WO2023210114A1 - Strain-wave gearing and industrial robot - Google Patents

Strain-wave gearing and industrial robot Download PDF

Info

Publication number
WO2023210114A1
WO2023210114A1 PCT/JP2023/005188 JP2023005188W WO2023210114A1 WO 2023210114 A1 WO2023210114 A1 WO 2023210114A1 JP 2023005188 W JP2023005188 W JP 2023005188W WO 2023210114 A1 WO2023210114 A1 WO 2023210114A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
circumferential surface
bearing
gear
outer circumferential
Prior art date
Application number
PCT/JP2023/005188
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 浅川
諒太 川内
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2023210114A1 publication Critical patent/WO2023210114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a wave gear device and an industrial robot.
  • This application claims priority based on Japanese Patent Application No. 2022-075005 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
  • the wave gear device includes an internal gear, an elastic external gear that partially meshes with the internal gear, and a wave generator that contacts the inner peripheral surface of the external gear.
  • the wave generator moves the meshing position between the internal gear and the external gear in the circumferential direction around the rotation axis.
  • the wave generator includes: a cam having an elliptical outer circumferential surface having a long axis and a short axis when viewed from the rotational axis direction; a bearing disposed between the inner circumferential surface of the external gear and the outer circumferential surface of the cam; Equipped with As the bearing, for example, a deep groove ball bearing is used.
  • Such a bearing has an elliptical shape when viewed from the rotational axis direction, corresponding to the shape of the outer peripheral surface of the cam.
  • a bearing includes, for example, an outer ring, an inner ring, rolling elements arranged between the outer ring and the inner ring, and a retainer that holds the rolling elements.
  • the above-mentioned conventional technology has a problem in that it is difficult to satisfy the adhesive strength between the cam and the bearing due to the intrusion of oil, foreign matter, etc. If a collar is provided to prevent the retainer from coming out from the bearing, it not only impedes the lubricity of the bearing, but also crushes the retainer, potentially damaging the bearing.
  • the bearing has an elliptical shape when viewed from the rotation axis direction.
  • the range of contact of the flange with the bearing is not uniform over the entire circumference. That is, for example, on the short shaft side of the bearing, the flange contacts the inner ring of the bearing.
  • the flange may not come into contact with the inner ring of the bearing. Therefore, when the inner ring of the bearing is strongly pressed against the flange, there is a possibility that the inner ring of the bearing will be bent.
  • the present invention provides a wave gear device and an industrial robot that can restrict the movement of a bearing in the rotational axis direction and prevent damage to the bearing.
  • a wave gear device includes an internal gear, an elastic external gear disposed inside the internal gear in a radial direction, and a wave gear that contacts an inner circumferential surface of the external gear.
  • a generator the external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis, and the wave generator and the external gear are moved in the circumferential direction around the rotation axis
  • the wave generator includes a cam having a non-circular outer circumferential surface, and a meshing position between the inner circumferential surface of the external gear and the cam.
  • a regulation comprising: a plurality of rolling elements disposed between the inner ring and a retainer holding the plurality of rolling elements, and contacts the inner ring of the bearing to avoid contact with the retainer.
  • the regulating portion is formed such that a radial protrusion length of the cam from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam; The movement of the bearing in the direction of the rotation axis is restricted.
  • the restriction portion can restrict movement of the bearing in the rotational axis direction while avoiding contact with the retainer. Therefore, movement of the bearing in the direction of the rotational axis can be restricted and damage to the bearing retainer can be prevented.
  • the restricting portion is formed so that the radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface. Therefore, the regulating portion is uniformly contacted over the entire circumference of the inner ring of the bearing. Therefore, even if the inner ring of the bearing is strongly pressed against the restriction portion, the inner ring of the bearing can be prevented from being bent, and damage to the bearing can be prevented.
  • the regulating portion is formed in a flange shape projecting radially outward from the outer circumferential surface of the cam, and the outer circumferential surface of the regulating portion faces the retainer in the radial direction with a gap therebetween. You may.
  • the outer circumferential surface of the cam and the outer circumferential surface of the regulating portion are respectively formed in an elliptical shape or an oval shape having a long axis and a short axis when viewed from the rotational axis direction, and the length of the cam is
  • the shaft and the long axis of the restriction part may be located on the same straight line, and the short axis of the cam and the short axis of the restriction part may be located on the same straight line.
  • the outer diameter of an arbitrary part of the cam is defined as D1
  • the outer diameter of the same part of the regulating part as the arbitrary part of the cam is defined as D2
  • the radial thickness of the inner ring is defined as D2.
  • the outer diameters D1 and D2 and the thickness T may satisfy (D2-D1)/2 ⁇ T.
  • the regulating portion may be provided on both sides of the inner ring in the direction of the rotation axis.
  • the restriction portion may be integrally molded with the cam.
  • a wave gear device includes an internal gear, an elastic external gear disposed inside the internal gear in the radial direction, and an external gear that contacts an inner circumferential surface of the external gear.
  • a wave generator wherein the external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis; The meshing position between the gear and the external gear is moved in the circumferential direction around the rotation axis, and the wave generator includes a cam having an outer circumferential surface, the inner circumferential surface of the external gear, and the outer circumference of the cam.
  • the bearing includes an outer ring that contacts the inner circumferential surface of the external gear, an inner ring that contacts the outer circumferential surface of the cam, a plurality of rolling elements arranged between the outer ring and the inner ring, and the plurality of rolling elements.
  • the long axis of the cam and the long axis of the regulating part are located in the same straight line
  • the short axis of the cam and the short axis of the regulating portion are located on the same straight line
  • the radial protrusion length of the cam from the outer circumferential surface extends over the entire circumference of the outer circumferential surface of the cam.
  • the outer circumferential surface of the regulating part is radially opposed to the retainer with a gap therebetween, and the regulating part contacts the inner ring of the bearing and prevents the bearing. movement in the direction of the rotation axis.
  • the restriction part can have a simple structure and can restrict movement of the bearing in the rotational axis direction while avoiding contact with the retainer. Therefore, movement of the bearing in the direction of the rotational axis can be restricted and damage to the bearing retainer can be prevented.
  • the regulating portion can be easily formed so that the radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface. Therefore, the regulating portion is uniformly contacted over the entire circumference of the inner ring of the bearing. Therefore, even if the inner ring of the bearing is strongly pressed against the restriction portion, the inner ring of the bearing can be prevented from being bent, and damage to the bearing can be prevented.
  • An industrial robot includes: a wave gear device having a power generating section that generates rotational force, an input section, and an output section; a counterpart member attached to the output section of the wave gear device;
  • the input section receives the rotational force of the power generation section, the output section changes the speed of the rotation of the input section and outputs the same, and the wave gear device includes an internal gear and the internal gear.
  • the wave generator meshes with the internal gear to rotate relative to the internal gear around the rotation axis, and functions as one of the input section and the output section, and the wave generator
  • the wave generator moves the meshing position with the cam in the circumferential direction around the rotation axis
  • the wave generator includes a cam having a non-circular outer circumferential surface, the inner circumferential surface of the external gear, and the outer circumferential surface of the cam.
  • a bearing disposed between the cam and the cam, the cam functioning as the other of the input section and the output section, and the bearing disposed between the outer ring and the cam.
  • An inner ring that contacts the outer peripheral surface, a plurality of rolling elements arranged between the outer ring and the inner ring, and a cage that holds the plurality of rolling elements, and avoids contact with the cage.
  • a regulating portion that contacts the inner ring of the bearing, and the regulating portion has a radial protrusion length from the outer circumferential surface of the cam that is uniform over the entire circumference of the outer circumferential surface of the cam.
  • the bearing is formed so as to restrict movement of the bearing in the direction of the rotation axis.
  • the wave gear device and industrial robot described above can prevent damage to the bearing by regulating the movement of the bearing in the direction of the rotation axis.
  • FIG. 1 is a schematic configuration diagram of an industrial robot in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view along the rotational axis of the strain wave gear device according to the embodiment of the present invention.
  • 3 is a plan view of the cam according to the embodiment of the present invention viewed from above, and corresponds to a sectional view taken along line III-III in FIG. 2.
  • FIG. 7 is a cross-sectional view along the rotation axis showing a modification of the regulating portion in the embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an industrial robot 100.
  • the industrial robot 100 includes a traveling rail 101, a base unit (an example of a counterpart member in the claims) 102 movably provided on the traveling rail 101, and a base unit 102 provided on the base unit 102.
  • a robot body 103 is provided.
  • Motors with reduction gears 106, 113a-113f are provided at the joints 111, 112a-112e of the arms 115a-115d (an example of a mating member in the claims) of the base unit 102 and the robot body 103, respectively.
  • Each of the speed reducer-equipped motors 106, 113a to 113f has a similar configuration.
  • the motors with a reduction gear 106, 113a to 113f the motor with a reduction gear 106 provided in the base unit 102 will be described as an example.
  • This motor 106 with a speed reducer includes a wave gear device 1 and an electric motor 110 (an example of a power generation unit in the claims) that provides power to the wave gear device 1.
  • FIG. 1 the illustrations of the other motors 113a to 113f with reduction gears are simplified, and the symbols of the wave gear device and the electric motor are omitted.
  • the motor with a reduction gear 106 of the base unit 102 will be explained, and the description of the other motors with reduction gears 113a to 113f will be omitted.
  • the robot main body 103 travels on the traveling rail 101 and each of the arms 115a to 115d assumes various postures by driving the motors 106 and 113a to 113f with reduction gears.
  • FIG. 2 is a cross-sectional view of the wave gear device 1 along the rotation axis C.
  • illustration of the lower half around the rotation axis C is omitted.
  • the direction of the rotational axis C will be simply referred to as the axial direction
  • the circumferential direction around the rotational axis C will be referred to as the circumferential direction
  • the radial direction of the wave gear device 1 perpendicular to the axial direction and the circumferential direction will be simply referred to as the radial direction.
  • the upward direction and the downward direction will be referred to when the motor 106 with a reduction gear is fixed on the base unit 102.
  • the wave gear device 1 includes a housing 2, an internal gear 3 and a first bearing 4 fixed to the housing 2, and an external gear provided inside the internal gear 3 in the radial direction. 5, a wave generator 6 provided inside the external gear 5 in the radial direction, an output plate 7 (an example of an output part in the claims) fixed to the external gear 5 together with the first bearing 4, and an electric A reduction gear shaft 8 is connected to the motor shaft 110a of the motor 110 and applies rotational force to the wave generator 6.
  • a motor shaft 110a of an electric motor 110 is connected to the upper end of the reducer shaft 8 (on the right side in FIG. 2).
  • the output plate 7 is arranged at the lower end of the reducer shaft 8 (on the left side in FIG. 2).
  • the housing 2 is fixed to the base unit 102 by bolts (not shown).
  • the housing 2 is formed into a disk shape.
  • the shape of the housing 2 is not limited to a disk shape.
  • a cylindrical boss portion 2c is integrally formed in the radial center of the housing 2. By fitting this boss portion 2c into, for example, a through hole 102a formed in the base unit 102, the position of the reduction gear motor 106 with respect to the base unit 102 is determined.
  • a stepped through hole 9 is formed in most of the radial center of the boss portion 2c.
  • a speed reducer shaft 8 is inserted into the stepped through hole 9 .
  • the stepped through hole 9 has a small diameter hole 9a formed in the upper part (on the electric motor 110 side) and a large diameter hole 9b formed in the lower part of the small diameter hole 9a (on the opposite side to the electric motor 110). .
  • the large diameter hole 9b is connected to the small diameter hole 9a via a stepped portion 9c.
  • the inner diameter of the large diameter hole 9b is larger than that of the small diameter hole 9a.
  • a seal portion 10 that ensures sealing between the boss portion 2c and the reduction gear shaft 8 is attached to the small diameter hole 9a.
  • various seal members such as a rubber oil seal can be used.
  • a second bearing 11 is fitted into the large diameter hole 9b.
  • the second bearing 11 rotatably supports the upper end of the reducer shaft 8 on the boss portion 2c.
  • the second bearing 11 for example, a deep groove ball bearing is used.
  • the bearing is not limited to this, and various bearings can be used.
  • the outer ring 11a of the second bearing 11 abuts against the stepped portion 9c of the stepped through hole 9, thereby positioning the second bearing 11 in the axial direction with respect to the boss portion 2c.
  • a gear storage recess 12 is formed in the lower surface 2a of the housing 2 in most of the radial center.
  • the gear storage recess 12 is open on the lower side and on the inside in the radial direction.
  • the internal gear 3 is housed in the gear housing recess 12.
  • a plurality of through holes 2b are formed in the outer circumferential portion of the bottom surface 12a of the gear storage recess 12, which penetrate in the axial direction.
  • the plurality of through holes 2b are arranged at equal intervals in the circumferential direction.
  • the plurality of through holes 2b are for fixing the housing 2 to the base unit 102 together with the internal gear 3 and the first bearing 4.
  • a bolt (not shown) is inserted into each through hole 2b from above.
  • the internal gear 3 is formed of a rigid body into an annular shape.
  • the axis of the internal gear 3 coincides with the rotation axis C.
  • the outer peripheral surface of the internal gear 3 is fitted into the inner peripheral surface of the gear storage recess 12 of the housing 2.
  • the internal gear 3 is formed with a through hole 3f that penetrates in the axial direction.
  • the through holes 3f are formed coaxially with the through holes 2b of the housing 2, respectively. These through holes 3f communicate with corresponding through holes 2b of the housing 2, respectively.
  • An O-ring groove 3b is formed in the inner circumference of the upper surface 3a of the internal gear 3.
  • An O-ring 13 is attached to the O-ring groove 3b.
  • the O-ring 13 seals between the internal gear 3 and the housing 2.
  • Internal teeth 3c are formed on the inner peripheral surface of the internal gear 3 over the entire circumference.
  • External teeth 5a, which will be described later, of the external gear 5 mesh with the internal teeth 3c.
  • a bearing housing recess 14 is formed in most of the outer circumference.
  • the bearing storage recess 14 is open at the bottom and the outside in the radial direction.
  • the first bearing 4 is housed in the bearing housing recess 14 .
  • An O-ring groove 3e is formed in the inner circumference of the bottom surface 14a of the bearing storage recess 14.
  • An O-ring 15 is attached to the O-ring groove 3e. The O-ring 15 seals between the internal gear 3 and the first bearing 4.
  • the first bearing 4 includes an outer ring 16 , an inner ring 17 , and spheres 18 that are a plurality of rolling elements arranged between the outer ring 16 and the inner ring 17 .
  • the inner circumferential surface of the inner ring 17 is fitted into the outer circumferential surface of the bearing housing recess 14 .
  • the first bearing 4 is positioned relative to the internal gear 3 in the axial direction.
  • female threaded portions 17b are formed coaxially with the through hole 3f of the internal gear 3. These female screw portions 17b communicate with corresponding through holes 3f of the internal gear 3, respectively.
  • a bolt (not shown) inserted into each through hole 2b of the housing 2 from above is tightened to the female threaded portion 17b of the inner ring 17 through the through hole 3f of the internal gear 3.
  • the housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 are integrally fixed to the base unit 102 by bolts (not shown).
  • the outer ring 16 of the first bearing 4 has a plurality of through holes 16a formed in the outer circumferential portion thereof that penetrate in the axial direction.
  • the plurality of through holes 16a are arranged at equal intervals in the circumferential direction.
  • the plurality of through holes 16a are for integrating the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 with bolts (not shown).
  • a seal storage recess 19 is formed in the inner peripheral portion of the upper surface 16b of the outer ring 16.
  • a seal portion 20 is provided in the seal storage recess 19.
  • the seal portion 20 seals between the outer ring 16 and the inner ring 17 above the first bearing 4 .
  • various seal members such as a rubber oil seal can be used.
  • the lower surface 16c of the outer ring 16 projects slightly further downward than the lower surface 17c of the inner ring 17.
  • An O-ring groove 16d is formed in the inner peripheral portion of the lower surface 16c of the outer ring 16.
  • An O-ring 40 is attached to the O-ring groove 16d. O-ring 40 seals between outer ring 16 and external gear 5.
  • the external gear 5 is made of an elastic member.
  • the external gear 5 is formed of a thin metal plate or the like.
  • the external gear 5 has a cylindrical portion 21 concentric with the internal gear 3, and an outer flange portion 22 that bends and projects radially outward from the lower end of the cylindrical portion 21.
  • the cylindrical portion 21 extends from the upper surface 3a of the internal gear 3 to the lower surface 16c of the outer ring 16 of the first bearing 4.
  • External teeth 5a are formed on the outer peripheral surface of the cylindrical portion 21.
  • the external teeth 5a are formed at positions facing the internal teeth 3c of the internal gear 3 in the radial direction.
  • the external teeth 5a mesh with the internal teeth 3c of the internal gear 3.
  • the number of external teeth 5a is smaller than the number of internal teeth 3c.
  • the number of external teeth 5a is two fewer than the number of internal teeth 3c.
  • the outer flange portion 22 extends from the lower end of the cylindrical portion 21 to the outer peripheral surface of the outer ring 16 of the first bearing 4.
  • the outer periphery of the outer flange portion 22 overlaps the lower surface 16c of the outer ring 16 in the axial direction.
  • a thick wall portion 22a which is thicker than other portions, is formed on the outer periphery of the outer flange portion 22.
  • the thick portion 22a is formed at a location that overlaps the outer ring 16 in the axial direction.
  • a through hole 22b is formed in the thick portion 22a.
  • the through hole 22b is formed coaxially with the through hole 16a of the outer ring 16. These through holes 22b communicate with corresponding through holes 16a of the outer ring 16, respectively.
  • the output plate 7 is arranged so as to overlap the thick portion 22a of the outer flange portion 22 in the axial direction.
  • the output plate 7 is formed into a disk shape.
  • a pinion gear 107 is attached to the lower surface 7a of the output plate 7, for example, for transmitting the power of the motor 106 with a speed reducer to the base unit 102.
  • a fitting cylindrical portion 23 is formed on the outer peripheral portion of the output plate 7 and projects toward the first bearing 4 side.
  • the outer circumferential surface of the thick portion 22 a and a portion of the outer circumferential surface of the outer ring 16 of the first bearing 4 are fitted into the inner circumferential surface of the fitting cylindrical portion 23 . This determines the relative positions of the housing 2, internal gear 3, first bearing 4, external gear 5, and output plate 7 in the radial and axial directions.
  • a through hole 7b is formed in the outer peripheral portion of the output plate 7, radially inside the fitting cylindrical portion 23.
  • the through hole 7b is formed coaxially with the through hole 22b of the thick portion 22a.
  • These through holes 7b each communicate with the corresponding through hole 22b of the thick portion 22a.
  • bolts (not shown) are inserted from above the outer ring 16 into the through hole 16a, the through hole 22b of the thick portion 22a, and the through hole 7b of the output plate 7 in this order, for example, to form the pinion gear 107. Tighten the bolt to the female thread (not shown).
  • the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 are integrally fixed to the pinion gear 107 by bolts (not shown).
  • the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 can be integrated with bolts and nuts (not shown), for example.
  • An O-ring groove 7d is formed in the upper surface 7c of the output plate 7.
  • the O-ring groove 7d is formed radially inside the through hole 7b.
  • An O-ring 25 is attached to the O-ring groove 7d.
  • the O-ring 25 seals between the thick portion 22a and the output plate 7.
  • a shaft insertion hole 24 is formed in the radial center of the output plate 7 and extends through the output plate 7 in the axial direction.
  • the reducer shaft 8 is inserted into the shaft insertion hole 24 .
  • An O-ring 25 is attached to the shaft insertion hole 24 of the output plate 7 to ensure sealing between the output plate 7 and the reduction gear shaft 8.
  • a cylindrical bearing boss 27 that projects upward is integrally formed on the upper surface 7c of the output plate 7.
  • the bearing boss 27 is formed outside the shaft insertion hole 24 in the radial direction.
  • the outer circumferential surface of the third bearing 28 is fitted into the inner circumferential surface of the bearing boss 27 .
  • the third bearing 28 rotatably supports the lower end of the reducer shaft 8 on the output plate 7 .
  • the third bearing 28 for example, a deep groove ball bearing is used.
  • the bearing is not limited to this, and various bearings can be used.
  • the reducer shaft 8 which is rotatably supported at both ends by two bearings 11 and 28, is formed in a hollow shape.
  • the outer peripheral surface of the reducer shaft 8 is formed in a stepped shape. That is, the outer circumferential surface of the reducer shaft 8 has a seal outer circumferential surface 8a formed at both ends, a bearing outer circumferential surface 8b formed on the axially inner side of each seal outer circumferential surface 8a, and a gap between the two bearing outer circumferential surfaces 8b.
  • the shaft main body outer peripheral surface 8c is formed.
  • Seal portions 10 and 26 are attached to each seal outer peripheral surface 8a, respectively.
  • a second bearing 11 and a third bearing 28 are attached to each bearing outer peripheral surface 8b, respectively.
  • the bearing outer circumferential surface 8b is formed so that its diameter is larger than the seal outer circumferential surface 8a via the stepped portion 8d.
  • the shaft main body outer circumferential surface 8c is formed so that its diameter is larger than the bearing outer circumferential surface 8b via the stepped portion 8e.
  • Each bearing 11, 28 is positioned in the axial direction with respect to the reducer shaft 8 by abutting against the corresponding step portion 8d, 8e.
  • the wave generator 6 is provided between the shaft body outer peripheral surface 8c of the reducer shaft 8 and the external teeth 5a of the external gear 5 (internal teeth 3c of the internal gear 3) in the radial direction.
  • the wave generator 6 includes a cam 31 integrally molded on the outer peripheral surface 8c of the shaft main body, and a fourth cam 31 disposed between the outer peripheral surface 31a of the cam 31 and the inner peripheral surface 21a of the cylindrical portion 21 of the external gear 5.
  • a bearing (an example of a bearing in the claims) 32.
  • FIG. 3 is a plan view of the cam 31 viewed from above, and corresponds to a sectional view taken along line III--III in FIG. As shown in FIGS. 2 and 3, the cam 31 is formed to protrude radially outward from the shaft main body outer peripheral surface 8c. The outer peripheral surface 31a of the cam 31 is formed into an elliptical shape when viewed from the axial direction.
  • the fourth bearing 32 is, for example, a deep groove ball bearing.
  • the fourth bearing 32 includes an outer ring 33, an inner ring 34, a plurality of balls 35 that are rolling elements arranged between the outer ring 33 and the inner ring 34, and a cage 36 that holds the plurality of balls 35 in a rollable manner. and.
  • the outer circumferential surface of the outer ring 33 is in contact with the inner circumferential surface 21a of the cylindrical portion 21 of the external gear 5.
  • the inner peripheral surface of the inner ring 34 is fitted into the outer peripheral surface 31a of the cam 31.
  • the axial length L1 of the inner ring 34 is shorter than the axial length L2 of the outer ring 33.
  • the axial length L3 of the cam 31 roughly matches the axial length L1 of the inner ring 34.
  • the retainer 36 is an annular member that retains a plurality of spheres 35 at equal intervals in the circumferential direction.
  • the retainer 36 has gripping portions 36a that rollably grip the spheres 35 from the outside in the axial direction, and a connecting portion (not shown) that connects the gripping portions 36a adjacent in the circumferential direction.
  • the grip portion 36a protrudes slightly downward from the axial lower end of the inner ring 34 when viewed from the radial direction.
  • a regulating portion 37 is integrally formed at the lower end of the cam 31 on the shaft main body outer peripheral surface 8c.
  • the regulating portion 37 is formed in the shape of a flange that protrudes radially outward from the outer circumferential surface 31a of the cam 31.
  • the outer circumferential surface 37a of the regulating portion 37 is formed in an elliptical shape when viewed from the axial direction so as to correspond to the shape of the outer circumferential surface 31a of the cam 31.
  • the long axis RLa of the regulating portion 37 and the long axis CLa of the cam 31 are located on the same straight line.
  • the short axis RSa of the regulating portion 37 and the short axis CSa of the cam 31 are located on the same straight line. Therefore, the regulating portion 37 is formed so that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a.
  • the outer diameter of an arbitrary location on the cam 31 is defined as D1
  • the outer diameter of the regulating portion 37 at the same location as the arbitrary location on the cam 31 is defined as D2
  • the wall thickness of the inner ring 34 of the fourth bearing 32 is defined as T.
  • the outer diameters D1, D2 and the thickness T are (D2-D1)/2 ⁇ T...(1) satisfy.
  • the regulating portion 37 is integrally molded on the lower end of the cam 31, it faces the retainer 36 (gripping portion 36a) of the fourth bearing 32 in the radial direction. Contact of the regulating portion 37 with the retainer 36 is reliably avoided. The lower end of the inner ring 34 of the fourth bearing 32 abuts against the upper surface 37b of the regulating portion 37. This restricts the movement of the fourth bearing 32 in the axial direction.
  • the regulating portion 37 is formed so that the radial protrusion length of the cam 31 from the outer circumferential surface 31a is uniform over the entire circumference of the outer circumferential surface 31a. Therefore, the regulating portion 37 uniformly abuts against the entire circumference of the inner ring 34 of the fourth bearing 32 .
  • the retainer 36 (grip portion 36a) and the restriction portion 37 of the fourth bearing 32 face each other in the radial direction across the entire circumference of the outer circumferential surface 31a of the cam 31 with a constant gap G therebetween.
  • the regulating portion 37 reliably protrudes in the radial direction from the outer circumferential surface 31a of the cam 31. Therefore, the restriction portion 37 reliably restricts movement of the fourth bearing 32 in the axial direction.
  • the outer peripheral surface 31a of the cam 31 of the wave generator 6 is formed into an elliptical shape when viewed from the axial direction. Therefore, the external gear 5 is elastically deformed via the fourth bearing 32, and the external teeth 5a and the internal teeth 3c of the internal gear 3 are partially meshed.
  • the reducer shaft 8 is rotated integrally with the motor shaft 110a.
  • the cam 31 is rotated together with the reducer shaft 8. That is, the cam 31 of the wave generator 6 functions as an input section into which the rotational force of the motor shaft 110a of the electric motor 110 is input.
  • the external teeth 5a and the internal teeth 3c have different numbers of teeth. Therefore, while their mutual meshing positions move in the circumferential direction, they rotate relative to each other around the rotation axis C due to the difference in the number of teeth.
  • the number of external teeth 5a is smaller than the number of internal teeth 3c. Therefore, the external gear 5 is rotated at a rotation speed lower than that of the reducer shaft 8. The external gear 5 is rotated while being elastically deformed.
  • the outer flange portion 22 of the external gear 5 is integrated with the outer ring 16 of the first bearing 4 and the output plate 7. Therefore, the outer ring 16 of the first bearing 4 and the output plate 7 are outputted while being decelerated relative to the rotation of the motor shaft 110a (reducer shaft 8). That is, the external gear 5 functions as an output section that changes the speed (in this embodiment, decelerates) the rotation of the cam 31, which is an input section, and outputs the same.
  • the rotation of the output plate 7 causes the pinion gear 107 to rotate. Then, the base unit 102 is slid along the running rail 101 (see FIG. 1).
  • a regulating portion 37 is integrally formed on the outer circumferential surface 8c of the shaft main body of the reducer shaft 8 at the lower end of the cam 31.
  • the regulating portion 37 is formed in the shape of a flange that protrudes radially outward from the outer circumferential surface 31a of the cam 31.
  • the lower end of the inner ring 34 of the fourth bearing 32 abuts against such a restriction portion 37 . Therefore, the restriction portion 37 restricts movement of the fourth bearing 32 in the axial direction.
  • the movement of the fourth bearing 32 in the axial direction can be restricted by the restriction portion 37. Therefore, the internal teeth 3c of the internal gear 3 and the external teeth 5a of the external gear 5 can be continuously and properly meshed. Therefore, the wave gear device 1 can be operated stably.
  • the regulating portion 37 is formed so as to avoid contact between the fourth bearing 32 and the retainer 36. Therefore, damage to the fourth bearing 32 caused by the regulating portion 37 can be prevented. Furthermore, the restricting portion 37 is formed so that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a. Therefore, the upper surface 37b of the regulating portion 37 is uniformly contacted over the entire circumference of the inner ring 34 of the fourth bearing 32. Therefore, even if the inner ring 34 of the fourth bearing 32 is strongly pressed against the regulating portion 37, stress will not be locally applied to the inner ring 34. As a result, the inner ring 34 can be prevented from being bent, and the fourth bearing 32 can be prevented from being damaged.
  • the regulating portion 37 faces the retainer 36 (grip portion 36a) in the radial direction with a gap G in between so as to avoid contact between the fourth bearing 32 and the retainer 36. With this configuration, contact with the retainer 36 can be avoided while the restricting part 37 has a simple structure.
  • the outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 are each formed in an elliptical shape when viewed from the axial direction.
  • the long axis RLa of the regulating portion 37 and the long axis CLa of the cam 31 are located on the same straight line.
  • the short axis RSa of the regulating portion 37 and the short axis CSa of the cam 31 are located on the same straight line. Therefore, the radial protrusion length of the restricting portion 37 from the outer circumferential surface 31a of the cam 31 can be reliably made uniform over the entire circumference of the outer circumferential surface 31a.
  • the outer diameter D1 of an arbitrary part of the cam 31, the outer diameter D2 of the regulating part 37 at the same part as the arbitrary part of the cam 31, and the wall thickness T of the inner ring 34 of the fourth bearing 32 satisfy the above formula (1). . Therefore, the movement of the fourth bearing 32 in the axial direction can be more reliably regulated while preventing the regulating portion 37 from coming into contact with the retainer 36 more reliably.
  • the regulating portion 37 is integrally formed on the shaft main body outer peripheral surface 8c and the lower end of the cam 31. Therefore, the regulating portion 37 can be easily provided.
  • Motors with reduction gears 106, 113a to 113f using the wave generator 6 as described above are employed in the industrial robot 100. Thereby, damage to the fourth bearing 32 can be prevented, and the industrial robot 100 with stable operation and high reliability can be provided.
  • the present invention is not limited to the above-described embodiments, but includes various modifications to the above-described embodiments without departing from the spirit of the present invention.
  • the wave gear device 1 can be employed in the drive unit of various industrial robots other than the industrial robot 100.
  • the industrial robots herein include various processing machines such as electric wheelchairs, traveling devices, and multi-tasking machines.
  • the wave gear device 1 can be employed in a drive unit (traveling unit) of an electric wheelchair, a traveling device, or a processing machine.
  • the electric motor 110 is used as a power generating section that generates rotational force in the cam 31 as an input section.
  • the present invention is not limited to this, and any power generating section may be used as long as it generates rotational force in the cam 31.
  • a hydraulic motor, an engine, etc. can be used instead of the electric motor 110.
  • the fourth bearing 32 is, for example, a deep groove ball bearing.
  • the present invention is not limited to this, and any bearing may be used as long as it includes an outer ring, an inner ring, rolling elements, and a cage.
  • the rolling elements may not be spherical bodies 35.
  • cylindrical rollers may be used as the rolling elements instead of the spheres 35.
  • the cam 31 of the wave generator 6 functions as an input section into which the rotational force of the motor shaft 110a of the electric motor 110 is input.
  • the external gear 5 functions as an output section that changes the speed of the rotation of the cam 31 and outputs the same.
  • the present invention is not limited to this, and the external gear 5 may function as an input section, and the cam 31 (reducer shaft 8) may function as an output section.
  • the case where the outer circumferential surface 31a of the cam 31 is formed in an elliptical shape when viewed from the axial direction has been described.
  • the present invention is not limited to this, and the outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 may be non-circular.
  • the outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 may have a polygonal shape when viewed from the axial direction.
  • the regulating portion 37 may be formed such that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a.
  • the outer circumferential surface 31a of the cam 31 has an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the axial direction.
  • the case where the wave gear device 1 includes the housing 2 has been described.
  • the housing 2 may not be provided.
  • the internal gear 3 may be directly attached to the base unit 102 or the like, or the reducer shaft 8 may be rotatably supported directly by the base unit 102 or the like.
  • the case where the wave gear device 1 includes the output plate 7 has been described.
  • the case where the rotation of the motor shaft 110a (reducer shaft 8) is outputted via the output plate 7 has been described.
  • the present invention is not limited to this, and the rotation of the motor shaft 110a (reducer shaft 8) may be directly output from the external gear 5.
  • the housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 are integrally fixed to the base unit 102 by bolts (not shown).
  • the present invention is not limited to this, and various methods can be used to fix the internal gear 3 and the inner ring 17 of the first bearing 4.
  • the internal gear 3 and the inner ring 17 of one bearing 4 may be fixed in advance.
  • the housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 may be fixed in advance and fixed to a mating member (for example, the base unit 102, etc.).
  • the reduction gear shaft 8 has been described as being formed in a hollow shape.
  • the present invention is not limited to this, and the reducer shaft 8 may be solid.
  • the reduction gear shaft 8 may be provided with a spur gear, and the rotation of the motor shaft 110a may be transmitted to the reduction gear shaft 8 via this spur gear.
  • the regulating portion 37 is integrally molded on the lower end of the cam 31 .
  • the case where the lower end of the inner ring 34 of the fourth bearing 32 abuts against the upper surface 37b of the regulating portion 37 has been described.
  • the present invention is not limited to this, and the regulating portions 37 may be provided on both sides of the inner ring 34 in the axial direction. With this configuration, the movement of the fourth bearing 32 in the axial direction can be reliably restricted regardless of the direction of the thrust force acting on the fourth bearing 32.
  • the regulating portion 37 may be formed separately from the reducer shaft 8 and the cam 31 instead of being integrally formed therewith.
  • the regulating section 37 may be configured as follows.
  • FIG. 4 is a cross-sectional view along the rotation axis C showing a modified example of the regulating portion 37.
  • the regulation part 37 includes a regulation support part 41 extending from the upper end of the bearing boss 27 toward the fourth bearing 32, and a regulation part main body 42 provided in the regulation support part 41. It's okay.
  • the regulating portion main body 42 is fixed to the regulating support portion 41 by bolts, welding, or the like (not shown).
  • the regulating portion main body 42 extends from the regulating support portion 41 along the axial direction, and is formed such that its tip 42a abuts against the inner ring 34 of the fourth bearing 32. That is, the regulating portion main body 42 is provided so as to avoid contact with the retainer 36 of the fourth bearing 32.
  • the regulating portion main body 42 regulates movement of the fourth bearing 32 in the axial direction.
  • the regulating portion main body 42 is formed so that the radial protrusion length from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a. Even with this configuration, the same effects as in the above-described embodiment can be achieved.
  • those that are composed of a plurality of objects may be integrated, and conversely, those that are composed of one object may be divided into multiple objects. be able to. Regardless of whether they are integrated or not, it is sufficient that the structure is such that the object of the invention can be achieved.
  • regulating section main body regulating section
  • 100...industrial robot 107 ...Pinion gear (mate member), 115a, 115b, 115c, 115d...Arm (mate member), C...rotation axis, CLa...long axis of cam, CSa...short axis of cam, D1...arbitrary outer diameter of cam, D2...outer diameter on D1 in the regulating part, G...gap, RLa...long axis of the regulating part, RSa...short axis of the regulating part

Abstract

This strain-wave gearing is provided with an inner spline (3), an outer spline (5), and a wave generator (6). The wave generator (6) is provided with: a cam (31) having a non-circular outer peripheral surface (31a); and a fourth bearing (32) disposed between the inner peripheral surface (21a) of the outer spline (5) and the outer peripheral surface (31a) of the cam (31). The fourth bearing (32) is provided with an outer ring (33), an inner ring (34), a plurality of spheres (35), and a retainer (36). Also provided is a limiter (37) that abuts on the inner ring (34) so as to avoid contact with the retainer (36), and that limits movement of the fourth bearing (32) in the direction of the rotational axis (C). The limiter (37) is formed so that the radial projection length of the cam (31) from the outer peripheral surface (31a) is uniform over the entire periphery of the outer peripheral surface (31a).

Description

波動歯車装置及び産業ロボットWave gearing and industrial robots
 本発明は、波動歯車装置及び産業ロボットに関する。
 本願は、2022年4月28日に、日本に出願された特願2022-075005号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wave gear device and an industrial robot.
This application claims priority based on Japanese Patent Application No. 2022-075005 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
 波動歯車装置は、内歯歯車と、内歯歯車と部分的に噛み合う弾性を有する外歯歯車と、外歯歯車の内周面に接触する波動発生器と、を備える。波動発生器は、内歯歯車と外歯歯車との噛み合い位置を回転軸線回りの周方向に移動させる。波動発生器は、回転軸線方向からみて長軸と短軸とを有する楕円形状の外周面を有するカムと、外歯歯車の内周面とカムの外周面との間に配置された軸受と、を備える。
 軸受としては、例えば深溝玉軸受が用いられる。このような軸受は、カムの外周面の形状に対応して回転軸線方向からみて楕円形状である。軸受は、例えば外輪と、内輪と、外輪と内輪との間に配置される転動体と、転動体を保持する保持器と、を備える。
The wave gear device includes an internal gear, an elastic external gear that partially meshes with the internal gear, and a wave generator that contacts the inner peripheral surface of the external gear. The wave generator moves the meshing position between the internal gear and the external gear in the circumferential direction around the rotation axis. The wave generator includes: a cam having an elliptical outer circumferential surface having a long axis and a short axis when viewed from the rotational axis direction; a bearing disposed between the inner circumferential surface of the external gear and the outer circumferential surface of the cam; Equipped with
As the bearing, for example, a deep groove ball bearing is used. Such a bearing has an elliptical shape when viewed from the rotational axis direction, corresponding to the shape of the outer peripheral surface of the cam. A bearing includes, for example, an outer ring, an inner ring, rolling elements arranged between the outer ring and the inner ring, and a retainer that holds the rolling elements.
 上述の波動歯車装置を駆動させると、外歯歯車の弾性変形により、波動発生器にスラスト力が発生する。このスラスト力により波動発生器が回転軸線方向に移動してしまうと、内歯歯車と外歯歯車とが適正に噛み合わなくなる可能性がある。軸受への荷重が過大となり軸受が破損してしまう可能性がある。波動発生器の回転軸線方向の移動を防止するために、例えばカムの回転軸線方向への移動を規制しようとすると、カムに対して軸受が移動してしまう。このため、カムと軸受との間に接着剤を塗布してカムと軸受との接着強度を高める技術が開示されている。スラスト力が発生した場合に、保持器が軸受から飛び出してしまうことを規制する鍔を設けた技術が開示されている。 When the above-mentioned wave gear device is driven, a thrust force is generated in the wave generator due to the elastic deformation of the external gear. If the wave generator moves in the direction of the rotational axis due to this thrust force, there is a possibility that the internal gear and the external gear will not mesh properly. The load on the bearing may become excessive and the bearing may be damaged. If, for example, the movement of the cam in the direction of the rotation axis is restricted in order to prevent movement of the wave generator in the direction of the rotation axis, the bearing will move relative to the cam. For this reason, a technique has been disclosed in which an adhesive is applied between the cam and the bearing to increase the adhesive strength between the cam and the bearing. A technique is disclosed in which a collar is provided to prevent the retainer from jumping out of the bearing when a thrust force is generated.
国際公開第2020/044524号International Publication No. 2020/044524
 しかしながら、上述の従来技術では、油分や異物等の侵入により、カムと軸受との間の接着強度を満足することが難しいという課題があった。
 保持器の軸受からの飛び出しを規制する鍔を設けてしまうと軸受の潤滑性を阻害するばかりか保持器を押し潰して軸受が損傷してしまう可能性があった。
However, the above-mentioned conventional technology has a problem in that it is difficult to satisfy the adhesive strength between the cam and the bearing due to the intrusion of oil, foreign matter, etc.
If a collar is provided to prevent the retainer from coming out from the bearing, it not only impedes the lubricity of the bearing, but also crushes the retainer, potentially damaging the bearing.
 例えば回転軸線方向からみて鍔部を真円状に形成した場合、軸受が回転軸線方向からみて楕円形状である。このため、軸受への鍔部の接触範囲が全周に渡って均一にならない。すなわち、例えば軸受の短軸側では、軸受の内輪に鍔部が接触される。これに対し、軸受の長軸側では、軸受の内輪に鍔部が接触されない場合がある。このため、鍔部に軸受の内輪が強く押し付けられた場合に軸受の内輪が折れ曲がってしまう可能性があった。 For example, when the flange is formed in a perfect circle shape when viewed from the rotation axis direction, the bearing has an elliptical shape when viewed from the rotation axis direction. For this reason, the range of contact of the flange with the bearing is not uniform over the entire circumference. That is, for example, on the short shaft side of the bearing, the flange contacts the inner ring of the bearing. On the other hand, on the long axis side of the bearing, the flange may not come into contact with the inner ring of the bearing. Therefore, when the inner ring of the bearing is strongly pressed against the flange, there is a possibility that the inner ring of the bearing will be bent.
 本発明は、軸受の回転軸線方向への移動を規制し、軸受の損傷を防止できる波動歯車装置及び産業ロボットを提供する。 The present invention provides a wave gear device and an industrial robot that can restrict the movement of a bearing in the rotational axis direction and prevent damage to the bearing.
 本発明の一態様に係る波動歯車装置は、内歯歯車と、前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、前記外歯歯車の内周面に接触する波動発生器と、を備え、前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転し、前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、前記波動発生器は、非円形の外周面を有するカムと、前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、を備え、前記軸受は、前記外歯歯車の前記内周面に接触する外輪と、前記カムの前記外周面に接触する内輪と、前記外輪と前記内輪との間に配置される複数の転動体と、前記複数の転動体を保持する保持器と、を備え、前記保持器との接触を回避するように前記軸受の前記内輪に接触する規制部を備え、前記規制部は、前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成され、前記規制部は、前記軸受の前記回転軸線方向への移動を規制する。 A wave gear device according to one aspect of the present invention includes an internal gear, an elastic external gear disposed inside the internal gear in a radial direction, and a wave gear that contacts an inner circumferential surface of the external gear. a generator, the external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis, and the wave generator and the external gear are moved in the circumferential direction around the rotation axis, and the wave generator includes a cam having a non-circular outer circumferential surface, and a meshing position between the inner circumferential surface of the external gear and the cam. a bearing arranged between the outer circumferential surface of the external gear, an outer ring that contacts the inner circumferential surface of the external gear, an inner ring that contacts the outer circumferential surface of the cam, and an outer ring that contacts the outer circumferential surface of the cam. A regulation comprising: a plurality of rolling elements disposed between the inner ring and a retainer holding the plurality of rolling elements, and contacts the inner ring of the bearing to avoid contact with the retainer. The regulating portion is formed such that a radial protrusion length of the cam from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam; The movement of the bearing in the direction of the rotation axis is restricted.
 このように構成することで、規制部によって、保持器との接触を回避しつつ軸受の回転軸線方向への移動を規制できる。このため、軸受の回転軸線方向への移動を規制し、軸受の保持器の損傷を防止できる。
 規制部は、カムの外周面からの径方向の突出長さがこの外周面の全周に渡って均一になるように形成されている。このため、軸受の内輪の全周に渡って規制部が均一に接触される。よって、規制部に軸受の内輪が強く押し付けられた場合であっても軸受の内輪が折れ曲がってしまうことを防止でき、軸受の損傷を防止できる。
With this configuration, the restriction portion can restrict movement of the bearing in the rotational axis direction while avoiding contact with the retainer. Therefore, movement of the bearing in the direction of the rotational axis can be restricted and damage to the bearing retainer can be prevented.
The restricting portion is formed so that the radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface. Therefore, the regulating portion is uniformly contacted over the entire circumference of the inner ring of the bearing. Therefore, even if the inner ring of the bearing is strongly pressed against the restriction portion, the inner ring of the bearing can be prevented from being bent, and damage to the bearing can be prevented.
 上記構成で、前記規制部は、前記カムの前記外周面から径方向外側に張り出す鍔状に形成されており、前記規制部の外周面は、隙間を介して前記保持器と径方向で対向してもよい。 In the above configuration, the regulating portion is formed in a flange shape projecting radially outward from the outer circumferential surface of the cam, and the outer circumferential surface of the regulating portion faces the retainer in the radial direction with a gap therebetween. You may.
 上記構成で、前記カムの前記外周面及び前記規制部の外周面は、それぞれ前記回転軸線方向からみて長軸と短軸とを有する楕円形状又は長円形状に形成されており、前記カムの長軸と前記規制部の長軸とが同一直線状に位置しているとともに、前記カムの短軸と前記規制部の短軸とが同一直線状に位置してもよい。 In the above configuration, the outer circumferential surface of the cam and the outer circumferential surface of the regulating portion are respectively formed in an elliptical shape or an oval shape having a long axis and a short axis when viewed from the rotational axis direction, and the length of the cam is The shaft and the long axis of the restriction part may be located on the same straight line, and the short axis of the cam and the short axis of the restriction part may be located on the same straight line.
 上記構成で、前記カムの任意の箇所の外径をD1と定義し、前記規制部の前記カムの任意の箇所と同一箇所の外径をD2と定義し、前記内輪の径方向の厚さをTと定義したとき、外径D1,D2、及び厚さTは、(D2-D1)/2≦Tを満たしてもよい。 In the above configuration, the outer diameter of an arbitrary part of the cam is defined as D1, the outer diameter of the same part of the regulating part as the arbitrary part of the cam is defined as D2, and the radial thickness of the inner ring is defined as D2. When defined as T, the outer diameters D1 and D2 and the thickness T may satisfy (D2-D1)/2≦T.
 上記構成で、前記規制部は、前記内輪の前記回転軸線方向の両側に設けられていてもよい。 In the above configuration, the regulating portion may be provided on both sides of the inner ring in the direction of the rotation axis.
 上記構成で、前記規制部は、前記カムに一体成形されてもよい。 In the above configuration, the restriction portion may be integrally molded with the cam.
 本発明の他の態様に係る波動歯車装置は、内歯歯車と、前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、前記外歯歯車の内周面に接触する波動発生器と、を備え、前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転し、前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、前記波動発生器は、外周面を有するカムと、前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、を備え、前記カムの前記外周面は、前記回転軸線方向からみて長軸と短軸とを有する楕円形状及び長円形状のいずれかに形成され、前記軸受は、前記外歯歯車の前記内周面に接触する外輪と、前記カムの前記外周面に接触する内輪と、前記外輪と前記内輪との間に配置される複数の転動体と、前記複数の転動体を保持する保持器と、を備え、前記カムの前記外周面から径方向の外側に張り出す鍔状に形成された規制部を備え、前記規制部は、前記回転軸線方向からみて長軸と短軸とを有する楕円形状及び長円形状のいずれかに形成された外周面を有し、前記カムの長軸と前記規制部の長軸とが同一直線状に位置しているとともに、前記カムの短軸と前記規制部の短軸とが同一直線状に位置しており、前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成されており、前記規制部の外周面は、隙間を介して前記保持器と径方向で対向しており、前記規制部は、前記軸受の前記内輪に接触して前記軸受の前記回転軸線方向への移動を規制する。 A wave gear device according to another aspect of the present invention includes an internal gear, an elastic external gear disposed inside the internal gear in the radial direction, and an external gear that contacts an inner circumferential surface of the external gear. a wave generator, wherein the external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis; The meshing position between the gear and the external gear is moved in the circumferential direction around the rotation axis, and the wave generator includes a cam having an outer circumferential surface, the inner circumferential surface of the external gear, and the outer circumference of the cam. a bearing disposed between the cam and the cam, the outer circumferential surface of the cam being formed in either an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the rotational axis direction; The bearing includes an outer ring that contacts the inner circumferential surface of the external gear, an inner ring that contacts the outer circumferential surface of the cam, a plurality of rolling elements arranged between the outer ring and the inner ring, and the plurality of rolling elements. a retainer for holding a rolling element of the cam, and a restriction portion formed in a flange shape extending radially outward from the outer circumferential surface of the cam, the restriction portion having a length when viewed from the rotational axis direction. having an outer circumferential surface formed in either an elliptical shape or an elliptical shape having an axis and a short axis, the long axis of the cam and the long axis of the regulating part are located in the same straight line, The short axis of the cam and the short axis of the regulating portion are located on the same straight line, and the radial protrusion length of the cam from the outer circumferential surface extends over the entire circumference of the outer circumferential surface of the cam. The outer circumferential surface of the regulating part is radially opposed to the retainer with a gap therebetween, and the regulating part contacts the inner ring of the bearing and prevents the bearing. movement in the direction of the rotation axis.
 このように構成することで、規制部を簡素な構造にしつつ、規制部によって保持器との接触を回避しつつ軸受の回転軸線方向への移動を規制できる。このため、軸受の回転軸線方向への移動を規制し、軸受の保持器の損傷を防止できる。
 規制部を、カムの外周面からの径方向の突出長さをこの外周面の全周に渡って均一になるように用意に形成できる。このため、軸受の内輪の全周に渡って規制部が均一に接触される。よって、規制部に軸受の内輪が強く押し付けられた場合であっても軸受の内輪が折れ曲がってしまうことを防止でき、軸受の損傷を防止できる。
With this configuration, the restriction part can have a simple structure and can restrict movement of the bearing in the rotational axis direction while avoiding contact with the retainer. Therefore, movement of the bearing in the direction of the rotational axis can be restricted and damage to the bearing retainer can be prevented.
The regulating portion can be easily formed so that the radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface. Therefore, the regulating portion is uniformly contacted over the entire circumference of the inner ring of the bearing. Therefore, even if the inner ring of the bearing is strongly pressed against the restriction portion, the inner ring of the bearing can be prevented from being bent, and damage to the bearing can be prevented.
 本発明の他の態様に係る産業ロボットは、回転力を発生させる動力発生部と、入力部、及び出力部を有する波動歯車装置と、前記波動歯車装置の前記出力部に取り付けられる相手部材と、を備え、前記入力部は、前記動力発生部の前記回転力が入力され、前記出力部は、前記入力部の回転を変速して出力し、前記波動歯車装置は、内歯歯車と、前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、前記外歯歯車の内周面に接触する波動発生器と、を備え、前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転するとともに、前記入力部及び前記出力部の一方として機能し、前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、前記波動発生器は、非円形の外周面を有するカムと、前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、を備え、前記カムは、前記入力部及び前記出力部の他方として機能し、前記軸受は、前記外歯歯車の前記内周面に接触する外輪と、前記カムの前記外周面に接触する内輪と、前記外輪と前記内輪との間に配置される複数の転動体と、前記複数の転動体を保持する保持器と、を備え、前記保持器との接触を回避するように前記軸受の前記内輪に接触する規制部を備え、前記規制部は、前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成されているとともに、前記軸受の前記回転軸線方向への移動を規制する。 An industrial robot according to another aspect of the present invention includes: a wave gear device having a power generating section that generates rotational force, an input section, and an output section; a counterpart member attached to the output section of the wave gear device; The input section receives the rotational force of the power generation section, the output section changes the speed of the rotation of the input section and outputs the same, and the wave gear device includes an internal gear and the internal gear. an elastic external gear disposed radially inside the gear, and a wave generator in contact with an inner circumferential surface of the external gear; The wave generator meshes with the internal gear to rotate relative to the internal gear around the rotation axis, and functions as one of the input section and the output section, and the wave generator The wave generator moves the meshing position with the cam in the circumferential direction around the rotation axis, and the wave generator includes a cam having a non-circular outer circumferential surface, the inner circumferential surface of the external gear, and the outer circumferential surface of the cam. a bearing disposed between the cam and the cam, the cam functioning as the other of the input section and the output section, and the bearing disposed between the outer ring and the cam. An inner ring that contacts the outer peripheral surface, a plurality of rolling elements arranged between the outer ring and the inner ring, and a cage that holds the plurality of rolling elements, and avoids contact with the cage. a regulating portion that contacts the inner ring of the bearing, and the regulating portion has a radial protrusion length from the outer circumferential surface of the cam that is uniform over the entire circumference of the outer circumferential surface of the cam. The bearing is formed so as to restrict movement of the bearing in the direction of the rotation axis.
 このように構成することで、軸受の回転軸線方向への移動を規制し、軸受の損傷を防止する産業ロボットを提供できる。 With this configuration, it is possible to provide an industrial robot that restricts movement of the bearing in the direction of the rotational axis and prevents damage to the bearing.
 上述の波動歯車装置及び産業ロボットは、軸受の回転軸線方向への移動を規制し、軸受の損傷を防止できる。 The wave gear device and industrial robot described above can prevent damage to the bearing by regulating the movement of the bearing in the direction of the rotation axis.
本発明の実施形態における産業ロボットの概略構成図である。1 is a schematic configuration diagram of an industrial robot in an embodiment of the present invention. 本発明の実施形態における波動歯車装置の回転軸線に沿う断面図である。FIG. 2 is a cross-sectional view along the rotational axis of the strain wave gear device according to the embodiment of the present invention. 本発明の実施形態におけるカムを上からみた平面図であり、図2のIII-III線に沿う断面図に相当している。3 is a plan view of the cam according to the embodiment of the present invention viewed from above, and corresponds to a sectional view taken along line III-III in FIG. 2. FIG. 本発明の実施形態における規制部の変形例を示す回転軸線に沿う断面図である。FIG. 7 is a cross-sectional view along the rotation axis showing a modification of the regulating portion in the embodiment of the present invention.
 次に、本発明の実施形態を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.
<産業ロボット>
 図1は、産業ロボット100の概略構成図である。
 図1に示すように、産業ロボット100は、走行レール101と、走行レール101上に移動自在に設けられたベースユニット(請求項の相手部材の一例)102と、ベースユニット102上に設けられたロボット本体103と、を備える。ベースユニット102やロボット本体103の各アーム(請求項の相手部材の一例)115a~115dの関節部111,112a~112eには、それぞれ減速機付きモータ106,113a~113fが設けられている。
<Industrial robot>
FIG. 1 is a schematic configuration diagram of an industrial robot 100.
As shown in FIG. 1, the industrial robot 100 includes a traveling rail 101, a base unit (an example of a counterpart member in the claims) 102 movably provided on the traveling rail 101, and a base unit 102 provided on the base unit 102. A robot body 103 is provided. Motors with reduction gears 106, 113a-113f are provided at the joints 111, 112a-112e of the arms 115a-115d (an example of a mating member in the claims) of the base unit 102 and the robot body 103, respectively.
 各減速機付きモータ106,113a~113fは、同様の構成である。各減速機付きモータ106,113a~113fのうち、ベースユニット102に設けられた減速機付きモータ106を例に説明する。この減速機付きモータ106は、波動歯車装置1と、波動歯車装置1に動力を付与する電動モータ(請求項の動力発生部の一例)110と、を備える。 Each of the speed reducer-equipped motors 106, 113a to 113f has a similar configuration. Among the motors with a reduction gear 106, 113a to 113f, the motor with a reduction gear 106 provided in the base unit 102 will be described as an example. This motor 106 with a speed reducer includes a wave gear device 1 and an electric motor 110 (an example of a power generation unit in the claims) that provides power to the wave gear device 1.
 図1では、その他の減速機付きモータ113a~113fの図示を簡略化するとともに、波動歯車装置及び電動モータの符号を省略する。以下の説明では、ベースユニット102の減速機付きモータ106のみについて説明し、他の減速機付きモータ113a~113fの説明を省略する。
 産業ロボット100は、各減速機付きモータ106,113a~113fを駆動することにより、走行レール101上をロボット本体103が走行したり、各アーム115a~115dがさまざまな姿勢をとったりする。
In FIG. 1, the illustrations of the other motors 113a to 113f with reduction gears are simplified, and the symbols of the wave gear device and the electric motor are omitted. In the following description, only the motor with a reduction gear 106 of the base unit 102 will be explained, and the description of the other motors with reduction gears 113a to 113f will be omitted.
In the industrial robot 100, the robot main body 103 travels on the traveling rail 101 and each of the arms 115a to 115d assumes various postures by driving the motors 106 and 113a to 113f with reduction gears.
<波動歯車装置>
 次に、図2から図3に基づいて、波動歯車装置1について説明する。
 図2は、波動歯車装置1の回転軸線Cに沿う断面図である。図2では、回転軸線Cを中心に下半分の図示を省略している。以下の説明では、回転軸線C方向を単に軸方向、回転軸線C回りを周方向、軸方向及び周方向に直交する波動歯車装置1の径方向を単に径方向と称して説明する。以下の説明では、ベースユニット102上に減速機付きモータ106を固定した状態で上方向、下方向をいうものとする。
<Wave gearing>
Next, the strain wave gear device 1 will be explained based on FIGS. 2 to 3.
FIG. 2 is a cross-sectional view of the wave gear device 1 along the rotation axis C. In FIG. 2, illustration of the lower half around the rotation axis C is omitted. In the following description, the direction of the rotational axis C will be simply referred to as the axial direction, the circumferential direction around the rotational axis C will be referred to as the circumferential direction, and the radial direction of the wave gear device 1 perpendicular to the axial direction and the circumferential direction will be simply referred to as the radial direction. In the following description, the upward direction and the downward direction will be referred to when the motor 106 with a reduction gear is fixed on the base unit 102.
 図2に示すように、波動歯車装置1は、ハウジング2と、ハウジング2に固定された内歯歯車3及び第1軸受4と、内歯歯車3の径方向の内側に設けられた外歯歯車5と、外歯歯車5の径方向の内側に設けられた波動発生器6と、外歯歯車5に第1軸受4とともに固定された出力プレート(請求項の出力部の一例)7と、電動モータ110のモータシャフト110aに連結され、波動発生器6に回転力を付与する減速機シャフト8と、を備える。減速機シャフト8の上端(図2における右側)に、電動モータ110のモータシャフト110aが連結される。減速機シャフト8の下端(図2における左側)に、出力プレート7が配置される。 As shown in FIG. 2, the wave gear device 1 includes a housing 2, an internal gear 3 and a first bearing 4 fixed to the housing 2, and an external gear provided inside the internal gear 3 in the radial direction. 5, a wave generator 6 provided inside the external gear 5 in the radial direction, an output plate 7 (an example of an output part in the claims) fixed to the external gear 5 together with the first bearing 4, and an electric A reduction gear shaft 8 is connected to the motor shaft 110a of the motor 110 and applies rotational force to the wave generator 6. A motor shaft 110a of an electric motor 110 is connected to the upper end of the reducer shaft 8 (on the right side in FIG. 2). The output plate 7 is arranged at the lower end of the reducer shaft 8 (on the left side in FIG. 2).
<ハウジング>
 ハウジング2は、ベースユニット102に図示しないボルトによって固定されている。ハウジング2は、円板状に形成されている。但し、ハウジング2の形状は円板状に限られない。ハウジング2の径方向の中央には、円柱状のボス部2cが一体成形されている。このボス部2cが、例えばベースユニット102に形成された貫通孔102aに嵌め合わさることにより、ベースユニット102に対する減速機付きモータ106の位置が決定される。
<Housing>
The housing 2 is fixed to the base unit 102 by bolts (not shown). The housing 2 is formed into a disk shape. However, the shape of the housing 2 is not limited to a disk shape. A cylindrical boss portion 2c is integrally formed in the radial center of the housing 2. By fitting this boss portion 2c into, for example, a through hole 102a formed in the base unit 102, the position of the reduction gear motor 106 with respect to the base unit 102 is determined.
 ボス部2cには、径方向の中央の大部分に段付き貫通孔9が形成されている。段付き貫通孔9に、減速機シャフト8が挿入されている。
 段付き貫通孔9は、上部(電動モータ110側)に形成された小径孔9aと、小径孔9aよりも下部(電動モータ110とは反対側)に形成された大径孔9bと、を有する。大径孔9bは、段差部9cを介して小径孔9aに連なっている。大径孔9bの内径は、小径孔9aよりも大きい。
A stepped through hole 9 is formed in most of the radial center of the boss portion 2c. A speed reducer shaft 8 is inserted into the stepped through hole 9 .
The stepped through hole 9 has a small diameter hole 9a formed in the upper part (on the electric motor 110 side) and a large diameter hole 9b formed in the lower part of the small diameter hole 9a (on the opposite side to the electric motor 110). . The large diameter hole 9b is connected to the small diameter hole 9a via a stepped portion 9c. The inner diameter of the large diameter hole 9b is larger than that of the small diameter hole 9a.
 小径孔9aには、ボス部2cと減速機シャフト8との間のシール性を確保するシール部10が取り付けられている。シール部10としては、例えばゴム製のオイルシール等、さまざまなシール部材を用いることができる。
 大径孔9bには、第2軸受11が嵌め合わされている。第2軸受11は、ボス部2cに減速機シャフト8の上端を回転自在に支持する。第2軸受11としては、例えば深溝玉軸受が用いられる。しかしながらこれに限られるものではなく、さまざまな軸受を用いることが可能である。本実施形態では、段付き貫通孔9の段差部9cに第2軸受11の外輪11aが突き当たることにより、ボス部2cに対する第2軸受11の軸方向の位置決めが行われる。
A seal portion 10 that ensures sealing between the boss portion 2c and the reduction gear shaft 8 is attached to the small diameter hole 9a. As the seal portion 10, various seal members such as a rubber oil seal can be used.
A second bearing 11 is fitted into the large diameter hole 9b. The second bearing 11 rotatably supports the upper end of the reducer shaft 8 on the boss portion 2c. As the second bearing 11, for example, a deep groove ball bearing is used. However, the bearing is not limited to this, and various bearings can be used. In this embodiment, the outer ring 11a of the second bearing 11 abuts against the stepped portion 9c of the stepped through hole 9, thereby positioning the second bearing 11 in the axial direction with respect to the boss portion 2c.
 ハウジング2の下面2aには、径方向の中央の大部分に歯車収納凹部12が形成されている。歯車収納凹部12は、下方と径方向の内側とが開口されている。歯車収納凹部12に、内歯歯車3が収納される。歯車収納凹部12の底面12aには、外周部に、軸方向に貫通する複数の貫通孔2bが形成されている。複数の貫通孔2bは、周方向に等間隔で配置されている。複数の貫通孔2bは、内歯歯車3及び第1軸受4とともにベースユニット102にハウジング2を固定するためのものである。各貫通孔2bに、図示しないボルトが上方から挿入される。 A gear storage recess 12 is formed in the lower surface 2a of the housing 2 in most of the radial center. The gear storage recess 12 is open on the lower side and on the inside in the radial direction. The internal gear 3 is housed in the gear housing recess 12. A plurality of through holes 2b are formed in the outer circumferential portion of the bottom surface 12a of the gear storage recess 12, which penetrate in the axial direction. The plurality of through holes 2b are arranged at equal intervals in the circumferential direction. The plurality of through holes 2b are for fixing the housing 2 to the base unit 102 together with the internal gear 3 and the first bearing 4. A bolt (not shown) is inserted into each through hole 2b from above.
<内歯歯車>
 内歯歯車3は、剛体により円環状に形成されている。内歯歯車3の軸心は、回転軸線Cと一致している。内歯歯車3の外周面が、ハウジング2の歯車収納凹部12の内周面に嵌め合わされる。歯車収納凹部12の底面12aに内歯歯車3の上面3aが突き当たることにより、ハウジング2に対する内歯歯車3の軸方向の位置決めが行われる。内歯歯車3には、軸方向に貫通する貫通孔3fが形成されている。貫通孔3fは、ハウジング2の貫通孔2bと同軸上にそれぞれ形成されている。これら貫通孔3fは、それぞれハウジング2の対応する貫通孔2bに通じている。
<Internal gear>
The internal gear 3 is formed of a rigid body into an annular shape. The axis of the internal gear 3 coincides with the rotation axis C. The outer peripheral surface of the internal gear 3 is fitted into the inner peripheral surface of the gear storage recess 12 of the housing 2. By abutting the top surface 3a of the internal gear 3 against the bottom surface 12a of the gear storage recess 12, the internal gear 3 is positioned with respect to the housing 2 in the axial direction. The internal gear 3 is formed with a through hole 3f that penetrates in the axial direction. The through holes 3f are formed coaxially with the through holes 2b of the housing 2, respectively. These through holes 3f communicate with corresponding through holes 2b of the housing 2, respectively.
 内歯歯車3の上面3aには、内周部にOリング溝3bが形成されている。Oリング溝3bには、Oリング13が取り付けられている。Oリング13は、内歯歯車3とハウジング2との間をシールする。
 内歯歯車3の内周面には、全周に渡って内歯3cが形成されている。この内歯3cに、外歯歯車5の後述する外歯5aが噛合わされる。
An O-ring groove 3b is formed in the inner circumference of the upper surface 3a of the internal gear 3. An O-ring 13 is attached to the O-ring groove 3b. The O-ring 13 seals between the internal gear 3 and the housing 2.
Internal teeth 3c are formed on the inner peripheral surface of the internal gear 3 over the entire circumference. External teeth 5a, which will be described later, of the external gear 5 mesh with the internal teeth 3c.
 内歯歯車3の下面3dには、外周部の大部分に軸受収納凹部14が形成されている。軸受収納凹部14は、下方と径方向の外側とが開口されている。軸受収納凹部14に、第1軸受4が収納される。軸受収納凹部14の底面14aには、内周部にOリング溝3eが形成されている。Oリング溝3eには、Oリング15が取り付けられている。Oリング15は、内歯歯車3と第1軸受4との間をシールする。 On the lower surface 3d of the internal gear 3, a bearing housing recess 14 is formed in most of the outer circumference. The bearing storage recess 14 is open at the bottom and the outside in the radial direction. The first bearing 4 is housed in the bearing housing recess 14 . An O-ring groove 3e is formed in the inner circumference of the bottom surface 14a of the bearing storage recess 14. An O-ring 15 is attached to the O-ring groove 3e. The O-ring 15 seals between the internal gear 3 and the first bearing 4.
<第1軸受>
 第1軸受4は、外輪16と、内輪17と、外輪16と内輪17との間に配置される複数の転動体である球体18と、を備える。内輪17の内周面が、軸受収納凹部14の外周面に嵌め合わされる。軸受収納凹部14の底面14aに内輪17の上面17aが突き当たることにより、内歯歯車3に対する第1軸受4の軸方向の位置決めが行われる。
<First bearing>
The first bearing 4 includes an outer ring 16 , an inner ring 17 , and spheres 18 that are a plurality of rolling elements arranged between the outer ring 16 and the inner ring 17 . The inner circumferential surface of the inner ring 17 is fitted into the outer circumferential surface of the bearing housing recess 14 . By abutting the top surface 17a of the inner ring 17 against the bottom surface 14a of the bearing storage recess 14, the first bearing 4 is positioned relative to the internal gear 3 in the axial direction.
 内輪17の上面17aには、内歯歯車3の貫通孔3fと同軸上に、それぞれ雌ネジ部17bが形成されている。これら雌ネジ部17bは、それぞれ内歯歯車3の対応する貫通孔3fに通じている。ハウジング2の各貫通孔2bに上方から挿入された図示しないボルトは、内歯歯車3の貫通孔3fを介して内輪17の雌ネジ部17bに締め付けられる。これにより、図示しないボルトによって、ハウジング2、内歯歯車3、及び第1軸受4の内輪17が一体となってベースユニット102に固定される。 On the upper surface 17a of the inner ring 17, female threaded portions 17b are formed coaxially with the through hole 3f of the internal gear 3. These female screw portions 17b communicate with corresponding through holes 3f of the internal gear 3, respectively. A bolt (not shown) inserted into each through hole 2b of the housing 2 from above is tightened to the female threaded portion 17b of the inner ring 17 through the through hole 3f of the internal gear 3. Thereby, the housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 are integrally fixed to the base unit 102 by bolts (not shown).
 第1軸受4の外輪16には、外周部に軸方向に貫通する複数の貫通孔16aが形成されている。複数の貫通孔16aは、周方向に等間隔で配置されている。複数の貫通孔16aは、第1軸受4の外輪16、外歯歯車5、及び出力プレート7を図示しないボルトによって一体化するためのものである。 The outer ring 16 of the first bearing 4 has a plurality of through holes 16a formed in the outer circumferential portion thereof that penetrate in the axial direction. The plurality of through holes 16a are arranged at equal intervals in the circumferential direction. The plurality of through holes 16a are for integrating the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 with bolts (not shown).
 外輪16の上面16bには、内周部に、シール収納凹部19が形成されている。シール収納凹部19に、シール部20が設けられている。シール部20は、第1軸受4の上側で、外輪16と内輪17との間をシールする。シール部20としては、例えばゴム製のオイルシール等、さまざまなシール部材を用いることができる。
 外輪16の下面16cは、内輪17の下面17cよりも若干下方に向かって突き出ている。外輪16の下面16cには、内周部にOリング溝16dが形成されている。Oリング溝16dには、Oリング40が取り付けられている。Oリング40は、外輪16と外歯歯車5との間をシールする。
A seal storage recess 19 is formed in the inner peripheral portion of the upper surface 16b of the outer ring 16. A seal portion 20 is provided in the seal storage recess 19. The seal portion 20 seals between the outer ring 16 and the inner ring 17 above the first bearing 4 . As the seal portion 20, various seal members such as a rubber oil seal can be used.
The lower surface 16c of the outer ring 16 projects slightly further downward than the lower surface 17c of the inner ring 17. An O-ring groove 16d is formed in the inner peripheral portion of the lower surface 16c of the outer ring 16. An O-ring 40 is attached to the O-ring groove 16d. O-ring 40 seals between outer ring 16 and external gear 5.
<外歯歯車>
 外歯歯車5は、弾性を有する部材により形成されている。例えば、外歯歯車5は、薄肉の金属板等により形成される。外歯歯車5は、内歯歯車3と同心円状の円筒部21と、円筒部21の下端から径方向の外側に屈曲して張り出す外フランジ部22と、を有する。円筒部21は、内歯歯車3の上面3aから第1軸受4の外輪16の下面16cに至る間に延びている。円筒部21の外周面には、外歯5aが形成されている。外歯5aは、径方向で内歯歯車3の内歯3cと対向する位置に形成されている。外歯5aが、内歯歯車3の内歯3cに噛合わされる。外歯5aの歯数は、内歯3cの歯数よりも少ない。例えば、外歯5aの歯数は、内歯3cの歯数よりも2つ少ない。
<External gear>
The external gear 5 is made of an elastic member. For example, the external gear 5 is formed of a thin metal plate or the like. The external gear 5 has a cylindrical portion 21 concentric with the internal gear 3, and an outer flange portion 22 that bends and projects radially outward from the lower end of the cylindrical portion 21. The cylindrical portion 21 extends from the upper surface 3a of the internal gear 3 to the lower surface 16c of the outer ring 16 of the first bearing 4. External teeth 5a are formed on the outer peripheral surface of the cylindrical portion 21. The external teeth 5a are formed at positions facing the internal teeth 3c of the internal gear 3 in the radial direction. The external teeth 5a mesh with the internal teeth 3c of the internal gear 3. The number of external teeth 5a is smaller than the number of internal teeth 3c. For example, the number of external teeth 5a is two fewer than the number of internal teeth 3c.
 外フランジ部22は、円筒部21の下端から第1軸受4の外輪16の外周面に至る間に延びている。外フランジ部22の外周部は、外輪16の下面16cと軸方向で重なっている。外フランジ部22の外周部には、他の箇所よりも肉厚の厚い厚肉部22aが形成されている。厚肉部22aは、軸方向で外輪16と重なる箇所に形成されている。厚肉部22aには、貫通孔22bが形成されている。貫通孔22bは、外輪16の貫通孔16aと同軸上に形成されている。これら貫通孔22bは、それぞれ外輪16の対応する貫通孔16aに通じている。 The outer flange portion 22 extends from the lower end of the cylindrical portion 21 to the outer peripheral surface of the outer ring 16 of the first bearing 4. The outer periphery of the outer flange portion 22 overlaps the lower surface 16c of the outer ring 16 in the axial direction. A thick wall portion 22a, which is thicker than other portions, is formed on the outer periphery of the outer flange portion 22. The thick portion 22a is formed at a location that overlaps the outer ring 16 in the axial direction. A through hole 22b is formed in the thick portion 22a. The through hole 22b is formed coaxially with the through hole 16a of the outer ring 16. These through holes 22b communicate with corresponding through holes 16a of the outer ring 16, respectively.
<出力プレート>
 出力プレート7は、外フランジ部22の厚肉部22aに軸方向で重なるように配置されている。出力プレート7は、円板状に形成されている。出力プレート7の下面7aに、例えば減速機付きモータ106の動力をベースユニット102に伝達するためのピニオンギア107が取り付けられる。
 出力プレート7の外周部には、第1軸受4側に向かって突き出す嵌合円筒部23が形成されている。嵌合円筒部23の内周面に、厚肉部22aの外周面、及び第1軸受4の外輪16の外周面の一部が嵌め合わされている。これにより、ハウジング2、内歯歯車3、第1軸受4、外歯歯車5、及び出力プレート7の径方向、及び軸方向の相対位置が決定される。
<Output plate>
The output plate 7 is arranged so as to overlap the thick portion 22a of the outer flange portion 22 in the axial direction. The output plate 7 is formed into a disk shape. A pinion gear 107 is attached to the lower surface 7a of the output plate 7, for example, for transmitting the power of the motor 106 with a speed reducer to the base unit 102.
A fitting cylindrical portion 23 is formed on the outer peripheral portion of the output plate 7 and projects toward the first bearing 4 side. The outer circumferential surface of the thick portion 22 a and a portion of the outer circumferential surface of the outer ring 16 of the first bearing 4 are fitted into the inner circumferential surface of the fitting cylindrical portion 23 . This determines the relative positions of the housing 2, internal gear 3, first bearing 4, external gear 5, and output plate 7 in the radial and axial directions.
 出力プレート7の外周部で、嵌合円筒部23よりも径方向の内側には、貫通孔7bが形成されている。貫通孔7bは、厚肉部22aの貫通孔22bと同軸上に形成されている。これら貫通孔7bは、それぞれ厚肉部22aの対応する貫通孔22bに通じている。このような構成のもと、例えば外輪16の上方から貫通孔16a、厚肉部22aの貫通孔22b、及び出力プレート7の貫通孔7bの順に図示しないボルトを挿入し、ピニオンギア107に形成されている図示しない雌ネジ部にボルトを締め付ける。これにより、図示しないボルトによって、第1軸受4の外輪16、外歯歯車5、及び出力プレート7が一体となってピニオンギア107に固定される。ピニオンギア107を取り外した状態では、例えば、図示しないボルト・ナットによって、第1軸受4の外輪16、外歯歯車5、及び出力プレート7を一体化することが可能である。 A through hole 7b is formed in the outer peripheral portion of the output plate 7, radially inside the fitting cylindrical portion 23. The through hole 7b is formed coaxially with the through hole 22b of the thick portion 22a. These through holes 7b each communicate with the corresponding through hole 22b of the thick portion 22a. Under such a configuration, bolts (not shown) are inserted from above the outer ring 16 into the through hole 16a, the through hole 22b of the thick portion 22a, and the through hole 7b of the output plate 7 in this order, for example, to form the pinion gear 107. Tighten the bolt to the female thread (not shown). As a result, the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 are integrally fixed to the pinion gear 107 by bolts (not shown). When the pinion gear 107 is removed, the outer ring 16 of the first bearing 4, the external gear 5, and the output plate 7 can be integrated with bolts and nuts (not shown), for example.
 出力プレート7の上面7cには、Oリング溝7dが形成されている。Oリング溝7dは、貫通孔7bよりも径方向内側に形成されている。Oリング溝7dには、Oリング25が取り付けられている。Oリング25は、厚肉部22aと出力プレート7との間をシールする。
 出力プレート7の径方向の中央には、軸方向に貫通するシャフト挿入孔24が形成されている。シャフト挿入孔24に、減速機シャフト8が挿入されている。出力プレート7のシャフト挿入孔24には、出力プレート7と減速機シャフト8との間のシール性を確保するOリング25が取り付けられている。
An O-ring groove 7d is formed in the upper surface 7c of the output plate 7. The O-ring groove 7d is formed radially inside the through hole 7b. An O-ring 25 is attached to the O-ring groove 7d. The O-ring 25 seals between the thick portion 22a and the output plate 7.
A shaft insertion hole 24 is formed in the radial center of the output plate 7 and extends through the output plate 7 in the axial direction. The reducer shaft 8 is inserted into the shaft insertion hole 24 . An O-ring 25 is attached to the shaft insertion hole 24 of the output plate 7 to ensure sealing between the output plate 7 and the reduction gear shaft 8.
 出力プレート7の上面7cには、上方に向かって突き出す円筒状の軸受ボス27が一体成形されている。軸受ボス27は、シャフト挿入孔24よりも径方向の外側に形成されている。軸受ボス27の内周面には、第3軸受28の外周面が嵌め合わされている。第3軸受28は、出力プレート7に減速機シャフト8の下端を回転自在に支持する。第3軸受28としては、例えば深溝玉軸受が用いられる。しかしながらこれに限られるものではなく、さまざまな軸受を用いることが可能である。 A cylindrical bearing boss 27 that projects upward is integrally formed on the upper surface 7c of the output plate 7. The bearing boss 27 is formed outside the shaft insertion hole 24 in the radial direction. The outer circumferential surface of the third bearing 28 is fitted into the inner circumferential surface of the bearing boss 27 . The third bearing 28 rotatably supports the lower end of the reducer shaft 8 on the output plate 7 . As the third bearing 28, for example, a deep groove ball bearing is used. However, the bearing is not limited to this, and various bearings can be used.
<減速機シャフト>
 両端を2つの軸受11,28によって回転自在に支持された減速機シャフト8は、中空状に形成されている。減速機シャフト8の外周面は、段付き状に形成されている。すなわち、減速機シャフト8の外周面は、両端に形成されたシール外周面8aと、各シール外周面8aの軸方向の内側に形成された軸受外周面8bと、2つの軸受外周面8bの間に形成されたシャフト本体外周面8cと、を有する。
<Reduction gear shaft>
The reducer shaft 8, which is rotatably supported at both ends by two bearings 11 and 28, is formed in a hollow shape. The outer peripheral surface of the reducer shaft 8 is formed in a stepped shape. That is, the outer circumferential surface of the reducer shaft 8 has a seal outer circumferential surface 8a formed at both ends, a bearing outer circumferential surface 8b formed on the axially inner side of each seal outer circumferential surface 8a, and a gap between the two bearing outer circumferential surfaces 8b. The shaft main body outer peripheral surface 8c is formed.
 各シール外周面8aに、それぞれシール部10,26が取り付けられる。各軸受外周面8bに、それぞれ第2軸受11及び第3軸受28が取り付けられる。軸受外周面8bは、その直径が段差部8dを介してシール外周面8aよりも大きくなるように形成されている。シャフト本体外周面8cは、その直径が段差部8eを介して軸受外周面8bよりも大きくなるように形成されている。各軸受11,28は、対応する段差部8d,8eに突き当たることにより、減速機シャフト8に対する軸方向の位置決めが行われる。 Seal portions 10 and 26 are attached to each seal outer peripheral surface 8a, respectively. A second bearing 11 and a third bearing 28 are attached to each bearing outer peripheral surface 8b, respectively. The bearing outer circumferential surface 8b is formed so that its diameter is larger than the seal outer circumferential surface 8a via the stepped portion 8d. The shaft main body outer circumferential surface 8c is formed so that its diameter is larger than the bearing outer circumferential surface 8b via the stepped portion 8e. Each bearing 11, 28 is positioned in the axial direction with respect to the reducer shaft 8 by abutting against the corresponding step portion 8d, 8e.
<波動発生器>
 波動発生器6は、径方向で減速機シャフト8のシャフト本体外周面8cと外歯歯車5の外歯5a(内歯歯車3の内歯3c)との間に設けられている。波動発生器6は、シャフト本体外周面8cに一体成形されているカム31と、カム31の外周面31aと外歯歯車5の円筒部21の内周面21aとの間に配置される第4軸受(請求項の軸受の一例)32と、を備える。
<Wave generator>
The wave generator 6 is provided between the shaft body outer peripheral surface 8c of the reducer shaft 8 and the external teeth 5a of the external gear 5 (internal teeth 3c of the internal gear 3) in the radial direction. The wave generator 6 includes a cam 31 integrally molded on the outer peripheral surface 8c of the shaft main body, and a fourth cam 31 disposed between the outer peripheral surface 31a of the cam 31 and the inner peripheral surface 21a of the cylindrical portion 21 of the external gear 5. A bearing (an example of a bearing in the claims) 32.
<カム>
 図3は、カム31を上からみた平面図であり、図2のIII-III線に沿う断面図に相当している。
 図2、図3に示すように、カム31は、シャフト本体外周面8cから径方向の外側に向かって張り出すように形成されている。カム31の外周面31aは、軸方向からみて楕円形状に形成されている。
<Cam>
FIG. 3 is a plan view of the cam 31 viewed from above, and corresponds to a sectional view taken along line III--III in FIG.
As shown in FIGS. 2 and 3, the cam 31 is formed to protrude radially outward from the shaft main body outer peripheral surface 8c. The outer peripheral surface 31a of the cam 31 is formed into an elliptical shape when viewed from the axial direction.
<第4軸受>
 第4軸受32は、例えば深溝玉軸受である。第4軸受32は、外輪33と、内輪34と、外輪33と内輪34との間に配置される複数の転動体である球体35と、複数の球体35を転動可能に保持する保持器36と、を備える。外輪33の外周面は、外歯歯車5の円筒部21の内周面21aに接触している。内輪34の内周面は、カム31の外周面31aに嵌め合わさっている。内輪34の軸方向の長さL1は、外輪33の軸方向の長さL2よりも短い。カム31の軸方向の長さL3は、おおよそ内輪34の軸方向の長さL1と一致している。
<4th bearing>
The fourth bearing 32 is, for example, a deep groove ball bearing. The fourth bearing 32 includes an outer ring 33, an inner ring 34, a plurality of balls 35 that are rolling elements arranged between the outer ring 33 and the inner ring 34, and a cage 36 that holds the plurality of balls 35 in a rollable manner. and. The outer circumferential surface of the outer ring 33 is in contact with the inner circumferential surface 21a of the cylindrical portion 21 of the external gear 5. The inner peripheral surface of the inner ring 34 is fitted into the outer peripheral surface 31a of the cam 31. The axial length L1 of the inner ring 34 is shorter than the axial length L2 of the outer ring 33. The axial length L3 of the cam 31 roughly matches the axial length L1 of the inner ring 34.
<保持器>
 保持器36は、複数の球体35を周方向に等間隔で保持する円環状の部材である。保持器36は、軸方向の外側から各々球体35を転動自在に把持する把持部36aと、周方向で隣り合う把持部36aを連結する図示しない連結部と、を有する。把持部36aは、径方向からみて内輪34の軸方向の下端よりも若干下方に突き出している。
<Cage>
The retainer 36 is an annular member that retains a plurality of spheres 35 at equal intervals in the circumferential direction. The retainer 36 has gripping portions 36a that rollably grip the spheres 35 from the outside in the axial direction, and a connecting portion (not shown) that connects the gripping portions 36a adjacent in the circumferential direction. The grip portion 36a protrudes slightly downward from the axial lower end of the inner ring 34 when viewed from the radial direction.
<規制部>
 シャフト本体外周面8cには、カム31の下端に、規制部37が一体成形されている。規制部37は、カム31の外周面31aよりも径方向の外側に張り出す鍔状に形成されている。規制部37の外周面37aは、カム31の外周面31aの形状に対応するように、軸方向からみて楕円形状に形成されている。規制部37の長軸RLaと、カム31の長軸CLaとは、同一直線状に位置している。規制部37の短軸RSaと、カム31の短軸CSaとは、同一直線状に位置している。このため、規制部37は、カム31の外周面31aからの径方向の突出長さがこの外周面31aの全周に渡って均一になるように形成されている。
<Regulatory Department>
A regulating portion 37 is integrally formed at the lower end of the cam 31 on the shaft main body outer peripheral surface 8c. The regulating portion 37 is formed in the shape of a flange that protrudes radially outward from the outer circumferential surface 31a of the cam 31. The outer circumferential surface 37a of the regulating portion 37 is formed in an elliptical shape when viewed from the axial direction so as to correspond to the shape of the outer circumferential surface 31a of the cam 31. The long axis RLa of the regulating portion 37 and the long axis CLa of the cam 31 are located on the same straight line. The short axis RSa of the regulating portion 37 and the short axis CSa of the cam 31 are located on the same straight line. Therefore, the regulating portion 37 is formed so that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a.
 カム31の任意の箇所の外径をD1と定義し、規制部37のカム31の任意の箇所と同一箇所の外径をD2と定義し、第4軸受32の内輪34の肉厚をTと定義したとき、外径D1,D2、及び厚さTは、
 (D2-D1)/2≦T ・・・(1)
を満たす。
The outer diameter of an arbitrary location on the cam 31 is defined as D1, the outer diameter of the regulating portion 37 at the same location as the arbitrary location on the cam 31 is defined as D2, and the wall thickness of the inner ring 34 of the fourth bearing 32 is defined as T. When defined, the outer diameters D1, D2 and the thickness T are
(D2-D1)/2≦T...(1)
satisfy.
 上記式(1)に加え、規制部37は、カム31の下端に一体成形されていることから、径方向で第4軸受32の保持器36(把持部36a)と対向している。規制部37の保持器36への接触が確実に回避される。
 規制部37の上面37bに、第4軸受32の内輪34の下端が突き当たっている。これにより、第4軸受32の軸方向の移動が規制される。
In addition to the above formula (1), since the regulating portion 37 is integrally molded on the lower end of the cam 31, it faces the retainer 36 (gripping portion 36a) of the fourth bearing 32 in the radial direction. Contact of the regulating portion 37 with the retainer 36 is reliably avoided.
The lower end of the inner ring 34 of the fourth bearing 32 abuts against the upper surface 37b of the regulating portion 37. This restricts the movement of the fourth bearing 32 in the axial direction.
 規制部37は、カム31の外周面31aからの径方向の突出長さが外周面31aの全周に渡って均一になるように形成されている。このため、第4軸受32の内輪34の全周に渡って規制部37が均一に突き当たる。第4軸受32の保持器36(把持部36a)と規制部37とは、カム31の外周面31aの全周に渡って一定の隙間Gを介して径方向で対向する。カム31の外周面31aから規制部37が確実に径方向に張り出す。このため、規制部37によって、第4軸受32の軸方向の移動が確実に規制される。 The regulating portion 37 is formed so that the radial protrusion length of the cam 31 from the outer circumferential surface 31a is uniform over the entire circumference of the outer circumferential surface 31a. Therefore, the regulating portion 37 uniformly abuts against the entire circumference of the inner ring 34 of the fourth bearing 32 . The retainer 36 (grip portion 36a) and the restriction portion 37 of the fourth bearing 32 face each other in the radial direction across the entire circumference of the outer circumferential surface 31a of the cam 31 with a constant gap G therebetween. The regulating portion 37 reliably protrudes in the radial direction from the outer circumferential surface 31a of the cam 31. Therefore, the restriction portion 37 reliably restricts movement of the fourth bearing 32 in the axial direction.
<波動歯車装置の動作>
 次に、減速機付きモータ106の波動歯車装置1の動作について説明する。ロボット本体103に設けられた他の減速機付きモータ113a~113fの波動歯車装置についてもベースユニット102に設けられた減速機付きモータ106の波動歯車装置1の動作と同様である。
<Operation of wave gear device>
Next, the operation of the wave gear device 1 of the motor 106 with a reduction gear will be explained. The wave gear devices of the other speed reducer motors 113a to 113f provided on the robot body 103 operate in the same manner as the wave gear device 1 of the speed reducer motor 106 provided on the base unit 102.
 まず、波動発生器6のカム31の外周面31aが軸方向からみて楕円形状に形成されている。このため、第4軸受32を介して外歯歯車5が弾性変形されて外歯5aと内歯歯車3の内歯3cが部分的に噛み合わされる。この状態で、電動モータ110を駆動させることによりモータシャフト110aが回転されると、このモータシャフト110aと一体となって減速機シャフト8が回転される。減速機シャフト8と一体となってカム31が回転される。すなわち、波動発生器6のカム31は、電動モータ110のモータシャフト110aの回転力が入力される入力部として機能している。 First, the outer peripheral surface 31a of the cam 31 of the wave generator 6 is formed into an elliptical shape when viewed from the axial direction. Therefore, the external gear 5 is elastically deformed via the fourth bearing 32, and the external teeth 5a and the internal teeth 3c of the internal gear 3 are partially meshed. In this state, when the motor shaft 110a is rotated by driving the electric motor 110, the reducer shaft 8 is rotated integrally with the motor shaft 110a. The cam 31 is rotated together with the reducer shaft 8. That is, the cam 31 of the wave generator 6 functions as an input section into which the rotational force of the motor shaft 110a of the electric motor 110 is input.
 外歯5aと内歯3cとは、互いに歯数が異なる。このため、互いの噛み合い位置が周方向に移動しながら、これらの歯数差に起因して回転軸線C回りに相対的に回転する。本実施形態では、外歯5aの歯数が内歯3cの歯数よりも少ない。このため、減速機シャフト8よりも低い回転速度で外歯歯車5が回転される。外歯歯車5は、弾性変形しながら回転される。 The external teeth 5a and the internal teeth 3c have different numbers of teeth. Therefore, while their mutual meshing positions move in the circumferential direction, they rotate relative to each other around the rotation axis C due to the difference in the number of teeth. In this embodiment, the number of external teeth 5a is smaller than the number of internal teeth 3c. Therefore, the external gear 5 is rotated at a rotation speed lower than that of the reducer shaft 8. The external gear 5 is rotated while being elastically deformed.
 外歯歯車5の外フランジ部22は、第1軸受4の外輪16及び出力プレート7と一体化されている。このため、これら第1軸受4の外輪16及び出力プレート7がモータシャフト110a(減速機シャフト8)の回転に対して減速されて出力される。すなわち、外歯歯車5は、入力部であるカム31の回転を変速(本実施形態の場合、減速)して出力する出力部として機能している。
 出力プレート7の回転によって、ピニオンギア107が回転される。すると、走行レール101に沿ってベースユニット102がスライド移動される(図1参照)。
The outer flange portion 22 of the external gear 5 is integrated with the outer ring 16 of the first bearing 4 and the output plate 7. Therefore, the outer ring 16 of the first bearing 4 and the output plate 7 are outputted while being decelerated relative to the rotation of the motor shaft 110a (reducer shaft 8). That is, the external gear 5 functions as an output section that changes the speed (in this embodiment, decelerates) the rotation of the cam 31, which is an input section, and outputs the same.
The rotation of the output plate 7 causes the pinion gear 107 to rotate. Then, the base unit 102 is slid along the running rail 101 (see FIG. 1).
 ところで、波動歯車装置1を駆動させると、外歯歯車5の弾性変形により、波動発生器6に下方に向かうスラスト力が発生される。波動発生器6のうちのカム31は、減速機シャフト8に一体成形されている。減速機シャフト8は、軸方向の両側に配置された第2軸受11及び第3軸受28によって軸方向への移動が規制されている。このため、波動発生器6のうちの第4軸受32に下方に向かうスラスト力が作用される。 By the way, when the wave gear device 1 is driven, a downward thrust force is generated in the wave generator 6 due to the elastic deformation of the external gear 5. The cam 31 of the wave generator 6 is integrally molded with the reduction gear shaft 8. Movement of the reducer shaft 8 in the axial direction is restricted by the second bearing 11 and the third bearing 28 arranged on both sides in the axial direction. Therefore, a downward thrust force is applied to the fourth bearing 32 of the wave generator 6.
 減速機シャフト8のうちのシャフト本体外周面8cには、カム31の下端に、規制部37が一体成形されている。規制部37は、カム31の外周面31aよりも径方向の外側に張り出す鍔状に形成されている。このような規制部37に、第4軸受32の内輪34の下端が突き当たっている。このため、規制部37によって、第4軸受32の軸方向への移動が規制される。 A regulating portion 37 is integrally formed on the outer circumferential surface 8c of the shaft main body of the reducer shaft 8 at the lower end of the cam 31. The regulating portion 37 is formed in the shape of a flange that protrudes radially outward from the outer circumferential surface 31a of the cam 31. The lower end of the inner ring 34 of the fourth bearing 32 abuts against such a restriction portion 37 . Therefore, the restriction portion 37 restricts movement of the fourth bearing 32 in the axial direction.
 このように、上述の波動歯車装置1では、規制部37によって第4軸受32の軸方向への移動を規制できる。このため、内歯歯車3の内歯3cと外歯歯車5の外歯5aとを継続的に適正に噛み合わせることができる。よって、波動歯車装置1を安定動作させることができる。 In this way, in the wave gear device 1 described above, the movement of the fourth bearing 32 in the axial direction can be restricted by the restriction portion 37. Therefore, the internal teeth 3c of the internal gear 3 and the external teeth 5a of the external gear 5 can be continuously and properly meshed. Therefore, the wave gear device 1 can be operated stably.
 規制部37は、第4軸受32の保持器36との接触が回避されるように形成されている。このため、規制部37による第4軸受32の損傷を防止できる。しかも、規制部37は、カム31の外周面31aからの径方向の突出長さがこの外周面31aの全周に渡って均一になるように形成されている。このため、第4軸受32の内輪34の全周に渡って規制部37の上面37bが均一に接触される。したがって、規制部37に第4軸受32の内輪34が強く押し付けられた場合であっても内輪34に局所的に応力がかかってしまうことがない。この結果、内輪34が折れ曲がってしまうことを防止でき、第4軸受32の損傷を防止できる。 The regulating portion 37 is formed so as to avoid contact between the fourth bearing 32 and the retainer 36. Therefore, damage to the fourth bearing 32 caused by the regulating portion 37 can be prevented. Furthermore, the restricting portion 37 is formed so that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a. Therefore, the upper surface 37b of the regulating portion 37 is uniformly contacted over the entire circumference of the inner ring 34 of the fourth bearing 32. Therefore, even if the inner ring 34 of the fourth bearing 32 is strongly pressed against the regulating portion 37, stress will not be locally applied to the inner ring 34. As a result, the inner ring 34 can be prevented from being bent, and the fourth bearing 32 can be prevented from being damaged.
 規制部37は、第4軸受32の保持器36との接触を回避するように、径方向で隙間Gを介して保持器36(把持部36a)と対向している。このように構成することで、規制部37を簡素な構造にしつつ、保持器36との接触を回避できる。
 カム31の外周面31a及び規制部37の外周面37aは、それぞれ軸方向からみて楕円形状に形成されている。規制部37の長軸RLaと、カム31の長軸CLaとは、同一直線状に位置している。規制部37の短軸RSaと、カム31の短軸CSaとは、同一直線状に位置している。このため、カム31の外周面31aからの規制部37の径方向の突出長さを、外周面31aの全周に渡って確実に均一にできる。
The regulating portion 37 faces the retainer 36 (grip portion 36a) in the radial direction with a gap G in between so as to avoid contact between the fourth bearing 32 and the retainer 36. With this configuration, contact with the retainer 36 can be avoided while the restricting part 37 has a simple structure.
The outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 are each formed in an elliptical shape when viewed from the axial direction. The long axis RLa of the regulating portion 37 and the long axis CLa of the cam 31 are located on the same straight line. The short axis RSa of the regulating portion 37 and the short axis CSa of the cam 31 are located on the same straight line. Therefore, the radial protrusion length of the restricting portion 37 from the outer circumferential surface 31a of the cam 31 can be reliably made uniform over the entire circumference of the outer circumferential surface 31a.
 カム31の任意の箇所の外径D1、規制部37のカム31の任意の箇所と同一箇所の外径D2、及び第4軸受32の内輪34の肉厚Tは、上記式(1)を満たす。このため、規制部37の保持器36への接触をより確実に回避しつつ、より確実に第4軸受32の軸方向への移動を規制できる。
 規制部37は、シャフト本体外周面8c及びカム31の下端に一体成形されている。このため、容易に規制部37を設けることができる。
The outer diameter D1 of an arbitrary part of the cam 31, the outer diameter D2 of the regulating part 37 at the same part as the arbitrary part of the cam 31, and the wall thickness T of the inner ring 34 of the fourth bearing 32 satisfy the above formula (1). . Therefore, the movement of the fourth bearing 32 in the axial direction can be more reliably regulated while preventing the regulating portion 37 from coming into contact with the retainer 36 more reliably.
The regulating portion 37 is integrally formed on the shaft main body outer peripheral surface 8c and the lower end of the cam 31. Therefore, the regulating portion 37 can be easily provided.
 上記のような波動発生器6を用いた減速機付きモータ106,113a~113fを産業ロボット100に採用する。これにより、第4軸受32の損傷を防止でき、安定した動作で信頼性の高い産業ロボット100を提供できる。 Motors with reduction gears 106, 113a to 113f using the wave generator 6 as described above are employed in the industrial robot 100. Thereby, damage to the fourth bearing 32 can be prevented, and the industrial robot 100 with stable operation and high reliability can be provided.
 本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、産業ロボット100に、波動歯車装置1を備えた減速機付きモータ106,113a~113fを用いた場合について説明した。しかしながらこれに限られるものではなく、産業ロボット100以外のさまざまな産業ロボットの駆動部に、波動歯車装置1を採用できる。ここでいう産業ロボットとしては、例えば電動車いす、走行装置、複合加工機等のさまざまな加工機等を含む。例えば電動車いす、走行装置、加工機の駆動部(走行部)に、波動歯車装置1を採用できる。
The present invention is not limited to the above-described embodiments, but includes various modifications to the above-described embodiments without departing from the spirit of the present invention.
For example, in the above-described embodiment, a case has been described in which the industrial robot 100 uses the reducer-equipped motors 106, 113a to 113f equipped with the wave gear device 1. However, the present invention is not limited to this, and the wave gear device 1 can be employed in the drive unit of various industrial robots other than the industrial robot 100. The industrial robots herein include various processing machines such as electric wheelchairs, traveling devices, and multi-tasking machines. For example, the wave gear device 1 can be employed in a drive unit (traveling unit) of an electric wheelchair, a traveling device, or a processing machine.
 上述の実施形態では、入力部としてのカム31に回転力を発生させる動力発生部として、電動モータ110を用いた場合について説明した。しかしながらこれに限られるものではなく、動力発生部としてカム31に回転力を発生させるものであればよい。例えば、電動モータ110に代わって、油圧モータ、エンジン等を採用することができる。 In the above-described embodiment, a case has been described in which the electric motor 110 is used as a power generating section that generates rotational force in the cam 31 as an input section. However, the present invention is not limited to this, and any power generating section may be used as long as it generates rotational force in the cam 31. For example, instead of the electric motor 110, a hydraulic motor, an engine, etc. can be used.
 上述の実施形態では、第4軸受32は、例えば深溝玉軸受である場合について説明した。しかしながらこれに限られるものではなく、外輪と内輪と転動体と保持器とを備える軸受であればよい。転動体として球体35でなくてもよい。例えば転動体として、球体35に代わって円筒ころを採用することもできる。 In the above embodiment, the fourth bearing 32 is, for example, a deep groove ball bearing. However, the present invention is not limited to this, and any bearing may be used as long as it includes an outer ring, an inner ring, rolling elements, and a cage. The rolling elements may not be spherical bodies 35. For example, cylindrical rollers may be used as the rolling elements instead of the spheres 35.
 上述の実施形態では、波動発生器6のカム31は、電動モータ110のモータシャフト110aの回転力が入力される入力部として機能している場合について説明した。外歯歯車5は、カム31の回転を変速して出力する出力部として機能している場合について説明した。しかしながらこれに限られるものではなく、外歯歯車5を入力部として機能させ、カム31(減速機シャフト8)を出力部として機能させてもよい。 In the above-described embodiment, the cam 31 of the wave generator 6 functions as an input section into which the rotational force of the motor shaft 110a of the electric motor 110 is input. A case has been described in which the external gear 5 functions as an output section that changes the speed of the rotation of the cam 31 and outputs the same. However, the present invention is not limited to this, and the external gear 5 may function as an input section, and the cam 31 (reducer shaft 8) may function as an output section.
 上述の実施形態では、カム31の外周面31aは、軸方向からみて楕円形状に形成されている場合について説明した。規制部37の外周面37aは、カム31の外周面31aの形状に対応するように、軸方向からみて楕円形状に形成されている場合について説明した。しかしながらこれに限られるものではなく、カム31の外周面31a及び規制部37の外周面37aは非円形であればよい。例えば、カム31の外周面31a及び規制部37の外周面37aは、軸方向からみて多角形状でもよい。規制部37は、カム31の外周面31aからの径方向の突出長さがこの外周面31aの全周に渡って均一になるように形成されていればよい。望ましくは、カム31の外周面31aは、軸方向からみて長軸と短軸とを有する楕円形状、又は長円形状であるとよい。 In the above-described embodiment, the case where the outer circumferential surface 31a of the cam 31 is formed in an elliptical shape when viewed from the axial direction has been described. The case has been described in which the outer circumferential surface 37a of the regulating portion 37 is formed in an elliptical shape when viewed from the axial direction so as to correspond to the shape of the outer circumferential surface 31a of the cam 31. However, the present invention is not limited to this, and the outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 may be non-circular. For example, the outer circumferential surface 31a of the cam 31 and the outer circumferential surface 37a of the regulating portion 37 may have a polygonal shape when viewed from the axial direction. The regulating portion 37 may be formed such that the length of the radial protrusion from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a. Desirably, the outer circumferential surface 31a of the cam 31 has an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the axial direction.
 上述の実施形態では、内歯歯車3とハウジング2との間をシールするために、Oリング13を設けた場合について説明した。内歯歯車3と第1軸受4との間をシールために、Oリング15を設けた場合について説明した。厚肉部22aと出力プレート7との間をシールするために、Oリング25を設けた場合について説明した。外輪16と外歯歯車5との間をシールするために、Oリング40を設けた場合について説明した。しかしながらこれに限られるものではなく、Oリング13,15,25,40に代わってさまざまなシール部材を用いることができる。 In the above-described embodiment, a case was described in which the O-ring 13 was provided to seal between the internal gear 3 and the housing 2. A case has been described in which the O-ring 15 is provided to seal between the internal gear 3 and the first bearing 4. A case has been described in which the O-ring 25 is provided to seal between the thick portion 22a and the output plate 7. A case has been described in which the O-ring 40 is provided to seal between the outer ring 16 and the external gear 5. However, the present invention is not limited thereto, and various sealing members can be used instead of the O- rings 13, 15, 25, and 40.
 上述の実施形態では、波動歯車装置1は、ハウジング2を備える場合について説明した。しかしながらこれに限られるものではなく、ハウジング2を備えてなくてもよい。例えば、ベースユニット102等に直接内歯歯車3を取り付けてもよいし、ベースユニット102等に直接減速機シャフト8を回転自在に支持させるようにしてもよい。
 上述の実施形態では、波動歯車装置1は、出力プレート7を備える場合について説明した。この出力プレート7を介して、モータシャフト110a(減速機シャフト8)の回転を出力する場合について説明した。しかしながらこれに限られるものではなく、モータシャフト110a(減速機シャフト8)の回転を外歯歯車5から直接出力するようにしてもよい。
In the above-described embodiment, the case where the wave gear device 1 includes the housing 2 has been described. However, the present invention is not limited to this, and the housing 2 may not be provided. For example, the internal gear 3 may be directly attached to the base unit 102 or the like, or the reducer shaft 8 may be rotatably supported directly by the base unit 102 or the like.
In the above-described embodiment, the case where the wave gear device 1 includes the output plate 7 has been described. The case where the rotation of the motor shaft 110a (reducer shaft 8) is outputted via the output plate 7 has been described. However, the present invention is not limited to this, and the rotation of the motor shaft 110a (reducer shaft 8) may be directly output from the external gear 5.
 上述の実施形態では、図示しないボルトによって、ハウジング2、内歯歯車3、及び第1軸受4の内輪17が一体となってベースユニット102に固定される場合について説明した。しかしながらこれに限られるものではなく、内歯歯車3、及び第1軸受4の内輪17の固定方法は、さまざまな方法を採用できる。例えば、内歯歯車3と1軸受4の内輪17を予め固定してもよい。ハウジング2、内歯歯車3、及び第1軸受4の内輪17を予め固定し、相手部材(例えばベースユニット102等)に固定してもよい。 In the above-described embodiment, a case has been described in which the housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 are integrally fixed to the base unit 102 by bolts (not shown). However, the present invention is not limited to this, and various methods can be used to fix the internal gear 3 and the inner ring 17 of the first bearing 4. For example, the internal gear 3 and the inner ring 17 of one bearing 4 may be fixed in advance. The housing 2, the internal gear 3, and the inner ring 17 of the first bearing 4 may be fixed in advance and fixed to a mating member (for example, the base unit 102, etc.).
 上述の実施形態では、減速機シャフト8は、中空状に形成されている場合について説明した。しかしながらこれに限られるものではなく、減速機シャフト8は中実でもよい。減速機シャフト8に例えば平歯車を設け、この平歯車を介し、モータシャフト110aの回転が減速機シャフト8に伝達されるように構成してもよい。 In the above-described embodiment, the reduction gear shaft 8 has been described as being formed in a hollow shape. However, the present invention is not limited to this, and the reducer shaft 8 may be solid. For example, the reduction gear shaft 8 may be provided with a spur gear, and the rotation of the motor shaft 110a may be transmitted to the reduction gear shaft 8 via this spur gear.
 上述の実施形態では、カム31の下端に、規制部37が一体成形されている場合について説明した。規制部37の上面37bに、第4軸受32の内輪34の下端が突き当たっている場合について説明した。しかしながらこれに限られるものではなく、内輪34の軸方向の両側に規制部37を設けてもよい。このように構成することで、第4軸受32に作用するスラスト力の向きに関わらず、第4軸受32の軸方向への移動を確実に規制できる。規制部37は、減速機シャフト8やカム31に一体成形とせずに別体でもよい。例えば、以下のように規制部37を構成してもよい。 In the embodiment described above, the case where the regulating portion 37 is integrally molded on the lower end of the cam 31 has been described. The case where the lower end of the inner ring 34 of the fourth bearing 32 abuts against the upper surface 37b of the regulating portion 37 has been described. However, the present invention is not limited to this, and the regulating portions 37 may be provided on both sides of the inner ring 34 in the axial direction. With this configuration, the movement of the fourth bearing 32 in the axial direction can be reliably restricted regardless of the direction of the thrust force acting on the fourth bearing 32. The regulating portion 37 may be formed separately from the reducer shaft 8 and the cam 31 instead of being integrally formed therewith. For example, the regulating section 37 may be configured as follows.
[規制部の変形例]
 図4は、規制部37の変形例を示す回転軸線Cに沿う断面図である。図4は、前述の図2に対応している。
 図4に示すように、規制部37は、軸受ボス27の上端から第4軸受32に向かって延出する規制支持部41と、規制支持部41に設けられた規制部本体42と、を備えてもよい。規制部本体42は、図示しないボルトや溶接等によって規制支持部41に固定されている。
[Modified example of regulation section]
FIG. 4 is a cross-sectional view along the rotation axis C showing a modified example of the regulating portion 37. As shown in FIG. FIG. 4 corresponds to FIG. 2 described above.
As shown in FIG. 4, the regulation part 37 includes a regulation support part 41 extending from the upper end of the bearing boss 27 toward the fourth bearing 32, and a regulation part main body 42 provided in the regulation support part 41. It's okay. The regulating portion main body 42 is fixed to the regulating support portion 41 by bolts, welding, or the like (not shown).
 規制部本体42は、規制支持部41から軸方向に沿って延び、その先端42aが第4軸受32の内輪34に突き当たるように形成されている。すなわち、規制部本体42は、第4軸受32の保持器36との接触を回避するように設けられている。規制部本体42は、第4軸受32の軸方向への移動を規制している。規制部本体42は、カム31の外周面31aからの径方向の突出長さがこの外周面31aの全周に渡って均一になるように形成されている。このように構成した場合であっても、前述の実施形態と同様の効果を奏することができる。 The regulating portion main body 42 extends from the regulating support portion 41 along the axial direction, and is formed such that its tip 42a abuts against the inner ring 34 of the fourth bearing 32. That is, the regulating portion main body 42 is provided so as to avoid contact with the retainer 36 of the fourth bearing 32. The regulating portion main body 42 regulates movement of the fourth bearing 32 in the axial direction. The regulating portion main body 42 is formed so that the radial protrusion length from the outer circumferential surface 31a of the cam 31 is uniform over the entire circumference of the outer circumferential surface 31a. Even with this configuration, the same effects as in the above-described embodiment can be achieved.
 本明細書で開示した実施形態のうち、複数の物体で構成されているものは、当該複数の物体を一体化してもよく、逆に一つの物体で構成されているものを複数の物体に分けることができる。一体化されているか否かにかかわらず、発明の目的を達成できるように構成されていればよい。 Among the embodiments disclosed in this specification, those that are composed of a plurality of objects may be integrated, and conversely, those that are composed of one object may be divided into multiple objects. be able to. Regardless of whether they are integrated or not, it is sufficient that the structure is such that the object of the invention can be achieved.
1…波動歯車装置、3…内歯歯車、5…外歯歯車、6…波動発生器、21…円筒部、21a…内周面、31…カム、31a…外周面、32…第4軸受(軸受)、33…外輪、34…内輪、35…球体(転動体)、36…保持器、37…規制部、37a…外周面、42…規制部本体(規制部)、100…産業ロボット、107…ピニオンギア(相手部材)、115a,115b,115c,115d…アーム(相手部材)、C…回転軸線、CLa…カムの長軸、CSa…カムの短軸、D1…カムの任意の外径、D2…規制部におけるD1上の外径、G…隙間、RLa…規制部の長軸、RSa…規制部の短軸 DESCRIPTION OF SYMBOLS 1... Wave gear device, 3... Internal gear, 5... External gear, 6... Wave generator, 21... Cylindrical part, 21a... Inner circumferential surface, 31... Cam, 31a... Outer circumferential surface, 32... Fourth bearing ( bearing), 33...outer ring, 34...inner ring, 35...sphere (rolling element), 36...retainer, 37...regulating section, 37a...outer circumferential surface, 42... regulating section main body (regulating section), 100...industrial robot, 107 ...Pinion gear (mate member), 115a, 115b, 115c, 115d...Arm (mate member), C...rotation axis, CLa...long axis of cam, CSa...short axis of cam, D1...arbitrary outer diameter of cam, D2...outer diameter on D1 in the regulating part, G...gap, RLa...long axis of the regulating part, RSa...short axis of the regulating part

Claims (8)

  1.  内歯歯車と、
     前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、
     前記外歯歯車の内周面に接触する波動発生器と、
    を備え、
     前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転し、
     前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、
     前記波動発生器は、
      非円形の外周面を有するカムと、
      前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、
     を備え、
     前記軸受は、
      前記外歯歯車の前記内周面に接触する外輪と、
      前記カムの前記外周面に接触する内輪と、
      前記外輪と前記内輪との間に配置される複数の転動体と、
      前記複数の転動体を保持する保持器と、
     を備え、
     前記保持器との接触を回避するように前記軸受の前記内輪に接触する規制部を備え、
     前記規制部は、前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成され、
     前記規制部は、前記軸受の前記回転軸線方向への移動を規制する、
    波動歯車装置。
    internal gear,
    an elastic external gear disposed radially inside the internal gear;
    a wave generator that contacts the inner circumferential surface of the external gear;
    Equipped with
    The external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis,
    The wave generator moves the meshing position of the internal gear and the external gear in a circumferential direction around the rotation axis,
    The wave generator is
    a cam having a non-circular outer peripheral surface;
    a bearing disposed between the inner circumferential surface of the external gear and the outer circumferential surface of the cam;
    Equipped with
    The bearing is
    an outer ring that contacts the inner peripheral surface of the external gear;
    an inner ring that contacts the outer peripheral surface of the cam;
    a plurality of rolling elements disposed between the outer ring and the inner ring;
    a cage that holds the plurality of rolling elements;
    Equipped with
    a regulating portion that contacts the inner ring of the bearing to avoid contact with the retainer;
    The regulating portion is formed such that a radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam,
    The regulating portion regulates movement of the bearing in the direction of the rotation axis.
    Wave gear device.
  2.  前記規制部は、前記カムの前記外周面から径方向の外側に張り出す鍔状に形成されており、
     前記規制部の外周面は、隙間を介して前記保持器と径方向で対向している、
    請求項1に記載の波動歯車装置。
    The regulating portion is formed in the shape of a flange extending radially outward from the outer circumferential surface of the cam,
    The outer circumferential surface of the regulating portion faces the retainer in the radial direction with a gap therebetween.
    The wave gear device according to claim 1.
  3.  前記カムの前記外周面及び前記規制部の外周面は、それぞれ前記回転軸線方向からみて長軸と短軸とを有する楕円形状又は長円形状に形成されており、
     前記カムの長軸と前記規制部の長軸とが同一直線状に位置しているとともに、前記カムの短軸と前記規制部の短軸とが同一直線状に位置している、
    請求項2に記載の波動歯車装置。
    The outer circumferential surface of the cam and the outer circumferential surface of the regulating portion are each formed in an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the rotation axis direction,
    The long axis of the cam and the long axis of the restriction part are located in the same straight line, and the short axis of the cam and the short axis of the restriction part are located in the same straight line,
    The wave gear device according to claim 2.
  4.  前記カムの任意の箇所の外径をD1と定義し、
     前記規制部の前記カムの任意の箇所と同一箇所の外径をD2と定義し、
     前記内輪の径方向の厚さをTと定義したとき、
     外径D1,D2、及び厚さTは、
     (D2-D1)/2≦T
    を満たす、
    請求項1から請求項3のいずれか一項に記載の波動歯車装置。
    The outer diameter of any part of the cam is defined as D1,
    The outer diameter of the regulating portion at the same location as any location on the cam is defined as D2;
    When the radial thickness of the inner ring is defined as T,
    The outer diameters D1, D2 and the thickness T are
    (D2-D1)/2≦T
    satisfy,
    The wave gear device according to any one of claims 1 to 3.
  5.  前記規制部は、前記内輪の前記回転軸線方向の両側に設けられている、
    請求項1から請求項3のいずれか一項に記載の波動歯車装置。
    The regulating portion is provided on both sides of the inner ring in the direction of the rotation axis,
    The wave gear device according to any one of claims 1 to 3.
  6.  前記規制部は、前記カムに一体成形されている、
    請求項1から請求項3のいずれか一項に記載の波動歯車装置。
    The regulating portion is integrally molded with the cam.
    The wave gear device according to any one of claims 1 to 3.
  7.  内歯歯車と、
     前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、
     前記外歯歯車の内周面に接触する波動発生器と、
    を備え、
     前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転し、
     前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、
     前記波動発生器は、
      外周面を有するカムと、
      前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、
     を備え、
     前記カムの前記外周面は、前記回転軸線方向からみて長軸と短軸とを有する楕円形状及び長円形状のいずれかに形成され、
     前記軸受は、
      前記外歯歯車の前記内周面に接触する外輪と、
      前記カムの前記外周面に接触する内輪と、
      前記外輪と前記内輪との間に配置される複数の転動体と、
      前記複数の転動体を保持する保持器と、
     を備え、
     前記カムの前記外周面から径方向の外側に張り出す鍔状に形成された規制部を備え、
     前記規制部は、
      前記回転軸線方向からみて長軸と短軸とを有する楕円形状及び長円形状のいずれかに形成された外周面を有し、
      前記カムの長軸と前記規制部の長軸とが同一直線状に位置しているとともに、前記カムの短軸と前記規制部の短軸とが同一直線状に位置しており、
      前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成されており、
     前記規制部の外周面は、隙間を介して前記保持器と径方向で対向しており、
     前記規制部は、前記軸受の前記内輪に接触して前記軸受の前記回転軸線方向への移動を規制する、
    波動歯車装置。
    internal gear,
    an elastic external gear disposed radially inside the internal gear;
    a wave generator that contacts the inner circumferential surface of the external gear;
    Equipped with
    The external gear partially meshes with the internal gear and rotates relative to the internal gear around a rotation axis,
    The wave generator moves the meshing position of the internal gear and the external gear in a circumferential direction around the rotation axis,
    The wave generator is
    a cam having an outer peripheral surface;
    a bearing disposed between the inner circumferential surface of the external gear and the outer circumferential surface of the cam;
    Equipped with
    The outer circumferential surface of the cam is formed in either an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the rotational axis direction,
    The bearing is
    an outer ring that contacts the inner peripheral surface of the external gear;
    an inner ring that contacts the outer peripheral surface of the cam;
    a plurality of rolling elements disposed between the outer ring and the inner ring;
    a cage that holds the plurality of rolling elements;
    Equipped with
    a restriction portion formed in a flange shape extending radially outward from the outer circumferential surface of the cam;
    The regulation department is
    having an outer circumferential surface formed in either an elliptical shape or an oval shape having a major axis and a minor axis when viewed from the rotation axis direction,
    The long axis of the cam and the long axis of the restriction portion are located on the same straight line, and the short axis of the cam and the short axis of the restriction portion are located on the same straight line,
    The cam is formed such that a radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam,
    The outer circumferential surface of the regulating portion faces the retainer in the radial direction with a gap therebetween,
    The regulating portion contacts the inner ring of the bearing and regulates movement of the bearing in the direction of the rotation axis.
    Wave gear device.
  8.  回転力を発生させる動力発生部と、
     入力部、及び出力部を有する波動歯車装置と、
     前記波動歯車装置の前記出力部に取り付けられる相手部材と、
    を備え、
     前記入力部は、前記動力発生部の前記回転力が入力され、
     前記出力部は、前記入力部の回転を変速して出力し、
     前記波動歯車装置は、
      内歯歯車と、
      前記内歯歯車の径方向の内側に配置された弾性を有する外歯歯車と、
      前記外歯歯車の内周面に接触する波動発生器と、
    を備え、
     前記外歯歯車は、前記内歯歯車に部分的に噛み合って前記内歯歯車に対して回転軸線回りに相対的に回転するとともに、前記入力部及び前記出力部の一方として機能し、
     前記波動発生器は、前記内歯歯車と前記外歯歯車との噛み合い位置を前記回転軸線回りの周方向に移動させ、
     前記波動発生器は、
      非円形の外周面を有するカムと、
      前記外歯歯車の前記内周面と前記カムの前記外周面との間に配置される軸受と、
     を備え、
     前記カムは、前記入力部及び前記出力部の他方として機能し、
     前記軸受は、
      前記外歯歯車の前記内周面に接触する外輪と、
      前記カムの前記外周面に接触する内輪と、
      前記外輪と前記内輪との間に配置される複数の転動体と、
      前記複数の転動体を保持する保持器と、
     を備え、
     前記保持器との接触を回避するように前記軸受の前記内輪に接触する規制部を備え、
     前記規制部は、前記カムの前記外周面からの径方向の突出長さが前記カムの前記外周面の全周に渡って均一になるように形成されているとともに、前記軸受の前記回転軸線方向への移動を規制する、
    産業ロボット。
    a power generation section that generates rotational force;
    A wave gear device having an input section and an output section;
    a mating member attached to the output section of the wave gear device;
    Equipped with
    The input unit receives the rotational force of the power generation unit,
    The output section changes the speed of the rotation of the input section and outputs the same;
    The wave gear device includes:
    internal gear,
    an elastic external gear disposed radially inside the internal gear;
    a wave generator that contacts the inner circumferential surface of the external gear;
    Equipped with
    The external gear partially meshes with the internal gear to rotate relative to the internal gear around a rotation axis, and functions as one of the input section and the output section,
    The wave generator moves the meshing position of the internal gear and the external gear in a circumferential direction around the rotation axis,
    The wave generator is
    a cam having a non-circular outer peripheral surface;
    a bearing disposed between the inner circumferential surface of the external gear and the outer circumferential surface of the cam;
    Equipped with
    The cam functions as the other of the input section and the output section,
    The bearing is
    an outer ring that contacts the inner peripheral surface of the external gear;
    an inner ring that contacts the outer peripheral surface of the cam;
    a plurality of rolling elements disposed between the outer ring and the inner ring;
    a cage that holds the plurality of rolling elements;
    Equipped with
    a regulating portion that contacts the inner ring of the bearing to avoid contact with the retainer;
    The regulating portion is formed such that a radial protrusion length from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam, and the regulating portion is formed such that a protruding length in a radial direction from the outer circumferential surface of the cam is uniform over the entire circumference of the outer circumferential surface of the cam, and the length of the regulating portion is uniform in the radial direction of the outer circumferential surface of the cam. regulating movement to,
    industrial robot.
PCT/JP2023/005188 2022-04-28 2023-02-15 Strain-wave gearing and industrial robot WO2023210114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075005 2022-04-28
JP2022075005A JP2023163832A (en) 2022-04-28 2022-04-28 Wave gear device and industrial robot

Publications (1)

Publication Number Publication Date
WO2023210114A1 true WO2023210114A1 (en) 2023-11-02

Family

ID=88518430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005188 WO2023210114A1 (en) 2022-04-28 2023-02-15 Strain-wave gearing and industrial robot

Country Status (2)

Country Link
JP (1) JP2023163832A (en)
WO (1) WO2023210114A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113056A (en) * 1984-06-27 1986-01-21 Matsushita Electric Ind Co Ltd Reduction gear
JPH03119645U (en) * 1990-03-23 1991-12-10
JP2020197264A (en) * 2019-06-05 2020-12-10 株式会社ジェイテクト Wave gear device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113056A (en) * 1984-06-27 1986-01-21 Matsushita Electric Ind Co Ltd Reduction gear
JPH03119645U (en) * 1990-03-23 1991-12-10
JP2020197264A (en) * 2019-06-05 2020-12-10 株式会社ジェイテクト Wave gear device

Also Published As

Publication number Publication date
JP2023163832A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
KR101855712B1 (en) Backlash-free cycloidal reducer
US10281007B2 (en) Speed reducer
KR200450505Y1 (en) Gear reducer
US20180017133A1 (en) Gear device
CN108843746B (en) Precise speed reducer for robot
WO2023210114A1 (en) Strain-wave gearing and industrial robot
JP2023163831A (en) Wave gear device and industrial robot
JP2009275837A (en) Fixing structure for bearing
CN113631841B (en) Friction fluctuation speed reducer
CN116717570A (en) Harmonic reducer, mechanical arm and robot
US11732778B2 (en) Speed reducer
WO2018211997A1 (en) Wave gear device
EP2837849A1 (en) Wave gear mechanism
KR100242207B1 (en) Planetary gear system
JP2018009638A (en) Planetary gear device
JP5607463B2 (en) Electric power steering device
JP2024048698A (en) Bearings, strain wave gear devices and industrial robots
JP2021116863A (en) Gear device and robot
JP2023169990A (en) Inner gearing planetary gear device, joint device for robot, and wave gear device
JP7444551B2 (en) Bearing assembly structure of rotating equipment
JP2009275838A (en) Fixing structure for bearing
JP2023169989A (en) Inner gearing planetary gear device, joint device for robot, and wave gear device
US20230398682A1 (en) Internally Engaged Planetary Gear Device and Robot Joint Device
US20230405805A1 (en) Internally Meshing Planetary Gear Apparatus and Joint Apparatus for Robot
JP2023113542A (en) Rotation mechanism and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795862

Country of ref document: EP

Kind code of ref document: A1