WO2023209912A1 - Terminal and base station - Google Patents

Terminal and base station Download PDF

Info

Publication number
WO2023209912A1
WO2023209912A1 PCT/JP2022/019199 JP2022019199W WO2023209912A1 WO 2023209912 A1 WO2023209912 A1 WO 2023209912A1 JP 2022019199 W JP2022019199 W JP 2022019199W WO 2023209912 A1 WO2023209912 A1 WO 2023209912A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
information
timing
carriers
Prior art date
Application number
PCT/JP2022/019199
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 岡村
知也 小原
康介 島
浩樹 原田
春陽 越後
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/019199 priority Critical patent/WO2023209912A1/en
Publication of WO2023209912A1 publication Critical patent/WO2023209912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to terminals and base stations in wireless communication systems.
  • 5G or NR New Radio Studies are progressing on a wireless communication system called "NR" (hereinafter referred to as "NR").
  • NR New Radio
  • 5G various wireless technologies and network architectures are being studied in order to meet the requirements of achieving a throughput of 10 Gbps or more while reducing the delay in the wireless section to 1 ms or less.
  • NR Positioning which performs positioning using reference signals and the like.
  • CPM carrier phase measurement
  • one method of performing Ambiguity Resolution (AR) for determining the wave number is to use multiple carrier waves with different wavelengths (frequencies).
  • the terminal measures the phase of each carrier.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique for reducing the influence of transmission timing errors when using multiple carrier waves with different wavelengths in carrier phase measurement. do.
  • a receiving unit receives configuration information of reference signals transmitted on multiple carriers from a base station; a control unit that assumes that the timing of performing phase measurement for positioning is different between the plurality of carriers; A terminal is provided.
  • a technology for reducing the influence of transmission timing errors when using multiple carrier waves with different wavelengths in carrier phase measurement.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration in which multiple base stations exist.
  • FIG. 2 is a diagram for explaining carrier phase measurement (CPM).
  • FIG. 2 is a diagram for explaining carrier phase measurement (CPM).
  • FIG. 2 is a diagram for explaining an example of AR.
  • FIG. 2 is a diagram for explaining an example of AR.
  • FIG. 2 is a diagram for explaining an example of AR.
  • FIG. 2 is a diagram for explaining a problem.
  • FIG. 3 is a diagram for explaining a basic operation example.
  • FIG. 3 is a diagram for explaining an operation example of the first embodiment.
  • FIG. 3 is a diagram for explaining a basic operation example.
  • FIG. 7 is a diagram for explaining an example of operation of the second embodiment. It is a diagram showing an example of the functional configuration of a base station 10 and an LMF 30 in an embodiment of the present invention. It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention. It is a diagram showing an example of the hardware configuration of base station 10, terminal 20, or LMF 30 in an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of a vehicle.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Furthermore, the core network is equipped with an LMF 30 and is capable of communicating with the base station 10. Note that the LMF 30 may communicate with the base station 10 via AMF. LMF 30 is an example of a network device.
  • one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
  • a plurality of base stations 10 may be provided that serve as transmission sources of DL-PRS (positioning reference signals) that the terminal 20 receives.
  • One or more or all of the plurality of base stations 10 may be an airborne device (eg, a satellite, HAPS).
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • a TTI Transmission Time Interval
  • a TTI may be a slot, or a TTI may be a subframe. Note that a cell and a CC may be considered synonymous.
  • the base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20.
  • multiple CCs component carriers
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 via DL (Downlink), and receives the control signal or data from the terminal 20 via UL (Uplink).
  • DL Downlink
  • UL Uplink
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB. Furthermore, the terminal 20 is equipped with a carrier phase positioning function.
  • the terminal 20 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the base station 10.
  • multiple CCs component carriers
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • SCells secondary cells
  • PUCCH-SCell with PUCCH may be used.
  • the LMF 30 is a function (device) responsible for communication control regarding location information services defined in 5GC.
  • the LMF 30 may also be called a location management server, location management device, or network device.
  • the LMF 30 can receive reference signal measurement results (phase, received power, time difference, angle, etc.) from the terminal 20 or the base station 10, and calculate the position of the terminal 20, for example. Further, the LMF 30 can provide setting information or control information regarding positioning to the terminal 20 and the base station 10.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (dual connectivity) is implemented.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to core network 40.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • FIG. 3 shows an example in which the terminal 20 performs positioning by receiving reference signals from a plurality of base stations 10A to 10C. Basically, the position of the terminal 20 can be determined by determining the distance between the terminal 20 and multiple base stations.
  • the distance between the terminal 20 and the base station can be determined by the arrival time of the signal or the wave number (wave number x wavelength) of the signal carrier wave.
  • the wave number of the carrier wave is used, as will be described later.
  • the reference signal used for positioning will be called PRS.
  • the terminal 20 performs carrier phase measurement (CPM).
  • CPM is a highly accurate positioning method using carrier phase, which is used in GNSS and the like.
  • FIG. 4 shows an overview of CPM.
  • FIG. 4 shows an example where the base station 10 is a satellite.
  • the position of the positioning point is determined by finding the distance between the reference point and the positioning point using the number of carrier waves and the reception phase difference of the carrier wave (the phase of the part less than one wave). demand.
  • the phase corresponding to ⁇ can be determined by measuring the reference signal, the wave number (N) cannot be determined by one measurement (measurement using one carrier wave).
  • FIG. 5 when using the L1 signal, there are about 500 N (wave number) candidates in a width of 100 m.
  • CPM the process of determining the wave number (N) is called Ambiguity Resolution (AR).
  • AR Ambiguity Resolution
  • GNSS it is common to perform AR after calculating an initial value (using propagation time to narrow down the position candidates to a certain extent) by using multiple satellites.
  • PRS resources used in CPM AR are configured on multiple component carriers (CCs).
  • the component carrier may also be referred to as a carrier.
  • TAE Time Alignment Errors
  • phase measurement phase difference detection
  • CC#0 and CC#1 are used as a plurality of carrier waves with different wavelengths, a shift occurs in the timing at which the phase should be measured due to a transmission timing error. If CC#0 and CC#1 are measured simultaneously without taking this shift into account, appropriate phase measurement results cannot be obtained.
  • the network may be replaced with the base station 10 (or LMF 30).
  • CC may be replaced with "cell”.
  • the terminal 20 assumes that carrier phase measurement (CPM) is configured.
  • CPM carrier phase measurement
  • the terminal 20 is configured by the NW to report carrier phase information (phase measurement result) as DL-PRS measurement result.
  • the terminal 20 assumes phase measurement timing in units of PRS resources.
  • Second embodiment When the CPM is set, the terminal 20 assumes that assistance data (AD) related to phase measurement timing is signaled (notified) from the LMF 30 to the terminal 20.
  • AD assistance data
  • the LMF 30 may notify the base station 10 of the phase measurement timing offset (PMTO) using assistance information (AI).
  • the 0th to 3rd embodiments it is possible to apply carrier phase measurement even when the transmission timing differs between PRS resources (e.g. during CA), and high-precision positioning can be achieved.
  • PRS resources e.g. during CA
  • Each embodiment will be described in detail below.
  • the 0th embodiment to the 3rd embodiment can be implemented in any combination.
  • the terminal 20 is configured with carrier phase measurement (CPM). It may be assumed that the terminal 20 is configured by the NW to report carrier phase information (phase measurement result) as a DL-PRS measurement result.
  • CPM carrier phase measurement
  • the NW carrier phase information
  • the terminal 20 transmits capability information (UE capability) to the base station 10. Note that S101 may not be performed.
  • the base station 10 transmits configuration information regarding carrier phase measurement to the terminal 20, and the terminal 20 receives this.
  • the configuration information includes, for example, PRS resources and PMTO information, which will be described later.
  • the terminal 20 receives DL-PRS transmitted simultaneously using multiple CCs based on the DL-PRS configuration information, and measures the phase of each CC at the terminal 20.
  • the terminal 20 may perform positioning calculations using the measurement results, or may report the measurement results to the NW.
  • the terminal 20 when CPM is set by the base station 10, the terminal 20 assumes phase measurement timing in units of PRS resources. For example, when executing CPM (including AR), the terminal 20 measures the phase of each of a plurality of carrier waves using phase measurement timing in units of PRS resources.
  • Option 1 and Option 2 will be explained as more specific examples.
  • Option 1 When the terminal 20 performs AR using a plurality of PRS resources, it is assumed that the timing at which phase measurement is performed for each PRS resource may be different.
  • the plurality of PRS resources here correspond to the plurality of carrier waves measured when the terminal 20 executes CPM.
  • PRS resource 1 when using PRS resource 1 and PRS resource 2, from the base station 10, PRS resource 1 transmits a PRS on carrier wave 1, and PRS resource 2 transmits another PRS on carrier wave 2.
  • the terminal 20 measures the phase of each carrier wave at different timings according to PMTO, which will be described later, by receiving the PRS transmitted on each carrier wave.
  • multiple PRS resources may be rephrased as “multiple PRS resource sets” or “multiple CCs.”
  • one PRS resource set corresponds to one carrier wave (also called CC), and the one PRS resource set includes multiple PRS resources transmitted on the carrier wave (CC).
  • CC carrier wave
  • terminal 20 is configured with CPM that uses carrier wave 1 (or CC1) and carrier wave 2 (or CC2). do.
  • the above configuration includes PRS resource A in PRS resource set 1 and PRS resource B in PRS resource set 2.
  • the terminal 20 uses these resources to perform phase measurement using the PRS transmitted on carrier wave 1 and the PRS transmitted on carrier wave 2.
  • Option 1 About PMTO>
  • a phase measurement timing offset may be defined in the specifications.
  • the terminal 20 measures the phase of each CC based on the timing indicated by PMTO defined in the specification.
  • PMTO represents the timing difference (timing offset) between at least two CCs.
  • a timing offset between arbitrary CCs may be specified, and a timing offset between CCs that constitute the CA may be specified for each Inter-band CA (contiguous), Inter-band CA (non-contiguous), or Intra-band CA.
  • a timing offset at may be defined. Further, the value of PMTO may be different between FR1 and FR2.
  • PMTO may be notified (signaled) from the base station 10 to the terminal 20.
  • the notification is performed, for example, by RRC signaling.
  • the PMTO corresponding to the PRS resource index (which may be a set of two indexes) already configured in the terminal 20 may be notified, or the PMTO may be notified together with the CC index. Good too.
  • multiple PMTOs (candidates for PMTOs to actually use) are notified from the base station 10 to the terminal 20 by RRC signaling, and among the multiple PMTOs, (the index of) the PMTO to actually use is determined by MAC CE or DCI.
  • the terminal 20 may be instructed from the base station 10.
  • the terminal 20 may determine the PMTO.
  • the terminal 20 measures TAE (transmission timing error at the base station 10) by measuring the difference in reception timing of a signal (for example, a reference signal) between CCs for which PMTO is to be determined, and transmits the measurement result to Used as PMTO.
  • the PMTO obtained as the measurement result may be reported to the base station 10 together with the combination of CC index (or BWP ID) of the two CCs that performed the measurement.
  • the terminal 20 may estimate (determine) PMTO by itself and perform CPM using the determined value. If the terminal 20 does not receive a PMTO estimation instruction (TAE estimation instruction) from the base station 10, the terminal 20 may use the above-described specified value or the set value from the base station 10.
  • Option 1 Operation example> An example of operation will be described with reference to FIG.
  • the terminal 20 receives configuration information including multiple PRM resources and PMTO for performing CPM from the base station 10.
  • the phase of each CC is measured using the setting information. For example, as shown in FIG. 11, it is assumed that PMTO between CC#0 and CC#1 is set (or defined or estimated).
  • the terminal 20 measures the phase of CC #0 at a timing indicated by A, and measures the phase of CC #1 at a timing indicated by B, which is PMTO after the timing indicated by A.
  • the terminal 20 performs positioning calculations by itself using the measurement results. Alternatively, the terminal 20 may report the measurement results to the LMF 30, and the LMF 30 may perform positioning calculations.
  • option 2 when the terminal 20 performs AR using a plurality of PRS resources, it is assumed that the timing for performing phase measurement for each PRS resource is the same. Option 2 assumes, for example, that the base station 10 adjusts the transmission timing for each PRS resource in anticipation of a transmission timing error.
  • PRS resource 1 when using PRS resource 1 and PRS resource 2, from the base station 10, PRS resource 1 transmits a PRS on carrier wave 1, and PRS resource 2 transmits another PRS on carrier wave 2.
  • the terminal 20 measures the PRS transmitted on each carrier wave at the same timing, and measures the phase of each carrier wave.
  • multiple PRS resources may be rephrased as “multiple PRS resource sets” or “multiple CCs.”
  • one PRS resource set corresponds to one carrier wave (also called CC), and the one PRS resource set includes multiple PRS resources transmitted on the carrier wave (CC).
  • CC carrier wave
  • terminal 20 is configured with CPM that uses carrier wave 1 (or CC1) and carrier wave 2 (or CC2). do.
  • the above configuration includes PRS resource A in PRS resource set 1 and PRS resource B in PRS resource set 2.
  • the terminal 20 uses these resources to perform phase measurement using the PRS transmitted on carrier wave 1 and the PRS transmitted on carrier wave 2.
  • the terminal 20 may report capability information indicating that it supports option 1 to the base station 10.
  • the base station 10 may set the PMTO described in option 1 only for the terminal 20 that has transmitted the capability information.
  • the terminal 20 when configuring CPM, the terminal 20 is configured (instructed) by the base station 10 with information instructing it to perform the operation in option 1 or information instructing it to perform the operation in option 2. It may be assumed that The terminal 20 executes the operation of option 1 when the operation of option 1 is set (instructed), and executes the operation of option 2 when the operation of option 2 is set (instructed).
  • the terminal 20 can perform measurements at appropriate timing, taking into account transmission timing errors between PRS resources. Furthermore, since the terminal 20 can compensate for timing errors using the parameters notified from the base station 10, it is possible to perform more accurate positioning.
  • CPM is set from the base station 10 to the terminal 20.
  • the configuration information here includes, for example, PRS resources for each CC in multiple CCs used in CPM.
  • the LMF 30 notifies the terminal 20 of assistance data (AD), for example, by LPP signaling.
  • AD assistance data
  • the assistance data includes, for example, the PMTO described in option 1 of the first embodiment.
  • the terminal 20 that has received the PMTO can perform phase measurement that compensates for transmission timing errors, as described in option 1 of the first embodiment.
  • the assistance data may include a PMTO measurement instruction (measurement request).
  • the terminal 20 that receives this measurement instruction estimates (determines) PMTO as described above.
  • the terminal 20 may use the estimated PMTO to perform phase measurements that compensate for transmission timing errors, as described in option 1 of the first embodiment.
  • the terminal 20 may report the estimated PMTO to the base station 10 or the LMF 30.
  • the base station 10 that has received the PMTO report can perform the operation described in option 2 of the first embodiment.
  • the assistance data includes existing information supported by Rel-16/17 NR (e.g., PRS ID, Cell ID, expected RSTD, Positioning frequency layer, TRP location, beam info, etc.) (Non-patent Document 1). May be included.
  • existing information supported by Rel-16/17 NR e.g., PRS ID, Cell ID, expected RSTD, Positioning frequency layer, TRP location, beam info, etc.
  • the terminal 20 or the base station 10 can compensate for transmission timing errors between PRS resources using the notified parameters. Highly accurate positioning becomes possible.
  • the LMF 30 may notify the base station 10 of the PMTO using assistance information (AI).
  • AI assistance information
  • NRPPa signaling may be used as the signaling here.
  • the base station 10 that has received the PMTO notification can perform the operation described in option 2 of the first embodiment. Furthermore, the base station 10 that has received the PMTO notification may set (notify) the PMTO to the terminal 20. This allows the terminal 20 to perform the operation described in option 1 of the first embodiment.
  • the LMF 30 holds the PMTO of each base station in advance and notifies the corresponding base station 10 of it. Further, the LMF 30 may hold the PMTO received from the terminal 20 in response to the PMTO measurement instruction described in the second embodiment for each base station, and may notify the corresponding base station 10 of the PMTO.
  • the terminal 20 or the base station 10 can compensate for transmission timing errors between PRS resources using the notified parameters. Highly accurate positioning becomes possible.
  • DL-PRS is used as a DL reference signal used for positioning, but this is just an example, and a DL reference signal (or synchronization signal) different from DL-PRS is May be used instead.
  • the reference signal may be read as a positioning signal, a reference signal, or the like.
  • Signaling may be read as “configure with RRC”, “activate/deactivate/update with MAC-CE”, “indicate with DCI”, etc.
  • Ambiguity Resolution (AR) may be read as “Ambiguity estimation”, “Ambiguity fixing”, etc.
  • Carrier Phase Measurement may be read as “Carrier Phase Positioning (CPP)", “Phase-based positioning”, etc.
  • Phase Measurement Timing Offset may be read as “Measurement timing offset”, “Phase offset”, etc.
  • Assistance Data (AD) and “Assistance Information (AI)” may be read as “Assist Data (AD)", “Assist Information (AI)”, etc.
  • the base station 10 and the terminal 20 include the functionality to implement all the embodiments described above. However, the base station 10 and the terminal 20 may each have only the functions of one of all the embodiments.
  • FIG. 13 is a diagram illustrating an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 13 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the transmitter 110 can also transmit a signal to a network device such as the LMF 30.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the receiving unit 120 can also receive signals from a network device such as the LMF 30.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the control unit 110 uses PMTO to perform adjustment so that the transmission timings of multiple carrier waves are aligned. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
  • the LMF 30 may also have the configuration shown in FIG. 13.
  • the transmitter 110 transmits signals to other network devices (including base stations), and the receiver 120 receives signals from other network devices (including base stations). do.
  • FIG. 14 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 14 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10.
  • the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Shared Channel
  • the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20. Further, the transmitter 210 includes the antenna port described in this embodiment.
  • the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the terminal 20.
  • a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
  • the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver. Note that the phase measurement may be performed by the receiving section 220 or the control section 240.
  • the terminal 20 and base station 10 may be configured as, for example, the terminals and base stations described in the following sections.
  • (Additional note 1) a receiving unit that receives configuration information of reference signals transmitted on multiple carriers from a base station; a control unit that assumes that the timing of performing phase measurement for positioning is different between the plurality of carriers;
  • a transmitting unit that transmits configuration information of reference signals transmitted by multiple carriers to a terminal;
  • a base station comprising: a control unit that adjusts transmission timing so that reference signal transmission timings are aligned among the plurality of carriers.
  • the base station according to supplementary note 5 further comprising: a receiving unit that receives a timing offset used for adjusting the transmission timing from a network device.
  • timing errors can be appropriately compensated for by using a timing offset.
  • operations can be performed according to the terminal capabilities.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of the base station 10, terminal 20, and LMF 30 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 140 of the base station 10 shown in FIG. 13 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • control unit 240 of the terminal 20 shown in FIG. 14 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10, the terminal 20, and the LMF 30 are equipped with a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the vehicle 2001 may be equipped with the terminal 20, the base station 10, or the LMF 30.
  • FIG. 16 shows an example of the configuration of vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • the terminal 20 or base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • a terminal in the present disclosure may be replaced by a base station.
  • a configuration may be adopted in which the base station has the functions that the above-described terminal has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises a reception section which receives, from a base station, configuration information of reference signals transmitted by a plurality of carriers, and a control section which assumes that the timing for performing phase measurement for positioning differs among the plurality of carriers.

Description

端末、及び基地局Terminal and base station
 本発明は、無線通信システムにおける端末及び基地局に関連するものである。 The present invention relates to terminals and base stations in wireless communication systems.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている。 In the 3GPP (3rd Generation Partnership Project), in order to further increase system capacity, further increase data transmission speed, further reduce delay in wireless sections, etc., 5G or NR (New Radio) Studies are progressing on a wireless communication system called "NR" (hereinafter referred to as "NR"). In 5G, various wireless technologies and network architectures are being studied in order to meet the requirements of achieving a throughput of 10 Gbps or more while reducing the delay in the wireless section to 1 ms or less.
 また、参照信号等を用いて測位を行うNR Positioningの検討が進められている。また、一般用途NR Positioningの機能拡張として、GNSSなどで採用されている搬送波位相を用いた高精度な測位方法であるキャリア位相測定(Carrier Phase Measurement(CPM))の検討が進められている。 Additionally, studies are underway on NR Positioning, which performs positioning using reference signals and the like. Additionally, as a functional extension of general-purpose NR Positioning, studies are underway on carrier phase measurement (CPM), which is a highly accurate positioning method using carrier phase that is used in GNSS and the like.
 キャリア位相測定において、波数を決定するためのAmbiguity Resolution(AR)を実行する方法として、波長(周波数)が異なる複数の搬送波を使用する方法がある。ARにおいて、端末は各搬送波の位相を測定する。 In carrier phase measurement, one method of performing Ambiguity Resolution (AR) for determining the wave number is to use multiple carrier waves with different wavelengths (frequencies). In AR, the terminal measures the phase of each carrier.
 しかし、波長(周波数)が異なる複数の搬送波を使用する場合、送信側のアンテナコネクタに起因する送信タイミングエラーにより、測定点(端末)において各搬送波の位相を適切に測定できない可能性がある。 However, when using multiple carrier waves with different wavelengths (frequencies), there is a possibility that the phase of each carrier wave cannot be appropriately measured at the measurement point (terminal) due to a transmission timing error caused by the antenna connector on the transmitting side.
 本発明は上記の点に鑑みてなされたものであり、キャリア位相測定において、波長の異なる複数の搬送波を使用する場合に、送信タイミングエラーの影響を軽減するための技術を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technique for reducing the influence of transmission timing errors when using multiple carrier waves with different wavelengths in carrier phase measurement. do.
 開示の技術によれば、複数キャリアで送信される参照信号の設定情報を基地局から受信する受信部と、
 前記複数キャリア間で、測位のための位相測定を行うタイミングが異なることを想定する制御部と、
 を備える端末が提供される。
According to the disclosed technology, a receiving unit receives configuration information of reference signals transmitted on multiple carriers from a base station;
a control unit that assumes that the timing of performing phase measurement for positioning is different between the plurality of carriers;
A terminal is provided.
 開示の技術によれば、キャリア位相測定において、波長の異なる複数の搬送波を使用する場合に、送信タイミングエラーの影響を軽減するための技術が提供される。 According to the disclosed technology, a technology is provided for reducing the influence of transmission timing errors when using multiple carrier waves with different wavelengths in carrier phase measurement.
本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. 本発明の実施の形態における無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. 複数基地局が存在する構成を示す図である。FIG. 2 is a diagram showing a configuration in which multiple base stations exist. キャリア位相測定(CPM)を説明するための図である。FIG. 2 is a diagram for explaining carrier phase measurement (CPM). キャリア位相測定(CPM)を説明するための図である。FIG. 2 is a diagram for explaining carrier phase measurement (CPM). ARの例を説明するための図である。FIG. 2 is a diagram for explaining an example of AR. ARの例を説明するための図である。FIG. 2 is a diagram for explaining an example of AR. 課題を説明するための図である。FIG. 2 is a diagram for explaining a problem. 課題を説明するための図である。FIG. 2 is a diagram for explaining a problem. 基本的な動作例を説明するための図である。FIG. 3 is a diagram for explaining a basic operation example. 第1実施形態の動作例を説明するための図である。FIG. 3 is a diagram for explaining an operation example of the first embodiment. 第2実施形態の動作例を説明するための図である。FIG. 7 is a diagram for explaining an example of operation of the second embodiment. 本発明の実施の形態における基地局10及びLMF30の機能構成の一例を示す図である。It is a diagram showing an example of the functional configuration of a base station 10 and an LMF 30 in an embodiment of the present invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention. 本発明の実施の形態における基地局10又は端末20又はLMF30のハードウェア構成の一例を示す図である。It is a diagram showing an example of the hardware configuration of base station 10, terminal 20, or LMF 30 in an embodiment of the present invention. 車両の一例を示す図である。FIG. 1 is a diagram showing an example of a vehicle.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 (システム構成)
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。また、コアネットワークにはLMF30が備えられており、基地局10と通信可能である。なお、LMF30は、AMFを介して基地局10と通信してもよい。LMF30はネットワーク装置の一例である。
(System configuration)
FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. A wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Furthermore, the core network is equipped with an LMF 30 and is capable of communicating with the base station 10. Note that the LMF 30 may communicate with the base station 10 via AMF. LMF 30 is an example of a network device.
 図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。例えば、端末20が受信するDL-PRS(positioning reference signal)の送信元となる複数の基地局10が備えられてもよい。複数の基地局10のうちの1つ又は複数又は全部は、空中の装置(例:衛星、HAPS)であってもよい。 Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each. For example, a plurality of base stations 10 may be provided that serve as transmission sources of DL-PRS (positioning reference signals) that the terminal 20 receives. One or more or all of the plurality of base stations 10 may be an airborne device (eg, a satellite, HAPS).
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。なお、セルとCCを同義と見なしてもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Furthermore, a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe. Note that a cell and a CC may be considered synonymous.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。 The base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。また、PUCCH又はPUSCHによりUCI(Uplink Control Information)が送信される。 The base station 10 transmits a synchronization signal, system information, etc. to the terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 via DL (Downlink), and receives the control signal or data from the terminal 20 via UL (Uplink). Note that here, what is transmitted on control channels such as PUCCH and PDCCH is called a control signal, and what is transmitted on shared channels such as PUSCH and PDSCH is called data. It is. Further, UCI (Uplink Control Information) is transmitted via PUCCH or PUSCH.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。また、端末20は、搬送波位相測位機能を備えている。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB. Furthermore, the terminal 20 is equipped with a carrier phase positioning function.
 端末20は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 can perform carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the base station 10. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used. Also, a PUCCH-SCell with PUCCH may be used.
 LMF30は、5GCにおいて規定された位置情報サービスに関する通信制御を担う機能(装置)である。LMF30を位置管理サーバあるいは位置管理装置あるいはネットワーク装置と呼んでもよい。LMF30は、例えば、端末20あるいは基地局10から参照信号の測定結果(位相、受信電力、時間差、角度等)を受信し、端末20の位置を計算することができる。また、LMF30は、測位に関する設定情報あるいは制御情報を端末20及び基地局10に提供することができる。 The LMF 30 is a function (device) responsible for communication control regarding location information services defined in 5GC. The LMF 30 may also be called a location management server, location management device, or network device. The LMF 30 can receive reference signal measurement results (phase, received power, time difference, angle, etc.) from the terminal 20 or the base station 10, and calculate the position of the terminal 20, for example. Further, the LMF 30 can provide setting information or control information regarding positioning to the terminal 20 and the base station 10.
 図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示すとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク40に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 shows a configuration example of a wireless communication system when DC (dual connectivity) is implemented. As shown in FIG. 2, a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided. Base station 10A and base station 10B are each connected to core network 40. Terminal 20 can communicate with both base station 10A and base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCell)と1以上のSCellから構成される。 A cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and a cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group). Furthermore, in the DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCell) and one or more SCells.
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。図3は、端末20が、複数の基地局10A~10Cから参照信号を受信することにより、測位を行う場合の例を示している。基本的には、端末20と複数基地局との間の距離を求めることで、端末20の位置を求めることができる。 The processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these. FIG. 3 shows an example in which the terminal 20 performs positioning by receiving reference signals from a plurality of base stations 10A to 10C. Basically, the position of the terminal 20 can be determined by determining the distance between the terminal 20 and multiple base stations.
 端末20と基地局との間の距離は、信号の到達時間、あるいは信号の搬送波の波数(波数×波長)により求めることができる。本実施形態では、後述するように、搬送波の波数を用いている。 The distance between the terminal 20 and the base station can be determined by the arrival time of the signal or the wave number (wave number x wavelength) of the signal carrier wave. In this embodiment, the wave number of the carrier wave is used, as will be described later.
 (課題について)
 測位に使用する参照信号をPRSと呼ぶことにする。本実施の形態では、端末20が、キャリア位相測定(Carrier Phase Measurement(CPM))を行う。前述したとおり、CPMは、GNSSなどで採用されている搬送波位相を用いた高精度な測位方法である。
(About the assignment)
The reference signal used for positioning will be called PRS. In this embodiment, the terminal 20 performs carrier phase measurement (CPM). As mentioned above, CPM is a highly accurate positioning method using carrier phase, which is used in GNSS and the like.
 図4に、CPMの概要を示す。図4は、基地局10が衛星である場合の例を示している。図4に示すように、CPMでは、搬送波数と、搬送波の受信位相差(1波未満の部分の位相)を用いて、基準点と測位点間の距離を求めることで、測位点の位置を求める。具体的には、到来距離Lは、「到来距離(L)=搬送波波長(λ)×波数(N)+受信位相差によるズレ(Δλ)」と表すことができる。Δλに対応する位相は参照信号を測定することで求めることができるが、波数(N)は、1つの測定(1搬送波を使用した測定)では決定することができない。図5に示すように、L1信号を用いる場合、100mの幅にN(波数)の候補は約500個ある。 Figure 4 shows an overview of CPM. FIG. 4 shows an example where the base station 10 is a satellite. As shown in Fig. 4, in CPM, the position of the positioning point is determined by finding the distance between the reference point and the positioning point using the number of carrier waves and the reception phase difference of the carrier wave (the phase of the part less than one wave). demand. Specifically, the arrival distance L can be expressed as "arrival distance (L) = carrier wave wavelength (λ) x wave number (N) + shift due to reception phase difference (Δλ)". Although the phase corresponding to Δλ can be determined by measuring the reference signal, the wave number (N) cannot be determined by one measurement (measurement using one carrier wave). As shown in FIG. 5, when using the L1 signal, there are about 500 N (wave number) candidates in a width of 100 m.
 CPMにおいて、波数(N)を決定する過程はAmbiguity Resolution(AR)と呼ばれる。ここで、GNSSでは,複数衛星を利用することで初期値(=伝搬時間を利用し、ある程度位置の候補を絞る)を計算してからARを行うのが一般的である。 In CPM, the process of determining the wave number (N) is called Ambiguity Resolution (AR). Here, in GNSS, it is common to perform AR after calculating an initial value (using propagation time to narrow down the position candidates to a certain extent) by using multiple satellites.
 波数(N)の決定方法としてはいくつかの方法が提案されているが、代表的な方法として、下記の(1)、(2)の方法がある。 Several methods have been proposed for determining the wave number (N), and the following methods (1) and (2) are typical methods.
 (1)衛星の移動を利用する方法
 GPS衛星は座標が刻々と変わるため、複数回受信機で信号を受信することで波数(N)を絞る。この方法のイメージを図6に示す。
(1) Method using the movement of satellites Since the coordinates of GPS satellites change every moment, the number of waves (N) can be narrowed down by receiving the signal multiple times with a receiver. An image of this method is shown in FIG.
 (2)異なる周波数の複数の搬送波を利用する方法
 波長(周波数)が異なる搬送波の位相を利用することで、候補点を大幅に削減することができる。例えば、波長が異なる搬送波として、L1信号(1575.42MHz)とL2信号(1227.60MHz)を利用する。この方法のイメージを図7に示す。本実施の形態に係る提案は、上記(2)の異なる周波数の複数の搬送波を利用する方法を対象としている。
(2) Method of using multiple carrier waves with different frequencies By using the phases of carrier waves with different wavelengths (frequencies), the number of candidate points can be significantly reduced. For example, an L1 signal (1575.42 MHz) and an L2 signal (1227.60 MHz) are used as carrier waves with different wavelengths. An image of this method is shown in FIG. The proposal according to the present embodiment is directed to the method (2) above, which uses a plurality of carrier waves of different frequencies.
 NRではCPMのARで用いるPRSリソースが複数のコンポーネントキャリア(CC)に設定(configure)されることが想定される。なお、コンポーネントキャリアをキャリアと呼んでもよい。 In NR, it is assumed that PRS resources used in CPM AR are configured on multiple component carriers (CCs). Note that the component carrier may also be referred to as a carrier.
 前述したとおり、一般的に、CC間多重を行う場合には、送信側のアンテナコネクタに起因する信号の送信タイミングエラーが生じる。そのため、既存の仕様であるTS38.104において、MIMO CAを想定したCAパターンごとに許容タイミングエラー(Time Alignment Error:TAE)が規定されている。規定内容を図8に示す。TAEは、異なる2つの信号間のタイミング差の最大値である。 As mentioned above, when inter-CC multiplexing is performed, generally, a signal transmission timing error occurs due to the antenna connector on the transmitting side. Therefore, in the existing specification TS38.104, allowable timing errors (Time Alignment Errors: TAE) are defined for each CA pattern assuming MIMO CA. The stipulated contents are shown in Figure 8. TAE is the maximum timing difference between two different signals.
 波長の異なる複数の搬送波を用いて、CPMのARを行う場合、CC間の送信タイミングエラーにより,適切なタイミングで各搬送波の位相測定(位相差検出)を行うことができない可能性がある。例えば図9に示すように、波長の異なる複数の搬送波としてCC#0とCC#1を使用した場合、送信タイミングエラーにより、位相を測定すべきタイミングにずれが生じてしまう。このずれを考慮せずにCC#0とCC#1を同時に測定した場合、適切な位相測定結果を得ることができない。 When performing CPM AR using multiple carrier waves with different wavelengths, there is a possibility that the phase measurement (phase difference detection) of each carrier wave cannot be performed at an appropriate timing due to a transmission timing error between CCs. For example, as shown in FIG. 9, when CC#0 and CC#1 are used as a plurality of carrier waves with different wavelengths, a shift occurs in the timing at which the phase should be measured due to a transmission timing error. If CC#0 and CC#1 are measured simultaneously without taking this shift into account, appropriate phase measurement results cannot be obtained.
 以下、CPMにおけるPRS送信タイミングエラーによる影響を軽減するための技術について説明する。 Hereinafter, a technique for reducing the influence of PRS transmission timing errors in CPM will be described.
 (実施形態の概要)
 以下、第0実施形態~第3実施形態を説明する。第0実施形態~第3実施形態の動作概要は下記のとおりである。以下の説明においてネットワーク(NW)を基地局10(又はLMF30)に置き換えてもよい。また、以下の説明において、「CC」を「セル」に置き換えてもよい。
(Summary of embodiment)
The zeroth to third embodiments will be described below. The operation outline of the 0th embodiment to the 3rd embodiment is as follows. In the following description, the network (NW) may be replaced with the base station 10 (or LMF 30). Furthermore, in the following description, "CC" may be replaced with "cell".
 第0実施形態(ハイレベルの提案):端末20は、キャリア位相測定(CPM)が設定(configure)されることを想定する。 Zeroth embodiment (high-level proposal): The terminal 20 assumes that carrier phase measurement (CPM) is configured.
 第0実施形態のバリエーションとして、端末20は、キャリア位相情報(位相測定結果)をDL-PRS measurement resultとして報告するよう、NWから設定(configure)されると想定してもよい。 As a variation of the zeroth embodiment, it may be assumed that the terminal 20 is configured by the NW to report carrier phase information (phase measurement result) as DL-PRS measurement result.
 第1実施形態:端末20は、CPMが設定された時、PRSリソース単位の位相測定タイミングを想定する。 First embodiment: When the CPM is set, the terminal 20 assumes phase measurement timing in units of PRS resources.
 第2実施形態:端末20は、CPMが設定された時、位相測定タイミングに関連するアシスタンスデータ (AD: assistance data)がLMF30から端末20にシグナリング(通知)されると想定する。 Second embodiment: When the CPM is set, the terminal 20 assumes that assistance data (AD) related to phase measurement timing is signaled (notified) from the LMF 30 to the terminal 20.
 第3実施形態:LMF30は、アシスタンス情報(AI: assistance information)を用いて、基地局10へ位相測定タイミングオフセット(PMTO: Phase measurement timing offset)を通知してもよい。 Third embodiment: The LMF 30 may notify the base station 10 of the phase measurement timing offset (PMTO) using assistance information (AI).
 第0実施形態~第3実施形態により、PRSリソース間で送信タイミングが異なる場合であっても(例:CA時)、キャリア位相測定を適用することが可能になり、高精度位置測位を実現できる。以下、各実施形態を詳細に説明する。第0実施形態~第3実施形態は任意に組み合わせて実施可能である。 According to the 0th to 3rd embodiments, it is possible to apply carrier phase measurement even when the transmission timing differs between PRS resources (e.g. during CA), and high-precision positioning can be achieved. . Each embodiment will be described in detail below. The 0th embodiment to the 3rd embodiment can be implemented in any combination.
 (第0実施形態)
 第0実施形態において、端末20は、キャリア位相測定(CPM)が設定(configure)されることを想定する。端末20は、キャリア位相情報(位相測定結果)をDL-PRS measurement resultとして報告するよう、NWから設定(configure)されると想定してもよい。第0実施形態における基本的な動作例を、図10を参照して説明する。
(0th embodiment)
In the zeroth embodiment, it is assumed that the terminal 20 is configured with carrier phase measurement (CPM). It may be assumed that the terminal 20 is configured by the NW to report carrier phase information (phase measurement result) as a DL-PRS measurement result. A basic operation example in the 0th embodiment will be explained with reference to FIG. 10.
 S101において、端末20は基地局10に対して能力情報(UE capability)を送信する。なお、S101を行わないこととしてもよい。 In S101, the terminal 20 transmits capability information (UE capability) to the base station 10. Note that S101 may not be performed.
 S102において、基地局10は端末20に対して、キャリア位相測定に関する設定情報を送信し、端末20はこれを受信する。設定情報には、例えば、PRSリソース及び後述するPMTOの情報が含まれる。 In S102, the base station 10 transmits configuration information regarding carrier phase measurement to the terminal 20, and the terminal 20 receives this. The configuration information includes, for example, PRS resources and PMTO information, which will be described later.
 例えば、端末20は、S103において、DL-PRSの設定情報に基づいて、複数CCを用いて同時送信されたDL-PRSを受信し、各CCの端末20での位相の測定を実施する。端末20は測定結果を用いて測位計算を行ってもよいし、測定結果をNWに報告してもよい。 For example, in S103, the terminal 20 receives DL-PRS transmitted simultaneously using multiple CCs based on the DL-PRS configuration information, and measures the phase of each CC at the terminal 20. The terminal 20 may perform positioning calculations using the measurement results, or may report the measurement results to the NW.
 (第1実施形態)
 第1実施形態では、端末20は、基地局10からCPMが設定された場合、PRSリソース単位の位相測定タイミングを想定する。例えば、端末20は、CPM(ARを含む)を実行する際に、PRSリソース単位の位相測定タイミングを使用して、複数搬送波それぞれの位相を測定する。より具体的な例として、オプション1とオプション2を説明する。
(First embodiment)
In the first embodiment, when CPM is set by the base station 10, the terminal 20 assumes phase measurement timing in units of PRS resources. For example, when executing CPM (including AR), the terminal 20 measures the phase of each of a plurality of carrier waves using phase measurement timing in units of PRS resources. Option 1 and Option 2 will be explained as more specific examples.
 <第1実施形態:オプション1>
 端末20は、複数のPRSリソースでARを実行する時に、PRSリソースごとに位相測定を行うタイミングが異なってもよいと想定する。ここでの複数のPRSリソースは、端末20がCPMを実行する際に測定する複数搬送波に対応する。
<First embodiment: Option 1>
When the terminal 20 performs AR using a plurality of PRS resources, it is assumed that the timing at which phase measurement is performed for each PRS resource may be different. The plurality of PRS resources here correspond to the plurality of carrier waves measured when the terminal 20 executes CPM.
 例えば、PRSリソース1とPRSリソース2を用いる場合、基地局10から、PRSリソース1により搬送波1でPRSが送信され、PRSリソース2により搬送波2で別のPRSが送信される。端末20は、各搬送波で送信されるPRSを受信することで、各搬送波の位相を後述するPMTOに従って異なるタイミングで測定する。 For example, when using PRS resource 1 and PRS resource 2, from the base station 10, PRS resource 1 transmits a PRS on carrier wave 1, and PRS resource 2 transmits another PRS on carrier wave 2. The terminal 20 measures the phase of each carrier wave at different timings according to PMTO, which will be described later, by receiving the PRS transmitted on each carrier wave.
 また、上記「複数のPRSリソース」が、「複数のPRSリソースセット」あるいは「複数のCC」に言い換えられてもよい。 Furthermore, the above-mentioned "multiple PRS resources" may be rephrased as "multiple PRS resource sets" or "multiple CCs."
 例えば、1つのPRSリソースセットが1つの搬送波(CCと呼んでもよい)に対応し、当該1つのPRSリソースセットの中に、当該搬送波(CC)で送信される複数のPRSリソースが含まれていてもよい。例えば、PRSリソースセット1が搬送波1に対応し、PRSリソースセット2が搬送波2に対応するとして、端末20が、搬送波1(あるいはCC1)と搬送波2(あるいはCC2)を使用するCPMを設定されたとする。 For example, one PRS resource set corresponds to one carrier wave (also called CC), and the one PRS resource set includes multiple PRS resources transmitted on the carrier wave (CC). Good too. For example, suppose that PRS resource set 1 corresponds to carrier wave 1 and PRS resource set 2 corresponds to carrier wave 2, and terminal 20 is configured with CPM that uses carrier wave 1 (or CC1) and carrier wave 2 (or CC2). do.
 例えば、上記の設定には、PRSリソースセット1の中のPRSリソースAが含まれ、PRSリソースセット2の中のPRSリソースBが含まれる。端末20はこれらのリソースを利用して、搬送波1で送信されるPRSと搬送波2で送信されるPRSを用いて位相測定を行う。 For example, the above configuration includes PRS resource A in PRS resource set 1 and PRS resource B in PRS resource set 2. The terminal 20 uses these resources to perform phase measurement using the PRS transmitted on carrier wave 1 and the PRS transmitted on carrier wave 2.
  <第1実施形態:オプション1:PMTOについて>
 各CC(あるいは搬送波、キャリア)に対する位相の測定を行うタイミングに関しては、位相測定タイミングオフセット(PMTO:Phase measurement timing offset)が仕様で規定されてもよい。その場合、端末20は、当該仕様に規定されたPMTOで示されるタイミングに基づいて各CCの位相を測定する。
<First embodiment: Option 1: About PMTO>
Regarding the timing of measuring the phase for each CC (or carrier wave, carrier), a phase measurement timing offset (PMTO) may be defined in the specifications. In that case, the terminal 20 measures the phase of each CC based on the timing indicated by PMTO defined in the specification.
 PMTOは、少なくとも2つのCC間でのタイミング差(タイミングオフセット)を表す。PMTOとして、任意のCC間でのタイミングオフセットが規定されてもよいし、Inter-band CA (contiguous), Inter-band CA (non-contiguous), Intra-band CAごとに、CAを構成するCC間でのタイミングオフセットが規定されてもよい。また、PMTOの値は、FR1とFR2とで異なっていてもよい。 PMTO represents the timing difference (timing offset) between at least two CCs. As a PMTO, a timing offset between arbitrary CCs may be specified, and a timing offset between CCs that constitute the CA may be specified for each Inter-band CA (contiguous), Inter-band CA (non-contiguous), or Intra-band CA. A timing offset at may be defined. Further, the value of PMTO may be different between FR1 and FR2.
 また、PMTOが基地局10から端末20へ通知(シグナリング)されてもよい。通知は例えばRRCシグナリングで行われる。PMTOの通知方法に関しては、端末20に既に設定されたPRSリソースのインデックス(2インデックスの組であってもよい)に対応したPMTOが通知されてもよいし、PMTOがCCのインデックスとともに通知されてもよい。 Furthermore, PMTO may be notified (signaled) from the base station 10 to the terminal 20. The notification is performed, for example, by RRC signaling. Regarding the PMTO notification method, the PMTO corresponding to the PRS resource index (which may be a set of two indexes) already configured in the terminal 20 may be notified, or the PMTO may be notified together with the CC index. Good too.
 また、複数のPMTO(実際に使用するPMTOの候補)がRRCシグナリングで基地局10から端末20に通知され、当該複数PMTOの中で実際に使用するPMTO(のインデックス)が、MAC CEあるいはDCIで基地局10から端末20に指示されてもよい。 In addition, multiple PMTOs (candidates for PMTOs to actually use) are notified from the base station 10 to the terminal 20 by RRC signaling, and among the multiple PMTOs, (the index of) the PMTO to actually use is determined by MAC CE or DCI. The terminal 20 may be instructed from the base station 10.
 また、端末20がPMTOを決定してもよい。例えば、端末20は、PMTOを決定する対象のCC間での信号(例えば参照信号)の受信タイミングの差を測定することによりTAE(基地局10における送信タイミングエラー)を測定し、測定結果を、PMTOとして使用する。また、測定結果として得られたPMTOを、測定を行った2CCのCC index(もしくはBWP ID)の組み合わせとともに基地局10に報告してもよい。 Alternatively, the terminal 20 may determine the PMTO. For example, the terminal 20 measures TAE (transmission timing error at the base station 10) by measuring the difference in reception timing of a signal (for example, a reference signal) between CCs for which PMTO is to be determined, and transmits the measurement result to Used as PMTO. Furthermore, the PMTO obtained as the measurement result may be reported to the base station 10 together with the combination of CC index (or BWP ID) of the two CCs that performed the measurement.
 また、端末20は、基地局10からPMTO推定指示(TAE推定指示)を受信した場合に、自身でPMTOを推定(決定)し、決定した値を使用してCPMを行うこととしてもよい。基地局10からPMTO推定指示(TAE推定指示)を受信しない場合に、端末20は、前述した規定値又は基地局10からの設定値を使用してもよい。 Furthermore, when the terminal 20 receives a PMTO estimation instruction (TAE estimation instruction) from the base station 10, the terminal 20 may estimate (determine) PMTO by itself and perform CPM using the determined value. If the terminal 20 does not receive a PMTO estimation instruction (TAE estimation instruction) from the base station 10, the terminal 20 may use the above-described specified value or the set value from the base station 10.
  <第1実施形態:オプション1:動作例>
 図10を参照して動作例を説明する。S102で、端末20は基地局10から、CPMを行うための複数PRMリソースとPMTOを含む設定情報を受信する。
<First embodiment: Option 1: Operation example>
An example of operation will be described with reference to FIG. In S102, the terminal 20 receives configuration information including multiple PRM resources and PMTO for performing CPM from the base station 10.
 S104において、当該設定情報を用いて、各CCの位相を測定する。例えば、図11に示すように、CC#0とCC#1との間のPMTOが設定(又は、規定、推定)されているとする。端末20は、Aで示すタイミングでCC#0の位相を測定し、Aで示すタイミングからPMTOだけ後のBで示すタイミングでCC#1の位相を測定する。端末20は、測定結果を用いて、自身で測位計算を行う。あるいは、端末20は、測定結果をLMF30に報告し、LMF30が測位計算を行うこととしてもよい。 In S104, the phase of each CC is measured using the setting information. For example, as shown in FIG. 11, it is assumed that PMTO between CC#0 and CC#1 is set (or defined or estimated). The terminal 20 measures the phase of CC #0 at a timing indicated by A, and measures the phase of CC #1 at a timing indicated by B, which is PMTO after the timing indicated by A. The terminal 20 performs positioning calculations by itself using the measurement results. Alternatively, the terminal 20 may report the measurement results to the LMF 30, and the LMF 30 may perform positioning calculations.
 <第1実施形態:オプション2>
 次に、オプション2を説明する。オプション2において、端末20は、複数のPRSリソースでARを実行する時に、PRSリソースごとに位相測定を行うタイミングが同じであると想定する。オプション2では、例えば、基地局10が送信タイミングエラーを見込んで、PRSリソースごとに送信タイミングを調整することを想定している。
<First embodiment: Option 2>
Next, option 2 will be explained. In option 2, when the terminal 20 performs AR using a plurality of PRS resources, it is assumed that the timing for performing phase measurement for each PRS resource is the same. Option 2 assumes, for example, that the base station 10 adjusts the transmission timing for each PRS resource in anticipation of a transmission timing error.
 例えば、PRSリソース1とPRSリソース2を用いる場合、基地局10から、PRSリソース1により搬送波1でPRSが送信され、PRSリソース2により搬送波2で別のPRSが送信される。端末20は、各搬送波で送信されるPRSを同じタイミングで測定し、各搬送波の位相を測定する。 For example, when using PRS resource 1 and PRS resource 2, from the base station 10, PRS resource 1 transmits a PRS on carrier wave 1, and PRS resource 2 transmits another PRS on carrier wave 2. The terminal 20 measures the PRS transmitted on each carrier wave at the same timing, and measures the phase of each carrier wave.
 上記「複数のPRSリソース」が、「複数のPRSリソースセット」あるいは「複数のCC」に言い換えられてもよい。 The above-mentioned "multiple PRS resources" may be rephrased as "multiple PRS resource sets" or "multiple CCs."
 例えば、1つのPRSリソースセットが1つの搬送波(CCと呼んでもよい)に対応し、当該1つのPRSリソースセットの中に、当該搬送波(CC)で送信される複数のPRSリソースが含まれていてもよい。例えば、PRSリソースセット1が搬送波1に対応し、PRSリソースセット2が搬送波2に対応するとして、端末20が、搬送波1(あるいはCC1)と搬送波2(あるいはCC2)を使用するCPMを設定されたとする。 For example, one PRS resource set corresponds to one carrier wave (also called CC), and the one PRS resource set includes multiple PRS resources transmitted on the carrier wave (CC). Good too. For example, suppose that PRS resource set 1 corresponds to carrier wave 1 and PRS resource set 2 corresponds to carrier wave 2, and terminal 20 is configured with CPM that uses carrier wave 1 (or CC1) and carrier wave 2 (or CC2). do.
 例えば、上記の設定には、PRSリソースセット1の中のPRSリソースAが含まれ、PRSリソースセット2の中のPRSリソースBが含まれる。端末20はこれらのリソースを利用して、搬送波1で送信されるPRSと搬送波2で送信されるPRSを用いて位相測定を行う。 For example, the above configuration includes PRS resource A in PRS resource set 1 and PRS resource B in PRS resource set 2. The terminal 20 uses these resources to perform phase measurement using the PRS transmitted on carrier wave 1 and the PRS transmitted on carrier wave 2.
 <オプション1とオプション2の動作について>
 例えば、端末20は、オプション1をサポートすることを示す能力情報を基地局10に報告してもよい。基地局10は、当該能力情報を送信した端末20に対してのみ、オプション1で説明したPMTOを設定してもよい。
<About the operation of option 1 and option 2>
For example, the terminal 20 may report capability information indicating that it supports option 1 to the base station 10. The base station 10 may set the PMTO described in option 1 only for the terminal 20 that has transmitted the capability information.
 また、端末20は、CPMの設定の際に、オプション1での動作を行うことを指示する情報、又は、オプション2での動作を行うことを指示する情報が基地局10から設定(指示)されると想定してもよい。端末20は、オプション1の動作が設定(指示)された場合に、オプション1の動作を実行し、オプション2の動作が設定(指示)された場合に、オプション2の動作を実行する。 In addition, when configuring CPM, the terminal 20 is configured (instructed) by the base station 10 with information instructing it to perform the operation in option 1 or information instructing it to perform the operation in option 2. It may be assumed that The terminal 20 executes the operation of option 1 when the operation of option 1 is set (instructed), and executes the operation of option 2 when the operation of option 2 is set (instructed).
 以上説明した第1実施形態に係る技術により、PRSリソース間の送信タイミングエラーを考慮して、端末20が適切なタイミングで測定を行うことができる。また、端末20は、基地局10から通知されたパラメータを用いてタイミングエラーの補償が可能になるため、より高精度な位置測位が可能となる。 With the technology according to the first embodiment described above, the terminal 20 can perform measurements at appropriate timing, taking into account transmission timing errors between PRS resources. Furthermore, since the terminal 20 can compensate for timing errors using the parameters notified from the base station 10, it is possible to perform more accurate positioning.
 (第2実施形態)
 次に、第2実施形態を説明する。第2実施形態では、端末20は、端末20に対してCPMが設定された場合には、位相測定タイミングに関連するアシスタンスデータ(AD)がLMF30から端末20に対して通知(シグナリング)されると想定してもよい。
(Second embodiment)
Next, a second embodiment will be described. In the second embodiment, when CPM is set for the terminal 20, the terminal 20 receives notification (signaling) of assistance data (AD) related to phase measurement timing from the LMF 30 to the terminal 20. You can assume that.
 第2実施形態における動作例を、図12を参照して説明する。S201において、基地局10から端末20に対してCPMが設定される。ここでの設定情報には、例えば、CPMで使用する複数CCにおけるCC毎のPRSリソースが含まれる。 An example of the operation in the second embodiment will be described with reference to FIG. 12. In S201, CPM is set from the base station 10 to the terminal 20. The configuration information here includes, for example, PRS resources for each CC in multiple CCs used in CPM.
 S202において、LMF30から端末20に対し、例えばLPPシグナリングで、アシスタンスデータ(AD)が通知される。 In S202, the LMF 30 notifies the terminal 20 of assistance data (AD), for example, by LPP signaling.
 アシスタンスデータには、例えば、第1実施形態のオプション1で説明したPMTOが含まれる。PMTOを受信した端末20は、第1実施形態のオプション1で説明したように、送信タイミングエラーを補償した位相測定を行うことができる。 The assistance data includes, for example, the PMTO described in option 1 of the first embodiment. The terminal 20 that has received the PMTO can perform phase measurement that compensates for transmission timing errors, as described in option 1 of the first embodiment.
 また、アシスタンスデータには、PMTOの測定指示(measurement request)が含まれていてもよい。この測定指示を受信した端末20は、前述したようにPMTOを推定(決定)する。端末20は、推定したPMTOを使用して、第1実施形態のオプション1で説明したように、送信タイミングエラーを補償した位相測定を行ってもよい。また、端末20は、推定したPMTOを基地局10又はLMF30に報告してもよい。PMTOの報告を受けた基地局10は、第1実施形態のオプション2で説明した動作を行うことができる。 Further, the assistance data may include a PMTO measurement instruction (measurement request). The terminal 20 that receives this measurement instruction estimates (determines) PMTO as described above. The terminal 20 may use the estimated PMTO to perform phase measurements that compensate for transmission timing errors, as described in option 1 of the first embodiment. Furthermore, the terminal 20 may report the estimated PMTO to the base station 10 or the LMF 30. The base station 10 that has received the PMTO report can perform the operation described in option 2 of the first embodiment.
 また、アシスタンスデータには、Rel-16/17 NRでサポートしている既存情報(例:PRS ID, Cell ID, expected RSTD, Positioning frequency layer, TRP location, beam infoなど)(非特許文献1)が含まれていてもよい。 In addition, the assistance data includes existing information supported by Rel-16/17 NR (e.g., PRS ID, Cell ID, expected RSTD, Positioning frequency layer, TRP location, beam info, etc.) (Non-patent Document 1). May be included.
 以上説明した第2実施形態に係る技術によれば、PRSリソース間の送信タイミングエラーに対して、端末20又は基地局10は、通知されたパラメータを用いて補償することが可能になるため、より高精度な位置測位が可能となる。 According to the technology according to the second embodiment described above, the terminal 20 or the base station 10 can compensate for transmission timing errors between PRS resources using the notified parameters. Highly accurate positioning becomes possible.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態は、第0実施形態~第2実施形態のうちのいずれの実施形態と組み合わせて実施してもよい。第3実施形態では、LMF30は支援情報(AI:assistance information)を用いて、基地局10へPMTOを通知してもよい。ここでのシグナリングとして、NRPPaシグナリングを使用してもよい。
(Third embodiment)
Next, a third embodiment will be described. The third embodiment may be implemented in combination with any of the zeroth to second embodiments. In the third embodiment, the LMF 30 may notify the base station 10 of the PMTO using assistance information (AI). NRPPa signaling may be used as the signaling here.
 PMTOの通知を受けた基地局10は、第1実施形態のオプション2で説明した動作を行うことができる。また、PMTOの通知を受けた基地局10は、PMTOを端末20に設定(通知)してもよい。これにより、端末20は、第1実施形態のオプション1で説明した動作を行うことができる。 The base station 10 that has received the PMTO notification can perform the operation described in option 2 of the first embodiment. Furthermore, the base station 10 that has received the PMTO notification may set (notify) the PMTO to the terminal 20. This allows the terminal 20 to perform the operation described in option 1 of the first embodiment.
 例えば、LMF30は、予め各基地局のPMTOを保持し、それを該当基地局10へ通知する。また、LMF30は、第2実施形態で説明したPMTO測定指示に対して端末20から受信したPMTOを基地局毎に保持し、それを該当基地局10へ通知してもよい。 For example, the LMF 30 holds the PMTO of each base station in advance and notifies the corresponding base station 10 of it. Further, the LMF 30 may hold the PMTO received from the terminal 20 in response to the PMTO measurement instruction described in the second embodiment for each base station, and may notify the corresponding base station 10 of the PMTO.
 以上説明した第3実施形態に係る技術によれば、PRSリソース間の送信タイミングエラーに対して、端末20又は基地局10は、通知されたパラメータを用いて補償することが可能になるため、より高精度な位置測位が可能となる。 According to the technology according to the third embodiment described above, the terminal 20 or the base station 10 can compensate for transmission timing errors between PRS resources using the notified parameters. Highly accurate positioning becomes possible.
 (その他の例)
 以下、第0実施形態~第3実施形態のいずれにも適用可能な例を説明する。
(Other examples)
An example applicable to any of the zeroth to third embodiments will be described below.
 本実施の形態では測位に使用するDLの参照信号としてDL-PRSを使用しているが、これは例であり、DL-PRSとは異なるDLの参照信号(又は同期信号)を、DL-PRSに代えて使用してもよい。また、参照信号を、測位信号、基準信号などに読み替えてもよい。 In this embodiment, DL-PRS is used as a DL reference signal used for positioning, but this is just an example, and a DL reference signal (or synchronization signal) different from DL-PRS is May be used instead. Further, the reference signal may be read as a positioning signal, a reference signal, or the like.
 また、"signaling"(シグナリング)は、"RRCでconfigure"、"MAC-CEでactivate/deactivate/update"、"DCIでindicate"などに読み替えられてもよい。"Ambiguity Resolution (AR)"は、"Ambiguity estimation"、"Ambiguity fixing"などに読み替えられてもよい。 Additionally, "signaling" may be read as "configure with RRC", "activate/deactivate/update with MAC-CE", "indicate with DCI", etc. "Ambiguity Resolution (AR)" may be read as "Ambiguity estimation", "Ambiguity fixing", etc.
 また、"Carrier Phase Measurement (CPM)"は、"Carrier Phase Positioning (CPP)"、"Phase-based positioning"などに読み替えられてもよい。"Phase Measurement Timing Offset (PMTO)"は、"Measurement timing offset"、"Phase offset"などに読み替えられてもよい。"Assistance Data (AD)"、"Assistance Information (AI)"は、"Assist Data (AD)"、"Assist Information (AI)"などに読み替えられてもよい。 Additionally, "Carrier Phase Measurement (CPM)" may be read as "Carrier Phase Positioning (CPP)", "Phase-based positioning", etc. "Phase Measurement Timing Offset (PMTO)" may be read as "Measurement timing offset", "Phase offset", etc. "Assistance Data (AD)" and "Assistance Information (AI)" may be read as "Assist Data (AD)", "Assist Information (AI)", etc.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10、端末20の機能構成例を説明する。基地局10及び端末20は上述した全部の実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、全部の実施例のうちのいずれかの実施例の機能のみを備えることとしてもよい。
(Device configuration)
Next, an example of the functional configuration of the base station 10 and terminal 20 that execute the processes and operations described above will be described. The base station 10 and the terminal 20 include the functionality to implement all the embodiments described above. However, the base station 10 and the terminal 20 may each have only the functions of one of all the embodiments.
 <基地局10>
 図13は、基地局10の機能構成の一例を示す図である。図13に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
<Base station 10>
FIG. 13 is a diagram illustrating an example of the functional configuration of the base station 10. As shown in FIG. 13, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 13 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. Furthermore, the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。送信部110は、LMF30などのネットワーク装置へ信号を送信することもできる。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。受信部120は、LMF30などのネットワーク装置から信号を受信することもできる。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The transmitter 110 can also transmit a signal to a network device such as the LMF 30. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. The receiving unit 120 can also receive signals from a network device such as the LMF 30. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、LBTを行う機能を含む。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、制御部110は、PMTOを用いて、複数搬送波間で送信タイミングが揃うように調整を行う。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。 The control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the control unit 110 uses PMTO to perform adjustment so that the transmission timings of multiple carrier waves are aligned. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
 また、LMF30も図13に示す構成であってもよい。図13に示す構成がLMFである場合、送信部110は他のネットワーク装置(基地局を含む)に信号を送信し、受信部120は、他のネットワーク装置(基地局を含む)から信号を受信する。 Furthermore, the LMF 30 may also have the configuration shown in FIG. 13. When the configuration shown in FIG. 13 is LMF, the transmitter 110 transmits signals to other network devices (including base stations), and the receiver 120 receives signals from other network devices (including base stations). do.
 <端末20>
 図14は、端末20の機能構成の一例を示す図である。図14に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
<Terminal 20>
FIG. 14 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. 14, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 14 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。また、送信部210には、本実施形態で説明したアンテナポートが含まれる。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10. For example, the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication. (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 220 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20. Further, the transmitter 210 includes the antenna port described in this embodiment.
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。 The setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance.
 制御部240は、端末20の制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210を送信機と呼び、受信部220を受信機と呼んでもよい。なお、位相測定は受信部220が行ってもよいし、制御部240が行ってもよい。 The control unit 240 controls the terminal 20. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver. Note that the phase measurement may be performed by the receiving section 220 or the control section 240.
 <付記>
 端末20、基地局10は、例えば下記の各項に記載された端末、基地局として構成されてもよい。
(付記項1)
 複数キャリアで送信される参照信号の設定情報を基地局から受信する受信部と、
 前記複数キャリア間で、測位のための位相測定を行うタイミングが異なることを想定する制御部と、
 を備える端末。
(付記項2)
 前記受信部は、規定されたタイミングオフセット、又は、前記基地局から通知されたタイミングオフセットを用いて、前記複数キャリアに対して異なるタイミングで、前記参照信号を用いて位相測定を行う
 付記項1に記載の端末。
(付記項3)
 前記制御部は、前記複数キャリア間のタイミングオフセットを推定し、推定したタイミングオフセットに基づくタイミングで前記複数キャリアに対する位相測定を行う
 付記項1に記載の端末。
(付記項4)
 前記複数キャリア間で異なるタイミングで位相測定を行う能力を有することを示す能力情報を前記基地局に送信する送信部
 を更に備える付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
 複数キャリアで送信される参照信号の設定情報を端末に送信する送信部と、
 前記複数キャリア間で参照信号送信のタイミングが揃うように、送信タイミングの調整を行う制御部と
 を備える基地局。
(付記項6)
 前記送信タイミングの調整を行うために用いるタイミングオフセットをネットワーク装置から受信する受信部
 を更に備える付記項5に記載の基地局。
<Additional notes>
The terminal 20 and base station 10 may be configured as, for example, the terminals and base stations described in the following sections.
(Additional note 1)
a receiving unit that receives configuration information of reference signals transmitted on multiple carriers from a base station;
a control unit that assumes that the timing of performing phase measurement for positioning is different between the plurality of carriers;
A terminal equipped with
(Additional note 2)
Supplementary Note 1: The receiving unit performs phase measurement using the reference signal at different timings for the plurality of carriers using a prescribed timing offset or a timing offset notified from the base station. The device listed.
(Additional note 3)
The terminal according to supplementary note 1, wherein the control unit estimates a timing offset between the plurality of carriers and performs phase measurement on the plurality of carriers at a timing based on the estimated timing offset.
(Additional note 4)
The terminal according to any one of Supplementary Notes 1 to 3, further comprising: a transmitter that transmits capability information to the base station indicating that the terminal has the capability of performing phase measurements at different timings among the plurality of carriers.
(Additional note 5)
a transmitting unit that transmits configuration information of reference signals transmitted by multiple carriers to a terminal;
A base station comprising: a control unit that adjusts transmission timing so that reference signal transmission timings are aligned among the plurality of carriers.
(Additional note 6)
The base station according to supplementary note 5, further comprising: a receiving unit that receives a timing offset used for adjusting the transmission timing from a network device.
 上記のいずれの項に記載された構成によっても、キャリア位相測定において、波長の異なる複数の搬送波を使用する場合に、送信タイミングエラーの影響を軽減するための技術が提供される。また、付記項2、3、6によれば、タイミングオフセットを使用することで、適切にタイミングエラーを補償できる。付記項4によれば、端末能力に応じた動作を実施できる。 The configurations described in any of the above sections provide techniques for reducing the effects of transmission timing errors when using multiple carrier waves with different wavelengths in carrier phase measurement. Further, according to additional notes 2, 3, and 6, timing errors can be appropriately compensated for by using a timing offset. According to Additional Note 4, operations can be performed according to the terminal capabilities.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図13及び図14)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 13 and 14) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本開示の一実施の形態に係る基地局10及び端末20及びLMF30のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram illustrating an example of the hardware configuration of the base station 10, terminal 20, and LMF 30 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図13に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図14に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 13 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 14 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及び端末20及びLMF30は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10, the terminal 20, and the LMF 30 are equipped with a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、端末20あるいは基地局10あるいはLMF30を車両2001に備えてもよい。図16に車両2001の構成例を示す。図11に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態に係る端末20あるいは基地局10は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 Furthermore, the vehicle 2001 may be equipped with the terminal 20, the base station 10, or the LMF 30. FIG. 16 shows an example of the configuration of vehicle 2001. As shown in FIG. 11, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. The terminal 20 or base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like. The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet  of  Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a terminal. For example, a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) Each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be replaced by a base station. In this case, a configuration may be adopted in which the base station has the functions that the above-described terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe. Furthermore, one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  複数キャリアで送信される参照信号の設定情報を基地局から受信する受信部と、
     前記複数キャリア間で、測位のための位相測定を行うタイミングが異なることを想定する制御部と、
     を備える端末。
    a receiving unit that receives configuration information of reference signals transmitted on multiple carriers from a base station;
    a control unit that assumes that the timing of performing phase measurement for positioning is different between the plurality of carriers;
    A terminal equipped with
  2.  前記受信部は、規定されたタイミングオフセット、又は、前記基地局から通知されたタイミングオフセットを用いて、前記複数キャリアに対して異なるタイミングで、前記参照信号を用いて位相測定を行う
     請求項1に記載の端末。
    The receiving unit performs phase measurement using the reference signal at different timings for the plurality of carriers using a prescribed timing offset or a timing offset notified from the base station. The device listed.
  3.  前記制御部は、前記複数キャリア間のタイミングオフセットを推定し、推定したタイミングオフセットに基づくタイミングで前記複数キャリアに対する位相測定を行う
     請求項1に記載の端末。
    The terminal according to claim 1, wherein the control unit estimates a timing offset between the plurality of carriers and performs phase measurement on the plurality of carriers at a timing based on the estimated timing offset.
  4.  前記複数キャリア間で異なるタイミングで位相測定を行う能力を有することを示す能力情報を前記基地局に送信する送信部
     を更に備える請求項1に記載の端末。
    The terminal according to claim 1, further comprising: a transmitting unit that transmits capability information indicating that the terminal has the capability of performing phase measurements at different timings among the plurality of carriers to the base station.
  5.  複数キャリアで送信される参照信号の設定情報を端末に送信する送信部と、
     前記複数キャリア間で参照信号送信のタイミングが揃うように、送信タイミングの調整を行う制御部と
     を備える基地局。
    a transmitting unit that transmits configuration information of reference signals transmitted by multiple carriers to a terminal;
    A base station comprising: a control unit that adjusts transmission timing so that reference signal transmission timings are aligned among the plurality of carriers.
  6.  前記送信タイミングの調整を行うために用いるタイミングオフセットをネットワーク装置から受信する受信部
     を更に備える請求項5に記載の基地局。
    The base station according to claim 5, further comprising: a receiving unit that receives a timing offset used for adjusting the transmission timing from a network device.
PCT/JP2022/019199 2022-04-27 2022-04-27 Terminal and base station WO2023209912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019199 WO2023209912A1 (en) 2022-04-27 2022-04-27 Terminal and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019199 WO2023209912A1 (en) 2022-04-27 2022-04-27 Terminal and base station

Publications (1)

Publication Number Publication Date
WO2023209912A1 true WO2023209912A1 (en) 2023-11-02

Family

ID=88518404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019199 WO2023209912A1 (en) 2022-04-27 2022-04-27 Terminal and base station

Country Status (1)

Country Link
WO (1) WO2023209912A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514430A (en) * 2018-12-19 2022-02-10 大唐移▲動▼通信▲設▼▲備▼有限公司 Positioning method and related equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514430A (en) * 2018-12-19 2022-02-10 大唐移▲動▼通信▲設▼▲備▼有限公司 Positioning method and related equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of NR positioning enhancements", 3GPP TSG RAN WG1 #102-E R1-2005712, 8 August 2020 (2020-08-08), XP051917687 *

Similar Documents

Publication Publication Date Title
WO2023209912A1 (en) Terminal and base station
WO2023238281A1 (en) Terminal and measurement method
WO2024034084A1 (en) Terminal, base station, and communication method
WO2023199526A1 (en) Terminal, base station, and communication method
WO2023199527A1 (en) Terminal, base station and communication method
WO2024100898A1 (en) Terminal and communication method
WO2023199528A1 (en) Terminal, base station, and communication method
WO2023203735A1 (en) Terminal and communication method
WO2024034036A1 (en) Terminal and communication method
WO2023203734A1 (en) Terminal and communication method
WO2023119600A1 (en) Terminal and communication method
WO2023203780A1 (en) Terminal, base station, and communication method
WO2023203623A1 (en) Terminal, base station, and communication method
WO2024034101A1 (en) Terminal and communication method
WO2024009510A1 (en) Terminal, base station, and communication method
WO2023210015A1 (en) Terminal, and communication method
WO2024100744A1 (en) Terminal, base station, and communication method
WO2023210016A1 (en) Terminal, base station, and communication method
WO2023218880A1 (en) Terminal and communication method
WO2024034102A1 (en) Terminal and communication method
WO2023203779A1 (en) Terminal, base station, and communication method
WO2023203624A1 (en) Terminal, base station, and communication method
WO2024023978A1 (en) Terminal and positioning method
WO2023210010A1 (en) Terminal and communication method
WO2024053114A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940189

Country of ref document: EP

Kind code of ref document: A1