係数が低かった。
 従って、品質を安定させる観点から、第2の官能基がグリシジル基である熱硬化性化合物に対しては、分子鎖が比較的短いチオールが好ましく、第2の官能基が脂環式エポキシ基である熱硬化性化合物に対しては、分子鎖が比較的長いチオールが好ましいことがわかる。
As shown in Table 1, when a thermosetting compound (YD128) having a glycidyl group as the second functional group is used, the bonding of Example 1-6 in which the thiol is 6-mercapto-1-hexanol (MCH) In comparison with Examples 1-1 to 1-5 in which other thiols were used, the coefficient of variation of bond strength was lower. Furthermore, for thiols whose first functional group is a carboxyl group, the coefficient of variation of bonding strength was low in Example 1-3, which was 3-mercaptopropionic acid (3-MPA) having 3 carbon atoms.
As shown in Table 2, when a thermosetting compound (CEL2021P) having an alicyclic epoxy group as the second functional group was used, Example 2-4 in which the thiol was 8-mercaptooctanoic acid (MOA) In the bonded body, the coefficient of variation in bond strength was lower than in Examples 2-2 and 2-3 in which other thiols were used.
Therefore, from the viewpoint of stabilizing quality, a thiol with a relatively short molecular chain is preferable for a thermosetting compound in which the second functional group is a glycidyl group, and a thiol in which the second functional group is an alicyclic epoxy group is preferable. It can be seen that thiols with relatively long molecular chains are preferable for certain thermosetting compounds.

Claims (11)

  1.  熱硬化性組成物の硬化物と銅とが膜で接合された接合体であって、
    前記膜は、チオールによって形成されており、
    前記チオールは、アミノ基、カルボキシ基、及び、水酸基から選ばれる少なくとも1種の第1の官能基を有し、下記式(1)で表される化合物であり、
    前記熱硬化性組成物は、熱硬化性化合物を含有し、
    前記熱硬化性化合物は、前記第1の官能基と反応可能な第2の官能基を有する、接合体。
     Z-R-SH   ・・・(1)
    (前記式(1)中、Zは、前記第1の官能基であり、Rは、炭素数が1~20である有機基である。)
    A bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
    The film is formed of thiol,
    The thiol is a compound having at least one kind of first functional group selected from an amino group, a carboxy group, and a hydroxyl group, and is represented by the following formula (1),
    The thermosetting composition contains a thermosetting compound,
    The thermosetting compound has a second functional group capable of reacting with the first functional group.
    Z-R-SH...(1)
    (In the formula (1), Z is the first functional group, and R is an organic group having 1 to 20 carbon atoms.)
  2.  前記式(1)中のRの炭素数が2~10である、請求項1に記載の接合体。 The zygote according to claim 1, wherein R in the formula (1) has 2 to 10 carbon atoms.
  3.  前記式(1)中のRが炭素-炭素不飽和結合を含む、請求項1又は2に記載の接合体。 The conjugate according to claim 1 or 2, wherein R in the formula (1) includes a carbon-carbon unsaturated bond.
  4.  前記式(1)中のRがベンゼン環を含む、請求項3に記載の接合体。 The conjugate according to claim 3, wherein R in the formula (1) includes a benzene ring.
  5.  前記式(1)中のRがベンゼン環である、請求項4に記載の接合体。 The conjugate according to claim 4, wherein R in the formula (1) is a benzene ring.
  6.  前記第2の官能基は、エポキシ基及び/又は水酸基を有する、請求項1又は2に記載の接合体。 The conjugate according to claim 1 or 2, wherein the second functional group has an epoxy group and/or a hydroxyl group.
  7.  前記第2の官能基は、グリシジル基及び/又は脂環式エポキシ基を有することにより、前記エポキシ基を有する、請求項6に記載の接合体。 The conjugate according to claim 6, wherein the second functional group has the epoxy group by having a glycidyl group and/or an alicyclic epoxy group.
  8.  前記熱硬化性化合物が、飽和また不飽和の環状炭化水素基を含む、請求項1又は2に記載の接合体。 The conjugate according to claim 1 or 2, wherein the thermosetting compound contains a saturated or unsaturated cyclic hydrocarbon group.
  9.  前記銅は、酸化処理されていない銅である、請求項1又は2に記載の接合体。 The joined body according to claim 1 or 2, wherein the copper is copper that has not been oxidized.
  10.  前記膜の厚みは、2.0~5.0nmである、請求項1又は2に記載の接合体。 The joined body according to claim 1 or 2, wherein the thickness of the film is 2.0 to 5.0 nm.
  11.  熱硬化性組成物の硬化物と銅とが膜で接合された接合体を作製する、接合体の製造方法であって、
    前記接合体が、請求項1又は2に記載の接合体であり、
    前記チオールを含有する接合剤を銅の表面に設けることにより、前記チオールと前記銅とを結合させて前記膜を形成する工程(A)と、
    前記膜に前記熱硬化性組成物を設け、該熱硬化性組成物を加熱することにより、前記チオールと前記熱硬化性組成物とを結合させるとともに、前記熱硬化性組成物を硬化させる工程(B)と
    を有する、接合体の製造方法。
    A method for producing a bonded body, the method comprising: producing a bonded body in which a cured product of a thermosetting composition and copper are bonded with a film,
    The zygote is the zygote according to claim 1 or 2,
    a step (A) of bonding the thiol and the copper to form the film by providing a bonding agent containing the thiol on the surface of the copper;
    A step of providing the thermosetting composition on the film and heating the thermosetting composition to bond the thiol and the thermosetting composition and curing the thermosetting composition ( B) A method for manufacturing a joined body, comprising:
PCT/JP2023/014179 2022-04-27 2023-04-06 Joined body, and method for manufacturing joined body WO2023210285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073375 2022-04-27
JP2022073375 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210285A1 true WO2023210285A1 (en) 2023-11-02

Family

ID=88518707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014179 WO2023210285A1 (en) 2022-04-27 2023-04-06 Joined body, and method for manufacturing joined body

Country Status (1)

Country Link
WO (1) WO2023210285A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107992A (en) * 1996-06-26 1998-01-13 Elf Atochem Japan Kk Method for bonding polymer resin to metal
JP2005053116A (en) * 2003-08-05 2005-03-03 National Institute Of Advanced Industrial & Technology Metal coated with self-organized molecular membrane, its manufacturing method and friction reducing method using the coated metal
JP2005240181A (en) * 2004-02-25 2005-09-08 Posco Corrosion prevention method for metal utilizing thiol compound, and coating method therefor
WO2014024878A1 (en) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 Metal foil with carrier
JP2019001059A (en) * 2017-06-15 2019-01-10 Dic株式会社 Laminate and method for producing laminate
JP2019104169A (en) * 2017-12-12 2019-06-27 小島プレス工業株式会社 Metal-coated resin substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107992A (en) * 1996-06-26 1998-01-13 Elf Atochem Japan Kk Method for bonding polymer resin to metal
JP2005053116A (en) * 2003-08-05 2005-03-03 National Institute Of Advanced Industrial & Technology Metal coated with self-organized molecular membrane, its manufacturing method and friction reducing method using the coated metal
JP2005240181A (en) * 2004-02-25 2005-09-08 Posco Corrosion prevention method for metal utilizing thiol compound, and coating method therefor
WO2014024878A1 (en) * 2012-08-06 2014-02-13 Jx日鉱日石金属株式会社 Metal foil with carrier
JP2019001059A (en) * 2017-06-15 2019-01-10 Dic株式会社 Laminate and method for producing laminate
JP2019104169A (en) * 2017-12-12 2019-06-27 小島プレス工業株式会社 Metal-coated resin substrate

Similar Documents

Publication Publication Date Title
JP4686750B2 (en) Cured body and laminate
CN103232682B (en) Composition epoxy resin, prepreg, cured article, sheet-like formed body, laminated plate and multi-laminate laminate
JP4674730B2 (en) Semi-cured body, cured body, laminate, method for producing semi-cured body, and method for producing cured body
TWI388619B (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for encapsulating
WO2010024391A1 (en) Laminate and method for producing laminate
TWI425039B (en) A thermosetting resin composite composition, a resin molded product and a method for producing the same
TWI641648B (en) Mixture of benzoxazine, epoxy and anhydride
KR102365456B1 (en) A maleimide compound containing a substituted or unsubstituted allyl group, a method for preparing the same, and a composition and cured product using the compound
WO2007032424A1 (en) Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
WO2018003590A1 (en) Heat-curable resin composition, resin film with carrier, printed wiring board, and semiconductor device
JP2003532747A (en) Low viscosity acrylate monomers, formulations containing them and uses thereof
JPH0262152B2 (en)
JPS61141779A (en) Heat stable adhesive
CN108368069B (en) Oxazine compound, composition and cured product
TW201840532A (en) Composition, cured product and laminate
CN1890325A (en) Thermosetting resin composition, material for substrate and film for substrate
CN108473642B (en) Oxazine compound, composition and cured product
JP2021088649A (en) Thermosetting resin composition
JPWO2004048436A1 (en) Flame retardant epoxy resin composition and cured product thereof
CN109715689B (en) Benzoxazine compositions
JP3785047B2 (en) Adhesive composition for semiconductor device and adhesive sheet
JP2010083966A (en) Resin composition, cured body, and laminate
JP4735297B2 (en) Composite in which epoxy resin hardened layer and structural component material are integrated
JP3384922B2 (en) Resin composition for film and film molded article using the same
JP2002129126A (en) Adhesive composition and adhesive sheet for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796031

Country of ref document: EP

Kind code of ref document: A1