WO2023210124A1 - Ejector - Google Patents

Ejector Download PDF

Info

Publication number
WO2023210124A1
WO2023210124A1 PCT/JP2023/005781 JP2023005781W WO2023210124A1 WO 2023210124 A1 WO2023210124 A1 WO 2023210124A1 JP 2023005781 W JP2023005781 W JP 2023005781W WO 2023210124 A1 WO2023210124 A1 WO 2023210124A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
axis
ejector
tip opening
axial direction
Prior art date
Application number
PCT/JP2023/005781
Other languages
French (fr)
Japanese (ja)
Inventor
吉輝 小室
喜之 近藤
紘章 中西
浩一 谷本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023210124A1 publication Critical patent/WO2023210124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/10Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing liquids, e.g. containing solids, or liquids and elastic fluids

Definitions

  • Patent Document 1 discloses an ejector that is applied to a refrigeration cycle using a mixed refrigerant.
  • This ejector has a nozzle that converts the pressure energy of the high-pressure refrigerant flowing out of the condenser into velocity energy to decompress and expand the refrigerant, and a high-velocity refrigerant flow ejected from the nozzle that sucks in the gaseous refrigerant that has evaporated in the evaporator. It has a booster section.
  • the pressure booster mixes the refrigerant ejected from the nozzle with the refrigerant sucked from the evaporator, converts velocity energy into pressure energy, and boosts the pressure of the refrigerant.
  • the flow of the refrigerant is determined by three pressures: the high-pressure refrigerant supplied, the refrigerant sucked, and the pressure booster where these refrigerants are mixed. For this reason, it has been difficult to vary the suction flow rate within a fixed cycle.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an ejector that can easily change the suction flow rate.
  • an ejector includes a base portion through which suction fluid is supplied to an inner introduction space, and a tapered space that is connected to the introduction space and whose diameter gradually decreases toward one side in the axial direction.
  • a casing having a mixing tube forming a mixing space extending from the tapered space to one side in the axial direction; and a casing extending around the axis and inserted into the introduction space from the other side in the axial direction.
  • a driving flow nozzle whose tip opening for ejecting driving fluid is located in the tapered space; and a moving mechanism that makes the axial position of the tip opening variable within the range of the axial position of the tapered space. , is provided.
  • the suction flow rate can be easily changed.
  • FIG. 1 is a schematic diagram of a refrigeration cycle of a centrifugal refrigerator according to a first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of an ejector according to a first embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of an ejector according to a first embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing a tip opening of a driving flow nozzle according to a first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view of an ejector according to a second embodiment of the present disclosure.
  • FIG. 7 is a perspective view of an ejector according to a third embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a refrigeration cycle of a centrifugal refrigerator according to a first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of an ejector according to a first embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of
  • FIG. 3 is a cross-sectional view of an ejector according to a third embodiment of the present disclosure.
  • FIG. 7 is a perspective view of an ejector according to a modification of the third embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of an ejector according to a modification of the third embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of an ejector according to a fourth embodiment of the present disclosure.
  • turbo chiller 1 equipped with an ejector 10 according to an embodiment of the present disclosure
  • the turbo refrigerator 1 is a cooling device using a turbo compressor such as a centrifugal compressor.
  • the centrifugal chiller 1 is used, for example, as an air conditioner in large-scale facilities such as office buildings.
  • FIG. 1 shows an example of a refrigeration cycle of a turbo chiller 1.
  • the turbo refrigerator 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 5, and an ejector 10.
  • the compressor 2 compresses the gaseous refrigerant W to increase the pressure of the refrigerant W.
  • the condenser 3 cools the refrigerant W compressed by the compressor 2 and condenses it into liquid.
  • the expansion valve 4 reduces the pressure of the refrigerant W from the condenser 3.
  • the evaporator 5 evaporates the liquid refrigerant W whose pressure has been reduced by the expansion valve 4, and exchanges heat with the outside air.
  • the outside air is cooled by exchanging heat with the evaporator 5 and becomes cold air.
  • the cold air produced by the evaporator 5 is blown into the room to be cooled.
  • the refrigerant W that has been evaporated into a gas in the evaporator 5 is sent to the compressor 2 again. In this way, the refrigerant W circulates within the refrigeration cycle of the turbo chiller 1.
  • the refrigerant W for example, a fluorocarbon gas, a fluorocarbon substitute, or the like is used.
  • the flow direction of the refrigerant W in the refrigeration cycle will be simply referred to as the "flow direction”
  • the upstream of the flow direction will be simply referred to as “upstream”
  • the downstream of the “flow direction” will be simply referred to as “downstream”.
  • the evaporator 5 of this embodiment is a liquid film type evaporator. Therefore, unevaporated liquid refrigerant W is stored at the bottom of the evaporator 5. An ejector 10 is provided to recirculate the refrigerant W stored at the bottom of the evaporator 5.
  • the ejector 10 is connected to the downstream side of the condenser 3 by a driving flow pipe 6 . A portion of the refrigerant W liquefied in the condenser 3 is supplied to the ejector 10 via the driving flow pipe 6 . Further, the ejector 10 is connected to the bottom of the evaporator 5 by a suction flow pipe 7. Liquid refrigerant W stored at the bottom of the evaporator 5 is supplied to the ejector 10 via the suction flow pipe 7 . Inside the ejector 10, the refrigerant W supplied via the driving flow pipe 6 and the refrigerant W supplied via the suction flow pipe 7 are mixed.
  • the ejector 10 is connected to the upstream side of the evaporator 5 via a return pipe 8.
  • the ejector 10 returns the refrigerant W supplied via the driving flow piping 6 and the suction flow piping 7 to the evaporator 5 via the return piping 8 .
  • the refrigerant W supplied to the ejector 10 via the driving flow piping 6 will be referred to as "driving fluid W1", and the refrigerant W supplied to the ejector 10 through the suction flow piping 7 will be referred to as "suction fluid W2".
  • the fluid generated by mixing the driving fluid W1 and the suction fluid W2 within the ejector 10 may be referred to as a “mixed fluid W3".
  • the driving fluid W1, the suction fluid W2, and the mixed fluid W3 of this embodiment are all liquids.
  • the ejector 10 is a device that uses the pressure difference between the upstream side and the downstream side to suck the suction fluid W2 and send it to the downstream side.
  • the ejector 10 includes a casing 20, a driving flow nozzle 30, a sealing mechanism 40, and a moving mechanism 50.
  • the casing 20 is formed into a cylindrical shape extending in one direction.
  • the axis O of the casing 20 may be simply referred to as “axis O" and explained.
  • the radial direction of the axis O is simply referred to as the "radial direction”
  • the circumferential direction of the axis O is simply referred to as the "circumferential direction.”
  • the downstream side may be referred to as “one side in the axis O direction” and the upstream side may be referred to as "the other side in the axis O direction”.
  • the casing 20 includes a base 21 , a tapered portion 22 , a mixing tube 23 , and a diffuser portion 24 .
  • the base portion 21 is formed in a cylindrical shape extending in the direction of the axis O.
  • An introduction space V1 is formed inside the base 21.
  • the suction fluid W2 is supplied to the introduction space V1 inside the base 21.
  • the base 21 has a side wall 25 formed around the axis O, and a bottom 26 provided on the other side of the side wall 25 in the axis O direction.
  • a suction hole 27 is formed in the side wall 25.
  • one suction hole 27 is formed in the side wall 25.
  • the suction hole 27 penetrates the side wall 25 in the radial direction.
  • the suction hole 27 is formed to have a circular cross section.
  • the suction hole 27 is connected to the downstream end of the suction flow pipe 7 (the end opposite to the evaporator 5).
  • the suction fluid W2 is supplied from the suction flow pipe 7 to the introduction space V1 through the suction hole 27.
  • the bottom portion 26 closes the other side of the side wall 25 in the axis O direction.
  • the bottom portion 26 is formed into a disk shape perpendicular to the axis O.
  • An insertion hole 28 is formed in the center of the bottom portion 26 .
  • the insertion hole 28 is provided at the center of the bottom portion 26.
  • the insertion hole 28 passes through the bottom portion 26 in the direction of the axis O.
  • the tapered portion 22 is provided at one end of the base portion 21 in the axis O direction.
  • the tapered portion 22 is formed in a cylindrical shape extending in the direction of the axis O.
  • the tapered portion 22 is arranged coaxially with the base portion 21.
  • the tapered portion 22 is formed in a tapered shape whose diameter gradually decreases toward one side in the axis O direction.
  • a tapered space V2 is formed inside the tapered portion 22.
  • the tapered space V2 is connected to the introduction space V1 and gradually reduces in diameter toward one side in the direction of the axis O.
  • the mixing tube 23 is provided at one end of the tapered portion 22 in the axis O direction.
  • the mixing tube 23 is formed into a cylindrical shape extending in the direction of the axis O.
  • the mixing tube 23 is arranged coaxially with the tapered portion 22.
  • a mixing space V3 is formed inside the mixing tube 23. The mixing space V3 extends from the tapered space V2 to one side in the direction of the axis O.
  • the diffuser section 24 is provided at one end of the mixing tube 23 in the axis O direction.
  • the diffuser part 24 is formed in a cylindrical shape extending in the direction of the axis O.
  • the diffuser section 24 is arranged coaxially with the mixing tube 23.
  • a diffuser space V4 is formed inside the diffuser section 24.
  • the diffuser space V4 is connected to the mixing space V3 and gradually expands in diameter toward one side in the axis O direction.
  • the driving flow nozzle 30 is formed into a cylindrical shape extending around the axis O. That is, the driven flow nozzle 30 is arranged coaxially with the casing 20. The driving flow nozzle 30 is inserted into the introduction space V1 from the other side in the direction of the axis O.
  • the driving flow nozzle 30 has a large diameter pipe 31, a connecting pipe 32, and a small diameter pipe 33.
  • the large diameter pipe 31 is provided on the other side of the driving flow nozzle 30 in the direction of the axis O.
  • the large diameter tube 31 is inserted into an insertion hole 28 provided in the bottom 26 of the casing 20.
  • the large diameter tube 31 is a cylindrical member extending in the direction of the axis O.
  • the other end of the large diameter tube 31 in the direction of the axis O is located outside the introduction space V1.
  • the other end of the large-diameter pipe 31 in the direction of the axis O is connected to the downstream end of the driving flow pipe 6 (the end opposite to the condenser 3).
  • a driving fluid W1 is supplied into the large diameter pipe 31 from the driving flow piping 6.
  • the connecting pipe 32 is provided at one end of the large diameter pipe 31 in the axis O direction.
  • the connecting pipe 32 is formed in a cylindrical shape extending from the large diameter pipe 31 to one side in the axis O direction.
  • the connecting pipe 32 is arranged coaxially with the large diameter pipe 31.
  • the connecting pipe 32 is formed in a tapered shape whose diameter gradually decreases toward one side in the direction of the axis O.
  • the small diameter pipe 33 is provided on one side of the driving flow nozzle 30 in the axis O direction. More specifically, the small diameter pipe 33 is provided at one end of the connecting pipe 32 in the axis O direction.
  • the small diameter pipe 33 is formed in a cylindrical shape extending from the connecting pipe 32 to one side in the axis O direction.
  • the small diameter pipe 33 is arranged coaxially with the connecting pipe 32.
  • the small diameter tube 33 is formed to have a smaller diameter than the large diameter tube 31.
  • the small diameter tube 33 has a tip opening 34 at one end in the axis O direction.
  • the tip opening 34 spouts out the driving fluid W1 supplied into the driving flow nozzle 30.
  • the tip opening 34 is located within the tapered space V2.
  • the cross-sectional shape of the tip opening 34 perpendicular to the axis O is circular.
  • the sealing mechanism 40 is disposed in an insertion hole 28 provided in the bottom 26 of the casing 20.
  • a sealing mechanism 40 is provided between the insertion hole 28 and the driving flow nozzle 30.
  • the seal mechanism 40 supports the driving flow nozzle 30 so as to be movable in the direction of the axis O. Further, the sealing mechanism 40 seals the casing 20 and the driving flow nozzle 30 to prevent the refrigerant W from leaking out from the introduction space V1.
  • the sealing mechanism 40 is provided around the entire circumference of the large diameter pipe 31 of the driving flow nozzle 30.
  • the moving mechanism 50 makes the position of the tip opening 34 of the drive flow nozzle 30 in the axis O direction variable within the range of the position of the tapered space V2 in the axis O direction. That is, the range of motion of the tip opening 34 is within the tapered space V2.
  • the moving mechanism 50 moves the entire driving flow nozzle 30 in the direction of the axis O, thereby making the position of the tip opening 34 in the direction of the axis O variable.
  • Examples of the moving mechanism 50 include an electric mechanism using a ball screw or the like.
  • the pressure on the upstream side of the driving flow nozzle 30 (on the condenser 3 side) is higher than that on the downstream side of the driving flow nozzle 30. Due to this pressure difference, the driving fluid W1 flows into the driving flow nozzle 30 from the upstream side of the driving flow nozzle 30. The driving fluid W1 contracts in the tapered connecting pipe 32 of the driving flow nozzle 30. Thereby, the driving fluid W1 is depressurized and guided to the mixing space V3. Thereby, the pressure energy (expansion energy) of the driving fluid W1 is converted into velocity energy, and the driving fluid W1 is ejected from the tip opening 34 at high speed.
  • the driving fluid W1 ejected from the tip opening 34 sucks the refrigerant W stored at the bottom of the evaporator 5.
  • the refrigerant W sucked from this evaporator 5 becomes suction fluid W2.
  • Suction fluid W2 flows into introduction space V1 in casing 20 through suction flow piping 7. Furthermore, the suction fluid W2 is drawn toward one side (downstream side) in the axis O direction by the driving fluid W1. Thereby, the suction fluid W2 is guided from the introduction space V1 to the mixing space V3 through the tapered space V2.
  • the driving fluid W1 and the suction fluid W2 flow toward the downstream side while being mixed.
  • a mixed fluid W3 is generated by mixing the driving fluid W1 and the suction fluid W2.
  • Mixed fluid W3 is guided from mixing space V3 to diffuser space V4.
  • the mixed fluid W3 flows toward the downstream side while being diffused. As a result, the pressure of the mixed fluid W3 is increased.
  • the mixed fluid W3 whose pressure has been increased in the diffuser space V4 is sent from the ejector 10 to the downstream side (evaporator 5 side).
  • the tip opening 34 of the drive flow nozzle 30 that spouts the drive fluid W1 is located within the tapered space V2.
  • the moving mechanism 50 makes the position of the tip opening 34 in the direction of the axis O variable within the range of the position of the tapered space V2 in the direction of the axis O.
  • the suction fluid W2 is sucked into the introduction space V1 by the flow of the driving fluid W1. Therefore, as shown in FIG. 4, the suction flow rate is determined by the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 at the position in the axis O direction of the tip opening 34. be done.
  • the flow path cross section Amd of the driving fluid W1 is a cross section of the inner space of the tip opening 34
  • the flow path cross section Ams of the suction fluid W2 is a cross section of the tip opening of the cross section of the tapered space V2. 34 excluding the cross section of the inner space.
  • the ejector 10 can make the position of the tip opening 34 in the direction of the axis O variable within the tapered space V2.
  • the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 is changed.
  • the suction flow rate can be easily changed.
  • the suction flow rate By changing the suction flow rate, it is possible to support partial load operation and load following operation of the centrifugal chiller 1. For example, during partial load operation, the pressure of the driving fluid W1 is lower than that at the rated time, so the flow rate of the driving fluid W1 decreases, and in that case, the flow rate of the suction fluid W2 generally also decreases. However, when used for refrigerant circulation in a liquid film evaporator, it is desirable to circulate a constant flow rate, so it is necessary to increase the ratio of the flow rate of the suction fluid W2 to the flow rate of the driving fluid W1.
  • the flow path cross section Ams of the suction fluid W2 is expanded, and the flow rate of the driving fluid W1 is increased.
  • the ratio of the flow rate of the suction fluid W2 to that of the suction fluid W2 can be increased.
  • the moving mechanism 50 moves the entire driving flow nozzle 30 in the direction of the axis O, thereby making the position of the tip opening 34 in the direction of the axis O variable.
  • the moving mechanism 50 can make the position of the tip opening 34 in the axis O direction variable with a simple configuration. Therefore, the production efficiency of the ejector 10 can be improved and the manufacturing cost of the ejector 10 can be reduced.
  • the casing 20 has a diffuser section 24 that is connected to the mixing space V3 and forms a diffuser space V4 that gradually expands in diameter toward one side in the axis O direction.
  • the ejector 10 can diffuse and expand the fluid mixed in the mixing tube 23 in the diffuser section 24. Thereby, the ejector 10 can increase the pressure of the mixed fluid W3 in the diffuser section 24 and then send it to the downstream side.
  • the refrigerant W is sucked from the evaporator 5 by the ejector 10 and recirculated within the refrigeration cycle.
  • the ejector 10 sucks the liquid refrigerant W using the pressure difference within the cycle and circulates it within the cycle. Therefore, there is no need to use a pump to circulate the liquid refrigerant W. Therefore, maintenance costs for the pump become unnecessary, and costs can be reduced. Moreover, the frequency of maintenance of the centrifugal chiller 1 as a whole can be reduced.
  • the driving flow nozzle 30 and the casing 20 may move relative to each other in the direction of the axis O.
  • the moving mechanism 50 and the casing 20 may be connected and the casing 20 may be moved in the direction of the axis O.
  • the small diameter pipe 233 of the driving flow nozzle 230 is provided so as to be expandable and retractable in the direction of the axis O.
  • the moving mechanism 250 of the present embodiment expands and contracts only one side of the driving flow nozzle 230 in the axis O direction that includes the tip opening 34 in the axis O direction, thereby making the position of the tip opening 34 in the axis O direction variable.
  • the moving mechanism 250 includes, for example, an antenna 251 that is connected to the small diameter pipe 33 of the drive flow nozzle 30 and receives signals from the outside.
  • the ejector 210 has an operating device 260.
  • the operating device 260 is installed outside the centrifugal chiller 1, for example.
  • the user operates the operating device 260 to transmit an operating signal to the antenna 251.
  • the moving mechanism 250 expands and contracts the small diameter tube 233 in the direction of the axis O according to the operation signal.
  • the position of the tip opening 34 in the direction of the axis O becomes variable.
  • the moving mechanism 250 expands and contracts only one side of the driving flow nozzle 230 in the axis O direction that includes the tip opening 34 in the axis O direction, thereby making the position of the tip opening 34 in the axis O direction variable.
  • the moving mechanism 250 can make the position of the tip opening 34 in the axis O direction variable without moving the seal (seal mechanism 240) between the driving flow nozzle 230 and the casing 20. Therefore, leakage of the suction fluid W2 can be more reliably prevented.
  • the casing 320 further includes an outer casing 321 that covers the base 21 from the outside.
  • the outer casing 321 is provided over the entire circumference of the casing 320.
  • a pre-introduction space V5 is formed between the outer casing 321 and the base 21.
  • the suction fluid W2 is supplied to the pre-introduction space V5 before the introduction space V1.
  • a suction hole 322 is formed in the external casing 321.
  • the suction hole 322 penetrates the outer casing 321 in the radial direction.
  • a communication portion 323 is formed on the side wall 25 around the axis O of the base portion 21 over the entire circumference to communicate the introduction space V1 and the pre-introduction space V5.
  • the communication portion 323 of this embodiment is a slit 324 extending in the circumferential direction.
  • the slit 324 penetrates the side wall 25 of the base 21 in the radial direction.
  • the slit 324 is formed in an annular shape without any gaps in the circumferential direction.
  • the width dimension of the slit 324 in the direction of the axis O is constant regardless of the circumferential position.
  • the casing 320 further includes an external casing 321 that covers the base 21 from the outside to form a pre-introduction space V5 between the base 21 and the suction fluid W2 into the pre-introduction space V5. .
  • a communication portion 323 is formed in the side wall 25 of the base portion 21 over the entire circumference to communicate the introduction space V1 and the pre-introduction space V5.
  • the suction fluid W2 is first guided from the suction flow piping 7 to the pre-introduction space V5.
  • the suction fluid W2 spreads within the pre-introduction space V5 over the entire circumferential direction. Thereafter, the suction fluid W2 flows into the introduction space V1 via the communication portion 323.
  • the ejector 310 of this embodiment can supply the suction fluid W2 from the entire circumference of the side wall 25 of the base 21 into the introduction space V1 via the communication portion 323. Thereby, the ejector 310 can uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
  • the communication portion 323 is a slit 324 extending in the circumferential direction of the axis O.
  • the communication portion 323 can be easily formed in the side wall 25 of the base portion 21. Therefore, the production efficiency of the ejector 310 can be improved.
  • the communication portion 323 may be a plurality of holes 325 arranged in the circumferential direction of the axis O.
  • the hole 325 passes through the side wall 25 of the base 21 in the radial direction.
  • the plurality of holes 325 are provided at equal intervals in the circumferential direction.
  • the hole 325 is formed to have a circular cross section. Each hole 325 is all formed in the same shape.
  • the communication portion 323 is a plurality of holes 325 arranged in the circumferential direction of the axis O.
  • the ejector 310 can further uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
  • the entire large diameter pipe 31 of the driving flow nozzle 430 is located on the other side of the axis O direction than the base 21, and the small diameter pipe 433 of the driving flow nozzle 430 is inserted into the introduction space V1.
  • the intermediate portion of the small diameter tube 433 in the direction of the axis O is located in the insertion hole 28 of the casing 20 .
  • the seal mechanism 440 is provided around the entire circumference of the small diameter pipe 433.
  • the entire large diameter tube 31 is located on the other side of the base 21 in the axis O direction. Furthermore, the small diameter tube 433 is inserted into the introduction space V1.
  • the circumference of the seal (seal mechanism 440) that seals the driving flow nozzle 430 and the casing 20 is shortened. This simplifies the sealing mechanism 440. Therefore, the production efficiency of the ejector 410 can be improved, and the manufacturing cost of the ejector 10 can be reduced. Furthermore, since the area where sealing is required can be made smaller, leakage of the suction fluid W2 can be more reliably prevented. Further, there is no need to ensure a volume necessary for accommodating the large-diameter pipe 31 in the casing 20. Therefore, the casing 20 can be made thinner. This makes it possible to save space.
  • the said embodiment demonstrated the case where the ejector 10 is used for the refrigeration cycle of the turbo chiller 1, it is not limited to this.
  • the ejector 10 may be used in a refrigeration/cooling cycle other than the turbo chiller 1.
  • the driving fluid W1 and the suction fluid W2 are liquids
  • the driving fluid W1 and the suction fluid W2 may both be gases, or either one of the driving fluid W1 and the suction fluid W2 may be a gas.
  • the ejector 10, 210, 310, 410 includes a base 21 that supplies suction fluid W2 to an inner introduction space V1, and a base 21 that is connected to the introduction space V1 and directed toward one side in the axis O direction.
  • a driving flow nozzle 30, 230, 430 that extends around O and is inserted into the introduction space V1 from the other side in the direction of the axis O, and has a tip opening 34 for ejecting the driving fluid W1 located in the tapered space V2.
  • a moving mechanism 50, 250 that makes the position of the tip opening 34 in the axis O direction variable within the range of the position of the tapered space V2 in the axis O direction.
  • Examples of the moving mechanisms 50 and 250 include electric mechanisms using ball screws and the like.
  • the ejector 10, 210, 310, 410 can make the position of the tip opening 34 in the axis O direction variable within the tapered space V2.
  • the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 is changed.
  • the ejector 10, 310, 410 of the second aspect is the ejector 10, 310, 410 of (1), in which the moving mechanism 50 moves the driving flow nozzle 30, 430 with respect to the casing 20.
  • the position of the tip opening 34 in the direction of the axis O may be made variable by relatively moving the entire body in the direction of the axis O.
  • the moving mechanism 50 can make the position of the tip opening 34 in the axis O direction variable with a simple configuration.
  • the ejector 210 of the third aspect is the ejector 210 of (1), in which the moving mechanism 250 moves only one side of the driving flow nozzle 230 in the axis O direction including the tip opening 34.
  • the position of the tip opening 34 in the axis O direction may be made variable by expanding and contracting it in the axis O direction.
  • the moving mechanism 250 can make the position of the tip opening 34 in the direction of the axis O variable without moving the seal between the driving flow nozzle 230 and the casing 20.
  • the ejector 310 of the fourth aspect is the ejector 310 according to any one of (1) to (3), in which the casing 320 covers the base 21 from the outside and is introduced between the base 21 and the base 21. It further includes an external casing 321 that forms a front space V5 and supplies the suction fluid W2 into the pre-introduction space V5, and the side wall 25 of the base 21 has the introduction space V1 and the A communication portion 323 that communicates with the pre-introduction space V5 may be formed.
  • the ejector 310 can supply the suction fluid W2 into the introduction space V1 from the entire circumference of the side wall 25 of the base portion 21 via the communication portion 323. Thereby, the ejector 310 can uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
  • the ejector 310 of the fifth aspect may be the ejector 310 of (4), in which the communication portion 323 may be a slit 324 extending in the circumferential direction of the axis O.
  • the communication portion 323 can be easily formed in the side wall 25 of the base portion 21.
  • the ejector 310 of the sixth aspect may be the ejector 310 of (4), in which the communication portion 323 may be a plurality of holes 325 arranged in a circumferential direction of the axis O.
  • the ejector 310 can further uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
  • the ejector 410 of the seventh aspect is the ejector 410 according to any one of (1) to (6), in which the driving flow nozzle 430 is connected to the large diameter pipe 31 provided on the other side in the direction of the axis O. and a small-diameter tube 433 provided on one side in the direction of the axis O and having a smaller diameter than the large-diameter tube 31, the entire large-diameter tube 31 being on the other side in the direction of the axis O than the base 21.
  • the small diameter tube 433 may be inserted into the introduction space V1.
  • the circumferential length of the seal that seals the driving flow nozzle 430 and the casing 20 is shortened. Further, there is no need to ensure a volume necessary for accommodating the large-diameter pipe 31 in the casing 20.
  • the ejector 10, 210, 310, 410 of the eighth aspect is the ejector 10, 210, 310, 410 according to any one of (1) to (7), wherein the casing 20, 320 is It may further include a diffuser portion 24 that is connected to the space V3 and forms a diffuser space V4 whose diameter gradually increases toward one side in the direction of the axis O.
  • the ejectors 10, 210, 310, and 410 can diffuse and expand the fluid mixed in the mixing tube 23 in the diffuser section 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

This ejector comprises: a casing having a base portion that has an inner introduction space supplied with suction fluid, a tapered portion that forms a tapered space connected to the introduction space and gradually decreasing in diameter toward one side in the axial direction, and a mixing tube that forms a mixing space extending from the tapered space to the one side in the axial direction; a drive flow nozzle that extends about the axis and is inserted into the introduction space from the other side in the axial direction, and that has a tip opening for jetting out drive fluid, the tip opening being located in the tapered space; and a movement mechanism that allows the axial position of the tip opening to be variable within the range of the axial position of the tapered space.

Description

エジェクタejector
 本開示は、エジェクタに関する。
 本願は、2022年4月28日に、日本に出願された特願2022-075200号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to an ejector.
This application claims priority based on Japanese Patent Application No. 2022-075200 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
 例えば、特許文献1には、混合冷媒を用いた冷凍サイクルに適用されるエジェクタが開示されている。このエジェクタは、コンデンサから流出した高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズルと、ノズルから噴出する高い速度の冷媒流により蒸発器にて蒸発した気相冷媒を吸引する昇圧部と、を有する。昇圧部は、ノズルから噴出する冷媒と蒸発器から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒を昇圧させる。 For example, Patent Document 1 discloses an ejector that is applied to a refrigeration cycle using a mixed refrigerant. This ejector has a nozzle that converts the pressure energy of the high-pressure refrigerant flowing out of the condenser into velocity energy to decompress and expand the refrigerant, and a high-velocity refrigerant flow ejected from the nozzle that sucks in the gaseous refrigerant that has evaporated in the evaporator. It has a booster section. The pressure booster mixes the refrigerant ejected from the nozzle with the refrigerant sucked from the evaporator, converts velocity energy into pressure energy, and boosts the pressure of the refrigerant.
日本国特許第3433737号公報Japanese Patent No. 3433737
 しかしながら、特許文献1に記載のエジェクタでは、供給される高圧冷媒、吸引される冷媒、及び、これらの冷媒が混合される昇圧部の3つの圧力によって、冷媒の流れが決定される。このため、固定されたサイクル内で、吸引流量を可変とすることが困難であった。 However, in the ejector described in Patent Document 1, the flow of the refrigerant is determined by three pressures: the high-pressure refrigerant supplied, the refrigerant sucked, and the pressure booster where these refrigerants are mixed. For this reason, it has been difficult to vary the suction flow rate within a fixed cycle.
 本開示は、上記課題を解決するためになされたものであって、吸引流量を容易に変更することができるエジェクタを提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an ejector that can easily change the suction flow rate.
 上記課題を解決するために、本開示に係るエジェクタは、内側の導入空間に吸引流体が供給される基部、前記導入空間に接続されて軸線方向一方側に向かって徐々に縮径するテーパ空間を形成するテーパ部、及び、前記テーパ空間から前記軸線方向一方側に延びる混合空間を形成する混合管を有するケーシングと、前記軸線を中心として延びて前記導入空間に前記軸線方向他方側から挿入されているとともに、駆動流体を噴出する先端開口が前記テーパ空間内に位置する駆動流ノズルと、前記先端開口の前記軸線方向位置を、前記テーパ空間の前記軸線方向位置の範囲で可変とする移動機構と、を備える。 In order to solve the above problems, an ejector according to the present disclosure includes a base portion through which suction fluid is supplied to an inner introduction space, and a tapered space that is connected to the introduction space and whose diameter gradually decreases toward one side in the axial direction. a casing having a mixing tube forming a mixing space extending from the tapered space to one side in the axial direction; and a casing extending around the axis and inserted into the introduction space from the other side in the axial direction. a driving flow nozzle whose tip opening for ejecting driving fluid is located in the tapered space; and a moving mechanism that makes the axial position of the tip opening variable within the range of the axial position of the tapered space. , is provided.
 本開示のエジェクタによれば、吸引流量を容易に変更することができる。 According to the ejector of the present disclosure, the suction flow rate can be easily changed.
本開示の第一実施形態に係るターボ冷凍機の冷凍サイクルの模式図である。FIG. 1 is a schematic diagram of a refrigeration cycle of a centrifugal refrigerator according to a first embodiment of the present disclosure. 本開示の第一実施形態に係るエジェクタの斜視図である。FIG. 1 is a perspective view of an ejector according to a first embodiment of the present disclosure. 本開示の第一実施形態に係るエジェクタの断面図である。FIG. 1 is a cross-sectional view of an ejector according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る駆動流ノズルの先端開口を示す斜視図である。FIG. 2 is a perspective view showing a tip opening of a driving flow nozzle according to a first embodiment of the present disclosure. 本開示の第二実施形態に係るエジェクタの断面図である。FIG. 3 is a cross-sectional view of an ejector according to a second embodiment of the present disclosure. 本開示の第三実施形態に係るエジェクタの斜視図である。FIG. 7 is a perspective view of an ejector according to a third embodiment of the present disclosure. 本開示の第三実施形態に係るエジェクタの断面図である。FIG. 3 is a cross-sectional view of an ejector according to a third embodiment of the present disclosure. 本開示の第三実施形態の変形例に係るエジェクタの斜視図である。FIG. 7 is a perspective view of an ejector according to a modification of the third embodiment of the present disclosure. 本開示の第三実施形態の変形例に係るエジェクタの断面図である。FIG. 7 is a cross-sectional view of an ejector according to a modification of the third embodiment of the present disclosure. 本開示の第四実施形態に係るエジェクタの断面図である。FIG. 7 is a cross-sectional view of an ejector according to a fourth embodiment of the present disclosure.
<第一実施形態>
(ターボ冷凍機)
 以下、本開示の実施形態に係るエジェクタ10が搭載されたターボ冷凍機1について、図1から図4を参照して説明する。
 ターボ冷凍機1は、遠心圧縮機等のターボ式の圧縮機を用いた冷却装置である。ターボ冷凍機1は、例えばオフィスビル等の大規模設備における空調装置に用いられる。図1に、ターボ冷凍機1の冷凍サイクルの一例を示す。
<First embodiment>
(turbo chiller)
Hereinafter, a turbo chiller 1 equipped with an ejector 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
The turbo refrigerator 1 is a cooling device using a turbo compressor such as a centrifugal compressor. The centrifugal chiller 1 is used, for example, as an air conditioner in large-scale facilities such as office buildings. FIG. 1 shows an example of a refrigeration cycle of a turbo chiller 1.
 図1に示すように、ターボ冷凍機1は、圧縮機2と、凝縮器3と、膨張弁4と、蒸発器5と、エジェクタ10と、を備える。 As shown in FIG. 1, the turbo refrigerator 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 5, and an ejector 10.
 圧縮機2は、気体の冷媒Wを圧縮して冷媒Wを昇圧する。凝縮器3は、圧縮機2で圧縮された冷媒Wを冷却して、液体に凝縮する。膨張弁4は、凝縮器3からの冷媒Wを減圧する。蒸発器5は、膨張弁4で減圧された液体の冷媒Wを蒸発させて、外気と熱交換を行う。外気は、蒸発器5と熱交換を行うことで冷却されて冷風となる。蒸発器5で作られた冷風は、冷却対象の室内に送風される。蒸発器5で蒸発し、気体となった冷媒Wは、再び圧縮機2へと送られる。このようにして、冷媒Wは、ターボ冷凍機1の冷凍サイクル内を循環する。
 冷媒Wには、例えばフロンガスや、代替フロン等が用いられる。
The compressor 2 compresses the gaseous refrigerant W to increase the pressure of the refrigerant W. The condenser 3 cools the refrigerant W compressed by the compressor 2 and condenses it into liquid. The expansion valve 4 reduces the pressure of the refrigerant W from the condenser 3. The evaporator 5 evaporates the liquid refrigerant W whose pressure has been reduced by the expansion valve 4, and exchanges heat with the outside air. The outside air is cooled by exchanging heat with the evaporator 5 and becomes cold air. The cold air produced by the evaporator 5 is blown into the room to be cooled. The refrigerant W that has been evaporated into a gas in the evaporator 5 is sent to the compressor 2 again. In this way, the refrigerant W circulates within the refrigeration cycle of the turbo chiller 1.
As the refrigerant W, for example, a fluorocarbon gas, a fluorocarbon substitute, or the like is used.
 以下では、冷凍サイクルの冷媒Wの流通方向を単に「流通方向」と称し、流通方向の上流を単に「上流」と称し、「流通方向」の下流を単に「下流」と称して説明する場合がある。 In the following, the flow direction of the refrigerant W in the refrigeration cycle will be simply referred to as the "flow direction", the upstream of the flow direction will be simply referred to as "upstream", and the downstream of the "flow direction" will be simply referred to as "downstream". be.
 本実施形態の蒸発器5は、液膜式蒸発器である。このため、蒸発器5の底部には、未蒸発の液体の冷媒Wが貯留される。蒸発器5の底部に貯留された冷媒Wを再循環させるために、エジェクタ10が設けられている。 The evaporator 5 of this embodiment is a liquid film type evaporator. Therefore, unevaporated liquid refrigerant W is stored at the bottom of the evaporator 5. An ejector 10 is provided to recirculate the refrigerant W stored at the bottom of the evaporator 5.
(エジェクタ)
 エジェクタ10は、駆動流配管6によって凝縮器3の下流側と接続されている。エジェクタ10には、駆動流配管6を介して、凝縮器3で液化した冷媒Wの一部が供給される。また、エジェクタ10は、吸引流配管7によって蒸発器5の底部と接続されている。エジェクタ10には、吸引流配管7を介して、蒸発器5の底部に貯留された液体の冷媒Wが供給される。エジェクタ10内では、駆動流配管6を介して供給された冷媒Wと、吸引流配管7を介して供給された冷媒Wとが混合される。また、エジェクタ10は、戻り配管8によって、蒸発器5の上流側に接続されている。エジェクタ10は、駆動流配管6及び吸引流配管7を介して供給された冷媒Wを、戻り配管8を介して蒸発器5に戻す。
(Ejector)
The ejector 10 is connected to the downstream side of the condenser 3 by a driving flow pipe 6 . A portion of the refrigerant W liquefied in the condenser 3 is supplied to the ejector 10 via the driving flow pipe 6 . Further, the ejector 10 is connected to the bottom of the evaporator 5 by a suction flow pipe 7. Liquid refrigerant W stored at the bottom of the evaporator 5 is supplied to the ejector 10 via the suction flow pipe 7 . Inside the ejector 10, the refrigerant W supplied via the driving flow pipe 6 and the refrigerant W supplied via the suction flow pipe 7 are mixed. Further, the ejector 10 is connected to the upstream side of the evaporator 5 via a return pipe 8. The ejector 10 returns the refrigerant W supplied via the driving flow piping 6 and the suction flow piping 7 to the evaporator 5 via the return piping 8 .
 続いて、エジェクタ10の構造について詳細に説明する。
 以下では、駆動流配管6を介してエジェクタ10に供給される冷媒Wを「駆動流体W1」と称し、吸引流配管7を介してエジェクタ10に供給される冷媒Wを「吸引流体W2」と称し、エジェクタ10内で駆動流体W1と吸引流体W2が混合されることによって生成される流体を「混合流体W3」と称して説明する場合がある。
 本実施形態の駆動流体W1、吸引流体W2、及び混合流体W3は、全て液体である。
 エジェクタ10は、上流側と下流側の圧力差を利用して、吸引流体W2を吸引して下流側に送る装置である。
Next, the structure of the ejector 10 will be explained in detail.
Hereinafter, the refrigerant W supplied to the ejector 10 via the driving flow piping 6 will be referred to as "driving fluid W1", and the refrigerant W supplied to the ejector 10 through the suction flow piping 7 will be referred to as "suction fluid W2". The fluid generated by mixing the driving fluid W1 and the suction fluid W2 within the ejector 10 may be referred to as a "mixed fluid W3".
The driving fluid W1, the suction fluid W2, and the mixed fluid W3 of this embodiment are all liquids.
The ejector 10 is a device that uses the pressure difference between the upstream side and the downstream side to suck the suction fluid W2 and send it to the downstream side.
 図2、図3に示すように、エジェクタ10は、ケーシング20と、駆動流ノズル30と、シール機構40と、移動機構50と、を備える。 As shown in FIGS. 2 and 3, the ejector 10 includes a casing 20, a driving flow nozzle 30, a sealing mechanism 40, and a moving mechanism 50.
(ケーシング)
 ケーシング20は、一方向に延びる筒状に形成されている。
 以下では、ケーシング20の軸線Oを単に「軸線O」と称して説明する場合がある。また、軸線Oの延在方向を、単に「軸線O方向」と称し、軸線Oの径方向を単に「径方向」と称し、軸線Oの周方向を単に「周方向」と称して説明する場合がある。また、軸線O方向のうち、下流側を「軸線O方向一方側」と称し、上流側を「軸線O方向他方側」と称して説明する場合がある。
 ケーシング20は、基部21と、テーパ部22と、混合管23と、ディフューザ部24と、を有する。
(casing)
The casing 20 is formed into a cylindrical shape extending in one direction.
Below, the axis O of the casing 20 may be simply referred to as "axis O" and explained. In addition, when the extending direction of the axis O is simply referred to as the "axis O direction," the radial direction of the axis O is simply referred to as the "radial direction," and the circumferential direction of the axis O is simply referred to as the "circumferential direction." There is. Further, in the axis O direction, the downstream side may be referred to as "one side in the axis O direction" and the upstream side may be referred to as "the other side in the axis O direction".
The casing 20 includes a base 21 , a tapered portion 22 , a mixing tube 23 , and a diffuser portion 24 .
(基部)
 基部21は、軸線O方向に延びる円筒状に形成されている。基部21の内部には、導入空間V1が形成されている。基部21の内側の導入空間V1には、吸引流体W2が供給される。基部21は、軸線O周りに形成された側壁25と、側壁25の軸線O方向他方側に設けられた底部26と、を有する。
(base)
The base portion 21 is formed in a cylindrical shape extending in the direction of the axis O. An introduction space V1 is formed inside the base 21. The suction fluid W2 is supplied to the introduction space V1 inside the base 21. The base 21 has a side wall 25 formed around the axis O, and a bottom 26 provided on the other side of the side wall 25 in the axis O direction.
 側壁25には、吸引孔27が形成されている。本実施形態では、吸引孔27は、側壁25に1つ形成されている。吸引孔27は、側壁25を径方向に貫通する。吸引孔27は、断面円形状に形成されている。吸引孔27には、吸引流配管7の下流側の端部(蒸発器5とは反対側の端部)が接続されている。吸引流体W2は、吸引流配管7から吸引孔27を通って導入空間V1に供給される。 A suction hole 27 is formed in the side wall 25. In this embodiment, one suction hole 27 is formed in the side wall 25. The suction hole 27 penetrates the side wall 25 in the radial direction. The suction hole 27 is formed to have a circular cross section. The suction hole 27 is connected to the downstream end of the suction flow pipe 7 (the end opposite to the evaporator 5). The suction fluid W2 is supplied from the suction flow pipe 7 to the introduction space V1 through the suction hole 27.
 底部26は、側壁25の軸線O方向他方側を閉塞する。底部26は、軸線Oと直交する円板状に形成されている。底部26の中心には、挿入孔28が形成されている。挿入孔28は、底部26の中心に設けられている。挿入孔28は、底部26を軸線O方向に貫通している。 The bottom portion 26 closes the other side of the side wall 25 in the axis O direction. The bottom portion 26 is formed into a disk shape perpendicular to the axis O. An insertion hole 28 is formed in the center of the bottom portion 26 . The insertion hole 28 is provided at the center of the bottom portion 26. The insertion hole 28 passes through the bottom portion 26 in the direction of the axis O.
(テーパ部)
 テーパ部22は、基部21の軸線O方向一方側の端部に設けられている。テーパ部22は、軸線O方向に延びる円筒状に形成されている。テーパ部22は、基部21と同軸に配置されている。テーパ部22は、軸線O方向一方側に向かって徐々に縮径するテーパ状に形成されている。テーパ部22の内部には、テーパ空間V2が形成されている。テーパ空間V2は、導入空間V1に接続されて軸線O方向一方側に向かって徐々に縮径している。
(Tapered part)
The tapered portion 22 is provided at one end of the base portion 21 in the axis O direction. The tapered portion 22 is formed in a cylindrical shape extending in the direction of the axis O. The tapered portion 22 is arranged coaxially with the base portion 21. The tapered portion 22 is formed in a tapered shape whose diameter gradually decreases toward one side in the axis O direction. A tapered space V2 is formed inside the tapered portion 22. The tapered space V2 is connected to the introduction space V1 and gradually reduces in diameter toward one side in the direction of the axis O.
(混合管)
 混合管23は、テーパ部22の軸線O方向一方側の端部に設けられている。混合管23は、軸線O方向に延びる円筒状に形成されている。混合管23は、テーパ部22と同軸に配置されている。混合管23の内部には、混合空間V3が形成されている。混合空間V3は、テーパ空間V2から軸線O方向一方側に延びている。
(mixing tube)
The mixing tube 23 is provided at one end of the tapered portion 22 in the axis O direction. The mixing tube 23 is formed into a cylindrical shape extending in the direction of the axis O. The mixing tube 23 is arranged coaxially with the tapered portion 22. A mixing space V3 is formed inside the mixing tube 23. The mixing space V3 extends from the tapered space V2 to one side in the direction of the axis O.
(ディフューザ部)
 ディフューザ部24は、混合管23の軸線O方向一方側の端部に設けられている。ディフューザ部24は、軸線O方向に延びる円筒状に形成されている。ディフューザ部24は、混合管23と同軸に配置されている。ディフューザ部24の内部には、ディフューザ空間V4が形成されている。ディフューザ空間V4は、混合空間V3に接続されて軸線O方向一方側に向かって徐々に拡径している。
(Diffuser section)
The diffuser section 24 is provided at one end of the mixing tube 23 in the axis O direction. The diffuser part 24 is formed in a cylindrical shape extending in the direction of the axis O. The diffuser section 24 is arranged coaxially with the mixing tube 23. A diffuser space V4 is formed inside the diffuser section 24. The diffuser space V4 is connected to the mixing space V3 and gradually expands in diameter toward one side in the axis O direction.
(駆動流ノズル)
 駆動流ノズル30は、軸線Oを中心として延びる円筒状に形成されている。すなわち、駆動流ノズル30は、ケーシング20と同軸に配置されている。駆動流ノズル30は、導入空間V1に軸線O方向他方側から挿入されている。駆動流ノズル30は、大径管31と、接続管32と、小径管33と、を有する。
(driven flow nozzle)
The driving flow nozzle 30 is formed into a cylindrical shape extending around the axis O. That is, the driven flow nozzle 30 is arranged coaxially with the casing 20. The driving flow nozzle 30 is inserted into the introduction space V1 from the other side in the direction of the axis O. The driving flow nozzle 30 has a large diameter pipe 31, a connecting pipe 32, and a small diameter pipe 33.
(大径管)
 大径管31は、駆動流ノズル30の軸線O方向他方側に設けられている。大径管31は、ケーシング20の底部26に設けられた挿入孔28に挿入されている。大径管31は、軸線O方向に延びる円筒状の部材である。大径管31の軸線O方向他方側の端部は、導入空間V1の外側に位置している。大径管31の軸線O方向他方側の端部には、駆動流配管6の下流側の端部(凝縮器3とは反対側の端部)が接続されている。大径管31内には、駆動流配管6から駆動流体W1が供給される。
(Large diameter pipe)
The large diameter pipe 31 is provided on the other side of the driving flow nozzle 30 in the direction of the axis O. The large diameter tube 31 is inserted into an insertion hole 28 provided in the bottom 26 of the casing 20. The large diameter tube 31 is a cylindrical member extending in the direction of the axis O. The other end of the large diameter tube 31 in the direction of the axis O is located outside the introduction space V1. The other end of the large-diameter pipe 31 in the direction of the axis O is connected to the downstream end of the driving flow pipe 6 (the end opposite to the condenser 3). A driving fluid W1 is supplied into the large diameter pipe 31 from the driving flow piping 6.
(接続管)
 接続管32は、大径管31の軸線O方向一方側の端部に設けられている。接続管32は、大径管31から軸線O方向一方側に延びる円筒状に形成されている。接続管32は、大径管31と同軸に配置されている。接続管32は、軸線O方向一方側に向かって徐々に縮径するテーパ状に形成されている。
(Connection pipe)
The connecting pipe 32 is provided at one end of the large diameter pipe 31 in the axis O direction. The connecting pipe 32 is formed in a cylindrical shape extending from the large diameter pipe 31 to one side in the axis O direction. The connecting pipe 32 is arranged coaxially with the large diameter pipe 31. The connecting pipe 32 is formed in a tapered shape whose diameter gradually decreases toward one side in the direction of the axis O.
(小径管)
 小径管33は、駆動流ノズル30の軸線O方向一方側に設けられている。より詳細には、小径管33は、接続管32の軸線O方向一方側の端部に設けられている。小径管33は、接続管32から軸線O方向一方側に延びる円筒状に形成されている。小径管33は、接続管32と同軸に配置されている。小径管33は、大径管31よりも小径に形成されている。小径管33は、軸線O方向一方側の端部に先端開口34を有する。
(Small diameter pipe)
The small diameter pipe 33 is provided on one side of the driving flow nozzle 30 in the axis O direction. More specifically, the small diameter pipe 33 is provided at one end of the connecting pipe 32 in the axis O direction. The small diameter pipe 33 is formed in a cylindrical shape extending from the connecting pipe 32 to one side in the axis O direction. The small diameter pipe 33 is arranged coaxially with the connecting pipe 32. The small diameter tube 33 is formed to have a smaller diameter than the large diameter tube 31. The small diameter tube 33 has a tip opening 34 at one end in the axis O direction.
(先端開口)
 先端開口34は、駆動流ノズル30内に供給された駆動流体W1を噴出する。先端開口34は、テーパ空間V2内に位置する。先端開口34の軸線Oに直交する断面形状は、円形状に形成されている。
(Tip opening)
The tip opening 34 spouts out the driving fluid W1 supplied into the driving flow nozzle 30. The tip opening 34 is located within the tapered space V2. The cross-sectional shape of the tip opening 34 perpendicular to the axis O is circular.
(シール機構)
 シール機構40は、ケーシング20の底部26に設けられた挿入孔28に配置されている。シール機構40は、挿入孔28と駆動流ノズル30との間に設けられている。シール機構40は、駆動流ノズル30を軸線O方向に移動可能に支持する。さらに、シール機構40は、ケーシング20と駆動流ノズル30とをシールして、導入空間V1から冷媒Wが漏れ出るのを防止する。本実施形態では、シール機構40は、駆動流ノズル30の大径管31の全周に設けられている。
(Seal mechanism)
The sealing mechanism 40 is disposed in an insertion hole 28 provided in the bottom 26 of the casing 20. A sealing mechanism 40 is provided between the insertion hole 28 and the driving flow nozzle 30. The seal mechanism 40 supports the driving flow nozzle 30 so as to be movable in the direction of the axis O. Further, the sealing mechanism 40 seals the casing 20 and the driving flow nozzle 30 to prevent the refrigerant W from leaking out from the introduction space V1. In this embodiment, the sealing mechanism 40 is provided around the entire circumference of the large diameter pipe 31 of the driving flow nozzle 30.
(移動機構)
 移動機構50は、駆動流ノズル30の先端開口34の軸線O方向位置を、テーパ空間V2の軸線O方向位置の範囲で可変とする。すなわち、先端開口34の可動域は、テーパ空間V2内となる。本実施形態では、移動機構50は、駆動流ノズル30の全体を軸線O方向に移動させて、先端開口34の軸線O方向位置を可変とする。移動機構50として、例えばボールネジ等を用いた電動機構等が挙げられる。
(Moving mechanism)
The moving mechanism 50 makes the position of the tip opening 34 of the drive flow nozzle 30 in the axis O direction variable within the range of the position of the tapered space V2 in the axis O direction. That is, the range of motion of the tip opening 34 is within the tapered space V2. In this embodiment, the moving mechanism 50 moves the entire driving flow nozzle 30 in the direction of the axis O, thereby making the position of the tip opening 34 in the direction of the axis O variable. Examples of the moving mechanism 50 include an electric mechanism using a ball screw or the like.
(エジェクタの吸引の仕組み)
 続いて、エジェクタ10の吸引の仕組みついて説明する。
 駆動流ノズル30よりも上流側(凝縮器3側)は、駆動流ノズル30の下流側よりも圧力が高くなっている。この圧力差により、駆動流ノズル30よりも上流側から駆動流ノズル30に駆動流体W1が流入する。駆動流体W1は、駆動流ノズル30のテーパ状に形成された接続管32で縮流する。これにより、駆動流体W1は減圧されて、混合空間V3に導かれる。これにより、駆動流体W1の圧力エネルギー(膨張エネルギー)が速度エネルギーに変換されて、先端開口34から駆動流体W1が高速で噴出する。
(Ejector suction mechanism)
Next, the suction mechanism of the ejector 10 will be explained.
The pressure on the upstream side of the driving flow nozzle 30 (on the condenser 3 side) is higher than that on the downstream side of the driving flow nozzle 30. Due to this pressure difference, the driving fluid W1 flows into the driving flow nozzle 30 from the upstream side of the driving flow nozzle 30. The driving fluid W1 contracts in the tapered connecting pipe 32 of the driving flow nozzle 30. Thereby, the driving fluid W1 is depressurized and guided to the mixing space V3. Thereby, the pressure energy (expansion energy) of the driving fluid W1 is converted into velocity energy, and the driving fluid W1 is ejected from the tip opening 34 at high speed.
 先端開口34から噴出した駆動流体W1は、蒸発器5の底に貯留された冷媒Wを吸引する。この蒸発器5から吸引された冷媒Wが吸引流体W2となる。吸引流体W2が、吸引流配管7を通ってケーシング20内の導入空間V1に流入する。さらに、吸引流体W2は、駆動流体W1によって軸線O方向一方側(下流側)へ引き込まれる。これにより、吸引流体W2は、導入空間V1からテーパ空間V2を通って混合空間V3に導かれる。 The driving fluid W1 ejected from the tip opening 34 sucks the refrigerant W stored at the bottom of the evaporator 5. The refrigerant W sucked from this evaporator 5 becomes suction fluid W2. Suction fluid W2 flows into introduction space V1 in casing 20 through suction flow piping 7. Furthermore, the suction fluid W2 is drawn toward one side (downstream side) in the axis O direction by the driving fluid W1. Thereby, the suction fluid W2 is guided from the introduction space V1 to the mixing space V3 through the tapered space V2.
 混合空間V3では、駆動流体W1と吸引流体W2とが混合されながら下流側に向けて流れる。駆動流体W1と吸引流体W2が混合されることにより混合流体W3が生成される。混合流体W3は、混合空間V3からディフューザ空間V4に導かれる。 In the mixing space V3, the driving fluid W1 and the suction fluid W2 flow toward the downstream side while being mixed. A mixed fluid W3 is generated by mixing the driving fluid W1 and the suction fluid W2. Mixed fluid W3 is guided from mixing space V3 to diffuser space V4.
 ディフューザ空間V4では、混合流体W3が拡散されながら下流側に向けて流れる。これにより、混合流体W3は昇圧される。ディフューザ空間V4で昇圧された混合流体W3は、エジェクタ10から下流側(蒸発器5側)に送られる。 In the diffuser space V4, the mixed fluid W3 flows toward the downstream side while being diffused. As a result, the pressure of the mixed fluid W3 is increased. The mixed fluid W3 whose pressure has been increased in the diffuser space V4 is sent from the ejector 10 to the downstream side (evaporator 5 side).
(作用効果)
 以下、本実施形態のエジェクタ10の作用効果について説明する。
 本実施形態では、駆動流体W1を噴出する駆動流ノズル30の先端開口34がテーパ空間V2内に位置する。移動機構50は、先端開口34の軸線O方向位置を、テーパ空間V2の軸線O方向位置の範囲で可変とする。
(effect)
Hereinafter, the effects of the ejector 10 of this embodiment will be explained.
In this embodiment, the tip opening 34 of the drive flow nozzle 30 that spouts the drive fluid W1 is located within the tapered space V2. The moving mechanism 50 makes the position of the tip opening 34 in the direction of the axis O variable within the range of the position of the tapered space V2 in the direction of the axis O.
 駆動流体W1の流れによって吸引流体W2が導入空間V1に吸引される。このため、図4に示すように、吸引流量は、先端開口34の軸線O方向位置における吸引流体W2の流路断面Amsと駆動流体W1の流路断面Amdの面積比(Ams/Amd)によって決定される。先端開口34の軸線O方向位置では、駆動流体W1の流路断面Amdは、先端開口34の内側空間の断面であり、吸引流体W2の流路断面Amsは、テーパ空間V2の断面のうち先端開口34の内側空間の断面を除く部分である。本実施形態によれば、エジェクタ10は、テーパ空間V2内で先端開口34の軸線O方向位置を可変とすることができる。これにより、先端開口34の軸線O方向位置における吸引流体W2の流路断面Amsのみを変更して、吸引流体W2の流路断面Amsと駆動流体W1の流路断面Amdの面積比(Ams/Amd)を変更することができる。このように、先端開口34の位置を変更するだけで、面積比(Ams/Amd)を変更し、吸引流量を変更することができる。したがって、エジェクタ10を用いることにより、吸引流量を容易に変更することができる。 The suction fluid W2 is sucked into the introduction space V1 by the flow of the driving fluid W1. Therefore, as shown in FIG. 4, the suction flow rate is determined by the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 at the position in the axis O direction of the tip opening 34. be done. At the position of the tip opening 34 in the direction of the axis O, the flow path cross section Amd of the driving fluid W1 is a cross section of the inner space of the tip opening 34, and the flow path cross section Ams of the suction fluid W2 is a cross section of the tip opening of the cross section of the tapered space V2. 34 excluding the cross section of the inner space. According to this embodiment, the ejector 10 can make the position of the tip opening 34 in the direction of the axis O variable within the tapered space V2. As a result, only the flow path cross section Ams of the suction fluid W2 at the position in the axis O direction of the tip opening 34 is changed, and the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 is changed. ) can be changed. In this way, by simply changing the position of the tip opening 34, the area ratio (Ams/Amd) can be changed and the suction flow rate can be changed. Therefore, by using the ejector 10, the suction flow rate can be easily changed.
 吸引流量を変更することにより、ターボ冷凍機1の部分負荷運転や負荷追従運転への対応が見込める。例えば、部分負荷運転時には、駆動流体W1の圧力は定格時よりも低くなるため、駆動流体W1の流量は減少し、その場合、一般的に吸引流体W2の流量も減少する。しかし、液膜式蒸発器の冷媒循環に使用する場合、一定の流量を循環させることが望ましいため、駆動流体W1の流量に対する吸引流体W2の流量の割合を増加させる必要がある。その場合に、本実施形態のエジェクタ10によれば、駆動流ノズル30の先端開口34の軸線O方向位置を調整することにより、吸引流体W2の流路断面Amsを拡大し、駆動流体W1の流量に対する吸引流体W2の流量の割合を増加させることができる。 By changing the suction flow rate, it is possible to support partial load operation and load following operation of the centrifugal chiller 1. For example, during partial load operation, the pressure of the driving fluid W1 is lower than that at the rated time, so the flow rate of the driving fluid W1 decreases, and in that case, the flow rate of the suction fluid W2 generally also decreases. However, when used for refrigerant circulation in a liquid film evaporator, it is desirable to circulate a constant flow rate, so it is necessary to increase the ratio of the flow rate of the suction fluid W2 to the flow rate of the driving fluid W1. In that case, according to the ejector 10 of the present embodiment, by adjusting the position of the tip opening 34 of the driving flow nozzle 30 in the axis O direction, the flow path cross section Ams of the suction fluid W2 is expanded, and the flow rate of the driving fluid W1 is increased. The ratio of the flow rate of the suction fluid W2 to that of the suction fluid W2 can be increased.
 本実施形態では、移動機構50は、駆動流ノズル30の全体を軸線O方向に移動させて、先端開口34の軸線O方向位置を可変とする。 In the present embodiment, the moving mechanism 50 moves the entire driving flow nozzle 30 in the direction of the axis O, thereby making the position of the tip opening 34 in the direction of the axis O variable.
 本実施形態によれば、移動機構50は、簡単な構成で、先端開口34の軸線O方向位置を可変とすることができる。したがって、エジェクタ10の生産効率を向上させるとともに、エジェクタ10の製造コストを低減することができる。 According to this embodiment, the moving mechanism 50 can make the position of the tip opening 34 in the axis O direction variable with a simple configuration. Therefore, the production efficiency of the ejector 10 can be improved and the manufacturing cost of the ejector 10 can be reduced.
 本実施形態では、ケーシング20は、混合空間V3に接続されて軸線O方向一方側に向かって徐々に拡径するディフューザ空間V4を形成するディフューザ部24を有する。 In this embodiment, the casing 20 has a diffuser section 24 that is connected to the mixing space V3 and forms a diffuser space V4 that gradually expands in diameter toward one side in the axis O direction.
 本実施形態によれば、エジェクタ10は、混合管23で混合した流体をディフューザ部24で拡散させて膨張させることができる。これにより、エジェクタ10は、混合流体W3をディフューザ部24で昇圧させてから下流側に送ることができる。 According to this embodiment, the ejector 10 can diffuse and expand the fluid mixed in the mixing tube 23 in the diffuser section 24. Thereby, the ejector 10 can increase the pressure of the mixed fluid W3 in the diffuser section 24 and then send it to the downstream side.
 また、本実施形態では、エジェクタ10によって冷媒Wを蒸発器5から吸引し、冷凍サイクル内を再循環させている。ところで、例えばポンプを用いて冷媒を循環させる場合、ポンプの可動部を頻繁にメンテナンスする必要があり、メンテナンスコストがかかる。そもそも、ポンプを用いずに、液体の冷媒をサイクル内で循環させることについては、過去に知見がない。これに対し、エジェクタ10は、サイクル内の圧力差を利用して液体の冷媒Wを吸引し、サイクル内を循環させる。このため、液体の冷媒Wを循環させるためにポンプを用いる必要がなくなる。よって、ポンプのメンテナンスコストが不要となり、コストを低減することが可能となる。また、ターボ冷凍機1の全体としてメンテナンスの頻度を低減することができる。 Furthermore, in this embodiment, the refrigerant W is sucked from the evaporator 5 by the ejector 10 and recirculated within the refrigeration cycle. By the way, when circulating refrigerant using a pump, for example, it is necessary to frequently maintain the movable parts of the pump, which increases maintenance costs. To begin with, there is no knowledge in the past of circulating liquid refrigerant within a cycle without using a pump. On the other hand, the ejector 10 sucks the liquid refrigerant W using the pressure difference within the cycle and circulates it within the cycle. Therefore, there is no need to use a pump to circulate the liquid refrigerant W. Therefore, maintenance costs for the pump become unnecessary, and costs can be reduced. Moreover, the frequency of maintenance of the centrifugal chiller 1 as a whole can be reduced.
 なお、第一実施形態では、駆動流ノズル30を移動させる場合について説明したが、これに限るものではない。駆動流ノズル30とケーシング20とが軸線O方向に相対移動すればよく、例えば、移動機構50とケーシング20とを接続し、ケーシング20を軸線O方向に移動させてもよい。 Note that in the first embodiment, the case where the driving flow nozzle 30 is moved has been described, but the present invention is not limited to this. The driving flow nozzle 30 and the casing 20 may move relative to each other in the direction of the axis O. For example, the moving mechanism 50 and the casing 20 may be connected and the casing 20 may be moved in the direction of the axis O.
<第二実施形態>
 以下、本開示の第二実施形態に係るエジェクタ210について、図5を参照して説明する。前述した第一実施形態と同様の構成については、同一の名称及び同一の符号を付す等して説明を適宜省略する。
<Second embodiment>
Hereinafter, an ejector 210 according to a second embodiment of the present disclosure will be described with reference to FIG. 5. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
 図5に示すように、駆動流ノズル230の小径管233は、軸線O方向に伸縮可能に設けられている。
 また、本実施形態の移動機構250は、駆動流ノズル230のうち先端開口34を含む軸線O方向一方側のみを軸線O方向に伸縮させて、先端開口34の軸線O方向位置を可変とする。移動機構250は、例えば、駆動流ノズル30のうち小径管33に接続されるとともに、外部からの信号を受信するアンテナ251を有する。
As shown in FIG. 5, the small diameter pipe 233 of the driving flow nozzle 230 is provided so as to be expandable and retractable in the direction of the axis O.
Further, the moving mechanism 250 of the present embodiment expands and contracts only one side of the driving flow nozzle 230 in the axis O direction that includes the tip opening 34 in the axis O direction, thereby making the position of the tip opening 34 in the axis O direction variable. The moving mechanism 250 includes, for example, an antenna 251 that is connected to the small diameter pipe 33 of the drive flow nozzle 30 and receives signals from the outside.
 さらに、エジェクタ210は、操作装置260を有している。操作装置260は、例えばターボ冷凍機1の外部に設置されている。使用者は、操作装置260を操作して、操作信号をアンテナ251に送信する。これにより、アンテナ251が操作装置260から操作信号を受信すると、移動機構250は、操作信号に応じて小径管233を軸線O方向に伸縮させる。これにより、先端開口34の軸線O方向の位置が可変となる。 Furthermore, the ejector 210 has an operating device 260. The operating device 260 is installed outside the centrifugal chiller 1, for example. The user operates the operating device 260 to transmit an operating signal to the antenna 251. Thereby, when the antenna 251 receives an operation signal from the operation device 260, the moving mechanism 250 expands and contracts the small diameter tube 233 in the direction of the axis O according to the operation signal. Thereby, the position of the tip opening 34 in the direction of the axis O becomes variable.
 本実施形態では、移動機構250は、駆動流ノズル230のうち先端開口34を含む軸線O方向一方側のみを軸線O方向に伸縮させて、先端開口34の軸線O方向位置を可変とする。 In this embodiment, the moving mechanism 250 expands and contracts only one side of the driving flow nozzle 230 in the axis O direction that includes the tip opening 34 in the axis O direction, thereby making the position of the tip opening 34 in the axis O direction variable.
 本実施形態によれば、移動機構250は、駆動流ノズル230とケーシング20とのシール(シール機構240)を動かすことなく、先端開口34の軸線O方向位置を可変とすることができる。したがって、吸引流体W2の漏れをより確実に防止することができる。 According to this embodiment, the moving mechanism 250 can make the position of the tip opening 34 in the axis O direction variable without moving the seal (seal mechanism 240) between the driving flow nozzle 230 and the casing 20. Therefore, leakage of the suction fluid W2 can be more reliably prevented.
<第三実施形態>
 以下、本開示の第三実施形態に係るエジェクタ310について、図6、図7を参照して説明する。前述した第一実施形態と同様の構成については、同一の名称及び同一の符号を付す等して説明を適宜省略する。
<Third embodiment>
Hereinafter, an ejector 310 according to a third embodiment of the present disclosure will be described with reference to FIGS. 6 and 7. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
 図6、図7に示すように、ケーシング320は、基部21を外側から覆う外部ケーシング321をさらに有する。外部ケーシング321は、ケーシング320の全周にわたって設けられている。外部ケーシング321と基部21との間には、導入前空間V5が形成される。導入前空間V5には、導入空間V1よりも先に、吸引流体W2が供給される。 As shown in FIGS. 6 and 7, the casing 320 further includes an outer casing 321 that covers the base 21 from the outside. The outer casing 321 is provided over the entire circumference of the casing 320. A pre-introduction space V5 is formed between the outer casing 321 and the base 21. The suction fluid W2 is supplied to the pre-introduction space V5 before the introduction space V1.
 外部ケーシング321には、吸引孔322が形成されている。吸引孔322は、外部ケーシング321を径方向に貫通している。 A suction hole 322 is formed in the external casing 321. The suction hole 322 penetrates the outer casing 321 in the radial direction.
 基部21の軸線O周りの側壁25には、全周にわたって、導入空間V1と導入前空間V5とを連通させる連通部323が形成されている。本実施形態の連通部323は、周方向に延びるスリット324である。スリット324は、基部21の側壁25を径方向に貫通している。スリット324は、周方向に切れ目なく、円環状に形成されている。スリット324の軸線O方向の幅寸法は、周方向位置によらず一定である。 A communication portion 323 is formed on the side wall 25 around the axis O of the base portion 21 over the entire circumference to communicate the introduction space V1 and the pre-introduction space V5. The communication portion 323 of this embodiment is a slit 324 extending in the circumferential direction. The slit 324 penetrates the side wall 25 of the base 21 in the radial direction. The slit 324 is formed in an annular shape without any gaps in the circumferential direction. The width dimension of the slit 324 in the direction of the axis O is constant regardless of the circumferential position.
 本実施形態では、ケーシング320は、基部21を外側から覆って基部21との間に導入前空間V5を形成するとともに、導入前空間V5内に吸引流体W2が供給される外部ケーシング321をさらに有する。基部21の側壁25には、全周にわたって、導入空間V1と導入前空間V5とを連通させる連通部323が形成されている。 In this embodiment, the casing 320 further includes an external casing 321 that covers the base 21 from the outside to form a pre-introduction space V5 between the base 21 and the suction fluid W2 into the pre-introduction space V5. . A communication portion 323 is formed in the side wall 25 of the base portion 21 over the entire circumference to communicate the introduction space V1 and the pre-introduction space V5.
 本実施形態によれば、吸引流体W2は、まず吸引流配管7から導入前空間V5に導かれる。吸引流体W2は、導入前空間V5内に周方向全体にわたって広がる。その後、吸引流体W2は、連通部323を介して、導入空間V1に流入する。このように、本実施形態のエジェクタ310は、連通部323を介して、基部21の側壁25の全周から導入空間V1内に吸引流体W2を供給することができる。これにより、エジェクタ310は、吸引流体W2の周方向の流量分布を均一化できる。 According to this embodiment, the suction fluid W2 is first guided from the suction flow piping 7 to the pre-introduction space V5. The suction fluid W2 spreads within the pre-introduction space V5 over the entire circumferential direction. Thereafter, the suction fluid W2 flows into the introduction space V1 via the communication portion 323. In this way, the ejector 310 of this embodiment can supply the suction fluid W2 from the entire circumference of the side wall 25 of the base 21 into the introduction space V1 via the communication portion 323. Thereby, the ejector 310 can uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
 本実施形態では、連通部323は、軸線Oの周方向に延びるスリット324である。 In this embodiment, the communication portion 323 is a slit 324 extending in the circumferential direction of the axis O.
 本実施形態によれば、基部21の側壁25に連通部323を容易に形成することができる。したがって、エジェクタ310の生産効率を向上させることができる。 According to this embodiment, the communication portion 323 can be easily formed in the side wall 25 of the base portion 21. Therefore, the production efficiency of the ejector 310 can be improved.
 続いて、第三実施形態の変形例について、図8、図9を参照して説明する。
 図8、図9に示すように、連通部323は、軸線Oの周方向に並んで複数設けられたホール325であってもよい。ホール325は、基部21の側壁25を径方向に貫通している。複数のホール325は、周方向に等間隔に設けられている。ホール325は、断面円形状に形成されている。各ホール325は、全て同一形状に形成されている。
Next, a modification of the third embodiment will be described with reference to FIGS. 8 and 9.
As shown in FIGS. 8 and 9, the communication portion 323 may be a plurality of holes 325 arranged in the circumferential direction of the axis O. The hole 325 passes through the side wall 25 of the base 21 in the radial direction. The plurality of holes 325 are provided at equal intervals in the circumferential direction. The hole 325 is formed to have a circular cross section. Each hole 325 is all formed in the same shape.
 本変形例では、連通部323は、軸線Oの周方向に並んで複数設けられたホール325である。 In this modification, the communication portion 323 is a plurality of holes 325 arranged in the circumferential direction of the axis O.
 本実施形態によれば、エジェクタ310は、吸引流体W2の周方向の流量分布をより一層均一化できる。 According to the present embodiment, the ejector 310 can further uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
<第四実施形態>
 以下、本開示の第四実施形態に係るエジェクタ410について、図10を参照して説明する。前述した第一実施形態と同様の構成については、同一の名称及び同一の符号を付す等して説明を適宜省略する。
<Fourth embodiment>
Hereinafter, an ejector 410 according to a fourth embodiment of the present disclosure will be described with reference to FIG. 10. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
 図10に示すように、駆動流ノズル430のうち大径管31の全体が基部21よりも軸線O方向他方側に位置し、駆動流ノズル430うち小径管433が導入空間V1内に挿入されている。本実施形態では、小径管433の軸線O方向中間部がケーシング20の挿入孔28に位置している。シール機構440は、小径管433の全周に設けられている。 As shown in FIG. 10, the entire large diameter pipe 31 of the driving flow nozzle 430 is located on the other side of the axis O direction than the base 21, and the small diameter pipe 433 of the driving flow nozzle 430 is inserted into the introduction space V1. There is. In this embodiment, the intermediate portion of the small diameter tube 433 in the direction of the axis O is located in the insertion hole 28 of the casing 20 . The seal mechanism 440 is provided around the entire circumference of the small diameter pipe 433.
 本実施形態では、大径管31の全体が基部21よりも軸線O方向他方側に位置している。さらに、小径管433は、導入空間V1内に挿入されている。 In this embodiment, the entire large diameter tube 31 is located on the other side of the base 21 in the axis O direction. Furthermore, the small diameter tube 433 is inserted into the introduction space V1.
 本実施形態によれば、駆動流ノズル430とケーシング20とをシールするシール(シール機構440)の周長が短くなる。これにより、シール機構440が簡易となる。このため、エジェクタ410の生産効率を向上させるとともに、エジェクタ10の製造コストを低減することができる。また、シールが必要な箇所を小さくできるので、吸引流体W2の漏れをより確実に防止することができる。また、ケーシング20に、大径管31の収容に必要な容積を確保する必要がなくなる。このため、ケーシング20を細くすることができる。これにより、省スペース化を図ることができる。 According to this embodiment, the circumference of the seal (seal mechanism 440) that seals the driving flow nozzle 430 and the casing 20 is shortened. This simplifies the sealing mechanism 440. Therefore, the production efficiency of the ejector 410 can be improved, and the manufacturing cost of the ejector 10 can be reduced. Furthermore, since the area where sealing is required can be made smaller, leakage of the suction fluid W2 can be more reliably prevented. Further, there is no need to ensure a volume necessary for accommodating the large-diameter pipe 31 in the casing 20. Therefore, the casing 20 can be made thinner. This makes it possible to save space.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. .
 なお、上記実施形態では、エジェクタ10がターボ冷凍機1の冷凍サイクルに用いられる場合について説明したが、これに限るものではない。エジェクタ10は、ターボ冷凍機1以外の冷凍・冷却サイクルに用いられてもよい。 In addition, although the said embodiment demonstrated the case where the ejector 10 is used for the refrigeration cycle of the turbo chiller 1, it is not limited to this. The ejector 10 may be used in a refrigeration/cooling cycle other than the turbo chiller 1.
 なお、上記実施形態では、駆動流体W1及び吸引流体W2がともに液体の場合について説明したがこれに限るものではない。例えば、駆動流体W1及び吸引流体W2がともに気体であってもよく、駆動流体W1及び吸引流体W2のいずれか一方が気体であってもよい。 Note that in the above embodiment, the case where both the driving fluid W1 and the suction fluid W2 are liquids has been described, but the present invention is not limited to this. For example, the driving fluid W1 and the suction fluid W2 may both be gases, or either one of the driving fluid W1 and the suction fluid W2 may be a gas.
<付記>
 各実施形態に記載のエジェクタ10,210,310,410は、例えば以下のように把握される。
<Additional notes>
The ejectors 10, 210, 310, and 410 described in each embodiment are understood as follows, for example.
(1)第1の態様に係るエジェクタ10,210,310,410は、内側の導入空間V1に吸引流体W2が供給される基部21、前記導入空間V1に接続されて軸線O方向一方側に向かって徐々に縮径するテーパ空間V2を形成するテーパ部22、及び、前記テーパ空間V2から前記軸線O方向一方側に延びる混合空間V3を形成する混合管23を有するケーシング20,320と、前記軸線Oを中心として延びて前記導入空間V1に前記軸線O方向他方側から挿入されているとともに、駆動流体W1を噴出する先端開口34が前記テーパ空間V2内に位置する駆動流ノズル30,230,430と、前記先端開口34の前記軸線O方向位置を、前記テーパ空間V2の前記軸線O方向位置の範囲で可変とする移動機構50,250と、を備える。
 移動機構50,250として、例えばボールネジ等を用いた電動機構等が挙げられる。
(1) The ejector 10, 210, 310, 410 according to the first aspect includes a base 21 that supplies suction fluid W2 to an inner introduction space V1, and a base 21 that is connected to the introduction space V1 and directed toward one side in the axis O direction. a casing 20, 320 having a tapered portion 22 forming a tapered space V2 whose diameter gradually decreases in diameter; and a mixing pipe 23 forming a mixing space V3 extending from the tapered space V2 to one side in the direction of the axis O; A driving flow nozzle 30, 230, 430 that extends around O and is inserted into the introduction space V1 from the other side in the direction of the axis O, and has a tip opening 34 for ejecting the driving fluid W1 located in the tapered space V2. and a moving mechanism 50, 250 that makes the position of the tip opening 34 in the axis O direction variable within the range of the position of the tapered space V2 in the axis O direction.
Examples of the moving mechanisms 50 and 250 include electric mechanisms using ball screws and the like.
 本態様によれば、エジェクタ10,210,310,410は、テーパ空間V2内で先端開口34の軸線O方向位置を可変とすることができる。これにより、先端開口34の軸線O方向位置における吸引流体W2の流路断面Amsのみを変更して、吸引流体W2の流路断面Amsと駆動流体W1の流路断面Amdの面積比(Ams/Amd)を変更することができる。 According to this aspect, the ejector 10, 210, 310, 410 can make the position of the tip opening 34 in the axis O direction variable within the tapered space V2. As a result, only the flow path cross section Ams of the suction fluid W2 at the position in the axis O direction of the tip opening 34 is changed, and the area ratio (Ams/Amd) of the flow path cross section Ams of the suction fluid W2 and the flow path cross section Amd of the driving fluid W1 is changed. ) can be changed.
(2)第2の態様のエジェクタ10,310,410は、(1)のエジェクタ10,310,410であって、前記移動機構50は、前記ケーシング20に対して、前記駆動流ノズル30,430の全体を前記軸線O方向に相対移動させて、前記先端開口34の前記軸線O方向位置を可変としてもよい。  (2) The ejector 10, 310, 410 of the second aspect is the ejector 10, 310, 410 of (1), in which the moving mechanism 50 moves the driving flow nozzle 30, 430 with respect to the casing 20. The position of the tip opening 34 in the direction of the axis O may be made variable by relatively moving the entire body in the direction of the axis O.​
 本態様によれば、移動機構50は、簡単な構成で、先端開口34の軸線O方向位置を可変とすることができる。 According to this aspect, the moving mechanism 50 can make the position of the tip opening 34 in the axis O direction variable with a simple configuration.
(3)第3の態様のエジェクタ210は、(1)のエジェクタ210であって、前記移動機構250は、前記駆動流ノズル230のうち前記先端開口34を含む前記軸線O方向一方側のみを前記軸線O方向に伸縮させて、前記先端開口34の前記軸線O方向位置を可変としてもよい。 (3) The ejector 210 of the third aspect is the ejector 210 of (1), in which the moving mechanism 250 moves only one side of the driving flow nozzle 230 in the axis O direction including the tip opening 34. The position of the tip opening 34 in the axis O direction may be made variable by expanding and contracting it in the axis O direction.
 本態様によれば、移動機構250は、駆動流ノズル230とケーシング20とのシールを動かすことなく、先端開口34の軸線O方向位置を可変とすることができる。 According to this aspect, the moving mechanism 250 can make the position of the tip opening 34 in the direction of the axis O variable without moving the seal between the driving flow nozzle 230 and the casing 20.
(4)第4の態様のエジェクタ310は、(1)から(3)のいずれかのエジェクタ310であって、前記ケーシング320は、前記基部21を外側から覆って前記基部21との間に導入前空間V5を形成するとともに、前記導入前空間V5内に前記吸引流体W2が供給される外部ケーシング321をさらに有し、前記基部21の側壁25には、全周にわたって、前記導入空間V1と前記導入前空間V5とを連通させる連通部323が形成されていてもよい。 (4) The ejector 310 of the fourth aspect is the ejector 310 according to any one of (1) to (3), in which the casing 320 covers the base 21 from the outside and is introduced between the base 21 and the base 21. It further includes an external casing 321 that forms a front space V5 and supplies the suction fluid W2 into the pre-introduction space V5, and the side wall 25 of the base 21 has the introduction space V1 and the A communication portion 323 that communicates with the pre-introduction space V5 may be formed.
 本態様によれば、エジェクタ310は、連通部323を介して、基部21の側壁25の全周から導入空間V1内に吸引流体W2を供給することができる。これにより、エジェクタ310は、吸引流体W2の周方向の流量分布を均一化できる。 According to this aspect, the ejector 310 can supply the suction fluid W2 into the introduction space V1 from the entire circumference of the side wall 25 of the base portion 21 via the communication portion 323. Thereby, the ejector 310 can uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
(5)第5の態様のエジェクタ310は、(4)のエジェクタ310であって、前記連通部323は、前記軸線Oの周方向に延びるスリット324であってもよい。 (5) The ejector 310 of the fifth aspect may be the ejector 310 of (4), in which the communication portion 323 may be a slit 324 extending in the circumferential direction of the axis O.
 本態様によれば、基部21の側壁25に連通部323を容易に形成することができる。 According to this aspect, the communication portion 323 can be easily formed in the side wall 25 of the base portion 21.
(6)第6の態様のエジェクタ310は、(4)のエジェクタ310であって、前記連通部323は、前記軸線Oの周方向に並んで複数設けられたホール325であってもよい。 (6) The ejector 310 of the sixth aspect may be the ejector 310 of (4), in which the communication portion 323 may be a plurality of holes 325 arranged in a circumferential direction of the axis O.
 本態様によれば、エジェクタ310は、吸引流体W2の周方向の流量分布をより一層均一化できる。 According to this aspect, the ejector 310 can further uniformize the flow rate distribution of the suction fluid W2 in the circumferential direction.
(7)第7の態様のエジェクタ410は、(1)から(6)のいずれかのエジェクタ410であって、前記駆動流ノズル430は、前記軸線O方向他方側に設けられた大径管31と、前記軸線O方向一方側に設けられ、前記大径管31よりも小径の小径管433と、を有し、前記大径管31の全体が前記基部21よりも前記軸線O方向他方側に位置し、前記小径管433は、前記導入空間V1内に挿入されていてもよい。 (7) The ejector 410 of the seventh aspect is the ejector 410 according to any one of (1) to (6), in which the driving flow nozzle 430 is connected to the large diameter pipe 31 provided on the other side in the direction of the axis O. and a small-diameter tube 433 provided on one side in the direction of the axis O and having a smaller diameter than the large-diameter tube 31, the entire large-diameter tube 31 being on the other side in the direction of the axis O than the base 21. The small diameter tube 433 may be inserted into the introduction space V1.
 本態様によれば、駆動流ノズル430とケーシング20とをシールするシールの周長が短くなる。また、ケーシング20に、大径管31の収容に必要な容積を確保する必要がなくなる。 According to this aspect, the circumferential length of the seal that seals the driving flow nozzle 430 and the casing 20 is shortened. Further, there is no need to ensure a volume necessary for accommodating the large-diameter pipe 31 in the casing 20.
(8)第8の態様のエジェクタ10,210,310,410は、(1)から(7)のいずれかのエジェクタ10,210,310,410であって、前記ケーシング20,320は、前記混合空間V3に接続されて前記軸線O方向一方側に向かって徐々に拡径するディフューザ空間V4を形成するディフューザ部24をさらに有してもよい。 (8) The ejector 10, 210, 310, 410 of the eighth aspect is the ejector 10, 210, 310, 410 according to any one of (1) to (7), wherein the casing 20, 320 is It may further include a diffuser portion 24 that is connected to the space V3 and forms a diffuser space V4 whose diameter gradually increases toward one side in the direction of the axis O.
 本態様によれば、エジェクタ10,210,310,410は、混合管23で混合した流体をディフューザ部24で拡散させて膨張させることができる。 According to this aspect, the ejectors 10, 210, 310, and 410 can diffuse and expand the fluid mixed in the mixing tube 23 in the diffuser section 24.
 本開示によれば、吸引流量を容易に変更することができるエジェクタを提供することができる。 According to the present disclosure, it is possible to provide an ejector that can easily change the suction flow rate.
1…ターボ冷凍機 2…圧縮機 3…凝縮器 4…膨張弁 5…蒸発器 6…駆動流配管 7…吸引流配管 8…戻り配管 10…エジェクタ 20…ケーシング 21…基部 22…テーパ部 23…混合管 24…ディフューザ部 25…側壁 26…底部 27…吸引孔 28…挿入孔 30…駆動流ノズル 31…大径管 32…接続管 33…小径管 34…先端開口 40…シール機構 50…移動機構 210…エジェクタ 230…駆動流ノズル 233…小径管 240…シール機構 250…移動機構 251…アンテナ 260…操作装置 310…エジェクタ 320…ケーシング 321…外部ケーシング 322…吸引孔 323…連通部 324…スリット 325…ホール 410…エジェクタ 430…駆動流ノズル 433…小径管 440…シール機構 Amd…(駆動流体の)流路断面 Ams…(吸引流体の)流路断面 O…軸線 V1…導入空間 V2…テーパ空間 V3…混合空間 V4…ディフューザ空間 V5…導入前空間 W…冷媒 W1…駆動流体 W2…吸引流体 W3…混合流体 1... Turbo chiller 2... Compressor 3... Condenser 4... Expansion valve 5... Evaporator 6... Driving flow piping 7... Suction flow piping 8... Return piping 10... Ejector 20... Casing 21... Base 22... Taper part 23... Mixing tube 24...Diffuser section 25...Side wall 26...Bottom 27...Suction hole 28...Insertion hole 30...Drive flow nozzle 31...Large diameter tube 32...Connecting tube 33...Small diameter tube 34...Tip opening 40...Seal mechanism 50...Movement mechanism 210...Ejector 230...Drive flow nozzle 233...Small diameter pipe 240...Seal mechanism 250...Movement mechanism 251...Antenna 260...Operation device 310...Ejector 320...Casing 321...External casing 322...Suction hole 323...Communication part 324...Slit 325... Hole 410...Ejector 430...Driving flow nozzle 433...Small diameter pipe 440...Seal mechanism Amd...Flow path cross section (of driving fluid) Ams...Flow path cross section (of suction fluid) O...Axis line V1...Introduction space V2...Tapered space V3... Mixing space V4... Diffuser space V5... Pre-introduction space W... Refrigerant W1... Driving fluid W2... Suction fluid W3... Mixed fluid

Claims (8)

  1.  内側の導入空間に吸引流体が供給される基部、前記導入空間に接続されて軸線方向一方側に向かって徐々に縮径するテーパ空間を形成するテーパ部、及び、前記テーパ空間から前記軸線方向一方側に延びる混合空間を形成する混合管を有するケーシングと、
     前記軸線を中心として延びて前記導入空間に前記軸線方向他方側から挿入されているとともに、駆動流体を噴出する先端開口が前記テーパ空間内に位置する駆動流ノズルと、
     前記先端開口の前記軸線方向位置を、前記テーパ空間の前記軸線方向位置の範囲で可変とする移動機構と、
     を備えるエジェクタ。
    a base portion through which suction fluid is supplied to the inner introduction space; a tapered portion connected to the introduction space to form a tapered space whose diameter gradually decreases toward one side in the axial direction; a casing having a mixing tube forming a mixing space extending to the side;
    a driving flow nozzle extending around the axis and inserted into the introduction space from the other side in the axial direction, and having a tip opening for ejecting driving fluid located in the tapered space;
    a moving mechanism that makes the axial position of the tip opening variable within the range of the axial position of the tapered space;
    An ejector equipped with.
  2.  前記移動機構は、前記ケーシングに対して、前記駆動流ノズルの全体を前記軸線方向に相対移動させて、前記先端開口の前記軸線方向位置を可変とする、
     請求項1に記載のエジェクタ。
    The moving mechanism moves the entire driving flow nozzle relative to the casing in the axial direction, thereby making the position of the tip opening variable in the axial direction.
    The ejector according to claim 1.
  3.  前記移動機構は、前記駆動流ノズルのうち前記先端開口を含む前記軸線方向一方側のみを前記軸線方向に伸縮させて、前記先端開口の前記軸線方向位置を可変とする、
     請求項1に記載のエジェクタ。
    The moving mechanism expands and contracts only one side of the drive flow nozzle in the axial direction that includes the tip opening, thereby making the axial position of the tip opening variable.
    The ejector according to claim 1.
  4.  前記ケーシングは、前記基部を外側から覆って前記基部との間に導入前空間を形成するとともに、前記導入前空間内に前記吸引流体が供給される外部ケーシングをさらに有し、
     前記基部の側壁には、全周にわたって、前記導入空間と前記導入前空間とを連通させる連通部が形成されている、
     請求項1から3のいずれか一項に記載のエジェクタ。
    The casing further includes an outer casing that covers the base from the outside to form a pre-introduction space between the base and the suction fluid is supplied into the pre-introduction space,
    A communication part that communicates the introduction space and the pre-introduction space is formed on the side wall of the base over the entire circumference.
    An ejector according to any one of claims 1 to 3.
  5.  前記連通部は、前記軸線の周方向に延びるスリットである、
     請求項4に記載のエジェクタ。
    The communication portion is a slit extending in the circumferential direction of the axis,
    The ejector according to claim 4.
  6.  前記連通部は、前記軸線の周方向に並んで複数設けられたホールである、
     請求項4に記載のエジェクタ。
    The communication portion is a plurality of holes arranged in a circumferential direction of the axis,
    The ejector according to claim 4.
  7.  前記駆動流ノズルは、
     前記軸線方向他方側に設けられた大径管と、
     前記軸線方向一方側に設けられ、前記大径管よりも小径の小径管と、
     を有し、
     前記大径管の全体が前記基部よりも前記軸線方向他方側に位置し、
     前記小径管は、前記導入空間内に挿入されている、
     請求項1から3のいずれか一項に記載のエジェクタ。
    The driven flow nozzle is
    a large diameter pipe provided on the other side in the axial direction;
    a small diameter pipe provided on one side in the axial direction and having a smaller diameter than the large diameter pipe;
    has
    The entire large diameter tube is located on the other side of the base in the axial direction,
    the small diameter tube is inserted into the introduction space;
    An ejector according to any one of claims 1 to 3.
  8.  前記ケーシングは、前記混合空間に接続されて前記軸線方向一方側に向かって徐々に拡径するディフューザ空間を形成するディフューザ部をさらに有する、請求項1から3のいずれか一項に記載のエジェクタ。 The ejector according to any one of claims 1 to 3, wherein the casing further includes a diffuser portion that is connected to the mixing space and forms a diffuser space that gradually expands in diameter toward one side in the axial direction.
PCT/JP2023/005781 2022-04-28 2023-02-17 Ejector WO2023210124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075200A JP2023163948A (en) 2022-04-28 2022-04-28 ejector
JP2022-075200 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210124A1 true WO2023210124A1 (en) 2023-11-02

Family

ID=88518550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005781 WO2023210124A1 (en) 2022-04-28 2023-02-17 Ejector

Country Status (2)

Country Link
JP (1) JP2023163948A (en)
WO (1) WO2023210124A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156745A1 (en) * 2015-10-12 2017-04-19 Samsung Electronics Co., Ltd. Ejector using swirl flow
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156745A1 (en) * 2015-10-12 2017-04-19 Samsung Electronics Co., Ltd. Ejector using swirl flow
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle

Also Published As

Publication number Publication date
JP2023163948A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
US8523091B2 (en) Ejector
US8191383B2 (en) Ejector device and refrigeration cycle apparatus using the same
US7143602B2 (en) Ejector-type depressurizer for vapor compression refrigeration system
EP1160522B1 (en) Ejector cycle system
US6779360B2 (en) Ejector having throttle variable nozzle and ejector cycle using the same
US10215196B2 (en) Ejector using swirl flow
US10495328B2 (en) Outdoor unit of air conditioner and refrigeration cycle device
JP2008133796A (en) Ejector and refrigerating cycle device
US6604379B2 (en) Ejector for ejector cycle system
EP2933498B1 (en) Turbomachine and refrigeration cycle apparatus
WO2023210124A1 (en) Ejector
JP2010276215A (en) Ejector
JP2004108736A (en) Vapor compression type refrigerator
US6918266B2 (en) Ejector for vapor-compression refrigerant cycle
US8201415B2 (en) Integrated unit for refrigeration cycle device
JP2003004319A (en) Ejector cycle
WO2017135092A1 (en) Ejector
US11953015B2 (en) Centrifugal compressor with reverse overhung volute
US20200200451A1 (en) Refrigeration cycle apparatus and refrigerator including the same
US6862897B2 (en) Vapor-compression refrigerant cycle with ejector
KR20030041688A (en) Device for connecting capillary tube to evaporator for refrigerator
JP4016879B2 (en) Ejector type decompression device
JP2017137856A (en) Ejector
JP2001208451A (en) Refrigerant distributor
JP2017190707A (en) Ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795872

Country of ref document: EP

Kind code of ref document: A1