WO2023209944A1 - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
WO2023209944A1
WO2023209944A1 PCT/JP2022/019266 JP2022019266W WO2023209944A1 WO 2023209944 A1 WO2023209944 A1 WO 2023209944A1 JP 2022019266 W JP2022019266 W JP 2022019266W WO 2023209944 A1 WO2023209944 A1 WO 2023209944A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exhaust gas
preheating
branch pipe
gas branch
Prior art date
Application number
PCT/JP2022/019266
Other languages
French (fr)
Japanese (ja)
Inventor
典男 西
直久 西川
直未 山下
Original Assignee
株式会社ダイキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイキエンジニアリング filed Critical 株式会社ダイキエンジニアリング
Priority to JP2022545873A priority Critical patent/JP7174467B1/en
Priority to CN202280006566.8A priority patent/CN116324321A/en
Priority to PCT/JP2022/019266 priority patent/WO2023209944A1/en
Publication of WO2023209944A1 publication Critical patent/WO2023209944A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • F27B2014/146Recuperation of lost heat, e.g. regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a melting furnace used for melting nonferrous metals such as aluminum, and particularly relates to a melting furnace having a raw material preheating tower.
  • Patent Document 1 Japanese Patent Publication No. 02-053708
  • the conventional technology is configured as follows. In a nonferrous metal melting furnace equipped with a preheating tower, a melting chamber is provided at the lower part of the preheating tower, and a combustion chamber is provided with a burner adjacent to the preheating tower, whose lower part communicates with the melting chamber, and which produces combustion gas in the upper furnace body. will be established.
  • An exhaust gas branch pipe is provided for circulating a part of the raw material preheated exhaust gas from the preheating tower to the combustion chamber.
  • the above conventional technology has the following problems.
  • a fan installed in the middle of the exhaust gas branch pipe directly sucks in a part of the raw material preheated exhaust gas and returns it to the combustion chamber.
  • the sensible heat of the raw material preheating exhaust gas was dissipated significantly, making it extremely difficult to maximize the energy saving effect through heat recovery. Therefore, the main objective of the present invention is to maximize the utilization efficiency of the sensible heat possessed by the raw material preheating exhaust gas, so that even when the filling rate of the material to be melted (raw material) in the preheating tower is low, stable
  • An object of the present invention is to provide a melting furnace that can exhibit an energy saving effect.
  • melting furnace 10 is configured as follows. That is, a preheating tower 12 having a preheating chamber 12b provided therein, a melting chamber 14 connected to the lower part of the preheating tower 12, and a melting chamber 14 that is adjacent to the preheating tower 12 and whose lower part communicates with the melting chamber 14. It includes a combustion chamber 16 and a combustion burner 18 that is installed in the combustion chamber 16 and heats and melts the material to be melted that has been introduced into the melting chamber 14 .
  • an exhaust gas branch pipe 20 is provided that communicates the upper part of the preheating chamber 12b with the combustion chamber 16. Furthermore, a heat exchange loop conduit 22 surrounding the preheating chamber 12b is provided in the upper part of the furnace body of the preheating tower 12. An outside air introducing means 24 for introducing outside air is attached to the heat exchange loop pipe 22. Between the heat exchange loop pipe 22 and the exhaust gas branch pipe 20, there is a connecting nozzle 26 that communicates and connects the two, the inner diameter of which decreases toward the exhaust gas branch pipe 20 side. A connecting nozzle 26 is attached, which is formed in a funnel shape and whose tip with the smallest diameter is directed toward the opening of the exhaust gas branch pipe 20 on the fuel chamber 16 side.
  • the material to be melted in the melting chamber 14 is melted with a high-temperature combustion flame from the combustion burner 18, and the exhaust gas having residual heat rises in the preheating tower 12 as the raw material preheating exhaust gas E. Therefore, when outside air is introduced into the heat exchange loop pipe 22 using the outside air introduction means 24, the inside air preheated within the heat exchange loop pipe 22 is supplied into the exhaust gas branch pipe 20 through the connection nozzle 26.
  • this connecting nozzle 26 is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side, and the tip with the smallest diameter is connected to the fuel chamber 16 side of the exhaust gas branch pipe 20.
  • the above-mentioned internal air whose velocity has increased due to the Venturi effect is discharged toward the opening of the exhaust gas branch pipe 20 on the combustion chamber 16 side. Then, negative pressure is generated at the opening on the preheating chamber 12b side, which is the upstream end of the exhaust gas branch pipe 20, and a part of the raw material preheated exhaust gas E in the preheating chamber 12b is sucked into the exhaust gas branch pipe 20. .
  • the raw material preheated exhaust gas E sucked into the exhaust gas branch pipe 20 is returned to the combustion chamber 16 through this exhaust gas branch pipe 20, but the exhaust gas branch pipe 20 is provided inside the furnace body of the preheating tower 12. Therefore, the loss of latent heat of the raw material preheating exhaust gas E can be minimized.
  • a gap g is provided between the upstream end of the exhaust gas branch pipe 20 and the open wall surface, and the material holding member 28 made of a cylindrical sleeve body is mounted. It is preferable to attach it. In this case, the durability of the furnace body forming the preheating chamber 12b can be increased, and the preheating efficiency for the raw material to be melted can be further improved.
  • the flow rate of the raw material preheated exhaust gas E that passes through the gap g and heads toward the opening in the wall surface of the preheating chamber 12b, which is the upstream end of the exhaust gas branch pipe 20 increases, and as a result, the raw material preheated that moves within the exhaust gas branch pipe 20
  • the speed of the exhaust gas E can also be increased, and loss of latent heat of the raw material preheated exhaust gas E when flowing through the exhaust gas branch pipe 20 can be more effectively prevented.
  • the present invention by maximizing the utilization efficiency of the sensible heat possessed by the raw material preheating exhaust gas, a stable energy saving effect can be achieved even when the filling rate of the material to be melted (raw material) in the preheating tower is low. It is possible to provide a melting furnace capable of
  • FIG. 1 is a longitudinal sectional view showing a main part of a melting furnace according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line A-A in FIG. 1, showing the main parts centering on the preheating tower.
  • FIG. 1 is a longitudinal sectional view showing a melting furnace 10 according to an embodiment of the present invention.
  • the melting furnace 10 of the present embodiment is a so-called hand-held melting furnace that holds molten aluminum obtained by melting raw materials for aluminum casting (materials to be melted).
  • the melting furnace 10 of the present embodiment has a melting chamber 14, a combustion chamber 16, and a molten metal holding chamber 30.
  • the preheating tower 12 is a part formed at the top of the furnace body, which is provided with a material input port 12a at the top and a preheating chamber 12b inside.
  • the furnace body is formed by lining the inner surface of an outer frame (steel shell) made of a steel plate with sufficient strength with a thick layer of refractory material such as firebrick or castable.
  • An input port opening/closing damper 12c is attached to the material input port 12a at the upper end of the preheating tower 12, and a furnace pressure switch that automatically opens and closes in accordance with the pressure in the preheating chamber 12b is attached to the approximate center of the input port opening/closing damper 12c.
  • An adjustment damper 32 is attached.
  • a melting chamber 14 is connected to the lower part of the preheating tower 12.
  • the melting chamber 14 is a part for heating and melting the material to be melted, which is a raw material input from the material input port 12a, by the flame of a combustion burner 18, which will be described later, and its floor surface is formed by an inclined bed 14a.
  • a combustion chamber 16 is provided next to the melting chamber 14 so as to be adjacent to the preheating tower 12 and communicate with the melting chamber 14 at its lower portions.
  • the combustion chamber 16 is a part in which a combustion burner 18 attached to the upper side of the combustion chamber is operated to produce a high-temperature combustion flame and combustion exhaust gas.
  • the combustion flame and combustion exhaust gas produced in this combustion chamber 16 are given to the above-mentioned melting chamber 14 and preheating chamber 12b. Further, in the illustrated embodiment, this combustion chamber 16 and the above-mentioned melting chamber 14 are installed on the pedestal floor 34.
  • a molten metal holding chamber 30 that communicates with the combustion chamber 16 via a molten metal communication portion 36 is provided at a position adjacent to this frame floor 34 .
  • the molten metal holding chamber 30 is a place for holding heated and melted molten metal at a constant temperature until it is used.
  • An immersion heater (not shown) is attached to the molten metal holding chamber 30 so that the molten aluminum in the chamber is kept at a constant temperature, and a molten metal outlet 38 is provided at a position spaced apart from the molten metal communication section 36. It is opened.
  • the method of keeping molten aluminum warm is not limited to the method using the above-mentioned immersion heater, but includes direct heating with liquid or gaseous fuel, immersion heating with gaseous fuel and electricity, radiant heating with electricity, etc. Any holding and heating method can be applied.
  • the melting furnace 10 of the present invention having the above-mentioned parts, inside the furnace body made of a refractory material forming the preheating tower 12, there is an exhaust gas branch that communicates the upper part of the preheating chamber 12b with the combustion chamber 16.
  • a tube 20 is provided.
  • This exhaust gas branch pipe 20 can be formed by embedding a metal pipe made of stainless steel or the like in the furnace body of the preheating tower 12. Further, the exhaust gas branch pipe 20 can also be formed as a part of the refractory structure using a refractory construction method. In the illustrated embodiment, as shown in FIG.
  • a pair of front and rear exhaust gas branch pipes 20 are provided in the furnace body of the preheating tower 12 located at the upper part of the combustion chamber 16, but the number of exhaust gas branch pipes 20 is It is not limited to this, and the number may be one or three or more.
  • a heat exchange loop pipe 22 is provided in the upper part of the furnace body of the preheating tower 12 above the exhaust gas branch pipe 20.
  • the heat exchange loop conduit 22 is a member for preheating the outside air supplied by the outside air introduction means 24, which will be described later, using sensible heat accumulated in the furnace body.
  • a metal square pipe made of stainless steel or the like is formed into a rectangular loop shape, and this is buried in the upper part of the furnace body of the preheating tower 12 so as to surround the preheating chamber 12b, thereby forming the heat exchange loop conduit 22.
  • the heat exchange loop conduit 22 is connected to an outside air introducing means 24, and a connecting nozzle 26 is interposed between the exhaust gas branch pipe 20 and the exhaust gas branch pipe 20 to communicate and connect the two.
  • the outside air introduction means 24 is for supplying outside air to the heat exchange loop pipe 22, and includes an outside air introduction nozzle 24a that communicates with the heat exchange loop pipe 22, and a blower 24b that supplies outside air to the outside air introduction nozzle 24a. Equipped with Note that this blower 24b can also be used in common with a burner combustion blower (not shown) attached to the combustion burner 18.
  • the connecting nozzle 26 is a nozzle for communicating and connecting the heat exchange loop pipe 22 and the exhaust gas branch pipe 20, and is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side. The tip with a smaller diameter is directed toward the opening of the exhaust gas branch pipe 20 on the fuel chamber 16 side.
  • a material holding member 28 is attached to the preheating chamber 12b with a gap g between the upstream end of the exhaust gas branch pipe 20 and the wall surface opened.
  • the melted material holding member 28 is made of a heat-resistant metal such as stainless steel and is constituted by a cylindrical sleeve body with an open top and bottom, and is installed as required. Note that since the melted material holding member 28 is installed with a gap g between it and the wall surface of the exhaust gas branch pipe 20, its upper end is formed in a flange shape.
  • the input opening/closing damper 12c is operated to open the input opening/closing damper 12c to input the material to be melted, which will be the raw material for molten aluminum, through the material input opening 12a. Then, the input opening/closing damper 12c is operated to close, and the combustion burner 18 is ignited to generate a combustion flame. Then, the material to be melted in the melting chamber 14 is heated and melted by the combustion flame, flows down the floor surface of the inclined bed 14a, passes from the combustion chamber 16 through the molten metal communication part 36, and is held in the molten metal holding chamber 30. Further, the exhaust gas generated by the combustion burner 18 rises in the preheating tower 12 as the raw material preheating exhaust gas E, and preheats the material to be melted stocked in the preheating chamber 12b from the upper part of the melting chamber 14.
  • the material to be melted in the melting chamber 14 is melted by the high-temperature combustion flame from the combustion burner 18, and the exhaust gas having residual heat is preheated as the raw material preheating exhaust gas E. Climb inside the tower 12. Therefore, the outside air introduced into the heat exchange loop pipe 22 using the outside air introduction means 24 is preheated by the sensible heat of the refractory material by going around the heat exchange loop pipe 22, and then passes through the connecting nozzle 26 to the exhaust gas branch pipe.
  • This connecting nozzle 26 is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side, and the tip with the smallest diameter is connected to the exhaust gas branch pipe 20.
  • the raw material preheated exhaust gas E sucked into the exhaust gas branch pipe 20 is returned to the combustion chamber 16 through this exhaust gas branch pipe 20, but the exhaust gas branch pipe 20 is provided inside the furnace body of the preheating tower 12. Therefore, the loss of latent heat of the raw material preheating exhaust gas E can be minimized.
  • the raw material preheated exhaust gas E passes through the gap g to the opening in the wall of the preheating chamber 12b, which is the upstream end of the exhaust gas branch pipe 20. Due to the Venturi effect, the flow rate increases, and the speed of the raw material preheated exhaust gas E moving in the exhaust gas branch pipe 20 can be increased. As a result, loss of latent heat of the raw material preheated exhaust gas E when flowing through the exhaust gas branch pipe 20 can be more effectively prevented.
  • the outside air around the blower 24b is introduced into the heat exchange loop pipe 22 in the outside air introducing means 24, but a burner with a built-in heat exchange (exhaust heat recovery burner) is used as the combustion burner 18.
  • the heat-recovered exhaust gas may be supplied to the blower 24b of the outside air introducing means 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Furnace Details (AREA)

Abstract

A melting furnace according to the present invention comprises: a preheating tower (12) having a preheating chamber (12b) installed therein; a melting chamber (14); a combustion chamber (16); and a combustion burner (18). Inside a furnace body made of a refractory material for forming the preheating tower (12), an exhaust gas branch pipe (20) for connecting an upper part of the preheating chamber (12b) with the combustion chamber (16) is installed. In an upper part in the furnace body of the preheating tower (12), a heat exchange loop pipeline (22) which surrounds the preheating chamber (12b) is installed. An outside air introduction means (24) for introducing outside air is attached to the heat exchange loop pipeline (22). A connection nozzle (26) for connecting the heat exchange loop pipeline (22) and the exhaust gas pipe (20) is attached therebetween. This connection nozzle (26) is formed into a funnel shape with the inner diameter reduced toward the exhaust gas branch pipe (20) side, and the tip of the nozzle having a smallest diameter is oriented to the opening of the exhaust gas branch pipe (20) at the combustion chamber (16) side.

Description

溶解炉melting furnace
 本発明は、アルミニウムなどの非鉄金属の溶解に用いられる溶解炉に関し、特に、原料予熱塔を有する溶解炉に関する。 The present invention relates to a melting furnace used for melting nonferrous metals such as aluminum, and particularly relates to a melting furnace having a raw material preheating tower.
 この種の溶解炉には、従来では、下記の特許文献1(日本国・特公平02-053708号公報)に記載されたものがある。その従来技術は、次のように構成されている。
 予熱塔を備える非鉄金属溶解炉において、前記予熱塔の下部に溶解室を設け、前記予熱塔に隣接し下部が前記溶解室に連通しかつ燃焼ガスをつくるバーナを上部炉体に取付けた燃焼室を設ける。そして、前記予熱塔からの原料予熱排ガスの一部を前記燃焼室に循環させる排ガス分岐管を設けられている。
This type of melting furnace has conventionally been described in Patent Document 1 (Japanese Patent Publication No. 02-053708) below. The conventional technology is configured as follows.
In a nonferrous metal melting furnace equipped with a preheating tower, a melting chamber is provided at the lower part of the preheating tower, and a combustion chamber is provided with a burner adjacent to the preheating tower, whose lower part communicates with the melting chamber, and which produces combustion gas in the upper furnace body. will be established. An exhaust gas branch pipe is provided for circulating a part of the raw material preheated exhaust gas from the preheating tower to the combustion chamber.
 かかる技術によれば、燃焼ガスの温度を安定させ、炉況安定と熱エネルギの節減を図ることができる、とされている。 According to this technology, it is said that it is possible to stabilize the temperature of the combustion gas, stabilize the furnace condition, and save thermal energy.
特公平02-053708号公報Special Publication No. 02-053708
 しかしながら、上記の従来技術には次の問題がある。すなわち、排ガス分岐管の途中に設けられたファンで直接、原料予熱排ガスの一部を吸引して燃焼室内へと戻すようにしているが、かかる態様の場合、排ガス分岐管を通流する際に原料予熱排ガスが持つ顕熱の放散が著しく、熱回収による省エネ効果を極大化させることが非常に困難であるという問題があった。
 それゆえに、本発明の主たる課題は、原料予熱排ガスが持つ顕熱の利用効率を極大化させることにより、予熱塔における被溶解材料(原料)の充填率が低い状態であっても、安定的な省エネルギー効果を発揮することができる溶解炉を提供することである。
However, the above conventional technology has the following problems. In other words, a fan installed in the middle of the exhaust gas branch pipe directly sucks in a part of the raw material preheated exhaust gas and returns it to the combustion chamber. There was a problem in that the sensible heat of the raw material preheating exhaust gas was dissipated significantly, making it extremely difficult to maximize the energy saving effect through heat recovery.
Therefore, the main objective of the present invention is to maximize the utilization efficiency of the sensible heat possessed by the raw material preheating exhaust gas, so that even when the filling rate of the material to be melted (raw material) in the preheating tower is low, stable An object of the present invention is to provide a melting furnace that can exhibit an energy saving effect.
 上記の課題を達成するため、本発明は、例えば、図1及び2に示すように、溶解炉10を次のように構成した。
 すなわち、内部に予熱室12bが設けられた予熱塔12と、その予熱塔12の下部に連設された溶解室14と、上記の予熱塔12に隣接し下部が上記の溶解室14に連通する燃焼室16と、その燃焼室16内に取付けられ、上記の溶解室14に投入された被溶解材を加熱溶解する燃焼バーナー18とを含む。上記の予熱塔12を形成する耐火材からなる炉体の内部には、上記の予熱室12b上部と上記の燃焼室16とを連通する排ガス分岐管20が設けられる。また、上記の予熱塔12の炉体内上部には、上記の予熱室12bを囲繞する熱交換用ループ管道22が設けられる。その熱交換用ループ管道22には、外気を導入する外気導入手段24が取着される。そして、上記の熱交換用ループ管道22と上記の排ガス分岐管20との間には、両者を連通接続する連結ノズル26であって、上記の排ガス分岐管20側に向けてその内径が縮小する漏斗状に形成されると共に、その最細径となった先端が上記の排ガス分岐管20の燃料室16側の開口に向けられた連結ノズル26が取り付けられる。
In order to achieve the above-mentioned object, the present invention, for example, as shown in FIGS. 1 and 2, melting furnace 10 is configured as follows.
That is, a preheating tower 12 having a preheating chamber 12b provided therein, a melting chamber 14 connected to the lower part of the preheating tower 12, and a melting chamber 14 that is adjacent to the preheating tower 12 and whose lower part communicates with the melting chamber 14. It includes a combustion chamber 16 and a combustion burner 18 that is installed in the combustion chamber 16 and heats and melts the material to be melted that has been introduced into the melting chamber 14 . Inside the furnace body made of a refractory material forming the preheating tower 12, an exhaust gas branch pipe 20 is provided that communicates the upper part of the preheating chamber 12b with the combustion chamber 16. Furthermore, a heat exchange loop conduit 22 surrounding the preheating chamber 12b is provided in the upper part of the furnace body of the preheating tower 12. An outside air introducing means 24 for introducing outside air is attached to the heat exchange loop pipe 22. Between the heat exchange loop pipe 22 and the exhaust gas branch pipe 20, there is a connecting nozzle 26 that communicates and connects the two, the inner diameter of which decreases toward the exhaust gas branch pipe 20 side. A connecting nozzle 26 is attached, which is formed in a funnel shape and whose tip with the smallest diameter is directed toward the opening of the exhaust gas branch pipe 20 on the fuel chamber 16 side.
 本発明では、燃焼バーナー18による高温の燃焼炎でもって溶解室14の被溶解材料の溶解を行ない、その余熱を有する排ガスが原料予熱排ガスEとして予熱塔12内を上昇する。そこで、外気導入手段24を用いて熱交換用ループ管道22に外気を導入すると、その熱交換用ループ管道22内で予熱されている内気が連結ノズル26を介して排ガス分岐管20内へと供給されるが、この連結ノズル26は、排ガス分岐管20側に向けてその内径が縮小する漏斗状に形成されると共に、その最細径となった先端が排ガス分岐管20の燃料室16側の開口に向けられているので、ベンチュリー効果により速度の上昇した上記の内気が排ガス分岐管20の燃焼室16側の開口に向けて吐出される。そうすると、排ガス分岐管20の上流端となる予熱室12b側の開口では負圧が発生し、予熱室12b内の原料予熱排ガスEの一部が排ガス分岐管20内へと吸引されるようになる。そして、排ガス分岐管20内へと吸引された原料予熱排ガスEは、この排ガス分岐管20を通って燃焼室16へと戻されるが、当該排ガス分岐管20が予熱塔12の炉体内に設けられているので、原料予熱排ガスEの持つ潜熱が喪失するのを極小化させることができる。 In the present invention, the material to be melted in the melting chamber 14 is melted with a high-temperature combustion flame from the combustion burner 18, and the exhaust gas having residual heat rises in the preheating tower 12 as the raw material preheating exhaust gas E. Therefore, when outside air is introduced into the heat exchange loop pipe 22 using the outside air introduction means 24, the inside air preheated within the heat exchange loop pipe 22 is supplied into the exhaust gas branch pipe 20 through the connection nozzle 26. However, this connecting nozzle 26 is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side, and the tip with the smallest diameter is connected to the fuel chamber 16 side of the exhaust gas branch pipe 20. Since it is directed toward the opening, the above-mentioned internal air whose velocity has increased due to the Venturi effect is discharged toward the opening of the exhaust gas branch pipe 20 on the combustion chamber 16 side. Then, negative pressure is generated at the opening on the preheating chamber 12b side, which is the upstream end of the exhaust gas branch pipe 20, and a part of the raw material preheated exhaust gas E in the preheating chamber 12b is sucked into the exhaust gas branch pipe 20. . The raw material preheated exhaust gas E sucked into the exhaust gas branch pipe 20 is returned to the combustion chamber 16 through this exhaust gas branch pipe 20, but the exhaust gas branch pipe 20 is provided inside the furnace body of the preheating tower 12. Therefore, the loss of latent heat of the raw material preheating exhaust gas E can be minimized.
 本発明においては、前記の予熱室12b内に、前記の排ガス分岐管20の上流端が開口された壁面との間に隙間gを空けて、筒状スリーブ体からなる被溶解材保持部材28を取着するのが好ましい。
 この場合、予熱室12bを形成する炉体の耐久性を高めると共に、原料である被溶解材料に対する予熱効率をより向上させることができる。また、ベンチュリー効果により、隙間gを通って排ガス分岐管20の上流端となる予熱室12b壁面の開口へと向かう原料予熱排ガスEの流速が上昇する結果、排ガス分岐管20内を移動する原料予熱排ガスEの速度も上げることができ、排ガス分岐管20通流時における原料予熱排ガスEの潜熱喪失をより一層効果的に防止することができる。
In the present invention, in the preheating chamber 12b, a gap g is provided between the upstream end of the exhaust gas branch pipe 20 and the open wall surface, and the material holding member 28 made of a cylindrical sleeve body is mounted. It is preferable to attach it.
In this case, the durability of the furnace body forming the preheating chamber 12b can be increased, and the preheating efficiency for the raw material to be melted can be further improved. Further, due to the Venturi effect, the flow rate of the raw material preheated exhaust gas E that passes through the gap g and heads toward the opening in the wall surface of the preheating chamber 12b, which is the upstream end of the exhaust gas branch pipe 20, increases, and as a result, the raw material preheated that moves within the exhaust gas branch pipe 20 The speed of the exhaust gas E can also be increased, and loss of latent heat of the raw material preheated exhaust gas E when flowing through the exhaust gas branch pipe 20 can be more effectively prevented.
 本発明によれば、原料予熱排ガスが持つ顕熱の利用効率を極大化させることにより、予熱塔における被溶解材料(原料)の充填率が低い状態であっても、安定的な省エネルギー効果を発揮することが可能な溶解炉を提供することができる。 According to the present invention, by maximizing the utilization efficiency of the sensible heat possessed by the raw material preheating exhaust gas, a stable energy saving effect can be achieved even when the filling rate of the material to be melted (raw material) in the preheating tower is low. It is possible to provide a melting furnace capable of
本発明の一実施形態の溶解炉の要部を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a main part of a melting furnace according to an embodiment of the present invention. 図1におけるA-A断面図のうち予熱塔を中心とした要部を示した図である2 is a cross-sectional view taken along line A-A in FIG. 1, showing the main parts centering on the preheating tower.
 以下、本発明の実施形態を図面を用いて説明する。図1は、本発明の一実施形態の溶解炉10を示す縦断面図である。この図が示すように、本実施形態の溶解炉10は、アルミ鋳造用の原料(被溶解材料)を溶解して得たアルミ溶湯を保持するいわゆる手許溶解炉であり、大略、予熱塔12と、溶解室14と、燃焼室16と、溶湯保持室30とを有する。 Hereinafter, embodiments of the present invention will be described using the drawings. FIG. 1 is a longitudinal sectional view showing a melting furnace 10 according to an embodiment of the present invention. As shown in this figure, the melting furnace 10 of the present embodiment is a so-called hand-held melting furnace that holds molten aluminum obtained by melting raw materials for aluminum casting (materials to be melted). , has a melting chamber 14, a combustion chamber 16, and a molten metal holding chamber 30.
 予熱塔12は、上部に材料投入口12aが設けられ、内部に予熱室12bが設けられた炉体の最上部に形成される部分である。ここで、炉体は、十分な強度を持った鋼板で形成された外枠(鋼殻)の内面に耐火煉瓦やキャスタブルなどの耐火材を肉厚に内張して形成される。この予熱塔12上端の材料投入口12aには、投入口開閉ダンパー12cが取り付けられており、その投入口開閉ダンパー12cの略中央部には予熱室12b内の圧力に応じて自動開閉する炉圧調整用ダンパー32が取り付けられている。そして、この予熱塔12下部には溶解室14が連設される。 The preheating tower 12 is a part formed at the top of the furnace body, which is provided with a material input port 12a at the top and a preheating chamber 12b inside. Here, the furnace body is formed by lining the inner surface of an outer frame (steel shell) made of a steel plate with sufficient strength with a thick layer of refractory material such as firebrick or castable. An input port opening/closing damper 12c is attached to the material input port 12a at the upper end of the preheating tower 12, and a furnace pressure switch that automatically opens and closes in accordance with the pressure in the preheating chamber 12b is attached to the approximate center of the input port opening/closing damper 12c. An adjustment damper 32 is attached. A melting chamber 14 is connected to the lower part of the preheating tower 12.
 溶解室14は、後述する燃焼バーナー18の火炎によって材料投入口12aから投入された原料である被溶解材料を加熱溶解させるための部分で、その床面が傾斜床14aで形成されている。そして、この溶解室14の隣には、上記の予熱塔12に隣接し下部同士が当該溶解室14と連通するように燃焼室16が設けられる。 The melting chamber 14 is a part for heating and melting the material to be melted, which is a raw material input from the material input port 12a, by the flame of a combustion burner 18, which will be described later, and its floor surface is formed by an inclined bed 14a. A combustion chamber 16 is provided next to the melting chamber 14 so as to be adjacent to the preheating tower 12 and communicate with the melting chamber 14 at its lower portions.
 燃焼室16は、その上部側に取着された燃焼バーナー18を作動させて高温の燃焼炎と燃焼排ガスとを作り出す部分である。この燃焼室16で作り出された燃焼炎および燃焼排ガスは、上述した溶解室14および予熱室12bへと与えられる。また、図示実施形態では、この燃焼室16と上述の溶解室14とが架台床34上に設置される。そして、この架台床34に隣接する位置に、溶湯連通部36を介して燃焼室16と連通する溶湯保持室30が設けられる。 The combustion chamber 16 is a part in which a combustion burner 18 attached to the upper side of the combustion chamber is operated to produce a high-temperature combustion flame and combustion exhaust gas. The combustion flame and combustion exhaust gas produced in this combustion chamber 16 are given to the above-mentioned melting chamber 14 and preheating chamber 12b. Further, in the illustrated embodiment, this combustion chamber 16 and the above-mentioned melting chamber 14 are installed on the pedestal floor 34. A molten metal holding chamber 30 that communicates with the combustion chamber 16 via a molten metal communication portion 36 is provided at a position adjacent to this frame floor 34 .
 溶湯保持室30は加熱溶解された溶湯を使用するまで一定の温度にて保持するための場所である。この溶湯保持室30には、室内のアルミ溶湯が一定の温度を保持するように浸漬ヒーター(図示せず)が取り付けられており、溶湯連通部36から離間した位置に溶湯の汲出し口38が開口されている。なお、アルミ溶湯の保温方法は、上記の浸漬ヒーターを用いる方式に限定されるものではなく、液体・気体燃料による直火式加熱,気体燃料・電気による浸漬式加熱,電気による輻射式加熱など、如何なる保持加熱方式も適用することができる。 The molten metal holding chamber 30 is a place for holding heated and melted molten metal at a constant temperature until it is used. An immersion heater (not shown) is attached to the molten metal holding chamber 30 so that the molten aluminum in the chamber is kept at a constant temperature, and a molten metal outlet 38 is provided at a position spaced apart from the molten metal communication section 36. It is opened. The method of keeping molten aluminum warm is not limited to the method using the above-mentioned immersion heater, but includes direct heating with liquid or gaseous fuel, immersion heating with gaseous fuel and electricity, radiant heating with electricity, etc. Any holding and heating method can be applied.
 以上のような各部を有する本発明の溶解炉10において、予熱塔12を形成する耐火材からなる炉体の内部には、上記の予熱室12b上部と上記の燃焼室16とを連通する排ガス分岐管20が設けられる。この排ガス分岐管20は、ステンレスなどからなる金属パイプを予熱塔12の炉体内に埋設することによって形成することができる。又、この排ガス分岐管20は、耐火材施工法によって耐火材構造の一部として形成することもできる。図示実施形態では、図2に示すように、燃焼室16の上部に位置する予熱塔12の炉体内に前後一対の排ガス分岐管20を設ける場合を示しているが、排ガス分岐管20の本数はこれに限定されるものではなく、1本でもよいし3本以上であってもよい。そして、この排ガス分岐管20より上の予熱塔12の炉体内上部には、熱交換用ループ管道22が設けられる。 In the melting furnace 10 of the present invention having the above-mentioned parts, inside the furnace body made of a refractory material forming the preheating tower 12, there is an exhaust gas branch that communicates the upper part of the preheating chamber 12b with the combustion chamber 16. A tube 20 is provided. This exhaust gas branch pipe 20 can be formed by embedding a metal pipe made of stainless steel or the like in the furnace body of the preheating tower 12. Further, the exhaust gas branch pipe 20 can also be formed as a part of the refractory structure using a refractory construction method. In the illustrated embodiment, as shown in FIG. 2, a pair of front and rear exhaust gas branch pipes 20 are provided in the furnace body of the preheating tower 12 located at the upper part of the combustion chamber 16, but the number of exhaust gas branch pipes 20 is It is not limited to this, and the number may be one or three or more. A heat exchange loop pipe 22 is provided in the upper part of the furnace body of the preheating tower 12 above the exhaust gas branch pipe 20.
 熱交換用ループ管道22は、後述する外気導入手段24によって供給される外気を炉体内に蓄積されている顕熱を用いて予熱するための部材である。本実施形態では、ステンレスなどからなる金属角パイプを矩形ループ状に形成すると共に、これが予熱室12bを囲繞するように予熱塔12炉体内の上部に埋設されて熱交換用ループ管道22が形成されている。そして、この熱交換用ループ管道22には、外気導入手段24が接続されると共に、上記の排ガス分岐管20との間に両者を連通接続する連結ノズル26が介装される。 The heat exchange loop conduit 22 is a member for preheating the outside air supplied by the outside air introduction means 24, which will be described later, using sensible heat accumulated in the furnace body. In this embodiment, a metal square pipe made of stainless steel or the like is formed into a rectangular loop shape, and this is buried in the upper part of the furnace body of the preheating tower 12 so as to surround the preheating chamber 12b, thereby forming the heat exchange loop conduit 22. ing. The heat exchange loop conduit 22 is connected to an outside air introducing means 24, and a connecting nozzle 26 is interposed between the exhaust gas branch pipe 20 and the exhaust gas branch pipe 20 to communicate and connect the two.
 外気導入手段24は、熱交換用ループ管道22に外気を供給するためのもので、熱交換用ループ管道22に連通する外気導入ノズル24aとその外気導入ノズル24aに外気を送給するブロア24bとを備える。なお、このブロア24bは、燃焼バーナー18に付設されるバーナー燃焼用ブロア(図示せず)との共用も可能である。 The outside air introduction means 24 is for supplying outside air to the heat exchange loop pipe 22, and includes an outside air introduction nozzle 24a that communicates with the heat exchange loop pipe 22, and a blower 24b that supplies outside air to the outside air introduction nozzle 24a. Equipped with Note that this blower 24b can also be used in common with a burner combustion blower (not shown) attached to the combustion burner 18.
 連結ノズル26は、熱交換用ループ管道22と排ガス分岐管20とを連通接続するためのノズルであり、排ガス分岐管20側に向けてその内径が縮小する漏斗状に形成されると共に、その最細径となった先端が排ガス分岐管20の燃料室16側の開口に向けられる。 The connecting nozzle 26 is a nozzle for communicating and connecting the heat exchange loop pipe 22 and the exhaust gas branch pipe 20, and is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side. The tip with a smaller diameter is directed toward the opening of the exhaust gas branch pipe 20 on the fuel chamber 16 side.
 ここで、上記の外気導入ノズル24aと連結ノズル26との位置関係については、図2に示すように、外気導入ノズル24aから導入した外気が直接、連結ノズル26へは向かわず、熱交換用ループ管道22内を通流した後に連結ノズル26へと達するように配置するのが好ましい。 Here, regarding the positional relationship between the outside air introduction nozzle 24a and the connection nozzle 26, as shown in FIG. It is preferable to arrange the fluid so that it reaches the connecting nozzle 26 after passing through the pipe 22 .
 また、本実施形態の溶解炉10では、予熱室12b内に、排ガス分岐管20の上流端が開口された壁面との間に隙間gを空けて被溶解材保持部材28が取着されている。この被溶解材保持部材28は、ステンレスなどの耐熱性を有する金属からなり上下が開口した筒状スリーブ体で構成されており、必要に応じて設置される。なお、この被溶解材保持部材28は、排ガス分岐管20の壁面との間に隙間gを空けて設置されることから、その上端はフランジ形状にて形成されている。 Furthermore, in the melting furnace 10 of the present embodiment, a material holding member 28 is attached to the preheating chamber 12b with a gap g between the upstream end of the exhaust gas branch pipe 20 and the wall surface opened. . The melted material holding member 28 is made of a heat-resistant metal such as stainless steel and is constituted by a cylindrical sleeve body with an open top and bottom, and is installed as required. Note that since the melted material holding member 28 is installed with a gap g between it and the wall surface of the exhaust gas branch pipe 20, its upper end is formed in a flange shape.
 以上のように構成された溶解炉10を使用する際には、投入口開閉ダンパー12cを開操作して材料投入口12aよりアルミ溶湯の原料となる被溶解材料を投入する。そして、投入口開閉ダンパー12cを閉操作すると共に、燃焼バーナー18を点火して燃焼炎を発生させる。すると、溶解室14の被溶解材料がその燃焼炎によって加熱溶解し、傾斜床14aの床面を流下して燃焼室16から溶湯連通部36を経て溶湯保持室30にて保持される。また、燃焼バーナー18で発生する排ガスが原料予熱排ガスEとして予熱塔12内を上昇し、溶解室14の上部から予熱室12bに在庫されている被溶解材料を予熱する。 When using the melting furnace 10 configured as described above, the input opening/closing damper 12c is operated to open the input opening/closing damper 12c to input the material to be melted, which will be the raw material for molten aluminum, through the material input opening 12a. Then, the input opening/closing damper 12c is operated to close, and the combustion burner 18 is ignited to generate a combustion flame. Then, the material to be melted in the melting chamber 14 is heated and melted by the combustion flame, flows down the floor surface of the inclined bed 14a, passes from the combustion chamber 16 through the molten metal communication part 36, and is held in the molten metal holding chamber 30. Further, the exhaust gas generated by the combustion burner 18 rises in the preheating tower 12 as the raw material preheating exhaust gas E, and preheats the material to be melted stocked in the preheating chamber 12b from the upper part of the melting chamber 14.
 本実施形態の溶解炉10によれば、上述したように、燃焼バーナー18による高温の燃焼炎でもって溶解室14の被溶解材料の溶解を行ない、その余熱を有する排ガスが原料予熱排ガスEとして予熱塔12内を上昇する。そこで、外気導入手段24を用いて熱交換用ループ管道22に導入された外気は、熱交換用ループ管道22を周回することで耐火材顕熱により予熱されながら連結ノズル26を介して排ガス分岐管20内へと供給されるが、この連結ノズル26は、排ガス分岐管20側に向けてその内径が縮小する漏斗状に形成されると共に、その最細径となった先端が排ガス分岐管20の燃料室16側の開口に向けられているので、ベンチュリー効果により速度の上昇した上記の予熱された外気(=熱交換用ループ管道22内の内気)が排ガス分岐管20の燃焼室16側の開口に向けて吐出される。そうすると、排ガス分岐管20の上流端となる予熱室12b側の開口では負圧が発生し、予熱室12b内の原料予熱排ガスEの一部が排ガス分岐管20内へと吸引されるようになる。そして、排ガス分岐管20内へと吸引された原料予熱排ガスEは、この排ガス分岐管20を通って燃焼室16へと戻されるが、当該排ガス分岐管20が予熱塔12の炉体内に設けられているので、原料予熱排ガスEの持つ潜熱が喪失するのを極小化させることができる。 According to the melting furnace 10 of this embodiment, as described above, the material to be melted in the melting chamber 14 is melted by the high-temperature combustion flame from the combustion burner 18, and the exhaust gas having residual heat is preheated as the raw material preheating exhaust gas E. Climb inside the tower 12. Therefore, the outside air introduced into the heat exchange loop pipe 22 using the outside air introduction means 24 is preheated by the sensible heat of the refractory material by going around the heat exchange loop pipe 22, and then passes through the connecting nozzle 26 to the exhaust gas branch pipe. This connecting nozzle 26 is formed in the shape of a funnel whose inner diameter decreases toward the exhaust gas branch pipe 20 side, and the tip with the smallest diameter is connected to the exhaust gas branch pipe 20. Since it is directed to the opening on the fuel chamber 16 side, the preheated outside air (=internal air in the heat exchange loop pipe 22) whose speed has increased due to the Venturi effect is directed to the opening on the combustion chamber 16 side of the exhaust gas branch pipe 20. is discharged towards. Then, negative pressure is generated at the opening on the preheating chamber 12b side, which is the upstream end of the exhaust gas branch pipe 20, and a part of the raw material preheated exhaust gas E in the preheating chamber 12b is sucked into the exhaust gas branch pipe 20. . The raw material preheated exhaust gas E sucked into the exhaust gas branch pipe 20 is returned to the combustion chamber 16 through this exhaust gas branch pipe 20, but the exhaust gas branch pipe 20 is provided inside the furnace body of the preheating tower 12. Therefore, the loss of latent heat of the raw material preheating exhaust gas E can be minimized.
 また、予熱室12b内に被溶解材保持部材28を取着しているので、隙間gを通って排ガス分岐管20の上流端となる予熱室12b壁面の開口へと向かう原料予熱排ガスEは、ベンチュリー効果によって、その流速が上昇し、排ガス分岐管20内を移動する原料予熱排ガスEの速度を上げることができる。その結果、排ガス分岐管20通流時における原料予熱排ガスEの潜熱喪失をより一層効果的に防止することができる。 In addition, since the melted material holding member 28 is installed in the preheating chamber 12b, the raw material preheated exhaust gas E passes through the gap g to the opening in the wall of the preheating chamber 12b, which is the upstream end of the exhaust gas branch pipe 20. Due to the Venturi effect, the flow rate increases, and the speed of the raw material preheated exhaust gas E moving in the exhaust gas branch pipe 20 can be increased. As a result, loss of latent heat of the raw material preheated exhaust gas E when flowing through the exhaust gas branch pipe 20 can be more effectively prevented.
 上述した実施形態では、外気導入手段24において、ブロア24b周辺の外気を熱交換用ループ管道22内に導入する場合を示したが、燃焼バーナー18として熱交換内蔵バーナー(排熱回収バーナー)を用い、熱回収された排ガスを外気導入手段24のブロア24bへ供給するようにしてもよい。又これに加え、或いはこれとは別に、炉頂から炉圧調整用ダンパー32を介して排出される燃焼廃ガス(原料予熱排ガスE)を捕捉してブロア24bへ供給することも可能である。そうすることにより、溶解炉10での使用エネルギー原単位を更に低減させることができる。
 その他に、当業者が想定できる範囲で種々の変更を行えることは勿論である。
In the embodiment described above, the outside air around the blower 24b is introduced into the heat exchange loop pipe 22 in the outside air introducing means 24, but a burner with a built-in heat exchange (exhaust heat recovery burner) is used as the combustion burner 18. Alternatively, the heat-recovered exhaust gas may be supplied to the blower 24b of the outside air introducing means 24. In addition to this, or separately from this, it is also possible to capture the combustion waste gas (raw material preheated waste gas E) discharged from the top of the furnace via the furnace pressure adjusting damper 32 and supply it to the blower 24b. By doing so, the energy consumption rate in the melting furnace 10 can be further reduced.
It goes without saying that various other changes can be made within the scope of those skilled in the art.
 10:溶解炉,12:予熱塔,12a:材料投入口,12b:予熱室,14:溶解室,16:燃焼室,18:燃焼バーナー,20:排ガス分岐管,22:熱交換用ループ管道,24:外気導入手段,26:連結ノズル,28:被溶解材保持部材,g:隙間. 10: Melting furnace, 12: Preheating tower, 12a: Material inlet, 12b: Preheating chamber, 14: Melting chamber, 16: Combustion chamber, 18: Combustion burner, 20: Exhaust gas branch pipe, 22: Heat exchange loop pipe, 24: outside air introducing means, 26: connecting nozzle, 28: melting material holding member, g: gap.

Claims (2)

  1.  内部に予熱室(12b)が設けられた予熱塔(12)と、その予熱塔(12)の下部に連設された溶解室(14)と、上記の予熱塔(12)に隣接し下部が上記の溶解室(14)に連通する燃焼室(16)と、その燃焼室(16)内に取付けられ、上記の溶解室(14)に投入された被溶解材を加熱溶解する燃焼バーナー(18)とを含む溶解炉において、
     上記の予熱塔(12)を形成する耐火材からなる炉体の内部に設けられ、上記の予熱室(12b)上部と上記の燃焼室(16)とを連通する排ガス分岐管(20),
     上記の予熱塔(12)の炉体内上部に設けられ、上記の予熱室(12b)を囲繞する熱交換用ループ管道(22),
     上記の熱交換用ループ管道(22)に外気を導入する外気導入手段(24),および
     上記の熱交換用ループ管道(22)と上記の排ガス分岐管(20)とを連通接続する連結ノズル(26)であって、上記の排ガス分岐管(20)側に向けてその内径が縮小する漏斗状に形成されると共に、その最細径となった先端が上記の排ガス分岐管(20)の燃料室(16)側の開口に向けられた連結ノズル(26)を具備する、ことを特徴とする溶解炉。
    A preheating tower (12) with a preheating chamber (12b) provided therein, a melting chamber (14) connected to the lower part of the preheating tower (12), and a lower part adjacent to the preheating tower (12). A combustion chamber (16) communicating with the melting chamber (14), and a combustion burner (18) installed in the combustion chamber (16) to heat and melt the material to be melted that has been put into the melting chamber (14). ) in a melting furnace containing
    An exhaust gas branch pipe (20) provided inside the furnace body made of refractory material forming the preheating tower (12) and communicating the upper part of the preheating chamber (12b) with the combustion chamber (16);
    a heat exchange loop pipe (22) provided in the upper part of the furnace body of the preheating tower (12) and surrounding the preheating chamber (12b);
    An outside air introducing means (24) for introducing outside air into the heat exchange loop pipe (22), and a connecting nozzle (24) for communicating and connecting the heat exchange loop pipe (22) and the exhaust gas branch pipe (20). 26), which is formed into a funnel shape whose inner diameter decreases toward the exhaust gas branch pipe (20) side, and whose tip with the smallest diameter is connected to the fuel of the exhaust gas branch pipe (20). A melting furnace characterized in that it is equipped with a connecting nozzle (26) directed toward the opening on the side of the chamber (16).
  2.  請求項1の溶解炉において、
     前記の予熱室(12b)内に、前記の排ガス分岐管(20)の上流端が開口された壁面との間に隙間(g)を空けて、筒状スリーブ体からなる被溶解材保持部材(28)が取着される、ことを特徴とする溶解炉。
    In the melting furnace of claim 1,
    In the preheating chamber (12b), a material holding member (made of a cylindrical sleeve body) ( 28) is attached to a melting furnace.
PCT/JP2022/019266 2022-04-28 2022-04-28 Melting furnace WO2023209944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022545873A JP7174467B1 (en) 2022-04-28 2022-04-28 melting furnace
CN202280006566.8A CN116324321A (en) 2022-04-28 2022-04-28 Melting furnace
PCT/JP2022/019266 WO2023209944A1 (en) 2022-04-28 2022-04-28 Melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019266 WO2023209944A1 (en) 2022-04-28 2022-04-28 Melting furnace

Publications (1)

Publication Number Publication Date
WO2023209944A1 true WO2023209944A1 (en) 2023-11-02

Family

ID=84100529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019266 WO2023209944A1 (en) 2022-04-28 2022-04-28 Melting furnace

Country Status (3)

Country Link
JP (1) JP7174467B1 (en)
CN (1) CN116324321A (en)
WO (1) WO2023209944A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200185A (en) * 1983-04-28 1984-11-13 東邦開発エンジニアリング株式会社 Nonferrous metal melting furnace
JPS61205399U (en) * 1985-06-13 1986-12-25
JPS63282484A (en) * 1987-05-15 1988-11-18 株式会社ティーディーイー Non-ferrous metal melting furnace
JP2015034665A (en) * 2013-08-08 2015-02-19 株式会社メイチュー Metal melting furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200185A (en) * 1983-04-28 1984-11-13 東邦開発エンジニアリング株式会社 Nonferrous metal melting furnace
JPS61205399U (en) * 1985-06-13 1986-12-25
JPS63282484A (en) * 1987-05-15 1988-11-18 株式会社ティーディーイー Non-ferrous metal melting furnace
JP2015034665A (en) * 2013-08-08 2015-02-19 株式会社メイチュー Metal melting furnace

Also Published As

Publication number Publication date
JP7174467B1 (en) 2022-11-17
JPWO2023209944A1 (en) 2023-11-02
CN116324321A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
EP1347236A4 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
US5275556A (en) Heat recovery type combustion apparatus
JPH02607B2 (en)
CN104457215B (en) A kind of method that melting iron block prepares high temperature iron liquid
CN110530152A (en) A kind of metal molten system and metal molten technique with annular hot gas insulating layer
WO2023209944A1 (en) Melting furnace
CN100439798C (en) Gas burning premixing high speed burning nozzle
US4309165A (en) High velocity combustion furnace and burner
CN2852009Y (en) External heating and blowing non-lining water-cooled cupola
CN105020703A (en) Novel combustion device
CN205897827U (en) Shunting air feed furnace cupola
US4132394A (en) Furnaces
CN210569934U (en) Metal melting furnace with heat exchange structure
CN209484601U (en) A kind of low NOx drainage burner of fuel gas with low heat value
JPH0359389A (en) Melting of metal
CN216898350U (en) Heat exchange type melting holding furnace
US5460519A (en) Method and apparatus for heat recovery
CN209716451U (en) A kind of Ladle-casting apparatus combustion air preheating device
CN220489694U (en) Melt integrative stove of protecting
CN218914993U (en) High-temperature accelerating device
CN108362135A (en) Cupola furnace residual heat using device
CN216448161U (en) Melting combustion waste heat utilization integrated furnace
CN107192278A (en) High temperature resistant shoe last tube core heat exchanger
CN210569936U (en) Metal melting furnace with air supply structure
CN201417084Y (en) Guide-type melting furnace

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022545873

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940219

Country of ref document: EP

Kind code of ref document: A1