WO2023209832A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2023209832A1
WO2023209832A1 PCT/JP2022/018991 JP2022018991W WO2023209832A1 WO 2023209832 A1 WO2023209832 A1 WO 2023209832A1 JP 2022018991 W JP2022018991 W JP 2022018991W WO 2023209832 A1 WO2023209832 A1 WO 2023209832A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
terminal
base station
cycle
information
Prior art date
Application number
PCT/JP2022/018991
Other languages
French (fr)
Japanese (ja)
Inventor
知也 小原
優元 ▲高▼橋
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/018991 priority Critical patent/WO2023209832A1/en
Publication of WO2023209832A1 publication Critical patent/WO2023209832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a terminal and a communication method.
  • the 3rd Generation Partnership Project (3GPP) is the 5th generation mobile communication system (5G, New Radio (NR) or ext Generation (NG)), and furthermore, the next generation specifications called Beyond 5G, 5G Evolution, or 6G. is also progressing.
  • 5G New Radio
  • NG ext Generation
  • Non-Patent Document 2 power saving (which may also be called power reduction, etc.) specific to XR is being studied (for example, Non-Patent Document 2). The details are a subject for future consideration.
  • One aspect of the present disclosure provides a terminal and a communication method that can save power by taking into account the characteristics of XR.
  • a terminal includes a receiving unit that receives from the base station a parameter related to a cycle that includes an active state period for monitoring transmission from a base station and takes a non-integer value; and a control unit that switches the state of the own terminal between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters.
  • a terminal sets parameters related to a first cycle that includes a period in an active state that monitors transmissions from a base station and takes a first integer value, and a second cycle that takes a second integer value.
  • a receiving unit receives data from the base station, and the own terminal switches between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters during the first cycle and the second cycle.
  • a control unit that switches the state of the first integer value n times (n is a predetermined integer of 1 or more) and m times the second integer value (m is a predetermined integer of 1 or more).
  • (a predetermined integer) is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2).
  • a terminal receives from the base station a parameter related to a cycle that includes a period in an active state for monitoring transmission from a base station and takes a non-integer value, and During this time, the state of the terminal is switched between the active state and an inactive state in which transmissions from the base station are not monitored based on the parameters.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a frequency range used in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a radio frame, a subframe, and a slot used in a radio communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram for explaining CDRX in 3GPP Release 15.
  • FIG. 2 is a diagram for explaining WUS in 3GPP Release 16.
  • FIG. 2 is a diagram illustrating existing parameters regarding DRX cycles.
  • FIG. 3 is a diagram showing the relationship between the cycle of XR traffic and an existing DRX cycle.
  • FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of the number of radio frames, the number of slots, and the number of symbols indicating a DRX cycle according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of start timing of DRX onduration according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a configuration of a vehicle according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to an embodiment of the present disclosure.
  • the wireless communication system 10 is a wireless communication system that complies with 5G NR, and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter also referred to as UE (User Equipment) 200). include.
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE User Equipment
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the NG-RAN 20 includes a base station 100A (hereinafter also referred to as gNB 100A) and a base station 100B (hereinafter also referred to as gNB 100B). Note that when there is no need to distinguish between gNB 100A, gNB 100B, etc., they are collectively referred to as gNB or base station 100. Furthermore, the number of gNBs and UEs is not limited to the example shown in FIG. 1 .
  • the NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • gNB may be replaced with network (NW).
  • the gNB 100A and gNB 100B are, for example, base stations that comply with 5G, and perform wireless communication with the UE 200 according to 5G.
  • gNB100A, gNB100B, and UE200 use MIMO (Multiple-Input Multiple-Output), which generates a beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC:
  • the present invention may support carrier aggregation (CA) that uses a bundle of components carriers, dual connectivity (DC) that performs communication between the UE and each of two NG-RAN nodes, and the like.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 may support multiple frequency ranges (FR).
  • FIG. 2 is a diagram showing an example of FR used in the wireless communication system 10. As shown in FIG. 2, the wireless communication system 10 may support FR1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz ⁇ 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 sub-carrier spacing (SCS) of 15 kHz, 30 kHz, or 60 kHz may be used, and a bandwidth (BW) of 5 to 100 MHz may be used.
  • SCS sub-carrier spacing
  • BW bandwidth
  • FR2 is at a higher frequency than FR1, and an SCS of 60 kHz or 120 kHz (may include 240 kHz) may be used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • SCS may be interpreted as numerology.
  • the numerology is defined in 3GPP TS 38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 may support a frequency band higher than the frequency band of FR2. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • FR2x frequency band exceeding 52.6 GHz
  • CP-OFDM Cyclic Prefix - Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a diagram showing a configuration example of a radio frame (system frame), subframe, and slot used in the radio communication system 10. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). However, the SCS is not limited to the intervals (frequency) shown in FIG. 3. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, it may be 28 or 56 symbols, etc.). Furthermore, the number of slots per subframe may vary depending on the SCS.
  • time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
  • the gNB 100 transmits control information, configuration information, etc. for realizing power saving of the UE 200 to the UE 200 as a downlink (DL) signal.
  • DL downlink
  • the gNB 100 receives control information, data signals, information regarding the processing capability of the UE 200 (terminal capability (information); for example, UE capability), etc. from the UE 200 as an uplink (UL) signal.
  • terminal capability information
  • UL uplink
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • the data channel may include a physical downlink shared channel (PDSCH)
  • the control channel may include a physical downlink control channel (PDCCH).
  • the gNB 100 transmits control information to the UE 200 using the PDCCH, and transmits a DL data signal using the PDSCH.
  • PDSCH is an example of a downlink shared channel
  • PDCCH is an example of a downlink control channel.
  • PDCCH may be replaced with downlink control information (DCI), control information, etc. transmitted on PDCCH.
  • DCI downlink control information
  • Reference signals included in the DL signal include, for example, DMRS (Demodulation Reference Signal), PTRS (Phase Tracking Reference Signal), CSI-RS (Channel State Information-Reference Signal), SRS (Sounding Reference Signal), and location information. At least one PRS (Positioning Reference Signal) for use may be included.
  • reference signals such as DMRS and PTRS are used to demodulate DL data signals and are transmitted using PDSCH.
  • the UE 200 is a communication device with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • the UE 200 utilizes various communication services provided by the wireless communication system 10 by receiving a control signal or data signal from the gNB 100 via DL and transmitting the control signal or data signal to the gNB 100 via UL. Further, UE 200 receives various reference signals transmitted from gNB 100, and measures channel quality based on the reception results of the reference signals.
  • the UE 200 receives control information, setting information, etc. for realizing power saving of the UE 200 from the gNB 100 as a DL signal.
  • the UE 200 transmits control information, data signals, terminal capability information of the UE 200, etc. to the gNB 100 as a UL signal.
  • Channels used for transmitting UL signals include, for example, data channels and control channels.
  • the data channel may include a physical uplink shared channel (PUSCH)
  • the control channel may include a physical uplink control channel (PUCCH).
  • the UE 200 transmits control information using the PUCCH, and transmits a UL data signal using the PUSCH.
  • PUSCH is an example of an uplink shared channel
  • PUCCH is an example of an uplink control channel.
  • a shared channel may be called a data channel.
  • PUSCH or PUCCH may be replaced with uplink control information (UCI), control information, etc. transmitted on PUSCH or PUCCH.
  • UCI uplink control information
  • the reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRSRS, and PRS for location information.
  • reference signals such as DMRS and PTRS are used to demodulate UL data signals and are transmitted using PUSCH.
  • XR presents an attractive use case for future wireless communication systems.
  • XR also poses challenges that need to be considered and addressed.
  • 3GPP Release 18 a method of realizing power saving specific to XR that takes into consideration the characteristics of XR is being considered (for example, Non-Patent Document 2).
  • 3GPP Release 15 introduces connected mode discontinuous reception (CDRX), and 3GPP Release 16 introduces a power saving function for terminals to monitor control signals with low power consumption.
  • CDRX connected mode discontinuous reception
  • WUS Wake Up Signal
  • the DRX function is set by an upper layer (RRC: Radio Resource Control) and controls PDCCH monitoring.
  • RRC Radio Resource Control
  • FIG. 4 is a diagram for explaining CDRX.
  • the terminal In the CDRX operation in 3GPP Release 15, the terminal is active during the DRX on-duration in the DRX cycle and monitors the PDCCH within the DRX on-duration.
  • (DRX) on duration may be read as active period, period in which (the terminal) is active, period in which (the terminal is) in active state, on period, activation period, validity period, validation period, etc. .
  • the state may be interpreted as a mode. It should be noted that the elements shown in FIG. 4 and the drawings described below are not drawn to scale.
  • FIG. 5 is a diagram for explaining WUS in 3GPP Release 16.
  • PDCCH-based WUS may instruct one or more terminals whether the terminals monitor the PDCCH within the next DRX on-duration.
  • DCI format 2_6 in which CRC (Cyclic Redundancy Check) is scrambled by PS-RNTI (Power Saving - Radio Network Temporary Identifier) is used as PDCCH-based WUS, and is also called DCP (DCI with CRC scrambled by PS-RNTI).
  • CRC Cyclic Redundancy Check
  • PS-RNTI Power Saving - Radio Network Temporary Identifier
  • the WUS monitoring occasion is set by an offset from the DRX on-duration based on the terminal capability. If the WUS indicates "Not Active" (i.e., the terminal is not transmitting or receiving data), the terminal shall skip the monitor in DRX on-duration and immediately go to sleep state. I can do it.
  • a default terminal operation may be set in case PDCCH-based WUS is not detected due to, for example, a detection error.
  • the DCI format 2_6 includes a 1-bit Wake-up Indication indicating “active” or “inactive”.
  • active may be read as active mode, active state, activated state, on (state), enabled (state), enabled state, etc.
  • inactive may be read as inactive state, inactive mode, sleep, off. , may be read as invalid, invalidated, suspended, dormant, etc.
  • the above DRX operation is performed by upper layers using the following parameters including timers: DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and active period.
  • the cycle is controlled by setting values of parameters or settings (information, etc.) associated with the cycle.
  • Each long DRX cycle includes an active period and a sleep period.
  • the active period is set using the parameter drx-onDurationTimer.
  • the start position of the long DRX cycle is set using the parameter drx-LongCycleStartOffset.
  • the starting position of the active period is set using the parameter drx-LongCycleStartOffset.
  • the starting position of the active period relative to the subframe boundary is set using the parameter drx-SlotOffset.
  • the terminal is active during the active period and goes to sleep if there is no PDCCH received during the active period.
  • the terminal starts or restarts the DRX inactivity timer set as the parameter drx-InactivityTimer. The terminal remains active and continues PDCCH monitoring until this timer expires.
  • the terminal operates according to the short DRX cycle.
  • the short DRX cycle is set using the parameter drx-ShortCycle.
  • the active period of the short DRX cycle is set using the same parameter drx-onDurationTimer as the long DRX cycle.
  • the starting position of the active period is set using drx-StartOffset and drx-SlotOffset similarly to the long DRX cycle.
  • the setting of the short DRX cycle is optional, and if the short DRX cycle is not set, the terminal operates according to the long DRX cycle described above.
  • Two timers exist for the terminal to receive a grant for UL retransmission.
  • the period until a grant for UL retransmission is expected is set using drx-HARQ-RTT-TimerUL, which starts on the symbol after the terminal transmits PUSCH on the UL.
  • the period until a grant for UL retransmission is received is set using drx-RetransmissionTimerDL, which starts at the next symbol after drx-HARQ-RTT-TimerDL expires.
  • the terminal detects a grant for UL retransmission for the corresponding HARQ process, it stops drx-RetransmissionTimerUL.
  • XR traffic has a property of arriving periodically according to a frame rate (FPS (frame per second)).
  • the period of such XR traffic may be a non-integer number, such as 16.67 ms, 8.33 ms, etc.
  • the long DRX cycle (hereinafter referred to as DRX cycle) described above is ms10 (10 ms), ms20 (20 ms), as shown in the existing parameter drx-LongCycleStartOffset (drx-LongCycle on the left) in FIG. ), etc., is an integer in milliseconds. Note that the start offset (drx-StartOffset) is shown on the right side of FIG.
  • XR traffic whose cycle is, for example, 16.67 milliseconds periodically arrives at a terminal whose DRX cycle is set to, for example, 20 milliseconds.
  • a certain arrival timing of XR traffic is within the active period of the terminal, as shown on the right side of FIG. It gradually shifts inside. This causes a large delay until the next DRX duration, especially for XR traffic that arrives at the rightmost timing in FIG. 7, for example.
  • a large delay may occur depending on the arrival timing of XR traffic.
  • the arrival cycle which takes a non-integer value, is one of the characteristics of XR traffic
  • the DRX cycle of the terminal (which may also be called the intermittent reception cycle, etc.)
  • DRX cycles in units of radio frames, slots, and/or symbols It may be defined in the specification by using the number of frames (or frames), the number of slots and/or the number of symbols (therefore in units of radio frames, slots and/or symbols). Additionally, the DRX cycle is determined by the base station by using the number of radio frames, the number of slots, and/or the number of symbols (therefore, in units of radio frames, slots, and/or symbols) to indicate non-integer values. 100 may set or notify the terminal 200.
  • the number of radio frames, the number of slots, and/or the number of symbols are set or notified using, for example, RRC signaling, MAC (Medium Access Control) signaling (for example, MAC CE (Control Element)), and/or DCI. Good too.
  • the number of radio frames, the number of slots, and/or the number of symbols are determined by DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and cycles including active periods. may also be referred to as parameters or settings (information) related to.
  • parameters may be set using SFN (System Frame Number).
  • SFN System Frame Number
  • FIGS. 8A and 8B show examples of new parameters (information elements) for DRX that are introduced and defined for this purpose.
  • FIG. 8A shows the number of radio frames (1, 2, 3, etc.), the number of slots (1, 2, 3, etc.) and the number of symbols (1, 2, 3, etc.) used to indicate a DRX cycle. shows. Note that although the names drx-LongCycleFrame-rel18, drx-LongCycleSlot-rel18, and drx-LongCycleSymbol-rel18 are shown as examples, the names of the parameters are not limited to these illustrated examples.
  • FIG. 8B shows the parameters used to indicate the starting offset similar to FIG. 6, along with the parameters shown in FIG. 8A used to indicate the DRX cycle.
  • the names drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18, and drx-LongCycleStartOffsetSymbol-rel18 are shown, but the names of the parameters are not limited to these illustrated examples.
  • the parameters shown in FIGS. 8A and 8B do not need to be defined separately for radio frames, slots, and symbols.
  • the parameters shown in FIGS. 8A and 8B may be defined together.
  • the DRX cycle and the start offset may be defined separately or may be defined together.
  • FIG. 9 shows an example of a DRX cycle in units of radio frames, slots, and/or symbols.
  • the DRX cycle is a combination of one radio frame, six slots, and nine symbols.
  • the DRX cycle indicated by the combination of the number of radio frames, the number of slots, and/or the number of symbols, can be set to a non-integer period of XR traffic (e.g., 16.67 ms, 8.33 ms, etc.). It can be aligned with
  • DRX onduration start timing When using the parameters introduced and defined as described above, DRX onduration may be started at the following timing.
  • DRX onduration may be started at a timing specified by a parameter.
  • the terminal 200 determines the start timing of DRX onduration based on drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18 and/or drx-LongCycleStartOffsetSymbol-rel18 shown in FIG. 8B, and starts DRX onduration at the start timing. You may. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the timing specified by the parameter.
  • DRX on-duration may start from the earliest PDCCH monitoring after the timing specified by the parameter (Alt1).
  • the timing of such PDCCH monitoring may be, for example, CORESET (Control Resource Set) timing.
  • the terminal 200 may start DRX onduration at the earliest CORESET timing after the timing based on drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18, and/or drx-LongCycleStartOffsetSymbol-rel18 shown in FIG. 8B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
  • Other parameters related to DRX may also be defined/set/notified in units of radio frames, slots, and/or symbols.
  • Some or all of the parameters to be introduced may be defined/set/notified in units of radio frames, slots, and/or symbols.
  • the DRX cycle may be defined/set/notified in units of subframes.
  • the base station 100 identifies the cycle of communication traffic to the terminal 200.
  • base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle).
  • the base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200.
  • Determine the DRX cycle For example, the base station 100 determines or sets the DRX cycle as a combination of the number of radio frames, the number of slots, and/or the number of symbols so as to be aligned (equal) to a non-integer period.
  • the base station 100 transmits to the terminal 200 DRX parameters (determined number of radio frames, number of slots, and/or number of symbols, etc.) related to the DRX cycle that includes the active period of the terminal 200 and takes a non-integer value. do.
  • DRX parameters determined number of radio frames, number of slots, and/or number of symbols, etc.
  • the terminal 200 receives from the base station 100 a DRX parameter related to a DRX cycle that includes a period in an active state for monitoring transmission from the base station 100 and takes a non-integer value. Then, the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the DRX cycle.
  • DRX cycles using non-integer values themselves DRX cycles can be defined in the specifications by using non-integer values such as 16.67 ms, 8.33 ms, etc. Good too. Further, the DRX cycle may be set or notified to the terminal 200 by the base station 100 by using a non-integer value as is. Non-integer DRX cycles may be configured or notified using, for example, RRC signaling, MAC signaling (eg, MAC CE), and/or DCI. DRX cycles with non-integer values include DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), parameters or settings related to cycles including active periods (information). ) etc.
  • FIGS. 10A and 10B show examples of new parameters (information elements) for DRX that are introduced and defined for this purpose.
  • FIG. 10A shows an information element in which both integer-valued and non-integer-valued DRX cycles (as well as starting offsets) are defined.
  • the illustrated ms8.33 and ms16.67 represent a DRX cycle of 8.33 ms and a DRX cycle of 16.67 ms, respectively.
  • FIG. 10B shows an information element in which a non-integer value of the DRX cycle (and start offset) is defined.
  • the illustrated ms8.33 and ms16.67 represent a DRX cycle of 8.33 ms and a DRX cycle of 16.67 ms, respectively.
  • the name drx-LongCycleStartOffset-rel18 is shown as an example, the name of the parameter is not limited to this illustrated example.
  • the existing parameter drx-LongCycleStartOffset may also be used, where an integer value of the DRX cycle (and start offset) is defined.
  • the DRX cycle with an integer value and the DRX cycle with a non-integer value may be defined/set/notified as a common parameter (FIG. 10A), or may be defined/set/notified as separate parameters. Good ( Figure 10B).
  • the DRX cycle can be aligned with a non-integer period of XR traffic (eg, 16.67 ms, 8.33 ms, etc.).
  • DRX onduration start timing (Alt1)
  • DRX onduration may be started at a timing specified by a parameter.
  • the terminal 200 may determine the start timing of DRX on-duration based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B, and start DRX on-duration at the start timing.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the timing specified by the parameter.
  • DRX on-duration may start from the earliest PDCCH monitoring after the timing specified by the parameter (Alt1).
  • the timing of such PDCCH monitoring may be, for example, the CORESET timing.
  • the terminal 200 may start DRX on-duration at the earliest CORESET timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
  • the DRX on-duration may be started at the earliest slot start timing after the (Alt1) timing specified by the parameter.
  • the terminal 200 may start DRX on-duration at the earliest slot start timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest slot start timing after the timing specified by the parameter.
  • (Alt4) DRX onduration may start at the earliest symbol start timing after the (Alt1) timing specified by the parameter.
  • the terminal 200 may start DRX on-duration at the earliest symbol start timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the most symbol start timing after the timing specified by the parameter.
  • the DRX on-duration may start at the closest slot start timing before the (Alt1) timing specified by the parameter.
  • the terminal 200 may start DRX on-duration at the closest slot start timing before the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the closest slot start timing before the timing specified by the parameter.
  • the DRX on-duration may start at the nearest symbol start timing before the (Alt1) timing specified by the parameter.
  • the terminal 200 may start DRX on-duration at the nearest symbol start timing before the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B.
  • the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the nearest symbol start timing before the timing specified by the parameter.
  • FIG. 11 shows an example of the start timing of DRX on-duration.
  • This example is an example in which the above-mentioned (Alt3) is applied, and one rectangular block in the figure represents one slot.
  • the terminal 200 may start DRX on-duration at the earliest slot start timing after the start of the DRX cycle. .
  • (Alt4) to (Alt6) the same applies to (Alt4) to (Alt6).
  • Other parameters related to DRX may also be prescribed/set/notified using non-integer values as they are.
  • Some or all of the parameters introduced may be defined/set/notified using non-integer values as they are.
  • the above (Alt1) to (Alt6) may be similarly applied to the start timing of the parameter (timer) to which a non-integer value may be applied as described above.
  • FIGS. 10A and 10B show examples of DRX cycles that are 8.33 ms and 16.67 seconds, other non-integer values may be defined/set/notified.
  • DRX onduration is started at the earliest slot start timing after the timing specified by the parameter or at the closest slot start timing before the timing specified, but the terminal 200 It may be determined which of the later earliest slot start timing and the closest slot start timing before the relevant timing is closer to the relevant timing, and the DRX on-duration may be started at the closest slot start timing.
  • DRX on-duration is started at the earliest symbol start timing after the timing specified by the parameter or at the closest symbol start timing before the timing, but the terminal 200 , determine which is closer to the timing, the earliest symbol start timing after the timing or the closest symbol start timing before the timing, and start DRX on-duration at the nearest symbol start timing. good.
  • the base station 100 identifies the cycle of communication traffic to the terminal 200.
  • base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle).
  • the base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200.
  • Determine the DRX cycle For example, the base station 100 determines or sets the DRX cycle as a non-integer value so that it is aligned with (equal to) the non-integer period. Then, the base station 100 transmits to the terminal 200 DRX parameters (determined DRX cycle, etc.) related to the DRX cycle that includes the active period of the terminal 200 and takes a non-integer value.
  • the terminal 200 receives from the base station 100 a DRX parameter related to a DRX cycle that includes a period in an active state for monitoring transmission from the base station 100 and takes a non-integer value. Then, the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the DRX cycle.
  • Two different DRX cycles may be included for each plurality of DRX cycles so as to be aligned with non-integer values such as 16.67 milliseconds and 8.33 milliseconds.
  • the number of times of multiple DRX cycles described above, the first DRX cycle (also called base DRX cycle) included in multiple DRX cycles, the second DRX cycle (additional DRX cycle) included in multiple DRX cycles, A part or all of the number of additional DRX cycles included in the plurality of DRX cycles may be specified in the specifications.
  • DRX cycles such as 16 ms, 17 ms, 18 ms, etc., as described below, may be defined in the existing information element drx-LongCycleStartOffset as described with reference to FIG. It may be specified in an information element (eg, information element drx-LongCycleStartOffset-rel18).
  • the above parameters which may be defined in the specifications, may be configured or notified using, for example, RRC signaling, MAC signaling (eg, MAC CE), and/or DCI.
  • DRX parameters or settings information
  • parameters or settings related to DRX information
  • parameters or settings related to power saving information
  • parameters or settings related to cycles including active periods or It may also be referred to as settings (information) or the like.
  • the start timing of the DRX cycle is also shifted accordingly. That is, the start timing of a DRX cycle is shifted so that the end timing of one DRX cycle and the start timing of the next DRX cycle coincide.
  • An increase/decrease value (difference value) with respect to the base DRX cycle may be notified/set/notified. For example, if the base DRX cycle is 17 ms, the increase/decrease values such as -1 ms (additional DRX cycle is 16 ms), +2 ms (additional DRX cycle is 19 ms) are notified/set/notified. Good too.
  • FIG. 12A to 12C show examples of different DRX cycle combinations.
  • the number of multiple DRX cycles is 3, the additional DRX cycle included in the multiple DRX cycles is 16 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 17 ms).
  • FIG. 12A the number of multiple DRX cycles is 3
  • the additional DRX cycle included in the multiple DRX cycles is 16 milliseconds
  • the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 17 ms).
  • the total number of DRX cycles is 50
  • the number of multiple DRX cycles is 3, the additional DRX cycle included in the multiple DRX cycles is 18 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 16 ms).
  • FIG. 12B the number of multiple DRX cycles is 3
  • the additional DRX cycle included in the multiple DRX cycles is 18 milliseconds
  • the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 16 ms).
  • the number of multiple DRX cycles is 6, the additional DRX cycle included in the multiple DRX cycles is 16 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 2. (and the base DRX cycle is 17 ms).
  • the additional DRX cycle may be one or more last DRX cycles in a plurality of DRX cycles, as shown in FIGS. 12A to 12C. That is, the additional DRX cycle may be fixed as the last one or more DRX cycles among a plurality of DRX cycles.
  • the additional DRX cycle may be one or more DRX cycles from the beginning in a plurality of DRX cycles. That is, the additional DRX cycle may be fixed as the first one or more DRX cycles among a plurality of DRX cycles.
  • the number of the first additional DRX cycle in a plurality of DRX cycles may be specified in the specification, and the base station 100 may use, for example, RRC signaling, MAC signaling ( For example, the setting or notification may be made to the terminal 200 using MAC CE) and/or DCI.
  • the starting offset in the additional DRX cycle may be calculated by the terminal 200 based on the starting offset in the base DRX cycle and the increase/decrease value of the additional DRX cycle with respect to the base DRX cycle. Specifically, the terminal 200 may set the start offset in the additional DRX cycle to a value that is the sum of the start offset in the base DRX cycle and the increase/decrease value of the additional DRX cycle with respect to the base DRX cycle. Therefore, in this case, the terminal 200 may not be notified of the starting offset in the additional DRX cycle.
  • the starting offset in the additional DRX cycle may be specified in the specifications and may be set or notified by the base station 100 to the terminal 200 using, for example, RRC signaling, MAC signaling (e.g., MAC CE), and/or DCI. Good too.
  • Other parameters related to DRX may also be defined/set/notified in a manner that includes two values for each of a plurality of values.
  • Some or all of the parameters to be introduced may be defined/set/notified in such a manner that two values are included for each of the plurality of values.
  • ID an index or identification information
  • the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI.
  • the above index or ID includes DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), parameters or settings related to cycles including active periods (information), etc. may be called.
  • the number of base DRX cycles may be specified in the specification, and may be determined by the base station 100, for example, by RRC signaling, MAC signaling (e.g., It may be set or notified to the terminal 200 using MAC (CE) and/or DCI. Also, the number of base DRX cycles (included in multiple DRX cycles), additional DRX cycles (included in multiple DRX cycles), and number of additional DRX cycles (included in multiple DRX cycles). The correspondence between a combination and an index or ID indicating the combination may be defined in the specifications.
  • the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI.
  • the number of base DRX cycles and the index or ID are related to cycles including DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and active periods. may also be referred to as parameters or settings (information).
  • Three or more different DRX cycles may be combined to align with non-integer values such as 16.67 ms, 8.33 ms, etc.
  • two or more additional DRX cycles other than the base DRX cycle included in the plurality of DRX cycles and the number of these cycles may be defined/set/notified.
  • the correspondence between the number of multiple DRX cycles (or the number of base DRX cycles), two or more additional DRX cycles, a combination of these numbers, and an index or ID indicating the combination. may be specified in the specification.
  • the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI.
  • the above two or more additional DRX cycles, their number of times, and the above index or ID are DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), active It may also be referred to as a parameter or setting (information) related to a cycle including a period.
  • the base station 100 identifies the cycle of communication traffic to the terminal 200.
  • base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle).
  • the base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200.
  • a first DRX cycle and a second DRX cycle are determined.
  • the base station 100 determines that the sum of twice the first DRX cycle (17 milliseconds) and one time the second DRX cycle (16 milliseconds) is 3 times the non-integer period (16.67 milliseconds) of communication traffic. Since it is equal to twice, the first DRX cycle (17 ms), the number of multiple DRX cycles (3), the second DRX cycle (16 ms), and the number of second DRX cycles included in the multiple DRX cycles (1) Determine or set. In this way, multiple DRX cycles and non-integer periods are aligned.
  • the first DRX cycle may be set in advance as a base DRX cycle. Then, the base station 100 transmits to the terminal 200 DRX parameters (such as the number of times of multiple DRX cycles) related to the first DRX cycle and the second DRX cycle, which take integer values and include the active period of the terminal 200.
  • DRX parameters such as the number of times of multiple DRX cycles
  • the terminal 200 is associated with a first DRX cycle that includes a period in an active state for monitoring transmissions from the base station 100 and takes a first integer value, and a second DRX cycle that takes a second integer value. Parameters are received from the base station 100.
  • the second integer value for example, 16 (milliseconds)
  • the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the first DRX cycle and the second DRX cycle.
  • Base station 100 and terminal 200 may have a function to implement the embodiments described above. However, base station 100 and terminal 200 may each have only some of the functions in the embodiment.
  • FIG. 13 is a block diagram illustrating an example of the configuration of base station 100 according to an embodiment of the present disclosure.
  • the base station includes, for example, a transmitter 101, a receiver 102, and a controller 103.
  • Base station 100 communicates with terminal 200 (see FIG. 14) wirelessly.
  • terminal 200 see FIG. 14
  • the transmitting section 101 and the receiving section 102 may be collectively referred to as a communication section.
  • the transmitter 101 transmits the DL signal to the terminal 200.
  • the transmitter 101 transmits a DL signal under the control of the controller 103.
  • the DL signal may include information indicating scheduling regarding signal transmission by the terminal 200 (eg, UL grant), upper layer control information, and the like.
  • the transmitter 101 transmits various control signals (RRC layer control signals, etc.), reference signals, data signals, etc. to the terminal 200 as DL signals.
  • the transmitter 101 transmits, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments to the terminal 200 as DL signals.
  • the transmitter 101 transmits DRX parameters (number of radio frames, number of slots, number of symbols, DRX cycles (non-integer value , integer value), number of additional DRX cycles, etc.) are transmitted to the terminal 200.
  • DRX parameters number of radio frames, number of slots, number of symbols, DRX cycles (non-integer value , integer value), number of additional DRX cycles, etc.
  • the receiving unit 102 receives the UL signal transmitted from the terminal 200.
  • the receiving unit 102 receives a UL signal under the control of the control unit 103.
  • the receiving unit 102 receives a signal including terminal capability information (for example, UE capability) of the terminal 200, various control signals, reference signals, data signals, etc. from the terminal 200 as a UL signal.
  • terminal capability information for example, UE capability
  • the control unit 103 controls the overall (communication) operation of the base station 100, including the transmission processing in the transmission unit 101 and the reception processing in the reception unit 102.
  • control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
  • control unit 103 determines the resources and/or UL used for transmitting/receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 200 and/or the data and control information acquired from the upper layer. Allocates resources used for signal transmission and reception. Information regarding the allocated resources may be included in the control information transmitted to the terminal 200.
  • the control unit 103 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the transmission unit 101 and/or the reception unit 102).
  • control unit 103 specifies the cycle of communication traffic to the terminal 200. Further, for example, the control unit 103 generates (determines, sets) DRX parameters.
  • FIG. 14 is a block diagram illustrating an example of the configuration of terminal 200 according to an embodiment of the present disclosure.
  • Terminal 200 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203.
  • Terminal 200 communicates with base station 100 (see FIG. 13) wirelessly, for example.
  • base station 100 see FIG. 13
  • the receiving section 201 and the transmitting section 202 may be collectively referred to as a communication section.
  • the receiving unit 201 receives the DL signal transmitted from the base station 100.
  • the receiving unit 201 receives a DL signal under the control of the control unit 203.
  • the receiving unit 201 receives various control signals, reference signals, data signals, etc. from the base station 100 as DL signals.
  • the receiving unit 201 receives, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments from the base station 100 as DL signals.
  • the receiving unit 201 uses DRX parameters (parameters related to (DRX) cycles that include a period in an active state that monitors transmissions from the base station 100 and takes non-integer values; parameters related to a first (DRX) cycle that includes a period in the state and takes a first integer value and a second (DRX) cycle that takes a second integer value from the base station 100.
  • DRX parameters parameters related to (DRX) cycles that include a period in an active state that monitors transmissions from the base station 100 and takes non-integer values
  • a second (DRX) cycle that takes a second integer value from the base station 100.
  • the receiving unit 201 receives cycles that take non-integer values from the base station 100 in units of radio frames, slots, and/or symbols.
  • the receiving unit 201 receives a cycle that takes a non-integer value from the base station 100 as a non-integer
  • the receiving unit 201 When the receiving unit 201 receives a first cycle that takes a first integer value and a second cycle that takes a second integer value, the first integer value is n times (n is a predetermined integer of 1 or more) The sum of m times the second integer value (m is a predetermined integer among integers greater than or equal to 1) is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2) .
  • the transmitter 202 transmits the UL signal to the base station 100.
  • the transmitter 202 transmits a UL signal under the control of the controller 203.
  • the transmitter 202 transmits a signal including information regarding the processing capacity of the terminal 200, various control signals, reference signals, data signals, etc. to the base station 100 as a UL signal.
  • the control unit 203 controls the overall (communication) operation of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
  • control unit 203 controls the transmission of information fed back to the base station 100.
  • the information fed back to the base station 100 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR).
  • Information fed back to the base station 100 may be included in the UCI.
  • the UCI is transmitted on PUCCH or PUSCH resources.
  • the control unit 203 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the reception unit 201 and/or the transmission unit 202).
  • control unit 203 is in an active state in which it monitors transmission from the base station 100 based on DRX parameters transmitted from the base station 100 during the cycle or between the first cycle and the second cycle.
  • the state of the terminal 200 is switched between the state of the terminal 200 and the inactive state in which transmission from the base station 100 is not monitored.
  • control unit 203 switches the state of the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the DRX parameter.
  • the channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above.
  • the channels used for transmitting DL signals and the channels used for transmitting UL signals may include the RACH and PBCH described above.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure.
  • the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control units 103, 203, etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • the receiving unit receives from the base station a parameter related to a cycle that includes an active state period for monitoring transmission from the base station and takes a non-integer value; and a control unit that switches the state of the terminal between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters.
  • the receiving unit receives the cycle that takes the non-integer value from the base station in units of radio frames, slots, and/or symbols.
  • the receiving unit receives a cycle that takes the non-integer value as the non-integer value from the base station.
  • the cycle including the active state period and the non-integer cycle of XR traffic can be easily aligned.
  • control unit switches the state of the terminal from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
  • control information can be efficiently received.
  • parameters associated with a first cycle that includes an active period of monitoring transmissions from a base station and that takes a first integer value and a second cycle that takes a second integer value;
  • a receiving unit receives data from the base station, and the own terminal switches between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters during the first cycle and the second cycle.
  • a control unit that switches the state of the first integer value n times (n is a predetermined integer of 1 or more) and m times the second integer value (m is a predetermined integer of 1 or more).
  • a terminal is provided whose sum is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2).
  • a terminal receives from the base station a parameter related to a cycle that includes a period of being in an active state for monitoring transmissions from the base station and takes a non-integer value;
  • a communication method is provided, in which a state of the terminal is switched between the active state and an inactive state in which transmission from the base station is not monitored based on the parameter.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof.
  • Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G fourth generation mobile communication system
  • 5G 5th generation mobile communication system
  • the present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • ⁇ Base station operation> The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • ⁇ Input/output direction> Information etc. can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed.
  • radio resources may be indicated by an index.
  • Base Station In this disclosure, "Base Station (BS),""wireless base station,””fixedstation,” "NodeB,””eNodeB(eNB),”"gNodeB(gNB),”""""accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
  • carrier “component carrier”, etc. may be used interchangeably.
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
  • RRHs small indoor base stations
  • Communication services may also be provided by a remote radio head).
  • the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the terminal 200 may have the functions that the base station 100 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 100 may have the functions that the terminal 200 described above has.
  • FIG. 16 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
  • any reference to elements using the designations "first,””second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
  • the present disclosure is useful for wireless communication systems.
  • Wireless communication system 20 NG-RAN 100 base station (gNB) 200 Terminal (UE) 101,202 Transmitting unit 102,201 Receiving unit 103,203 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a reception unit which receives, from a base station, a parameter associated with a cycle which includes a period of an active state for monitoring transmission from the base station and which takes a non-integer value; and a control unit which, during the cycle and on the basis of the parameter, switches the state of the terminal between the active state and a non-active state in which transmission from the base station is not monitored.

Description

端末及び通信方法Terminal and communication method
 本開示は、端末及び通信方法に関する。 The present disclosure relates to a terminal and a communication method.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution又は6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is the 5th generation mobile communication system (5G, New Radio (NR) or ext Generation (NG)), and furthermore, the next generation specifications called Beyond 5G, 5G Evolution, or 6G. is also progressing.
 5Gにおいては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば、非特許文献1)。 For 5G, technologies that satisfy the requirements such as a large capacity system, high data transmission speed, low delay, simultaneous connection of many terminals, low cost, and power saving are being considered (for example, non-patent document 1). ).
 上記のような移動通信システムの拡張により、現実世界と仮想世界(仮想的コンテンツ)との組み合わせを可能にする、VR(virtual reality)、AR(augmented reality)、MR(mixed reality)等のXR(extended reality)の利用・普及が見込まれている。 With the expansion of mobile communication systems as described above, XR ( extended reality) is expected to become more popular.
 3GPPのRelease 18では、XR特有の省電力(電力削減等と呼ばれてもよい)について検討されている(例えば、非特許文献2)。詳細については今後の検討課題となっている。 In 3GPP Release 18, power saving (which may also be called power reduction, etc.) specific to XR is being studied (for example, Non-Patent Document 2). The details are a subject for future consideration.
 このように、将来の無線通信システムでは、XR特有の省電力について検討されているが、当該省電力に係る制御をどのように行うかが問題となる。しかしながら、このような制御に関する具体的な動作等については十分に検討されていない。 As described above, power saving specific to XR is being considered in future wireless communication systems, but the question is how to control the power saving. However, specific operations related to such control have not been sufficiently studied.
 本開示の一態様は、XRの特性を考慮して省電力を図ることができる端末及び通信方法を提供する。 One aspect of the present disclosure provides a terminal and a communication method that can save power by taking into account the characteristics of XR.
 本開示の一態様に係る端末は、基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信する受信部と、前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、を備える。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives from the base station a parameter related to a cycle that includes an active state period for monitoring transmission from a base station and takes a non-integer value; and a control unit that switches the state of the own terminal between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters.
 本開示の一態様に係る端末は、基地局からの送信をモニタするアクティブ状態にある期間を含み第1整数値をとる第1サイクル及び第2整数値をとる第2サイクルに関連するパラメータを、前記基地局から受信する受信部と、前記第1サイクル及び前記第2サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、を備え、前記第1整数値のn倍(nは1以上の整数のうちの所定の整数)と前記第2整数値のm倍(mは1以上の整数のうちの所定の整数)との和は、所定の非整数値のk倍(kは2以上の整数のうちの所定の整数)に等しい。 A terminal according to an aspect of the present disclosure sets parameters related to a first cycle that includes a period in an active state that monitors transmissions from a base station and takes a first integer value, and a second cycle that takes a second integer value. A receiving unit receives data from the base station, and the own terminal switches between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters during the first cycle and the second cycle. a control unit that switches the state of the first integer value n times (n is a predetermined integer of 1 or more) and m times the second integer value (m is a predetermined integer of 1 or more). (a predetermined integer) is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2).
 本開示の一態様に係る通信方法は、端末が、基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信し、前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で前記端末の状態を切り替える。 In a communication method according to an aspect of the present disclosure, a terminal receives from the base station a parameter related to a cycle that includes a period in an active state for monitoring transmission from a base station and takes a non-integer value, and During this time, the state of the terminal is switched between the active state and an inactive state in which transmissions from the base station are not monitored based on the parameters.
本開示の実施の形態に係る無線通信システムの一例を示す図である。1 is a diagram illustrating an example of a wireless communication system according to an embodiment of the present disclosure. 本開示の実施の形態に係る無線通信システムにおいて用いられる周波数レンジの一例を示す図である。1 is a diagram illustrating an example of a frequency range used in a wireless communication system according to an embodiment of the present disclosure. 本開示の実施の形態に係る無線通信システムにおいて用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a radio frame, a subframe, and a slot used in a radio communication system according to an embodiment of the present disclosure. 3GPPのRelease 15におけるCDRXについて説明するための図である。FIG. 2 is a diagram for explaining CDRX in 3GPP Release 15. 3GPPのRelease 16におけるWUSについて説明するための図である。FIG. 2 is a diagram for explaining WUS in 3GPP Release 16. DRXサイクルに関する既存のパラメータを示す図である。FIG. 2 is a diagram illustrating existing parameters regarding DRX cycles. XRトラフィックの周期と既存のDRXサイクルとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the cycle of XR traffic and an existing DRX cycle. 本開示の実施の形態に係る、DRXサイクルを示すために使用されるパラメータの例を示す図である。FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure. 本開示の実施の形態に係る、DRXサイクルを示すために使用されるパラメータの例を示す図である。FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure. 本開示の実施の形態に係る、DRXサイクルを示す無線フレームの個数、スロットの個数及びシンボルの個数の例を示す図である。FIG. 3 is a diagram illustrating an example of the number of radio frames, the number of slots, and the number of symbols indicating a DRX cycle according to an embodiment of the present disclosure. 本開示の実施の形態に係る、DRXサイクルを示すために使用されるパラメータの例を示す図である。FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure. 本開示の実施の形態に係る、DRXサイクルを示すために使用されるパラメータの例を示す図である。FIG. 3 is a diagram illustrating an example of parameters used to indicate a DRX cycle, according to an embodiment of the present disclosure. 本開示の実施の形態に係る、DRXオンデュレーションの開始タイミングの例を示す図である。FIG. 3 is a diagram illustrating an example of start timing of DRX onduration according to an embodiment of the present disclosure. 本開示の実施の形態に係る、異なるDRXサイクルの組み合わせの例を示す図である。FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure. 本開示の実施の形態に係る、異なるDRXサイクルの組み合わせの例を示す図である。FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure. 本開示の実施の形態に係る、異なるDRXサイクルの組み合わせの例を示す図である。FIG. 3 is a diagram illustrating an example of combinations of different DRX cycles according to an embodiment of the present disclosure. 本開示の実施の形態に係る基地局の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a configuration of a base station according to an embodiment of the present disclosure. 本開示の実施の形態に係る端末の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment of the present disclosure. 本開示の実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure. 本開示の実施の形態に係る車両の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a vehicle according to an embodiment of the present disclosure.
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。 Hereinafter, embodiments according to one aspect of the present disclosure will be described with reference to the drawings.
 (実施の形態)
 <無線通信システム>
 図1は、本開示の実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、5G NRに従った無線通信システムであり、Next Generation-Radio Access Network20(以下、NG-RAN20)と、端末200(以下、UE(User Equipment)200とも記載する)と、を含む。
(Embodiment)
<Wireless communication system>
FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to an embodiment of the present disclosure. The wireless communication system 10 is a wireless communication system that complies with 5G NR, and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter also referred to as UE (User Equipment) 200). include.
 なお、無線通信システム10は、Beyond 5G、5G Evolution又は6Gと呼ばれる方式に従った無線通信システムであってもよい。 Note that the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、基地局100A(以下、gNB100Aとも記載する)及び基地局100B(以下、gNB100Bとも記載する)を含む。なお、gNB100A、gNB100B等のそれぞれを区別する必要がない場合には、gNB又は基地局100と総称される。また、gNB及びUEの数は、図1に示す例に限定されない。 The NG-RAN 20 includes a base station 100A (hereinafter also referred to as gNB 100A) and a base station 100B (hereinafter also referred to as gNB 100B). Note that when there is no need to distinguish between gNB 100A, gNB 100B, etc., they are collectively referred to as gNB or base station 100. Furthermore, the number of gNBs and UEs is not limited to the example shown in FIG. 1 .
 NG-RAN20は、実際には複数のNG-RANノード、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、図示せず)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。また、以下において、gNBは、ネットワーク(NW)で読み替えられてもよい。 The NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that the NG-RAN 20 and 5GC may be simply expressed as a "network." Furthermore, in the following, gNB may be replaced with network (NW).
 gNB100A及びgNB100Bは、一例として、5Gに従った基地局であり、5Gに従った無線通信をUE200と実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC:Component Carrier)を束ねて用いるキャリアアグリゲーション(CA:Carrier Aggregation)、及び、UEと2つのNG-RANノードそれぞれとの間において通信を行うデュアルコネクティビティ(DC:Dual Connectivity)等に対応してよい。 The gNB 100A and gNB 100B are, for example, base stations that comply with 5G, and perform wireless communication with the UE 200 according to 5G. gNB100A, gNB100B, and UE200 use MIMO (Multiple-Input Multiple-Output), which generates a beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC: The present invention may support carrier aggregation (CA) that uses a bundle of components carriers, dual connectivity (DC) that performs communication between the UE and each of two NG-RAN nodes, and the like.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応してよい。図2は、無線通信システム10において用いられるFRの一例を示す図である。図2に示すように、無線通信システム10は、FR1及びFR2に対応してよい。各FRの周波数帯は、例えば、以下のとおりである。
 ・FR1:410MHz~7.125GHz
 ・FR2:24.25GHz~52.6GHz
Furthermore, the wireless communication system 10 may support multiple frequency ranges (FR). FIG. 2 is a diagram showing an example of FR used in the wireless communication system 10. As shown in FIG. 2, the wireless communication system 10 may support FR1 and FR2. The frequency bands of each FR are, for example, as follows.
・FR1: 410MHz ~ 7.125GHz
・FR2: 24.25GHz to 52.6GHz
 FR1では、15kHz、30kHz又は60kHzのサブキャリア間隔(SCS:Sub-Carrier Spacing)が用いられ、5~100MHzの帯域幅(BW:Bandwidth)が用いられてもよい。FR2は、FR1よりも高周波数であり、60kHz又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 In FR1, sub-carrier spacing (SCS) of 15 kHz, 30 kHz, or 60 kHz may be used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 is at a higher frequency than FR1, and an SCS of 60 kHz or 120 kHz (may include 240 kHz) may be used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 なお、SCSは、ニューメロロジー(numerology)と解釈されてもよい。ニューメロロジーは、3GPP TS 38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。 Note that SCS may be interpreted as numerology. The numerology is defined in 3GPP TS 38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯に対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応してもよい。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。52.6GHzを超える帯域を用いる場合、より大きなSCSを有するCP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)/DFT-S-OFDM(Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing)を適用してもよい。 Furthermore, the wireless communication system 10 may support a frequency band higher than the frequency band of FR2. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience. When using a band exceeding 52.6 GHz, even if CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing)/DFT-S-OFDM (Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing) with a larger SCS is applied. good.
 図3は、無線通信システム10において用いられる無線フレーム(システムフレーム)、サブフレーム及びスロットの構成例を示す図である。図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。ただし、SCSは、図3に示す間隔(周波数)に限定されない。例えば、SCSとして、480kHz、960kHz等が用いられてもよい。 FIG. 3 is a diagram showing a configuration example of a radio frame (system frame), subframe, and slot used in the radio communication system 10. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). However, the SCS is not limited to the intervals (frequency) shown in FIG. 3. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28又は56シンボル等であってもよい)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Furthermore, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, it may be 28 or 56 symbols, etc.). Furthermore, the number of slots per subframe may vary depending on the SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間等と呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP:Bandwidth Part)等と呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
 gNB100は、下りリンク(DL:Downlink)信号として、UE200の省電力を実現するための制御情報、設定情報等をUE200へ送信する。 The gNB 100 transmits control information, configuration information, etc. for realizing power saving of the UE 200 to the UE 200 as a downlink (DL) signal.
 また、例えば、gNB100は、上りリンク(UL:Uplink)信号として、UE200から、制御情報、データ信号、UE200の処理能力に関する情報(端末能力(情報);例えば、UE capability)等を受信する。 Further, for example, the gNB 100 receives control information, data signals, information regarding the processing capability of the UE 200 (terminal capability (information); for example, UE capability), etc. from the UE 200 as an uplink (UL) signal.
 DL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)が含まれてよく、制御チャネルには、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)が含まれてよい。例えば、gNB100は、UE200に対して、PDCCHを用いて制御情報を送信し、PDSCHを用いてDLのデータ信号を送信する。なお、PDSCHは下りリンク共有チャネルの一例であり、PDCCHは下りリンク制御チャネルの一例である。なお、PDCCHは、PDCCHにおいて送信される下りリンク制御情報(DCI:Downlink Control Information)、制御情報等で読み替えられてもよい。 Channels used for transmitting DL signals include, for example, data channels and control channels. For example, the data channel may include a physical downlink shared channel (PDSCH), and the control channel may include a physical downlink control channel (PDCCH). For example, the gNB 100 transmits control information to the UE 200 using the PDCCH, and transmits a DL data signal using the PDSCH. Note that PDSCH is an example of a downlink shared channel, and PDCCH is an example of a downlink control channel. Note that PDCCH may be replaced with downlink control information (DCI), control information, etc. transmitted on PDCCH.
 DL信号に含まれる参照信号には、例えば、例えば、DMRS(Demodulation Reference Signal)、PTRS(Phase Tracking Reference Signal)、CSI-RS(Channel State Information - Reference Signal)、SRS(Sounding Reference Signal)及び位置情報用のPRS(Positioning Reference Signal)のうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、DLのデータ信号の復調に使用され、PDSCHを用いて送信される。 Reference signals included in the DL signal include, for example, DMRS (Demodulation Reference Signal), PTRS (Phase Tracking Reference Signal), CSI-RS (Channel State Information-Reference Signal), SRS (Sounding Reference Signal), and location information. At least one PRS (Positioning Reference Signal) for use may be included. For example, reference signals such as DMRS and PTRS are used to demodulate DL data signals and are transmitted using PDSCH.
 UE200は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の、無線通信機能を備えた通信装置である。 The UE 200 is a communication device with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
 UE200は、DLで制御信号又はデータ信号をgNB100から受信し、ULで制御信号又はデータ信号をgNB100へ送信することで、無線通信システム10により提供される各種通信サービスを利用する。また、UE200は、gNB100から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The UE 200 utilizes various communication services provided by the wireless communication system 10 by receiving a control signal or data signal from the gNB 100 via DL and transmitting the control signal or data signal to the gNB 100 via UL. Further, UE 200 receives various reference signals transmitted from gNB 100, and measures channel quality based on the reception results of the reference signals.
 例えば、UE200は、DL信号として、gNB100から、UE200の省電力を実現するための制御情報、設定情報等を受信する。 For example, the UE 200 receives control information, setting information, etc. for realizing power saving of the UE 200 from the gNB 100 as a DL signal.
 また、例えば、UE200は、UL信号として、制御情報、データ信号、UE200の端末能力情報等をgNB100へ送信する。 Also, for example, the UE 200 transmits control information, data signals, terminal capability information of the UE 200, etc. to the gNB 100 as a UL signal.
 UL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)が含まれてよく、制御チャネルには、物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)が含まれてよい。例えば、UE200は、PUCCHを用いて制御情報を送信し、PUSCHを用いてULのデータ信号を送信する。なお、PUSCHは上りリンク共有チャネルの一例であり、PUCCHは上りリンク制御チャネルの一例である。共有チャネルはデータチャネルと呼ばれてもよい。なお、PUSCH又はPUCCHは、PUSCH又はPUCCHにおいて送信される上りリンク制御情報(UCI:Uplink Control Information)、制御情報等で読み替えられてもよい。 Channels used for transmitting UL signals include, for example, data channels and control channels. For example, the data channel may include a physical uplink shared channel (PUSCH), and the control channel may include a physical uplink control channel (PUCCH). For example, the UE 200 transmits control information using the PUCCH, and transmits a UL data signal using the PUSCH. Note that PUSCH is an example of an uplink shared channel, and PUCCH is an example of an uplink control channel. A shared channel may be called a data channel. Note that PUSCH or PUCCH may be replaced with uplink control information (UCI), control information, etc. transmitted on PUSCH or PUCCH.
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRSRS及び位置情報用のPRSのうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、ULのデータ信号の復調に使用され、PUSCHを用いて送信される。 The reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRSRS, and PRS for location information. For example, reference signals such as DMRS and PTRS are used to demodulate UL data signals and are transmitted using PUSCH.
 <XR特有の省電力の議論状況>
 XRは、将来の無線通信システムにとって魅力的なユースケースを提示する。一方で、XRは、検討及び対処される必要がある課題も課している。その1つとして、3GPPのRelease 18では、XRの特性を考慮した、XR特有の省電力を実現する方法が検討されている(例えば、非特許文献2)。
<Status of discussion on power saving specific to XR>
XR presents an attractive use case for future wireless communication systems. On the other hand, XR also poses challenges that need to be considered and addressed. As one example, in 3GPP Release 18, a method of realizing power saving specific to XR that takes into consideration the characteristics of XR is being considered (for example, Non-Patent Document 2).
 <端末の省電力>
 端末の省電力機能に関して、3GPPのRelease 15では、接続モード間欠受信(CDRX:Conneced Mode Discontinuous Reception)が導入され、3GPPのRelease 16では、端末が低消費電力で制御信号をモニタするための起動(ウェイクアップ)信号(WUS:Wake Up Signal)が導入されている。なお、CDRXは、単にDRXと称されてもよく、以下において、DRXと表記されることもある。
<Terminal power saving>
Regarding power saving functions of terminals, 3GPP Release 15 introduces connected mode discontinuous reception (CDRX), and 3GPP Release 16 introduces a power saving function for terminals to monitor control signals with low power consumption. A Wake Up Signal (WUS) has been introduced. Note that CDRX may be simply referred to as DRX, and may be written as DRX below.
 DRX機能は、上位レイヤ(RRC:Radio Resource Control)によって設定され、PDCCHモニタリングを制御する。 The DRX function is set by an upper layer (RRC: Radio Resource Control) and controls PDCCH monitoring.
 図4は、CDRXについて説明するための図である。3GPPのRelease 15におけるCDRX動作では、端末は、DRXサイクル(DRX cycle)におけるDRXオンデュレーション(DRX on-duration)でアクティブ(Active)であり、DRXオンオンデュレーション内のPDCCHをモニタする。なお、(DRX)オンデュレーションは、アクティブ期間、(端末が)アクティブである期間、(端末が)アクティブ状態にある期間、オン期間、起動期間、有効期間、有効化期間等で読み替えられてもよい。また、状態は、モードで読み替えられてもよい。なお、図4及び以下で説明する図面の中で示す要素は、縮尺通りに描かれているわけではない。 FIG. 4 is a diagram for explaining CDRX. In the CDRX operation in 3GPP Release 15, the terminal is active during the DRX on-duration in the DRX cycle and monitors the PDCCH within the DRX on-duration. Note that (DRX) on duration may be read as active period, period in which (the terminal) is active, period in which (the terminal is) in active state, on period, activation period, validity period, validation period, etc. . Further, the state may be interpreted as a mode. It should be noted that the elements shown in FIG. 4 and the drawings described below are not drawn to scale.
 図5は、3GPPのRelease 16におけるWUSについて説明するための図である。3GPPのRelease 16において、PDCCHベースのWUS(PDCCH-based WUS)は、端末が次のDRXオンデュレーション内でPDCCHをモニタするかどうかを1つ以上の端末に指示することができる。 FIG. 5 is a diagram for explaining WUS in 3GPP Release 16. In 3GPP Release 16, PDCCH-based WUS may instruct one or more terminals whether the terminals monitor the PDCCH within the next DRX on-duration.
 PS-RNTI(Power Saving - Radio Network Temporary Identifier)によってCRC(Cyclic Redundancy Check)がスクランブルされたDCIフォーマット2_6が、PDCCHベースのWUSとして使用され、DCP(DCI with CRC scrambled by PS-RNTI)とも呼ばれる。 DCI format 2_6 in which CRC (Cyclic Redundancy Check) is scrambled by PS-RNTI (Power Saving - Radio Network Temporary Identifier) is used as PDCCH-based WUS, and is also called DCP (DCI with CRC scrambled by PS-RNTI).
 WUSのモニタリングオケージョン(モニタリング機会:monitoring occasion)は、端末能力に基づくDRXオンデュレーションからのオフセット(offset)によって設定される。WUSが「非アクティブ(Not Active)」を指示している場合(すなわち、端末にデータの送受信が無い場合)、端末は、DRXオンデュレーション内のモニタをスキップして、スリープ状態に直ちに移行することができる。 The WUS monitoring occasion is set by an offset from the DRX on-duration based on the terminal capability. If the WUS indicates "Not Active" (i.e., the terminal is not transmitting or receiving data), the terminal shall skip the monitor in DRX on-duration and immediately go to sleep state. I can do it.
 また、例えば検出ミス等によって、PDCCHベースのWUSが検出されない場合のために、デフォルトの端末動作が設定されてもよい。 Additionally, a default terminal operation may be set in case PDCCH-based WUS is not detected due to, for example, a detection error.
 DCIフォーマット2_6は、「アクティブ」又は「非アクティブ」を示す1ビットの起動指示(情報)(1-bit Wake-up Indication)を含む。 The DCI format 2_6 includes a 1-bit Wake-up Indication indicating “active” or “inactive”.
 なお、アクティブは、アクティブモード、アクティブ状態、起動状態、オン(状態)、有効(状態)、有効化状態等で読み替えられてもよく、非アクティブは、非アクティブ状態、非アクティブモード、スリープ、オフ、無効、無効化、休止、休眠等で読み替えられてもよい。 Note that active may be read as active mode, active state, activated state, on (state), enabled (state), enabled state, etc., and inactive may be read as inactive state, inactive mode, sleep, off. , may be read as invalid, invalidated, suspended, dormant, etc.
 上記のDRX動作は、上位レイヤによって、以下のタイマーを含むパラメータ(DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい)の値を設定することにより制御される。
 ・drx-onDurationTimer
 ・drx-SlotOffset
 ・drx-LongCycleStartOffset
 ・drx-InactivityTimer
 ・drx-ShortCycle
 ・drx-ShortCycleTimer
 ・drx-HARQ-RTT-TimerDL
 ・drx-HARQ-RTT-TimerUL
 ・drx-RetransmissionTimerDL
 ・drx-RetransmissionTimerUL
The above DRX operation is performed by upper layers using the following parameters including timers: DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and active period. The cycle is controlled by setting values of parameters or settings (information, etc.) associated with the cycle.
・drx-onDurationTimer
・drx-SlotOffset
・drx-LongCycleStartOffset
・drx-InactivityTimer
・drx-ShortCycle
・drx-ShortCycleTimer
・drx-HARQ-RTT-TimerDL
・drx-HARQ-RTT-TimerUL
・drx-RetransmissionTimerDL
・drx-RetransmissionTimerUL
 [ロングDRXサイクルのみが設定される場合]
 各ロングDRXサイクルは、アクティブ期間及びスリープ期間を含む。アクティブ期間は、パラメータdrx-onDurationTimerを用いて設定される。ロングDRXサイクルの開始位置は、パラメータdrx-LongCycleStartOffsetを用いて設定される。アクティブ期間の開始位置は、パラメータdrx-LongCycleStartOffsetを用いて設定される。さらに、サブフレーム境界に対するアクティブ期間の開始位置は、パラメータdrx-SlotOffsetを用いて設定される。
[When only long DRX cycle is set]
Each long DRX cycle includes an active period and a sleep period. The active period is set using the parameter drx-onDurationTimer. The start position of the long DRX cycle is set using the parameter drx-LongCycleStartOffset. The starting position of the active period is set using the parameter drx-LongCycleStartOffset. Furthermore, the starting position of the active period relative to the subframe boundary is set using the parameter drx-SlotOffset.
 端末は、アクティブ期間の間アクティブであり、アクティブ期間の間に受信されるPDCCHがなければ、スリープ状態に移行する。 The terminal is active during the active period and goes to sleep if there is no PDCCH received during the active period.
 一方、PDCCHが新たなUL又はDL送信を指示する場合、端末は、パラメータdrx-InactivityTimerとして設定されるDRXインアクティビティタイマーをスタート又はリスタートさせる。このタイマーが満了するまで、端末はアクティブであり、PDCCHモニタリングを続ける。 On the other hand, if the PDCCH indicates new UL or DL transmission, the terminal starts or restarts the DRX inactivity timer set as the parameter drx-InactivityTimer. The terminal remains active and continues PDCCH monitoring until this timer expires.
 [ロングDRXサイクル及びショートDRXサイクルの両方が設定される場合]
 ロングDRXサイクルのアクティブ期間の間にデータアクティビティがなければ、端末は、上述したロングDRXサイクルに従って動作する(したがって、スリープ状態に移行する)。
[When both long DRX cycle and short DRX cycle are set]
If there is no data activity during the active period of the long DRX cycle, the terminal operates according to the long DRX cycle described above (and thus goes to sleep).
 一方、ロングDRXサイクルのアクティブ期間の間にデータアクティビティがあれば、端末は、ショートDRXサイクルに従って動作する。ショートDRXサイクルは、パラメータdrx-ShortCycleを用いて設定される。ショートDRXサイクルのアクティブ期間は、ロングDRXサイクルと同じパラメータdrx-onDurationTimerを用いて設定される。アクティブ期間の開始位置は、ロングDRXサイクルと同様に、drx-StartOffset及びdrx-SlotOffsetを用いて設定される。 On the other hand, if there is data activity during the active period of the long DRX cycle, the terminal operates according to the short DRX cycle. The short DRX cycle is set using the parameter drx-ShortCycle. The active period of the short DRX cycle is set using the same parameter drx-onDurationTimer as the long DRX cycle. The starting position of the active period is set using drx-StartOffset and drx-SlotOffset similarly to the long DRX cycle.
 なお、ショートDRXサイクルの設定は、任意(optional)であり、ショートDRXサイクルが設定されない場合、端末は、上述したロングDRXサイクルに従って動作する。 Note that the setting of the short DRX cycle is optional, and if the short DRX cycle is not set, the terminal operates according to the long DRX cycle described above.
 [再送処理]
 端末がDL再送を受信するために、2つのタイマー(drx-HARQ-RTT-TimerDL及びdrx-RetransmissionTimerDL)が存在する。DL再送が期待されるまでの期間は、端末がULにおいてNACKを送信した後のシンボルでスタートされるdrx-HARQ-RTT-TimerDLを用いて設定される。DL再送が受信されるまでの期間は、drx-HARQ-RTT-TimerDLが満了した後のシンボルでスタートされるdrx-RetransmissionTimerDLを用いて設定される。端末は、対応するHARQプロセスについてDL送信を検出すると、drx-RetransmissionTimerDLをストップさせる。
[Resend processing]
There are two timers (drx-HARQ-RTT-TimerDL and drx-RetransmissionTimerDL) for the terminal to receive DL retransmissions. The period until a DL retransmission is expected is set using drx-HARQ-RTT-TimerDL, which starts on the symbol after the terminal sends a NACK in the UL. The period until a DL retransmission is received is set using drx-RetransmissionTimerDL, which starts at the symbol after drx-HARQ-RTT-TimerDL expires. When the terminal detects DL transmission for the corresponding HARQ process, it stops drx-RetransmissionTimerDL.
 端末がUL再送用のグラントを受信するために、2つのタイマー(drx-HARQ-RTT-TimerUL及びdrx-RetransmissionTimerUL)が存在する。UL再送用のグラントが期待されるまでの期間は、端末がULにおいてPUSCHを送信した後のシンボルでスタートされるdrx-HARQ-RTT-TimerULを用いて設定される。UL再送用のグラントが受信されるまでの期間は、drx-HARQ-RTT-TimerDLが満了した次のシンボルでスタートされるdrx-RetransmissionTimerDLを用いて設定される。端末は、対応するHARQプロセスについてUL再送用のグラントを検出すると、drx-RetransmissionTimerULをストップさせる。 Two timers (drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL) exist for the terminal to receive a grant for UL retransmission. The period until a grant for UL retransmission is expected is set using drx-HARQ-RTT-TimerUL, which starts on the symbol after the terminal transmits PUSCH on the UL. The period until a grant for UL retransmission is received is set using drx-RetransmissionTimerDL, which starts at the next symbol after drx-HARQ-RTT-TimerDL expires. When the terminal detects a grant for UL retransmission for the corresponding HARQ process, it stops drx-RetransmissionTimerUL.
 従来では、一例として、このように端末の省電力が図られている。 Conventionally, as an example, power saving of terminals has been attempted in this way.
 <検討>
 XRトラフィックは、フレームレート(FPS(frame per second))に応じて周期的に到来する性質を有することが想定される。そのようなXRトラフィックの周期は、16.67ミリ秒、8.33ミリ秒等、非整数であり得る。
<Consideration>
It is assumed that XR traffic has a property of arriving periodically according to a frame rate (FPS (frame per second)). The period of such XR traffic may be a non-integer number, such as 16.67 ms, 8.33 ms, etc.
 一方、上述したロングDRXサイクル(以下、DRXサイクルと呼ぶ)は、図6における既存のパラメータdrx-LongCycleStartOffset(左側のdrx-LongCycle)に示すように、ms10(10ミリ秒)、ms20(20ミリ秒)等、ミリ秒単位の整数である。なお、図6の右側には開始オフセット(drx-StartOffset)が示されている。 On the other hand, the long DRX cycle (hereinafter referred to as DRX cycle) described above is ms10 (10 ms), ms20 (20 ms), as shown in the existing parameter drx-LongCycleStartOffset (drx-LongCycle on the left) in FIG. ), etc., is an integer in milliseconds. Note that the start offset (drx-StartOffset) is shown on the right side of FIG.
 ここで、図7に示すように、例えば周期が16.67ミリ秒であるXRトラフィックが、例えばDRXサイクルとして20ミリ秒が設定された端末に、周期的に到来する場合について検討する。図7の一番左に示すように、XRトラフィックのある到来タイミングが、端末のアクティブ期間内にあったとしても、図7の右側に示すように、XRトラフィックの後続の到来タイミングは、DRXサイクルの中で徐々にずれていく。これにより、特に例えば図7の一番右のタイミングで到来するXRトラフィックについては、次のDRXデュレーションまで大きな遅延が生じる。このように、XRトラフィックの周期とDRXサイクルとが揃っていないことで、XRトラフィックの到来タイミングによっては、大きな遅延が生じてしまう。 Here, as shown in FIG. 7, a case will be considered in which XR traffic whose cycle is, for example, 16.67 milliseconds periodically arrives at a terminal whose DRX cycle is set to, for example, 20 milliseconds. As shown on the far left of FIG. 7, even if a certain arrival timing of XR traffic is within the active period of the terminal, as shown on the right side of FIG. It gradually shifts inside. This causes a large delay until the next DRX duration, especially for XR traffic that arrives at the rightmost timing in FIG. 7, for example. As described above, since the period of XR traffic and the DRX cycle are not aligned, a large delay may occur depending on the arrival timing of XR traffic.
 これに対して、DRXサイクルを短くすることにより、そのような遅延は小さくなり得る。しかしながら、DRXサイクルを短くすることに伴う追加的なアクティブ期間又はアクティブ期間の増加は、端末の消費電力の増加をもたらし得る。 On the other hand, by shortening the DRX cycle, such delays can be reduced. However, the additional active period or increase in active period associated with shortening the DRX cycle may result in increased power consumption of the terminal.
 そこで、本実施の形態では、XRトラフィックの特性に合わせて端末の省電力を図ることができる例について説明する。具体的には、以下で説明するように、XRトラフィックの特性の1つである、非整数値をとる到来周期と、端末のDRXサイクル(間欠受信の周期等と呼ばれてもよい)と、を揃える(align:アラインさせる)ことによって、XRトラフィックの特性に合わせて端末の省電力を実現する。 Therefore, in this embodiment, an example will be described in which power saving of a terminal can be achieved in accordance with the characteristics of XR traffic. Specifically, as explained below, the arrival cycle, which takes a non-integer value, is one of the characteristics of XR traffic, the DRX cycle of the terminal (which may also be called the intermittent reception cycle, etc.), By aligning the XR traffic, it is possible to save power on the terminal according to the characteristics of the XR traffic.
 <提案1>無線フレーム、スロット及び/又はシンボルの単位でのDRXサイクルの規定/設定/通知
 DRXサイクルは、16.67ミリ秒、8.33ミリ秒等の非整数値を示すように、無線フレーム(又はフレーム)の個数、スロットの個数及び/又はシンボルの個数を用いることにより(したがって、無線フレーム、スロット及び/又はシンボルの単位で)、仕様において規定されてもよい。また、DRXサイクルは、非整数値を示すように、無線フレームの個数、スロットの個数及び/又はシンボルの個数を用いることにより(したがって、無線フレーム、スロット及び/又はシンボルの単位で)、基地局100によって、端末200に設定又は通知されてもよい。無線フレームの個数、スロットの個数及び/又はシンボルの個数は、例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC CE(Control Element))及び/又はDCIを用いて設定又は通知されてもよい。無線フレームの個数、スロットの個数及び/又はシンボルの個数は、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。
<Proposal 1> Definition/setting/notification of DRX cycles in units of radio frames, slots, and/or symbols It may be defined in the specification by using the number of frames (or frames), the number of slots and/or the number of symbols (therefore in units of radio frames, slots and/or symbols). Additionally, the DRX cycle is determined by the base station by using the number of radio frames, the number of slots, and/or the number of symbols (therefore, in units of radio frames, slots, and/or symbols) to indicate non-integer values. 100 may set or notify the terminal 200. The number of radio frames, the number of slots, and/or the number of symbols are set or notified using, for example, RRC signaling, MAC (Medium Access Control) signaling (for example, MAC CE (Control Element)), and/or DCI. Good too. The number of radio frames, the number of slots, and/or the number of symbols are determined by DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and cycles including active periods. may also be referred to as parameters or settings (information) related to.
 なお、上記のようなパラメータの設定時において、SFN(System Frame Number)を活用してパラメータ設定してもよい。例えば、上位レイヤシグナリングによってXを通知し、SFN mod X = 0となる位置を基準にして、DRXサイクルを設定してもよい。 Note that when setting parameters as described above, parameters may be set using SFN (System Frame Number). For example, X may be notified by upper layer signaling, and the DRX cycle may be set based on the position where SFN mod X = 0.
 図8A及び図8Bは、このために導入・規定される、DRX用の新規のパラメータ(情報要素)の例を示す。 FIGS. 8A and 8B show examples of new parameters (information elements) for DRX that are introduced and defined for this purpose.
 図8Aは、DRXサイクルを示すために使用される、無線フレームの個数(1、2、3等)、スロットの個数(1、2、3等)及びシンボルの個数(1、2、3等)を示す。なお、例として、drx-LongCycleFrame-rel18、drx-LongCycleSlot-rel18及びdrx-LongCycleSymbol-rel18という名称を示しているが、パラメータの名称は、これらの図示される例に限定されるものではない。 FIG. 8A shows the number of radio frames (1, 2, 3, etc.), the number of slots (1, 2, 3, etc.) and the number of symbols (1, 2, 3, etc.) used to indicate a DRX cycle. shows. Note that although the names drx-LongCycleFrame-rel18, drx-LongCycleSlot-rel18, and drx-LongCycleSymbol-rel18 are shown as examples, the names of the parameters are not limited to these illustrated examples.
 図8Bは、DRXサイクルを示すために使用される図8Aに示すパラメータとともに、図6と同様に開始オフセットを示すために使用されるパラメータを示す。なお、例として、drx-LongCycleStartOffsetFrame-rel18、drx-LongCycleStartOffsetSlot-rel18及びdrx-LongCycleStartOffsetSymbol-rel18という名称を示しているが、パラメータの名称は、これらの図示される例に限定されるものではない。 FIG. 8B shows the parameters used to indicate the starting offset similar to FIG. 6, along with the parameters shown in FIG. 8A used to indicate the DRX cycle. Note that, as examples, the names drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18, and drx-LongCycleStartOffsetSymbol-rel18 are shown, but the names of the parameters are not limited to these illustrated examples.
 図8A及び図8Bに示すパラメータは、無線フレーム、スロット及びシンボルについて別々に規定されなくてもよい。例えば、図8A及び図8Bに示すパラメータは、それぞれ、まとめて規定されてもよい。また、図8A及び図8Bに示すように、DRXサイクルと開始オフセットとは、別々に規定されてもよいし、まとめて規定されてもよい。 The parameters shown in FIGS. 8A and 8B do not need to be defined separately for radio frames, slots, and symbols. For example, the parameters shown in FIGS. 8A and 8B may be defined together. Further, as shown in FIGS. 8A and 8B, the DRX cycle and the start offset may be defined separately or may be defined together.
 図9は、無線フレーム、スロット及び/又はシンボルの単位でのDRXサイクルの例を示す。図9に示す例では、DRXサイクルは、1無線フレームと6スロットと9シンボルとの組み合わせである。このように、無線フレームの個数、スロットの個数及び/又はシンボルの個数を組み合わせることにより示されるDRXサイクルを、XRトラフィックの非整数周期(例えば、16.67ミリ秒、8.33ミリ秒等)と揃えることができる。 FIG. 9 shows an example of a DRX cycle in units of radio frames, slots, and/or symbols. In the example shown in FIG. 9, the DRX cycle is a combination of one radio frame, six slots, and nine symbols. In this way, the DRX cycle, indicated by the combination of the number of radio frames, the number of slots, and/or the number of symbols, can be set to a non-integer period of XR traffic (e.g., 16.67 ms, 8.33 ms, etc.). It can be aligned with
 [DRXオンデュレーションの開始タイミング]
 上記のように導入・規定されるパラメータを用いる場合、DRXオンデュレーションは、以下のタイミングで開始されてもよい。
[DRX onduration start timing]
When using the parameters introduced and defined as described above, DRX onduration may be started at the following timing.
 (Alt1)
 DRXオンデュレーションは、パラメータによって指定されたタイミングで開始されてもよい。例えば、端末200は、図8Bに示すdrx-LongCycleStartOffsetFrame-rel18、drx-LongCycleStartOffsetSlot-rel18及び/又はdrx-LongCycleStartOffsetSymbol-rel18に基づくDRXオンデュレーションの開始タイミングを決定し、その開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt1)
DRX onduration may be started at a timing specified by a parameter. For example, the terminal 200 determines the start timing of DRX onduration based on drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18 and/or drx-LongCycleStartOffsetSymbol-rel18 shown in FIG. 8B, and starts DRX onduration at the start timing. You may. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the timing specified by the parameter.
 (Alt2)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの後の最も早いPDCCHモニタリングから開始されてもよい。このようなPDCCHモニタリングのタイミングは、例えば、CORESET(Control Resource Set)タイミングであってもよい。例えば、端末200は、図8Bに示すdrx-LongCycleStartOffsetFrame-rel18、drx-LongCycleStartOffsetSlot-rel18及び/又はdrx-LongCycleStartOffsetSymbol-rel18に基づくタイミングの後の最も早いCORESETタイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング後の最も早い制御情報モニタリングのタイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt2)
DRX on-duration may start from the earliest PDCCH monitoring after the timing specified by the parameter (Alt1). The timing of such PDCCH monitoring may be, for example, CORESET (Control Resource Set) timing. For example, the terminal 200 may start DRX onduration at the earliest CORESET timing after the timing based on drx-LongCycleStartOffsetFrame-rel18, drx-LongCycleStartOffsetSlot-rel18, and/or drx-LongCycleStartOffsetSymbol-rel18 shown in FIG. 8B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
 [提案1の変形例]
 DRXに関連する他のパラメータも同様に、無線フレーム、スロット及び/又はシンボルの単位で規定/設定/通知されてもよい。例えば、既存のパラメータdrx-onDurationTimer、drx-InactivityTimer、drx-ShortCycle、drx-ShortCycleTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、及び/又は、新規に導入されるパラメータのうちの一部又は全部が、無線フレーム、スロット及び/又はシンボルの単位で規定/設定/通知されてもよい。
[Variation of Proposal 1]
Other parameters related to DRX may also be defined/set/notified in units of radio frames, slots, and/or symbols. For example, existing parameters drx-onDurationTimer, drx-InactivityTimer, drx-ShortCycle, drx-ShortCycleTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and/or new Some or all of the parameters to be introduced may be defined/set/notified in units of radio frames, slots, and/or symbols.
 DRXサイクルは、無線フレーム、スロット及び/又はシンボルに加えて、サブフレームの単位で規定/設定/通知されてもよい。 In addition to radio frames, slots, and/or symbols, the DRX cycle may be defined/set/notified in units of subframes.
 提案1によれば、基地局100は、端末200への通信トラフィックの周期を特定する。例えば、基地局100は、端末200への通信トラフィックの周期が16.67ミリ秒(非整数周期)であると特定する。基地局100は、端末200への通信トラフィックの非整数周期(16.67ミリ秒)に基づいて、端末200が基地局100からの送信をモニタするアクティブ状態にある期間(DRXオンデュレーション)を含むDRXサイクルを決定する。例えば、基地局100は、非整数周期と揃えられる(等しくなる)ように、DRXサイクルを、無線フレームの個数、スロットの個数及び/又はシンボルの個数の組み合わせとして決定又は設定する。そして、基地局100は、端末200のアクティブ期間を含み非整数値をとるDRXサイクルに関連するDRXパラメータ(決定した無線フレームの個数、スロットの個数及び/又はシンボルの個数等)を端末200へ送信する。 According to proposal 1, the base station 100 identifies the cycle of communication traffic to the terminal 200. For example, base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle). The base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200. Determine the DRX cycle. For example, the base station 100 determines or sets the DRX cycle as a combination of the number of radio frames, the number of slots, and/or the number of symbols so as to be aligned (equal) to a non-integer period. Then, the base station 100 transmits to the terminal 200 DRX parameters (determined number of radio frames, number of slots, and/or number of symbols, etc.) related to the DRX cycle that includes the active period of the terminal 200 and takes a non-integer value. do.
 また、提案1によれば、端末200は、基地局100からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるDRXサイクルに関連するDRXパラメータを、基地局100から受信する。そして、端末200は、DRXサイクルの間、受信したDRXパラメータに基づいて、アクティブ状態と基地局100からの送信をモニタしない非アクティブ状態との間で端末200の状態を切り替える。 Furthermore, according to proposal 1, the terminal 200 receives from the base station 100 a DRX parameter related to a DRX cycle that includes a period in an active state for monitoring transmission from the base station 100 and takes a non-integer value. Then, the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the DRX cycle.
 以上説明したように、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを揃えることによって、XRトラフィックの特性に合わせて端末の省電力を実現することができる。また、無線フレーム、スロット及び/又はシンボル単位でDRXサイクルを規定/設定/通知することで、DRXサイクルをシンボル境界に揃えることができる。また、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを揃えることによって、トラフィックの遅延を抑制することができる。 As explained above, by aligning the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal, power saving of the terminal can be realized in accordance with the characteristics of the XR traffic. Furthermore, by defining/setting/notifying the DRX cycle in units of radio frames, slots, and/or symbols, it is possible to align the DRX cycles with symbol boundaries. Further, by aligning the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal, traffic delay can be suppressed.
 <提案2>非整数値自体を用いたDRXサイクルの規定/設定/通知
 DRXサイクルは、16.67ミリ秒、8.33ミリ秒等の非整数値をそのまま用いることにより、仕様において規定されてもよい。また、DRXサイクルは、非整数値をそのまま用いることにより、基地局100によって、端末200に設定又は通知されてもよい。非整数値のDRXサイクルは、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて設定又は通知されてもよい。非整数値のDRXサイクルは、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。
<Proposal 2> Specifying/setting/notifying DRX cycles using non-integer values themselves DRX cycles can be defined in the specifications by using non-integer values such as 16.67 ms, 8.33 ms, etc. Good too. Further, the DRX cycle may be set or notified to the terminal 200 by the base station 100 by using a non-integer value as is. Non-integer DRX cycles may be configured or notified using, for example, RRC signaling, MAC signaling (eg, MAC CE), and/or DCI. DRX cycles with non-integer values include DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), parameters or settings related to cycles including active periods (information). ) etc.
 図10A及び図10Bは、このために導入・規定されるDRX用の新規のパラメータ(情報要素)の例を示す。 FIGS. 10A and 10B show examples of new parameters (information elements) for DRX that are introduced and defined for this purpose.
 図10Aは、整数値のDRXサイクル及び非整数値のDRXサイクルの両方(並びに開始オフセット)が規定される情報要素を示す。図示するms8.33及びms16.67が、それぞれ、8.33ミリ秒のDRXサイクル及び16.67ミリ秒のDRXサイクルを表す。なお、例として、drx-LongCycleStartOffset-rel18という名称を示しているが、パラメータの名称は、この図示される例に限定されるものではない。 FIG. 10A shows an information element in which both integer-valued and non-integer-valued DRX cycles (as well as starting offsets) are defined. The illustrated ms8.33 and ms16.67 represent a DRX cycle of 8.33 ms and a DRX cycle of 16.67 ms, respectively. Note that although the name drx-LongCycleStartOffset-rel18 is shown as an example, the name of the parameter is not limited to this illustrated example.
 図10Bは、非整数値のDRXサイクル(及び開始オフセット)が規定される情報要素を示す。図示するms8.33及びms16.67が、それぞれ、8.33ミリ秒のDRXサイクル及び16.67ミリ秒のDRXサイクルを表す。なお、例として、drx-LongCycleStartOffset-rel18という名称を示しているが、パラメータの名称は、この図示される例に限定されるものではない。この例の場合、整数値のDRXサイクル(及び開始オフセット)が規定される既存のパラメータdrx-LongCycleStartOffsetも使用されてよい。 FIG. 10B shows an information element in which a non-integer value of the DRX cycle (and start offset) is defined. The illustrated ms8.33 and ms16.67 represent a DRX cycle of 8.33 ms and a DRX cycle of 16.67 ms, respectively. Note that although the name drx-LongCycleStartOffset-rel18 is shown as an example, the name of the parameter is not limited to this illustrated example. For this example, the existing parameter drx-LongCycleStartOffset may also be used, where an integer value of the DRX cycle (and start offset) is defined.
 このように、整数値のDRXサイクルと非整数値のDRXサイクルとは、共通のパラメータとして規定/設定/通知されてもよいし(図10A)、別々のパラメータとして規定/設定/通知されてもよい(図10B)。このように、DRXサイクルを、XRトラフィックの非整数周期(例えば、16.67ミリ秒、8.33ミリ秒等)と揃えることができる。 In this way, the DRX cycle with an integer value and the DRX cycle with a non-integer value may be defined/set/notified as a common parameter (FIG. 10A), or may be defined/set/notified as separate parameters. Good (Figure 10B). In this way, the DRX cycle can be aligned with a non-integer period of XR traffic (eg, 16.67 ms, 8.33 ms, etc.).
 [DRXオンデュレーションの開始タイミング]
 (Alt1)
 DRXオンデュレーションは、パラメータによって指定されたタイミングで開始されてもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくDRXオンデュレーションの開始タイミングを決定し、その開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
[DRX onduration start timing]
(Alt1)
DRX onduration may be started at a timing specified by a parameter. For example, the terminal 200 may determine the start timing of DRX on-duration based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B, and start DRX on-duration at the start timing. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the timing specified by the parameter.
 (Alt2)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの後の最も早いPDCCHモニタリングから開始されてもよい。このようなPDCCHモニタリングのタイミングは、例えば、CORESETタイミングであってもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくタイミングの後の最も早いCORESETタイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング後の最も早い制御情報モニタリングのタイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt2)
DRX on-duration may start from the earliest PDCCH monitoring after the timing specified by the parameter (Alt1). The timing of such PDCCH monitoring may be, for example, the CORESET timing. For example, the terminal 200 may start DRX on-duration at the earliest CORESET timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
 (Alt3)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの後の最も早いスロット開始タイミングで開始されてもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくタイミングの後の最も早いスロット開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング後の最も早いスロット開始タイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt3)
The DRX on-duration may be started at the earliest slot start timing after the (Alt1) timing specified by the parameter. For example, the terminal 200 may start DRX on-duration at the earliest slot start timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the earliest slot start timing after the timing specified by the parameter.
 (Alt4)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの後の最も早いシンボル開始タイミングで開始されてもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくタイミングの後の最も早いシンボル開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング後の最もシンボル開始タイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt4)
DRX onduration may start at the earliest symbol start timing after the (Alt1) timing specified by the parameter. For example, the terminal 200 may start DRX on-duration at the earliest symbol start timing after the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the most symbol start timing after the timing specified by the parameter.
 (Alt5)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの前の最も近いスロット開始タイミングで開始されてもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくタイミングの前の最も近いスロット開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング前の最も近いスロット開始タイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt5)
The DRX on-duration may start at the closest slot start timing before the (Alt1) timing specified by the parameter. For example, the terminal 200 may start DRX on-duration at the closest slot start timing before the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the closest slot start timing before the timing specified by the parameter.
 (Alt6)
 DRXオンデュレーションは、パラメータによって指定された(Alt1)のタイミングの前の最も近いシンボル開始タイミングで開始されてもよい。例えば、端末200は、図10A及び図10Bに示すdrx-LongCycleStartOffset-rel18に基づくタイミングの前の最も近いシンボル開始タイミングでDRXオンデュレーションを開始してもよい。別の言い方をすれば、端末200は、パラメータによって指定されたタイミング前の最も近いシンボル開始タイミングで、端末200(の状態)を非アクティブ状態からアクティブ状態に切り替えてもよい。
(Alt6)
The DRX on-duration may start at the nearest symbol start timing before the (Alt1) timing specified by the parameter. For example, the terminal 200 may start DRX on-duration at the nearest symbol start timing before the timing based on drx-LongCycleStartOffset-rel18 shown in FIGS. 10A and 10B. In other words, the terminal 200 may switch (the state of) the terminal 200 from the inactive state to the active state at the nearest symbol start timing before the timing specified by the parameter.
 図11は、DRXオンデュレーションの開始タイミングの例を示す。この例は、上述の(Alt3)を適用した例であり、図中の1つの矩形ブロックは1スロットを表す。図示するように、スロットの途中でDRXサイクルの開始((Alt1)のタイミング)が生じる場合、端末200は、DRXサイクルの開始の後の最も早いスロット開始タイミングでDRXオンデュレーションを開始してもよい。(Alt4)~(Alt6)についても同様である。 FIG. 11 shows an example of the start timing of DRX on-duration. This example is an example in which the above-mentioned (Alt3) is applied, and one rectangular block in the figure represents one slot. As illustrated, when the start of a DRX cycle (timing of (Alt1)) occurs in the middle of a slot, the terminal 200 may start DRX on-duration at the earliest slot start timing after the start of the DRX cycle. . The same applies to (Alt4) to (Alt6).
 [提案2の変形例]
 DRXに関連する他のパラメータも同様に、非整数値をそのまま用いて、規定/設定/通知されてもよい。例えば、既存のパラメータdrx-onDurationTimer、drx-InactivityTimer、drx-ShortCycle、drx-ShortCycleTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、及び/又は、新規に導入されるパラメータのうちの一部又は全部が、非整数値をそのまま用いて、規定/設定/通知されてもよい。また、上記のように非整数値が適用されてもよいパラメータ(タイマー)の開始タイミングに対して、上記の(Alt1)~(Alt6)が同様に適用されてもよい。
[Variation of Proposal 2]
Other parameters related to DRX may also be prescribed/set/notified using non-integer values as they are. For example, existing parameters drx-onDurationTimer, drx-InactivityTimer, drx-ShortCycle, drx-ShortCycleTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and/or new Some or all of the parameters introduced may be defined/set/notified using non-integer values as they are. Furthermore, the above (Alt1) to (Alt6) may be similarly applied to the start timing of the parameter (timer) to which a non-integer value may be applied as described above.
 図10A及び図10Bでは、8.33ミリ秒及び16.67秒であるDRXサイクルの例が示されているが、他の非整数値が規定/設定/通知されてもよい。 Although FIGS. 10A and 10B show examples of DRX cycles that are 8.33 ms and 16.67 seconds, other non-integer values may be defined/set/notified.
 (Alt3)又は(Alt5)では、パラメータによって指定されたタイミング後の最も早いスロット開始タイミング又は当該タイミング前の最も近いスロット開始タイミングでDRXオンデュレーションを開始するものとしたが、端末200は、当該タイミング後の最も早いスロット開始タイミングと、当該タイミング前の最も近いスロット開始タイミングと、のうちどちらが当該タイミングに近いかを判断し、近い方のスロット開始タイミングでDRXオンデュレーションを開始してもよい。同様に、(Alt4)又は(Alt6)では、パラメータによって指定されたタイミング後の最も早いシンボル開始タイミング又は当該タイミング前の最も近いシンボル開始タイミングでDRXオンデュレーションを開始するものとしたが、端末200は、当該タイミング後の最も早いシンボル開始タイミングと、当該タイミング前の最も近いシンボル開始タイミングと、のうちどちらが当該タイミングに近いかを判断し、近い方のシンボル開始タイミングでDRXオンデュレーションを開始してもよい。 In (Alt3) or (Alt5), DRX onduration is started at the earliest slot start timing after the timing specified by the parameter or at the closest slot start timing before the timing specified, but the terminal 200 It may be determined which of the later earliest slot start timing and the closest slot start timing before the relevant timing is closer to the relevant timing, and the DRX on-duration may be started at the closest slot start timing. Similarly, in (Alt4) or (Alt6), DRX on-duration is started at the earliest symbol start timing after the timing specified by the parameter or at the closest symbol start timing before the timing, but the terminal 200 , determine which is closer to the timing, the earliest symbol start timing after the timing or the closest symbol start timing before the timing, and start DRX on-duration at the nearest symbol start timing. good.
 提案2によれば、基地局100は、端末200への通信トラフィックの周期を特定する。例えば、基地局100は、端末200への通信トラフィックの周期が16.67ミリ秒(非整数周期)であると特定する。基地局100は、端末200への通信トラフィックの非整数周期(16.67ミリ秒)に基づいて、端末200が基地局100からの送信をモニタするアクティブ状態にある期間(DRXオンデュレーション)を含むDRXサイクルを決定する。例えば、基地局100は、非整数周期と揃えられる(等しくなる)ようにDRXサイクルを、非整数値として決定又は設定する。そして、基地局100は、端末200のアクティブ期間を含み非整数値をとるDRXサイクルに関連するDRXパラメータ(決定したDRXサイクル等)を端末200へ送信する。 According to proposal 2, the base station 100 identifies the cycle of communication traffic to the terminal 200. For example, base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle). The base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200. Determine the DRX cycle. For example, the base station 100 determines or sets the DRX cycle as a non-integer value so that it is aligned with (equal to) the non-integer period. Then, the base station 100 transmits to the terminal 200 DRX parameters (determined DRX cycle, etc.) related to the DRX cycle that includes the active period of the terminal 200 and takes a non-integer value.
 また、提案2によれば、端末200は、基地局100からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるDRXサイクルに関連するDRXパラメータを、基地局100から受信する。そして、端末200は、DRXサイクルの間、受信したDRXパラメータに基づいて、アクティブ状態と基地局100からの送信をモニタしない非アクティブ状態との間で端末200の状態を切り替える。 According to Proposal 2, the terminal 200 receives from the base station 100 a DRX parameter related to a DRX cycle that includes a period in an active state for monitoring transmission from the base station 100 and takes a non-integer value. Then, the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the DRX cycle.
 以上説明したように、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを揃えることによって、XRトラフィックの特性に合わせて端末の省電力を実現することができる。また、DRXサイクルとして非整数値を用いることによって、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを簡単に揃えることができる。また、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを揃えることによって、トラフィックの遅延を抑制することができる。 As explained above, by aligning the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal, power saving of the terminal can be realized in accordance with the characteristics of the XR traffic. Furthermore, by using a non-integer value as the DRX cycle, it is possible to easily align the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal. Further, by aligning the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal, traffic delay can be suppressed.
 <提案3>異なるDRXサイクルの組み合わせ
 16.67ミリ秒、8.33ミリ秒等の非整数値と揃えられるように、複数回のDRXサイクルごとに2つの異なるDRXサイクルが含まれてもよい。上記の複数回のDRXサイクルの回数、複数回のDRXサイクルに含まれるベースとなる第1のDRXサイクル(ベースDRXサイクルとも呼ぶ)、複数回のDRXサイクルに含まれる第2のDRXサイクル(追加DRXサイクルとも呼ぶ)及び複数回のDRXサイクルに含まれる追加DRXサイクルの回数のうちの一部又は全部が、仕様において規定されてもよい。例えば、以下で説明する16ミリ秒、17ミリ秒、18ミリ秒等といったDRXサイクルが、図6を参照して説明した既存の情報要素drx-LongCycleStartOffsetの中で規定されてもよいし、新たな情報要素(例えば、情報要素drx-LongCycleStartOffset-rel18)の中で規定されてもよい。仕様において規定されてもよい上記パラメータは、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて設定又は通知されてもよい。仕様において規定されてもよい上記パラメータは、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。
<Proposal 3> Combination of different DRX cycles Two different DRX cycles may be included for each plurality of DRX cycles so as to be aligned with non-integer values such as 16.67 milliseconds and 8.33 milliseconds. The number of times of multiple DRX cycles described above, the first DRX cycle (also called base DRX cycle) included in multiple DRX cycles, the second DRX cycle (additional DRX cycle) included in multiple DRX cycles, A part or all of the number of additional DRX cycles included in the plurality of DRX cycles may be specified in the specifications. For example, DRX cycles such as 16 ms, 17 ms, 18 ms, etc., as described below, may be defined in the existing information element drx-LongCycleStartOffset as described with reference to FIG. It may be specified in an information element (eg, information element drx-LongCycleStartOffset-rel18). The above parameters, which may be defined in the specifications, may be configured or notified using, for example, RRC signaling, MAC signaling (eg, MAC CE), and/or DCI. The above parameters that may be specified in the specifications include DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), parameters or settings related to cycles including active periods, or It may also be referred to as settings (information) or the like.
 なお、ベースDRXサイクルと追加DRXサイクルとは異なるため、DRXサイクルの開始タイミングも合わせてシフトされる。すなわち、あるDRXサイクルの終了タイミングと次のDRXサイクルの開始タイミングとが一致するように、DRXサイクルの開始タイミングがシフトされる。 Note that since the base DRX cycle and the additional DRX cycle are different, the start timing of the DRX cycle is also shifted accordingly. That is, the start timing of a DRX cycle is shifted so that the end timing of one DRX cycle and the start timing of the next DRX cycle coincide.
 [追加DRXサイクルの規定/設定/通知]
 (Alt1)
 追加DRXサイクル自体の値が通知/設定/通知されてもよい。例えば、16ミリ秒といった値が、追加DRXサイクル自体として通知/設定/通知されてもよい。
[Additional DRX cycle regulations/settings/notification]
(Alt1)
The value of the additional DRX cycle itself may be notified/set/notified. For example, a value such as 16 milliseconds may be notified/set/notified as the additional DRX cycle itself.
 (Alt2)
 ベースDRXサイクルに対する増減値(差分値)が通知/設定/通知されてもよい。例えば、ベースDRXサイクルが17ミリ秒である場合、-1ミリ秒(追加DRXサイクルが16ミリ秒)、+2ミリ秒(追加DRXサイクルが19ミリ秒)といった増減値が通知/設定/通知されてもよい。
(Alt2)
An increase/decrease value (difference value) with respect to the base DRX cycle may be notified/set/notified. For example, if the base DRX cycle is 17 ms, the increase/decrease values such as -1 ms (additional DRX cycle is 16 ms), +2 ms (additional DRX cycle is 19 ms) are notified/set/notified. Good too.
 図12A~図12Cは、異なるDRXサイクルの組み合わせの例を示す。図12Aは、複数回のDRXサイクルの回数が3回であり、複数回のDRXサイクルに含まれる追加DRXサイクルが16ミリ秒であり、複数回のDRXサイクルに含まれる追加DRXサイクルの回数が1回である(かつ、ベースDRXサイクルが17ミリ秒である)例を示す。図12Aに示す例では、複数回のDRXサイクルの合計が50(=17+17+16)ミリ秒となり、例えば16.67ミリ秒であるXRトラフィックの周期の3倍となることから、複数回のDRXサイクルが、このような非整数周期と揃えられると解されてもよい。図12Bは、複数回のDRXサイクルの回数が3回であり、複数回のDRXサイクルに含まれる追加DRXサイクルが18ミリ秒であり、複数回のDRXサイクルに含まれる追加DRXサイクルの回数が1回である(かつ、ベースDRXサイクルが16ミリ秒である)例を示す。図12Bに示す例では、複数回のDRXサイクルの合計が50(=16+16+18)ミリ秒となり、例えば16.67ミリ秒であるXRトラフィックの周期の3倍となることから、複数回のDRXサイクルが、このような非整数周期と揃えられると解されてもよい。図12Cは、複数回のDRXサイクルの回数が6回であり、複数回のDRXサイクルに含まれる追加DRXサイクルが16ミリ秒であり、複数回のDRXサイクルに含まれる追加DRXサイクルの回数が2回である(かつ、ベースDRXサイクルが17ミリ秒である)例を示す。図12Cに示す例では、複数回のDRXサイクルの合計が100(=17+17+17+17+16+16)ミリ秒となり、例えば16.67ミリ秒であるXRトラフィックの周期の6倍となることから、複数回のDRXサイクルが、このような非整数周期と揃えられると解されてもよい。 12A to 12C show examples of different DRX cycle combinations. In FIG. 12A, the number of multiple DRX cycles is 3, the additional DRX cycle included in the multiple DRX cycles is 16 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 17 ms). In the example shown in FIG. 12A, the total number of DRX cycles is 50 (=17+17+16) milliseconds, which is three times the period of XR traffic, which is 16.67 milliseconds, so the number of DRX cycles is 50 (=17+17+16) milliseconds. , may be understood to be aligned with such a non-integer period. In FIG. 12B, the number of multiple DRX cycles is 3, the additional DRX cycle included in the multiple DRX cycles is 18 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 1. (and the base DRX cycle is 16 ms). In the example shown in FIG. 12B, the total number of DRX cycles is 50 (=16+16+18) milliseconds, which is three times the period of XR traffic, which is 16.67 milliseconds, so the number of DRX cycles is 50 (=16+16+18) milliseconds. , may be understood to be aligned with such a non-integer period. In FIG. 12C, the number of multiple DRX cycles is 6, the additional DRX cycle included in the multiple DRX cycles is 16 milliseconds, and the number of additional DRX cycles included in the multiple DRX cycles is 2. (and the base DRX cycle is 17 ms). In the example shown in FIG. 12C, the total of the multiple DRX cycles is 100 (=17+17+17+17+16+16) milliseconds, which is six times the period of XR traffic, which is 16.67 milliseconds, so the multiple DRX cycles are , may be understood to be aligned with such a non-integer period.
 [複数回のDRXサイクルにおける追加DRXサイクルの位置]
 (Alt1)
 追加DRXサイクルは、図12A~図12Cに示すように、複数回のDRXサイクルにおいて最後から1回以上のDRXサイクルであってもよい。すなわち、追加DRXサイクルは、複数回のDRXサイクルのうち最後の1回以上のDRXサイクルとして固定されてもよい。
[Position of additional DRX cycle in multiple DRX cycles]
(Alt1)
The additional DRX cycle may be one or more last DRX cycles in a plurality of DRX cycles, as shown in FIGS. 12A to 12C. That is, the additional DRX cycle may be fixed as the last one or more DRX cycles among a plurality of DRX cycles.
 (Alt2)
 追加DRXサイクルは、複数回のDRXサイクルにおいて最初から1回以上のDRXサイクルであってもよい。すなわち、追加DRXサイクルは、複数回のDRXサイクルのうち最初の1回以上のDRXサイクルとして固定されてもよい。
(Alt2)
The additional DRX cycle may be one or more DRX cycles from the beginning in a plurality of DRX cycles. That is, the additional DRX cycle may be fixed as the first one or more DRX cycles among a plurality of DRX cycles.
 (Alt3)
 追加DRXサイクルの位置について、最初の追加DRXサイクルが複数回のDRXサイクルにおいて何番目のDRXサイクルであるかが、仕様において規定されてもよく、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。
(Alt3)
Regarding the position of the additional DRX cycle, the number of the first additional DRX cycle in a plurality of DRX cycles may be specified in the specification, and the base station 100 may use, for example, RRC signaling, MAC signaling ( For example, the setting or notification may be made to the terminal 200 using MAC CE) and/or DCI.
 [追加DRXサイクルにおける開始オフセット]
 (Alt1)
 追加DRXサイクルにおける開始オフセットとして、ベースDRXサイクルにおける開始オフセットが用いられてもよい。したがって、この場合、追加DRXサイクルにおける開始オフセットは、端末200に通知されなくてもよい。
[Start offset in additional DRX cycle]
(Alt1)
The starting offset in the base DRX cycle may be used as the starting offset in the additional DRX cycle. Therefore, in this case, the terminal 200 may not be notified of the starting offset in the additional DRX cycle.
 (Alt2)
 追加DRXサイクルにおける開始オフセットは、端末200によって、ベースDRXサイクルにおける開始オフセットと、ベースDRXサイクルに対する追加DRXサイクルの増減値と、に基づいて計算されてもよい。具体的には、端末200は、追加DRXサイクルにおける開始オフセットを、ベースDRXサイクルにおける開始オフセットとベースDRXサイクルに対する追加DRXサイクルの増減値とを加算した値に設定してもよい。したがって、この場合、追加DRXサイクルにおける開始オフセットは、端末200に通知されなくてもよい。
(Alt2)
The starting offset in the additional DRX cycle may be calculated by the terminal 200 based on the starting offset in the base DRX cycle and the increase/decrease value of the additional DRX cycle with respect to the base DRX cycle. Specifically, the terminal 200 may set the start offset in the additional DRX cycle to a value that is the sum of the start offset in the base DRX cycle and the increase/decrease value of the additional DRX cycle with respect to the base DRX cycle. Therefore, in this case, the terminal 200 may not be notified of the starting offset in the additional DRX cycle.
 (Alt3)
 追加DRXサイクルにおける開始オフセットは、仕様において規定されてもよく、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。
(Alt3)
The starting offset in the additional DRX cycle may be specified in the specifications and may be set or notified by the base station 100 to the terminal 200 using, for example, RRC signaling, MAC signaling (e.g., MAC CE), and/or DCI. Good too.
 [提案3の変形例]
 DRXに関連する他のパラメータも同様に、複数の値ごとに2つの値が含まれる形で、規定/設定/通知されてもよい。例えば、既存のパラメータdrx-onDurationTimer、drx-InactivityTimer、drx-ShortCycle、drx-ShortCycleTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、及び/又は、新規に導入されるパラメータのうちの一部又は全部が、複数の値ごとに2つの値が含まれる形で、規定/設定/通知されてもよい。
[Variation of proposal 3]
Other parameters related to DRX may also be defined/set/notified in a manner that includes two values for each of a plurality of values. For example, existing parameters drx-onDurationTimer, drx-InactivityTimer, drx-ShortCycle, drx-ShortCycleTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and/or new Some or all of the parameters to be introduced may be defined/set/notified in such a manner that two values are included for each of the plurality of values.
 複数回のDRXサイクルの回数、複数回のDRXサイクルに含まれる追加DRXサイクル、及び、複数回のDRXサイクルに含まれる追加DRXサイクルの回数の組み合わせと、当該組み合わせを示すインデックス又は識別情報(ID)と、の対応関係が、仕様において規定されてもよい。また、上記インデックス又はIDが、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。上記インデックス又はIDは、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。 A combination of the number of multiple DRX cycles, an additional DRX cycle included in the multiple DRX cycles, and a number of additional DRX cycles included in the multiple DRX cycles, and an index or identification information (ID) indicating the combination. The correspondence relationship between and may be defined in the specification. Further, the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI. The above index or ID includes DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), parameters or settings related to cycles including active periods (information), etc. may be called.
 複数回のDRXサイクルの回数ではなく、(複数回のDRXサイクルに含まれる)ベースDRXサイクルの回数が、仕様において規定されてもよく、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。また、(複数回のDRXサイクルに含まれる)ベースDRXサイクルの回数、(複数回のDRXサイクルに含まれる)追加DRXサイクル、及び、(複数回のDRXサイクルに含まれる)追加DRXサイクルの回数の組み合わせと、当該組み合わせを示すインデックス又はIDと、の対応関係が、仕様において規定されてもよい。さらに、上記インデックス又はIDが、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。上記ベースDRXサイクルの回数と上記インデックス又はIDとは、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。 Rather than the number of multiple DRX cycles, the number of base DRX cycles (included in the multiple DRX cycles) may be specified in the specification, and may be determined by the base station 100, for example, by RRC signaling, MAC signaling (e.g., It may be set or notified to the terminal 200 using MAC (CE) and/or DCI. Also, the number of base DRX cycles (included in multiple DRX cycles), additional DRX cycles (included in multiple DRX cycles), and number of additional DRX cycles (included in multiple DRX cycles). The correspondence between a combination and an index or ID indicating the combination may be defined in the specifications. Furthermore, the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI. The number of base DRX cycles and the index or ID are related to cycles including DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), and active periods. may also be referred to as parameters or settings (information).
 16.67ミリ秒、8.33ミリ秒等の非整数値と揃えられるように、3つ以上の異なるDRXサイクルを組み合わせてもよい。この場合も、複数回のDRXサイクルに含まれるベースDRXサイクル以外の2つ以上の追加DRXサイクル及びこれらの回数が、規定/設定/通知されてもよい。また、上記と同様に、複数回のDRXサイクルの回数(又はベースDRXサイクルの回数)、2つ以上の追加DRXサイクル及びこれらの回数の組み合わせと、当該組み合わせを示すインデックス又はIDと、の対応関係が、仕様において規定されてもよい。また、上記と同様に、上記インデックス又はIDが、基地局100によって、例えば、RRCシグナリング、MACシグナリング(例えば、MAC CE)及び/又はDCIを用いて、端末200に設定又は通知されてもよい。上記2つ以上の追加DRXサイクルとこれらの回数と上記インデックス又はIDとは、DRXパラメータ又は設定(情報)、DRXに関連するパラメータ又は設定(情報)、省電力に関するパラメータ又は設定(情報)、アクティブ期間を含むサイクルに関連するパラメータ又は設定(情報)等と称されてもよい。 Three or more different DRX cycles may be combined to align with non-integer values such as 16.67 ms, 8.33 ms, etc. In this case as well, two or more additional DRX cycles other than the base DRX cycle included in the plurality of DRX cycles and the number of these cycles may be defined/set/notified. In addition, similar to the above, the correspondence between the number of multiple DRX cycles (or the number of base DRX cycles), two or more additional DRX cycles, a combination of these numbers, and an index or ID indicating the combination. may be specified in the specification. Further, similarly to the above, the index or ID may be set or notified to the terminal 200 by the base station 100 using, for example, RRC signaling, MAC signaling (for example, MAC CE), and/or DCI. The above two or more additional DRX cycles, their number of times, and the above index or ID are DRX parameters or settings (information), parameters or settings related to DRX (information), parameters or settings related to power saving (information), active It may also be referred to as a parameter or setting (information) related to a cycle including a period.
 提案3によれば、基地局100は、端末200への通信トラフィックの周期を特定する。例えば、基地局100は、端末200への通信トラフィックの周期が16.67ミリ秒(非整数周期)であると特定する。基地局100は、端末200への通信トラフィックの非整数周期(16.67ミリ秒)に基づいて、端末200が基地局100からの送信をモニタするアクティブ状態にある期間(DRXオンデュレーション)を含む第1DRXサイクル及び第2DRXサイクルを決定する。例えば、基地局100は、第1DRXサイクル(17ミリ秒)の2倍と第2DRXサイクル(16ミリ秒)の1倍との和が、通信トラフィックの非整数周期(16.67ミリ秒)の3倍に等しいので、第1DRXサイクル(17ミリ秒)、複数回のDRXサイクルの回数(3)、第2DRXサイクル(16ミリ秒)及び複数回のDRXサイクルに含まれる第2DRXサイクルの回数(1)を決定又は設定する。このようにして、複数回のDRXサイクルと非整数周期とが揃えられる。なお、第1DRXサイクルは、ベースDRXサイクルとして事前に設定されてもよい。そして、基地局100は、端末200のアクティブ期間を含み整数値をとる第1DRXサイクル及び第2DRXサイクルに関連するDRXパラメータ(複数回のDRXサイクルの回数等)を端末200へ送信する。 According to proposal 3, the base station 100 identifies the cycle of communication traffic to the terminal 200. For example, base station 100 specifies that the cycle of communication traffic to terminal 200 is 16.67 milliseconds (non-integer cycle). The base station 100 includes a period (DRX on-duration) in which the terminal 200 is in an active state to monitor transmissions from the base station 100 based on a non-integer period (16.67 milliseconds) of communication traffic to the terminal 200. A first DRX cycle and a second DRX cycle are determined. For example, the base station 100 determines that the sum of twice the first DRX cycle (17 milliseconds) and one time the second DRX cycle (16 milliseconds) is 3 times the non-integer period (16.67 milliseconds) of communication traffic. Since it is equal to twice, the first DRX cycle (17 ms), the number of multiple DRX cycles (3), the second DRX cycle (16 ms), and the number of second DRX cycles included in the multiple DRX cycles (1) Determine or set. In this way, multiple DRX cycles and non-integer periods are aligned. Note that the first DRX cycle may be set in advance as a base DRX cycle. Then, the base station 100 transmits to the terminal 200 DRX parameters (such as the number of times of multiple DRX cycles) related to the first DRX cycle and the second DRX cycle, which take integer values and include the active period of the terminal 200.
 また、提案3によれば、端末200は、基地局100からの送信をモニタするアクティブ状態にある期間を含み第1整数値をとる第1DRXサイクル及び第2整数値をとる第2DRXサイクルに関連するパラメータを、基地局100から受信する。ここで、第1整数値(例えば17(ミリ秒))のn倍(nは1以上の整数のうちの所定の整数;例えばn=2)と第2整数値(例えば16(ミリ秒))のm倍(mは1以上の整数のうちの所定の整数;例えばm=1)との和は、所定の非整数値(例えば16.67(ミリ秒))のk倍(kは2以上の整数のうちの所定の整数;例えばk=3)に等しい。そして、端末200は、第1DRXサイクル及び第2DRXサイクルの間、受信したDRXパラメータに基づいて、アクティブ状態と基地局100からの送信をモニタしない非アクティブ状態との間で端末200の状態を切り替える。 Further, according to proposal 3, the terminal 200 is associated with a first DRX cycle that includes a period in an active state for monitoring transmissions from the base station 100 and takes a first integer value, and a second DRX cycle that takes a second integer value. Parameters are received from the base station 100. Here, the first integer value (for example, 17 (milliseconds)) is multiplied by n (n is a predetermined integer among integers greater than or equal to 1; for example, n=2) and the second integer value (for example, 16 (milliseconds)) The sum of m times (m is a predetermined integer of 1 or more; for example, m=1) is k times (k is 2 or more) a predetermined non-integer value (for example, 16.67 (milliseconds)). (e.g., k=3). Then, the terminal 200 switches the state of the terminal 200 between an active state and an inactive state in which transmission from the base station 100 is not monitored based on the received DRX parameters during the first DRX cycle and the second DRX cycle.
 以上説明したように、非整数値をとるトラフィック到来周期と端末の(複数回の)DRXサイクルとを揃えることによって、XRトラフィックの特性に合わせて端末の省電力を実現することができる。また、非整数値をとるトラフィック到来周期と端末のDRXサイクルとを揃えることによって、トラフィックの遅延を抑制することができる。また、DRXサイクルとして整数値を用いることによって、シンプルな制御で省電力を図ることができる。 As explained above, by aligning the traffic arrival cycle, which takes a non-integer value, with the (multiple) DRX cycles of the terminal, power saving of the terminal can be realized in accordance with the characteristics of the XR traffic. Further, by aligning the traffic arrival cycle, which takes a non-integer value, with the DRX cycle of the terminal, traffic delay can be suppressed. Furthermore, by using an integer value as the DRX cycle, it is possible to save power with simple control.
 <実施の形態の変形例>
 上記の提案1~提案3において選択肢の形で説明した事項(例えば、AltX等)又は以下において選択肢の形で説明する事項のうちどの事項がサポートされるかは、RRCによる設定、MAC CE又はUCIによる指示、又は、端末能力に依存してもよい。
<Modification of embodiment>
Which items are supported among the items explained in the form of options in Proposals 1 to 3 above (for example, Alt or may depend on the terminal capabilities.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局100及び端末200の機能構成例を説明する。基地局100及び端末200は、上述した実施の形態を実施する機能を有してよい。ただし、基地局100及び端末200はそれぞれ、実施の形態の中の一部の機能のみを有してもよい。
(Device configuration)
Next, an example of the functional configuration of the base station 100 and the terminal 200 that execute the processes and operations described above will be described. Base station 100 and terminal 200 may have a function to implement the embodiments described above. However, base station 100 and terminal 200 may each have only some of the functions in the embodiment.
 <基地局>
 図13は、本開示の一実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局100は、端末200(図14参照)と無線によって通信する。なお、送信部101及び受信部102は、あわせて通信部と称されてもよい。
<Base station>
FIG. 13 is a block diagram illustrating an example of the configuration of base station 100 according to an embodiment of the present disclosure. The base station includes, for example, a transmitter 101, a receiver 102, and a controller 103. Base station 100 communicates with terminal 200 (see FIG. 14) wirelessly. Note that the transmitting section 101 and the receiving section 102 may be collectively referred to as a communication section.
 送信部101は、DL信号を端末200へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。例えば、DL信号には、端末200の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)、上位レイヤの制御情報等が含まれてよい。 The transmitter 101 transmits the DL signal to the terminal 200. For example, the transmitter 101 transmits a DL signal under the control of the controller 103. For example, the DL signal may include information indicating scheduling regarding signal transmission by the terminal 200 (eg, UL grant), upper layer control information, and the like.
 例えば、送信部101は、DL信号として、各種の制御信号(RRCレイヤの制御信号等)、参照信号、データ信号等を端末200へ送信する。送信部101は、例えば、DL信号として、上記の実施の形態において説明した各種の信号、チャネル、設定情報、制御情報等を端末200へ送信する。 For example, the transmitter 101 transmits various control signals (RRC layer control signals, etc.), reference signals, data signals, etc. to the terminal 200 as DL signals. The transmitter 101 transmits, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments to the terminal 200 as DL signals.
 例えば、送信部101は、制御部103によって生成(決定、設定)されたDRXパラメータ(無線フレームの個数、スロットの個数、シンボルの個数、ベースDRXサイクル及び追加DRXサイクルを含むDRXサイクル(非整数値、整数値)、追加DRXサイクルの回数等)を、端末200へ送信する。 For example, the transmitter 101 transmits DRX parameters (number of radio frames, number of slots, number of symbols, DRX cycles (non-integer value , integer value), number of additional DRX cycles, etc.) are transmitted to the terminal 200.
 受信部102は、端末200から送信されたUL信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。 The receiving unit 102 receives the UL signal transmitted from the terminal 200. For example, the receiving unit 102 receives a UL signal under the control of the control unit 103.
 例えば、受信部102は、UL信号として、端末200の端末能力情報(例えば、UE capability)を含む信号、各種の制御信号、参照信号、データ信号等を端末200から受信する。 For example, the receiving unit 102 receives a signal including terminal capability information (for example, UE capability) of the terminal 200, various control signals, reference signals, data signals, etc. from the terminal 200 as a UL signal.
 制御部103は、送信部101における送信処理及び受信部102における受信処理を含む、基地局100の(通信)動作全般を制御する。 The control unit 103 controls the overall (communication) operation of the base station 100, including the transmission processing in the transmission unit 101 and the reception processing in the reception unit 102.
 例えば、制御部103は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータ及び制御情報等を上位レイヤへ出力する。 For example, the control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
 例えば、制御部103は、端末200から受信した信号(例えば、データ及び制御情報等)及び/又は上位レイヤから取得したデータ及び制御情報等に基づいて、DL信号の送受信に用いるリソース及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末200に送信する制御情報に含まれてよい。 For example, the control unit 103 determines the resources and/or UL used for transmitting/receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 200 and/or the data and control information acquired from the upper layer. Allocates resources used for signal transmission and reception. Information regarding the allocated resources may be included in the control information transmitted to the terminal 200.
 制御部103は、上記の実施の形態において説明した送信及び受信以外の動作を実行する(なお、当該動作は、送信部101及び/又は受信部102によって実行されてもよい)。 The control unit 103 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the transmission unit 101 and/or the reception unit 102).
 例えば、制御部103は、端末200への通信トラフィックの周期を特定する。また、例えば、制御部103は、DRXパラメータを生成(決定、設定)する。 For example, the control unit 103 specifies the cycle of communication traffic to the terminal 200. Further, for example, the control unit 103 generates (determines, sets) DRX parameters.
 <端末>
 図14は、本開示の一実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末200は、例えば、基地局100(図13参照)と無線によって通信する。なお、受信部201及び送信部202は、あわせて通信部と称されてもよい。
<Terminal>
FIG. 14 is a block diagram illustrating an example of the configuration of terminal 200 according to an embodiment of the present disclosure. Terminal 200 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203. Terminal 200 communicates with base station 100 (see FIG. 13) wirelessly, for example. Note that the receiving section 201 and the transmitting section 202 may be collectively referred to as a communication section.
 受信部201は、基地局100から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。 The receiving unit 201 receives the DL signal transmitted from the base station 100. For example, the receiving unit 201 receives a DL signal under the control of the control unit 203.
 例えば、受信部201は、DL信号として、各種の制御信号、参照信号、データ信号等を基地局100から受信する。受信部201は、例えば、DL信号として、上記の実施の形態において説明した各種の信号、チャネル、設定情報、制御情報等を基地局100から受信する。 For example, the receiving unit 201 receives various control signals, reference signals, data signals, etc. from the base station 100 as DL signals. The receiving unit 201 receives, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments from the base station 100 as DL signals.
 例えば、受信部201は、DRXパラメータ(基地局100からの送信をモニタするアクティブ状態にある期間を含み非整数値をとる(DRX)サイクルに関連するパラメータ、基地局100からの送信をモニタするアクティブ状態にある期間を含み第1整数値をとる第1(DRX)サイクル及び第2整数値をとる第2(DRX)サイクルに関連するパラメータ等)を基地局100から受信する。例えば、受信部201は、無線フレーム、スロット及び/又はシンボルの単位で、非整数値をとるサイクルを、基地局100から受信する。例えば、受信部201は、非整数値として、非整数値をとるサイクルを、基地局100から受信する。受信部201が第1整数値をとる第1サイクル及び第2整数値をとる第2サイクルを受信する場合、第1整数値のn倍(nは1以上の整数のうちの所定の整数)と第2整数値のm倍(mは1以上の整数のうちの所定の整数)との和は、所定の非整数値のk倍(kは2以上の整数のうちの所定の整数)に等しい。 For example, the receiving unit 201 uses DRX parameters (parameters related to (DRX) cycles that include a period in an active state that monitors transmissions from the base station 100 and takes non-integer values; parameters related to a first (DRX) cycle that includes a period in the state and takes a first integer value and a second (DRX) cycle that takes a second integer value from the base station 100. For example, the receiving unit 201 receives cycles that take non-integer values from the base station 100 in units of radio frames, slots, and/or symbols. For example, the receiving unit 201 receives a cycle that takes a non-integer value from the base station 100 as a non-integer value. When the receiving unit 201 receives a first cycle that takes a first integer value and a second cycle that takes a second integer value, the first integer value is n times (n is a predetermined integer of 1 or more) The sum of m times the second integer value (m is a predetermined integer among integers greater than or equal to 1) is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2) .
 送信部202は、UL信号を基地局100へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。 The transmitter 202 transmits the UL signal to the base station 100. For example, the transmitter 202 transmits a UL signal under the control of the controller 203.
 例えば、送信部202は、UL信号として、端末200の処理能力に関する情報を含む信号、各種の制御信号、参照信号、データ信号等を基地局100へ送信する。 For example, the transmitter 202 transmits a signal including information regarding the processing capacity of the terminal 200, various control signals, reference signals, data signals, etc. to the base station 100 as a UL signal.
 制御部203は、受信部201における受信処理及び送信部202における送信処理を含む、端末200の(通信)動作全般を制御する。 The control unit 203 controls the overall (communication) operation of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
 例えば、制御部203は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータ及び制御情報等を上位レイヤへ出力する。 For example, the control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
 例えば、制御部203は、基地局100へフィードバックする情報の送信を制御する。基地局100へフィードバックする情報は、例えば、HARQ-ACKを含んでもよいし、チャネル状態情報(CSI)を含んでもよいし、スケジューリング要求(SR)を含んでもよい。基地局100へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCH又はPUSCHのリソースにおいて送信される。 For example, the control unit 203 controls the transmission of information fed back to the base station 100. The information fed back to the base station 100 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). Information fed back to the base station 100 may be included in the UCI. The UCI is transmitted on PUCCH or PUSCH resources.
 制御部203は、上記の実施の形態において説明した送信及び受信以外の動作を実行する(なお、当該動作は、受信部201及び/又は送信部202によって実行されてもよい)。 The control unit 203 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the reception unit 201 and/or the transmission unit 202).
 例えば、制御部203は、上記サイクルの間、又は、上記第1サイクル及び上記第2サイクルの間、基地局100から送信されたDRXパラメータに基づいて、基地局100からの送信をモニタするアクティブ状態と基地局100からの送信をモニタしない非アクティブ状態との間で端末200の状態を切り替える。 For example, the control unit 203 is in an active state in which it monitors transmission from the base station 100 based on DRX parameters transmitted from the base station 100 during the cycle or between the first cycle and the second cycle. The state of the terminal 200 is switched between the state of the terminal 200 and the inactive state in which transmission from the base station 100 is not monitored.
 例えば、制御部203は、DRXパラメータによって指定されたタイミング後の最も早い制御情報モニタリングのタイミングで、端末200の状態を非アクティブ状態からアクティブ状態に切り替える。 For example, the control unit 203 switches the state of the terminal 200 from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the DRX parameter.
 また、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、上述したRACH及びPBCHが含まれてよい。 Furthermore, the channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above. For example, the channels used for transmitting DL signals and the channels used for transmitting UL signals may include the RACH and PBCH described above.
 以上、本開示について説明した。なお、上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。 The present disclosure has been described above. Note that the division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another. may be applied to the matters described in the section (unless they conflict with each other).
 <ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
<Hardware configuration, etc.>
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本開示の一実施の形態に係る基地局100及び端末200のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure. The base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103、203などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-mentioned control units 103, 203, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100の制御部103、端末200の制御部203などは、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201及び送信部202などは、通信装置1004によって実現されてもよい。通信装置1004は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, the above-mentioned transmitting section 101, receiving section 102, receiving section 201, transmitting section 202, etc. may be realized by the communication device 1004. The communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 (実施の形態のまとめ)
 本開示の実施の形態によれば、基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信する受信部と、前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、を備える端末が提供される。
(Summary of embodiments)
According to an embodiment of the present disclosure, the receiving unit receives from the base station a parameter related to a cycle that includes an active state period for monitoring transmission from the base station and takes a non-integer value; and a control unit that switches the state of the terminal between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters.
 上記の構成により、アクティブ状態にある期間を含むサイクルとXRトラフィックの非整数周期とを揃えることで、XRトラフィックの特性(例えば周期)を考慮して端末の省電力を図ることができ、XRトラフィックの遅延を抑制することができる。 With the above configuration, by aligning the cycle including the active state period with the non-integer period of the XR traffic, it is possible to save power on the terminal by taking into account the characteristics (for example, period) of the XR traffic. delay can be suppressed.
 本端末において、前記受信部は、無線フレーム、スロット及び/又はシンボルの単位で、前記非整数値をとるサイクルを、前記基地局から受信する。 In this terminal, the receiving unit receives the cycle that takes the non-integer value from the base station in units of radio frames, slots, and/or symbols.
 上記の構成により、アクティブ状態にある期間を含むサイクルをシンボル境界に揃えることができる。 With the above configuration, cycles including periods in the active state can be aligned with symbol boundaries.
 本端末において、前記受信部は、前記非整数値として、前記非整数値をとるサイクルを、前記基地局から受信する。 In this terminal, the receiving unit receives a cycle that takes the non-integer value as the non-integer value from the base station.
 上記の構成により、アクティブ状態にある期間を含むサイクルとXRトラフィックの非整数周期とを簡単に揃えることができる。 With the above configuration, the cycle including the active state period and the non-integer cycle of XR traffic can be easily aligned.
 本端末において、前記制御部は、前記パラメータによって指定されたタイミング後の最も早い制御情報モニタリングのタイミングで、前記端末の状態を前記非アクティブ状態から前記アクティブ状態に切り替える。 In this terminal, the control unit switches the state of the terminal from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
 上記の構成により、制御情報を効率的に受信することができる。 With the above configuration, control information can be efficiently received.
 本開示の実施の形態によれば、基地局からの送信をモニタするアクティブ状態にある期間を含み第1整数値をとる第1サイクル及び第2整数値をとる第2サイクルに関連するパラメータを、前記基地局から受信する受信部と、前記第1サイクル及び前記第2サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、を備え、前記第1整数値のn倍(nは1以上の整数のうちの所定の整数)と前記第2整数値のm倍(mは1以上の整数のうちの所定の整数)との和は、所定の非整数値のk倍(kは2以上の整数のうちの所定の整数)に等しい、端末が提供される。 According to embodiments of the present disclosure, parameters associated with a first cycle that includes an active period of monitoring transmissions from a base station and that takes a first integer value and a second cycle that takes a second integer value; A receiving unit receives data from the base station, and the own terminal switches between the active state and an inactive state in which transmission from the base station is not monitored based on the parameters during the first cycle and the second cycle. a control unit that switches the state of the first integer value n times (n is a predetermined integer of 1 or more) and m times the second integer value (m is a predetermined integer of 1 or more). A terminal is provided whose sum is equal to k times the predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2).
 上記の構成により、アクティブ状態にある期間を含むサイクルとXRトラフィックの非整数周期とを揃えることで、XRトラフィックの特性(例えば周期)を考慮して端末の省電力を図ることができ、XRトラフィックの遅延を抑制することができる。また、DRXサイクルとして整数値を用いることによって、シンプルな制御で端末の省電力を図ることができる。 With the above configuration, by aligning the cycle including the active state period with the non-integer period of the XR traffic, it is possible to save power on the terminal by taking into account the characteristics (for example, period) of the XR traffic. delay can be suppressed. Furthermore, by using an integer value as the DRX cycle, it is possible to save power in the terminal with simple control.
 本開示の実施の形態によれば、端末が、基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信し、前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で前記端末の状態を切り替える、通信方法が提供される。 According to an embodiment of the present disclosure, a terminal receives from the base station a parameter related to a cycle that includes a period of being in an active state for monitoring transmissions from the base station and takes a non-integer value; A communication method is provided, in which a state of the terminal is switched between the active state and an inactive state in which transmission from the base station is not monitored based on the parameter.
 上記の構成により、アクティブ状態にある期間を含むサイクルとXRトラフィックの非整数周期とを揃えることで、XRトラフィックの特性(例えば周期)を考慮して端末の省電力を図ることができ、XRトラフィックの遅延を抑制することができる。 With the above configuration, by aligning the cycle including the active state period with the non-integer period of the XR traffic, it is possible to save power on the terminal by taking into account the characteristics (for example, period) of the XR traffic. delay can be suppressed.
 (実施の形態の補足)
 以上、本開示の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局100及び端末200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本開示の実施の形態に従って基地局100が有するプロセッサにより動作するソフトウェア及び本開示の実施の形態に従って端末200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present disclosure have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 <情報の通知、シグナリング>
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<Information notification, signaling>
Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 <適用システム>
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<Applicable system>
Each aspect/embodiment described in this disclosure applies to LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer, decimal, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems and systems that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 <処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<Processing procedures, etc.>
The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 <基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<Base station operation>
The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). In the above example, there is one network node other than the base station, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 <入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<Input/output direction>
Information etc. (see the item <Information, Signal>) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 <入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<Handling of input/output information, etc.>
The input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 <判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<Judgment method>
Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 <態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わないこと)によって行われてもよい。
<Variations of aspects, etc.>
Each aspect/embodiment described in this disclosure may be used alone, may be used in combination, or may be switched and used in accordance with execution. Further, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 <ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
<Software>
Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 <情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
<Information, signals>
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 <システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<System, network>
As used in this disclosure, the terms "system" and "network" are used interchangeably.
 <パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
<Parameter, channel name>
In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 <基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
<Base station>
In this disclosure, "Base Station (BS),""wireless base station,""fixedstation,""NodeB,""eNodeB(eNB),""gNodeB(gNB),"""accesspoint","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup"," The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).The term "cell" or "sector" refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 <移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
<Mobile station>
In this disclosure, terms such as "Mobile Station (MS),""userterminal,""User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 <基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
<Base station/mobile station>
At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 200 may have the functions that the base station 100 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 100 may have the functions that the terminal 200 described above has.
 図16に車両2001の構成例を示す。図16に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施の形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 16 shows an example of the configuration of the vehicle 2001. As shown in FIG. 16, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2029との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021~2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021~2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 <用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
<Meaning and interpretation of terms>
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, mean any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 <参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<Reference signal>
The reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
 <「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<Meaning of “based on”>
As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 <「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<“first”, “second”>
As used in this disclosure, any reference to elements using the designations "first,""second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 <手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<Means>
"Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 <オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<Open format>
Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 <TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
<Time units such as TTI, frequency units such as RB, radio frame configuration>
A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 <最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<Maximum transmission power>
"Maximum transmit power" as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
 <冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<Article>
In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 <「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
<“Different”>
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示は、無線通信システムに有用である。 The present disclosure is useful for wireless communication systems.
 10 無線通信システム
 20 NG-RAN
 100 基地局(gNB)
 200 端末(UE)
 101,202 送信部
 102,201 受信部
 103,203 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless communication system 20 NG-RAN
100 base station (gNB)
200 Terminal (UE)
101,202 Transmitting unit 102,201 Receiving unit 103,203 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (6)

  1.  基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信する受信部と、
     前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、
     を備える端末。
    a receiving unit that receives from the base station a parameter related to a cycle that includes an active state period and takes a non-integer value for monitoring transmission from the base station;
    a control unit that switches the state of the own terminal between the active state and an inactive state in which transmission from the base station is not monitored based on the parameter during the cycle;
    A terminal equipped with
  2.  前記受信部は、無線フレーム、スロット及び/又はシンボルの単位で、前記非整数値をとるサイクルを、前記基地局から受信する、
     請求項1に記載の端末。
    The receiving unit receives cycles that take the non-integer value from the base station in units of radio frames, slots, and/or symbols;
    The terminal according to claim 1.
  3.  前記受信部は、前記非整数値として、前記非整数値をとるサイクルを、前記基地局から受信する、
     請求項1に記載の端末。
    The receiving unit receives a cycle that takes the non-integer value as the non-integer value from the base station.
    The terminal according to claim 1.
  4.  前記制御部は、前記パラメータによって指定されたタイミング後の最も早い制御情報モニタリングのタイミングで、前記端末の状態を前記非アクティブ状態から前記アクティブ状態に切り替える、
     請求項1に記載の端末。
    The control unit switches the state of the terminal from the inactive state to the active state at the earliest control information monitoring timing after the timing specified by the parameter.
    The terminal according to claim 1.
  5.  基地局からの送信をモニタするアクティブ状態にある期間を含み第1整数値をとる第1サイクル及び第2整数値をとる第2サイクルに関連するパラメータを、前記基地局から受信する受信部と、
     前記第1サイクル及び前記第2サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で自端末の状態を切り替える制御部と、
     を備え、
     前記第1整数値のn倍(nは1以上の整数のうちの所定の整数)と前記第2整数値のm倍(mは1以上の整数のうちの所定の整数)との和は、所定の非整数値のk倍(kは2以上の整数のうちの所定の整数)に等しい、
     端末。
    a receiving unit that receives from the base station parameters related to a first cycle that takes a first integer value and a second cycle that takes a second integer value and includes a period in an active state for monitoring transmissions from the base station;
    a control unit that switches the state of its own terminal between the active state and an inactive state in which transmission from the base station is not monitored, based on the parameters during the first cycle and the second cycle;
    Equipped with
    The sum of n times the first integer value (n is a predetermined integer among integers greater than or equal to 1) and m times the second integer value (m is a predetermined integer among integers greater than or equal to 1) is: equal to k times a predetermined non-integer value (k is a predetermined integer among integers greater than or equal to 2);
    terminal.
  6.  端末が、
     基地局からの送信をモニタするアクティブ状態にある期間を含み非整数値をとるサイクルに関連するパラメータを、前記基地局から受信し、
     前記サイクルの間、前記パラメータに基づいて、前記アクティブ状態と前記基地局からの送信をモニタしない非アクティブ状態との間で前記端末の状態を切り替える、
     通信方法。
    The terminal is
    receiving from the base station parameters associated with a cycle that includes an active period and takes a non-integer value for monitoring transmissions from the base station;
    switching the state of the terminal between the active state and an inactive state in which it does not monitor transmissions from the base station during the cycle, based on the parameter;
    Communication method.
PCT/JP2022/018991 2022-04-26 2022-04-26 Terminal and communication method WO2023209832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018991 WO2023209832A1 (en) 2022-04-26 2022-04-26 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018991 WO2023209832A1 (en) 2022-04-26 2022-04-26 Terminal and communication method

Publications (1)

Publication Number Publication Date
WO2023209832A1 true WO2023209832A1 (en) 2023-11-02

Family

ID=88518279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018991 WO2023209832A1 (en) 2022-04-26 2022-04-26 Terminal and communication method

Country Status (1)

Country Link
WO (1) WO2023209832A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500777A (en) * 2017-09-28 2021-01-07 鴻穎創新有限公司Fg Innovation Company Limited Devices and methods for controlling intermittent reception in the new radio

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500777A (en) * 2017-09-28 2021-01-07 鴻穎創新有限公司Fg Innovation Company Limited Devices and methods for controlling intermittent reception in the new radio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion of SA2 LS on UE Power Saving for XR and Media Services", 3GPP DRAFT; R1-2203395, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052137708 *

Similar Documents

Publication Publication Date Title
WO2023209832A1 (en) Terminal and communication method
WO2023203703A1 (en) Terminal and communication method
WO2023209831A1 (en) Terminal and base station
WO2023209829A1 (en) Terminal and base station
WO2024053114A1 (en) Terminal and communication method
WO2024043295A1 (en) Terminal, base station, and communication method
WO2023242965A1 (en) Terminal, base station, and communication method
WO2024043086A1 (en) Terminal, base station, and communication method
WO2023203785A1 (en) Terminal and communication method
WO2023203786A1 (en) Base station and communication method
WO2023223737A1 (en) Terminal, base station, and communication method
WO2023157194A1 (en) Base station, terminal, and communications method
WO2023203779A1 (en) Terminal, base station, and communication method
WO2023210013A1 (en) Terminal, base station, and communication method
WO2023199528A1 (en) Terminal, base station, and communication method
WO2024013908A1 (en) Terminal, base station, and communication method
WO2023203623A1 (en) Terminal, base station, and communication method
WO2024009510A1 (en) Terminal, base station, and communication method
WO2023209906A1 (en) Terminal and base station
WO2023209907A1 (en) Terminal and base station
WO2023209908A1 (en) Terminal and base station
WO2024034084A1 (en) Terminal, base station, and communication method
WO2024013903A1 (en) Terminal, base station, and communication method
WO2023203780A1 (en) Terminal, base station, and communication method
WO2023209781A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940112

Country of ref document: EP

Kind code of ref document: A1