WO2023210233A1 - Sugar-linked polynucleotide - Google Patents

Sugar-linked polynucleotide Download PDF

Info

Publication number
WO2023210233A1
WO2023210233A1 PCT/JP2023/012164 JP2023012164W WO2023210233A1 WO 2023210233 A1 WO2023210233 A1 WO 2023210233A1 JP 2023012164 W JP2023012164 W JP 2023012164W WO 2023210233 A1 WO2023210233 A1 WO 2023210233A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
salt
polynucleotide
solvate
Prior art date
Application number
PCT/JP2023/012164
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 兒玉
義大 百相
永士 三森
春彦 鎌田
泰亮 中山
Original Assignee
国立大学法人東海国立大学機構
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023210233A1 publication Critical patent/WO2023210233A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to compound-linked polynucleotides and the like.
  • nucleic acid medicines that aim to control the expression of genes that cause diseases and achieve their treatment and prevention.
  • Nucleic acid medicines are classified into various types based on their mechanisms of action and the structure of the nucleic acid that serves as their active ingredient. Most of them have the characteristic that they can control the expression of the target gene in a sequence-specific manner. Therefore, it is expected that this will lead to new treatments for many intractable diseases for which no effective treatments have been found.
  • Patent Document 1 reports a technique for transporting drugs such as nucleic acids into micelles modified with glucose and aspartic acid within brain cells.
  • drugs such as nucleic acids into micelles modified with glucose and aspartic acid within brain cells.
  • a great deal of effort is required to control quality such as particle size distribution, micelle morphology, surface charge, thermodynamic properties of the membrane, and encapsulation rate of active ingredients.
  • An object of the present invention is to provide a technique for effectively exerting the activity of polynucleotides in the brain.
  • the present inventor discovered that by linking a monosaccharide to a polynucleotide via a linker, the activity of the polynucleotide can be effectively exerted in the brain.
  • the present inventor conducted further research based on this knowledge and completed the present invention. That is, the present invention includes the following aspects.
  • Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide.
  • Lk represents a divalent group that is a linker.
  • Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide.
  • Section 2. The compound, a salt thereof, or a solvate thereof according to item 1, wherein the monosaccharide is a ligand for glucose transporter 1.
  • Section 3. The compound, salt thereof, or solvate thereof according to item 1 or 2, wherein the monosaccharide is a hexose.
  • Item 3 The compound, a salt thereof, or a solvate thereof according to Item 3, wherein Ms is a monovalent group obtained by removing a hydrogen atom from the hydroxyl group at the 4th or 6th position of the monosaccharide.
  • Section 5 The compound or a salt thereof according to any one of Items 1 to 4, wherein the linker is a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a hetero atom and/or a linking structure, or a salt thereof. solvates of.
  • Item 6 The compound or a salt thereof, or a solvate thereof according to Item 5, wherein the linked structure includes a linked structure containing a triazole ring and/or a linked structure containing an amide bond.
  • Section 7 The compound, salt thereof, or solvate thereof according to any one of Items 1 to 6, wherein the number of atoms constituting the main chain of Lk is 6 or more.
  • Item 8 The compound, salt thereof, or solvate thereof according to any one of Items 1 to 7, wherein the Pn is a monovalent group obtained by removing one atom or group from the terminal nucleotide of the polynucleotide.
  • Section 9. The compound, salt thereof, or solvate thereof according to any one of items 1 to 8, wherein the Pn is a monovalent group obtained by removing one hydrogen atom from the phosphate group of the terminal nucleotide of the polynucleotide. .
  • Section 10 Any one of Items 1 to 9, wherein the polynucleotide is an antisense polynucleotide, siRNA, miRNA, miRNA precursor, aptamer, guide RNA, mRNA, DNA (antigene nucleic acid), or a DNA/RNA heteroduplex.
  • the polynucleotide is an antisense polynucleotide, siRNA, miRNA, miRNA precursor, aptamer, guide RNA, mRNA, DNA (antigene nucleic acid), or a DNA/RNA heteroduplex.
  • Section 11 A medicament containing the compound according to any one of Items 1 to 10, a salt thereof, or a solvate thereof.
  • Section 12 The medicament according to item 11, which is for brain delivery.
  • Section 13 A reagent containing the compound according to any one of Items 1 to 10, a salt thereof, or a solvate thereof.
  • 2 shows the measurement results of Malat1 expression level in the brain in Example 6.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed. ⁇ indicates that the p-value for naked ASO is less than 0.01 when performing the Tukey test.
  • 2 shows the measurement results of Malat1 expression level in the brain in Example 7.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples.
  • the numbers on the horizontal axis indicate the amount of ASO administered (unit: ⁇ g). * indicates that the p-value for naketASO is less than 0.05 when performing the Tukey test.
  • 2 shows the measurement results of Malat1 expression level in the brain in Example 8.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed.
  • 2 shows the measurement results of Malat1 expression level in the brain of Example 10.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples. * and ** indicate that the p value for saline is less than 0.05 and less than 0.01 when Tukey's test is performed.
  • indicates that the p-value for naked ASO2 is less than 0.01 when performing the Tukey test.
  • the measurement results of Malat1 expression level in each tissue (horizontal axis) of Example 11 are shown.
  • the vertical axis shows the relative value of Malat1 expression level.
  • Conjugate ASO administered is shown at the top of the graph.
  • 2 shows the measurement results of Malat1 expression level in the brain of Example 12.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed. # indicates that the p-value for Naked ASO is less than 0.05 when performing the Tukey test.
  • 1 shows the measurement results of Malat1 expression level in the brain of Example X.
  • the vertical axis shows the relative value of Malat1 expression level.
  • the horizontal axis shows the administered samples.
  • the compound represented by (herein sometimes referred to as the "sugar-linked polynucleotide of the present invention") or a salt thereof or a solvate thereof (these are collectively referred to herein as the “sugar-linked polynucleotide of the present invention”) (sometimes referred to as "active ingredients of”). This will be explained below.
  • Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide.
  • the monosaccharide is a glucose transporter 1 ligand.
  • the gene for glucose transporter 1 is, for example, the gene with NCBI Gene ID: 6513 (SLC2A1 gene) in humans, and is known in other animals or has been analyzed for sequence identity with known animal genes. can be easily identified based on Therefore, the amino acid sequence and coding sequence of glucose transporter 1 can be easily obtained according to known information.
  • a ligand for glucose transporter 1 refers to a molecule that binds to glucose transporter 1 expressed on the cell membrane and is transported into the cell via the glucose transporter 1, and is not particularly limited as long as it is a molecule. . Whether it is a ligand or not is determined based on known information or according to a known method (for example, Document 1: Life Sci Alliance. 2021 Feb 3;4(4):e202000858. doi: 10.26508/lsa.202000858. Print 2021 Apr., Reference 2: J Dairy Sci. 2012 Mar;95(3):1188-97. doi: 10.3168/jds.2011-4430., Reference 3: Biochemistry. 1992 Oct 27;31(42):10414-20 doi: 10.1021/bi00157a032.).
  • the monosaccharide is particularly preferably a hexose from the viewpoint of its function as a ligand for glucose transporter 1.
  • hexoses include glucose, mannose, galactose, N-acetylglucosamine, fructose, allose, talose, gulose, altrose, idose, psicose, sorbose, tagatose, and the like. Further, these may be either D-form or L-form, but D-form is particularly preferred.
  • hydroxy groups may be reduced and replaced with hydrogen atoms, or some of the hydroxy groups may be protected with known protecting groups (for example, alkyl groups), or even if some of the hydroxy groups are protected with known protecting groups (for example, alkyl groups), sulfate groups, etc. It may be substituted with a functional group or a halogen atom.
  • Such derivatives include, for example, 2-deoxy-glucose, 3-O-alkyl-glucose (e.g. 3-O-methyl-glucose), 1-O-alkyl-glucose (e.g. 1-O-nonyl-glucose), Examples include 1-deoxy-1-fluoro-glucose.
  • preferred are glucose, mannose, galactose, and glucosamine, and particularly preferred is glucose, from the viewpoint of the function as a ligand for glucose transporter 1.
  • Ms the atoms removed from the monosaccharide typically include the hydrogen atom within the hydroxy group.
  • groups removed from monosaccharides include hydroxy groups.
  • Ms is preferably a monovalent group formed by removing a hydrogen atom from a hydroxyl group of a monosaccharide.
  • Ms is preferably a monovalent group obtained by removing a hydrogen atom from the hydroxyl group at the 2nd, 3rd, 4th, or 6th position of the monosaccharide, and particularly preferably is a monovalent group formed by removing a hydrogen atom from the 4- or 6-position hydroxyl group of a monosaccharide.
  • Ms is preferably general formula (M1) or general formula (M2):
  • R m1 , R m2 and R m3 are the same or different and represent a hydroxy group, an optionally substituted alkoxy group, a halogen atom, or a hydrogen atom.
  • a monovalent group represented by formula (M1) is particularly preferred.
  • Alkoxy groups include both linear and branched groups.
  • the alkoxy group is preferably linear.
  • the number of carbon atoms in the alkoxy group is not particularly limited, and is, for example, from 1 to 15, preferably from 1 to 12, more preferably from 1 to 10, still more preferably from 1 to 6, particularly preferably from 1 to 4.
  • Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentoxy group, hexoxy group, octoxy group, Examples include nonoxy group.
  • the alkoxy group may be substituted with a halogen atom such as a fluorine atom, chlorine atom, bromine atom, or iodine atom.
  • the halogen atom is not particularly limited and includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like. Among these, fluorine atoms are particularly preferred.
  • At least one of R m1 , R m2 and R m3 is preferably a hydroxy group, and more preferably at least two are hydroxy groups. It is particularly preferred that R m1 , R m2 and R m3 are all hydroxy groups.
  • general formula (M1) or general formula (M2) is preferably general formula (M1a) or general formula (M2a):
  • Lk represents a divalent group that is a linker.
  • the linker is not particularly limited as long as it is interposed between Ms and Pn and has a structure that allows flexible operation.
  • the linker may consist of only a chain structure or may include a chain structure and a ring structure. Further, the chain structure may be linear or branched. When the chain structure is branched, monosaccharides may be linked in the branched chain, and in this case, two or more monosaccharides are linked to the sugar-linked polynucleotide of the present invention.
  • general formula (1) is, for example, general formula (1A):
  • Lk a and LK b each have the same definition as LK.
  • p is, for example, 2-10, 2-5, 2-4, 2-3, or 3.
  • the linker is preferably a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom and/or a linking structure.
  • the number of replaced carbon atoms is, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 3. It is 2.
  • the hydrocarbon chain is an alkylene group.
  • the alkylene group can be either linear or branched, but is preferably linear.
  • the number of carbon atoms constituting the main chain of the alkylene group is preferably 6 or more from the viewpoint of the activity of the polynucleotide in the brain.
  • the number of carbon atoms is more preferably 6 to 40, still more preferably 8 to 30, even more preferably 10 to 20.
  • heteroatom examples include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • an oxygen atom specifically, -CH 2 - in the main chain of the alkylene group is replaced with, for example, -O-.
  • -CH 2 - in the main chain of the alkylene group is replaced with -NR- (R is a hydrogen atom or a hydrocarbon group). (preferably an alkyl group, more preferably an alkyl group having 1 to 8 carbon atoms).
  • the connecting structure is not particularly limited as long as it is a divalent group that is a bonding structure formed by the reaction of two identical or different reactive groups.
  • the reactive group include an amino group, a carboxy group, a hydroxy group, a ketone group, an ethynyl group, a vinyl group, an azide group, an epoxy group, an aldehyde group, an oxylamino group, a thiol group, an isocyanate group, an isothiocyanate group, etc. It will be done.
  • Examples of reactions between reactive groups are: It is known that an amino group reacts with a carboxy group (or a group formed by esterifying a carboxy group with N-hydroxysuccinimide (NHS)) to form an amide bond. It is known that an ethynyl group forms a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group. Cyclooctyne is known to form a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group. Amino groups react with carboxy groups to form amide bonds. Carboxy groups are known to react with hydroxy groups to form ester bonds.
  • Carboxy groups are known to react with thiol groups to form thioester bonds.
  • Phosphate groups are known to react with hydroxy groups to form phosphodiester bonds.
  • Vinyl groups react with thiol groups to form bonds.
  • Epoxy groups react with amino groups and thiol groups to form bonds.
  • Aldehyde groups react with amino groups to form Schiff bases, which upon reduction form bonds.
  • Oxylamino groups react with ketone groups and aldehyde groups to form oximes.
  • the linked structure includes a linked structure containing a triazole ring, a linked structure containing an amide bond, a linked structure containing (3-thio)succinimide, a disulfide bond, a phosphodiester bond, and an intracellularly cleaved peptide. It can contain at least one type of connecting structure selected from the group consisting of connecting bonds.
  • the linked structure can include a linked structure containing a triazole ring and/or a linked structure containing an amide bond.
  • the connected structure containing a triazole ring is, for example, a 1,2,3-triazole ring, or a fused ring of a 1,2,3-triazole ring and another ring (for example, a 3- to 8-membered ring). (e.g. 2 or 3 rings). More specifically, the fused ring has, for example, the formula (Cy):
  • the linking structure containing an amide bond can be, for example, an amide bond (-CO-NR-) or -O-CO-NR- (R is the same as above).
  • Lk preferably represents the general formula (L1):
  • R l1 and R l2 are the same or different and represent a single bond or a connected structure.
  • R l3 and R l5 are the same or different and represent a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom.
  • R l4 represents a single bond or a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom.
  • *1 is a site that connects with Ms
  • *2 is a site that connects with Pn.
  • It is a divalent group represented by
  • the hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom can include a biodegradable structure.
  • the biodegradable structure include a peptide structure containing a peptidase recognition cleavage sequence (eg, Val-Ala, etc.), a disulfide bond, and the like.
  • R l1 is a linked structure containing a triazole ring
  • R l2 is a linked structure containing an amide bond
  • R l1 and R l4 are single bonds
  • R l2 is a linked structure containing an amide bond.
  • the number of atoms constituting the main chain of R l3 and R l5 is 3 to 10, more preferably 4 to 8, particularly preferably 5 to 7.
  • R l3 and R l5 are hydrocarbon chains, more preferably alkylene groups, particularly preferably linear alkylene groups. In these preferred embodiments, the activity of the polynucleotide in the brain can be significantly exhibited.
  • Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide.
  • the polynucleotide is not particularly limited, and in addition to DNA, RNA, etc., it may also be subjected to known chemical modifications, as exemplified below.
  • the phosphate residues of each nucleotide are replaced with chemically modified phosphate residues such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. I can do it.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate etc. I can do it.
  • the hydroxyl group at the 2-position of the sugar (ribose) of each ribonucleotide is replaced by -OR (R is, for example, CH3 (2 ⁇ -O-Me), CH2CH2OCH3 (2 ⁇ -O-MOE), CH2CH2NHC(NH)NH2, CH2CONHCH3, CH2CH2CN, etc.) may be substituted.
  • R is, for example, CH3 (2 ⁇ -O-Me), CH2CH2OCH3 (2 ⁇ -O-MOE), CH2CH2NHC(NH)NH2, CH2CONHCH3, CH2CH2CN, etc.
  • the base moiety pyrimidine, purine
  • Further examples include, but are not limited to, those in which the phosphoric acid moiety or hydroxyl moiety is modified with biotin, an amino group, a lower alkylamine group, an acetyl group, or the like.
  • BNA LNA
  • LNA LNA
  • the conformation of the sugar moiety of the nucleotide is fixed to N-type by cross-linking the 2' oxygen and 4' carbon of the sugar moiety, can also be preferably used.
  • the nucleobases that make up polynucleotides include typical bases found in natural nucleic acids such as RNA and DNA (adenine (A), thymine (T), uracil (U), guanine (G), cytosine (C), etc.) In addition, bases other than these, such as hypoxanthine (I) and modified bases, are also included.
  • modified base examples include pseudouracil, 3-methyluracil, dihydrouracil, 5-alkylcytosine (e.g., 5-methylcytosine), 5-alkyluracil (e.g., 5-ethyluracil), 5-halouracil (5- Bromouracil), 6-azapyrimidine, 6-alkylpyrimidine (6-methyluracil), 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5'-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl Aminomethyluracil, 1-methyladenine, 1-methylhypoxanthine, 2,2-dimethylguanine, 3-methylcytosine, 2-methyladenine, 2-methylguanine, N6-methyladenine, 7-methylguanine, 5-methoxy Aminomethyl-2-thiouracil, 5-methylaminomethyluracil, 5-methylcarbonylmethyluracil, 5-methyloxyuracil, 5-methyl-2-thiouracil
  • the polynucleotide may be linked with other molecules or modified with a radioactive isotope.
  • Other molecules include, for example, fluorescent labels.
  • fluorescent labels include fluorescein, rhodamine, Texas red, tetramethylrhodamine, carboxyrhodamine, phycoerythrin, 6-FAM (trademark), Cy (registered trademark) 3, Cy (registered trademark) 5, Alexa Fluor (registered trademark) ) series, etc.
  • the position of linkage/modification is not particularly limited, and can be, for example, at the end of the polynucleotide.
  • a polynucleotide can be a single-stranded polynucleotide or a double-stranded polynucleotide.
  • the polynucleotide is, for example, a polynucleotide of 8 to 50 bases consisting of a sequence capable of binding to a target sequence in a target gene.
  • the length of the polynucleotide is, for example, 8 bases or more, 9 bases or more, 10 bases or more, 11 bases or more, 12 bases or more, 13 bases or more, 14 bases or more, or 15 bases or more, and 500 bases or less, 200 bases or more
  • the length is 100 bases or less, 50 bases or less, 40 bases or less, 30 bases or less, 25 bases or less, or 20 bases or less.
  • the second strand consists of a sequence capable of binding to the polynucleotide, which is the first strand, which consists of a sequence capable of binding to a target sequence in a target gene. It is a polynucleotide.
  • This second strand may be, for example, between 8 and 500 bases, at least 8 bases, at least 9 bases, at least 10 bases, at least 11 bases, at least 12 bases, at least 13 bases, at least 14 bases, or at least 15 bases;
  • the length is less than or equal to a base, 200 bases or less, 100 bases or less, 60 bases or less, 50 bases or less, 40 bases or less, 30 bases or less, 25 bases or less, or 20 bases or less.
  • the length of the second strand may be the same length as the first strand, or one or more bases shorter than the first strand, so long as it binds to the first strand, or The length of the second strand may be longer than the first strand by adding one or several bases to one or both sides of the site that binds to the first strand.
  • “one or several bases” means 1 to 10 bases, 1 to 5 bases, 1 to 3 bases, and 1 or 2 bases.
  • the preferred length of the second strand depends on the length of the first strand. For example, the length of the first strand is 50% or more, 60% or more, 70% or more, 50 to 100%, 60 to 100%, 70 ⁇ 100% length.
  • a polynucleotide "binding" to a target sequence means that a plurality of different single-stranded polynucleotides or nucleic acids can form a double-stranded or more stranded nucleic acid due to nucleobase complementarity. Preferably, it means that a double-stranded nucleic acid can be formed.
  • the melting temperature (Tm) of a double-stranded or more stranded nucleic acid which is an indicator of the thermal stability of the bond, is not particularly limited.
  • the melting temperature (Tm) of double-stranded nucleic acids can be determined, for example, as follows: Polynucleotide and target RNA were mixed equimolarly in buffer (8.1mM Na 2 HPO 4 , 2.68mM KCl, 1.47mM KH 2 PO 4 , and pH 7.2) and incubated at 95°C for 5 minutes. After heating, the mixture is slowly cooled to room temperature and annealed to form double-stranded nucleic acids.
  • the change in absorbance (A) at 260nm due to temperature (T) is measured, and from this measurement result, dA/ A graph of dTvsT is created, and the temperature at which the value of dA/dT is the largest in this graph, that is, the temperature at which the change in A due to T is the largest, is set as the Tm of the double-stranded nucleic acid.
  • the melting temperature (Tm) is, for example, 40°C or higher, preferably 50°C or higher.
  • complementary refers to a pairing relationship in which two different single-stranded polynucleotides or nucleic acids can form a double-stranded nucleic acid.
  • the base sequences of the double-stranded regions have complete complementarity, but as long as the double-stranded nucleic acid can be formed and the desired function (for example, expression suppression or regulation) can be exerted, one Or it may have several mismatches.
  • One or several mismatches may depend on the length of the polynucleotide, but means 1 to 4, preferably 1 to 3, more preferably 1 or 2 mismatches.
  • the polynucleotide preferably has a complementarity of 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more to the base sequence of the region forming a double strand. or may be completely (100%) complementary.
  • the polynucleotide is preferably one whose main purpose is to be introduced into cells and used.
  • polynucleotides for such purposes include antisense polynucleotides, siRNAs, miRNAs, miRNA precursors, aptamers, guide RNAs, mRNAs, DNA (antigene nucleic acids), or DNA/RNA heteroduplexes. etc.
  • the atom removed from the polynucleotide typically includes a hydrogen atom within a phosphate group or a hydroxyl group.
  • examples of the group removed from the polynucleotide include a phosphate group, a hydroxy group, and the like.
  • Pn is preferably a monovalent group obtained by removing one atom or group from the terminal nucleotide of the polynucleotide, particularly preferably one hydrogen atom removed from the phosphate group of the terminal nucleotide of the polynucleotide. It is a monovalent group.
  • the terminus can be either the 5' terminus or the 3' terminus, the 5' terminus is preferred from the viewpoint of the activity of the polynucleotide in the brain.
  • Pn preferably has the general formula (P1):
  • R p1 represents a monovalent group obtained by removing the phosphate group from the terminal nucleotide of the polynucleotide.
  • R p1 is preferably a monovalent group obtained by removing the phosphate group from the 5' terminal nucleotide of the polynucleotide.
  • Salts of the sugar-linked polynucleotide of the present invention are not particularly limited, and include, for example, alkali metal salts such as sodium salts, potassium salts, and lithium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and aluminum salts.
  • metal salts such as iron salts, zinc salts, copper salts, nickel salts, cobalt salts
  • inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts , ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl-phenethylamine salt
  • Amine salts such as organic salts such as , piperazine salts, tetramethylammonium salts, tris(hydroxymethyl)aminomethane salts; such as hydrofluorides, hydrochlorides, hydrobromides, hydroiodides Inorgan
  • Solvates of the sugar-linked polynucleotides of the present invention or salts thereof are not particularly limited, and include, for example, solvates with solvents such as water, ethanol, glycerol, and acetic acid.
  • the sugar-linked polynucleotide of the present invention can be synthesized by various methods.
  • the sugar-linked polynucleotide of the present invention can be synthesized, for example, according to the scheme below.
  • Lk 1 and Lk 2 are the same or different and represent a divalent group that is a linker.
  • Y 1 and Y 2 are the same or different and represent a reactive group.
  • the linker represented by Lk 1 or Lk 2 As for the explanation of the linker represented by Lk 1 or Lk 2 , the above-mentioned explanation of the linker is used. As for the description of the reactive group represented by Y 1 or Y 2 , the above-mentioned description of the reactive group is used.
  • the compound represented by the general formula (a) and the compound represented by the general formula (b) can be commercially available, or can be synthesized according to a known method.
  • the reaction conditions can be set according to known information depending on the type of reactive group. As an example, the reaction conditions of Example 1 and Example 4 described below can be referred to.
  • the reaction can be followed by conventional methods such as chromatography. After the reaction is completed, the solvent is distilled off, and the product can be isolated and purified by a conventional method such as chromatography or recrystallization. Furthermore, the structure of the product can be identified by MALDI-TOF-MS, elemental analysis, MS (ESI-MS) analysis, IR analysis, 1 H-NMR, 13 C-NMR, etc.
  • the sugar-linked polynucleotide of the present invention, its salt, or a solvate thereof increases the activity of the polynucleotide in the brain even when used alone without forming a complex with other substances. can be demonstrated effectively.
  • the activity of a polynucleotide refers to the physiological activity possessed by the polynucleotide, specifically, for example, the activity of suppressing the expression of a target gene, the function of a target nucleic acid (e.g. miRNA, mRNA, or their precursor, etc.) (the expression of a target gene) and function-suppressing activity of a target molecule (for example, aptamer target molecule).
  • the active ingredient of the present invention can be used for various purposes, such as for brain delivery (preferably for delivery into brain cells), pharmaceuticals, reagents, etc. (hereinafter collectively referred to as these). (Sometimes referred to as "the agent of the present invention”).
  • the agent of the present invention is not particularly limited as long as it contains the active ingredient of the present invention, and may further contain other ingredients as necessary.
  • Other ingredients are not particularly limited as long as they are pharmaceutically acceptable ingredients, such as excipients, binders, disintegrants, lubricants, colorants, flavorings, and if necessary.
  • the mode of use of the agent of the present invention is not particularly limited, and an appropriate mode of use can be adopted depending on the type thereof.
  • the agent of the present invention can be used, for example, in vitro (eg, added to the culture medium of cultured cells) or in vivo (eg, administered to animals).
  • the subject to which the agent of the present invention can be applied is not particularly limited, and includes, for example, various mammals such as humans, monkeys, mice, rats, dogs, cats, and rabbits; animal cells, etc.
  • the type of cells is not particularly limited, and examples include nerve cells such as cone cells, astrocytes, granule cells, retinal ganglion cells, and Purkinje cells; microglia, astrocytes, oligodendrocytes, ependymal cells, Schwann cells, and satellite cells.
  • glial cells such as;
  • the mode of administration is not particularly limited as long as the desired effect is obtained, and oral administration, parenteral administration (e.g., intravenous injection, intramuscular injection, subcutaneous administration, rectal administration, They can be administered to mammals, including humans, by any route of administration (dermal administration, topical administration).
  • parenteral administration e.g., intravenous injection, intramuscular injection, subcutaneous administration, rectal administration
  • They can be administered to mammals, including humans, by any route of administration (dermal administration, topical administration).
  • the preferred mode of administration is parenteral administration.
  • Dosage forms for oral and parenteral administration and their manufacturing methods are well known to those skilled in the art, and can be manufactured in accordance with conventional methods by mixing the active ingredient with a pharmaceutically acceptable carrier, etc. can.
  • Dosage forms for parenteral administration include injectable preparations (e.g., drip injections, intravenous injections, intramuscular injections, subcutaneous injections, intradermal injections), external preparations (e.g., ointments, poultices, lotions). agents, creams, gels), suppositories, inhalants, eye drops, eye ointments, nasal drops, ear drops, and liposomes.
  • an injectable preparation is prepared by dissolving the oligopeptide of the present invention in distilled water for injection, and adding solubilizing agents, buffering agents, pH adjusting agents, isotonic agents, soothing agents, and preservatives as necessary. , a stabilizer, etc. can be added.
  • the medicament of the present invention can also be made into a lyophilized preparation for ex-post preparation.
  • the agent of the present invention may further contain other drugs effective for treating or preventing diseases.
  • the agent of the present invention may also contain components such as bactericides, anti-inflammatory agents, cell activators, vitamins, and amino acids, as required.
  • the content of the active ingredient of the present invention in the agent of the present invention depends on the mode of use, the subject to which it is applied, the condition of the subject, etc., and is not limited to, for example, 0.0001 to 95% by weight, preferably 0.001% by weight. ⁇ 50% by weight.
  • the dosage when administering the agent of the present invention to animals is not particularly limited as long as it is an effective amount that exhibits the medicinal effect, and it is generally expressed as the weight of the active ingredient of the present invention, which is the active ingredient, when administered orally.
  • the above dosage is preferably administered once a day or divided into 2 to 3 times a day, and can be increased or decreased as appropriate depending on age, pathological condition, and symptoms.
  • 1,6-dibromohexane (7.32 g, 30 mmol, 3eq.) was dissolved in DMSO (60 mL) and stirred at room temperature.
  • sodium azide DMSO solution (0.65 g, 10 mmol, 1 eq., 20 mL) was added dropwise over 10 minutes. 10 minutes after the dropwise addition was completed, the disappearance of the raw material was confirmed by TLC, and the mixture was concentrated under reduced pressure and purified by column chromatography (SiO 2 , hexane ⁇ tetrahydrofuran) to obtain compound 6 (2.01 g, 9.74 mmol, 97%). Obtained as a yellow oil.
  • the obtained white solid was recrystallized from a heated hexane-ethyl acetate mixed solvent (4:1) to give colorless fibrous crystals.
  • Antisense oligonucleotide (naked ASO)) against mouse Malat1 gene (NR_002847.3) was synthesized by Yamasa Soy Sauce Co., Ltd.
  • Compound 19 is a compound in which an amino-C6 linker is added to the 5′-terminal phosphate group of ASO.
  • Compound 19 was synthesized by Yamasa Soy Sauce Co., Ltd.
  • Compound 20 is a compound in which an amino-C6 linker is added to the phosphate group at the 3' end of ASO.
  • Compound 20 was synthesized by Yamasa Soy Sauce Co., Ltd.
  • Compound A was synthesized as follows. Mix 10 mM compound 19 aqueous solution (100 ⁇ L, 1 mmol), 100 mM compound 4 (short-BCN-PNP) in DMSO solution (100 ⁇ L, 10 eq.), and DIPEA (10 ⁇ L, 57 eq.). Shake at 40°C for 3 hours. After confirming the disappearance of Compound 19 by reverse phase HPLC, crude purification was performed by twice ethanol precipitation. The pellet was dissolved in distilled water (250 ⁇ L) to obtain 4 mM BCN-modified oligonucleic acid (N-ASO). Concentrations were determined by measuring UV absorption (260 nm).
  • this 4 mM BCNated oligonucleic acid (N-ASO) 75 ⁇ L, 300 nmol
  • a 50 mM DMSO solution of compound 10 100 ⁇ L
  • DMSO 75 ⁇ L
  • the mixture was shaken at 40°C for 3 hours.
  • crude purification was performed by ethanol precipitation, followed by purification by HPLC.
  • the target elution solution was concentrated using a centrifugal concentrator and then dissolved in distilled water.
  • Compound B was synthesized according to Example 1 using Compound 17 in place of Compound 10 and was made into a sodium salt suitable for use in in vivo experiments.
  • the results of MALDI-TOF-MS for Compound B were calculated value [MH] - :6029.94 and actual value [MH] - :6028.36.
  • Compound C was synthesized according to Example 1 using Compound 18 in place of Compound 10 and made into a sodium salt suitable for use in in vivo experiments.
  • the results of MALDI-TOF-MS for Compound C were calculated value [MH] - :6029.94 and actual value [MH] - :6028.95.
  • Compound E was synthesized according to Example 1 using Compound 20 in place of Compound 19 and made into a sodium salt suitable for use in in vivo experiments.
  • the results of MALDI-TOF-MS for Compound E were a calculated value [MH] - :5953.89 and an actual value [MH] - :5953.92.
  • mice 1 ASO administration and organ collection
  • Mice Balb/c, female, 5 weeks old, 7 mice
  • mice mice
  • a single dose of conjugated ASO (Compound A) in saline solution prepared at 100 ⁇ g per individual mouse was administered into the tail vein.
  • a physiological saline solution prepared at 100 ⁇ g per mouse of unconjugated ASO was administered once into the tail vein.
  • Physiological saline was used as a negative control.
  • mice were anesthetized by intraperitoneal administration of a triple anesthetic mixture (medetomidine, midazolam, and butorphanol), and after laparotomy, the abdominal aorta was incised to death by exsanguination, and 25 to 50 mg of tissue was removed. Place the sample into each 2 mL tube of 96-well Collection Microtubes (Qiagen) into which 500 ⁇ L/tube of RNAprotect Tissue Reagent (Thermo) was preliminarily dispensed, and store the tissue piece immersed in the reagent (-30°C). did. Tissue pieces were collected from the following 12 organs: liver, kidney, spleen, pancreas, heart, lungs, stomach, large intestine, brain, skeletal muscle, mammary gland (fat), and skin.
  • a triple anesthetic mixture medetomidine, midazolam, and butorphanol
  • magMAX mirVana Total RNA Isolation Kit (Thermo; hereinafter referred to as mirVana kit) was used to extract total RNA from the collected tissue pieces. Centrifuge the 96-well Collection Microtubes storing the tissue pieces (1000 x g, 3 minutes, 4°C) to remove the RNAprotect Tissue Reagent, and then add the lysis buffer (0.7% 2-mercaptoethanol) provided with the mirVana kit.
  • Tissue homogenate was prepared by adding one stainless steel bead (5 mm diameter, QIAGEN) to each tube of Collection Microtubes, and repeating homogenization for 2 minutes at 30 Hz at room temperature five or more times using TissueLyser II (QIAGEN). .
  • RNA samples were extracted and purified according to the protocol of the mirVana kit, and the process was automated by KingFisher Flex (Thermo). The concentration of each RNA sample was determined by Quant-iT RiboGreen RNA Assay Kit (Thermo). Reverse transcription products were prepared from approximately 10 ng of total RNA using the High-Capacity cDNA Reverse Transcription Kit (Thermo). The kit protocol was followed for the reaction. Real-time PCR was performed on each reverse transcription product using PowerUp SYBR Green Master Mix (Thermo). Gapdh was used as an internal control for PCR. However, the internal control for lung samples was 18S rRNA.
  • the PCR reaction was performed using a StepOnePlus real-time PCR system (Thermo), and 45 cycles of heat treatment at 95°C for 20 seconds, followed by heat denaturation at 95°C for 3 seconds and extension reaction at 60°C for 30 seconds were performed.
  • Malat1 expression level was analyzed by comparing Ct values obtained from amplification curves of Malat1 and internal control ( ⁇ Ct method).
  • mmalat1_F4 5'-d(ACATTCCTTGAGGTCGGCAA)-3' (SEQ ID NO: 2)
  • mmalat1_R4 5'-d(CACCCGCAAAGGCCTACATA)-3' (SEQ ID NO: 3)
  • mGapdh_F3 5'-d(TCACCACCATGGAGAAGGC)-3'
  • mGapdh_R3 5'-d(GCTAAGCAGTTGGTGGTGCA)-3'
  • m18SrRNA_F1 5'-d(GTAACCCGTTGAACCCCATT)-3' (SEQ ID NO: 6)
  • m18SrRNA_R1 5'-d(CCATCCAATCGGTAGTAGCG)-3' (SEQ ID NO: 7).
  • Example 7 Administration test to mice 2 The dose of conjugated ASO (compound A) and unconjugated ASO (naked ASO) was changed and the test was conducted in the same manner as in Example 6, and the expression level of the target gene (Malat1) in brain tissue was measured. .
  • Example 8 Administration test on mice 3 Using conjugated ASO (compounds B and C) and unconjugated ASO (naked ASO), the dose was 100 ⁇ g, and the test was conducted in the same manner as in Example 6. Expression of target gene (Malat1) in brain tissue The amount was measured.
  • Example 9 Synthesis of Compound X
  • the results of MALDI-TOF-MS for Compound X were calculated value [MH] - :5988.90 and actual value [MH] - :5989.44.
  • Example 10 Administration test on mice 4 Using conjugated ASO (compound It was measured.
  • Example 11 Administration test on mice 5 Using conjugated ASO (Compound A, Compound The expression level of Malat1) was measured.
  • Example 12 Administration test on mice 6 Using conjugated ASO (Compound D, Compound E) and unconjugated ASO (naked ASO), the dose was 100 ⁇ g, and the test was conducted in the same manner as in Example 6. The expression level was measured.
  • Compound F was synthesized as follows. Mix an aqueous solution of 6 mM compound 19 (50 ⁇ L, 0.3 ⁇ mol), a DMSO solution of 72 mM trivalent linker PNP (42 ⁇ L, 10 eq.), and DIPEA (3 ⁇ L, 57 eq.) at 40 °C for 3 hours. Shake. After confirming the disappearance of Compound 19 by reverse phase HPLC, crude purification was performed by twice ethanol precipitation. The pellet was dissolved in distilled water (50 ⁇ L) and mixed with a 100 mM DMSO solution of compound 10 (30 ⁇ L, 10 eq.). It was shaken at 40°C for 3 hours. The reaction solution was purified by HPLC.
  • the target elution solution was concentrated using a centrifugal concentrator and then dissolved in distilled water. After confirming that this solution was the target compound F by MALDI-TOF-MS, it was converted into a sodium salt suitable for use in in vivo experiments.
  • the results of MALDI-TOF-MS for Compound F were calculated value [MH] - :7476.62 and actual value [MH] - :7475.28.
  • Compound G was synthesized as follows. 6 mM aqueous solution of compound 19 (50 ⁇ L, 0.3 ⁇ mol), 24 mM Fmoc-Val-Ala-PAB-PNP in DMSO solution (35 ⁇ L, 2.8 eq.), and 100 mM sodium borate buffer (80 ⁇ L, pH 9.3) ) and shaken at 50°C for 1 hour. Furthermore, a DMSO solution (35 ⁇ L, 2.8 eq.) of 24 mM Fmoc-Val-Ala-PAB-PNP was added, and the mixture was shaken at 50°C for 1 hour, and then purified by ethanol precipitation.
  • the pellet was dissolved in distilled water (80 ⁇ L), piperidine (20 ⁇ L) was added, and the mixture was shaken at 50°C for 1 hour. After ethanol precipitation, the main product was fractionated by HPLC, lyophilized, and dissolved again in distilled water (80 ⁇ L). From this point on, it was synthesized in the same manner as Compound A, and after confirming that it was the desired Compound G using MALDI-TOF-MS, it was converted into a sodium salt suitable for use in in vivo experiments. .
  • the results of MALDI-TOF-MS for Compound G were a calculated value [MH] - :6273.2 and an actual value [MH] - :6276.1.
  • Example 15 Administration test on mice 7 Using conjugated ASO (compound F, compound G) and unconjugated ASO (naked ASO), the dose was 100 ⁇ g, and the test was conducted in the same manner as in Example 6. The expression level was measured.

Abstract

The present invention addresses the problem of providing a technique for effectively exerting the activity of a polynucleotide in the brain. The problem is solved by a compound represented by general formula (1) [In the formula, Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide. Lk represents a divalent group that is a linker. Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide.], or a salt thereof, or solvates thereof.

Description

糖連結ポリヌクレオチドsugar-linked polynucleotide
 本発明は、化合物連結ポリヌクレオチド等に関する。 The present invention relates to compound-linked polynucleotides and the like.
 疾病の原因となる遺伝子の発現を制御し、その治療や予防を実現しようとする核酸医薬に近年大きな注目が集まっている。核酸医薬はその作用機序や有効成分となる核酸の構造の違いから様々なタイプに分類されている。その多くが、標的とする遺伝子の発現を配列特異的に制御可能であるという特徴を有する。そのため、これを利用して有効な治療法が見出されていない多くの難治性疾患に対する新たな治療法につながることが期待される。 In recent years, much attention has been focused on nucleic acid medicines that aim to control the expression of genes that cause diseases and achieve their treatment and prevention. Nucleic acid medicines are classified into various types based on their mechanisms of action and the structure of the nucleic acid that serves as their active ingredient. Most of them have the characteristic that they can control the expression of the target gene in a sequence-specific manner. Therefore, it is expected that this will lead to new treatments for many intractable diseases for which no effective treatments have been found.
 脳には血液脳関門が存在することから、通常、核酸医薬は通過することができない。このため、核酸医薬の活性を脳内で効果的に発揮させる技術が望まれている。特許文献1には、グルコースとアスパラギン酸で修飾されたミセルに核酸等の薬剤を内包させて、脳細胞内で輸送する技術が報告されている。しかし、医薬品として用いる場合には、粒度分布、ミセルの形態、表面電荷、膜の熱力学特性、有効成分の封入率等の品質の管理に多大な労力を要してしまう。 Because there is a blood-brain barrier in the brain, nucleic acid drugs usually cannot pass through it. Therefore, there is a need for a technology that allows nucleic acid drugs to effectively exert their activity in the brain. Patent Document 1 reports a technique for transporting drugs such as nucleic acids into micelles modified with glucose and aspartic acid within brain cells. However, when used as a pharmaceutical, a great deal of effort is required to control quality such as particle size distribution, micelle morphology, surface charge, thermodynamic properties of the membrane, and encapsulation rate of active ingredients.
国際公開第2017/002979号International Publication No. 2017/002979
 本発明は、ポリヌクレオチドの活性を脳内で効果的に発揮させる技術を提供することを課題とする。 An object of the present invention is to provide a technique for effectively exerting the activity of polynucleotides in the brain.
 本発明者は上記課題に鑑みて鋭意研究を進めた結果、ポリヌクレオチドにリンカーを介して単糖を連結することにより、当該ポリヌクレオチドの活性を脳内で効果的に発揮させることができることを見出した。本発明者はこの知見に基づいてさらに研究を進めた結果、本発明を完成させた。即ち、本発明は、下記の態様を包含する。 As a result of intensive research in view of the above problems, the present inventor discovered that by linking a monosaccharide to a polynucleotide via a linker, the activity of the polynucleotide can be effectively exerted in the brain. Ta. The present inventor conducted further research based on this knowledge and completed the present invention. That is, the present invention includes the following aspects.
 項1. 一般式(1): Item 1. General formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中:Msは単糖から1つの原子又は基が除かれてなる1価の基を示す。Lkはリンカーである2価の基を示す。Pnはポリヌクレオチドから1つの原子又は基が除かれてなる1価の基を示す。]
で表される化合物若しくはその塩又はそれらの溶媒和物。
[In the formula: Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide. Lk represents a divalent group that is a linker. Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide. ]
A compound represented by: or a salt thereof or a solvate thereof.
 項2. 前記単糖がグルコーストランスポーター1のリガンドである、項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 2. Item 2. The compound, a salt thereof, or a solvate thereof according to item 1, wherein the monosaccharide is a ligand for glucose transporter 1.
 項3. 前記単糖が六炭糖である、項1又は2に記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 3. Item 3. The compound, salt thereof, or solvate thereof according to item 1 or 2, wherein the monosaccharide is a hexose.
 項4. 前記Msが前記単糖の4位又は6位のヒドロキシ基から水素原子が除かれてなる1価の基である、項3に記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 4. Item 3. The compound, a salt thereof, or a solvate thereof according to Item 3, wherein Ms is a monovalent group obtained by removing a hydrogen atom from the hydroxyl group at the 4th or 6th position of the monosaccharide.
 項5. 前記リンカーが主鎖を構成する少なくとも1つの炭素原子がヘテロ原子及び/又は連結構造に置き換えられていてもよい炭化水素鎖である、項1~4のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 5. The compound or a salt thereof according to any one of Items 1 to 4, wherein the linker is a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a hetero atom and/or a linking structure, or a salt thereof. solvates of.
 項6. 前記連結構造が、トリアゾール環を含む連結構造及び/又はアミド結合を含む連結構造を含む、項5に記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 6. Item 6. The compound or a salt thereof, or a solvate thereof according to Item 5, wherein the linked structure includes a linked structure containing a triazole ring and/or a linked structure containing an amide bond.
 項7. 前記Lkの主鎖構成原子数が6以上である、項1~6のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 7. The compound, salt thereof, or solvate thereof according to any one of Items 1 to 6, wherein the number of atoms constituting the main chain of Lk is 6 or more.
 項8. 前記Pnが前記ポリヌクレオチドの末端ヌクレオチドから1つの原子又は基が除かれてなる1価の基である、項1~7のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 8. Item 8. The compound, salt thereof, or solvate thereof according to any one of Items 1 to 7, wherein the Pn is a monovalent group obtained by removing one atom or group from the terminal nucleotide of the polynucleotide.
 項9. 前記Pnが前記ポリヌクレオチドの末端ヌクレオチドのリン酸基から1つの水素原子が除かれてなる1価の基である、項1~8のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 9. Item 8. The compound, salt thereof, or solvate thereof according to any one of items 1 to 8, wherein the Pn is a monovalent group obtained by removing one hydrogen atom from the phosphate group of the terminal nucleotide of the polynucleotide. .
 項10. 前記ポリヌクレオチドがアンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA、DNA(アンチジーン核酸)、又はDNA/RNAヘテロ二重鎖である、項1~9のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物。 Section 10. Any one of Items 1 to 9, wherein the polynucleotide is an antisense polynucleotide, siRNA, miRNA, miRNA precursor, aptamer, guide RNA, mRNA, DNA (antigene nucleic acid), or a DNA/RNA heteroduplex. The described compounds or salts thereof or solvates thereof.
 項11. 項1~10のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物を含有する、医薬。 Section 11. A medicament containing the compound according to any one of Items 1 to 10, a salt thereof, or a solvate thereof.
 項12. 脳送達用である、項11に記載の医薬。 Section 12. The medicament according to item 11, which is for brain delivery.
 項13. 項1~10のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物を含有する、試薬。 Section 13. A reagent containing the compound according to any one of Items 1 to 10, a salt thereof, or a solvate thereof.
 本発明によれば、ポリヌクレオチドの活性を脳内で効果的に発揮させる技術を提供することができる。具体的には、特定構造を有する糖連結ポリヌクレオチドを提供することができる。 According to the present invention, it is possible to provide a technique for effectively exerting the activity of polynucleotides in the brain. Specifically, sugar-linked polynucleotides having a specific structure can be provided.
実施例6の脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。**はテューキー検定を実施した場合のsalineに対するp値が0.01未満であることを示す。‡はテューキー検定を実施した場合のnaked ASOに対するp値が0.01未満であることを示す。2 shows the measurement results of Malat1 expression level in the brain in Example 6. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed. ‡ indicates that the p-value for naked ASO is less than 0.01 when performing the Tukey test. 実施例7の脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。横軸の数値は、投与したASOの量(単位:μg)を示す。*はテューキー検定を実施した場合のnaketASO に対するp値が0.05未満であることを示す。2 shows the measurement results of Malat1 expression level in the brain in Example 7. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples. The numbers on the horizontal axis indicate the amount of ASO administered (unit: μg). * indicates that the p-value for naketASO is less than 0.05 when performing the Tukey test. 実施例8の脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。**はテューキー検定を実施した場合のsalineに対するp値が0.01未満であることを示す。2 shows the measurement results of Malat1 expression level in the brain in Example 8. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed. 実施例10の脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。*と**はテューキー検定を実施した場合のsalineに対するp値が0.05未満と0.01未満であることを示す。‡はテューキー検定を実施した場合のnaked ASO2に対するp値が0.01未満であることを示す。2 shows the measurement results of Malat1 expression level in the brain of Example 10. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples. * and ** indicate that the p value for saline is less than 0.05 and less than 0.01 when Tukey's test is performed. ‡ indicates that the p-value for naked ASO2 is less than 0.01 when performing the Tukey test. 実施例11の各組織(横軸)中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。グラフの上段に投与したコンジュゲートASOを示す。The measurement results of Malat1 expression level in each tissue (horizontal axis) of Example 11 are shown. The vertical axis shows the relative value of Malat1 expression level. Conjugate ASO administered is shown at the top of the graph. 実施例12の脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。**はテューキー検定を実施した場合のsalineに対するp値が0.01未満であることを示す。#はテューキー検定を実施した場合のNaked ASO に対するp値が0.05未満であることを示す。2 shows the measurement results of Malat1 expression level in the brain of Example 12. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples. ** indicates that the p value for saline is less than 0.01 when Tukey's test is performed. # indicates that the p-value for Naked ASO is less than 0.05 when performing the Tukey test. 実施例Xの脳中のMalat1発現量の測定結果を示す。縦軸は、Malat1発現量の相対値を示す。横軸は投与したサンプルを示す。1 shows the measurement results of Malat1 expression level in the brain of Example X. The vertical axis shows the relative value of Malat1 expression level. The horizontal axis shows the administered samples.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions "contain" and "comprising" include the concepts of "containing", "containing", "consisting essentially" and "consisting only".
 1.糖連結ポリヌクレオチド
 本発明は、その一態様において、一般式(1):
1. Sugar-linked polynucleotide In one embodiment of the present invention, the general formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される化合物(本明細書において、「本発明の糖連結ポリヌクレオチド」と示すこともある。)若しくはその塩又はそれらの溶媒和物(これらをまとめて、本明細書において、「本発明の有効成分」と示すこともある)、に関する。以下にこれについて説明する。 The compound represented by (herein sometimes referred to as the "sugar-linked polynucleotide of the present invention") or a salt thereof or a solvate thereof (these are collectively referred to herein as the "sugar-linked polynucleotide of the present invention") (sometimes referred to as "active ingredients of"). This will be explained below.
 一般式(1)中、Msは単糖から1つの原子又は基が除かれてなる1価の基を示す。 In the general formula (1), Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide.
 単糖は、グルコーストランスポーター1のリガンドであることが好ましい。グルコーストランスポーター1の遺伝子は、例えばヒトにおいてはNCBI Gene ID:6513の遺伝子(SLC2A1遺伝子)であり、他の動物においても、公知であるか、或いは公知の動物の遺伝子との配列同一性解析に基づいて容易に同定することができる。このため、グルコーストランスポーター1のアミノ酸配列及びコード配列は、公知の情報に従って容易に知得することが可能である。 Preferably, the monosaccharide is a glucose transporter 1 ligand. The gene for glucose transporter 1 is, for example, the gene with NCBI Gene ID: 6513 (SLC2A1 gene) in humans, and is known in other animals or has been analyzed for sequence identity with known animal genes. can be easily identified based on Therefore, the amino acid sequence and coding sequence of glucose transporter 1 can be easily obtained according to known information.
 「グルコーストランスポーター1のリガンドである」とは、細胞膜上に発現するグルコーストランスポーター1に結合し、当該グルコーストランスポーター1を介して細胞内に輸送される分子であり、その限りにおいて特に制限されない。リガンドであるか否かは、公知の情報に基づいて或いは公知の方法に従って(例えば、文献1:Life Sci Alliance. 2021 Feb 3;4(4):e202000858. doi: 10.26508/lsa.202000858. Print 2021 Apr.、文献2:J Dairy Sci. 2012 Mar;95(3):1188-97. doi: 10.3168/jds.2011-4430.、文献3:Biochemistry. 1992 Oct 27;31(42):10414-20. doi: 10.1021/bi00157a032.等に記載の情報或いは方法に従って)、判定することができる。 "A ligand for glucose transporter 1" refers to a molecule that binds to glucose transporter 1 expressed on the cell membrane and is transported into the cell via the glucose transporter 1, and is not particularly limited as long as it is a molecule. . Whether it is a ligand or not is determined based on known information or according to a known method (for example, Document 1: Life Sci Alliance. 2021 Feb 3;4(4):e202000858. doi: 10.26508/lsa.202000858. Print 2021 Apr., Reference 2: J Dairy Sci. 2012 Mar;95(3):1188-97. doi: 10.3168/jds.2011-4430., Reference 3: Biochemistry. 1992 Oct 27;31(42):10414-20 doi: 10.1021/bi00157a032.).
 単糖は、グルコーストランスポーター1のリガンドとしての機能の観点から、六炭糖であることが特に好ましい。六炭糖としては、例えばグルコース、マンノース、ガラクトース、N-アセチルグルコサミン、フルクトース、アロース、タロース、グロース、アルトロース、イドース、プシコース、ソルボース、タガトース等が挙げられる。また、これらはD体又はl体のいずれでもよいが、D体であることが特に好ましい。また、これらは一部のヒドロキシ基が還元されて水素原子に置換されていてもよいし、一部のヒドロキシ基が公知の保護基(例えばアルキル基)で保護されていても、硫酸基等の官能基又はハロゲン原子で置換されていてもよい。このような誘導体としては、例えば2-デオキシ-グルコース、3-O-アルキル-グルコース(例えば3-O-メチル-グルコース)、1-O-アルキル-グルコース(例えば1-O-ノニル-グルコース)、1-デオキシ-1-フルオロ-グルコース等が挙げられる。これらの中でも、グルコーストランスポーター1のリガンドとしての機能の観点から、好ましくはグルコース、マンノース、ガラクトース、グルコサミンが挙げられ、特に好ましくはグルコースが挙げられる。 The monosaccharide is particularly preferably a hexose from the viewpoint of its function as a ligand for glucose transporter 1. Examples of hexoses include glucose, mannose, galactose, N-acetylglucosamine, fructose, allose, talose, gulose, altrose, idose, psicose, sorbose, tagatose, and the like. Further, these may be either D-form or L-form, but D-form is particularly preferred. In addition, some of the hydroxy groups may be reduced and replaced with hydrogen atoms, or some of the hydroxy groups may be protected with known protecting groups (for example, alkyl groups), or even if some of the hydroxy groups are protected with known protecting groups (for example, alkyl groups), sulfate groups, etc. It may be substituted with a functional group or a halogen atom. Such derivatives include, for example, 2-deoxy-glucose, 3-O-alkyl-glucose (e.g. 3-O-methyl-glucose), 1-O-alkyl-glucose (e.g. 1-O-nonyl-glucose), Examples include 1-deoxy-1-fluoro-glucose. Among these, preferred are glucose, mannose, galactose, and glucosamine, and particularly preferred is glucose, from the viewpoint of the function as a ligand for glucose transporter 1.
 Msにおいて、単糖から除かれる原子としては、典型的にはヒドロキシ基内の水素原子が挙げられる。また、単糖から除かれる基としては、例えばヒドロキシ基が挙げられる。Msは、好ましくは、単糖のヒドロキシ基から水素原子が除かれてなる1価の基である。単糖が六炭糖である場合、Msは、好ましくは単糖の2位、3位、4位、又は6位のヒドロキシ基から水素原子が除かれてなる1価の基であり、特に好ましくは単糖の4位又は6位のヒドロキシ基から水素原子が除かれてなる1価の基である。 In Ms, the atoms removed from the monosaccharide typically include the hydrogen atom within the hydroxy group. Furthermore, examples of groups removed from monosaccharides include hydroxy groups. Ms is preferably a monovalent group formed by removing a hydrogen atom from a hydroxyl group of a monosaccharide. When the monosaccharide is a hexose, Ms is preferably a monovalent group obtained by removing a hydrogen atom from the hydroxyl group at the 2nd, 3rd, 4th, or 6th position of the monosaccharide, and particularly preferably is a monovalent group formed by removing a hydrogen atom from the 4- or 6-position hydroxyl group of a monosaccharide.
 Msは、より具体的な態様においては、好ましくは一般式(M1)又は一般式(M2): In a more specific embodiment, Ms is preferably general formula (M1) or general formula (M2):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中:Rm1、Rm2及びRm3は同一又は異なって、ヒドロキシ基、置換されていてもよいアルコキシ基、ハロゲン原子、又は水素原子を示す。]
で表される1価の基であり、特に好ましくは一般式(M1)で表される1価の基である。
[In the formula: R m1 , R m2 and R m3 are the same or different and represent a hydroxy group, an optionally substituted alkoxy group, a halogen atom, or a hydrogen atom. ]
A monovalent group represented by formula (M1) is particularly preferred.
 アルコキシ基には、直鎖状及び分枝鎖状のいずれのものも包含される。アルコキシ基は、好ましくは直鎖状である。アルコキシ基の炭素数は、特に制限されず、例えば1~15であり、好ましくは1~12、より好ましくは1~10、さらに好ましくは1~6、特に好ましくは1~4である。該アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキソキシ基、オクトキシ、ノノキシ基等が挙げられる。アルコキシ基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていてもよい。 Alkoxy groups include both linear and branched groups. The alkoxy group is preferably linear. The number of carbon atoms in the alkoxy group is not particularly limited, and is, for example, from 1 to 15, preferably from 1 to 12, more preferably from 1 to 10, still more preferably from 1 to 6, particularly preferably from 1 to 4. Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentoxy group, hexoxy group, octoxy group, Examples include nonoxy group. The alkoxy group may be substituted with a halogen atom such as a fluorine atom, chlorine atom, bromine atom, or iodine atom.
 ハロゲン原子としては、特に制限されず、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらの中でも、特に好ましくはフッ素原子が挙げられる。 The halogen atom is not particularly limited and includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like. Among these, fluorine atoms are particularly preferred.
 Rm1、Rm2及びRm3の内、少なくとも1つはヒドロキシ基であることが好ましく、少なくとも2つはヒドロキシ基であることがより好ましい。Rm1、Rm2及びRm3は全てヒドロキシ基であることが特に好ましい。 At least one of R m1 , R m2 and R m3 is preferably a hydroxy group, and more preferably at least two are hydroxy groups. It is particularly preferred that R m1 , R m2 and R m3 are all hydroxy groups.
 一般式(M1)又は一般式(M2)は、さらに具体的な態様においては、好ましくは一般式(M1a)又は一般式(M2a): In a more specific embodiment, general formula (M1) or general formula (M2) is preferably general formula (M1a) or general formula (M2a):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[一般式(M1)及び一般式(M2)中:Rm1、Rm2及びRm3は前記に同じである。]である。 [In general formula (M1) and general formula (M2): R m1 , R m2 and R m3 are the same as above. ].
 一般式(1)中、Lkはリンカーである2価の基を示す。 In general formula (1), Lk represents a divalent group that is a linker.
 リンカーは、MsとPnとの間に介在し、フレキシブルに稼働可能な構造である限り、特に制限されない。リンカーは、鎖状構造のみからなるものであってもよいし、鎖状構造と環構造を含むものであってもよい。また、鎖状構造は、直鎖状であってもよいし、分岐鎖状であってもよい。鎖状構造が分岐鎖状である場合、分岐鎖において、単糖が連結されていてもよく、この場合、本発明の糖連結ポリヌクレオチドには、2つ以上の単糖が連結されている。この場合、一般式(1)は、例えば一般式(1A): The linker is not particularly limited as long as it is interposed between Ms and Pn and has a structure that allows flexible operation. The linker may consist of only a chain structure or may include a chain structure and a ring structure. Further, the chain structure may be linear or branched. When the chain structure is branched, monosaccharides may be linked in the branched chain, and in this case, two or more monosaccharides are linked to the sugar-linked polynucleotide of the present invention. In this case, general formula (1) is, for example, general formula (1A):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
であることができる。Lka及びLKbはそれぞれLKの定義と同様である。pは例えば2~10、2~5、2~4、2~3、又は3である。 can be. Lk a and LK b each have the same definition as LK. p is, for example, 2-10, 2-5, 2-4, 2-3, or 3.
 リンカーは、より具体的には、主鎖を構成する少なくとも1つの炭素原子がヘテロ原子及び/又は連結構造に置き換えられていてもよい炭化水素鎖であることが好ましい。主鎖を構成する少なくとも1つの炭素原子がヘテロ原子及び/又は連結構造に置き換えられている場合、置き換えられた炭素原子の数は、例えば1~5、好ましくは1~3、より好ましくは1~2である。 More specifically, the linker is preferably a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom and/or a linking structure. When at least one carbon atom constituting the main chain is replaced by a heteroatom and/or a linked structure, the number of replaced carbon atoms is, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 3. It is 2.
 炭化水素鎖としては、好ましくはアルキレン基が挙げられる。アルキレン基は、直鎖状及び分岐鎖状のいずれであることもできるが、好ましくは直鎖状である。アルキレン基の主鎖(MsとPnとを連結する鎖)を構成する炭素原子数は、脳内でのポリヌクレオチドの活性の観点から、好ましくは6以上である。当該炭素原子数は、より好ましくは6~40、さらに好ましくは8~30、よりさらに好ましくは10~20である。 Preferably, the hydrocarbon chain is an alkylene group. The alkylene group can be either linear or branched, but is preferably linear. The number of carbon atoms constituting the main chain of the alkylene group (the chain connecting Ms and Pn) is preferably 6 or more from the viewpoint of the activity of the polynucleotide in the brain. The number of carbon atoms is more preferably 6 to 40, still more preferably 8 to 30, even more preferably 10 to 20.
 ヘテロ原子としては、例えば酸素原子、硫黄原子、窒素原子等が挙げられる。アルキレン基の主鎖を構成する少なくとも1つの炭素原子が酸素原子に置き換えられる場合、具体的には、アルキレン基の主鎖の-CH2-が例えば-O-等に置き換えられる。アルキレン基の主鎖を構成する少なくとも1つの炭素原子が硫黄原子に置き換えられる場合、具体的には、アルキレン基の主鎖の-CH2-が例えば-S-、-S(=O)2-、-S(=O)-等に置き換えられる。アルキレン基の主鎖を構成する少なくとも1つの炭素原子が窒素原子に置き換えられる場合、具体的には、アルキレン基の主鎖の-CH2-が例えば-NR-(Rは水素原子又は炭化水素基(好ましくはアルキル基、より好ましくは炭素数1~8のアルキル基)を示す。)等に置き換えられる。 Examples of the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom. When at least one carbon atom constituting the main chain of the alkylene group is replaced with an oxygen atom, specifically, -CH 2 - in the main chain of the alkylene group is replaced with, for example, -O-. When at least one carbon atom constituting the main chain of the alkylene group is replaced with a sulfur atom, specifically, -CH 2 - in the main chain of the alkylene group is replaced with -S-, -S(=O) 2 -, for example. , -S(=O)-, etc. When at least one carbon atom constituting the main chain of the alkylene group is replaced with a nitrogen atom, specifically, -CH 2 - in the main chain of the alkylene group is replaced with -NR- (R is a hydrogen atom or a hydrocarbon group). (preferably an alkyl group, more preferably an alkyl group having 1 to 8 carbon atoms).
 連結構造は、同一又は異なる2つの反応性基が反応して形成される結合構造である2価の基である限り、特に制限されない。反応性基としては、例えばアミノ基、カルボキシ基、ヒドロキシ基、ケトン基、エチニル基、ビニル基、アジド基、エポキシ基、アルデヒド基、オキシルアミノ基、チオール基、イソシアネート基、イソチオシアネート基等が挙げられる。 The connecting structure is not particularly limited as long as it is a divalent group that is a bonding structure formed by the reaction of two identical or different reactive groups. Examples of the reactive group include an amino group, a carboxy group, a hydroxy group, a ketone group, an ethynyl group, a vinyl group, an azide group, an epoxy group, an aldehyde group, an oxylamino group, a thiol group, an isocyanate group, an isothiocyanate group, etc. It will be done.
 反応性基間の反応の例は以下のとおりである:
アミノ基はカルボキシ基(或いはカルボキシ基をN-ヒドロキシスクシンイミド(NHS)でエステル化してなる基)と反応してアミド結合を形成することが知られている。エチニル基は、アジド基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。シクロオクチンは、アジド基と1,3‐双極子付加環化反応することにより、1,2,3‐トリアゾール環を形成することが知られている。アミノ基は、カルボキシ基と反応してアミド結合を形成する。カルボキシ基は、ヒドロキシ基と反応してエステル結合を形成することが知られている。カルボキシ基は、チオール基と反応してチオエステル結合を形成することが知られている。リン酸基は、ヒドロキシ基と反応してホスホジエステル結合を形成することが知られている。ビニル基は、チオール基と反応して結合を形成する。エポキシ基はアミノ基やチオール基と反応し結合を形成する。アルデヒド基はアミノ基と反応し、シッフ塩基を形成し、それを還元すると結合を形成する。オキシルアミノ基はケトン基、アルデヒド基と反応し、オキシムを形成する。
Examples of reactions between reactive groups are:
It is known that an amino group reacts with a carboxy group (or a group formed by esterifying a carboxy group with N-hydroxysuccinimide (NHS)) to form an amide bond. It is known that an ethynyl group forms a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group. Cyclooctyne is known to form a 1,2,3-triazole ring through a 1,3-dipolar cycloaddition reaction with an azide group. Amino groups react with carboxy groups to form amide bonds. Carboxy groups are known to react with hydroxy groups to form ester bonds. Carboxy groups are known to react with thiol groups to form thioester bonds. Phosphate groups are known to react with hydroxy groups to form phosphodiester bonds. Vinyl groups react with thiol groups to form bonds. Epoxy groups react with amino groups and thiol groups to form bonds. Aldehyde groups react with amino groups to form Schiff bases, which upon reduction form bonds. Oxylamino groups react with ketone groups and aldehyde groups to form oximes.
 連結構造は、本発明の一態様において、トリアゾール環を含む連結構造、アミド結合を含む連結構造、(3-チオ)スクシンイミドを含む連結構造、ジスルフィド結合、リン酸ジエステル結合、及び細胞内切断型ペプチド連結結合からなる群より選択される少なくとも1種の連結構造を含むことができる。連結構造は、本発明の一態様において、トリアゾール環を含む連結構造及び/又はアミド結合を含む連結構造を含むことができる。トリアゾール環を含む連結構造は、より具体的には、例えば、1,2,3‐トリアゾール環、或いは1,2,3‐トリアゾール環と他の環(例えば3~8員環)との縮合環(例えば2環又は3環)であることができる。当該縮合環は、さらに具体的には、例えば式(Cy): In one aspect of the present invention, the linked structure includes a linked structure containing a triazole ring, a linked structure containing an amide bond, a linked structure containing (3-thio)succinimide, a disulfide bond, a phosphodiester bond, and an intracellularly cleaved peptide. It can contain at least one type of connecting structure selected from the group consisting of connecting bonds. In one embodiment of the present invention, the linked structure can include a linked structure containing a triazole ring and/or a linked structure containing an amide bond. More specifically, the connected structure containing a triazole ring is, for example, a 1,2,3-triazole ring, or a fused ring of a 1,2,3-triazole ring and another ring (for example, a 3- to 8-membered ring). (e.g. 2 or 3 rings). More specifically, the fused ring has, for example, the formula (Cy):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
であることができる。アミド結合を含む連結構造は、具体的には、例えば、アミド結合(-CO-NR-)、或いは-O-CO-NR-(Rは前記に同じである。)であることができる。 can be. Specifically, the linking structure containing an amide bond can be, for example, an amide bond (-CO-NR-) or -O-CO-NR- (R is the same as above).
 Lkは、より具体的な態様においては、好ましくは一般式(L1): In a more specific embodiment, Lk preferably represents the general formula (L1):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中:Rl1及びRl2は同一又は異なって、単結合、又は連結構造を示す。Rl3及びRl5は同一又は異なって、主鎖を構成する少なくとも1つの炭素原子がヘテロ原子に置き換えられていてもよい炭化水素鎖を示す。Rl4は単結合、又は主鎖を構成する少なくとも1つの炭素原子がヘテロ原子に置き換えられていてもよい炭化水素鎖を示す。*1はMsと連結する部位であり、*2はPnと連結する部位である。]
で表される2価の基である。
[In the formula: R l1 and R l2 are the same or different and represent a single bond or a connected structure. R l3 and R l5 are the same or different and represent a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom. R l4 represents a single bond or a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom. *1 is a site that connects with Ms, and *2 is a site that connects with Pn. ]
It is a divalent group represented by
 主鎖を構成する少なくとも1つの炭素原子がヘテロ原子に置き換えられていてもよい炭化水素鎖は、生分解性構造を含むものであることができる。生分解性構造としては、例えばペプチダーゼの認識切断配列(例えばVal-Ala等)を含むペプチド構造、ジスルフィド結合等が挙げられる。 The hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom can include a biodegradable structure. Examples of the biodegradable structure include a peptide structure containing a peptidase recognition cleavage sequence (eg, Val-Ala, etc.), a disulfide bond, and the like.
 本発明の一態様において、Rl1はトリアゾール環を含む連結構造であり、且つRl2はアミド結合を含む連結構造である。本発明の別の一態様において、Rl1及びRl4は単結合であり、且つRl2はアミド結合を含む連結構造である。 In one embodiment of the present invention, R l1 is a linked structure containing a triazole ring, and R l2 is a linked structure containing an amide bond. In another embodiment of the present invention, R l1 and R l4 are single bonds, and R l2 is a linked structure containing an amide bond.
 本発明の好適な態様において、Rl3及びRl5の主鎖を構成する原子数は、3~10、より好ましくは4~8、特に好ましくは5~7である。本発明の好適な態様において、Rl3及びRl5は、炭化水素鎖、より好ましくはアルキレン基、特に好ましくは直鎖状アルキレン基である。これらの好適な態様である場合、脳内でのポリヌクレオチドの活性を顕著に発揮することができる。 In a preferred embodiment of the present invention, the number of atoms constituting the main chain of R l3 and R l5 is 3 to 10, more preferably 4 to 8, particularly preferably 5 to 7. In a preferred embodiment of the invention, R l3 and R l5 are hydrocarbon chains, more preferably alkylene groups, particularly preferably linear alkylene groups. In these preferred embodiments, the activity of the polynucleotide in the brain can be significantly exhibited.
 一般式(1)中、Pnはポリヌクレオチドから1つの原子又は基が除かれてなる1価の基を示す。 In general formula (1), Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide.
 ポリヌクレオチドは、特に制限されず、DNA、RNA等の他にも、次に例示するように、公知の化学修飾が施されていてもよい。ヌクレアーゼなどの加水分解酵素による分解を防ぐために、各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換することができる。また、各リボヌクレオチドの糖(リボース)の2位の水酸基を、-OR(Rは、例えばCH3(2´-O-Me)、CH2CH2OCH3(2´-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等を示す)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。さらには、リン酸部分やヒドロキシル部分が、例えば、ビオチン、アミノ基、低級アルキルアミン基、アセチル基等で修飾されたものなどを挙げることができるが、これに限定されない。また、ヌクレオチドの糖部の2´酸素と4´炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したものであるBNA(LNA)等もまた、好ましく用いられ得る。 The polynucleotide is not particularly limited, and in addition to DNA, RNA, etc., it may also be subjected to known chemical modifications, as exemplified below. To prevent degradation by hydrolytic enzymes such as nucleases, the phosphate residues of each nucleotide are replaced with chemically modified phosphate residues such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. I can do it. In addition, the hydroxyl group at the 2-position of the sugar (ribose) of each ribonucleotide is replaced by -OR (R is, for example, CH3 (2´-O-Me), CH2CH2OCH3 (2´-O-MOE), CH2CH2NHC(NH)NH2, CH2CONHCH3, CH2CH2CN, etc.) may be substituted. Furthermore, the base moiety (pyrimidine, purine) may be chemically modified, such as introducing a methyl group or cationic functional group to the 5-position of the pyrimidine base, or replacing the carbonyl group at the 2-position with thiocarbonyl. can be mentioned. Further examples include, but are not limited to, those in which the phosphoric acid moiety or hydroxyl moiety is modified with biotin, an amino group, a lower alkylamine group, an acetyl group, or the like. In addition, BNA (LNA), etc., in which the conformation of the sugar moiety of the nucleotide is fixed to N-type by cross-linking the 2' oxygen and 4' carbon of the sugar moiety, can also be preferably used.
 ポリヌクレオチドを構成する核酸塩基には、RNA、DNA等の天然核酸中の典型的な塩基(アデニン(A)、チミン(T)、ウラシル(U)、グアニン(G)、シトシン(C)等)のみならず、これ以外の塩基、例えばヒポキサンチン(I)、修飾塩基等も包含される。修飾塩基としては、例えば、シュードウラシル、3-メチルウラシル、ジヒドロウラシル、5-アルキルシトシン(例えば、5-メチルシトシン)、5-アルキルウラシル(例えば、5-エチルウラシル)、5-ハロウラシル(5-ブロモウラシル)、6-アザピリミジン、6-アルキルピリミジン(6-メチルウラシル)、4-アセチルシトシン、5-(カルボキシヒドロキシメチル)ウラシル、5’-カルボキシメチルアミノメチル-2-チオウラシル、5-カルボキシメチルアミノメチルウラシル、1-メチルアデニン、1-メチルヒポキサンチン、2,2-ジメチルグアニン、3-メチルシトシン、2-メチルアデニン、2-メチルグアニン、N6-メチルアデニン、7-メチルグアニン、5-メトキシアミノメチル-2-チオウラシル、5-メチルアミノメチルウラシル、5-メチルカルボニルメチルウラシル、5-メチルオキシウラシル、5-メチル-2-チオウラシル、2-メチルチオ-N6-イソペンテニルアデニン、ウラシル-5-オキシ酢酸、2-チオシトシン、プリン、2-アミノプリン、イソグアニン、インドール、イミダゾール、キサンチン等が挙げられる。 The nucleobases that make up polynucleotides include typical bases found in natural nucleic acids such as RNA and DNA (adenine (A), thymine (T), uracil (U), guanine (G), cytosine (C), etc.) In addition, bases other than these, such as hypoxanthine (I) and modified bases, are also included. Examples of the modified base include pseudouracil, 3-methyluracil, dihydrouracil, 5-alkylcytosine (e.g., 5-methylcytosine), 5-alkyluracil (e.g., 5-ethyluracil), 5-halouracil (5- Bromouracil), 6-azapyrimidine, 6-alkylpyrimidine (6-methyluracil), 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5'-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl Aminomethyluracil, 1-methyladenine, 1-methylhypoxanthine, 2,2-dimethylguanine, 3-methylcytosine, 2-methyladenine, 2-methylguanine, N6-methyladenine, 7-methylguanine, 5-methoxy Aminomethyl-2-thiouracil, 5-methylaminomethyluracil, 5-methylcarbonylmethyluracil, 5-methyloxyuracil, 5-methyl-2-thiouracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxy Examples include acetic acid, 2-thiocytosine, purine, 2-aminopurine, isoguanine, indole, imidazole, xanthine, and the like.
 ポリヌクレオチドは、他の分子が連結されたもの又は放射性同位体で修飾されたものであってもよい。他の分子としては、例えば蛍光標識等が挙げられる。蛍光標識としては、例えばフルオレセイン、ローダミン、テキサスレッド、テトラメチルローダミン、カルボキシローダミン、フィコエリスリン、6-FAM(商標)、Cy(登録商標)3、Cy(登録商標)5、Alexa Fluor(登録商標)のシリーズ等が挙げられる。連結/修飾の位置は特に制限されず、例えばポリヌクレオチド末端であることができる。 The polynucleotide may be linked with other molecules or modified with a radioactive isotope. Other molecules include, for example, fluorescent labels. Examples of fluorescent labels include fluorescein, rhodamine, Texas red, tetramethylrhodamine, carboxyrhodamine, phycoerythrin, 6-FAM (trademark), Cy (registered trademark) 3, Cy (registered trademark) 5, Alexa Fluor (registered trademark) ) series, etc. The position of linkage/modification is not particularly limited, and can be, for example, at the end of the polynucleotide.
 ポリヌクレオチドは、1本鎖ポリヌクレオチドであることができ、また2本鎖ポリヌクレオチドであることができる。 A polynucleotide can be a single-stranded polynucleotide or a double-stranded polynucleotide.
 ポリヌクレオチドは、例えば、標的遺伝子中の標的配列に結合可能な配列からなる8~50塩基のポリヌクレオチドである。ポリヌクレオチドの長さは、例えば、8塩基以上、9塩基以上、10塩基以上、11塩基以上、12塩基以上、13塩基以上、14塩基以上または15塩基以上であり、また500塩基長以下、200塩基長以下、100塩基長以下、50塩基以下、40塩基以下、30塩基以下、25塩基以下または20塩基以下である。 The polynucleotide is, for example, a polynucleotide of 8 to 50 bases consisting of a sequence capable of binding to a target sequence in a target gene. The length of the polynucleotide is, for example, 8 bases or more, 9 bases or more, 10 bases or more, 11 bases or more, 12 bases or more, 13 bases or more, 14 bases or more, or 15 bases or more, and 500 bases or less, 200 bases or more The length is 100 bases or less, 50 bases or less, 40 bases or less, 30 bases or less, 25 bases or less, or 20 bases or less.
 本発明において、ポリヌクレオチドが2本鎖ポリヌクレオチドである場合、第2の鎖は、標的遺伝子中の標的配列に結合可能な配列からなる第1の鎖であるポリヌクレオチドに結合可能な配列からなるポリヌクレオチドである。この第2の鎖は、例えば、8~500塩基、8塩基以上、9塩基以上、10塩基以上、11塩基以上、12塩基以上、13塩基以上、14塩基以上または15塩基以上であり、また500塩基長以下、200塩基長以下、100塩基長以下、60塩基以下、50塩基以下、40塩基以下、30塩基以下、25塩基以下または20塩基以下である。第2の鎖の長さは、第1の鎖と同じ長さであってもよいし、第1の鎖と結合する限りにおいて、第1の鎖より1または数個の塩基の分短い、あるいは第1の鎖と結合する部位の片側または両側に1または数個の塩基が付加することにより、第2の鎖の長さは第1の鎖より長くてもよい。なお、本明細書において、「1または数個の塩基」とは、1~10個、1~5個、1~3個、ならびに1または2個の塩基を意味する。第2の鎖の好ましい長さは第1の鎖の長さに依存する。例えば、第1の鎖の長さに対して50%以上の長さ、60%以上の長さ、70%以上の長さ、50~100%の長さ、60~100%の長さ、70~100%の長さである。 In the present invention, when the polynucleotide is a double-stranded polynucleotide, the second strand consists of a sequence capable of binding to the polynucleotide, which is the first strand, which consists of a sequence capable of binding to a target sequence in a target gene. It is a polynucleotide. This second strand may be, for example, between 8 and 500 bases, at least 8 bases, at least 9 bases, at least 10 bases, at least 11 bases, at least 12 bases, at least 13 bases, at least 14 bases, or at least 15 bases; The length is less than or equal to a base, 200 bases or less, 100 bases or less, 60 bases or less, 50 bases or less, 40 bases or less, 30 bases or less, 25 bases or less, or 20 bases or less. The length of the second strand may be the same length as the first strand, or one or more bases shorter than the first strand, so long as it binds to the first strand, or The length of the second strand may be longer than the first strand by adding one or several bases to one or both sides of the site that binds to the first strand. In this specification, "one or several bases" means 1 to 10 bases, 1 to 5 bases, 1 to 3 bases, and 1 or 2 bases. The preferred length of the second strand depends on the length of the first strand. For example, the length of the first strand is 50% or more, 60% or more, 70% or more, 50 to 100%, 60 to 100%, 70 ~100% length.
 ポリヌクレオチドが標的配列に「結合する」とは、異なる複数の1本鎖のポリヌクレオチドまたは核酸が、核酸塩基の相補性により2本鎖以上の鎖の核酸を形成し得ることをいう。好適には、2本鎖の核酸を形成し得ることをいう。結合の熱安定性の指標である2本鎖以上の鎖の核酸の融解温度(Tm)は特に限定されない。 A polynucleotide "binding" to a target sequence means that a plurality of different single-stranded polynucleotides or nucleic acids can form a double-stranded or more stranded nucleic acid due to nucleobase complementarity. Preferably, it means that a double-stranded nucleic acid can be formed. The melting temperature (Tm) of a double-stranded or more stranded nucleic acid, which is an indicator of the thermal stability of the bond, is not particularly limited.
 2本鎖核酸の融解温度(Tm)は、例えば、下記のように決定され得る:
緩衝液(8.1mMのNa2HPO4、2.68mMのKCl、1.47mMのKH2PO4、およびpH7.2)中で、ポリヌクレオチドと標的RNAとを等モル混合し、95℃にて5分間加熱後、室温まで徐冷してアニーリングさせ、2本鎖核酸を形成させる。2本鎖核酸の温度を20℃から95℃まで0.5℃/分の昇温速度で加温する際の260nmにおける吸光度(A)の温度(T)による変化を測定し、この測定結果よりdA/dTvsTのグラフを作成し、このグラフにおいてdA/dTの値が最も大きくなる温度、つまりAのTによる変化が最も大きくなる温度を、2本鎖核酸のTmとする。
The melting temperature (Tm) of double-stranded nucleic acids can be determined, for example, as follows:
Polynucleotide and target RNA were mixed equimolarly in buffer (8.1mM Na 2 HPO 4 , 2.68mM KCl, 1.47mM KH 2 PO 4 , and pH 7.2) and incubated at 95°C for 5 minutes. After heating, the mixture is slowly cooled to room temperature and annealed to form double-stranded nucleic acids. When the temperature of double-stranded nucleic acid is heated from 20℃ to 95℃ at a heating rate of 0.5℃/min, the change in absorbance (A) at 260nm due to temperature (T) is measured, and from this measurement result, dA/ A graph of dTvsT is created, and the temperature at which the value of dA/dT is the largest in this graph, that is, the temperature at which the change in A due to T is the largest, is set as the Tm of the double-stranded nucleic acid.
 融解温度(Tm)は、例えば40℃以上であり、好ましくは50℃以上である。 The melting temperature (Tm) is, for example, 40°C or higher, preferably 50°C or higher.
 本明細書において「相補的」とは、異なる2つの1本鎖のポリヌクレオチドまたは核酸が2本鎖核酸を形成することができる対合関係にあることをいう。好ましくは、2本鎖を形成する領域の塩基配列が完全に相補性を有するが、当該2本鎖核酸を形成し得、所望の機能(例えば、発現抑制または調節)を発揮し得る限り、1もしくは数個のミスマッチを有し得る。1もしくは数個のミスマッチとは、ポリヌクレオチドの長さに依存し得るが、1~4個、好ましくは1~3個、さらに好ましくは1または2個のミスマッチを意味している。ポリヌクレオチドは、好ましくは、2本鎖を形成する領域の塩基配列に対して80%以上、90%以上、95%以上、96%以上、97%以上、98%以上または99%以上の相補性を有するか、あるいは完全に(100%)相補性を有するものであってもよい。 As used herein, "complementary" refers to a pairing relationship in which two different single-stranded polynucleotides or nucleic acids can form a double-stranded nucleic acid. Preferably, the base sequences of the double-stranded regions have complete complementarity, but as long as the double-stranded nucleic acid can be formed and the desired function (for example, expression suppression or regulation) can be exerted, one Or it may have several mismatches. One or several mismatches may depend on the length of the polynucleotide, but means 1 to 4, preferably 1 to 3, more preferably 1 or 2 mismatches. The polynucleotide preferably has a complementarity of 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more to the base sequence of the region forming a double strand. or may be completely (100%) complementary.
 ポリヌクレオチドは、細胞内へ導入して使用されることを主な目的としたものであることが好ましい。このような目的のポリヌクレオチドとしては、例えばポリヌクレオチドが、アンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA、DNA(アンチジーン核酸)、又はDNA/RNAヘテロ二重鎖等が挙げられる。 The polynucleotide is preferably one whose main purpose is to be introduced into cells and used. Examples of polynucleotides for such purposes include antisense polynucleotides, siRNAs, miRNAs, miRNA precursors, aptamers, guide RNAs, mRNAs, DNA (antigene nucleic acids), or DNA/RNA heteroduplexes. etc.
 Pnにおいて、ポリヌクレオチドから除かれる原子としては、典型的にはリン酸基又はヒドロキシ基内の水素原子が挙げられる。また、Pnにおいて、ポリヌクレオチドから除かれる基としては、例えばリン酸基、ヒドロキシ基等が挙げられる。 In Pn, the atom removed from the polynucleotide typically includes a hydrogen atom within a phosphate group or a hydroxyl group. Furthermore, in Pn, examples of the group removed from the polynucleotide include a phosphate group, a hydroxy group, and the like.
 Pnは、好ましくはポリヌクレオチドの末端ヌクレオチドから1つの原子又は基が除かれてなる1価の基であり、特に好ましくはポリヌクレオチドの末端ヌクレオチドのリン酸基から1つの水素原子が除かれてなる1価の基である。末端は、5´末端及び3´末端のいずれであることもできるが、脳内でのポリヌクレオチドの活性の観点から5´末端が好ましい。 Pn is preferably a monovalent group obtained by removing one atom or group from the terminal nucleotide of the polynucleotide, particularly preferably one hydrogen atom removed from the phosphate group of the terminal nucleotide of the polynucleotide. It is a monovalent group. Although the terminus can be either the 5' terminus or the 3' terminus, the 5' terminus is preferred from the viewpoint of the activity of the polynucleotide in the brain.
 Pnは、より具体的な態様においては、好ましくは一般式(P1): In a more specific embodiment, Pn preferably has the general formula (P1):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中:Rp1はポリヌクレオチドの末端ヌクレオチドからリン酸基が除かれてなる1価の基を示す。]
 Rp1は、好ましくは、ポリヌクレオチドの5´末端ヌクレオチドからリン酸基が除かれてなる1価の基である。
[In the formula: R p1 represents a monovalent group obtained by removing the phosphate group from the terminal nucleotide of the polynucleotide. ]
R p1 is preferably a monovalent group obtained by removing the phosphate group from the 5' terminal nucleotide of the polynucleotide.
 本発明の糖連結ポリヌクレオチドの塩としては、特に制限されず、例えば、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;および、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、
アスパラギン酸塩のようなアミノ酸塩が挙げられる。
Salts of the sugar-linked polynucleotide of the present invention are not particularly limited, and include, for example, alkali metal salts such as sodium salts, potassium salts, and lithium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and aluminum salts. , metal salts such as iron salts, zinc salts, copper salts, nickel salts, cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts , ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl-phenethylamine salt Amine salts such as organic salts such as , piperazine salts, tetramethylammonium salts, tris(hydroxymethyl)aminomethane salts; such as hydrofluorides, hydrochlorides, hydrobromides, hydroiodides Inorganic acid salts such as hydrohalides, nitrates, perchlorates, sulfates, and phosphates; lower alkanesulfonates such as methanesulfonates, trifluoromethanesulfonates, and ethanesulfonates; Aryl sulfonates such as benzenesulfonate, p-toluenesulfonate, acetate, malate, fumarate, succinate, citrate, tartrate, oxalate, maleate, etc. Organic acid salts; and glycine salts, lysine salts, arginine salts, ornithine salts, glutamic acid salts,
Amino acid salts such as aspartate may be mentioned.
 本発明の糖連結ポリヌクレオチド又はその塩の溶媒和物としては、特に制限されず、例えば水、エタノール、グリセロール、酢酸等の溶媒との溶媒和物が挙げられる。 Solvates of the sugar-linked polynucleotides of the present invention or salts thereof are not particularly limited, and include, for example, solvates with solvents such as water, ethanol, glycerol, and acetic acid.
 本発明の糖連結ポリヌクレオチドは、様々な方法で合成することができる。本発明の糖連結ポリヌクレオチドは、例えば以下のスキームに従って合成することができる。 The sugar-linked polynucleotide of the present invention can be synthesized by various methods. The sugar-linked polynucleotide of the present invention can be synthesized, for example, according to the scheme below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中:Ms、Lk、及びPnは前記に同じである。Lk1及びLk2は同一又は異なって、リンカーである2価の基を示す。Y1及びY2は同一又は異なって、反応性基を示す。] [In the formula: Ms, Lk, and Pn are the same as above. Lk 1 and Lk 2 are the same or different and represent a divalent group that is a linker. Y 1 and Y 2 are the same or different and represent a reactive group. ]
 Lk1又はLk2で示されるリンカーの説明としては、前述したリンカーの説明が援用される。Y1又はY2で示される反応性基の説明としては、前述した反応性基の説明が援用される。 As for the explanation of the linker represented by Lk 1 or Lk 2 , the above-mentioned explanation of the linker is used. As for the description of the reactive group represented by Y 1 or Y 2 , the above-mentioned description of the reactive group is used.
 一般式(a)で示される化合物、及び一般式(b)で示される化合物は、市販のものを使用することができ、或いは公知の方法に従って合成したものを使用することができる。 The compound represented by the general formula (a) and the compound represented by the general formula (b) can be commercially available, or can be synthesized according to a known method.
 反応条件は、反応性基の種類に応じて、公知の情報に従って設定することができる。一例として、後述の実施例1及び実施例4の反応条件を参照することができる。 The reaction conditions can be set according to known information depending on the type of reactive group. As an example, the reaction conditions of Example 1 and Example 4 described below can be referred to.
 反応の進行は、クロマトグラフィーのような通常の方法で追跡することができる。反応終了後、溶媒を留去し、生成物はクロマトグラフィー法、再結晶法等の通常の方法で単離精製することができる。また、生成物の構造は、MALDI-TOF-MS、元素分析、MS(ESI-MS)分析、IR分析、1H-NMR、13C-NMR等により同定することができる。 Progress of the reaction can be followed by conventional methods such as chromatography. After the reaction is completed, the solvent is distilled off, and the product can be isolated and purified by a conventional method such as chromatography or recrystallization. Furthermore, the structure of the product can be identified by MALDI-TOF-MS, elemental analysis, MS (ESI-MS) analysis, IR analysis, 1 H-NMR, 13 C-NMR, etc.
 2.用途
 本発明の糖連結ポリヌクレオチド若しくはその塩又はそれらの溶媒和物(本発明の有効成分)は、他の物質と複合体を形成させずに単独であっても、脳内でポリヌクレオチドの活性を効果的に発揮することができる。ポリヌクレオチドの活性とは、ポリヌクレオチドが有する生理活性、具体的には、例えば、標的遺伝子の発現抑制活性、標的核酸(例えばmiRNA、mRNA、或いはそれらの前駆体等)の機能(対象遺伝子の発現抑制等)の抑制活性、標的分子(例えば、アプタマーの標的分子)の機能抑制活性、等である。
2. Uses The sugar-linked polynucleotide of the present invention, its salt, or a solvate thereof (the active ingredient of the present invention) increases the activity of the polynucleotide in the brain even when used alone without forming a complex with other substances. can be demonstrated effectively. The activity of a polynucleotide refers to the physiological activity possessed by the polynucleotide, specifically, for example, the activity of suppressing the expression of a target gene, the function of a target nucleic acid (e.g. miRNA, mRNA, or their precursor, etc.) (the expression of a target gene) and function-suppressing activity of a target molecule (for example, aptamer target molecule).
 本発明の有効成分は、脳の細胞内への導入を目的とする種々の用途、例えば脳送達用(好ましくは、脳細胞内への送達用)、医薬、試薬等(以下、これらを総称して「本発明の剤」と示すこともある。)に利用することができる。 The active ingredient of the present invention can be used for various purposes, such as for brain delivery (preferably for delivery into brain cells), pharmaceuticals, reagents, etc. (hereinafter collectively referred to as these). (Sometimes referred to as "the agent of the present invention").
 本発明の剤は、本発明の有効成分を含有する限りにおいて特に制限されず、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、薬学的に許容される成分であれば特に限定されるものではないが、例えば賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤や、必要により安定化剤、乳化剤、吸収促進剤、界面活性剤、pH調整剤、防腐剤、抗酸化剤、増量剤、湿潤化剤、表面活性化剤、分散剤、緩衝剤、保存剤、溶解補助剤、無痛化剤等が挙げられる。 The agent of the present invention is not particularly limited as long as it contains the active ingredient of the present invention, and may further contain other ingredients as necessary. Other ingredients are not particularly limited as long as they are pharmaceutically acceptable ingredients, such as excipients, binders, disintegrants, lubricants, colorants, flavorings, and if necessary. Stabilizers, emulsifiers, absorption enhancers, surfactants, pH adjusters, preservatives, antioxidants, bulking agents, wetting agents, surface activators, dispersants, buffers, preservatives, solubilizing agents, Examples include pain-relieving agents.
 本発明の剤の使用態様は、特に制限されず、その種類に応じて適切な使用態様を採ることができる。本発明の剤は、例えばin vitroで使用する(例えば、培養細胞の培地に添加する)こともできるし、in vivoで使用する(例えば、動物に投与する)こともできる。 The mode of use of the agent of the present invention is not particularly limited, and an appropriate mode of use can be adopted depending on the type thereof. The agent of the present invention can be used, for example, in vitro (eg, added to the culture medium of cultured cells) or in vivo (eg, administered to animals).
 本発明の剤の適用対象は特に限定されず、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ等の種々の哺乳類動物; 動物細胞等が挙げられる。細胞の種類も特に制限されず、例えば錐体細胞、星状細胞、顆粒細胞、網膜神経節細胞、プルキンエ細胞等の神経細胞; ミクログリア、アストロサイト、オリゴデンドロサイト、上衣細胞、シュワン細胞、衛星細胞等のグリア細胞; 等が挙げられる。 The subject to which the agent of the present invention can be applied is not particularly limited, and includes, for example, various mammals such as humans, monkeys, mice, rats, dogs, cats, and rabbits; animal cells, etc. The type of cells is not particularly limited, and examples include nerve cells such as cone cells, astrocytes, granule cells, retinal ganglion cells, and Purkinje cells; microglia, astrocytes, oligodendrocytes, ependymal cells, Schwann cells, and satellite cells. glial cells such as;
 本発明の剤を動物に投与する場合、その投与形態は、所望の効果が得られる限り特に制限されず、経口投与、及び非経口投与(例えば静脈注射、筋肉注射、皮下投与、直腸投与、経皮投与、局所投与)のいずれかの投与経路でヒトを含む哺乳類に投与することができる。好ましい投与形態は非経口投与である。経口投与および非経口投与のための剤形およびその製造方法は当業者に周知であり、有効成分を、薬学的に許容される坦体などと混合などすることにより、常法に従って製造することができる。 When administering the agent of the present invention to animals, the mode of administration is not particularly limited as long as the desired effect is obtained, and oral administration, parenteral administration (e.g., intravenous injection, intramuscular injection, subcutaneous administration, rectal administration, They can be administered to mammals, including humans, by any route of administration (dermal administration, topical administration). The preferred mode of administration is parenteral administration. Dosage forms for oral and parenteral administration and their manufacturing methods are well known to those skilled in the art, and can be manufactured in accordance with conventional methods by mixing the active ingredient with a pharmaceutically acceptable carrier, etc. can.
 非経口投与のための剤形は、注射用製剤(例えば、点滴注射剤、静脈注射剤、筋肉注射剤、皮下注射剤、皮内注射剤)、外用剤(例えば、軟膏剤、パップ剤、ローション剤、クリーム、ゲル剤)、坐剤、吸入剤、眼剤、眼軟膏剤、点鼻剤、点耳剤、リポソーム剤などが挙げられる。例えば、注射用製剤は、本発明のオリゴペプチドを注射用蒸留水に溶解して調製し、必要に応じて溶解補助剤、緩衝剤、pH調整剤、等張化剤、無痛化剤、保存剤、及び安定化剤などを添加することができる。本発明の医薬は、用事調製用の凍結乾燥製剤とすることもできる。 Dosage forms for parenteral administration include injectable preparations (e.g., drip injections, intravenous injections, intramuscular injections, subcutaneous injections, intradermal injections), external preparations (e.g., ointments, poultices, lotions). agents, creams, gels), suppositories, inhalants, eye drops, eye ointments, nasal drops, ear drops, and liposomes. For example, an injectable preparation is prepared by dissolving the oligopeptide of the present invention in distilled water for injection, and adding solubilizing agents, buffering agents, pH adjusting agents, isotonic agents, soothing agents, and preservatives as necessary. , a stabilizer, etc. can be added. The medicament of the present invention can also be made into a lyophilized preparation for ex-post preparation.
 本発明の剤は、疾患の治療又は予防に有効な他の薬剤を更に含有していてもよい。本発明の剤は、必要に応じて殺菌剤、消炎剤、細胞賦活剤、ビタミン類、及びアミノ酸などの成分を配合することもできる。 The agent of the present invention may further contain other drugs effective for treating or preventing diseases. The agent of the present invention may also contain components such as bactericides, anti-inflammatory agents, cell activators, vitamins, and amino acids, as required.
 本発明の剤中の本発明の有効成分の含有量は、使用態様、適用対象、適用対象の状態等に左右されるものであり、限定はされないが、例えば0.0001~95重量%、好ましくは0.001~50重量%とすることができる。 The content of the active ingredient of the present invention in the agent of the present invention depends on the mode of use, the subject to which it is applied, the condition of the subject, etc., and is not limited to, for example, 0.0001 to 95% by weight, preferably 0.001% by weight. ~50% by weight.
 本発明の剤を動物に投与する場合の投与量は、薬効を発現する有効量であれば特に限定されず、通常は、有効成分である本発明の有効成分の重量として、一般に経口投与の場合には一日あたり0.1~1000 mg/kg体重、好ましくは一日あたり0.5~50 mg/kg体重であり、非経口投与の場合には一日あたり0.01~100 mg/kg体重、好ましくは0.1~10 mg/kg体重である。上記投与量は1日1回又は2~3回に分けて投与するのが好ましく、年齢、病態、症状により適宜増減することもできる。 The dosage when administering the agent of the present invention to animals is not particularly limited as long as it is an effective amount that exhibits the medicinal effect, and it is generally expressed as the weight of the active ingredient of the present invention, which is the active ingredient, when administered orally. 0.1 to 1000 mg/kg body weight per day, preferably 0.5 to 50 mg/kg body weight per day, and 0.01 to 100 mg/kg body weight per day, preferably 0.1 to 50 mg/kg body weight per day for parenteral administration. 10 mg/kg body weight. The above dosage is preferably administered once a day or divided into 2 to 3 times a day, and can be increased or decreased as appropriate depending on age, pathological condition, and symptoms.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in detail below based on Examples, but the present invention is not limited to these Examples.
 参考例1.化合物2の合成 Reference example 1. Synthesis of compound 2
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 水 (20 mL) 中のグリシンエチルエステル塩酸塩 (14.0 g, 100 mmol) の溶液に ジクロロメタン (40 mL) を加え、混合物を-15℃で撹拌した。この撹拌混合物に、水 (40 mL) 中の 亜硝酸ナトリウム(8.28 g, 120 mmol, 1.2 eq.) の氷冷した溶液を加え、次に H2SO4 (270 μL, 5 mmol, 0.05 eq.) の 水 (9.32 mL) 中の氷冷した溶液を 10 分間かけて加えた。さらに1時間攪拌した後、 飽和重曹水 を同温度で添加し、反応を停止させた。混合物をジクロロメタンと水の間で分離し、内容物を水層からジクロロメタンで2回抽出した。有機層を合わせ、飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させ、蒸発させてエチルグリシンジアゾ誘導体とした。1,5-シクロオクタジエン (86.5 g, 800 mmol, 8eq.) を別のフラスコでジクロロメタン (100 mL) に溶解し、酢酸ロジウム (II) 二量体 (508 mg, 1.15 mmol, 0.0115eq.) を室温で溶液に添加した。この攪拌溶液に、ジクロロメタン (30 mL) 中のエチルグリシンジアゾ誘導体の溶液 (全量) を2時間かけてゆっくりと加えた。揮発分を蒸発させ、残渣をカラムクロマトグラフィー(SiO2、ヘキサン:EtOAc=50:1)により精製し、化合物2(16.09g, 82.8 mmol, 83%)を無色オイルとして得た。ジアステレオマーは互いに分離せず、次のステップでそのまま使用した。
1H NMR (400 MHz, CDCl3) δ 5.57-5.66 (m, 2H), 4.07-4.14 (m, 2H), 2.50 (tt, J = 11.6, 3.9 Hz, 1H), 2.25-2.34 (m, 1H), 2.16-2.24 (m, 2H), 2.01-2.12 (m, 2H), 1.78-1.87 (m, 1H), 1.36-1.59 (m, 3H), 1.26 (tt, J = 7.1, 2.6 Hz, 3H), 1.18 (t, J = 4.6 Hz, 1H). 化合物の NMRスペクトルは報告されているものと一致した。
To a solution of glycine ethyl ester hydrochloride (14.0 g, 100 mmol) in water (20 mL) was added dichloromethane (40 mL) and the mixture was stirred at -15 °C. To this stirred mixture was added an ice-cold solution of sodium nitrite (8.28 g, 120 mmol, 1.2 eq.) in water (40 mL), followed by H 2 SO 4 (270 μL, 5 mmol, 0.05 eq.). ) in water (9.32 mL) was added over 10 minutes. After further stirring for 1 hour, saturated sodium bicarbonate solution was added at the same temperature to stop the reaction. The mixture was partitioned between dichloromethane and water and the contents were extracted from the aqueous layer twice with dichloromethane. The organic layers were combined, washed with saturated brine, dried over sodium sulfate, and evaporated to give the ethylglycine diazo derivative. 1,5-Cyclooctadiene (86.5 g, 800 mmol, 8eq.) was dissolved in dichloromethane (100 mL) in a separate flask and rhodium(II) acetate dimer (508 mg, 1.15 mmol, 0.0115eq.) was added to the solution at room temperature. To this stirring solution was slowly added a solution of ethylglycine diazo derivative (total volume) in dichloromethane (30 mL) over a period of 2 hours. The volatiles were evaporated and the residue was purified by column chromatography (SiO 2 , hexane:EtOAc=50:1) to obtain compound 2 (16.09 g, 82.8 mmol, 83%) as a colorless oil. The diastereomers did not separate from each other and were used as such in the next step.
1 H NMR (400 MHz, CDCl 3 ) δ 5.57-5.66 (m, 2H), 4.07-4.14 (m, 2H), 2.50 (tt, J = 11.6, 3.9 Hz, 1H), 2.25-2.34 (m, 1H) ), 2.16-2.24 (m, 2H), 2.01-2.12 (m, 2H), 1.78-1.87 (m, 1H), 1.36-1.59 (m, 3H), 1.26 (tt, J = 7.1, 2.6 Hz, 3H ), 1.18 (t, J = 4.6 Hz, 1H). The NMR spectrum of the compound was consistent with the reported one.
 参考例2.化合物3の合成 Reference example 2. Synthesis of compound 3
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 氷浴上でジエチルエーテル (200 mL) 中の水素化アルミニウムリチウム (3.14g, 82.8 mmol, 1.0 eq.) の撹拌懸濁液に、ジエチルエーテル (300 mL) 中の化合物 2 (16.1g, 82.8 mmol) の溶液を1時間かけてゆっくりと添加した。同温度で水を加えた後、得られた混合物をCelite Padに通した。濾液を蒸発させ、アルコールとした。得られたアルコールのジクロロメタン (70 mL) 中の撹拌溶液に、臭素(14.5 g, 91.08 mmol, 1.1 eq.) のジクロロメタン (70 mL) 溶液を1時間かけてゆっくりと添加した。飽和亜硫酸水素ナトリウム水を加えた後、同温度で ジクロロメタン と 水 に分離し、内容物を ジクロロメタン で 2 回抽出した。有機層を合わせ、飽和水酸化ナトリウムで洗浄した。NaClで洗浄し、硫酸ナトリウム上で乾燥させ、蒸発させてジブロモ誘導体を得た。氷浴上のTHF(500mL)中のジブロモ誘導体の撹拌溶液に、t-BuOK(1M THF溶液、248mL、248mmol、3eq)を1分かけて加え、還流条件下で2時間撹拌した。混合物を室温まで冷却した後、飽和塩化アンモニウム水を添加した。得られた混合物をジクロロメタンと水の間で分離し、内容物をジクロロメタンで2回抽出した。有機層を合わせ、飽和水溶液で洗浄した。NaClで洗浄し、硫酸ナトリウム上で乾燥させ、そして蒸発させた。得られた残渣をカラムクロマトグラフィー(SiO2、ヘキサン:EtOAc=3:1)で精製して、化合物3(4.73g、31.46mmol、38%(3段階))を黄色オイルとして得た。化合物 3 はジアステレオマーを分離せずに次のステップで使用した。
1H NMR (400 MHz, CDCl3) δ 4.12 (q, J = 7.2 Hz, 1H), 3.73 (d, J = 7.8 Hz, 1H), 3.55 (t, J = 3.2 Hz, 2H), 2.13-2.44 (m, 10H), 2.05 (s, 1H), 1.30-1.66 (m, 6H), 1.24-1.28 (m, 1H), 0.88-0.99 (m, 1H), 0.64-0.74 (m, 3H). 化合物の NMRスペクトルは報告されているものと一致した。
To a stirred suspension of lithium aluminum hydride (3.14 g, 82.8 mmol, 1.0 eq.) in diethyl ether (200 mL) on an ice bath was added compound 2 (16.1 g, 82.8 mmol) in diethyl ether (300 mL). ) solution was added slowly over 1 hour. After adding water at the same temperature, the resulting mixture was passed through a Celite Pad. The filtrate was evaporated to alcohol. To a stirred solution of the resulting alcohol in dichloromethane (70 mL) was slowly added a solution of bromine (14.5 g, 91.08 mmol, 1.1 eq.) in dichloromethane (70 mL) over 1 hour. After adding saturated sodium bisulfite water, the mixture was separated into dichloromethane and water at the same temperature, and the contents were extracted twice with dichloromethane. The organic layers were combined and washed with saturated sodium hydroxide. Washing with NaCl, drying over sodium sulfate and evaporation gave the dibromo derivative. To a stirred solution of the dibromo derivative in THF (500 mL) on an ice bath was added t-BuOK (1M solution in THF, 248 mL, 248 mmol, 3 eq) over 1 minute and stirred under reflux conditions for 2 hours. After the mixture was cooled to room temperature, saturated aqueous ammonium chloride was added. The resulting mixture was partitioned between dichloromethane and water and the contents were extracted twice with dichloromethane. The organic layers were combined and washed with saturated aqueous solution. Washed with NaCl, dried over sodium sulphate and evaporated. The obtained residue was purified by column chromatography (SiO 2 , hexane:EtOAc=3:1) to obtain compound 3 (4.73 g, 31.46 mmol, 38% (3 steps)) as a yellow oil. Compound 3 was used in the next step without separation of diastereomers.
1 H NMR (400 MHz, CDCl 3 ) δ 4.12 (q, J = 7.2 Hz, 1H), 3.73 (d, J = 7.8 Hz, 1H), 3.55 (t, J = 3.2 Hz, 2H), 2.13-2.44 (m, 10H), 2.05 (s, 1H), 1.30-1.66 (m, 6H), 1.24-1.28 (m, 1H), 0.88-0.99 (m, 1H), 0.64-0.74 (m, 3H). Compound The NMR spectrum of was consistent with the reported one.
 参考例3.化合物4の合成 Reference example 3. Synthesis of compound 4
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ジクロロメタン (150 mL) 中の化合物 3 (4.73 g, 31.5 mmol) およびピリジン (6.34 mL, 78.7 mmol, 2.5 eq.) の氷浴上の撹拌混合物に、4-ニトロフェニル クロロホルメート (7.93 g, 39.3 mmol, 1.25 eq.) を添加した。混合物を30分間撹拌した後、飽和塩化アンモニウム水を加えた。混合物を ジクロロメタン と 水 の間で分離し、有機層を 1M 塩酸、飽和重曹水,および飽和食塩水で洗浄し、硫酸ナトリウム上で乾燥させ、蒸発させた。得られた残渣をカラムクロマトグラフィー(SiO2、ヘキサン:EtOAc=15:1)で精製し、化合物4(7.14g、22.7mmol、72%)を黄色油状物として得た。化合物4はジアステレオマーを分離することなく次のステップで使用した。
1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 9.2 Hz, 3H), 7.38-7.41 (m, 3H), 4.41 (d, J = 8.2 Hz, 1H), 4.22 (d, J = 6.4 Hz, 2H), 2.17-2.47 (m, 11H), 1.24-1.62 (m, 6H), 1.02-1.11 (m, 1H), 0.80-0.90 (m, 3H). 化合物の NMRスペクトルは報告されているものと一致した。
4-nitrophenyl chloroformate (7.93 g, 39.3 mmol, 1.25 eq.) was added. After stirring the mixture for 30 minutes, saturated aqueous ammonium chloride was added. The mixture was partitioned between dichloromethane and water, and the organic layer was washed with 1M hydrochloric acid, saturated aqueous sodium bicarbonate, and saturated brine, dried over sodium sulfate, and evaporated. The obtained residue was purified by column chromatography (SiO 2 , hexane:EtOAc=15:1) to obtain Compound 4 (7.14 g, 22.7 mmol, 72%) as a yellow oil. Compound 4 was used in the next step without separation of diastereomers.
1 H NMR (400 MHz, CDCl 3 ) δ 8.29 (d, J = 9.2 Hz, 3H), 7.38-7.41 (m, 3H), 4.41 (d, J = 8.2 Hz, 1H), 4.22 (d, J = 6.4 Hz, 2H), 2.17-2.47 (m, 11H), 1.24-1.62 (m, 6H), 1.02-1.11 (m, 1H), 0.80-0.90 (m, 3H). It matched what was there.
 参考例4.化合物6の合成 Reference example 4. Synthesis of compound 6
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 1,6-ジブロモヘキサン (7.32 g, 30 mmol, 3eq.) をDMSO (60 mL) に溶解させ室温で攪拌した。これに対し、アジ化ナトリウムDMSO溶液 (0.65 g, 10 mmol, 1eq., 20mL) を10分かけて滴下した。滴下終了10分後、TLC にて原料の消失を確認し、減圧濃縮をした後、カラムクロマトグラフィー (SiO2, ヘキサン → テトラヒドロフラン) で精製し、化合物 6 (2.01 g, 9.74 mmol, 97%) を黄色オイルとして得た。1H-NMR (400 MHz, CDCl3) δ 3.42 (t, J = 6.6 Hz, 2H), 3.28 (t, J = 6.9 Hz, 2H), 1.91-1.84 (m, 2H), 1.66-1.57 (m, 3H), 1.52-1.37 (m, 4H). 化合物の NMRスペクトルは報告されているものと一致した。 1,6-dibromohexane (7.32 g, 30 mmol, 3eq.) was dissolved in DMSO (60 mL) and stirred at room temperature. To this, sodium azide DMSO solution (0.65 g, 10 mmol, 1 eq., 20 mL) was added dropwise over 10 minutes. 10 minutes after the dropwise addition was completed, the disappearance of the raw material was confirmed by TLC, and the mixture was concentrated under reduced pressure and purified by column chromatography (SiO 2 , hexane → tetrahydrofuran) to obtain compound 6 (2.01 g, 9.74 mmol, 97%). Obtained as a yellow oil. 1 H-NMR (400 MHz, CDCl 3 ) δ 3.42 (t, J = 6.6 Hz, 2H), 3.28 (t, J = 6.9 Hz, 2H), 1.91-1.84 (m, 2H), 1.66-1.57 (m , 3H), 1.52-1.37 (m, 4H). The NMR spectrum of the compound was consistent with the reported one.
 参考例5.化合物8の合成 Reference example 5. Synthesis of compound 8
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 D-(+)-グルコース (1.8 g, 10 mmol, 1eq.)、塩化亜鉛 (2.04 g, 15 mmol, 1.5eq.)をアセトン (40 mL) に溶解させたのち、濃硫酸 (108 μL, 13 mmol, 1.3eq.) をゆっくり加え、室温で攪拌した。20時間後、TLC にて原料の消失を確認し、飽和重曹水で中和後、セライト濾過をおこなった。ろ液はジエチルエーテルと水による分液をおこない、有機層を3回抽出し混合した。混合有機層は飽和食塩水、硫酸ナトリウムで脱水、減圧濃縮した後、カラムクロマトグラフィー (SiO2, ヘキサン : 酢酸エチル = 2 : 1) で精製し、化合物 8 (2.14 g, 8.23 mmol, 82%) を白色固体として得た。得られた白色個体は、熱したヘキサン-酢酸エチル混合溶媒 (4 : 1) から再結晶し、無色繊維状結晶とした。1H-NMR (400 MHz, CDCl3) δ 5.95 (d, J = 3.7 Hz, 1H), 4.54-4.52 (m, 1H), 4.39-4.30 (m, 2H), 4.20-4.15 (m, 1H), 4.07 (dd, J = 7.8, 2.7 Hz, 1H), 3.99 (q, J = 4.6 Hz, 1H), 2.59 (d, J = 3.7 Hz, 1H), 1.65 (s, 1H), 1.50 (s, 3H), 1.45 (s, 3H), 1.37 (s, 3H), 1.32 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 111.9, 109.8, 105.4, 85.2, 81.3, 75.2, 73.5, 67.7, 27.0, 26.9, 26.3, 25.3, LRMS (ESI): m/z283 [M+Na]+. HRMS (ESI-TOF): Calcd for C12H20O6Na [M+Na]+: 283.1152, Found: 283.1176。 After dissolving D-(+)-glucose (1.8 g, 10 mmol, 1eq.) and zinc chloride (2.04 g, 15 mmol, 1.5eq.) in acetone (40 mL), concentrated sulfuric acid (108 μL, 13 mmol, 1.3eq.) was slowly added and stirred at room temperature. After 20 hours, the disappearance of the raw material was confirmed by TLC, and the mixture was neutralized with saturated sodium bicarbonate solution and filtered through Celite. The filtrate was separated using diethyl ether and water, and the organic layer was extracted three times and mixed. The mixed organic layer was dehydrated with saturated brine and sodium sulfate, concentrated under reduced pressure, and purified by column chromatography (SiO 2 , hexane:ethyl acetate = 2:1) to obtain compound 8 (2.14 g, 8.23 mmol, 82%). was obtained as a white solid. The obtained white solid was recrystallized from a heated hexane-ethyl acetate mixed solvent (4:1) to give colorless fibrous crystals. 1 H-NMR (400 MHz, CDCl 3 ) δ 5.95 (d, J = 3.7 Hz, 1H), 4.54-4.52 (m, 1H), 4.39-4.30 (m, 2H), 4.20-4.15 (m, 1H) , 4.07 (dd, J = 7.8, 2.7 Hz, 1H), 3.99 (q, J = 4.6 Hz, 1H), 2.59 (d, J = 3.7 Hz, 1H), 1.65 (s, 1H), 1.50 (s, 13C -NMR (101 MHz, CDCl 3 ) δ 111.9, 109.8, 105.4, 85.2, 81.3, 75.2, 73.5, 67.7, 27.0, 26.9, 26.3, 25.3, LRMS (ESI): m/z283 [M+Na] + . HRMS (ESI-TOF): Calcd for C 12 H 20 O 6 Na [M+Na] + : 283.1152, Found: 283.1176.
 参考例6.化合物9の合成 Reference example 6. Synthesis of compound 9
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 アルゴン雰囲気下、化合物8 (520 mg, 2mmol, 1eq.) をDMF (20 mL) に溶解させ、60%水素化ナトリウム/ミネラルオイル (160 mg, 4 mmol, 2eq.)を加え室温で攪拌した。10分後、テトラブチルアンモニウムヨージド (887 mg, 2.4 mmol, 1.2eq.)、化合物6 (495 mg, 2.4 mmol, 1.2eq.) を加えた。16時間後、TLC にて原料の消失確認し、水を加えて水素化ナトリウムのクエンチをおこなった。その後、酢酸エチルと水による分液をおこない、有機層を2回抽出し混合した。混合有機層は飽和食塩水、硫酸ナトリウムで脱水、減圧濃縮した後、カラムクロマトグラフィー (SiO2, ヘキサン : 酢酸エチル = 10 : 1) で精製し、化合物 9 (503 mg, 1.31 mmol, 65%) を白色固体として得た。1H-NMR (400 MHz, CDCl3) δ 5.87 (d, J = 3.7 Hz, 1H), 4.53-4.49 (m, 1H), 4.35-4.27 (m, 1H), 4.13-4.06 (m, 2H), 3.99 (dd, J = 8.7, 6.0 Hz, 1H), 3.85 (d, J = 3.2 Hz, 1H), 3.64-3.58 (m, 1H), 3.55-3.47 (m, 1H), 3.27 (t, J = 6.9 Hz, 2H), 1.61 (s, 2H), 1.60-1.55 (m, 3H), 1.50 (s, 3H), 1.43 (s, 3H), 1.41-1.37 (m, 4H), 1.35 (s, 3H), 1.32 (d, J = 4.6 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 111.9, 109.0, 105.4, 82.7, 82.2, 81.3, 72.6, 70.5, 67.4, 51.5, 29.7, 28.9, 27.0, 26.9, 26.6, 26.4, 25.8, 25.6., LRMS (ESI): m/z 408 [M+Na]+. HRMS (ESI-TOF): Calcd for C18H31N3O6Na [M+Na]+: 408.2105, Found: 408.2102。 Compound 8 (520 mg, 2 mmol, 1 eq.) was dissolved in DMF (20 mL) under an argon atmosphere, 60% sodium hydride/mineral oil (160 mg, 4 mmol, 2 eq.) was added, and the mixture was stirred at room temperature. After 10 minutes, tetrabutylammonium iodide (887 mg, 2.4 mmol, 1.2eq.) and compound 6 (495 mg, 2.4 mmol, 1.2eq.) were added. After 16 hours, disappearance of the raw material was confirmed by TLC, and water was added to quench the sodium hydride. Thereafter, separation between ethyl acetate and water was performed, and the organic layer was extracted twice and mixed. The mixed organic layer was dehydrated with saturated saline and sodium sulfate, concentrated under reduced pressure, and purified by column chromatography (SiO 2 , hexane: ethyl acetate = 10: 1) to obtain compound 9 (503 mg, 1.31 mmol, 65%). was obtained as a white solid. 1 H-NMR (400 MHz, CDCl 3 ) δ 5.87 (d, J = 3.7 Hz, 1H), 4.53-4.49 (m, 1H), 4.35-4.27 (m, 1H), 4.13-4.06 (m, 2H) , 3.99 (dd, J = 8.7, 6.0 Hz, 1H), 3.85 (d, J = 3.2 Hz, 1H), 3.64-3.58 (m, 1H), 3.55-3.47 (m, 1H), 3.27 (t, J = 6.9 Hz, 2H), 1.61 (s, 2H), 1.60-1.55 (m, 3H), 1.50 (s, 3H), 1.43 (s, 3H), 1.41-1.37 (m, 4H), 1.35 (s, 3h), 1.32 (D, J = 4.6 Hz, 3h). 13 C-NMR (101 MHz, CDCL 3 ) δ 111.9, 109.0, 105.4, 82.2, 82.3, 72.3, 70.5, 70.5, 67.4, 28.7, 28.9, 28.9 , 27.0, 26.9, 26.6, 26.4, 25.8, 25.6., LRMS (ESI): m/z 408 [M+Na] + . HRMS (ESI-TOF): Calcd for C 18 H 31 N 3 O 6 Na [M +Na] + : 408.2105, Found: 408.2102.
 参考例7.化合物10の合成 Reference example 7. Synthesis of compound 10
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 化合物9 (308 mg, 0.8 mmol, 1eq.) に対し、80%トリフルオロ酢酸/水 (8 mL) を加え、室温で攪拌した。10分後、TLC にて原料の消失確認し減圧濃縮した。その後、カラムクロマトグラフィー (SiO2, 酢酸エチル → クロロホルム : メタノール = 10 : 1) で精製し、化合物 10 (154 mg, 0.50 mmol, 63%) を白色固体として得た。1H-NMR (400 MHz, DMSO-D6) δ 6.63-6.58 (m, 1H), 6.28 (dd, J = 22.7, 4.8 Hz, 0H), 4.92-4.80 (m, 2H), 4.54-4.45 (m, 1H), 4.38-4.25 (m, 1H), 3.70-3.54 (m, 3H), 3.50-3.35 (m, 1H), 3.24 (q, J = 9.6 Hz, 2H), 3.17-3.05 (m, 2H), 2.99-2.91 (m, 1H), 1.54-1.48 (m, 4H), 1.37-1.31 (m, 4H). 13C-NMR (101 MHz, DMSO-D6) δ 96.9, 85.2, 76.7, 74.6, 72.1, 71.8, 69.7, 61.1, 50.6, 29.8, 28.3, 26.1, 25.2, LRMS (ESI): m/z328 [M+Na]+. HRMS (ESI-TOF): Calcd for C12H23N3O6Na [M+Na]+: 328.1479, Found: 328.1479。 80% trifluoroacetic acid/water (8 mL) was added to Compound 9 (308 mg, 0.8 mmol, 1 eq.), and the mixture was stirred at room temperature. After 10 minutes, disappearance of the raw material was confirmed by TLC, and the mixture was concentrated under reduced pressure. Thereafter, it was purified by column chromatography (SiO 2 , ethyl acetate → chloroform:methanol = 10:1) to obtain compound 10 (154 mg, 0.50 mmol, 63%) as a white solid. 1 H-NMR (400 MHz, DMSO-D6) δ 6.63-6.58 (m, 1H), 6.28 (dd, J = 22.7, 4.8 Hz, 0H), 4.92-4.80 (m, 2H), 4.54-4.45 (m , 1H), 4.38-4.25 (m, 1H), 3.70-3.54 (m, 3H), 3.50-3.35 (m, 1H), 3.24 (q, J = 9.6 Hz, 2H), 3.17-3.05 (m, 2H) ), 2.99-2.91 (m, 1H), 1.54-1.48 (m, 4H), 1.37-1.31 (m, 4H). 13 C-NMR (101 MHz, DMSO-D6) δ 96.9, 85.2, 76.7, 74.6, 72.1, 71.8, 69.7, 61.1, 50.6, 29.8, 28.3, 26.1, 25.2, LRMS (ESI): m/z328 [M+Na] + . HRMS (ESI-TOF): Calcd for C 12 H 23 N 3 O 6 Na [M+Na] + : 328.1479, Found: 328.1479.
 参考例8.化合物13の合成 Reference example 8. Synthesis of compound 13
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 6-ブロモヘキサン酸 (1.95 g, 10 mmol, 1eq.)をテトラヒドロフラン (20 mL) に溶解させ、tブチルアルコール (2.85 mL, 30 mmol, 3eq.)、トリフルオロ酢酸無水物 (4.16 mL, 30 mmol, 1eq.) を加え、室温で攪拌した。20時間後、TLCにて減量の消失を確認し、酢酸エチルと水による分液をおこなった。有機層は、飽和食塩水、硫酸ナトリウムで脱水、減圧濃縮し、透明なオイルとして化合物13 (2.48 g, 9.88 mmol, 99%) を得た。1H-NMR (400 MHz, CDCl3) δ 3.40 (q, J = 7.0 Hz, 2H), 2.21 (t, J = 7.3 Hz, 2H), 1.89-1.81 (m, 2H), 1.63-1.55 (m, 2H), 1.48-1.44 (m, 2H), 1.41 (d, J = 7.3 Hz, 8H). 化合物の NMRスペクトルは報告されているものと一致した。 Dissolve 6-bromohexanoic acid (1.95 g, 10 mmol, 1eq.) in tetrahydrofuran (20 mL), add t-butyl alcohol (2.85 mL, 30 mmol, 3eq.), trifluoroacetic anhydride (4.16 mL, 30 mmol) , 1eq.) and stirred at room temperature. After 20 hours, disappearance of the weight loss was confirmed by TLC, and liquid separation between ethyl acetate and water was performed. The organic layer was dehydrated with saturated brine and sodium sulfate, and concentrated under reduced pressure to obtain Compound 13 (2.48 g, 9.88 mmol, 99%) as a transparent oil. 1 H-NMR (400 MHz, CDCl 3 ) δ 3.40 (q, J = 7.0 Hz, 2H), 2.21 (t, J = 7.3 Hz, 2H), 1.89-1.81 (m, 2H), 1.63-1.55 (m , 2H), 1.48-1.44 (m, 2H), 1.41 (d, J = 7.3 Hz, 8H). The NMR spectrum of the compound was consistent with the reported one.
 参考例9.化合物14の合成 Reference example 9. Synthesis of compound 14
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 アルゴン雰囲気下、化合物8 (260 mg, 1 mmol, 1eq.) をDMF (10 mL) に溶解させ、60%水素化ナトリウム/ミネラルオイル (60 mg, 80 mmol, 2eq.)を加え室温で攪拌した。10分後、テトラブチルアンモニウムヨージド (369 mg, 1 mmol, 1eq.)、化合物13 (251 mg, 1 mmol, 1eq.) を加えた。24時間後、TLC にて原料の消失確認し、水を加えて水素化ナトリウムのクエンチをおこなった。その後、酢酸エチルと水による分液をおこなった。有機層は飽和食塩水、硫酸ナトリウムで脱水、減圧濃縮した後、カラムクロマトグラフィー (SiO2, ヘキサン : 酢酸エチル = 20 : 1) で精製し、化合物 14 (242 mg, 0.56 mmol, 56%) を白色固体として得た。
1H-NMR (400 MHz, CDCl3) δ 5.87 (d, J = 3.7 Hz, 1H), 4.57-4.52 (m, 1H), 4.34-4.29 (m, 1H), 4.15-4.06 (m, 2H), 3.98 (td, J = 7.1, 1.1 Hz, 1H), 3.89-3.84 (m, 1H), 3.63-3.47 (m, 2H), 2.21 (t, J = 7.1 Hz, 2H), 1.59 (td, J = 14.4, 7.0 Hz, 4H), 1.51 (d, J = 7.3 Hz, 3H), 1.44 (d, J = 0.9 Hz, 9H), 1.42 (s, 3H), 1.39-1.25 (m, 8H). 13C-NMR (101 MHz, CDCl3) δ 173.2, 111.8, 109.0, 105.4, 82.7, 82.2, 81.3, 80.1, 72.6, 70.5, 67.4, 35.6, 29.5, 28.2, 27.0, 26.9, 26.4, 25.7, 25.5, 24.9, LRMS (ESI): m/z 453 [M+Na]+. HRMS (ESI-TOF): Calcd for C22H38O8Na [M+Na]+: 453.2459, Found: 453.2455。
Compound 8 (260 mg, 1 mmol, 1eq.) was dissolved in DMF (10 mL) under an argon atmosphere, and 60% sodium hydride/mineral oil (60 mg, 80 mmol, 2eq.) was added and stirred at room temperature. . After 10 minutes, tetrabutylammonium iodide (369 mg, 1 mmol, 1 eq.) and compound 13 (251 mg, 1 mmol, 1 eq.) were added. After 24 hours, disappearance of the raw material was confirmed by TLC, and water was added to quench the sodium hydride. Thereafter, separation between ethyl acetate and water was performed. The organic layer was dehydrated with saturated brine and sodium sulfate, concentrated under reduced pressure, and then purified by column chromatography (SiO 2 , hexane: ethyl acetate = 20: 1) to obtain compound 14 (242 mg, 0.56 mmol, 56%). Obtained as a white solid.
1 H-NMR (400 MHz, CDCl 3 ) δ 5.87 (d, J = 3.7 Hz, 1H), 4.57-4.52 (m, 1H), 4.34-4.29 (m, 1H), 4.15-4.06 (m, 2H) , 3.98 (td, J = 7.1, 1.1 Hz, 1H), 3.89-3.84 (m, 1H), 3.63-3.47 (m, 2H), 2.21 (t, J = 7.1 Hz, 2H), 1.59 (td, J 1.51 (d, J = 7.3 Hz, 3H), 1.44 (d, J = 0.9 Hz, 9H), 1.42 (s, 3H), 1.39-1.25 (m, 8H). 13 C-NMR (101 MHz, CDCl 3 ) δ 173.2, 111.8, 109.0, 105.4, 82.7, 82.2, 81.3, 80.1, 72.6, 70.5, 67.4, 35.6, 29.5, 28.2, 27.0, 26.9, 26. 4, 25.7, 25.5, 24.9 , LRMS (ESI): m/z 453 [M+Na] + . HRMS (ESI-TOF): Calcd for C 22 H 38 O 8 Na [M+Na] + : 453.2459, Found: 453.2455.
 参考例10.化合物15の合成 Reference example 10. Synthesis of compound 15
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物14 (242 mg, 0.56 mmol, 1eq.) に対し、80%トリフルオロ酢酸/水 (5 mL) を加え、室温で攪拌した。10分後、TLC にて原料の消失確認し減圧濃縮した。その後、カラムクロマトグラフィー (SiO2, 酢酸エチル → クロロホルム : メタノール = 10 : 1) で精製し、化合物 15 (139 mg, 0.47 mmol, 85%) を薄桃色オイルとして得た。1H-NMR (400 MHz, CD3OD) δ 5.07 (s, 1H), 4.45 (d, J = 5.5 Hz, 1H), 3.85-3.75 (m, 3H), 3.69-3.61 (m, 1H), 3.51-3.39 (m, 2H), 3.18-3.11 (m, 1H), 2.35-2.28 (m, 2H), 1.63 (t, J = 7.1 Hz, 4H), 1.43 (q, J = 7.3 Hz, 2H). 13C-NMR (101 MHz, CD3OD) δ 177.8, 98.2, 94.1, 83.4, 78.0, 74.0, 73.0, 62.8, 34.9, 31.0, 26.7, 25.9, LRMS (ESI): m/z 317 [M+Na]+. HRMS (ESI-TOF): Calcd for C12H22O8Na [M+Na]+: 317.1207, Found: 317.1204。 80% trifluoroacetic acid/water (5 mL) was added to Compound 14 (242 mg, 0.56 mmol, 1 eq.), and the mixture was stirred at room temperature. After 10 minutes, disappearance of the raw material was confirmed by TLC, and the mixture was concentrated under reduced pressure. Thereafter, it was purified by column chromatography (SiO 2 , ethyl acetate → chloroform:methanol = 10:1) to obtain compound 15 (139 mg, 0.47 mmol, 85%) as a pale pink oil. 1 H-NMR (400 MHz, CD 3 OD) δ 5.07 (s, 1H), 4.45 (d, J = 5.5 Hz, 1H), 3.85-3.75 (m, 3H), 3.69-3.61 (m, 1H), 3.51-3.39 (m, 2H), 3.18-3.11 (m, 1H), 2.35-2.28 (m, 2H), 1.63 (t, J = 7.1 Hz, 4H), 1.43 (q, J = 7.3 Hz, 2H) .13C-NMR (101 MHz, CD 3 OD) δ 177.8, 98.2, 94.1, 83.4, 78.0, 74.0, 73.0, 62.8, 34.9, 31.0, 26.7, 25.9, LRMS (ESI): m/z 317 [M+Na ] + . HRMS (ESI-TOF): Calcd for C 12 H 22 O 8 Na [M+Na] + : 317.1207, Found: 317.1204.
 参考例11.化合物16の合成 Reference example 11. Synthesis of compound 16
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物15 (139 mg, 0.47 mmol, 1eq.) をジメチルホルムアミド (5 mL) に溶解し、NHS (218 mg, 1.89 mmol, 4eq.)、EDC・HCl (109 mg, 0.57 mmol, 1.2eq.) を加え室温で攪拌した。3時間後、TLCにて原料の消失を確認し、減圧濃縮後、カラムクロマトグラフィー (SiO2, 酢酸エチル → クロロホルム : メタノール = 20 : 1) で精製し、化合物 16 (101 mg, 0.26 mmol, 54%) を薄桃色オイルとして得た。
1H-NMR (400 MHz, DMSO-D6) δ 6.62 (d, J = 6.9 Hz, 1H), 6.31 (d, J = 4.6 Hz, 1H), 4.89-4.81 (m, 2H), 4.53-4.48 (m, 1H), 4.39-4.26 (m, 1H), 4.10 (q, J = 5.3 Hz, 1H), 3.67-3.50 (m, 4H), 3.47-3.38 (m, 1H), 3.25 (t, J = 9.2 Hz, 1H), 3.17 (q, J = 2.6 Hz, 1H), 3.13-3.09 (m, 1H), 2.99-2.91 (m, 1H), 2.67-2.64 (m, 2H), 1.57 (dq, J = 41.6, 7.1 Hz, 4H), 1.41-1.36 (m, 2H). 13C-NMR (101 MHz, CD3OD) δ 171.9, 170.3, 98.2, 94.1, 86.4, 83.5, 78.0, 76.2, 73.9, 73.8, 71.5, 62.8, 62.7, 31.5, 30.8, 26.5, 26.3, 25.5, LRMS (ESI): m/z 414 [M+Na]+, HRMS (ESI-TOF): Calcd for C16H25NO10Na [M+Na]+: 414.1371, Found: 414.1355。
Compound 15 (139 mg, 0.47 mmol, 1eq.) was dissolved in dimethylformamide (5 mL), and NHS (218 mg, 1.89 mmol, 4eq.) and EDC・HCl (109 mg, 0.57 mmol, 1.2eq.) were added. The mixture was added and stirred at room temperature. After 3 hours, the disappearance of the raw material was confirmed by TLC, and after concentration under reduced pressure, it was purified by column chromatography (SiO 2 , ethyl acetate → chloroform:methanol = 20:1) to obtain compound 16 (101 mg, 0.26 mmol, 54 %) was obtained as a pale pink oil.
1 H-NMR (400 MHz, DMSO-D6) δ 6.62 (d, J = 6.9 Hz, 1H), 6.31 (d, J = 4.6 Hz, 1H), 4.89-4.81 (m, 2H), 4.53-4.48 ( m, 1H), 4.39-4.26 (m, 1H), 4.10 (q, J = 5.3 Hz, 1H), 3.67-3.50 (m, 4H), 3.47-3.38 (m, 1H), 3.25 (t, J = 9.2 Hz, 1H), 3.17 (q, J = 2.6 Hz, 1H), 3.13-3.09 (m, 1H), 2.99-2.91 (m, 1H), 2.67-2.64 (m, 2H), 1.57 (dq, J = 41.6, 7.1 Hz, 4H), 1.41-1.36 (m, 2H). 13 C-NMR (101 MHz, CD 3 OD) δ 171.9, 170.3, 98.2, 94.1, 86.4, 83.5, 78.0, 76.2, 73.9, 73.8 , 71.5, 62.8, 62.7, 31.5, 30.8, 26.5, 26.3, 25.5, LRMS (ESI): m/z 414 [M+Na] + , HRMS (ESI-TOF): Calcd for C 16 H 25 NO 10 Na [M+Na] + : 414.1371, Found: 414.1355.
 参考例12.化合物17の合成 Reference example 12. Synthesis of compound 17
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物5に代えて適当な化合物を用いて、参考例4~7に準じて合成し、化合物17 (14.7 mg, 0.039 mmol, 82%) を無色オイルとして得た。 Compound 17 (14.7 mg, 0.039 mmol, 82%) was obtained as a colorless oil by synthesizing according to Reference Examples 4 to 7 using an appropriate compound in place of Compound 5.
 参考例13.化合物18の合成 Reference example 13. Synthesis of compound 18
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物5及び化合物7に代えて適当な化合物を用いて、参考例4~7に準じて合成し、化合物18 (18.9 mg, 0.048 mmol, quant.) を無色オイルとして得た。 Compound 18 (18.9 mg, 0.048 mmol, quant.) was obtained as a colorless oil by synthesizing according to Reference Examples 4 to 7 using an appropriate compound in place of Compound 5 and Compound 7.
 参考例14.化合物19の合成 Reference example 14. Synthesis of compound 19
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 マウスMalat1遺伝子(NR_002847.3)に対するアンチセンスオリゴヌクレオチド(ASO(naked ASO))はヤマサ醤油株式会社に委託して合成した。ASOの配列は以下のとおりである。
5(L)^T(L)^A(L)^g^t^t^c^a^c^t^g^a^a^T(L)^G(L)^5(L) (配列番号1)[Lower Case=DNA / N(L)=LNA / 5(L)=LNA_5mC / ^=Phosphorothioated / N(6)=amino C6 linker/]
Antisense oligonucleotide (ASO (naked ASO)) against mouse Malat1 gene (NR_002847.3) was synthesized by Yamasa Soy Sauce Co., Ltd. The ASO arrangement is as follows.
5(L)^T(L)^A(L)^g^t^t^c^a^c^t^g^a^a^T(L)^G(L)^5(L) ( Sequence number 1) [Lower Case=DNA / N(L)=LNA / 5(L)=LNA_5mC / ^=Phosphorothioated / N(6)=amino C6 linker/]
 化合物19はASOの5´末端のリン酸基にアミノ-C6リンカーが付加されてなる化合物である。化合物19はヤマサ醤油株式会社に委託して合成した。 Compound 19 is a compound in which an amino-C6 linker is added to the 5′-terminal phosphate group of ASO. Compound 19 was synthesized by Yamasa Soy Sauce Co., Ltd.
 参考例15.化合物20の合成 Reference example 15. Synthesis of compound 20
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物20はASOの3´末端のリン酸基にアミノ-C6リンカーが付加されてなる化合物である。化合物20はヤマサ醤油株式会社に委託して合成した。 Compound 20 is a compound in which an amino-C6 linker is added to the phosphate group at the 3' end of ASO. Compound 20 was synthesized by Yamasa Soy Sauce Co., Ltd.
 実施例1.化合物Aの合成 Example 1. Synthesis of compound A
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物Aの合成を次のようにして行った。10 mM化合物19の水溶液 (100 μL, 1 mmol)と100 mM 化合物4 (short-BCN-PNP)のDMSO溶液 (100 μL, 10 eq.)とDIPEA (10 μL, 57 eq.)を混合し、40℃で3時間振盪した。逆相HPLCにより化合物19の消失を確認したのち、2度のエタノール沈殿による粗精製を行った。ペレットを蒸留水 (250 μL) に溶解させて、4 mM BCN化オリゴ核酸(N-ASO)とした。濃度はUV吸収(260 nm)を測定することで決定した。続いて、この4 mM BCN化オリゴ核酸(N-ASO)(75 μL, 300 nmol)と化合物10の50 mM DMSO溶液(100 μL)を混合した。40℃にて速やかに溶解する場合にはそのまま、懸濁状態が続く場合にはDMSO (75 μL) を追加して、40℃にて3時間振盪した。逆相HPLCによりN-ASOの消失を確認したのち、エタノール沈殿による粗精製を行い、続いてHPLCにて精製した。目的の溶出溶液を遠心濃縮機で濃縮後、蒸留水に溶解した。この溶液をMALDI-TOF-MSにて目的の化合物Aであることを確認したのち、in vivo 実験の使用に適したナトリウム塩にした。化合物AのMALDI-TOF-MSの結果は、計算値[M-H]- :5953.89, 実測値[M-H]- :5953.40であった。 Compound A was synthesized as follows. Mix 10 mM compound 19 aqueous solution (100 μL, 1 mmol), 100 mM compound 4 (short-BCN-PNP) in DMSO solution (100 μL, 10 eq.), and DIPEA (10 μL, 57 eq.). Shake at 40°C for 3 hours. After confirming the disappearance of Compound 19 by reverse phase HPLC, crude purification was performed by twice ethanol precipitation. The pellet was dissolved in distilled water (250 μL) to obtain 4 mM BCN-modified oligonucleic acid (N-ASO). Concentrations were determined by measuring UV absorption (260 nm). Subsequently, this 4 mM BCNated oligonucleic acid (N-ASO) (75 μL, 300 nmol) and a 50 mM DMSO solution of compound 10 (100 μL) were mixed. If it was dissolved quickly at 40°C, it was left as is; if it remained suspended, DMSO (75 μL) was added and the mixture was shaken at 40°C for 3 hours. After confirming the disappearance of N-ASO by reverse phase HPLC, crude purification was performed by ethanol precipitation, followed by purification by HPLC. The target elution solution was concentrated using a centrifugal concentrator and then dissolved in distilled water. After confirming that this solution was the target compound A by MALDI-TOF-MS, it was converted into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound A were calculated value [MH] - :5953.89 and actual value [MH] - :5953.40.
 実施例2.化合物Bの合成 Example 2. Synthesis of compound B
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物10に代えて化合物17を用いて、実施例1に準じて化合物Bを合成し、in vivo 実験の使用に適したナトリウム塩にした。化合物BのMALDI-TOF-MSの結果は、計算値[M-H]- :6029.94, 実測値[M-H]- :6028.36であった。 Compound B was synthesized according to Example 1 using Compound 17 in place of Compound 10 and was made into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound B were calculated value [MH] - :6029.94 and actual value [MH] - :6028.36.
 実施例3.化合物Cの合成 Example 3. Synthesis of compound C
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 化合物10に代えて化合物18を用いて、実施例1に準じて化合物Cを合成し、in vivo 実験の使用に適したナトリウム塩にした。化合物CのMALDI-TOF-MSの結果は、計算値[M-H]- :6029.94, 実測値[M-H]- :6028.95であった。 Compound C was synthesized according to Example 1 using Compound 18 in place of Compound 10 and made into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound C were calculated value [MH] - :6029.94 and actual value [MH] - :6028.95.
 実施例4.化合物Dの合成 Example 4. Synthesis of compound D
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 6 mM 化合物19の水溶液 (50 μL, 300 pmol)、60 mM 化合物 16 の DMSO 溶液 (50 μL, 10 eq.) および DMSO (50 μL) を合わせ、反応混合物を 40℃で 3 時間振盪 (1200 rpm)、した。逆相HPLCで出発オリゴヌクレオチドの消失を確認した後、反応混合物を0.1M TEAAで希釈し、逆相HPLCで精製した。得られた化合物が目的の化合物Dであることを MALDI-TOF-MS で確認後、in vivo 実験の使用に適したナトリウム塩にした。化合物DのMALDI-TOF-MSの結果は、計算値[M-H]- :5748.63, 実測値[M-H]- :5748.00であった。 An aqueous solution of 6 mM compound 19 (50 μL, 300 pmol), 60 mM compound 16 in DMSO (50 μL, 10 eq.), and DMSO (50 μL) were combined, and the reaction mixture was shaken at 40 °C for 3 h (1200 rpm). ),did. After confirming the disappearance of the starting oligonucleotide by reverse phase HPLC, the reaction mixture was diluted with 0.1M TEAA and purified by reverse phase HPLC. After confirming by MALDI-TOF-MS that the obtained compound was the desired compound D, it was converted into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound D were calculated value [MH] - :5748.63 and actual value [MH] - :5748.00.
 実施例5.化合物Eの合成 Example 5. Synthesis of compound E
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物19に代えて化合物20を用いて、実施例1に準じて化合物Eを合成し、in vivo 実験の使用に適したナトリウム塩にした。化合物EのMALDI-TOF-MSの結果は、計算値[M-H]- :5953.89, 実測値[M-H]- :5953.92であった。 Compound E was synthesized according to Example 1 using Compound 20 in place of Compound 19 and made into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound E were a calculated value [MH] - :5953.89 and an actual value [MH] - :5953.92.
 実施例6.マウスへの投与試験1
 (ASO投与および臓器採取)
 マウス(Balb/c、雌、5週齢、7匹)を日本エスエルシー株式会社より購入し、動物実験施設に搬入した。少なくとも5~7日間のマウスの馴化期間の後、マウス個体当たり100μgとなるように調製したコンジュゲートASO(化合物A)の生理食塩水溶液を尾静脈に単回投与した。比較対象として非コンジュゲートASO(リガンドおよびリンカーを結合していないASO:「naked ASO」)をマウス個体当たり100μgになるように調製した生理食塩水溶液を尾静脈に単回投与した。ネガティブコントロールは生理食塩水とした。
Example 6. Administration test to mice 1
(ASO administration and organ collection)
Mice (Balb/c, female, 5 weeks old, 7 mice) were purchased from Japan SLC Co., Ltd. and transported to the animal experiment facility. After a mouse acclimatization period of at least 5-7 days, a single dose of conjugated ASO (Compound A) in saline solution prepared at 100 μg per individual mouse was administered into the tail vein. For comparison, a physiological saline solution prepared at 100 μg per mouse of unconjugated ASO (ASO with no ligand or linker bound: “naked ASO”) was administered once into the tail vein. Physiological saline was used as a negative control.
 ASO投与から72時間後、3種混合麻酔薬(メデトミジン・ミダゾラム・ブトルファノール)の腹腔内投与によりマウスを麻酔し、開腹後、腹部大動脈を切開することで脱血死させ、25~50mgの組織片を採取し、あらかじめ500μL/チューブのRNAprotect Tissue Reagent (Thermo)を分注した96-well Collection Microtubes (Qiagen)の各2mLチューブに入れ、組織片が試薬に浸漬された状態で保存(-30℃)した。組織片を採取する臓器は次の12臓器とした;肝臓、腎臓、脾臓、膵臓、心臓、肺、胃、大腸、脳、骨格筋、乳腺(脂肪)、皮膚。 72 hours after ASO administration, mice were anesthetized by intraperitoneal administration of a triple anesthetic mixture (medetomidine, midazolam, and butorphanol), and after laparotomy, the abdominal aorta was incised to death by exsanguination, and 25 to 50 mg of tissue was removed. Place the sample into each 2 mL tube of 96-well Collection Microtubes (Qiagen) into which 500 μL/tube of RNAprotect Tissue Reagent (Thermo) was preliminarily dispensed, and store the tissue piece immersed in the reagent (-30°C). did. Tissue pieces were collected from the following 12 organs: liver, kidney, spleen, pancreas, heart, lungs, stomach, large intestine, brain, skeletal muscle, mammary gland (fat), and skin.
 (total RNA調製、逆転写およびリアルタイムPCR)
 回収した組織片からのtotal RNA抽出にはMagMAX mirVana Total RNA Isolation Kit(Thermo; 以下mirVanaキットという)を使用した。組織片を保存している96-well Collection Microtubesを遠心分離(1000×g,3分間、4℃)し、RNAprotect Tissue Reagentを除去した後、mirVanaキット添付のlysis buffer(0.7%の2-メルカプトエタノール添加)およびステンレスビーズ(5mm径、QIAGEN)1個をCollection Microtubesの各チューブに加え、TissueLyser II(QIAGEN)により室温下、30Hz、2分間のホモジナイズ処理を5回以上繰り返すことで組織ホモジネートを作製した。
(total RNA preparation, reverse transcription and real-time PCR)
MagMAX mirVana Total RNA Isolation Kit (Thermo; hereinafter referred to as mirVana kit) was used to extract total RNA from the collected tissue pieces. Centrifuge the 96-well Collection Microtubes storing the tissue pieces (1000 x g, 3 minutes, 4°C) to remove the RNAprotect Tissue Reagent, and then add the lysis buffer (0.7% 2-mercaptoethanol) provided with the mirVana kit. Tissue homogenate was prepared by adding one stainless steel bead (5 mm diameter, QIAGEN) to each tube of Collection Microtubes, and repeating homogenization for 2 minutes at 30 Hz at room temperature five or more times using TissueLyser II (QIAGEN). .
 組織ホモジネートからのtotal RNAの抽出および精製をmirVanaキットのプロトコルに従って行い、工程をKingFisher Flex(Thermo)によって自動化した。各RNAサンプルの濃度を、Quant-iT RiboGreen RNA Assay Kit(Thermo)によって決定した。約10ngのtotal RNAからHigh-Capacity cDNA Reverse Transcription Kit(Thermo)を用いて逆転写産物を調製した。反応についてはキットのプロトコルに従った。各逆転写産物についてPowerUp SYBR Green Master Mix(Thermo)を用いてリアルタイムPCRを行った。PCRの内部コントロールはGapdhとした。ただし、肺サンプルの内部コントロールは18S rRNAとした。PCR反応はStepOnePlusリアルタイムPCRシステム(Thermo)によって実施し、95℃、20秒間の熱処理に引き続き、95℃、3秒の熱変性および60℃、30秒の伸長反応を45サイクル行った。Malat1発現量の解析を、Malat1および内部コントロールの増幅曲線より得られるCt値の比較(ΔΔCt法)によって行った。 Extraction and purification of total RNA from tissue homogenates was performed according to the protocol of the mirVana kit, and the process was automated by KingFisher Flex (Thermo). The concentration of each RNA sample was determined by Quant-iT RiboGreen RNA Assay Kit (Thermo). Reverse transcription products were prepared from approximately 10 ng of total RNA using the High-Capacity cDNA Reverse Transcription Kit (Thermo). The kit protocol was followed for the reaction. Real-time PCR was performed on each reverse transcription product using PowerUp SYBR Green Master Mix (Thermo). Gapdh was used as an internal control for PCR. However, the internal control for lung samples was 18S rRNA. The PCR reaction was performed using a StepOnePlus real-time PCR system (Thermo), and 45 cycles of heat treatment at 95°C for 20 seconds, followed by heat denaturation at 95°C for 3 seconds and extension reaction at 60°C for 30 seconds were performed. Malat1 expression level was analyzed by comparing Ct values obtained from amplification curves of Malat1 and internal control (ΔΔCt method).
 上記試験に用いたPCRプライマー配列を以下に示す:
 mMalat1_F4:5’-d(ACATTCCTTGAGGTCGGCAA)-3’(配列番号2) mMalat1_R4:5’-d(CACCCGCAAAGGCCTACATA)-3’(配列番号3) mGapdh_F3:5’-d(TCACCACCATGGAGAAGGC)-3’(配列番号4) mGapdh_R3:5’-d(GCTAAGCAGTTGGTGGTGCA)-3’(配列番号5) m18SrRNA_F1:5’-d(GTAACCCGTTGAACCCCATT)-3’(配列番号6) m18SrRNA_R1:5’-d(CCATCCAATCGGTAGTAGCG)-3’(配列番号7)。
The PCR primer sequences used in the above test are shown below:
mmalat1_F4: 5'-d(ACATTCCTTGAGGTCGGCAA)-3' (SEQ ID NO: 2) mmalat1_R4: 5'-d(CACCCGCAAAGGCCTACATA)-3' (SEQ ID NO: 3) mGapdh_F3: 5'-d(TCACCACCATGGAGAAGGC)-3' (SEQ ID NO: 4 ) mGapdh_R3: 5'-d(GCTAAGCAGTTGGTGGTGCA)-3' (SEQ ID NO: 5) m18SrRNA_F1: 5'-d(GTAACCCGTTGAACCCCATT)-3' (SEQ ID NO: 6) m18SrRNA_R1: 5'-d(CCATCCAATCGGTAGTAGCG)-3' (SEQ ID NO: 7).
 結果を図1に示す。naked ASOを投与しても、脳組織での標的遺伝子(Malat1)の発現量は低下しなかった。一方、データは省略するが、他の組織での標的遺伝子の発現量は、naked ASOの投与により低下した。これに対して、化合物Aを投与した場合は、脳組織での標的遺伝子の発現量が顕著に低下した。このことから、ポリヌクレオチドにリンカーを介して単糖を連結することにより、当該ポリヌクレオチドの活性を脳内で効果的に発揮させることができることが分かった。 The results are shown in Figure 1. Administration of naked ASO did not reduce the expression level of the target gene (Malat1) in brain tissue. On the other hand, although data are omitted, the expression levels of target genes in other tissues were reduced by administration of naked ASO. In contrast, when Compound A was administered, the expression level of the target gene in brain tissue was significantly reduced. From this, it was found that by linking a monosaccharide to a polynucleotide via a linker, the activity of the polynucleotide can be effectively exerted in the brain.
 また、追加で試験を行い、対象遺伝子の脳内での発現抑制効果についての化合物Aの用量依存性があること、化合物A以外の糖連結ポリヌクレオチド(例えば化合物B~E等)も対象遺伝子の脳内での発現抑制効果を有すること、及び対象遺伝子内の標的配列を変えても脳内での発現抑制効果が発揮されることを確認した。 Additionally, we conducted additional tests and found that the effect of suppressing the expression of the target gene in the brain was dose-dependent with Compound A. It was confirmed that it has an expression suppressing effect in the brain, and that even if the target sequence within the target gene is changed, the expression suppressing effect in the brain is exerted.
 実施例7.マウスへの投与試験2
 コンジュゲートASO(化合物A)と非コンジュゲートASO(naked ASO)との投与量を変更して、実施例6と同様にして試験し、脳組織での標的遺伝子(Malat1)の発現量を測定した。
Example 7. Administration test to mice 2
The dose of conjugated ASO (compound A) and unconjugated ASO (naked ASO) was changed and the test was conducted in the same manner as in Example 6, and the expression level of the target gene (Malat1) in brain tissue was measured. .
 結果を図2に示す。naked ASO を投与すると、脳組織での標的遺伝子(Malat1)の
発現量はいずれの濃度でも変化しなかった。これに対して、化合物Aを投与した場合は、濃度依存的に脳組織での標的遺伝子の発現量が低下した。なお、高容量投与群(1000μg群)においても、マウスの死亡例や肝臓の肥大などの毒性は見られなかった。
The results are shown in Figure 2. When naked ASO was administered, the expression level of the target gene (Malat1) in brain tissue did not change at any concentration. In contrast, when Compound A was administered, the expression level of the target gene in brain tissue decreased in a concentration-dependent manner. Furthermore, even in the high-dose administration group (1000 μg group), no toxicity such as mouse death or liver enlargement was observed.
 実施例8.マウスへの投与試験3
 コンジュゲートASO(化合物B、C)と非コンジュゲートASO(naked ASO)とを用いて、投与量は100μgとし、実施例6と同様にして試験し、脳組織での標的遺伝子(Malat1)の発現量を測定した。
Example 8. Administration test on mice 3
Using conjugated ASO (compounds B and C) and unconjugated ASO (naked ASO), the dose was 100 μg, and the test was conducted in the same manner as in Example 6. Expression of target gene (Malat1) in brain tissue The amount was measured.
 結果を図3に示す。化合物BやCを投与した場合は、脳組織での標的遺伝子の発現量がさらに低下する傾向が見られた。このことから、ポリヌクレオチドにリンカーを介して連結する糖の構造はGlut1の基質であり、糖に直接結合するスペーサーの違いもそれほど大きく影響せず、ポリヌクレオチドの活性を脳内で効果的に発揮させることができることが分かった。 The results are shown in Figure 3. When Compounds B and C were administered, there was a tendency for the expression levels of target genes in brain tissue to further decrease. From this, the sugar structure connected to the polynucleotide via a linker is a substrate for Glut1, and the difference in the spacer that directly binds to the sugar does not have a large effect, allowing the polynucleotide to effectively exert its activity in the brain. I found out that it can be done.
 実施例9.化合物Xの合成
 マウスMalat1遺伝子(NR_002847.3)に対する異なる塩基配列のアンチセンスオリゴヌクレオチド(naked ASO2)を使用する以外は、化合物Aと同様にして合成した。化合物XのMALDI-TOF-MSの結果は、計算値[M-H]- :5988.90, 実測値[M-H]- :5989.44であった。
Example 9. Synthesis of Compound X Compound The results of MALDI-TOF-MS for Compound X were calculated value [MH] - :5988.90 and actual value [MH] - :5989.44.
 実施例10.マウスへの投与試験4
 コンジュゲートASO(化合物X)と非コンジュゲートASO(naked ASO2)とを用いて、投与量は100μgとし、実施例6と同様にして試験し、脳組織での標的遺伝子(Malat1)の発現量を測定した。
Example 10. Administration test on mice 4
Using conjugated ASO (compound It was measured.
 結果を図4に示す。naked ASO 2(第2配列)を投与すると、脳組織での標的遺伝子(Malat1)の発現量は若干低下した。これに対して、化合物Xを投与した場合は、脳組織での標的遺伝子の発現量が有意に低下した。このことから、標的配列の異なるポリヌクレオチドにリンカーを介して単糖を連結することでも、当該ポリヌクレオチドの活性を脳内で効果的に発揮させることができることが分かった。 The results are shown in Figure 4. When naked ASO 2 (second sequence) was administered, the expression level of the target gene (Malat1) in brain tissue was slightly reduced. On the other hand, when compound X was administered, the expression level of the target gene in brain tissue was significantly reduced. From this, it was found that by linking a monosaccharide to a polynucleotide with a different target sequence via a linker, the activity of the polynucleotide can be effectively exerted in the brain.
 実施例11.マウスへの投与試験5
 コンジュゲートASO(化合物A、化合物X)と非コンジュゲートASO(naked ASO、naked ASO2)とを用いて、投与量は100μgとし、実施例6と同様にして試験し、各組織での標的遺伝子(Malat1)の発現量を測定した。
Example 11. Administration test on mice 5
Using conjugated ASO (Compound A, Compound The expression level of Malat1) was measured.
 結果を図5に示す。化合物A及び化合物Xのいずれの場合も、脳のみで、標的遺伝子の発現量が有意に低下した。 The results are shown in Figure 5. In both cases of Compound A and Compound X, the expression level of the target gene was significantly reduced only in the brain.
 実施例12.マウスへの投与試験6
 コンジュゲートASO(化合物D、化合物E)と非コンジュゲートASO(naked ASO)とを用いて、投与量は100μgとし、実施例6と同様にして試験し、各組織での標的遺伝子(Malat1)の発現量を測定した。
Example 12. Administration test on mice 6
Using conjugated ASO (Compound D, Compound E) and unconjugated ASO (naked ASO), the dose was 100 μg, and the test was conducted in the same manner as in Example 6. The expression level was measured.
 結果を図6に示す。naked ASO を投与しても、脳組織での標的遺伝子(Malat1)の発現量は変化しなかった。これに対して、化合物DやEを投与した場合は、脳組織での標的遺伝子の発現量がさらに低下した。このことから、ポリヌクレオチドにリンカーを介して連結する糖は、そのリンカー構造や結合位置により大きく影響されることなく、ポリヌクレオチドの活性を脳内で効果的に発揮させることができることが分かった。 The results are shown in Figure 6. Administration of naked ASO did not change the expression level of the target gene (Malat1) in brain tissue. In contrast, when compounds D and E were administered, the expression level of the target gene in brain tissue was further reduced. From this, it was found that the sugar linked to a polynucleotide via a linker can effectively exert the activity of the polynucleotide in the brain without being significantly affected by the linker structure or bonding position.
 実施例13.化合物Fの合成 Example 13. Synthesis of compound F
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物Fの合成を次のようにして行った。6 mM化合物19の水溶液 (50 μL, 0.3 μmol)と72 mM トリバレントリンカーPNPのDMSO溶液 (42 μL, 10 eq.)とDIPEA (3 μL, 57 eq.)を混合し、40℃で3時間振盪した。逆相HPLCにより化合物19の消失を確認したのち、2度のエタノール沈殿による粗精製を行った。ペレットを蒸留水 (50 μL) に溶解し、化合物10の100 mM DMSO溶液(30 μL, 10 eq.)を混合した。40℃にて3時間振盪した。反応液をHPLCにて精製した。目的の溶出溶液を遠心濃縮機で濃縮後、蒸留水に溶解した。この溶液をMALDI-TOF-MSにて目的の化合物Fであることを確認したのち、in vivo 実験の使用に適したナトリウム塩にした。化合物FのMALDI-TOF-MSの結果は、計算値[M-H]- :7476.62, 実測値[M-H]- :7475.28であった。 Compound F was synthesized as follows. Mix an aqueous solution of 6 mM compound 19 (50 μL, 0.3 μmol), a DMSO solution of 72 mM trivalent linker PNP (42 μL, 10 eq.), and DIPEA (3 μL, 57 eq.) at 40 °C for 3 hours. Shake. After confirming the disappearance of Compound 19 by reverse phase HPLC, crude purification was performed by twice ethanol precipitation. The pellet was dissolved in distilled water (50 μL) and mixed with a 100 mM DMSO solution of compound 10 (30 μL, 10 eq.). It was shaken at 40°C for 3 hours. The reaction solution was purified by HPLC. The target elution solution was concentrated using a centrifugal concentrator and then dissolved in distilled water. After confirming that this solution was the target compound F by MALDI-TOF-MS, it was converted into a sodium salt suitable for use in in vivo experiments. The results of MALDI-TOF-MS for Compound F were calculated value [MH] - :7476.62 and actual value [MH] - :7475.28.
 実施例14.化合物Gの合成 Example 14. Synthesis of compound G
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 化合物Gの合成を次のようにして行った。6 mM化合物19の水溶液 (50 μL, 0.3 μmol)と24 mM Fmoc-Val-Ala-PAB-PNPのDMSO溶液 (35 μL, 2.8 eq.)と100 mM ホウ酸ナトリウム緩衝液(80 μL, pH 9.3)を混合し、50℃で1時間振盪した。さらに24 mM Fmoc-Val-Ala-PAB-PNPのDMSO溶液 (35 μL, 2.8 eq.)を追加して50℃で1時間振盪した後、エタノール沈殿により精製した。ペレットを蒸留水 (80 μL) に溶解し、ピペリジン(20 μL)を加えて50℃で1時間振盪した。エタノール沈殿後に、HPLCにて主要生成物を分取し、凍結乾燥したものを、再び蒸留水 (80 μL) に溶解した。これ以降は、化合物Aと同様にして合成し、MALDI-TOF-MSにて目的の化合物Gであることを確認したのち、in vivo 実験の使用に適したナトリウム塩にした。。化合物GのMALDI-TOF-MSの結果は、計算値[M-H]- :6273.2, 実測値[M-H]- :6276.1であった。 Compound G was synthesized as follows. 6 mM aqueous solution of compound 19 (50 μL, 0.3 μmol), 24 mM Fmoc-Val-Ala-PAB-PNP in DMSO solution (35 μL, 2.8 eq.), and 100 mM sodium borate buffer (80 μL, pH 9.3) ) and shaken at 50°C for 1 hour. Furthermore, a DMSO solution (35 μL, 2.8 eq.) of 24 mM Fmoc-Val-Ala-PAB-PNP was added, and the mixture was shaken at 50°C for 1 hour, and then purified by ethanol precipitation. The pellet was dissolved in distilled water (80 μL), piperidine (20 μL) was added, and the mixture was shaken at 50°C for 1 hour. After ethanol precipitation, the main product was fractionated by HPLC, lyophilized, and dissolved again in distilled water (80 μL). From this point on, it was synthesized in the same manner as Compound A, and after confirming that it was the desired Compound G using MALDI-TOF-MS, it was converted into a sodium salt suitable for use in in vivo experiments. . The results of MALDI-TOF-MS for Compound G were a calculated value [MH] - :6273.2 and an actual value [MH] - :6276.1.
 実施例15.マウスへの投与試験7
 コンジュゲートASO(化合物F、化合物G)と非コンジュゲートASO(naked ASO)とを用いて、投与量は100μgとし、実施例6と同様にして試験し、各組織での標的遺伝子(Malat1)の発現量を測定した。
Example 15. Administration test on mice 7
Using conjugated ASO (compound F, compound G) and unconjugated ASO (naked ASO), the dose was 100 μg, and the test was conducted in the same manner as in Example 6. The expression level was measured.
 結果を図7に示す。naked ASO を投与しても、脳組織での標的遺伝子(Malat1)の発現量は変化しなかった。これに対して、前述の化合物DやEを投与した場合は、脳組織での標的遺伝子の発現量が低下した。化合物FやGを投与した場合は、脳組織での標的遺伝子の発現量がさらに低下した。このことから、ポリヌクレオチドにリンカーと糖を連結するリンカー構造の影響は小さいが、糖の価数の変化や生分解型リンカーはポリヌクレオチドの活性を脳内でより効果的に発揮させる可能性が示された。 The results are shown in Figure 7. Administration of naked ASO did not change the expression level of the target gene (Malat1) in brain tissue. On the other hand, when the aforementioned compounds D and E were administered, the expression level of the target gene in brain tissue decreased. When compounds F and G were administered, the expression level of the target gene in brain tissue was further reduced. From this, the effect of the linker structure that connects the linker and sugar to the polynucleotide is small, but changes in the valence of the sugar and biodegradable linkers may make the activity of the polynucleotide more effective in the brain. Shown.

Claims (13)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中:Msは単糖から1つの原子又は基が除かれてなる1価の基を示す。Lkはリンカーである2価の基を示す。Pnはポリヌクレオチドから1つの原子又は基が除かれてなる1価の基を示す。]
    で表される化合物若しくはその塩又はそれらの溶媒和物。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula: Ms represents a monovalent group obtained by removing one atom or group from a monosaccharide. Lk represents a divalent group that is a linker. Pn represents a monovalent group obtained by removing one atom or group from a polynucleotide. ]
    A compound represented by: or a salt thereof or a solvate thereof.
  2. 前記単糖がグルコーストランスポーター1のリガンドである、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 2. The compound according to claim 1, a salt thereof, or a solvate thereof, wherein the monosaccharide is a ligand for glucose transporter 1.
  3. 前記単糖が六炭糖である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 The compound according to claim 1, a salt thereof, or a solvate thereof, wherein the monosaccharide is a hexose.
  4. 前記Msが前記単糖の4位又は6位のヒドロキシ基から水素原子が除かれてなる1価の基である、請求項3に記載の化合物若しくはその塩又はそれらの溶媒和物。 4. The compound, a salt thereof, or a solvate thereof according to claim 3, wherein the Ms is a monovalent group obtained by removing a hydrogen atom from a hydroxyl group at the 4th or 6th position of the monosaccharide.
  5. 前記リンカーが主鎖を構成する少なくとも1つの炭素原子がヘテロ原子及び/又は連結構造に置き換えられていてもよい炭化水素鎖である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 The compound, a salt thereof, or a solvate thereof according to claim 1, wherein the linker is a hydrocarbon chain in which at least one carbon atom constituting the main chain may be replaced with a heteroatom and/or a linking structure. .
  6. 前記連結構造が、トリアゾール環を含む連結構造及び/又はアミド結合を含む連結構造を含む、請求項5に記載の化合物若しくはその塩又はそれらの溶媒和物。 6. The compound, a salt thereof, or a solvate thereof according to claim 5, wherein the linked structure includes a linked structure containing a triazole ring and/or a linked structure containing an amide bond.
  7. 前記Lkの主鎖構成原子数が6以上である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 2. The compound, a salt thereof, or a solvate thereof according to claim 1, wherein the number of atoms constituting the main chain of the Lk is 6 or more.
  8. 前記Pnが前記ポリヌクレオチドの末端ヌクレオチドから1つの原子又は基が除かれてなる1価の基である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 2. The compound, a salt thereof, or a solvate thereof according to claim 1, wherein the Pn is a monovalent group obtained by removing one atom or group from the terminal nucleotide of the polynucleotide.
  9. 前記Pnが前記ポリヌクレオチドの末端ヌクレオチドのリン酸基から1つの水素原子が除かれてなる1価の基である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 2. The compound, a salt thereof, or a solvate thereof according to claim 1, wherein the Pn is a monovalent group obtained by removing one hydrogen atom from the phosphate group of the terminal nucleotide of the polynucleotide.
  10. 前記ポリヌクレオチドがアンチセンスポリヌクレオチド、siRNA、miRNA、miRNA前駆体、アプタマー、ガイドRNA、mRNA、DNA(アンチジーン核酸)、又はDNA/RNAヘテロ二重鎖である、請求項1に記載の化合物若しくはその塩又はそれらの溶媒和物。 The compound or compound according to claim 1, wherein the polynucleotide is an antisense polynucleotide, siRNA, miRNA, miRNA precursor, aptamer, guide RNA, mRNA, DNA (antigene nucleic acid), or DNA/RNA heteroduplex. its salts or their solvates.
  11. 請求項1~10のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物を含有する、医薬。 A medicament containing the compound according to any one of claims 1 to 10, a salt thereof, or a solvate thereof.
  12. 脳送達用である、請求項11に記載の医薬。 The medicament according to claim 11, which is for brain delivery.
  13. 請求項1~10のいずれかに記載の化合物若しくはその塩又はそれらの溶媒和物を含有する、試薬。 A reagent containing the compound according to any one of claims 1 to 10, a salt thereof, or a solvate thereof.
PCT/JP2023/012164 2022-04-27 2023-03-27 Sugar-linked polynucleotide WO2023210233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073180 2022-04-27
JP2022-073180 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210233A1 true WO2023210233A1 (en) 2023-11-02

Family

ID=88518690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012164 WO2023210233A1 (en) 2022-04-27 2023-03-27 Sugar-linked polynucleotide

Country Status (1)

Country Link
WO (1) WO2023210233A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075942A1 (en) * 2013-11-22 2015-05-28 国立大学法人 東京大学 Carrier for drug delivery and conjugate, composition containing same, and method for administering same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075942A1 (en) * 2013-11-22 2015-05-28 国立大学法人 東京大学 Carrier for drug delivery and conjugate, composition containing same, and method for administering same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Practical Application of Five Types of Reagents Contributing to Nucleic Acid Therapeutics (RNA) Life Prolongation and Anticancer Activity - Manufacture/Sale Agreement for Nucleic Acid Therapeutic Study Reagent Executed with Kanto Kagaku - Streamlining R&D with Safe and Easy Post-Modification of RNA ", PRESS RELEASE OF TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, GIFU UNIVERSITY, 24 May 2016 (2016-05-24), XP093105533 *
KUWAHARA HIROYA, TAKANORI YOKOTA: "Efficient DDS that crosses the blood-brain barrier in response to changes in blood glucose concentration", DRUG DELIVERY SYSTEM, vol. 34, no. 5, 1 January 2019 (2019-01-01), pages 352 - 359, XP093105528, DOI: 10.2745/dds.34.352 *
LIAO WENQING, AKAHIRA SAKIKO, HARA RINTARO IWATA, WADA TAKESHI, KUSAMORI KOSUKE, TAKAKURA YOSHINOBU, NISHIKAWA MAKIYA: "Enhanced Immunostimulatory Activity of CpG Oligodeoxynucleotide by the Combination of Mannose Modification and Incorporation into Nanostructured DNA", BIOLOGICAL & PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, TOKYO., JP, vol. 43, no. 8, 1 August 2020 (2020-08-01), JP , pages 1188 - 1195, XP093105521, ISSN: 0918-6158, DOI: 10.1248/bpb.b20-00052 *
NAGATA TETSUYA; DWYER CHRISSA A.; YOSHIDA-TANAKA KIE; IHARA KENSUKE; OHYAGI MASAKI; KABURAGI HIDETOSHI; MIYATA HARUKA; EBIHARA SAT: "Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 39, no. 12, 12 August 2021 (2021-08-12), New York, pages 1529 - 1536, XP037639828, ISSN: 1087-0156, DOI: 10.1038/s41587-021-00972-x *
NISHIKAWA MAKIYA, YUKITAKE YOSHIOKA, MAKOTO NAGAOKA, KOSUKE KUSAMORI: "Development of Oligonucleotide Therapeutics: Tissue Distribution and Drug Delivery System", DDS. DRUG DELIVERY SYSTEM, vol. 36, no. 1, 25 January 2021 (2021-01-25), pages 40 - 50, XP093006747, DOI: 10.2745/dds.36.40 *
TETSUYA KODAMA, YOSHIHIRO HYAKUSO, EIJI MIMORI, SHUICHI HIROAKI, RISA HYAKUSO, TATSUYA CHIKADA: "1P-19 Usefulness and cautionary points of post-synthetic modification of oligonucleotides by click", PROCEEDINGS OF THE 6TH ANNUAL MEETING OF THE NUCLEIC ACIDS THERAPEUTICS SOCIETY OF JAPAN; JUNE 27TH TO 29TH, 2021, NUCLEIC ACIDS THERAPEUTICS SOCIETY OF JAPAN, JP, vol. 6, 1 January 2021 (2021-01-01) - 29 June 2021 (2021-06-29), JP, pages 101, XP009550138 *

Similar Documents

Publication Publication Date Title
AU2022202011B2 (en) Short interfering nucleic acid (siNA) molecules containing a 2' internucleoside linkage
JP6158966B2 (en) Modified oligonucleotides for telomerase inhibition
EP3452596A1 (en) Oligonucleotide compositions and methods thereof
JP2022519019A (en) Oligonucleotide composition and its method
JP2020534254A (en) Oligonucleotide composition and its method
EP3992291A1 (en) Novel compound and application thereof
CN114533900A (en) Oligonucleotide compositions and methods thereof
US20230277675A1 (en) Systemic delivery of oligonucleotides
TW202043470A (en) Rnai agents for inhibiting expression of hif-2 alpha (epas1), compositions thereof, and methods of use
JPWO2018181428A1 (en) Complex of nucleic acid drug and hyperbranched lipid
JP2023080164A (en) Bbb-passing lipid ligand of hetero nucleic acid
EP4098746A1 (en) Single-stranded polynucleotide
WO2023210233A1 (en) Sugar-linked polynucleotide
CN110603330B (en) Oligonucleotide derivative or salt thereof
WO2024002046A1 (en) Oligonucleotide delivery enhancing compounds, pharmaceutical compositions and methods using the same
WO2023241591A1 (en) Sirna molecule for regulating pcsk9 gene activity
CN117466959A (en) Liver targeting compound, conjugate and application
WO2024032608A1 (en) Sirna molecule for regulating angptl3 gene activity
WO2024002093A1 (en) Sirna for inhibiting apolipoprotein c3 expression
JP2024518564A (en) Lipid conjugation for targeting neurons in the central nervous system
CN116615542A (en) Systemic delivery of oligonucleotides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795980

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)