WO2023209779A1 - 端末及び通信方法 - Google Patents
端末及び通信方法 Download PDFInfo
- Publication number
- WO2023209779A1 WO2023209779A1 PCT/JP2022/018765 JP2022018765W WO2023209779A1 WO 2023209779 A1 WO2023209779 A1 WO 2023209779A1 JP 2022018765 W JP2022018765 W JP 2022018765W WO 2023209779 A1 WO2023209779 A1 WO 2023209779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- actual
- virtual
- base station
- terminal
- harq
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 70
- 238000000034 method Methods 0.000 title claims description 35
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 239000000969 carrier Substances 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 48
- 230000006870 function Effects 0.000 description 20
- 230000002776 aggregation Effects 0.000 description 15
- 238000004220 aggregation Methods 0.000 description 15
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 10
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000013468 resource allocation Methods 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0457—Variable allocation of band or rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
Definitions
- the present invention relates to a terminal and a communication method in a wireless communication system.
- NR New Radio
- LTE Long Term Evolution
- 6G the next generation wireless communication system for 5G
- 5G wireless quality will exceed that of 5G
- 6G will further increase capacity, use new frequency bands, lower latency, higher reliability, further reduce power consumption, and expand into new areas (high altitude, sea, etc.) with non-terrestrial networks.
- Studies are underway to expand coverage in space (for example, non-patent document 2).
- 3GPP TS 38.300 V16.8.0 (2021-12) 3GPP TR 38.821 V16.1.0 (2021-05)
- the present invention has been made in view of the above points, and it is an object of the present invention to execute feedback operations related to retransmission control in a wide band in which the frequency domain is discontinuous in a wireless communication system.
- a receiving unit receives a downlink shared channel from a base station in a virtual CC that is discontinuous in a frequency domain including a plurality of actual CCs (Component Carriers), and a retransmission unit corresponding to the downlink shared channel.
- a control unit that determines feedback information related to control; and a transmission unit that transmits an uplink control channel including the feedback information to the base station in the virtual CC, the control unit transmitting the uplink control channel to the base station.
- a terminal is provided that determines an actual CC included in the virtual CC to be transmitted and determines an interval between the downlink shared channel and the uplink control channel.
- a feedback operation related to retransmission control can be performed in a wide band where the frequency domain is discontinuous.
- FIG. 2 is a diagram showing an example (1) of a configuration of a virtual CC according to an embodiment of the present invention.
- FIG. 3 is a diagram showing an example (2) of a configuration of a virtual CC according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an example of a type 1 HARQ-ACK codebook.
- FIG. 2 is a diagram illustrating an example of a type 2 HARQ-ACK codebook. It is a figure which shows the example of PUCCH group. It is a figure showing example (1) of a PUCCH cell in an embodiment of the present invention.
- FIG. 3 is a diagram showing an example (1) of HARQ-ACK feedback timing in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (2) of HARQ-ACK feedback timing in the embodiment of the present invention.
- FIG. 3 is a diagram showing an example (1) of a type 1 HARQ-ACK codebook in an embodiment of the present invention.
- FIG. 7 is a diagram showing an example (2) of a type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (3) of a type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (4) of a type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (5) of a type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 3 is a diagram showing an example (1) of a type 2 HARQ-ACK codebook in an embodiment of the present invention.
- FIG. 7 is a diagram showing an example (2) of a type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (3) of a type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 7 is a diagram showing an example (4) of a type 2 HARQ-ACK codebook in the embodiment of the present invention.
- 1 is a diagram showing an example of a functional configuration of a base station 10 according to an embodiment of the present invention.
- FIG. 2 is a diagram showing an example of a functional configuration of a terminal 20 according to an embodiment of the present invention.
- 1 is a diagram showing an example of a hardware configuration of a base station 10 or a terminal 20 according to an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
- LTE Long Term Evolution
- NR system after LTE-Advanced
- SS Synchronization signal
- PSS Primary SS
- SSS Secondary SS
- PBCH Physical broadcast channel
- PRACH Physical Terms such as random access channel
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
- configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
- FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
- a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
- the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
- the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
- Base station 10 transmits a synchronization signal and system information to terminal 20.
- the synchronization signals are, for example, NR-PSS and NR-SSS.
- System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information.
- the synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG.
- the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
- SCell secondary cell
- PCell primary cell
- DC Direct Connectivity
- the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
- a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
- M2M Machine-to-Machine
- the terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10.
- multiple CCs Component Carriers
- carrier aggregation one PCell (Primary cell) and one or more SCells (Secondary cells) are used.
- SCells Secondary cells
- PUCCH-SCell with PUCCH may be used.
- FIG. 2 is a diagram showing an example (2) of a wireless communication system according to an embodiment of the present invention.
- FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented.
- a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
- Base station 10A and base station 10B are each connected to a core network.
- Terminal 20 can communicate with both base station 10A and base station 10B.
- the cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and the cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group).
- MCG Master Cell Group
- SCG Secondary Cell Group
- the MCG is composed of one PCell and one or more SCells
- the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
- the processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
- LTE or NR supports a carrier aggregation function that uses wideband to secure data resources.
- the carrier aggregation function makes it possible to secure broadband data resources by bundling multiple component carriers. For example, a 100 MHz width can be used by bundling multiple 20 MHz bandwidths.
- a framework that performs scheduling or aggregation with a different granularity than component carriers is defined as frequency fragmentation.
- performing aggregation with a different granularity from that of component carriers is defined as discontinuous carrier aggregation.
- discontinuous carrier aggregation performing scheduling at a granularity different from that of component carriers is defined as discontinuous scheduling.
- the granularity different from the component carrier described above may be a virtual CC (virtual CC) unit, a BWP (Bandwidth Part) unit, a PRB (Physical Resource Block), or a PRB set unit.
- virtual CC virtual CC
- BWP Bandwidth Part
- PRB Physical Resource Block
- the virtual CC is a carrier set that bundles all or part of the frequency resources included in each component carrier among a plurality of component carriers.
- a virtual CC is composed of multiple BWPs.
- FIG. 3 is a diagram showing an example (1) of the configuration of a virtual CC according to an embodiment of the present invention.
- the virtual CC#i shown in FIG. 3 is a carrier set that bundles BWP#a and BWP#b included in each component carrier among a plurality of component carriers (CC#0 and CC#1).
- CC#0 and CC#1 will be referred to as actual CCs.
- a virtual CC is composed of multiple PRBs or PRB sets.
- FIG. 4 is a diagram showing an example (2) of the configuration of the virtual CC according to the embodiment of the present invention.
- Virtual CC#i shown in FIG. 4 is a carrier set that bundles a plurality of PRBs included in each component carrier among a plurality of component carriers (CC#0 and CC#1). Note that the plurality of PRBs or PRB sets may be included in one or more BWPs.
- the terminal 20 may transmit terminal capability information indicating the configuration of the virtual CC to the base station 10.
- the terminal capability information indicating the configuration of the virtual CC may be, for example, information indicating that the virtual CC is configured from multiple BWPs, or information indicating that the virtual CC is configured from multiple PRBs. It's okay.
- the terminal capability information indicating the configuration of the virtual CC may be information indicating that a virtual CC composed of a plurality of BWPs and a virtual CC composed of a plurality of PRBs are supported.
- the terminal 20 defines the scheduling unit in discontinuous scheduling as (i) a virtual CC index, (ii) an index of a plurality of component carriers + an index of a plurality of BWPs, (iii) an index of a plurality of component carriers + a plurality of PRBs or PRBs. (iv) an index of a plurality of component carriers+an index of a plurality of BWPs+an index of a plurality of PRBs or a PRB set, etc.
- the terminal 20 may assume that the resource unit of carrier aggregation is a virtual CC, BWP, PRB, or PRB set.
- the determination of PUCCH cells, determination of HARQ-ACK feedback timing, and construction of HARQ-ACK codebook in virtual CC may be performed as described below. good.
- PUCCH is an example, and any physical channel that transmits UL control information UCI may be used, and it may be replaced by PUSCH.
- the UL control information may be at least one of SR, HARQ-ACK, and CSI, or may include other information.
- HARQ-ACK feedback may be replaced with SR or CSI.
- the type of HARQ-ACK codebook may be different from the types described below or may be replaced with existing types.
- FIG. 5 is a diagram showing an example of a type 1 HARQ-ACK codebook.
- HARQ-ACK bits are transmitted on a single PUCCH resource. This bit is called HARQ-ACK codebook.
- One of the two types is set by the RRC parameter pdsch-HARQ-ACK-Codebook (see Non-Patent Document 3).
- FIG. 5 shows an example of a Type 1 HARQ-ACK codebook, which is a semi-static codebook.
- the HARQ-ACK bit corresponds to PDSCH reception that may actually be transmitted.
- two types, 2 and 3 are set for the K1 value, which is the slot offset of the PDSCH and PUSCH, by the RRC parameter dl-DataToUL-ACK (see Non-Patent Document 3).
- Resource allocation in the time domain is determined as shown in FIG. 5 using the RRC parameter pdsch-TimeDomainAllocationList (see Non-Patent Document 3).
- a HARQ-ACK codebook including HARQ-ACK bits for each of "A", "B", and "C” is constructed.
- "A” corresponds to two cases: a case where PDSCH is arranged from symbol #2 to symbol #14, and a case where PDSCH is arranged from symbol #0 to symbol #6. However, these cases are mutually exclusive.
- FIG. 6 is a diagram showing an example of a type 2 HARQ-ACK codebook.
- FIG. 6 shows an example of a type 2 HARQ-ACK codebook, which is a dynamic codebook.
- the HARQ-ACK bit corresponds to the PDSCH reception that is estimated to be actually transmitted.
- PDSCH reception can be estimated using DAI (Downlink assignment index).
- Counter DAI C-DAI indicates the number of PDSCHs allocated up to the relevant PDSCH.
- the total DAI T-DAI indicates the number of PDSCHs allocated up to the relevant slot. For DAI, the remainder value of 4 is used.
- FIG. 7 is a diagram showing an example of a PUCCH group.
- PUCCH transmission for PUCCH groups targeting multiple CCs is supported in FR1 and FR2.
- Up to four different SCSs are supported for the same PUCCH group depending on the UE capabilities.
- Up to two PUCCH groups are supported depending on the UE capabilities.
- a primary PUCCH group from CC#x1 to CC#m and a secondary PUCCH group from CC#y1 to CC#n are configured.
- the PUCCH cell that transmits HARQ-ACK feedback may be determined as follows.
- the terminal 20 may transmit the PUCCH using a single actual CC included in the virtual CC.
- FIG. 8 is a diagram showing an example (1) of PUCCH cells in the embodiment of the present invention. As shown in FIG. 8, the SCSs of the actual CCs that make up the virtual CC may all be the same. In the example of FIG. 8, all PUCCHs are transmitted using actual CC #0. As shown in FIG. 8, all PUCCHs may be transmitted on the same actual CC.
- FIG. 9 is a diagram showing an example (2) of PUCCH cells in the embodiment of the present invention. As shown in FIG. 9, the SCSs of the actual CCs that make up the virtual CC may be different. In the example of FIG. 9, PUCCH is transmitted using actual CC #0 or actual CC #1. Also, as shown in FIG. 9, all PUCCHs may be transmitted on the same actual CC.
- FIG. 10 is a diagram showing an example (3) of PUCCH cells in the embodiment of the present invention.
- the PUCCH may be transmitted across multiple actual CCs included in the virtual CC.
- the PUCCH is transmitted in the actual CC #0 and the actual CC #1, and in the virtual CC #1 shown in FIG. 3, the PUCCH is transmitted.
- PUCCH frequency resource constraints may be defined for each actual CC.
- the PUCCH frequency resource may be specified to be equal to or greater than the number of RBs or to be equal to or greater than the number of REs.
- the SCSs of the actual CCs that make up the virtual CC may all be the same.
- the SCSs of actual CCs forming the virtual CC may be different.
- the absolute time of the time resource for transmitting PUCCH may be the same or different between actual CCs.
- the time resources for transmitting PUCCH may have the same or different number of symbols between actual CCs.
- the PUCCH format when transmitting PUCCH across multiple actual CCs included in a virtual CC, the PUCCH format may be determined as in 1) or 2) shown below.
- PUCCH formats based on sequence selection such as format 0 or format 1 of existing specifications, may not be supported.
- the PUCCH format may be determined according to the payload size to be transmitted.
- the number of RBs may be determined as in 1) or 2) shown below.
- the number of RBs may be determined according to the payload size, modulation order, coding rate, and number of symbols to be transmitted, and whether PUCCH is transmitted over multiple actual CCs according to the determined number of RBs. may be determined.
- the number of RBs to be transmitted in each actual CC may be determined based on the lower limit number of RBs.
- FIG. 11 is a diagram showing an example (4) of PUCCH cells in the embodiment of the present invention.
- a PUCCH group including multiple virtual CCs is configured, and the HARQ-ACK feedback of the PDSCH scheduled to the multiple virtual CCs is aggregated and transmitted using the PUCCH in a single virtual CC. Good too.
- HARQ-ACK feedback of PDSCH scheduled to virtual CC #0 and virtual CC #1 is transmitted on PUCCH in virtual CC #1.
- each virtual CC may have the same SCS, and the virtual CCs may have different SCSs.
- the SCSs may be all the same or different between the actual CCs. Depending on the UE capabilities, whether or not the SCSs between supported CCs may be the same may differ, and even if UE capability signaling is specified to report whether or not the SCSs between supported CCs are the same. good.
- FIG. 12 is a diagram showing an example (1) of HARQ-ACK feedback timing in the embodiment of the present invention.
- FIG. 13 is a diagram showing an example (2) of HARQ-ACK feedback timing in the embodiment of the present invention.
- an interval K1 between PDSCH reception and PUCCH for transmitting HARQ-ACK may be defined.
- the unit of K1 may be symbols, slots, slot groups, or milliseconds.
- PDSCH resources may be allocated to a single actual CC, or one PDSCH resource may be allocated across multiple actual CCs. Further, when configured across multiple actual CCs, the TDRA (Time domain resource allocation) of PDSCH may be the same or different between the actual CCs.
- K 1 may be any of options 1) to 6) shown below.
- K1 of option 1) to option 4) shown in FIGS. 12 and 13 corresponds to the following description.
- Option 1 Spacing between PDSCH (slots or symbols) and PUCCH (slots or symbols) in the actual CC or virtual CC receiving the PDSCH.
- the interval may be measured by the number of slots or symbols in the CC with the maximum or minimum SCS among a plurality of actual CCs to which PDSCHs are allocated.
- Option 2 Interval between PDSCH (slot or symbol) and PUCCH (slot or symbol) in the actual CC or virtual CC transmitting PUCCH.
- the interval may be measured by the number of slots or symbols in the CC with the maximum or minimum SCS among the plurality of actual CCs to which the PUCCH is allocated.
- Option 6 Interval between PDSCH (slot or symbol) and PUCCH (slot or symbol) in the actual CC with the minimum or maximum CC index among the actual CCs or virtual CCs that transmit PDCCH or PDSCH or receive PUCCH.
- time resources for transmitting the PUCCH may have the same or different absolute times between actual CCs, and may have the same or different numbers of symbols.
- the HARQ-ACK codebook may be defined as 1)-3) shown below.
- the number of codewords scheduled in one DCI may be set for each virtual CC, or may be set for each actual CC.
- Spatial bundling may be set for each virtual CC or for each actual CC.
- CBG (Code block group) based transmission may be set for each virtual CC or for each actual CC.
- the codebook construction order for PDSCHs with the same PDSCH candidate occasions may be any of the following.
- the PDSCH candidate opportunity may be a symbol, a slot, or a slot group in which the beginning or end of the PDSCH can be set.
- FIG. 14 is a diagram showing an example (1) of a type 1 HARQ-ACK codebook in the embodiment of the present invention.
- the generation order of HARQ-ACK bits is from CC with the lowest index to the highest CC in the actual CC, and furthermore, among the PDSCHs of the actual CC, the virtual CC index is from the lowest to the highest CC. It may be in the order of CC. That is, the DAI may be counted by giving priority to the index of the actual CC first and the index of the virtual CC to the second priority.
- the example in FIG. 14 assumes that one actual CC is included in a plurality of virtual CCs.
- FIG. 15 is a diagram showing an example (2) of the type 1 HARQ-ACK codebook in the embodiment of the present invention.
- the order in which HARQ-ACK bits are generated is from the CC with the lowest index to the CC with the highest virtual CC index, and furthermore, among the PDSCHs of the virtual CCs, the CC with the actual CC index is from the lowest to the highest CC. It may be done in this order. That is, the DAI may be counted by giving priority to the virtual CC index first and the actual CC index second.
- the example in FIG. 15 assumes that a plurality of actual CCs are included in a single virtual CC.
- FIG. 16 is a diagram showing an example (3) of the type 1 HARQ-ACK codebook in the embodiment of the present invention.
- the HARQ-ACK bits may be generated in the order from the CC with the smallest virtual CC index to the CC with the largest index.
- a codebook may be generated assuming that PDSCHs of different actual CCs can be received simultaneously.
- FIG. 17 is a diagram showing an example (4) of the type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 17 is an example of a type 1 HARQ-ACK codebook constructed in the order of the virtual CC index shown in FIG. 15 and the actual CC index.
- a type 1 HARQ-ACK codebook is constructed in the order of PDSCH #5 of CC #0, PDSCH #6 of actual CC #2, PDSCH #7 of actual CC #1, and PDSCH #8 of actual CC #3. Ru.
- FIG. 18 is a diagram showing an example (5) of the type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 18 is an example of a type 1 HARQ-ACK codebook constructed in the order of the actual CC index and the virtual CC index shown in FIG. 14.
- PDSCH #1 of actual CC #0 PDSCH #2 of actual CC #1
- PDSCH #3 of actual CC #2 PDSCH #4 of actual CC #3
- a type 1 HARQ-ACK codebook is constructed in the order of PDSCH #5 of CC #0, PDSCH #6 of actual CC #2, PDSCH #7 of actual CC #1, and PDSCH #8 of actual CC #3.
- Ru is a diagram showing an example (5) of the type 1 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 18 is an example of a type 1 HARQ-ACK codebook constructed in the order of the actual CC index and the virtual CC index shown in FIG. 14.
- counting of DAI may be performed as in 1) or 2) shown below.
- DAI may be counted by DCI. If the DCI that schedules one PDSCH is allocated resources across multiple actual CCs, the DAI may be counted as one DCI for each actual CC, or the DAI may be counted as one DCI. good.
- DAI may be counted on PDSCH. If resources are allocated to one PDSCH across multiple actual CCs, the DAI may be counted as one DCI for each actual CC, or the DAI may be counted as one DCI.
- type 2 HARQ-ACK codebooks it may be constructed as in option A) or option B).
- a sub-codebook may be constructed and concatenated for each virtual CC.
- a codebook may be constructed collectively among virtual CCs. Furthermore, counting of DAI may be performed as in 1) or 2) shown below.
- the generation order of HARQ-ACK bits is from the CC with the smallest index of the actual CC to the CC with the largest CC, and further from the CC with the smallest index of the virtual CC to the CC with the largest among the DCIs or PDSCHs of the actual CC.
- the DAI may be counted by giving priority to the index of the actual CC first and the index of the virtual CC to the second priority. Assume that one actual CC is included in multiple virtual CCs.
- the generation order of HARQ-ACK bits can be set from the CC with the smallest index to the CC with the largest virtual CC index, and also in the order from the CC with the smallest index to the CC with the largest index among the DCIs or PDSCHs of the virtual CC. good. That is, the DAI may be counted by giving priority to the virtual CC index first and the actual CC index second. Assume a case where multiple actual CCs are included in a single virtual CC.
- the ACK/NACK bits of HARQ-ACK if one PDSCH is scheduled across multiple actual CCs, the ACK/NACK bits may be aggregated, or different ACK/NACK bits may be prepared for each actual CC. You may.
- FIG. 19 is a diagram showing an example (1) of a type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 19 is an example of codebook construction for option A) above, and shows an example in which PDSCH is scheduled in a single actual CC. Further, FIG. 19 is an example of counting DAI with respect to DCI.
- the ACK/NACK bits of the 1st sub-codebook for virtual CC #0 are (C-DAI, T-DAI), (0, 1) of actual CC #0, The order is (1, 1) of #2, (2, 3) of actual CC #0, and (3, 3) of actual CC #2.
- the ACK/NACK bits of the 2nd sub-codebook for virtual CC #1 are (C-DAI, T-DAI), (0, 1) of actual CC #1, The order is (1, 1) of #3, (2, 3) of actual CC #1, and (3, 3) of actual CC #3.
- FIG. 20 is a diagram showing an example (2) of a type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 20 is an example of codebook construction for option B) above, and shows an example where PDSCH is scheduled over multiple actual CCs.
- FIG. 20 is an example of counting DAI with respect to DCI.
- FIG. 20 is an example of aggregating ACK/NACK bits of PDSCHs scheduled across a plurality of actual CCs.
- FIG. 20 is an example of counting DAI for each index of virtual CC.
- the ACK/NACK bits of the codebook are (C-DAI, T-DAI), (0,1) of the actual CC#0 and the actual CC#2, and the actual CC# 1 and actual CC#3 (1,1), actual CC#0 and actual CC#2 (2,3), actual CC#1 and actual CC#3 (3,3) In order.
- FIG. 21 is a diagram showing an example (3) of the type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 21 is an example of codebook construction for option B) above, and shows an example in which the PDSCH is scheduled in a single actual CC.
- FIG. 21 is an example of counting DAI with respect to DCI.
- FIG. 21 is an example in which the DAI is counted by giving priority to the virtual CC index first and the actual CC index second.
- the ACK/NACK bits are (0,3) of the actual CC#0, (1,3) of the actual CC#2, and (1,3) of the actual CC#2.
- the order is (2,3) of #1, and (3,3) of actual CC #3.
- FIG. 22 is a diagram showing an example (4) of the type 2 HARQ-ACK codebook in the embodiment of the present invention.
- FIG. 22 is an example of codebook construction for option B) above, and shows an example where PDSCH is scheduled over multiple actual CCs.
- FIG. 22 is an example of counting DAI for PDSCH.
- FIG. 22 is an example in which the DAI is counted by giving priority to the index of the actual CC first and the index of the virtual CC in the second order.
- the ACK/NACK bits are (0,3) of the actual CC#0, (1,3) of the actual CC#1, and (1,3) of the actual CC#1.
- the order is (2,3) of #1, and (3,3) of actual CC #3.
- the base station 10 and the terminal 20 determine the timing to transmit the PUCCH and the HARQ-ACK codebook, and provide HARQ-ACK feedback. can be executed.
- a feedback operation related to retransmission control can be performed in a wide band where the frequency domain is discontinuous.
- Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
- FIG. 23 is a diagram showing an example of the functional configuration of base station 10 in the embodiment of the present invention.
- base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
- the functional configuration shown in FIG. 23 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
- the transmitting unit 110 also transmits network node-to-network messages to other network nodes.
- the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
- the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 20. Further, the receiving unit 120 receives messages between network nodes from other network nodes.
- the setting unit 130 stores setting information set in advance and various setting information to be sent to the terminal 20.
- the content of the setting information is, for example, information related to multi-carrier scheduling.
- the control unit 140 performs control related to multicarrier scheduling, as described in the embodiment.
- a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
- FIG. 24 is a diagram showing an example of the functional configuration of the terminal 20 in the embodiment of the present invention.
- the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
- the functional configuration shown in FIG. 24 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
- the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, etc. transmitted from the base station 10.
- the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication.
- the receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
- the setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220.
- the setting unit 230 also stores setting information that is set in advance.
- the content of the setting information is, for example, information related to multi-carrier scheduling.
- the control unit 240 performs control related to multicarrier scheduling, as described in the embodiment.
- a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
- each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
- the functional block may be realized by combining software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
- a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
- the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 25 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
- the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
- the word “apparatus” can be read as a circuit, a device, a unit, etc.
- the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
- Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
- the processor 1001 for example, operates an operating system to control the entire computer.
- the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
- CPU central processing unit
- control unit 140, control unit 240, etc. may be implemented by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
- programs program codes
- software modules software modules
- data etc.
- the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
- the control unit 140 of the base station 10 shown in FIG. 23 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- the control unit 240 of the terminal 20 shown in FIG. 24 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
- the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
- the storage device 1002 may be called a register, cache, main memory, or the like.
- the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
- the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
- the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
- the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
- the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a part or all of each functional block may be realized by the hardware.
- processor 1001 may be implemented using at least one of these hardwares.
- FIG. 26 shows an example of the configuration of the vehicle 2001.
- the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
- Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
- the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
- the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
- the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
- the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
- Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
- the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
- the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
- the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
- the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
- the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
- Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
- the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
- the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
- the communication module 2013 may be located either inside or outside the electronic control unit 2010.
- the external device may be, for example, a base station, a mobile station, or the like.
- the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
- the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
- the PUSCH transmitted by the communication module 2013 may include information based on the above input.
- the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
- the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
- Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
- a receiving unit that receives a downlink shared channel from a base station in a virtual CC that is discontinuous in a frequency domain that includes a plurality of actual CCs (Component Carriers); , a control unit that determines feedback information related to retransmission control corresponding to the downlink shared channel, and a transmission unit that transmits an uplink control channel including the feedback information to the base station in the virtual CC,
- a terminal is provided in which the control unit determines an actual CC included in the virtual CC that transmits the uplink control channel, and determines an interval between the downlink shared channel and the uplink control channel.
- the base station 10 and the terminal 20 determine the timing to transmit the PUCCH and the HARQ-ACK codebook, and execute HARQ-ACK feedback. can do. That is, in a wireless communication system, a feedback operation related to retransmission control can be performed in a wide band in which the frequency domain is discontinuous.
- the control unit may determine an interval between the downlink shared channel and the uplink control channel in an actual CC that receives the downlink shared channel.
- the control unit may determine an interval between the downlink shared channel and the uplink control channel in an actual CC that transmits the uplink control channel.
- the control unit may determine an interval between the beginning of the downlink shared channel and the uplink control channel.
- the control unit may determine an interval between the end of the downlink shared channel and the uplink control channel.
- a control procedure for determining feedback information related to retransmission control corresponding to a channel a transmission procedure for transmitting an uplink control channel including the feedback information to the base station in the virtual CC; and a transmission procedure for transmitting the uplink control channel.
- a communication method is provided in which a terminal executes a procedure of determining an actual CC included in a virtual CC and determining an interval between the downlink shared channel and the uplink control channel.
- the base station 10 and the terminal 20 determine the timing to transmit the PUCCH and the HARQ-ACK codebook, and execute HARQ-ACK feedback. can do. That is, in a wireless communication system, a feedback operation related to retransmission control can be performed in a wide band in which the frequency domain is discontinuous.
- the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
- the order of processing may be changed as long as there is no contradiction.
- Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
- RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
- the present invention may be
- the base station 10 may be performed by its upper node in some cases.
- various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
- MME Mobility Management Entity
- S-GW Packet Control Function
- the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
- the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
- the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
- the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
- Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
- software, instructions, information, etc. may be sent and received via a transmission medium.
- a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
- At least one of the channel and the symbol may be a signal.
- the signal may be a message.
- a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” are used interchangeably.
- radio resources may be indicated by an index.
- Base Station BS
- wireless base station base station
- base station device fixed station
- NodeB NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
- a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
- RRHs small indoor base stations
- Communication services can also be provided by Remote Radio Head).
- the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
- the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
- the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
- the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
- the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
- the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
- the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be replaced by a user terminal.
- communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- the terminal 20 may have the functions that the base station 10 described above has.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
- uplink channels, downlink channels, etc. may be replaced with side channels.
- the user terminal in the present disclosure may be replaced by a base station.
- the base station may have the functions that the user terminals described above have.
- determining may encompass a wide variety of operations.
- “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
- judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
- (accessing) may include considering something as a “judgment” or “decision.”
- judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
- judgment and “decision” may include regarding some action as having been “judged” or “determined.”
- judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
- connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
- the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
- two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
- the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
- RS Reference Signal
- the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
- a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- SCS subcarrier spacing
- TTI transmission time interval
- transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
- a slot may be a unit of time based on numerology.
- a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
- PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI. It's okay.
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
- the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
- TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
- TTI is not limited to this.
- the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling.
- the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- long TTI for example, normal TTI, subframe, etc.
- short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
- the number of subcarriers included in an RB may be determined based on newerology.
- the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
- PRBs physical resource blocks
- SCGs sub-carrier groups
- REGs resource element groups
- PRB pairs RB pairs, etc. May be called.
- a resource block may be configured by one or more resource elements (REs).
- REs resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
- the common RB may be specified by an RB index based on a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be configured within one carrier for a UE.
- At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
- “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
- notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
- Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
端末は、実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信部と、前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御部と、前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信部とを有し、前記制御部は、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する。
Description
本発明は、無線通信システムにおける端末及び通信方法に関する。
LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
さらに、5Gの次世代の無線通信方式として6Gの検討が開始されており、5Gを超える無線品質の実現が期待されている。例えば、6Gでは、更なる大容量化、新たな周波数帯の使用、更なる低遅延化、更なる高信頼性、更なる消費電力の削減、非地上系ネットワークによる新たな領域(高空、海、宇宙)でのカバレッジの拡張等の実現に向けて検討が進められている(例えば非特許文献2)。
3GPP TS 38.300 V16.8.0 (2021-12)
3GPP TR 38.821 V16.1.0 (2021-05)
3GPP TS 38.331 V16.7.0 (2021-12)
データリソースを確保するために広帯域を使用する機能、例えばキャリアアグリゲーションがサポートされている。キャリアアグリゲーションを使用する場合、それぞれのキャリアに対してデータリソースをスケジューリングする必要があるため、より柔軟かつ効率的なリソース割り当てが検討されている。しかしながら、周波数領域が非連続となる広帯域において、再送制御に係るフィードバック動作が規定されていなかった。
本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、周波数領域が非連続となる広帯域で再送制御に係るフィードバック動作を実行することを目的とする。
開示の技術によれば、実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信部と、前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御部と、前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信部とを有し、前記制御部は、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する端末が提供される。
開示の技術によれば、無線通信システムにおいて、周波数領域が非連続となる広帯域で再送制御に係るフィードバック動作を実行することができる。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。
端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。
端末20は、複数のセル(複数のCC(Component Carrier, コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary cell, プライマリセル)と1以上のSCell(Secondary cell, セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。
図2は、本発明の実施の形態における無線通信システムの例(2)を示す図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。
本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
また、LTEあるいはNRでは、データリソースを確保するために広帯域を使用するキャリアグリゲーション機能がサポートされている。キャリアグリゲーション機能では、複数のコンポーネントキャリアを束ねることで、広帯域のデータリソースを確保することができる。例えば、20MHz帯域幅を複数束ねることによって100MHz幅を使用することができる。
従来のキャリアアグリゲーション機能においては、束ねられた複数のコンポーネントキャリアのそれぞれに対してデータリソースをスケジューリングする必要があり、リソース割り当てのオーバーヘッドが大きいという問題がある。
そこで、コンポーネントキャリアとは異なる粒度のスケジューリング単位でリソース割り当てを行う方法、及びコンポーネントキャリアとは異なる粒度のスケジューリング単位でリソース割り当てを行う端末について説明する。
コンポーネントキャリアとは異なる粒度のスケジューリング又はアグリゲーションを行うフレームワークを、周波数フラグメンテーションと定義する。
また、キャリアアグリゲーションにおいて、コンポーネントキャリアとは異なる粒度の集約(アグリゲーション)を行うことを、非連続キャリアアグリゲーションと定義する。
また、キャリアアグリゲーション(非連続キャリアアグリゲーション)において、コンポーネントキャリアとは異なる粒度でスケジューリングを行うことを、非連続スケジューリングと定義する。
上述したコンポーネントキャリアとは異なる粒度とは、バーチャルCC(virtual CC)単位、BWP(Bandwidth Part)単位、PRB(Physical Resource Block)又はPRBセット単位であってもよい。
ここで、バーチャルCCとは、複数のコンポーネントキャリアのうち、各コンポーネントキャリアに含まれる周波数リソースの全て又は一部を束ねたキャリアセットである。
例えば、バーチャルCCは、複数のBWPから構成されると想定してもよい。
図3は、本発明の実施の形態に係るバーチャルCCの構成の例(1)を示す図である。図3に示されるバーチャルCC#iは、複数のコンポーネントキャリア(CC#0およびCC#1)のうち、各コンポーネントキャリアに含まれるBWP#aおよびBWP#bを束ねたキャリアセットである。以下、CC#0及びCC#1を、実際のCC(actual CC)と記載する。
また、バーチャルCCは、複数のPRB又はPRBセットから構成されると想定してもよい。
図4は、本発明の実施の形態に係るバーチャルCCの構成の例(2)を示す図である。図4に示されるバーチャルCC#iは、複数のコンポーネントキャリア(CC#0およびCC#1)のうち、各コンポーネントキャリアに含まれる複数のPRBを束ねたキャリアセットである。なお、当該複数のPRB又はPRBセットは、1つ又は複数のBWPに含まれてもよい。
端末20は、バーチャルCCの構成を示す端末能力情報を基地局10に送信してもよい。バーチャルCCの構成を示す端末能力情報は、例えば、バーチャルCCが複数のBWPから構成されることを示す情報であってもよいし、バーチャルCCが複数のPRBから構成されることを示す情報であってもよい。
また、バーチャルCCの構成を示す端末能力情報は、複数のBWPから構成されるバーチャルCCと、複数のPRBから構成されるバーチャルCCとをサポートすることを示す情報であってもよい。
また、端末20は、各バーチャルCCを識別するためのインデックスが、基地局10によってRRCで設定されると想定してもよい。また、端末20は、各バーチャルCCを識別するためのインデックスを、コンポーネントキャリアのインデックスの最小値(例えば図3又は図4ではi=0)又は最大値(例えば図3又は図4ではi=1)であると想定してもよい。
端末20は、非連続スケジューリングにおけるスケジューリング単位を、(i)バーチャルCCインデックス、(ii)複数のコンポーネントキャリアのインデックス+複数のBWPのインデックス、(iii)複数のコンポーネントキャリアのインデックス+複数のPRB又はPRBセットのインデックス、(iv)複数のコンポーネントキャリアのインデックス+複数のBWPのインデックス+複数のPRB又はPRBセットのインデックス等によって通知されると想定してもよい。
また、端末20は、キャリアアグリゲーションのリソース単位が、バーチャルCC、BWP、PRB又はPRBセットであると想定してもよい。
上述の動作によれば、コンポーネントキャリアとは異なる粒度のスケジューリング単位でのリソース割り当てを実現させることができる。
ここで、実際の周波数領域が不連続となるバーチャルCCを導入した場合におけるHARQ-ACKフィードバックに係る動作が規定されていなかった。
そこで、バーチャルCCを導入した場合におけるHARQ-ACKフィードバックに係る動作について、PUCCHセルの決定、HARQ-ACKフィードバックタイミングの決定、バーチャルCCにおけるHARQ-ACKコードブック構築について以下説明するように実行してもよい。
なお、本発明の実施の形態において、PUCCHは一例であり、ULの制御情報UCIを送信する物理チャネルであればよく、PUSCHに置換されてもよい。また、ULの制御情報はSR,HARQ-ACK及びCSIの少なくともいずれか一つであってもよいし、他の情報を含んでもよい。なお、HARQ-ACKフィードバックは、SR又はCSIに置換されてもよい。HARQ-ACKコードブックのタイプは以下に記載するタイプと異なっていてもよいし、既存のタイプと置換されてもよい。
図5は、タイプ1HARQ-ACKコードブックの例を示す図である。HARQ-ACKビットは、単一のPUCCHリソースにおいて送信される。当該ビットは、HARQ-ACKコードブックと呼ばれる。2つのタイプのうち1つがRRCパラメータpdsch-HARQ-ACK-Codebookにより設定される(非特許文献3参照)。
図5は、セミスタティックなコードブックであるタイプ1HARQ-ACKコードブックの例を示す。HARQ-ACKビットは、実際に送信される可能性のあるPDSCH受信に対応する。図5の例では、RRCパラメータdl-DataToUL-ACK(非特許文献3参照)によりPDSCHとPUSCHのスロットオフセットであるK1値に、2と3の2種類が設定される。
RRCパラメータpdsch-TimeDomainAllocationList(非特許文献3参照)により時間領域のリソース割り当てが図5に示されるように決定される。図5に示されるように「A」「B」「C」それぞれに対するHARQ-ACKビットを含むHARQ-ACKコードブックが構築される。なお、「A」は、図5に示されるように、シンボル#2からシンボル#14までPDSCHが配置されるケースと、シンボル#0からシンボル#6までPDSCHが配置されるケースの2通りに対応し、それらケースは互いに排他的である。
図6は、タイプ2HARQ-ACKコードブックの例を示す図である。図6は、ダイナミックなコードブックであるタイプ2HARQ-ACKコードブックの例を示す。HARQ-ACKビットは、実際に送信されると推定されるPDSCH受信に対応する。
DAI(Downlink assignment index)により、PDSCH受信を推定することができる。カウンタDAI(C-DAI)は、当該PDSCHまでのPDSCH割り当て数を示す。トータルDAI(T-DAI)は、当該スロットまでのPDSCH割り当て数を示す。DAIは4の剰余の値が使用される。
例えば、図5に示される「A」のDCIの復号に失敗した場合、前後のDCIの(C-DAI,T-DAI)が、(3,1)と(1,1)であるため、(0,1)となるDCIが欠落していることが判別でき、対応するHARQ-ACKビットでNACKを報告することができる。
図7は、PUCCHグループの例を示す図である。複数のCCを対象とするPUCCHグループ向けのPUCCH送信がFR1及びFR2でサポートされている。同一のPUCCHグループには、4つの異なるSCSまでがUE能力に依存してサポートされる。2つのPUCCHグループまでがUE能力に依存してサポートされる。図7の例では、CC#x1からCC#mまでのプライマリPUCCHグループと、CC#y1からCC#nまでのセカンダリPUCCHグループが設定される。
HARQ-ACKフィードバックを送信するPUCCHのセルについて、以下のように決定されてもよい。
端末20は、バーチャルCCに含まれる単一の実際のCCでPUCCHを送信してもよい。図8は、本発明の実施の形態におけるPUCCHセルの例(1)を示す図である。図8に示されるように、バーチャルCCを構成する実際のCCのSCSはすべて同一であってもよい。図8の例では、実際のCC#0ですべてのPUCCHを送信している。図8に示されるように、すべてのPUCCHが同一の実際のCCで送信されてもよい。
図9は、本発明の実施の形態におけるPUCCHセルの例(2)を示す図である。図9に示されるように、バーチャルCCを構成する実際のCCのSCSは異なっていてもよい。図9の例では、実際のCC#0又実際のCC#1でPUCCHを送信している。また、図9に示されるように、すべてのPUCCHが同一の実際のCCで送信されてもよい。
図10は、本発明の実施の形態におけるPUCCHセルの例(3)を示す図である。図10に示されるように、バーチャルCCに含まれる複数の実際のCCにまたがってPUCCHを送信してもよい。例えば、図10に示されるバーチャルCC#0では実際のCC#0及び実際のCC#1においてPUCCHを送信し、図10に示されるバーチャルCC#1では、実際のCC#2及び実際のCC#3においてPUCCHを送信する。実際のCCごとに、PUCCHの周波数リソースの制約が規定されてもよい。例えば、実際のCCごとに、PUCCHの周波数リソースはRB数X以上とする又はRE数X以上とすると規定してもよい。
図10に示されるバーチャルCC#0のように、バーチャルCCを構成する実際のCCのSCSはすべて同一であってもよい。図11に示されるバーチャルCC#1のように、バーチャルCCを構成する実際のCCのSCSは異なっていてもよい。また、PUCCHを送信する時間リソースは、実際のCC間で絶対時間が同一であってもよいし異なってもよい。また、PUCCHを送信する時間リソースは、実際のCC間でシンボル数が同一であってもよいし異なってもよい。
図10に示されるように、バーチャルCCに含まれる複数の実際のCCにまたがってPUCCHを送信する場合、PUCCHフォーマットは以下に示される1)又は2)のように決定されてもよい。
1)複数の実際のCCにわたってPUCCHを送信する場合、系列選択によるPUCCHフォーマット、例えば既存仕様のフォーマット0又はフォーマット1等がサポートされなくてもよい。
2)複数の実際のCCにわたってPUCCHを送信する場合、送信するペイロードサイズに応じてPUCCHフォーマットが決定されてもよい。
図10に示されるように、バーチャルCCに含まれる複数の実際のCCにまたがってPUCCHを送信する場合、RB数は以下に示される1)又は2)のように決定されてもよい。
1)送信するペイロードサイズ、変調次数、符号化率及びシンボル数に応じてRB数が決定されてもよいし、決定されたRB数に応じて複数の実際のCCにわたってPUCCHを送信するか否かが決定されてもよい。
2)各実際のCCごとにRB数の下限が設定された場合、当該下限のRB数に基づいて各実際のCCにおける送信RB数が決定されてもよい。
図11は、本発明の実施の形態におけるPUCCHセルの例(4)を示す図である。図11に示されるように、複数のバーチャルCCを含むPUCCHグループを構成し、当該複数のバーチャルCCにスケジューリングされたPDSCHのHARQ-ACKフィードバックを単一のバーチャルCCにおけるPUCCHで集約して送信してもよい。図11の例では、バーチャルCC#0及びバーチャルCC#1にスケジューリングされたPDSCHのHARQ-ACKフィードバックをバーチャルCC#1におけるPUCCHで送信する。
PUCCHグループに含まれるバーチャルCCについて、各バーチャルCCでは同一のSCSとし、バーチャルCC間では異なるSCSとしてもよい。また、PUCCHグループに含まれるバーチャルCCに含まれる実際のCCについて、実際のCC間でSCSはすべて同一であってもよいし、異なっていてもよい。UE能力に応じて、サポートするCC間のSCSが同一であるか否かが異なっていてもよく、サポートするCC間のSCSが同一であるか否かを報告するUE能力シグナリングが規定されてもよい。
図12は、本発明の実施の形態におけるHARQ-ACKフィードバックタイミングの例(1)を示す図である。図13は、本発明の実施の形態におけるHARQ-ACKフィードバックタイミングの例(2)を示す図である。図12及び図13に示されるように、PDSCH受信とHARQ-ACKを送信するPUCCHとの間隔K1が規定されてもよい。K1の単位は、シンボル、スロット、スロットグループ又はミリ秒のいずれであってもよい。なお、PDSCHは、単一の実際のCCにリソースが割り当てられてもよいし、複数の実際のCCをまたいで1つのPDSCHリソースが割り当てられてもよい。また、複数の実際のCCをまたいで設定される場合、PDSCHのTDRA(Time domain resource allocation)は、実際のCC間で同一であってもよいし、異なってもよい。
K1は、以下に示されるオプション1)-オプション6)のいずれであってもよい。図12及び図13に示される、オプション1)-オプション4)のK1は、以下の記載に対応する。
オプション1)PDSCHを受信する実際のCC又はバーチャルCCにおける、PDSCH(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。PDSCHが割り当てられている複数の実際のCCのうち、SCSが最大又は最小であるCCにおけるスロット又はシンボル数で当該間隔は計測されてもよい。
オプション2)PUCCHを送信する実際のCC又はバーチャルCCにおける、PDSCH(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。PUCCHが割り当てられている複数の実際のCCのうち、SCSが最大又は最小であるCCにおけるスロット又はシンボル数で当該間隔は計測されてもよい。
オプション3)PDSCHの先頭(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。
オプション4)PDSCHの末尾(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。
オプション5)PDCCHを受信する実際のCC又はバーチャルCCにおける、PDSCH(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。
オプション6)PDCCH送信又はPDSCH送信又はPUCCH受信する実際のCC又はバーチャルCCのうち、CCインデックスが最小又は最大の実際のCCにおける、PDSCH(スロット又はシンボル)とPUCCH(スロット又はシンボル)との間隔。
なお、上記のオプションは複数が組み合わされてもよい。なお、PUCCHを送信する時間リソースは、実際のCC間で絶対時間が同一であってもよいし異なっていてもよいし、シンボル数が同一であってもよいし異なっていてもよい。
HARQ-ACKコードブックについて、以下に示される1)-3)のように規定されてもよい。
1)1つのDCIでスケジューリングされるコードワード数について、バーチャルCCごとに設定されてもよいし、実際のCCごとに設定されてもよい。
2)空間バンドリング(Spatial bundling)について、バーチャルCCごとに設定されてもよいし、実際のCCごとに設定されてもよい。
3)CBG(Code block group)ベース送信について、バーチャルCCごとに設定されてもよいし、実際のCCごとに設定されてもよい。
タイプ1HARQ-ACKコードブックについて、PDSCH候補機会(Candidate occasion)が同一のPDSCHのコードブック構築の順は、下記のいずれかであってもよい。なお、PDSCH候補機会は、PDSCHの先頭又は末尾が設定され得るシンボル、スロット又はスロットグループであってもよい。
図14は、本発明の実施の形態におけるタイプ1HARQ-ACKコードブックの例(1)を示す図である。図14に示されるように、HARQ-ACKビットの生成順を、実際のCCのインデックスが小さいCCから大きいCCの順とし、さらに実際のCCのPDSCHのうち、バーチャルCCのインデックスが小さいCCから大きいCCの順としてもよい。すなわち、実際のCCのインデックスを第1、バーチャルCCのインデックスを第2の順で優先しDAIをカウントしてもよい。図14の例は、1つの実際のCCが複数のバーチャルCCに含まれる場合を想定する。
図15は、本発明の実施の形態におけるタイプ1HARQ-ACKコードブックの例(2)を示す図である。図15に示されるように、HARQ-ACKビットの生成順を、バーチャルCCのインデックスが小さいCCから大きいCCの順とし、さらにバーチャルCCのPDSCHのうち、実際のCCのインデックスが小さいCCから大きいCCの順としてもよい。すなわち、バーチャルCCのインデックスを第1、実際のCCのインデックスを第2の順で優先しDAIをカウントしてもよい。図15の例は、複数の実際のCCが単一のバーチャルCCに含まれる場合を想定する。
図16は、本発明の実施の形態におけるタイプ1HARQ-ACKコードブックの例(3)を示す図である。図16に示されるように、HARQ-ACKビットの生成順を、バーチャルCCのインデックスが小さいCCから大きいCCの順としてもよい。PDSCH受信候補について、異なる実際のCCのPDSCHは同時に受信され得るとしてコードブックを生成してもよい。
図17は、本発明の実施の形態におけるタイプ1HARQ-ACKコードブックの例(4)を示す図である。図17は、図15に示されるバーチャルCCのインデックス、実際のCCのインデックスの順で構築するタイプ1HARQ-ACKコードブックの例である。図17に示されるように、実際のCC#0のPDSCH#1、実際のCC#2のPDSCH#2、実際のCC#1のPDSCH#3、実際のCC#3のPDSCH#4、実際のCC#0のPDSCH#5、実際のCC#2のPDSCH#6、実際のCC#1のPDSCH#7、実際のCC#3のPDSCH#8、の順でタイプ1HARQ-ACKコードブックが構築される。
図18は、本発明の実施の形態におけるタイプ1HARQ-ACKコードブックの例(5)を示す図である。図18は、図14に示される実際のCCのインデックス、バーチャルCCのインデックスの順で構築するタイプ1HARQ-ACKコードブックの例である。図14に示されるように、実際のCC#0のPDSCH#1、実際のCC#1のPDSCH#2、実際のCC#2のPDSCH#3、実際のCC#3のPDSCH#4、実際のCC#0のPDSCH#5、実際のCC#2のPDSCH#6、実際のCC#1のPDSCH#7、実際のCC#3のPDSCH#8、の順でタイプ1HARQ-ACKコードブックが構築される。
タイプ2HARQ-ACKコードブックについて、DAIのカウントは以下に示される1)又は2)のように実行されてもよい。
1)DCIでDAIをカウントしてもよい。1つのPDSCHをスケジューリングするDCIが複数の実際のCCにわたってリソースが割り当てられている場合、実際のCCごとに1つのDCIとしてDAIをカウントしてもよいし、1つのDCIとしてDAIをカウントしてもよい。
2)PDSCHでDAIをカウントしてもよい。1つのPDSCHが複数の実際のCCにわたってリソースが割り当てられている場合、実際のCCごとに1つのDCIとしてDAIをカウントしてもよいし、1つのDCIとしてDAIをカウントしてもよい。
タイプ2HARQ-ACKコードブックについて、オプションA)又はオプションB)のように構築されてもよい。
オプションA)バーチャルCCごとにサブコードブックを構築し、連結してもよい。
オプションB)バーチャルCC間でまとめてコードブックを構築してもよい。さらに、DAIのカウントは、以下に示される1)又は2)のように実行されてもよい。
1)HARQ-ACKビットの生成順を、実際のCCのインデックスが小さいCCから大きいCCの順とし、さらに実際のCCのDCI又はPDSCHのうち、バーチャルCCのインデックスが小さいCCから大きいCCの順としてもよい。すなわち、実際のCCのインデックスを第1、バーチャルCCのインデックスを第2の順で優先しDAIをカウントしてもよい。1つの実際のCCが複数のバーチャルCCに含まれる場合を想定する。
2)HARQ-ACKビットの生成順を、バーチャルCCのインデックスが小さいCCから大きいCCの順とし、さらにバーチャルCCのDCI又はPDSCHのうち、実際のCCのインデックスが小さいCCから大きいCCの順としてもよい。すなわち、バーチャルCCのインデックスを第1、実際のCCのインデックスを第2の順で優先しDAIをカウントしてもよい。複数の実際のCCが単一のバーチャルCCに含まれる場合を想定する。
HARQ-ACKのACK/NACKビットについて、1つのPDSCHが複数の実際のCCにわたってスケジューリングされている場合、ACK/NACKビットを集約してもよいし、実際のCCごとに異なるACK/NACKビットを用意してもよい。
図19は、本発明の実施の形態におけるタイプ2HARQ-ACKコードブックの例(1)を示す図である。図19は、上記オプションA)のコードブック構築の例であり、かつPDSCHが単一の実際のCCに閉じてスケジューリングされる例を示す。また、図19は、DCIに対してDAIをカウントする例である。
図19に示されるように、バーチャルCC#0に対する1stサブコードブックのACK/NACKビットは、(C-DAI,T-DAI)が、実際のCC#0の(0,1)、実際のCC#2の(1,1)、実際のCC#0の(2,3)、実際のCC#2の(3,3)の順となる。
図19に示されるように、バーチャルCC#1に対する2ndサブコードブックのACK/NACKビットは、(C-DAI,T-DAI)が、実際のCC#1の(0,1)、実際のCC#3の(1,1)、実際のCC#1の(2,3)、実際のCC#3の(3,3)の順となる。
図20は、本発明の実施の形態におけるタイプ2HARQ-ACKコードブックの例(2)を示す図である。図20は、上記オプションB)のコードブック構築の例であり、かつPDSCHが複数の実際のCCにわたってスケジューリングされる例を示す。また、図20は、DCIに対してDAIをカウントする例である。また、図20は、複数の実際のCCに渡ってスケジューリングされているPDSCHのACK/NACKビットを集約する例である。また、図20は、バーチャルCCのインデックスごとにDAIをカウントする例である。
図20に示されるように、コードブックのACK/NACKビットは、(C-DAI,T-DAI)が、実際のCC#0及び実際のCC#2の(0,1)、実際のCC#1及び実際のCC#3の(1,1)、実際のCC#0及び実際のCC#2の(2,3)、実際のCC#1及び実際のCC#3の(3,3)の順となる。
図21は、本発明の実施の形態におけるタイプ2HARQ-ACKコードブックの例(3)を示す図である。図21は、上記オプションB)のコードブック構築の例であり、かつPDSCHが単一の実際のCCに閉じてスケジューリングされる例を示す。また、図21は、DCIに対してDAIをカウントする例である。また、図21は、バーチャルCCのインデックスを第1、実際のCCのインデックスを第2の順で優先しDAIをカウントする例である。
図21に示されるように、ACK/NACKビットは、(C-DAI,T-DAI)が、実際のCC#0の(0,3)、実際のCC#2の(1,3)、実際のCC#1の(2,3)、実際のCC#3の(3,3)、実際のCC#0の(0,1)、実際のCC#2の(1,1)、実際のCC#1の(2,3)、実際のCC#3の(3,3)、の順となる。
図22は、本発明の実施の形態におけるタイプ2HARQ-ACKコードブックの例(4)を示す図である。図22は、上記オプションB)のコードブック構築の例であり、かつPDSCHが複数の実際のCCにわたってスケジューリングされる例を示す。また、図22は、PDSCHに対してDAIをカウントする例である。また、図22は、実際のCCのインデックスを第1、バーチャルCCのインデックスを第2の順で優先しDAIをカウントする例である。
図21に示されるように、ACK/NACKビットは、(C-DAI,T-DAI)が、実際のCC#0の(0,3)、実際のCC#1の(1,3)、実際のCC#2の(2,3)、実際のCC#3の(3,3)、実際のCC#0の(0,1)、実際のCC#2の(1,1)、実際のCC#1の(2,3)、実際のCC#3の(3,3)、の順となる。
上述の実施例により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。
すなわち、無線通信システムにおいて、周波数領域が非連続となる広帯域で再送制御に係るフィードバック動作を実行することができる。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
<基地局10>
図23は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図23に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図23に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
図23は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図23に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図23に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、マルチキャリアスケジューリングに係る情報等である。
制御部140は、実施例において説明したように、マルチキャリアスケジューリングに係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
<端末20>
図24は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図24に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図24に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
図24は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図24に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図24に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、マルチキャリアスケジューリングに係る情報等である。
制御部240は、実施例において説明したように、マルチキャリアスケジューリングに係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図23及び図24)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
上記実施形態の説明に用いたブロック図(図23及び図24)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図25は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図23に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図24に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
図26に車両2001の構成例を示す。図26に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
(実施の形態のまとめ)
以上、説明したように、本発明の実施の形態によれば、実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信部と、前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御部と、前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信部とを有し、前記制御部は、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する端末が提供される。
以上、説明したように、本発明の実施の形態によれば、実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信部と、前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御部と、前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信部とを有し、前記制御部は、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する端末が提供される。
上記の構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。すなわち、無線通信システムにおいて、周波数領域が非連続となる広帯域で再送制御に係るフィードバック動作を実行することができる。
前記制御部は、前記下りリンク共有チャネルを受信する実際のCCにおける、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定してもよい。当該構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。
前記制御部は、前記上りリンク制御チャネルを送信する実際のCCにおける、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定してもよい。当該構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。
前記制御部は、前記下りリンク共有チャネルの先頭と前記上りリンク制御チャネルとの間隔を決定してもよい。当該構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。
前記制御部は、前記下りリンク共有チャネルの末尾と前記上りリンク制御チャネルとの間隔を決定してもよい。当該構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。
また、本発明の実施の形態によれば、実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信手順と、前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御手順と、前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信手順と、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する手順とを端末が実行する通信方法が提供される。
上記の構成により、基地局10及び端末20は、周波数領域が非連続となるバーチャルCCが導入されたとき、PUCCHを送信するタイミング及びHARQ-ACKコードブックを決定して、HARQ-ACKフィードバックを実行することができる。すなわち、無線通信システムにおいて、周波数領域が非連続となる広帯域で再送制御に係るフィードバック動作を実行することができる。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 基地局
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート)
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート)
Claims (6)
- 実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信部と、
前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御部と、
前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信部とを有し、
前記制御部は、前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する端末。 - 前記制御部は、前記下りリンク共有チャネルを受信する実際のCCにおける、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する請求項1記載の端末。
- 前記制御部は、前記上りリンク制御チャネルを送信する実際のCCにおける、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する請求項1記載の端末。
- 前記制御部は、前記下りリンク共有チャネルの先頭と前記上りリンク制御チャネルとの間隔を決定する請求項1記載の端末。
- 前記制御部は、前記下りリンク共有チャネルの末尾と前記上りリンク制御チャネルとの間隔を決定する請求項1記載の端末。
- 実際のCC(Component Carrier)を複数含む周波数領域で非連続となるバーチャルCCにおいて下りリンク共有チャネルを基地局から受信する受信手順と、
前記下りリンク共有チャネルに対応する再送制御に係るフィードバック情報を決定する制御手順と、
前記バーチャルCCにおいて前記フィードバック情報を含む上りリンク制御チャネルを前記基地局に送信する送信手順と、
前記上りリンク制御チャネルを送信する前記バーチャルCCに含まれる実際のCCを決定し、前記下りリンク共有チャネルと前記上りリンク制御チャネルとの間隔を決定する手順とを端末が実行する通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018765 WO2023209779A1 (ja) | 2022-04-25 | 2022-04-25 | 端末及び通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018765 WO2023209779A1 (ja) | 2022-04-25 | 2022-04-25 | 端末及び通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023209779A1 true WO2023209779A1 (ja) | 2023-11-02 |
Family
ID=88518130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/018765 WO2023209779A1 (ja) | 2022-04-25 | 2022-04-25 | 端末及び通信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023209779A1 (ja) |
-
2022
- 2022-04-25 WO PCT/JP2022/018765 patent/WO2023209779A1/ja unknown
Non-Patent Citations (2)
Title |
---|
MODERATOR (CMCC): "Email discussion summary for [RAN-R18-WS-eMBB-CMCC]", 3GPP DRAFT; RWS-210519, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20210628 - 20210702, 25 June 2021 (2021-06-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052028996 * |
QUALCOMM INCORPORATED: "HARQ-ACK enhancement for IOT and URLLC", 3GPP DRAFT; R1-2104663, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010914 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023209779A1 (ja) | 端末及び通信方法 | |
WO2023209780A1 (ja) | 端末及び通信方法 | |
WO2023209781A1 (ja) | 端末及び通信方法 | |
WO2023203626A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023203625A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023210010A1 (ja) | 端末及び通信方法 | |
WO2023210011A1 (ja) | 端末及び通信方法 | |
WO2023210012A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203781A1 (ja) | 端末、基地局及び通信方法 | |
WO2023170981A1 (ja) | 端末、基地局及び通信方法 | |
WO2023170980A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203780A1 (ja) | 端末、基地局及び通信方法 | |
WO2023195141A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203704A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023203734A1 (ja) | 端末及び通信方法 | |
WO2023210013A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203732A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203735A1 (ja) | 端末及び通信方法 | |
WO2023203623A1 (ja) | 端末、基地局及び通信方法 | |
WO2023199446A1 (ja) | 端末、基地局及び通信方法 | |
WO2023188212A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203627A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203779A1 (ja) | 端末、基地局及び通信方法 | |
WO2023188412A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023203629A1 (ja) | 端末、基地局及び通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22940059 Country of ref document: EP Kind code of ref document: A1 |