WO2023210242A1 - Vehicular lamp - Google Patents

Vehicular lamp Download PDF

Info

Publication number
WO2023210242A1
WO2023210242A1 PCT/JP2023/012476 JP2023012476W WO2023210242A1 WO 2023210242 A1 WO2023210242 A1 WO 2023210242A1 JP 2023012476 W JP2023012476 W JP 2023012476W WO 2023210242 A1 WO2023210242 A1 WO 2023210242A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
light source
heat sink
heat
flow
Prior art date
Application number
PCT/JP2023/012476
Other languages
French (fr)
Japanese (ja)
Inventor
修平 野末
鉄平 村松
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023210242A1 publication Critical patent/WO2023210242A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/42Forced cooling
    • F21S45/43Forced cooling using gas
    • F21S45/435Forced cooling using gas circulating the gas within a closed system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/65Cooling arrangements characterised by the use of a forced flow of gas, e.g. air the gas flowing in a closed circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/80Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with pins or wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the technical field of a vehicular lamp equipped with a heat sink that emits heat generated when a light source is driven.
  • a light source that emits light is placed inside a lamp outer casing made up of a cover and a lamp housing, and the heat generated when the light source is driven is transmitted to a heat sink with radiation fins and released from the heat sink to the outside.
  • a device configured to do so for example, see Patent Document 1.
  • a cooling fan is disposed inside the heat sink, and the cooling efficiency of the heat sink for the heat generated when the light source is driven is improved and the size is reduced.
  • the space between adjacent radiation fins is defined as a flow space in which cooling air flows, but each region along the radiation fins in the flow space tends to form a temperature boundary layer where the temperature difference is large with respect to the temperature of the region between these regions.
  • the temperature of the temperature boundary layer is higher than the temperature of the area other than the temperature boundary layer, heat exchange becomes insufficient when cooling air is flowed in the flow space, making it difficult to ensure sufficient cooling efficiency of the heat sink as a whole. There is a possibility that it cannot be done.
  • an object of the vehicle lamp of the present invention is to improve the cooling efficiency of the heat sink for the heat generated when the light source is driven.
  • a vehicular lamp includes a board on which a light source is mounted, a heat sink to which heat generated when the light source is driven is transferred, and a cooling fan that sends cooling air toward the heat sink.
  • a cooling fan that sends cooling air toward the heat sink.
  • the heat sink is formed as a flow space in which the cooling air sent from the cooling fan flows, and the heat sink is provided with a flow speed promoting part that increases the flow speed of the cooling air flowing in the flow space.
  • the flow velocity of the cooling air flowing in the fluidizing space is increased by the flow velocity promoting part, making it difficult to form a temperature boundary layer, so that sufficient heat exchange is performed in the fluidizing space when the cooling air is flowing. Therefore, it is possible to improve the cooling efficiency of the heat sink for the heat generated when the light source is driven.
  • FIG. 3 is a rear view of a heat sink and the like.
  • FIG. 7 is a rear view of a heat sink and the like according to a first modification.
  • FIG. 7 is a rear view of a heat sink and the like according to a second modification. It is a sectional view of a heat sink etc. concerning a 2nd modification.
  • FIG. 7 is a rear view showing an example in which two second protrusions are provided in a heat sink according to a second modification.
  • FIG. 7 is a cross-sectional view showing an example in which two second protrusions are provided in a heat sink according to a second modification.
  • FIG. 7 is a rear view of a heat sink and the like according to a third modification.
  • FIG. 3 is a schematic cross-sectional view showing an example of a vehicular lamp provided with another lamp unit.
  • the vehicular lamp 1 includes a lamp housing 2 having an opening at the front end and a cover 3 that closes the opening of the lamp housing 2.
  • the lamp housing 2 and the cover 3 constitute a lamp outer casing 4, and an internal space of the lamp outer casing 4 is formed as a lamp chamber 5.
  • a lamp unit 6 is arranged in the lamp chamber 5.
  • the lamp unit 6 has a heat sink 7, a substrate 8, and an inner lens 9. Note that the vehicle lamp 1 may be provided with a reflector instead of the inner lens 9.
  • the heat sink 7 has a base portion 10 formed in a plate shape facing in the front-rear direction and a plurality of heat radiation fins 11 protruding rearward from the base portion 10.
  • the base portion 10 has a front surface formed as a heat absorption surface 10a and a rear surface formed as a heat radiation surface 10b.
  • the radiation fins 11 are formed into a plate shape having a uniform thickness and extending vertically, and are spaced apart from each other in the left and right directions and are positioned in parallel.
  • the heat radiation fin 11 has a rear surface formed as a heat radiation end surface 12 and a side surface formed as an opposing surface 13. Opposing surfaces 13 of adjacent radiation fins 11 are located opposite to each other. In the heat sink 7, a space surrounded by the heat radiation surface 10b and the two opposing surfaces 13 is formed as a flow space 14.
  • the substrate 8 is attached to the heat absorbing surface 10a of the base portion 10 via a thermally conductive insulating sheet (not shown).
  • a plurality of light sources 15 are mounted on the front surface of the substrate 8 so as to be spaced apart from each other in the left and right directions.
  • the light source 15 for example, a light emitting diode (LED) is used.
  • the inner lens 9 has a plate-shaped control section 16 that faces substantially in the front-rear direction, and a peripheral surface section 17 that projects rearward from the outer circumference of the control section 16.
  • the inner lens 9 has a rear surface of a peripheral surface portion 17 attached to the base portion 10 of the heat sink 7 via the substrate 8.
  • the inner lens 9 is attached to the heat sink 7 together with the substrate 8 by screwing together, for example.
  • a cooling fan 18 is arranged below the radiation fins 11 of the heat sink 7. Cooling air is generated by rotating the cooling fan 18, and the generated cooling air flows from the bottom to the top in each flow space 14 of the heat sink 7.
  • the heat sink 7 is provided with a plurality of first protrusions 19 that function as flow velocity accelerators that increase the flow velocity of the cooling air (see FIG. 2).
  • the first protrusion 19 protrudes rearward from the heat radiation surface 10b and is formed, for example, in the shape of a round shaft.
  • the shape of the first protrusion 19 is not limited to a round shaft shape, and may be, for example, a triangular prism shape or a polygonal prism shape, and when formed in a triangular prism shape, the apex is lower in the cross-sectional shape. It is desirable to form a downwardly convex shape on the side.
  • the first protrusions 19 are located between adjacent radiation fins 11, and are spaced apart from each other at equal intervals vertically, for example.
  • the first protrusion 19 is located, for example, in the center between adjacent radiation fins 11, and a constant distance is formed between the outer peripheral surface of the first protrusion 19 and the opposing surface 13.
  • the amount of protrusion of the first protrusion 19 from the heat dissipation surface 10b is, for example, the same as the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b, but is different from the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b. It may be done as follows. However, the amount of protrusion of the first protrusion 19 from the heat dissipation surface 10b is set to be less than the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b so as not to interfere with other members arranged in the lamp chamber 5. This is desirable.
  • the portion of the heat sink 7 where the plurality of light sources 15 are located is formed as a light source placement area S, and at least one of the first protrusions 19 is provided in the light source placement area S, and at least one other is provided in the light source placement area S. and the cooling fan 18.
  • the width H1 at the position where the first protrusion 19 exists is smaller than the width H2 between the opposing surfaces 13.
  • the cooling air when the cooling air flows in the flow space 14, the cooling air collides with the first protrusion 19, so the flow state of the cooling air is disturbed by the first protrusion 19, and the first protrusion Turbulent flow P occurs above 19. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the efficiency of cooling the heat sink 7 of the heat generated when the light source 15 is driven.
  • the first protrusion 19 increases the flow velocity of the cooling air in the light source arrangement region S, and also causes turbulence near the periphery of the light source arrangement region S. P occurs. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7 where the largest amount of heat is transferred when the light source 15 is driven, and therefore the heat generated when the light source 15 is driven is reduced.
  • the cooling efficiency of the heat sink 7 can be further improved.
  • the first protrusion 19 is provided between the light source placement area S and one end of the heat sink 7 on the cooling fan 18 side, the first protrusion 19 cools the area near the periphery of the light source placement area S. As the flow velocity of the wind increases, turbulence P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7 where the largest amount of heat is transferred when the light source 15 is driven, and therefore the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7 can be further improved.
  • the first protrusion 19 may be located at any position between the radiation fins 11. may be provided.
  • the semi-cylindrical first protrusion 19 may be continuously provided on the opposing surface 13.
  • the heat sink 7A is provided with a plurality of first protrusions 19 and a first protrusion 19A.
  • the first protrusion 19A also functions as a flow speed accelerator that increases the flow speed of the cooling air.
  • the first protrusion 19A is, for example, formed to have the same shape and size as the first protrusion 19, and protrudes rearward from the heat radiation surface 10b. At least one first protrusion 19 is provided in one flow space 14, and is located immediately below the light source arrangement region S, for example.
  • the radiation fins 11 are divided into upper and lower parts, and are composed of an upper first part 11a and a lower second part 11b. . Therefore, a communication space 20 is formed between the first portion 11a and the second portion 11b, which communicates the flow spaces 14 on both sides.
  • the radiation fins 11 may be divided into three or more parts to form a plurality of communication spaces 20.
  • the first protrusion 19A protrudes from the heat radiation surface 10b and is located in the communication space 20 between the first portion 11a and the second portion 11b.
  • the first protrusion 19A is provided in the light source arrangement region S, for example.
  • the cooling air flows in the flow space 14
  • the cooling air collides with the first protrusion 19 and the first protrusion 19A.
  • the flow state of the cooling air is disturbed, and a turbulent flow P is generated above each of the first protrusion 19 and the first protrusion 19A. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the cooling efficiency of the heat sink 7A for the heat generated when the light source 15 is driven.
  • the cooling efficiency can also be improved by improving the performance of the cooling fan 18.
  • the first protrusion 19A increases the flow velocity of the cooling air in the light source arrangement area S, and also causes disturbance near the periphery of the light source arrangement area S. A flow P occurs. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7A where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced.
  • the cooling efficiency of the heat sink 7A can be further improved.
  • the first protrusion 19 is provided between the light source placement area S and one end of the heat sink 7A on the cooling fan 18 side, the first protrusion 19 cools the area near the periphery of the light source placement area S. As the flow velocity of the wind increases, turbulence P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7A where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7A can be further improved.
  • the heat sink 7B is provided with a plurality of second protrusions 21 that function as flow speed accelerators that increase the flow speed of the cooling air.
  • the second protrusion 21 protrudes rearward from the heat dissipation surface 10b, and is formed, for example, in the shape of a rearwardly convex triangular prism. Note that the shape of the second protrusion 21 is not limited to a triangular prism shape, and may be any other shape such as a semi-cylindrical shape as long as it projects rearward.
  • the second protrusion 21 is located between adjacent radiation fins 11, and both left and right end surfaces are located continuously with the opposing surfaces 13 of the adjacent radiation fins 11, respectively.
  • the second protrusion 21 is located, for example, immediately below the light source arrangement area S, and the amount of protrusion from the heat radiation surface 10b is smaller than the amount of protrusion of the heat radiation fin 11 from the heat radiation surface 10b.
  • the cooling air when the cooling air flows in the flow space 14, the cooling air collides with the second protrusion 21, so the flow state of the cooling air is disturbed by the second protrusion 21, and the second protrusion Turbulent flow P occurs above 21. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the efficiency of cooling the heat generated when the light source 15 is driven in the heat sink 7B.
  • the second protrusion 21 is provided between the light source arrangement area S and one end of the heat sink 7B on the cooling fan 18 side, the second protrusion 21 causes cooling air to flow near the periphery of the light source arrangement area S. As the flow velocity increases, turbulent flow P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7B where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7B can be further improved.
  • the second protrusions 21 may be provided below the light source placement area S and above the light source placement area S, respectively (see FIGS. 6 and 7).
  • the second protrusion 21 is provided below and above the light source placement area S. , it becomes possible to make it more difficult to form a temperature boundary layer, and it is possible to further improve the cooling efficiency in the heat sink 7B of the heat generated when the light source 15 is driven.
  • the heat sink 7C is provided with a plurality of third protrusions 22 that function as flow speed accelerators that increase the flow speed of the cooling air.
  • the third protrusion 22 protrudes from the opposing surfaces 13 of the adjacent radiation fins 11 in a direction toward each other, and is formed, for example, in the shape of a triangular prism such that the width of the flow space 14 is smallest at the center 22a in the vertical direction.
  • the shape of the third protrusion 22 is not limited to a triangular prism shape; for example, it may have a shape in which the width of the part where the third protrusion 22 is formed in the flow space 14 is smaller than the width of other parts. Other shapes may be used if necessary.
  • the center 22a of the third protrusion 22 is located in the light source arrangement region S, for example. Therefore, the third protrusion 22 is located from the lower part of the light source arrangement area S to the upper part of the light source arrangement area S.
  • the width H3 at the position where the center 22a of the third protrusion 22 exists is smaller than the width H2 between the opposing surfaces 13. .
  • the flow velocity of the cooling air is increased in the light source arrangement region S by the third protrusion 22 . Therefore, the flow velocity of the cooling air is increased in or around the portion of the heat sink 7C where the largest amount of heat is transmitted when the light source 15 is driven, so that the cooling efficiency of the heat generated when the light source 15 is driven in the heat sink 7C is increased. You can improve your performance.
  • the third protrusion 22 since a part of the third protrusion 22 is provided from the lower part of the light source arrangement area S to the upper part of the light source arrangement area S, the third protrusion 22 The flow velocity of the cooling air is increased near the periphery of the area. This also increases the flow velocity of the cooling air in or around the portion of the heat sink 7C where the amount of heat generated when the light source 15 is driven is the largest, or the vicinity thereof, so that the cooling efficiency in the heat sink 7C of the heat generated when the light source 15 is driven is increased. Further improvement can be achieved.
  • the heat sinks 7, 7A, 7B, and 7C each have the first protrusion 19 that functions as a flow speed promoting portion that increases the flow speed of the cooling air flowing in the flow space 14.
  • a first protrusion 19A, a second protrusion 21, and a third protrusion 22 are provided.
  • the flow velocity of the cooling air flowing in the flow space 14 by the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 increases, and a temperature boundary layer is formed. Therefore, when the cooling air flows, sufficient heat exchange is performed in the flow space 14, and it is possible to improve the cooling efficiency in the heat sinks 7, 7A, 7B, and 7C of the heat generated when the light source 15 is driven. can.
  • the heat radiation area of the heat sinks 7, 7A, 7B, and 7C is increased, It is possible to further improve the cooling efficiency in the heat sinks 7, 7A, 7B, and 7C of the heat generated when the light source 15 is driven.
  • first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 function as flow velocity promoting parts that increase the flow velocity of the cooling air.
  • the portion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 also function as control protrusions that control the flow direction of the cooling air, and control that changes the cross-sectional area of the flow space 14. It also functions as a protrusion.
  • the vehicular lamp 1 may have a configuration in which a lamp unit 6X is provided in place of the lamp unit 6. (See Figure 9).
  • an air flow hole 7a and an air flow hole 8a are formed in the base portion 10 of the heat sink 7 and the substrate 8, respectively, the air flow hole 7a and the air flow hole 8a are communicated with each other, and the air flow hole 8a is connected to the inner It communicates with the internal space of the lens 9.
  • a discharge hole 17a is formed in the peripheral surface 17 of the inner lens 9, and the discharge hole 17a communicates with a space outside the inner lens 9 in the lamp chamber 5.
  • the cooling fan 18 is located behind the heat sink 7, for example.
  • the cooling air generated by the cooling fan 18 flows from the flow space 14 through the air flow holes 7a and the air flow holes 8a in order, and flows into the inner space of the inner lens 9. Heat exchange is performed by the flowing cooling air, and the light source 15 and the substrate 8 are cooled. The cooling air that has undergone heat exchange is discharged into the space outside the inner lens 9 from the discharge hole 17a.
  • the cooling air generated by the cooling fan 18 is caused to flow in the flow space 14 for heat exchange, and is also caused to flow into the inner space of the inner lens 9, so that the cooling air is effectively utilized when driving the light source 15. It is possible to improve the efficiency of cooling the generated heat.
  • any one of the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 is provided. Good too.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

The present invention comprises: a substrate on which a light source is mounted; a heat sink by which heat generated during driving of the light source is transmitted; and a cooling fan that blows cooling air toward the heat sink, where the heat sink is provided with a base unit to which the substrate is attached on one surface and a plurality of plate-shaped heat dissipation fins projecting from the other surface of the base unit and aligned in a prescribed direction, the space between adjacent heat dissipation fins is formed as a flow space in which cooling air sent from the cooling fan flows, and the heat sink is provided with a flow speed accelerating unit that increases the flow speed of the cooling air flowing in the flow space.

Description

車輌用灯具Vehicle lights
 本発明は光源の駆動時に発生する熱を放出するヒートシンクを備えた車輌用灯具についての技術分野に関する。 The present invention relates to the technical field of a vehicular lamp equipped with a heat sink that emits heat generated when a light source is driven.
 車輌用灯具には、カバーとランプハウジングによって構成された灯具外筐の内部に光を出射する光源が配置され、光源の駆動時に発生する熱が放熱フィンを有するヒートシンクに伝達されヒートシンクから外部へ放出される構成にされたものがある(例えば、特許文献1参照)。 In vehicle lamps, a light source that emits light is placed inside a lamp outer casing made up of a cover and a lamp housing, and the heat generated when the light source is driven is transmitted to a heat sink with radiation fins and released from the heat sink to the outside. There is a device configured to do so (for example, see Patent Document 1).
 特許文献1に記載された車輌用灯具においては、ヒートシンクの内部に冷却ファンが配置され光源の駆動時に発生する熱のヒートシンクにおける冷却効率の向上と小型化とが図られる構成にされている。 In the vehicular lamp described in Patent Document 1, a cooling fan is disposed inside the heat sink, and the cooling efficiency of the heat sink for the heat generated when the light source is driven is improved and the size is reduced.
特開2021-190374号公報JP 2021-190374 Publication
 ところで、上記のような放熱フィンを有するヒートシンクによって放熱が行われる構成において、隣り合う放熱フィンの間の空間は冷却風が流動される流動空間とされるが、流動空間における放熱フィンに沿う各領域は温度がこれらの領域の間の領域の温度に対して差が大きい温度境界層になり易い。 By the way, in the configuration in which heat is radiated by a heat sink having radiation fins as described above, the space between adjacent radiation fins is defined as a flow space in which cooling air flows, but each region along the radiation fins in the flow space tends to form a temperature boundary layer where the temperature difference is large with respect to the temperature of the region between these regions.
 温度境界層の温度は温度境界層以外の領域の温度より高いため、流動空間において冷却風が流動されたときに熱交換が不十分になり、ヒートシンクの全体として十分な冷却効率を確保することができないおそれがある。 Since the temperature of the temperature boundary layer is higher than the temperature of the area other than the temperature boundary layer, heat exchange becomes insufficient when cooling air is flowed in the flow space, making it difficult to ensure sufficient cooling efficiency of the heat sink as a whole. There is a possibility that it cannot be done.
 そこで、本発明車輌用灯具は、光源の駆動時に発生する熱のヒートシンクにおける冷却効率の向上を図ることを目的とする。 Therefore, an object of the vehicle lamp of the present invention is to improve the cooling efficiency of the heat sink for the heat generated when the light source is driven.
 本発明に係る車輌用灯具は、光源が搭載された基板と、前記光源の駆動時に発生する熱が伝達されるヒートシンクと、前記ヒートシンクへ向けて冷却風を送る冷却ファンとを備え、前記ヒートシンクには一方の面に前記基板が取り付けられるベース部と前記ベース部の他方の面から突出され所定の方向において並ぶ板状の複数の放熱フィンとが設けられ、隣り合う前記放熱フィンの間の空間は前記冷却ファンから送られる冷却風が流動される流動空間として形成され、前記ヒートシンクに前記流動空間において流動される冷却風の流速を高める流速促進部が設けられたものである。 A vehicular lamp according to the present invention includes a board on which a light source is mounted, a heat sink to which heat generated when the light source is driven is transferred, and a cooling fan that sends cooling air toward the heat sink. is provided with a base portion on one surface to which the substrate is attached, and a plurality of plate-shaped radiation fins that protrude from the other surface of the base portion and are lined up in a predetermined direction, and the space between the adjacent radiation fins is The heat sink is formed as a flow space in which the cooling air sent from the cooling fan flows, and the heat sink is provided with a flow speed promoting part that increases the flow speed of the cooling air flowing in the flow space.
 これにより、流速促進部によって流動空間において流動される冷却風の流速が高くなり温度境界層が形成され難くなる。 As a result, the flow speed of the cooling air flowing in the flow space by the flow speed promoting section increases, making it difficult to form a temperature boundary layer.
 本発明によれば、流速促進部によって流動空間において流動される冷却風の流速が高くなり温度境界層が形成され難くなるため、冷却風が流動されたときに流動空間において十分な熱交換が行われ、光源の駆動時に発生する熱のヒートシンクにおける冷却効率の向上を図ることができる。 According to the present invention, the flow velocity of the cooling air flowing in the fluidizing space is increased by the flow velocity promoting part, making it difficult to form a temperature boundary layer, so that sufficient heat exchange is performed in the fluidizing space when the cooling air is flowing. Therefore, it is possible to improve the cooling efficiency of the heat sink for the heat generated when the light source is driven.
図2乃至図9と共に本発明車輌用灯具の実施の形態を示すものであり、本図は、車輌用灯具の概略断面図である。This figure shows an embodiment of the vehicular lamp of the present invention together with FIGS. 2 to 9, and this figure is a schematic cross-sectional view of the vehicular lamp. ヒートシンク等の背面図である。FIG. 3 is a rear view of a heat sink and the like. 第1の変形例に係るヒートシンク等の背面図である。FIG. 7 is a rear view of a heat sink and the like according to a first modification. 第2の変形例に係るヒートシンク等の背面図である。FIG. 7 is a rear view of a heat sink and the like according to a second modification. 第2の変形例に係るヒートシンク等の断面図である。It is a sectional view of a heat sink etc. concerning a 2nd modification. 第2の変形例に係るヒートシンクにおいて二つの第2の突部が設けられた例を示す背面図である。FIG. 7 is a rear view showing an example in which two second protrusions are provided in a heat sink according to a second modification. 第2の変形例に係るヒートシンクにおいて二つの第2の突部が設けられた例を示す断面図である。FIG. 7 is a cross-sectional view showing an example in which two second protrusions are provided in a heat sink according to a second modification. 第3の変形例に係るヒートシンク等の背面図である。FIG. 7 is a rear view of a heat sink and the like according to a third modification. 別のランプユニットが設けられた車輌用灯具の例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a vehicular lamp provided with another lamp unit.
 以下に、本発明車輌用灯具を実施するための形態について添付図面を参照して説明する。 Hereinafter, embodiments for implementing the vehicle lamp of the present invention will be described with reference to the accompanying drawings.
 <車輌用灯具の概略構成>
 先ず、車輌用灯具1の概略構成について説明する(図1参照)。
<Schematic configuration of vehicle light>
First, the schematic structure of the vehicle lamp 1 will be described (see FIG. 1).
 車輌用灯具1は前端に開口を有するランプハウジング2とランプハウジング2の開口を閉塞するカバー3とを備えている。ランプハウジング2とカバー3によって灯具外筐4が構成され、灯具外筐4の内部空間が灯室5として形成されている。 The vehicular lamp 1 includes a lamp housing 2 having an opening at the front end and a cover 3 that closes the opening of the lamp housing 2. The lamp housing 2 and the cover 3 constitute a lamp outer casing 4, and an internal space of the lamp outer casing 4 is formed as a lamp chamber 5.
 灯室5にはランプユニット6が配置されている。ランプユニット6はヒートシンク7と基板8とインナーレンズ9を有している。尚、車輌用灯具1においては、インナーレンズ9に代えてリフレクターが設けられていてもよい。 A lamp unit 6 is arranged in the lamp chamber 5. The lamp unit 6 has a heat sink 7, a substrate 8, and an inner lens 9. Note that the vehicle lamp 1 may be provided with a reflector instead of the inner lens 9.
 ヒートシンク7は前後方向を向く板状に形成されたベース部10とベース部10から後方に突出された複数の放熱フィン11とを有している。ベース部10は前面が吸熱面10aとして形成され後面が放熱面10bとして形成されている。放熱フィン11は上下に延びる一様の厚みを有する板状に形成され左右に離隔して平行な状態で位置されている。 The heat sink 7 has a base portion 10 formed in a plate shape facing in the front-rear direction and a plurality of heat radiation fins 11 protruding rearward from the base portion 10. The base portion 10 has a front surface formed as a heat absorption surface 10a and a rear surface formed as a heat radiation surface 10b. The radiation fins 11 are formed into a plate shape having a uniform thickness and extending vertically, and are spaced apart from each other in the left and right directions and are positioned in parallel.
 放熱フィン11は後面が放熱用端面12として形成され側面が対向面13として形成されている。隣り合う放熱フィン11の対向面13同士は対向して位置されている。ヒートシンク7において放熱面10bと二つの対向面13によって囲まれた空間は流動空間14として形成されている。 The heat radiation fin 11 has a rear surface formed as a heat radiation end surface 12 and a side surface formed as an opposing surface 13. Opposing surfaces 13 of adjacent radiation fins 11 are located opposite to each other. In the heat sink 7, a space surrounded by the heat radiation surface 10b and the two opposing surfaces 13 is formed as a flow space 14.
 基板8はベース部10の吸熱面10aに熱伝導性を有する図示しない絶縁シートを介して取り付けられている。基板8は前面に、例えば、複数の光源15が左右に離隔して搭載されている。光源15としては、例えば、発光ダイオード(LED:Light Emitting Diode)が用いられている。 The substrate 8 is attached to the heat absorbing surface 10a of the base portion 10 via a thermally conductive insulating sheet (not shown). For example, a plurality of light sources 15 are mounted on the front surface of the substrate 8 so as to be spaced apart from each other in the left and right directions. As the light source 15, for example, a light emitting diode (LED) is used.
 インナーレンズ9は略前後方向を向く板状の制御部16と制御部16の外周部から後方に突出された周面部17とを有している。インナーレンズ9は周面部17の後面が基板8を介してヒートシンク7のベース部10に取り付けられている。インナーレンズ9は、例えば、基板8とともにヒートシンク7にネジ止めによる共締めによって取り付けられている。 The inner lens 9 has a plate-shaped control section 16 that faces substantially in the front-rear direction, and a peripheral surface section 17 that projects rearward from the outer circumference of the control section 16. The inner lens 9 has a rear surface of a peripheral surface portion 17 attached to the base portion 10 of the heat sink 7 via the substrate 8. The inner lens 9 is attached to the heat sink 7 together with the substrate 8 by screwing together, for example.
 ヒートシンク7の放熱フィン11の下側には冷却ファン18が配置されている。冷却ファン18が回転されることにより冷却風が生成され、生成された冷却風が下方から上方へ向けてヒートシンク7の各流動空間14において流動される。 A cooling fan 18 is arranged below the radiation fins 11 of the heat sink 7. Cooling air is generated by rotating the cooling fan 18, and the generated cooling air flows from the bottom to the top in each flow space 14 of the heat sink 7.
 <ヒートシンクの各例>
 次に、ヒートシンク7の各例について説明する(図2乃至図8参照)。尚、以下において参照する各図には、説明を簡単にするために三つの放熱フィン11が設けられている例を示す。
<Examples of heat sinks>
Next, each example of the heat sink 7 will be explained (see FIGS. 2 to 8). Note that each figure referred to below shows an example in which three radiation fins 11 are provided to simplify the explanation.
 ヒートシンク7には冷却風の流速を高める流速促進部として機能する複数の第1の突部19が設けられている(図2参照)。第1の突部19は放熱面10bから後方に突出され、例えば、丸軸状に形成されている。尚、第1の突部19の形状は丸軸状に限られることはなく、例えば、三角柱形状や多角柱形状であってもよく、三角柱形状に形成される場合には断面形状において頂点が下側に存在する下方に凸の形状に形成されることが望ましい。 The heat sink 7 is provided with a plurality of first protrusions 19 that function as flow velocity accelerators that increase the flow velocity of the cooling air (see FIG. 2). The first protrusion 19 protrudes rearward from the heat radiation surface 10b and is formed, for example, in the shape of a round shaft. Note that the shape of the first protrusion 19 is not limited to a round shaft shape, and may be, for example, a triangular prism shape or a polygonal prism shape, and when formed in a triangular prism shape, the apex is lower in the cross-sectional shape. It is desirable to form a downwardly convex shape on the side.
 第1の突部19は隣り合う放熱フィン11間に位置され、例えば、上下に等間隔に離隔して位置されている。第1の突部19は、例えば、隣り合う放熱フィン11間の中央部に位置され、第1の突部19の外周面と対向面13との間に一定の間隔が形成されている。 The first protrusions 19 are located between adjacent radiation fins 11, and are spaced apart from each other at equal intervals vertically, for example. The first protrusion 19 is located, for example, in the center between adjacent radiation fins 11, and a constant distance is formed between the outer peripheral surface of the first protrusion 19 and the opposing surface 13.
 第1の突部19の放熱面10bからの突出量は、例えば、放熱フィン11の放熱面10bからの突出量と同じにされているが、放熱フィン11の放熱面10bからの突出量と異なるようにされていてもよい。但し、第1の突部19の放熱面10bからの突出量は、灯室5に配置される他の部材と干渉しないために、放熱フィン11の放熱面10bからの突出量以下にされていることが望ましい。 The amount of protrusion of the first protrusion 19 from the heat dissipation surface 10b is, for example, the same as the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b, but is different from the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b. It may be done as follows. However, the amount of protrusion of the first protrusion 19 from the heat dissipation surface 10b is set to be less than the amount of protrusion of the heat dissipation fin 11 from the heat dissipation surface 10b so as not to interfere with other members arranged in the lamp chamber 5. This is desirable.
 ヒートシンク7において複数の光源15が位置された部分は光源配置領域Sとして形成されており、第1の突部19は少なくとも一つが光源配置領域Sに設けられ、他の少なくとも一つが光源配置領域Sと冷却ファン18の間に設けられている。但し、他の少なくとも一つの第1の突部19は、光源配置領域Sの下側において光源配置領域Sに近い位置に設けられていることが望ましい。 The portion of the heat sink 7 where the plurality of light sources 15 are located is formed as a light source placement area S, and at least one of the first protrusions 19 is provided in the light source placement area S, and at least one other is provided in the light source placement area S. and the cooling fan 18. However, it is desirable that at least one other first protrusion 19 be provided at a position close to the light source arrangement region S below the light source arrangement region S.
 ヒートシンク7の流動空間14においては、第1の突部19が存在することにより、第1の突部19が存在する位置の幅H1が対向面13間の幅H2より小さくされている。 In the flow space 14 of the heat sink 7, due to the presence of the first protrusion 19, the width H1 at the position where the first protrusion 19 exists is smaller than the width H2 between the opposing surfaces 13.
 光源15の駆動時には光源15や基板8から熱が発生し、発生した熱はベース部10の吸熱面10aからヒートシンク7に伝達され、放熱面10bや放熱フィン11から外部へ向けて放出される。光源15の駆動時には冷却ファン18が回転されて生成された冷却風が流動空間14において下方から上方へ向けて流動される。従って、冷却風によって熱交換が促進され、光源15と基板8の温度上昇が抑制される。 When the light source 15 is driven, heat is generated from the light source 15 and the substrate 8, and the generated heat is transmitted from the heat absorption surface 10a of the base portion 10 to the heat sink 7, and is emitted to the outside from the heat radiation surface 10b and the radiation fins 11. When the light source 15 is driven, the cooling fan 18 is rotated and the generated cooling air flows from the bottom to the top in the flow space 14 . Therefore, heat exchange is promoted by the cooling air, and temperature increases between the light source 15 and the substrate 8 are suppressed.
 このとき、流動空間14において幅H2より小さくされた幅H1が存在するため、冷却風の流速が高くされる。従って、対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われる。 At this time, since the width H1 smaller than the width H2 exists in the flow space 14, the flow velocity of the cooling air is increased. Therefore, since a temperature boundary layer is less likely to occur in the region along the opposing surface 13, sufficient heat exchange is performed in the entire region of the flow space 14.
 また、流動空間14において冷却風が流動されるときには、第1の突部19に冷却風が衝突されるため、第1の突部19によって冷却風の流動状態が乱されて第1の突部19の上側において乱流Pが発生する。従って、流動空間14における放熱フィン11の対向面13に沿う領域に冷却風が向かい易くなり対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われ、光源15の駆動時に発生する熱のヒートシンク7における冷却効率の向上を図ることができる。 Further, when the cooling air flows in the flow space 14, the cooling air collides with the first protrusion 19, so the flow state of the cooling air is disturbed by the first protrusion 19, and the first protrusion Turbulent flow P occurs above 19. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the efficiency of cooling the heat sink 7 of the heat generated when the light source 15 is driven.
 さらに、第1の突部19が光源配置領域Sに設けられているため、第1の突部19によって光源配置領域Sにおいて冷却風の流速が高められると共に光源配置領域Sの周辺付近において乱流Pが生じる。従って、ヒートシンク7のうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められると共に乱流Pが生じるため、光源15の駆動時に発生する熱のヒートシンク7における冷却効率の一層の向上を図ることができる。 Furthermore, since the first protrusion 19 is provided in the light source arrangement region S, the first protrusion 19 increases the flow velocity of the cooling air in the light source arrangement region S, and also causes turbulence near the periphery of the light source arrangement region S. P occurs. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7 where the largest amount of heat is transferred when the light source 15 is driven, and therefore the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7 can be further improved.
 さらにまた、第1の突部19が光源配置領域Sとヒートシンク7における冷却ファン18側の一端との間に設けられているため、第1の突部19によって光源配置領域Sの周辺付近において冷却風の流速が高められると共に光源配置領域Sにおいて乱流Pが生じ易くなる。従って、ヒートシンク7のうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められると共に乱流Pが生じるため、光源15の駆動時に発生する熱のヒートシンク7における冷却効率のより一層の向上を図ることができる。 Furthermore, since the first protrusion 19 is provided between the light source placement area S and one end of the heat sink 7 on the cooling fan 18 side, the first protrusion 19 cools the area near the periphery of the light source placement area S. As the flow velocity of the wind increases, turbulence P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7 where the largest amount of heat is transferred when the light source 15 is driven, and therefore the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7 can be further improved.
 尚、上記には、第1の突部19が隣り合う放熱フィン11間の中央部に位置された例を示したが、第1の突部19は放熱フィン11間であれば何れの位置に設けられていてもよい。例えば、半円柱状の第1の突部19が対向面13に連続して設けられていてもよい。 In addition, although the example in which the first protrusion 19 is located at the center between adjacent radiation fins 11 is shown above, the first protrusion 19 may be located at any position between the radiation fins 11. may be provided. For example, the semi-cylindrical first protrusion 19 may be continuously provided on the opposing surface 13.
 続いて、ヒートシンク7の第1の変形例に係るヒートシンク7Aについて説明する(図3参照)。 Next, a heat sink 7A according to a first modification of the heat sink 7 will be described (see FIG. 3).
 ヒートシンク7Aには複数の第1の突部19と第1の突部19Aが設けられている。第1の突部19Aも冷却風の流速を高める流速促進部として機能する。 The heat sink 7A is provided with a plurality of first protrusions 19 and a first protrusion 19A. The first protrusion 19A also functions as a flow speed accelerator that increases the flow speed of the cooling air.
 第1の突部19Aは、例えば、第1の突部19と同様の形状及び大きさに形成され、放熱面10bから後方に突出されている。第1の突部19は一つの流動空間14において少なくとも一つが設けられ、例えば、光源配置領域Sにおける直ぐ下側に位置されている。 The first protrusion 19A is, for example, formed to have the same shape and size as the first protrusion 19, and protrudes rearward from the heat radiation surface 10b. At least one first protrusion 19 is provided in one flow space 14, and is located immediately below the light source arrangement region S, for example.
 ヒートシンク7Aにおいては最も左側と最も右側に位置された放熱フィン11を除いて、放熱フィン11が上下に分割され上側の第1の部分11aと下側の第2の部分11bとによって構成されている。従って、第1の部分11aと第2の部分11bの間には両側の流動空間14を連通する連通空間20が形成されている。尚、ヒートシンク7Aにおいては、放熱フィン11が三つ以上に分割され、複数の連通空間20が形成されていてもよい。 In the heat sink 7A, except for the radiation fins 11 located on the leftmost side and the rightmost side, the radiation fins 11 are divided into upper and lower parts, and are composed of an upper first part 11a and a lower second part 11b. . Therefore, a communication space 20 is formed between the first portion 11a and the second portion 11b, which communicates the flow spaces 14 on both sides. Note that in the heat sink 7A, the radiation fins 11 may be divided into three or more parts to form a plurality of communication spaces 20.
 第1の突部19Aは第1の部分11aと第2の部分11bの間において放熱面10bから突出され連通空間20に位置されている。第1の突部19Aは、例えば、光源配置領域Sに設けられている。 The first protrusion 19A protrudes from the heat radiation surface 10b and is located in the communication space 20 between the first portion 11a and the second portion 11b. The first protrusion 19A is provided in the light source arrangement region S, for example.
 光源15の駆動時には光源15や基板8から熱が発生し、発生した熱はベース部10の吸熱面10aからヒートシンク7Aに伝達され、放熱面10bや放熱フィン11から外部へ向けて放出される。光源15の駆動時には冷却ファン18が回転されて生成された冷却風が流動空間14において下方から上方へ向けて流動される。従って、冷却風によって熱交換が促進され、光源15と基板8の温度上昇が抑制される。 When the light source 15 is driven, heat is generated from the light source 15 and the substrate 8, and the generated heat is transmitted from the heat absorption surface 10a of the base portion 10 to the heat sink 7A, and is emitted to the outside from the heat radiation surface 10b and the radiation fins 11. When the light source 15 is driven, the cooling fan 18 is rotated and the generated cooling air flows from the bottom to the top in the flow space 14 . Therefore, heat exchange is promoted by the cooling air, and temperature increases between the light source 15 and the substrate 8 are suppressed.
 このとき、流動空間14において幅H2より小さくされた幅H1が存在するため、冷却風の流速が高くされる。従って、対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われる。 At this time, since the width H1 smaller than the width H2 exists in the flow space 14, the flow velocity of the cooling air is increased. Therefore, since a temperature boundary layer is less likely to occur in the region along the opposing surface 13, sufficient heat exchange is performed in the entire region of the flow space 14.
 また、流動空間14において冷却風が流動されるときには、第1の突部19と第1の突部19Aに冷却風が衝突されるため、第1の突部19と第1の突部19Aによって冷却風の流動状態が乱されて第1の突部19と第1の突部19Aのそれぞれ上側において乱流Pが発生する。従って、流動空間14における放熱フィン11の対向面13に沿う領域に冷却風が向かい易くなり対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われ、光源15の駆動時に発生する熱のヒートシンク7Aにおける冷却効率の向上を図ることができる。 Furthermore, when the cooling air flows in the flow space 14, the cooling air collides with the first protrusion 19 and the first protrusion 19A. The flow state of the cooling air is disturbed, and a turbulent flow P is generated above each of the first protrusion 19 and the first protrusion 19A. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the cooling efficiency of the heat sink 7A for the heat generated when the light source 15 is driven.
 さらに、ヒートシンク7Aにおいては、連通空間20によって流動空間14の圧力が低下するため、冷却ファン18における駆動負荷が低減され冷却ファン18の性能の向上による冷却効率の向上を図ることもできる。 Furthermore, in the heat sink 7A, since the pressure in the flow space 14 is reduced by the communication space 20, the driving load on the cooling fan 18 is reduced, and the cooling efficiency can also be improved by improving the performance of the cooling fan 18.
 さらにまた、第1の突部19Aが光源配置領域Sに設けられているため、第1の突部19Aによって光源配置領域Sにおいて冷却風の流速が高められると共に光源配置領域Sの周辺付近において乱流Pが生じる。従って、ヒートシンク7Aのうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められると共に乱流Pが生じるため、光源15の駆動時に発生する熱のヒートシンク7Aにおける冷却効率の一層の向上を図ることができる。 Furthermore, since the first protrusion 19A is provided in the light source arrangement area S, the first protrusion 19A increases the flow velocity of the cooling air in the light source arrangement area S, and also causes disturbance near the periphery of the light source arrangement area S. A flow P occurs. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7A where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7A can be further improved.
 さらにまた、第1の突部19が光源配置領域Sとヒートシンク7Aにおける冷却ファン18側の一端との間に設けられているため、第1の突部19によって光源配置領域Sの周辺付近において冷却風の流速が高められると共に光源配置領域Sにおいて乱流Pが生じ易くなる。従って、ヒートシンク7Aのうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められると共に乱流Pが生じるため、光源15の駆動時に発生する熱のヒートシンク7Aにおける冷却効率のより一層の向上を図ることができる。 Furthermore, since the first protrusion 19 is provided between the light source placement area S and one end of the heat sink 7A on the cooling fan 18 side, the first protrusion 19 cools the area near the periphery of the light source placement area S. As the flow velocity of the wind increases, turbulence P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7A where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7A can be further improved.
 次いで、ヒートシンク7の第2の変形例に係るヒートシンク7Bについて説明する(図4及び図5参照)。 Next, a heat sink 7B according to a second modification of the heat sink 7 will be described (see FIGS. 4 and 5).
 ヒートシンク7Bには冷却風の流速を高める流速促進部として機能する複数の第2の突部21が設けられている。第2の突部21は放熱面10bから後方に突出され、例えば、後方に凸の三角柱状に形成されている。尚、第2の突部21の形状は三角柱状に限られることはなく、後方に突出された形状であれば半円柱状等の他の形状であってもよい。 The heat sink 7B is provided with a plurality of second protrusions 21 that function as flow speed accelerators that increase the flow speed of the cooling air. The second protrusion 21 protrudes rearward from the heat dissipation surface 10b, and is formed, for example, in the shape of a rearwardly convex triangular prism. Note that the shape of the second protrusion 21 is not limited to a triangular prism shape, and may be any other shape such as a semi-cylindrical shape as long as it projects rearward.
 第2の突部21は隣り合う放熱フィン11間に位置され、左右両端面がそれぞれ隣り合う放熱フィン11の対向面13に連続して位置されている。第2の突部21は、例えば、光源配置領域Sの直ぐ下側に位置され、放熱面10bからの突出量が放熱フィン11の放熱面10bからの突出量より小さくされている。 The second protrusion 21 is located between adjacent radiation fins 11, and both left and right end surfaces are located continuously with the opposing surfaces 13 of the adjacent radiation fins 11, respectively. The second protrusion 21 is located, for example, immediately below the light source arrangement area S, and the amount of protrusion from the heat radiation surface 10b is smaller than the amount of protrusion of the heat radiation fin 11 from the heat radiation surface 10b.
 光源15の駆動時には光源15や基板8から熱が発生し、発生した熱はベース部10の吸熱面10aからヒートシンク7Bに伝達され、放熱面10bや放熱フィン11から外部へ向けて放出される。光源15の駆動時には冷却ファン18が回転されて生成された冷却風が流動空間14において下方から上方へ向けて流動される。従って、冷却風によって熱交換が促進され、光源15と基板8の温度上昇が抑制される。 When the light source 15 is driven, heat is generated from the light source 15 and the substrate 8, and the generated heat is transmitted from the heat absorption surface 10a of the base portion 10 to the heat sink 7B, and is emitted to the outside from the heat radiation surface 10b and the radiation fins 11. When the light source 15 is driven, the cooling fan 18 is rotated and the generated cooling air flows from the bottom to the top in the flow space 14 . Therefore, heat exchange is promoted by the cooling air, and temperature increases between the light source 15 and the substrate 8 are suppressed.
 このとき、流動空間14において第2の突部21が形成された部分は断面積が他の部分の断面積より小さいため、冷却風の流速が高くされる。従って、対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われる。 At this time, since the cross-sectional area of the portion where the second protrusion 21 is formed in the flow space 14 is smaller than the cross-sectional area of other portions, the flow velocity of the cooling air is increased. Therefore, since a temperature boundary layer is less likely to occur in the region along the opposing surface 13, sufficient heat exchange is performed in the entire region of the flow space 14.
 また、流動空間14において冷却風が流動されるときには、第2の突部21に冷却風が衝突されるため、第2の突部21によって冷却風の流動状態が乱されて第2の突部21の上側において乱流Pが発生する。従って、流動空間14における放熱フィン11の対向面13に沿う領域に冷却風が向かい易くなり対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われ、光源15の駆動時に発生する熱のヒートシンク7Bにおける冷却効率の向上を図ることができる。 Further, when the cooling air flows in the flow space 14, the cooling air collides with the second protrusion 21, so the flow state of the cooling air is disturbed by the second protrusion 21, and the second protrusion Turbulent flow P occurs above 21. Therefore, the cooling air tends to be directed toward the area along the facing surface 13 of the radiation fins 11 in the flow space 14, and a temperature boundary layer is less likely to occur in the area along the facing surface 13, so that sufficient heat exchange can be achieved in the entire region of the flow space 14. This makes it possible to improve the efficiency of cooling the heat generated when the light source 15 is driven in the heat sink 7B.
 さらに、第2の突部21が光源配置領域Sとヒートシンク7Bにおける冷却ファン18側の一端との間に設けられているため、第2の突部21によって光源配置領域Sの周辺付近において冷却風の流速が高められると共に光源配置領域Sにおいて乱流Pが生じ易くなる。従って、ヒートシンク7Bのうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められると共に乱流Pが生じるため、光源15の駆動時に発生する熱のヒートシンク7Bにおける冷却効率の一層の向上を図ることができる。 Furthermore, since the second protrusion 21 is provided between the light source arrangement area S and one end of the heat sink 7B on the cooling fan 18 side, the second protrusion 21 causes cooling air to flow near the periphery of the light source arrangement area S. As the flow velocity increases, turbulent flow P becomes more likely to occur in the light source arrangement region S. Therefore, the flow velocity of the cooling air is increased and turbulent flow P is generated in or around the portion of the heat sink 7B where the largest amount of heat is transferred when the light source 15 is driven, so that the heat generated when the light source 15 is driven is reduced. The cooling efficiency of the heat sink 7B can be further improved.
 尚、ヒートシンク7Bにおいては、第2の突部21がそれぞれ光源配置領域Sの下側と光源配置領域Sの上側とに設けられていてもよい(図6及び図7参照)。 Note that in the heat sink 7B, the second protrusions 21 may be provided below the light source placement area S and above the light source placement area S, respectively (see FIGS. 6 and 7).
 温度境界層は光源15の駆動時に最も熱の伝達量が多い部分とその上下の周辺付近にも生じ易いため、第2の突部21が光源配置領域Sの下側と上側に設けられることにより、温度境界層をより生じ難くすることが可能になり、光源15の駆動時に発生する熱のヒートシンク7Bにおける冷却効率の一層の向上を図ることができる。 Since a temperature boundary layer is likely to occur in the area where the largest amount of heat is transferred when the light source 15 is driven and in the vicinity above and below the area, the second protrusion 21 is provided below and above the light source placement area S. , it becomes possible to make it more difficult to form a temperature boundary layer, and it is possible to further improve the cooling efficiency in the heat sink 7B of the heat generated when the light source 15 is driven.
 続いて、ヒートシンク7の第3の変形例に係るヒートシンク7Cについて説明する(図8参照)。 Next, a heat sink 7C according to a third modification of the heat sink 7 will be described (see FIG. 8).
 ヒートシンク7Cには冷却風の流速を高める流速促進部として機能する複数の第3の突部22が設けられている。第3の突部22は隣り合う放熱フィン11の対向面13から互いに近付く方向に突出され、例えば、上下方向における中央22aにおいて流動空間14の幅が最も小さくなるような三角柱状に形成されている。尚、第3の突部22の形状は三角柱状に限られることはなく、例えば、流動空間14において第3の突部22が形成された部分の幅が他の部分の幅より小さくなる形状であれば他の形状であってもよい。 The heat sink 7C is provided with a plurality of third protrusions 22 that function as flow speed accelerators that increase the flow speed of the cooling air. The third protrusion 22 protrudes from the opposing surfaces 13 of the adjacent radiation fins 11 in a direction toward each other, and is formed, for example, in the shape of a triangular prism such that the width of the flow space 14 is smallest at the center 22a in the vertical direction. . Note that the shape of the third protrusion 22 is not limited to a triangular prism shape; for example, it may have a shape in which the width of the part where the third protrusion 22 is formed in the flow space 14 is smaller than the width of other parts. Other shapes may be used if necessary.
 第3の突部22の中央22aは、例えば、光源配置領域Sに位置されている。従って、第3の突部22は光源配置領域Sの下側の部分から光源配置領域Sの上側の部分に亘って位置されている。 The center 22a of the third protrusion 22 is located in the light source arrangement region S, for example. Therefore, the third protrusion 22 is located from the lower part of the light source arrangement area S to the upper part of the light source arrangement area S.
 ヒートシンク7Cの流動空間14においては、第3の突部22が存在することにより、第3の突部22の中央22aが存在する位置の幅H3が対向面13間の幅H2より小さくされている。 In the flow space 14 of the heat sink 7C, due to the presence of the third protrusion 22, the width H3 at the position where the center 22a of the third protrusion 22 exists is smaller than the width H2 between the opposing surfaces 13. .
 光源15の駆動時には光源15や基板8から熱が発生し、発生した熱はベース部10の吸熱面10aからヒートシンク7Cに伝達され、放熱面10bや放熱フィン11から外部へ向けて放出される。光源15の駆動時には冷却ファン18が回転されて生成された冷却風が流動空間14において下方から上方へ向けて流動される。従って、冷却風によって熱交換が促進され、光源15と基板8の温度上昇が抑制される。 When the light source 15 is driven, heat is generated from the light source 15 and the substrate 8, and the generated heat is transmitted from the heat absorption surface 10a of the base portion 10 to the heat sink 7C, and is emitted to the outside from the heat radiation surface 10b and the radiation fins 11. When the light source 15 is driven, the cooling fan 18 is rotated and the generated cooling air flows from the bottom to the top in the flow space 14 . Therefore, heat exchange is promoted by the cooling air, and temperature increases between the light source 15 and the substrate 8 are suppressed.
 このとき、流動空間14において幅H2より小さくされた幅H3が存在するため、冷却風の流速が高くされる。従って、対向面13に沿う領域に温度境界層が生じ難くなるため、流動空間14の全領域において十分な熱交換が行われる。 At this time, since the width H3 smaller than the width H2 exists in the flow space 14, the flow velocity of the cooling air is increased. Therefore, since a temperature boundary layer is less likely to occur in the region along the opposing surface 13, sufficient heat exchange is performed in the entire region of the flow space 14.
 また、第3の突部22の少なくとも一部が光源配置領域Sに設けられているため、第3の突部22によって光源配置領域Sにおいて冷却風の流速が高められる。従って、ヒートシンク7Cのうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められるため、光源15の駆動時に発生する熱のヒートシンク7Cにおける冷却効率の向上を図ることができる。 Furthermore, since at least a portion of the third protrusion 22 is provided in the light source arrangement region S, the flow velocity of the cooling air is increased in the light source arrangement region S by the third protrusion 22 . Therefore, the flow velocity of the cooling air is increased in or around the portion of the heat sink 7C where the largest amount of heat is transmitted when the light source 15 is driven, so that the cooling efficiency of the heat generated when the light source 15 is driven in the heat sink 7C is increased. You can improve your performance.
 さらに、第3の突部22の一部が光源配置領域Sの下側の部分から光源配置領域Sの上側の部分に亘って設けられているため、第3の突部22によって光源配置領域Sの周辺付近において冷却風の流速が高められる。これによってもヒートシンク7Cのうち光源15の駆動時に発生する熱の伝達量が最も多い部分又はその周辺付近において冷却風の流速が高められるため、光源15の駆動時に発生する熱のヒートシンク7Cにおける冷却効率の一層の向上を図ることができる。 Furthermore, since a part of the third protrusion 22 is provided from the lower part of the light source arrangement area S to the upper part of the light source arrangement area S, the third protrusion 22 The flow velocity of the cooling air is increased near the periphery of the area. This also increases the flow velocity of the cooling air in or around the portion of the heat sink 7C where the amount of heat generated when the light source 15 is driven is the largest, or the vicinity thereof, so that the cooling efficiency in the heat sink 7C of the heat generated when the light source 15 is driven is increased. Further improvement can be achieved.
 以上に記載した通り、車輌用灯具1にあっては、ヒートシンク7、7A、7B、7Cにそれぞれ流動空間14において流動される冷却風の流速を高める流速促進部として機能する第1の突部19、第1の突部19A、第2の突部21、第3の突部22が設けられている。 As described above, in the vehicle lamp 1, the heat sinks 7, 7A, 7B, and 7C each have the first protrusion 19 that functions as a flow speed promoting portion that increases the flow speed of the cooling air flowing in the flow space 14. , a first protrusion 19A, a second protrusion 21, and a third protrusion 22 are provided.
 従って、第1の突部19、第1の突部19A、第2の突部21、第3の突部22によって流動空間14において流動される冷却風の流速が高くなり温度境界層が形成され難くなるため、冷却風が流動されたときに流動空間14において十分な熱交換が行われ、光源15の駆動時に発生する熱のヒートシンク7、7A、7B、7Cにおける冷却効率の向上を図ることができる。 Therefore, the flow velocity of the cooling air flowing in the flow space 14 by the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 increases, and a temperature boundary layer is formed. Therefore, when the cooling air flows, sufficient heat exchange is performed in the flow space 14, and it is possible to improve the cooling efficiency in the heat sinks 7, 7A, 7B, and 7C of the heat generated when the light source 15 is driven. can.
 また、第1の突部19、第1の突部19A、第2の突部21、第3の突部22が設けられることによりそれぞれヒートシンク7、7A、7B、7Cの放熱面積が大きくなり、光源15の駆動時に発生する熱のヒートシンク7、7A、7B、7Cにおける冷却効率の一層の向上を図ることができる。 Further, by providing the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22, the heat radiation area of the heat sinks 7, 7A, 7B, and 7C is increased, It is possible to further improve the cooling efficiency in the heat sinks 7, 7A, 7B, and 7C of the heat generated when the light source 15 is driven.
 尚、第1の突部19、第1の突部19A、第2の突部21、第3の突部22は冷却風の流速を高める流速促進部として機能するが、これらの第1の突部19、第1の突部19A、第2の突部21、第3の突部22は冷却風の流動方向を制御する制御突部としても機能すると共に流動空間14の断面積を変化させる制御突部としても機能する。 Note that the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 function as flow velocity promoting parts that increase the flow velocity of the cooling air. The portion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 also function as control protrusions that control the flow direction of the cooling air, and control that changes the cross-sectional area of the flow space 14. It also functions as a protrusion.
 <その他>
 上記には、車輌用灯具1の例としてランプユニット6が設けられた構成を示したが、車輌用灯具1はランプユニット6に代えてランプユニット6Xが設けられた構成にされていてもよい(図9参照)。
<Others>
Although the configuration in which the lamp unit 6 is provided as an example of the vehicular lamp 1 is shown above, the vehicular lamp 1 may have a configuration in which a lamp unit 6X is provided in place of the lamp unit 6. (See Figure 9).
 ランプユニット6Xにおいては、ヒートシンク7のベース部10と基板8とにそれぞれ空気流動孔7aと空気流動孔8aが形成され、空気流動孔7aと空気流動孔8aが連通され、空気流動孔8aがインナーレンズ9の内部空間に連通されている。インナーレンズ9には周面部17に放出孔17aが形成され、放出孔17aが灯室5におけるインナーレンズ9の外側の空間に連通されている。冷却ファン18は、例えば、ヒートシンク7の後方に位置されている。 In the lamp unit 6X, an air flow hole 7a and an air flow hole 8a are formed in the base portion 10 of the heat sink 7 and the substrate 8, respectively, the air flow hole 7a and the air flow hole 8a are communicated with each other, and the air flow hole 8a is connected to the inner It communicates with the internal space of the lens 9. A discharge hole 17a is formed in the peripheral surface 17 of the inner lens 9, and the discharge hole 17a communicates with a space outside the inner lens 9 in the lamp chamber 5. The cooling fan 18 is located behind the heat sink 7, for example.
 このようなランプユニット6Xを有する構成においては、冷却ファン18によって生成された冷却風が流動空間14から順に空気流動孔7aと空気流動孔8aを流動されてインナーレンズ9の内部空間に流動され、流動された冷却風によって熱交換が行われて光源15と基板8が冷却される。熱交換が行われた冷却風は放出孔17aからインナーレンズ9の外側の空間に放出される。 In the configuration having such a lamp unit 6X, the cooling air generated by the cooling fan 18 flows from the flow space 14 through the air flow holes 7a and the air flow holes 8a in order, and flows into the inner space of the inner lens 9. Heat exchange is performed by the flowing cooling air, and the light source 15 and the substrate 8 are cooled. The cooling air that has undergone heat exchange is discharged into the space outside the inner lens 9 from the discharge hole 17a.
 このような構成により、冷却ファン18によって生成された冷却風が流動空間14において流動されて熱交換されると共にインナーレンズ9の内部空間にも流動され、冷却風の有効活用により光源15の駆動時に発生する熱の冷却効率の向上を図ることができる。 With such a configuration, the cooling air generated by the cooling fan 18 is caused to flow in the flow space 14 for heat exchange, and is also caused to flow into the inner space of the inner lens 9, so that the cooling air is effectively utilized when driving the light source 15. It is possible to improve the efficiency of cooling the generated heat.
 尚、ランプユニット6Xが設けられた構成においても、第1の突部19、第1の突部19A、第2の突部21、第3の突部22のうち何れか一つが設けられていてもよい。 Note that even in the configuration in which the lamp unit 6X is provided, any one of the first protrusion 19, the first protrusion 19A, the second protrusion 21, and the third protrusion 22 is provided. Good too.
1   車輌用灯具、
7   ヒートシンク
8   基板
10  ベース部
11  放熱フィン
14  流動空間
15  光源
18  冷却ファン
19  第1の突部
7A  ヒートシンク
19A 第1の突部
20  連通空間
7B  ヒートシンク
21  第2の突部
7C  ヒートシンク
22  第3の突部
1 Vehicle lights,
7 Heat sink 8 Substrate 10 Base part 11 Radiation fins 14 Flow space 15 Light source 18 Cooling fan 19 First protrusion 7A Heat sink 19A First protrusion 20 Communication space 7B Heat sink 21 Second protrusion 7C Heat sink 22 Third protrusion Department

Claims (7)

  1.  光源が搭載された基板と、
     前記光源の駆動時に発生する熱が伝達されるヒートシンクと、
     前記ヒートシンクへ向けて冷却風を送る冷却ファンとを備え、
     前記ヒートシンクには一方の面に前記基板が取り付けられるベース部と前記ベース部の他方の面から突出され所定の方向において並ぶ板状の複数の放熱フィンとが設けられ、
     隣り合う前記放熱フィンの間の空間は前記冷却ファンから送られる冷却風が流動される流動空間として形成され、
     前記ヒートシンクに前記流動空間において流動される冷却風の流速を高める流速促進部が設けられた
     車輌用灯具。
    A board equipped with a light source,
    a heat sink to which heat generated when driving the light source is transferred;
    a cooling fan that sends cooling air toward the heat sink;
    The heat sink is provided with a base portion on one surface of which the substrate is attached, and a plurality of plate-shaped heat dissipation fins that protrude from the other surface of the base portion and are lined up in a predetermined direction,
    A space between the adjacent radiation fins is formed as a flow space in which cooling air sent from the cooling fan flows,
    A vehicular lamp, wherein the heat sink is provided with a flow speed promoting part that increases the flow speed of the cooling air flowing in the flow space.
  2.  前記流速促進部として前記他方の面から突出された第1の突部が設けられ、
     前記第1の突部が隣り合う前記放熱フィンの間に位置された
     請求項1に記載の車輌用灯具。
    A first protrusion protruding from the other surface is provided as the flow velocity promoting part,
    The vehicular lamp according to claim 1, wherein the first protrusion is located between the adjacent radiation fins.
  3.  前記放熱フィンが冷却風の流動方向において少なくとも二つに分割されて設けられ、
     分割された二つの前記放熱フィンの間の空間が隣り合う前記流動空間を連通する連通空間として形成され、
     前記第1の突部が隣り合う前記放熱フィンの間と前記連通空間とにそれぞれ位置された
     請求項2に記載の車輌用灯具。
    The radiation fins are divided into at least two parts in the direction of flow of the cooling air, and
    A space between the two divided heat radiation fins is formed as a communication space that communicates the adjacent flow spaces,
    The vehicular lamp according to claim 2, wherein the first protrusion is located between the adjacent radiation fins and in the communication space, respectively.
  4.  前記流速促進部として前記他方の面から突出された第2の突部が設けられ、
     前記第2の突部の前記他方の面からの突出量が前記放熱フィンの前記他方の面からの突出量より小さくされ、
     前記第2の突部の両端がそれぞれ隣り合う前記放熱フィンに連続する形状に形成された
     請求項1に記載の車輌用灯具。
    A second protrusion protruding from the other surface is provided as the flow velocity promoting part,
    The amount of protrusion of the second protrusion from the other surface is smaller than the amount of protrusion of the radiation fin from the other surface,
    The vehicular lamp according to claim 1, wherein both ends of the second protrusion are formed to be continuous with the adjacent radiation fins.
  5.  前記流速促進部として隣り合う前記放熱フィンの対向する面から互いに近付く方向に突出された第3の突部が設けられた
     請求項1に記載の車輌用灯具。
    The vehicular lamp according to claim 1, wherein a third protrusion protruding from opposing surfaces of the adjacent radiation fins in a direction toward each other is provided as the flow velocity promoting part.
  6.  前記ヒートシンクにおいて前記光源が位置された部分が光源配置領域として形成され、
     前記流速促進部が前記光源配置領域に設けられた
     請求項1、請求項2、請求項3、請求項4又は請求項5に記載の車輌用灯具。
    A portion of the heat sink where the light source is located is formed as a light source placement area,
    The vehicular lamp according to claim 1, wherein the flow velocity promoting section is provided in the light source arrangement area.
  7.  前記ヒートシンクにおいて前記光源が位置された部分が光源配置領域として形成され、
     前記流速促進部が前記光源配置領域と前記ヒートシンクにおける前記冷却ファン側の一端との間に設けられた
     請求項1、請求項2、請求項3、請求項4又は請求項5に記載の車輌用灯具。
    A portion of the heat sink where the light source is located is formed as a light source placement area,
    For a vehicle according to claim 1, claim 2, claim 3, claim 4, or claim 5, wherein the flow velocity promoting part is provided between the light source arrangement region and one end of the heat sink on the side of the cooling fan. Light equipment.
PCT/JP2023/012476 2022-04-25 2023-03-28 Vehicular lamp WO2023210242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071675 2022-04-25
JP2022-071675 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210242A1 true WO2023210242A1 (en) 2023-11-02

Family

ID=88518638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012476 WO2023210242A1 (en) 2022-04-25 2023-03-28 Vehicular lamp

Country Status (1)

Country Link
WO (1) WO2023210242A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011203A (en) * 2015-06-25 2017-01-12 スタンレー電気株式会社 Natural air-cooling heat sink and heater element device using the same
JP2017062886A (en) * 2015-09-24 2017-03-30 スタンレー電気株式会社 Vehicular lighting fixture
JP2019114558A (en) * 2019-04-03 2019-07-11 東芝ライテック株式会社 Vehicular lighting device and vehicular lighting fixture
CN110594698A (en) * 2018-06-12 2019-12-20 法雷奥市光(中国)车灯有限公司 Radiator for LED headlamp, lighting and/or signal indicating device and motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011203A (en) * 2015-06-25 2017-01-12 スタンレー電気株式会社 Natural air-cooling heat sink and heater element device using the same
JP2017062886A (en) * 2015-09-24 2017-03-30 スタンレー電気株式会社 Vehicular lighting fixture
CN110594698A (en) * 2018-06-12 2019-12-20 法雷奥市光(中国)车灯有限公司 Radiator for LED headlamp, lighting and/or signal indicating device and motor vehicle
JP2019114558A (en) * 2019-04-03 2019-07-11 東芝ライテック株式会社 Vehicular lighting device and vehicular lighting fixture

Similar Documents

Publication Publication Date Title
JP5342553B2 (en) Vehicle lighting
JP5248183B2 (en) Vehicle lighting
KR101796115B1 (en) Head lamp assembly and vehicle having the same
JP2008059965A (en) Vehicular headlamp, lighting system and its heat radiation member
JP2008123756A (en) Vehicular lighting fixture
JP5810900B2 (en) Vehicle lighting
JP2016526753A (en) Lighting device and lighting fixture
WO2014185234A1 (en) Lamp for vehicles
JP3221131U (en) Integrated LED car light
WO2023210242A1 (en) Vehicular lamp
US10851964B2 (en) Lighting fixture for vehicle
WO2015170552A1 (en) Vehicle lamp
JP2007258034A (en) Led lamp
JP6811600B2 (en) Heat dissipation structure of vehicle lighting equipment
KR20150019787A (en) Heatsink increasing heat emitting performance and Head lamp having it for vehicle
WO2020015419A1 (en) Vehicle led illumination device and led vehicle lamp
CN212132368U (en) Radiator and spotlight thereof
KR101032497B1 (en) A cooling apparatus
JP4508035B2 (en) Ventilation structure of vehicular lamp
CN210662705U (en) Car light heat radiation structure and car light
JP7172204B2 (en) vehicle lamp
EP4194743A1 (en) A lighting device of an automotive vehicle
CN217584369U (en) Lamp heat dissipation device and lighting lamp with same
US20240263759A1 (en) Heat-dissipation car lamp
JP5563369B2 (en) Vehicle lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024517914

Country of ref document: JP