WO2023203625A1 - 端末、基地局、及び通信方法 - Google Patents
端末、基地局、及び通信方法 Download PDFInfo
- Publication number
- WO2023203625A1 WO2023203625A1 PCT/JP2022/018092 JP2022018092W WO2023203625A1 WO 2023203625 A1 WO2023203625 A1 WO 2023203625A1 JP 2022018092 W JP2022018092 W JP 2022018092W WO 2023203625 A1 WO2023203625 A1 WO 2023203625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- information
- control information
- pucch
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 70
- 238000000034 method Methods 0.000 title claims description 33
- 230000005540 biological transmission Effects 0.000 abstract description 36
- 238000010586 diagram Methods 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 12
- 230000011664 signaling Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
- NR New Radio
- LTE Long Term Evolution
- a terminal with reduced capability has a reduced maximum communication bandwidth than a normal terminal.
- control information e.g., UCI :Uplink Control Information
- UCI Uplink Control Information
- the present invention has been made in view of the above points, and an object of the present invention is to provide a technology that allows a terminal whose supported bandwidth is limited to appropriately transmit control information using an uplink control channel. shall be.
- a control unit that generates control information having an upper limit on the size that can be transmitted on an uplink control channel; and a transmitter configured to transmit the control information on the uplink control channel.
- a technology that allows a terminal with limited supported bandwidth to appropriately transmit control information via an uplink control channel.
- FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
- FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining PUCCH format 2/3.
- FIG. 2 is a diagram for explaining a problem.
- FIG. 3 is a diagram showing a basic operation example.
- FIG. 7 is a diagram showing an example of a value of maxCoderate.
- FIG. 3 is a diagram showing a basic operation example.
- FIG. 7 is a diagram showing an example of a value of maxCoderate.
- FIG. 3 is a diagram showing an
- FIG. 3 is a diagram for explaining an example of transmitting control information using a plurality of PUCCH resources.
- 1 is a diagram showing a configuration example of a base station 10.
- FIG. 2 is a diagram showing a configuration example of a terminal 20.
- FIG. FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention.
- 1 is a diagram showing an example of the configuration of a vehicle.
- Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention.
- the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
- the SS Synchronization signal
- PSS Primary SS
- SSS Secondary SS
- PBCH Physical broadcast channel
- PRACH Physical broadcast channel
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
- NR- the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
- NR- the signal is used for NR, it is not necessarily specified as "NR-".
- the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
- configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
- FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
- a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
- the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
- the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
- Base station 10 transmits a synchronization signal and system information to terminal 20.
- the synchronization signals are, for example, NR-PSS and NR-SSS.
- System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information.
- the synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG.
- the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
- SCell secondary cell
- PCell primary cell
- DC Direct Connectivity
- the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals.
- a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
- M2M Machine-to-Machine
- the terminal 20 is capable of performing carrier aggregation in which multiple cells (multiple CCs (Component Carriers)) are bundled to communicate with the base station 10.
- multiple CCs Component Carriers
- carrier aggregation one PCell (Primary cell) and one or more SCells (Secondary cells) are used.
- SCells Secondary cells
- PUCCH-SCell with PUCCH may be used.
- FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention.
- FIG. 2 shows an example of the configuration of a wireless communication system when dual connectivity (DC) is implemented.
- a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
- Base station 10A and base station 10B are each connected to a core network.
- Terminal 20 can communicate with both base station 10A and base station 10B.
- the cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and the cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group).
- MCG Master Cell Group
- SCG Secondary Cell Group
- the MCG is composed of one PCell and one or more SCells
- the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
- the processing operations in this embodiment may be executed with the system configuration shown in FIG. 1, may be executed with the system configuration shown in FIG. 2, or may be executed with a system configuration other than these.
- Figure 3 shows the intra-slot arrangement, UCI bit number, time length, RB size, CDM capacity, DMRS arrangement, and waveforms for PUCCH format 2 and PUCCH format 3, respectively.
- PUCCH format 2 is called short PUCCH and has a symbol length of 1 to 2.
- PUCCH format 3 is called long PUCCH and has a length of 4 to 14 symbols.
- FIG. 4 shows the processing contents of the terminal 20 in PUCCH format 2 and PUCCH format 3, respectively.
- the maximum number of RBs is notified from the base station 10 to the terminal 20 by an RRC message, and the number of RBs used for actual transmission is determined by the UCI payload size.
- FIG. 5 shows an example of an RRC message specifying the maximum number of RBs in Rel-15.
- FIG. 6 shows regulations regarding the number of RBs used for actual transmission.
- FIG. 7 shows an example of Channel coding and Rate-matching
- FIG. 8 shows an example of E tot and E max used in FIG. 7.
- the terminal 20 with reduced capability (About the assignment) As mentioned above, in NR, the terminal 20 with reduced capability (RedCap) is being considered. Specifically, in FR1, if the bandwidth supported by Rel-18 RedCap is limited to 5MHz, especially if the SCS is 30 or 60kHz, the number of RBs used for PUCCH transmission in PUCCH format 2/3. is considered to be limited.
- FIG. 9 shows an example of the above restrictions. As shown in FIG. 9, when the SCS becomes 30 kHz or higher, the terminal 20 whose bandwidth is limited to 5 MHz cannot transmit all 16 RBs.
- the upper limit of the coding rate is defined assuming that the frequency resource is a maximum of 16 RB. Therefore, if the payload size of the UCI is large, there is a possibility that the UCI cannot be transmitted in the limited band with the set encoding rate. Moreover, even if transmission is possible, the characteristics may deteriorate.
- the PUCCH format 2/3 transmission operation is specified for the terminal 20 whose capacity has been reduced in accordance with Rel-18 RedCap (also called eRedCap), and UCI transmission is performed appropriately with a bandwidth of 5 MHz.
- Rel-18 RedCap also called eRedCap
- the terminal 20 is an eRedCap UE (capacity-reduced terminal 20). Further, the technology according to the embodiment described below is applicable to both PUCCH format 2 and PUCCH format 3, unless otherwise specified.
- the scope of application of the present invention is not limited to eRedCap UE. Furthermore, the scope of application of the present invention is not limited to PUCCH format 2 and PUCCH format 3.
- First embodiment Specifies the upper limit of UCI Second embodiment: Supports a higher coding rate than before Third embodiment: Transmission divided into multiple PUCCH resources Fourth embodiment: Transmission by puncturing UCI 5th embodiment: Expansion of modulation order 6th embodiment: Expansion of the number of PF2 symbols 7th embodiment: Support for PF2 repetition transmission (basic operation example) A basic operation example will be described with reference to FIG.
- the terminal 20 transmits capability information to the base station 10. This ability information is, for example, ability information described in each embodiment below.
- the base station 10 transmits setting information (which may also be called instruction information) to the terminal 20.
- This setting information may be, for example, the upper limit value of the UCI payload size, or information specifying the plurality of PUCCH resources when the control information is divided into multiple pieces and transmitted using the plurality of PUCCH resources. or information other than these.
- the terminal 20 transmits PUCCH in S103 based on the configuration information (instruction information) received in S102.
- transmitting PUCCH may also be referred to as transmitting control information on PUCCH.
- the control information may be the UCI, or may be any one, any plurality, or all three of HARQ-ACK, SR, and CSI that constitute the UCI. Each embodiment will be described below.
- the "UCI" described below may be any one, any plurality, or all three of HARQ-ACK, SR, and CSI.
- the upper limit of the UCI payload size that can be transmitted using one PUCCH resource is defined (or set) for PUCCH format 2/3.
- the terminal 20 generates a UCI with a size less than or equal to the upper limit, and transmits the generated UCI on the PUCCH.
- the base station 10 receives the UCI on the PUCCH.
- the base station 10 decodes the control information assuming that there is an upper limit to the size of the UCI. For example, when the base station 10 receives a UCI with a size larger than the upper limit, it may recognize that an error has occurred.
- the above upper limit may be specified regardless of SCS, or may be specified only for 30kHz SCS, only for 60kHz SCS, or for both 30kHz SCS and 60kHz SCS. Good too.
- PF2 PUCCH format 2
- PF3 PUCCH format 3
- PF2 and PF3 PUCCH format 3
- UCI may include HARQ-ACK, SR, and CSI.
- the upper limit of Payload size in the first embodiment may be the total value of HARQ-ACK, SR, and CSI, or may be the upper limit only for CSI, or may be the upper limit for HARQ-ACK, SR, and CSI. It may be the upper limit of the sum of any two of them.
- UE capability capability information
- the terminal 20 may transmit the capability information to the base station 10.
- the specific value of the upper limit in the first embodiment is not particularly limited, but based on the fact that the UCI payload size upper limit of PF4 1RB is 115 bits, the upper limit may be defined as below for PF2 and PF3. .
- the upper limit bit number may be set to 1495 bits.
- the upper limit of the UCI payload size may be set to 690 bits.
- the first embodiment by defining the upper limit of the UCI payload size that can be transmitted using limited frequency resources, coverage equivalent to that of the existing terminal 20 without bandwidth restrictions can be guaranteed.
- the upper limit of the size in the first embodiment may be uniformly defined for each cell or system, or may be set (or instructed) for each terminal 20.
- the base station 10 has a higher ability than the terminal 20B that has reported the ability to transmit with a lower transmission power.
- a large upper limit may be set (or instructed).
- the maximum coding rate is expanded for the terminal 20 whose capability is reduced. That is, in the second embodiment, for PUCCH format 2/3, the terminal 20 transmits PUCCH using a coding rate larger than the maximum coding rate (for example, 0.8) defined in the conventional technology. I can do it.
- the maximum coding rate for example, 0.8
- Option 1 the terminal 20 of this embodiment assumes that the coding rate notified from the base station 10 to the terminal 20 by the upper layer parameter maxCodeRate (maximum coding rate) is that the terminal 20 follows the existing regulations. A coding rate different from the coding rate may be assumed. For example, a new association between maxCodeRate and coding rate may be defined for the terminal 20 of the present embodiment, and the terminal 20 may assume the coding rate in accordance with the regulation. That is, the terminal 20 may encode the UCI at a coding rate corresponding to the received maxCodeRate and transmit it on the PUCCH.
- maxCodeRate maximum coding rate
- the base station 10 decodes the UCI received from the terminal 20, assuming that the UCI is encoded at a coding rate corresponding to the transmitted maxCodeRate.
- Option 2 a new coding rate is added to the existing maxCodeRate and coding rate association specifications.
- the terminal 20 assumes a coding rate and performs coding according to the regulations to which the new coding rate has been added.
- the base station 10 decodes the UCI received from the terminal 20, assuming that the UCI is encoded at a coding rate according to the regulations.
- a new coding rate may be defined in the reserved row of the existing TS 38.213 table 9.2.5.2-1 shown in FIG.
- the newly defined coding rate is a value larger than 0.80 (for example, 0.85, 0.90, 0.95, etc.).
- signaling of capability information (UE capability) reporting that the extended coding rate setting is supported is defined, and the terminal 20 informs the base station 10 of the corresponding capability information (UE capability). Capability information may be reported.
- the terminal 20 can transmit more payloads by supporting a higher coding rate.
- the terminal 20 may transmit one PUCCH by dividing it into multiple PUCCH resources regarding PUCCH transmission using PUCCH format 2/3.
- one PUCCH may be rephrased as one piece of control information (for example, UCI).
- One PUCCH (or one control information) is a PUCCH (or control information) that is transmitted at one timing.
- the terminal 20 may transmit PUCCH by dividing into resources of different symbols within the same slot, or may transmit PUCCH by dividing into different slots.
- Frequency resource settings may be different among multiple PUCCH resources that transmit one PUCCH.
- the terminal 20 determines that the size of the UCI to be transmitted exceeds the upper limit, the terminal 20 divides the UCI payload exceeding the upper limit into another PUCCH resource and transmits it. That is, the terminal 20 divides one control information into multiple pieces of control information, and transmits the multiple pieces of control information using multiple PUCCH resources.
- the base station 10 that has received the plurality of control information using the plurality of PUCCH resources assumes that the plurality of control information is separated from one control information, and, for example, divides the plurality of control information into one from the plurality of control information. Generate control information.
- the following options 1 to 4 are available as a method for determining PUCCH resources for transmitting UCI exceeding the upper limit.
- Option 1 new parameters for reduced capacity terminals are defined as upper layer parameters regarding PUCCH resource configuration.
- the terminal 20 receives the new parameters from the base station 10 and determines PUCCH resources according to the new parameters.
- the terminal 20 whose capacity has been reduced transmits control information (PUCCH) using the PUCCH resource notified by the existing pucch-Resource and the PUCCH resource notified by the new parameter.
- PUCCH control information
- Option 2 specifies a new PDSCH-to-HARQ_feedback timing indicator field in DCI format 1_0 and/or DCI format 1_1 and/or DCI format 1_2 for reduced capacity terminals, which allows PUCCH resources to be good.
- the PDSCH-to-HARQ_feedback timing indicator field is a field that specifies the slot length from the slot in which PDSCH is received to the slot in which HARQ_feedback is transmitted.
- the terminal 20 whose capacity has been reduced transmits control information (PUCCH) using both the slot notified by the existing PDSCH-to-HARQ_feedback timing indicator field and the slot notified by the new field.
- PUCCH control information
- option 3 a new PRI (PUCCH resource indicator) field for the reduced capacity terminal is defined in DCI format 1_0 and/or DCI format 1_1 and/or DCI format 1_2, and PUCCH resources may be notified by this.
- the PRI field is a field of information indicating PUCCH resources.
- the terminal 20 whose capacity has been reduced transmits control information (PUCCH) using both the PUCCH resource notified by the existing PRI field and the resource notified by the new PRI field.
- PUCCH control information
- the terminal 20 can receive from the base station 10 the setting of the number of slots in which PUCCH repetition is performed. In the existing technology, the terminal 20 that has received this setting repeatedly transmits the PUCCH in each of this number of slots.
- the PUCCH repetition setting may be changed. That is, the terminal 20 may transmit the control information (PUCCH) divided into multiple slots set for PUCCH repetition transmission. At this time, the base station 10 assumes that the control information received in multiple slots is not repeated control information but divided control information.
- PUCCH control information
- control information even if there is an upper limit to the size of control information that can be transmitted using one PUCCH resource, all of the control information can be transmitted.
- the terminal 20 whose capability has been reduced may puncture a part of the UCI and transmit it.
- the terminal 20 detects that the size of the UCI to be transmitted exceeds the upper limit, it punctures some bits of the UCI payload so as not to exceed the upper limit.
- the base station 10 that receives the punctured UCI performs decoding assuming that there is a puncture.
- the terminal 20 may transmit the capability information to the base station 10.
- control information can be appropriately transmitted.
- the modulation order of the UCI payload may be expanded for the terminal 20 with reduced capability.
- a modulation order larger than a predetermined modulation order may be used as the modulation order of the UCI payload.
- the predetermined modulation order may be QPSK 4. More specifically, for example, 16QAM modulation may be supported for terminals 20 with reduced capabilities.
- the expanded modulation order may be applied to all of the divided pieces of control information, or It may be applied only to some control information among the information.
- UE capability reporting that the extended UCI modulation scheme (e.g., 16QAM) is supported is defined, and the terminal 20 may transmit the capability information to the base station 10.
- the extended UCI modulation scheme e.g., 16QAM
- the terminal 20 with limited bandwidth can appropriately transmit control information.
- the number of symbols that can be set for PUCCH format 2 may be expanded.
- the maximum number of symbols may be greater than two.
- frequency hopping may be applicable to PUCCH format 2.
- a format with an expanded number of symbols compared to PUCCH format 2 may be defined as a new PUCCH format (e.g., PF5). Further, the maximum value of the expanded number of symbols may be any one of 3 to 14 symbols.
- UE capability Signaling of capability information (UE capability) reporting that the number of symbols of PF2 is expanded or a new PF is supported is defined, and the terminal 20 may transmit the capability information to the base station 10.
- UE capability capability information reporting that the number of symbols of PF2 is expanded or a new PF is supported
- the terminal 20 with limited bandwidth can appropriately transmit control information using PUCCH format 2 (or a new format).
- PUCCH repetition transmission for PUCCH format 2 may be applicable to the terminal 20 whose capability has been reduced.
- UE capability capability information reporting that PF2 repetitive transmission is supported
- the terminal 20 may transmit the capability information to the base station 10.
- the terminal 20 with limited bandwidth can appropriately transmit control information using PUCCH format 2.
- the first to seventh embodiments can be implemented by arbitrarily combining a plurality of them. Further, although the operation in this embodiment assumes operation in FR1, it is not limited to FR1, and may be applied to FR2-1 and FR2-2.
- eRedCap UE terminal 20 with reduced capacity
- the terminal according to the present invention is not limited to those defined below.
- a UE that falls under any of (1) to (3) below is an eRedCap UE (terminal 20 with reduced capabilities).
- the concerned UE may send Msg1/A using resources specified/configured for eRedCap UE, or may notify using the notification field in Msg3 specified/configured for eRedCap UE. good.
- a UE that supports a specific UE capability defined for the UE. Examples of such UE capabilities are as follows.
- FIG. 13 is a diagram illustrating an example of the functional configuration of the base station 10.
- base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
- the functional configuration shown in FIG. 13 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
- the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
- the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
- the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
- the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
- the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
- FIG. 14 is a diagram showing an example of the functional configuration of the terminal 20.
- the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
- the functional configuration shown in FIG. 14 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
- the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
- the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10.
- the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication. (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
- the receiving unit 120 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
- the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary.
- the setting unit 230 also stores setting information that is set in advance.
- the control unit 240 controls the terminal 20.
- a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
- the transmitter 210 may be called a transmitter, and the receiver 220 may be called a receiver.
- Additional Notes 1 to 6 The present embodiment provides at least the terminals, base stations, and communication methods shown in Additional Notes 1 to 6 below.
- a control unit that generates control information having an upper limit on the size that can be transmitted on an uplink control channel; and a transmitting unit that transmits the control information on the uplink control channel.
- the terminal according to supplementary note 1 wherein the transmitter reports an upper limit of the size of the control information to be supported to a base station.
- Supplementary Note 3 The terminal according to Supplementary Note 1 or 2, wherein it is assumed that a value larger than a predetermined value is received from the base station as a maximum value of a coding rate used for control information transmitted on the uplink control channel.
- Any of Items 1 to 6 provides a technique that allows a terminal whose supported bandwidth is limited to appropriately transmit control information via an uplink control channel.
- the base station can grasp the capability of the terminal regarding the upper limit.
- control information can be appropriately transmitted even when there is an upper limit to the size.
- the present embodiment provides at least the terminals, base stations, and communication methods shown in Additional Notes 1 to 6 below.
- a control unit that divides control information into a plurality of control information; and a transmitter configured to transmit the plurality of pieces of control information using a plurality of uplink control channel resources.
- the control unit divides the control information into first control information having an upper limit size that can be transmitted using one uplink control channel resource and second control information other than the first control information. terminal.
- the transmitter modulates at least one of the plurality of pieces of control information using a modulation method having a modulation order larger than a predetermined modulation order, and transmits the modulated control information.
- the terminal described in Section 1. (Additional note 5) a receiving unit that receives a plurality of pieces of control information from a terminal using a plurality of uplink control channel resources; A base station comprising: a control unit that generates one piece of control information from the plurality of pieces of control information.
- Any of Items 1 to 6 provides a technique that allows a terminal whose supported bandwidth is limited to appropriately transmit control information via an uplink control channel.
- the control information can be appropriately transmitted.
- Supplementary Note 3 a plurality of pieces of divided control information can be transmitted by using the repeating mechanism of the uplink control channel.
- control information can be appropriately transmitted even when there is a limit to the size of control information that can be transmitted using one uplink control channel resource.
- each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
- the functional block may be realized by combining software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
- a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
- the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 15 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
- the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
- the word “apparatus” can be read as a circuit, a device, a unit, etc.
- the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
- Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
- the processor 1001 for example, operates an operating system to control the entire computer.
- the processor 1001 may be configured with a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
- CPU central processing unit
- control unit 140, control unit 240, etc. may be implemented by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
- programs program codes
- the control unit 140 of the base station 10 shown in FIG. 10 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- the control unit 240 of the terminal 20 shown in FIG. 11 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
- the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
- the storage device 1002 may be called a register, cache, main memory, or the like.
- the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
- the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
- the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
- the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
- the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a part or all of each functional block may be realized by the hardware.
- processor 1001 may be implemented using at least one of these hardwares.
- the terminal 20 or the base station 10 may be provided in the vehicle 2001.
- FIG. 16 shows an example of the configuration of vehicle 2001.
- the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
- the terminal 20 or base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
- the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
- the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
- the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
- the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
- Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
- the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
- the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
- the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
- the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
- the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
- Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
- the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
- the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
- the communication module 2013 may be located either inside or outside the electronic control unit 2010.
- the external device may be, for example, a base station, a mobile station, or the like.
- the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
- the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
- the PUSCH transmitted by the communication module 2013 may include information based on the above input.
- the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
- the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
- Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
- the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
- the order of processing may be changed as long as there is no contradiction.
- Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
- RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
- the present invention may be
- the base station 10 may be performed by its upper node in some cases.
- various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
- MME Mobility Management Entity
- S-GW Packet Control Function
- the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
- the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
- the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
- the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
- Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
- software, instructions, information, etc. may be sent and received via a transmission medium.
- a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
- At least one of the channel and the symbol may be a signal.
- the signal may be a message.
- a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” are used interchangeably.
- radio resources may be indicated by an index.
- Base Station BS
- wireless base station base station
- base station fixed station
- NodeB eNodeB
- gNodeB gNodeB
- a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
- RRHs small indoor base stations
- Communication services can also be provided by Remote Radio Head).
- the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
- the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
- the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
- the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
- the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
- the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
- the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be replaced by a terminal.
- a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
- the terminal 20 may have the functions that the base station 10 described above has.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
- uplink channels, downlink channels, etc. may be replaced with side channels.
- a terminal in the present disclosure may be replaced by a base station.
- a configuration may be adopted in which the base station has the functions that the above-described terminal has.
- determining may encompass a wide variety of operations.
- “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
- judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
- (accessing) may include considering something as a “judgment” or “decision.”
- judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
- judgment and “decision” may include regarding some action as having been “judged” or “determined.”
- judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
- connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
- the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
- two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
- the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
- RS Reference Signal
- the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
- a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- SCS subcarrier spacing
- TTI transmission time interval
- transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
- a slot may be a unit of time based on numerology.
- a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
- PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI.
- TTI transmission time interval
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
- the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
- one slot may be called a unit time. The unit time may be different for each cell depending on the numerology.
- TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
- TTI is not limited to this.
- the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling.
- the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- long TTI for example, normal TTI, subframe, etc.
- short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
- the number of subcarriers included in an RB may be determined based on newerology.
- the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
- PRBs physical resource blocks
- SCGs sub-carrier groups
- REGs resource element groups
- PRB pairs RB pairs, etc. May be called.
- a resource block may be configured by one or more resource elements (REs).
- REs resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
- the common RB may be specified by an RB index based on a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be configured within one carrier for a UE.
- At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
- “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
- notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
- Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
端末において、アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成する制御部と、前記制御情報を前記アップリンク制御チャネルで送信する送信部とを備える。
Description
本発明は、無線通信システムにおける端末、基地局、及び通信方法に関する。
LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
NRでは、複雑さを軽減させた端末の仕様について検討されている。例えば、能力低減(RedCap:Reduced Capability)された端末は、通常の端末よりも通信の最大帯域幅が低減される。
3GPP TS 38.300 V16.6.0(2021-06)
帯域幅が制限された端末は、使用できるアップリンクのリソース量が制限されるため、従来の仕様で規定されたアップリンク制御チャネル(例:PUCCH:Physical Uplink Control Channel)により制御情報(例:UCI:Uplink Control Information)を適切に送信できない可能性がある。
本発明は上記の点に鑑みてなされたものであり、サポートする帯域幅を制限された端末が、アップリンク制御チャネルにより適切に制御情報を送信することを可能とする技術を提供することを目的とする。
開示の技術によれば、アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成する制御部と、
前記制御情報を前記アップリンク制御チャネルで送信する送信部と
を備える端末が提供される。
前記制御情報を前記アップリンク制御チャネルで送信する送信部と
を備える端末が提供される。
開示の技術によれば、サポートする帯域幅を制限された端末が、アップリンク制御チャネルにより適切に制御情報を送信することを可能とする技術が提供される。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEあるいは既存のNRであるが、既存のLTE、NRに限られない。
また、以下で説明する本発明の実施の形態では、既存のLTEあるいはNRで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。
端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。
端末20は、複数のセル(複数のCC(Component Carrier, コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary cell, プライマリセル)と1以上のSCell(Secondary cell, セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。
図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。
本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
(PUCCHについて)
本発明の実施形態に係る技術は、PUCCH format 2とPUCCH format 3に関連するものであるので、まず、既存技術のPUCCH format 2とPUCCH format 3について説明する。後述する実施形態で説明する新規な事項以外の事項に関しては、ここで説明する既存技術が適用されてもよい。なお、本発明はPUCCH format 2とPUCCH format 3に限定されるわけではなく、上り制御チャネル全般に適用可能である。
本発明の実施形態に係る技術は、PUCCH format 2とPUCCH format 3に関連するものであるので、まず、既存技術のPUCCH format 2とPUCCH format 3について説明する。後述する実施形態で説明する新規な事項以外の事項に関しては、ここで説明する既存技術が適用されてもよい。なお、本発明はPUCCH format 2とPUCCH format 3に限定されるわけではなく、上り制御チャネル全般に適用可能である。
PUCCH format 2とPUCCH format 3それぞれにおけるスロット内配置、UCIビット数、時間長、RBサイズ、CDMキャパシティ、DMRS配置、波形を図3に示す。図3に示すように、PUCCH format 2はshort PUCCHと呼ばれ、1~2のシンボル長である。PUCCH format 3は、long PUCCHと呼ばれ、4~14シンボル長である。図4に、PUCCH format 2とPUCCH format 3それぞれおける端末20での処理内容を示す。
PUCCH format 2とPUCCH format 3について、最大RB数はRRCメッセージにより基地局10から端末20に通知され、実際の送信に使用するRB数はUCI payload size(UCIのペイロードサイズ)により決定される。図5に、Rel-15における最大RB数を指定するRRCメッセージの例を示す。図6に、実際の送信に使用するRB数に関する規定を示す。また、図7に、Channel codingとRate-matchingの例を示し、図8に、図7で使用されているEtotとEmaxの例を示す。
(課題について)
前述したとおり、NRにおいて、能力低減(RedCap:Reduced Capability)した端末20の検討が進められている。具体的には、FR1において、Rel-18 RedCapのサポートする帯域幅が5MHzに制限される場合、特にSCSが30又は60kHzである場合、PUCCH format 2/3でのPUCCH送信に使用されるRB数が制限されると考えられる。
前述したとおり、NRにおいて、能力低減(RedCap:Reduced Capability)した端末20の検討が進められている。具体的には、FR1において、Rel-18 RedCapのサポートする帯域幅が5MHzに制限される場合、特にSCSが30又は60kHzである場合、PUCCH format 2/3でのPUCCH送信に使用されるRB数が制限されると考えられる。
図9に、上記制限の例を示す。図9に示すとおり、SCSが30kHz以上になると、帯域幅が5MHzに制限された端末20は、16RBの全部を送信できない。
既存の仕様において周波数リソースが最大16RBであることを想定して符号化率の上限が規定されている。そのため、UCIのpayload sizeが大きい場合、設定された符号化率では制限された帯域で当該UCIを送信できない場合が発生する可能性がある。また、送信できたとしても特性が劣化する可能性がある。
以下では、上記の課題を解決する技術について説明する。より具体的には、Rel-18 RedCap(eRedCapとも呼ぶ)に準拠して能力低減された端末20に対して、PUCCH format 2/3の送信動作を規定し、5MHzの帯域幅で適切にUCI送信を行うための技術について説明する。
以下で説明する実施形態の説明において、特に断らない場合は、端末20は、eRedCap UE(能力低減された端末20)であるとする。また、以下で説明する実施形態に係る技術は、特に断らない場合は、PUCCH format 2とPUCCH format 3のいずれにも適用可能である。
ただし、本発明の適用範囲はeRedCap UEに限定されるわけではない。また、本発明の適用範囲はPUCCH format 2とPUCCH format 3に限定されるわけではない。
(実施の形態の概要)
以下では、下記の第1~第7の実施形態を説明する。
以下では、下記の第1~第7の実施形態を説明する。
第1実施形態:UCIの上限を規定する
第2実施形態:従来よりも高い符号化率をサポートする
第3実施形態:複数のPUCCH リソースに分けて送信
第4実施形態:UCIをパンクチャして送信
第5実施形態:変調次数の拡張
第6実施形態:PF2のSymbol数の拡張
第7実施形態:PF2 repetition送信のサポート
(基本的な動作例)
図10を参照して、基本的な動作例を説明する。S101において、端末20は基地局10に対して能力情報を送信する。この能力情報は、例えば、以降の各実施形態で説明する能力情報である。
第2実施形態:従来よりも高い符号化率をサポートする
第3実施形態:複数のPUCCH リソースに分けて送信
第4実施形態:UCIをパンクチャして送信
第5実施形態:変調次数の拡張
第6実施形態:PF2のSymbol数の拡張
第7実施形態:PF2 repetition送信のサポート
(基本的な動作例)
図10を参照して、基本的な動作例を説明する。S101において、端末20は基地局10に対して能力情報を送信する。この能力情報は、例えば、以降の各実施形態で説明する能力情報である。
S102において、基地局10は端末20に対して設定情報(指示情報と呼んでもよい)を送信する。この設定情報(指示情報)は例えば、UCI payload sizeの上限値であってもよいし、制御情報を複数に分けて、複数のPUCCHリソースで送信する場合における、当該複数のPUCCHリソースを指定する情報であってもよいし、これら以外の情報であってもよい。
端末20は、S102で受信した設定情報(指示情報)に基づいて、S103において、PUCCHを送信する。なお、PUCCHを送信することを、PUCCHで制御情報を送信すると言い換えてもよい。制御情報はUCIであってもよいし、UCIを構成するHARQ-ACK、SR,及びCSIのうちのいずれか1つ又はいずれか複数又は3つ全部であってもよい。以下、各実施形態を説明する。また、以下で説明する「UCI」は、HARQ-ACK、SR,及びCSIのうちのいずれか1つ又はいずれか複数又は3つ全部であってもよい。
(第1実施形態)
第1実施形態では、PUCCH format 2/3について、1つのPUCCHリソースで送信可能なUCI payload sizeの上限が規定(又は設定)される。端末20は、当該上限以下のサイズのUCIを生成し、生成したUCIをPUCCHで送信する。基地局10は、当該UCIをPUCCHで受信する。基地局10は、当該UCIのサイズには上限が有ることを想定して、例えば、制御情報のデコードを実施する。例えば、基地局10は、上限以上のサイズのUCIを受信した場合には、エラーが発生したと認識してもよい。
第1実施形態では、PUCCH format 2/3について、1つのPUCCHリソースで送信可能なUCI payload sizeの上限が規定(又は設定)される。端末20は、当該上限以下のサイズのUCIを生成し、生成したUCIをPUCCHで送信する。基地局10は、当該UCIをPUCCHで受信する。基地局10は、当該UCIのサイズには上限が有ることを想定して、例えば、制御情報のデコードを実施する。例えば、基地局10は、上限以上のサイズのUCIを受信した場合には、エラーが発生したと認識してもよい。
上記の上限は、SCSに関わらずに規定されてもよいし、30kHzのSCSのみに対して、60kHzのSCSのみに対して、又は、30kHzのSCSと60kHzのSCSの両方に対して規定されてもよい。
また、PF2(PUCCH format 2)とPF3(PUCCH format 3)との間で同じ上限が規定されても良いし、PF2とPF3との間で異なる上限が規定されても良い。
UCIには、HARQ-ACK、SR及びCSIが含まれ得る。第1実施形態におけるPayload sizeの上限はHARQ-ACK、SR及びCSIの3つの合計値であっても良いし、CSIに対してのみの上限であってもよいし、HARQ-ACK、SR及びCSIのうちのいずれか2つの合計の上限値であってもよい。
また、端末20がサポートするUCI payload sizeの上限を報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を送信してもよい。
第1実施形態における上限の具体的な値は特に限定はないが、PF4 1RBのUCI payload size上限が115bitであることに基づいて、PF2とPF3について、下記のように上限が規定されてもよい。
・SCS 30kHzの場合、RB数の上限が12(PF3のRB数は2,3,5の倍数に制限されることから)となることを想定し、UCI payload sizeの上限を1380ビットとする。これは、115×12から得られる。
・SCS 30kHzの場合、RB数の上限が13となることを想定し、上限のビット数を1495 bitとしてもよい 。
・SCS 60kHzの場合、RB数の上限が6となることを想定し、UCI payload sizeの上限を690ビットとしてもよい。
第1実施形態により、制限された周波数リソースで送信可能なUCI payload sizeの上限を規定することで、帯域幅の制限のない既存の端末20と同等なカバレッジを保証することができる。
なお、第1実施形態におけるサイズの上限は、セルあるいはシステムにおいて一律に規定されるものであってもよいし、端末20毎に上限が設定(又は指示)されることとしてもよい。例えば、高い送信電力で送信可能であることを示す能力を報告した端末20Aに対して、基地局10は、それよりも低い送信電力で送信可能であることを示す能力を報告した端末20Bよりも、大きな上限を設定(又は指示)してもよい。
(第2実施形態)
次に、第2実施形態を説明する。第2実施形態では、PUCCH format 2/3について、能力低減される端末20向けに最大符号化率が拡張される。つまり、第2実施形態では、PUCCH format 2/3について、端末20は、従来技術で規定された最大符号化率(例:0.8)よりも大きな符号化率を用いてPUCCHを送信することができる。第2実施形態では、下記のオプション1とオプション2がある。
次に、第2実施形態を説明する。第2実施形態では、PUCCH format 2/3について、能力低減される端末20向けに最大符号化率が拡張される。つまり、第2実施形態では、PUCCH format 2/3について、端末20は、従来技術で規定された最大符号化率(例:0.8)よりも大きな符号化率を用いてPUCCHを送信することができる。第2実施形態では、下記のオプション1とオプション2がある。
<第2実施形態:オプション1>
オプション1では、基地局10から端末20に対して、上位レイヤパラメータmaxCodeRate(最大符号化率)で通知される符号化率について、本実施形態の端末20は、既存の規定に従う端末20が想定する符号化率とは異なる符号化率を想定しても良い。例えば、本実施形態の端末20向けに、新たにmaxCodeRateと符号化率の紐づけが規定され、端末20は、その規定に従って符号化率を想定してもよい。つまり、端末20は、受信したmaxCodeRateに対応する符号化率でUCIを符号化してPUCCHで送信してもよい。
オプション1では、基地局10から端末20に対して、上位レイヤパラメータmaxCodeRate(最大符号化率)で通知される符号化率について、本実施形態の端末20は、既存の規定に従う端末20が想定する符号化率とは異なる符号化率を想定しても良い。例えば、本実施形態の端末20向けに、新たにmaxCodeRateと符号化率の紐づけが規定され、端末20は、その規定に従って符号化率を想定してもよい。つまり、端末20は、受信したmaxCodeRateに対応する符号化率でUCIを符号化してPUCCHで送信してもよい。
基地局10は、端末20から受信したUCIに対し、送信したmaxCodeRateに対応する符号化率でUCIが符号化されていると想定してデコードを行う。
<第2実施形態:オプション2>
オプション2では、既存のmaxCodeRateと符号化率の紐づけの規定において、新たな符号化率が追加される。端末20は、新たな符号化率が追加された規定に従って、符号化率を想定し、符号化を実施する。基地局10は、端末20から受信したUCIに対し、当該規定に従った符号化率でUCIが符号化されていると想定してデコードを行う。
オプション2では、既存のmaxCodeRateと符号化率の紐づけの規定において、新たな符号化率が追加される。端末20は、新たな符号化率が追加された規定に従って、符号化率を想定し、符号化を実施する。基地局10は、端末20から受信したUCIに対し、当該規定に従った符号化率でUCIが符号化されていると想定してデコードを行う。
例えば、図11に示す既存のTS 38.213 table 9.2.5.2-1のreserved行に新しく符号化率が規定されてもよい。新しく規定される符号化率は、0.80より大きい値(例えば0.85, 0.90, 0.95 etc.)である。
オプション1とオプション2を含む第2実施形態において、拡張された符号化率の設定をサポートすることを報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を報告してもよい。
第2実施形態により、端末20は、周波数リソースが制限された場合でも、より高い符号化率をサポートすることでより多くのpayloadを送信することができる。
(第3実施形態)
次に、第3実施形態を説明する。第3実施形態では、端末20は、PUCCH format 2/3によるPUCCH送信について、複数PUCCHリソースに分けて1つのPUCCHを送信しても良い。なお、1つのPUCCHを1つの制御情報(例えばUCI)と言い換えてもよい。1つのPUCCH(又は1つの制御情報)とは、ある1回のタイミングで送信するPUCCH(又は制御情報)である。
次に、第3実施形態を説明する。第3実施形態では、端末20は、PUCCH format 2/3によるPUCCH送信について、複数PUCCHリソースに分けて1つのPUCCHを送信しても良い。なお、1つのPUCCHを1つの制御情報(例えばUCI)と言い換えてもよい。1つのPUCCH(又は1つの制御情報)とは、ある1回のタイミングで送信するPUCCH(又は制御情報)である。
リソースの分け方に関して、端末20は、同一スロット内で、異なるシンボルのリソースに分けてPUCCHを送信しても良いし、異なるslotに分けてPUCCHを送信しても良い。1つのPUCCHを送信する複数PUCCHリソース間で周波数リソースの設定が異なっていても良い。
<動作例>
第3実施形態が第1実施形態と組み合わせて実施される場合の動作例を、図12を参照して説明する。
第3実施形態が第1実施形態と組み合わせて実施される場合の動作例を、図12を参照して説明する。
第1実施形態で説明したように、1つのPUCCHリソースで送信可能なUCI payload sizeの上限が、能力低減された端末20向けに規定されているとする。図12に示すとおり、端末20は、送信するUCIのサイズが当該上限を超えると判断した場合に、上限を超えた分のUCI payloadについては別のPUCCHリソースに分けて送信する。つまり、端末20は、1つの制御情報を分割して複数の制御情報とし、当該複数の制御情報を複数のPUCCHリソースで送信する。当該複数のPUCCHリソースで当該複数の制御情報を受信した基地局10は、当該複数の制御情報が1つの制御情報から分けられたものであると想定し、例えば、当該複数の制御情報から1つの制御情報を生成する。
上記動作例において、上限を超えた分のUCIを送信するためのPUCCHリソースの決定方法として、下記のオプション1~4がある。
<第3実施形態:オプション1>
オプション1において、PUCCHリソース設定に関する上位レイヤパラメータとして、能力低減端末向け新規パラメータが規定される。端末20は、当該新規パラメータを基地局10から受信し、当該新規パラメータに従ってPUCCHリソースを決定する。
オプション1において、PUCCHリソース設定に関する上位レイヤパラメータとして、能力低減端末向け新規パラメータが規定される。端末20は、当該新規パラメータを基地局10から受信し、当該新規パラメータに従ってPUCCHリソースを決定する。
すなわち、能力低減された端末20は、既存のpucch-Resourceにより通知されたPUCCHリソースと、新規パラメータにより通知されたPUCCHリソースで制御情報(PUCCH)を送信する。
<第3実施形態:オプション2>
オプション2では、DCI format 1_0及び/またはDCI format 1_1及び/またはDCI format 1_2に、能力低減端末向けの新規なPDSCH-to-HARQ_feedback timing indicator fieldが規定され、これにより、PUCCHリソースが通知されても良い。なお、PDSCH-to-HARQ_feedback timing indicator fieldは、PDSCHを受信したスロットから、HARQ_feedbackを送信するスロットまでのスロット長を指定するフィールドである。
オプション2では、DCI format 1_0及び/またはDCI format 1_1及び/またはDCI format 1_2に、能力低減端末向けの新規なPDSCH-to-HARQ_feedback timing indicator fieldが規定され、これにより、PUCCHリソースが通知されても良い。なお、PDSCH-to-HARQ_feedback timing indicator fieldは、PDSCHを受信したスロットから、HARQ_feedbackを送信するスロットまでのスロット長を指定するフィールドである。
例えば、能力低減された端末20は、既存のPDSCH-to-HARQ_feedback timing indicator fieldにより通知されたslotと、新規fieldにより通知されたslotの両方を使用して制御情報(PUCCH)を送信する。
<第3実施形態:オプション3>
オプション3では、DCI format 1_0及び/またはDCI format 1_1及び/またはDCI format 1_2に、能力低減端末向けの新規なPRI(PUCCH resource indicator) fieldが規定され、これによりPUCCHリソースが通知されても良い。なお、PRI fieldはPUCCHリソースを指示する情報のフィールドである。
オプション3では、DCI format 1_0及び/またはDCI format 1_1及び/またはDCI format 1_2に、能力低減端末向けの新規なPRI(PUCCH resource indicator) fieldが規定され、これによりPUCCHリソースが通知されても良い。なお、PRI fieldはPUCCHリソースを指示する情報のフィールドである。
例えば、能力低減された端末20は、既存のPRI fieldにより通知されたPUCCHリソースと、新規PRI fieldにより通知されたリソースの両方を使用して制御情報(PUCCH)を送信する。
<第3実施形態:オプション4>
既存技術において、端末20は、基地局10から、PUCCHの繰り返し送信(PUCCH repetition)を行うスロット数の設定を受信することができる。この設定を受けた端末20は、既存技術では、このスロット数の各スロットでPUCCHを繰り返し送信する。
既存技術において、端末20は、基地局10から、PUCCHの繰り返し送信(PUCCH repetition)を行うスロット数の設定を受信することができる。この設定を受けた端末20は、既存技術では、このスロット数の各スロットでPUCCHを繰り返し送信する。
オプション4では、PUCCH repetitionの設定を読み替えても良い。すなわち、端末20は、PUCCH repetition送信に設定された複数スロットに分けて制御情報(PUCCH)を送信してもよい。このとき、基地局10は、複数スロットで受信した制御情報を、繰り返しのものではなく、分けられた制御情報であると想定する。
以上説明した第3実施形態により、1つのPUCCHリソースで送信できる制御情報のサイズに上限がある場合でも、制御情報を全部送信することができる。
(第4実施形態)
次に、第4実施形態を説明する。第4実施形態では、PUCCH format 2/3について、能力低減された端末20は、UCIの一部をパンクチャして送信しても良い。
次に、第4実施形態を説明する。第4実施形態では、PUCCH format 2/3について、能力低減された端末20は、UCIの一部をパンクチャして送信しても良い。
例えば、第1実施形態を適用して、UCI payload sizeの上限が能力低減された端末20向けに規定されたとする。端末20は、送信するUCIのサイズが当該上限を超えることを検出すると、上限を超えないようにUCI payloadの一部のビットをパンクチャする。パンクチャが施されたUCIを受信した基地局10は、パンクチャがあることを想定してデコードを実施する。
また、UCIのパンクチャをサポートすることを報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を送信してもよい。
以上説明した第4実施形態により、1つのPUCCHリソースで送信できる制御情報のサイズに上限がある場合でも、制御情報を適切に送信することができる。
(第5実施形態)
次に、第5実施形態を説明する。第5実施形態では、PUCCH format 2/3について、能力低減された端末20向けにUCI payloadの変調次数が拡張されても良い。例えば、UCI payloadの変調次数として、所定の変調次数よりも大きな変調次数が用いられてもよい。当該所定の変調次数は、QPSKの4であってもよい。より具体的には、例えば、能力低減された端末20向けに16QAM変調がサポートされても良い。
次に、第5実施形態を説明する。第5実施形態では、PUCCH format 2/3について、能力低減された端末20向けにUCI payloadの変調次数が拡張されても良い。例えば、UCI payloadの変調次数として、所定の変調次数よりも大きな変調次数が用いられてもよい。当該所定の変調次数は、QPSKの4であってもよい。より具体的には、例えば、能力低減された端末20向けに16QAM変調がサポートされても良い。
なお、第3実施形態のように制御情報を複数に分けて送信する場合には、拡張された変調次数を、分けられた複数の制御情報の全部に適用してもよいし、当該複数の制御情報のうちの一部の制御情報のみに適用してもよい。
拡張されたUCIの変調方式(e.g., 16QAM)をサポートすることを報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を送信してもよい。
以上説明した第5実施形態により、帯域幅の制限された端末20が、制御情報を適切に送信することができる。
(第6実施形態)
次に、第6実施形態について説明する。第6実施形態では、PUCCH format 2について設定可能なシンボル数が拡張されても良い。例えば、シンボル数の最大値が2よりも大きな値であってもよい。また、PUCCH format 2について周波数ホッピングが適用可能とされても良い。
次に、第6実施形態について説明する。第6実施形態では、PUCCH format 2について設定可能なシンボル数が拡張されても良い。例えば、シンボル数の最大値が2よりも大きな値であってもよい。また、PUCCH format 2について周波数ホッピングが適用可能とされても良い。
また、PUCCH format 2に対してシンボル数が拡張されたフォーマットが新規PUCCH format(e.g., PF5)として規定されても良い。また、上記拡張されたシンボル数の最大値が、3~14シンボルのうちのいずれかであってもよい。
PF2のsymbol数の拡張または新規PFをサポートすることを報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を送信してもよい。
以上説明した第6実施形態により、帯域幅の制限された端末20が、PUCCH format 2(又は新規format)を用いて、制御情報を適切に送信することができる。
(第7実施形態)
次に、第7実施形態を説明する。第7実施形態では、能力低減された端末20に対して、PUCCH format 2についてPUCCH repetition送信が適用可能とされても良い。
次に、第7実施形態を説明する。第7実施形態では、能力低減された端末20に対して、PUCCH format 2についてPUCCH repetition送信が適用可能とされても良い。
また、PF2の繰り返し送信をサポートすることを報告する能力情報(UE capability)のシグナリングが規定され、端末20は基地局10に対して当該能力情報を送信してもよい。
以上説明した第7実施形態により、帯域幅の制限された端末20が、PUCCH format 2を用いて、制御情報を適切に送信することができる。
(第1~第7の実施形態に共通に適用される例)
第1~第7の実施形態は、任意に複数を組み合わせて実施可能である。また、本実施形態における動作は、FR1における動作を想定するが、FR1に限定されるわけではなく、FR2-1及びFR2-2に対して適用されても良い。
第1~第7の実施形態は、任意に複数を組み合わせて実施可能である。また、本実施形態における動作は、FR1における動作を想定するが、FR1に限定されるわけではなく、FR2-1及びFR2-2に対して適用されても良い。
ここで、本実施の形態で想定しているeRedCap UE(能力低減された端末20)の定義を説明する。ただし、本発明に係る端末が、下記の定義のものに限定されるわけではない。下記の(1)~(3)のいずれかに該当するUEをeRedCap UE(能力低減された端末20)とする。
(1)Msg1/3/Aのいずれか少なくとも1つで自身がeRedCap UEであると通知したUE。
当該UEは上記通知のために、eRedCap UE向けに規定/設定されるリソースでMsg1/Aを送信してもよいし、 eRedCap UE向けに規定又は設定されるMsg3内の通知フィールドで通知してもよい。
(2)当該UEに対して規定される特定のUE capabilityをサポートするUE。当該UE capabilityの例は下記のとおりである。
・Support max 5 MHz BW for FR1
・Support relaxed UE processing timeline for PDSCH and/or PUSCH and/or CSI
・Support reduced UE peak data rate in FR1
・Supports either 1 or 2 Rx branches and corresponding maximum DL MIMO layers
・Supports either FD-FDD or Type A HD-FDD operation for FR1 FDD bands
・Supports either DL up to 64 QAM or up to 256 QAM for FR1
・Does not support CA/DC
(3)UE capability reportで上記特定のUE capabilityをサポートすることを報告したUE。
・Support relaxed UE processing timeline for PDSCH and/or PUSCH and/or CSI
・Support reduced UE peak data rate in FR1
・Supports either 1 or 2 Rx branches and corresponding maximum DL MIMO layers
・Supports either FD-FDD or Type A HD-FDD operation for FR1 FDD bands
・Supports either DL up to 64 QAM or up to 256 QAM for FR1
・Does not support CA/DC
(3)UE capability reportで上記特定のUE capabilityをサポートすることを報告したUE。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
<基地局10>
図13は、基地局10の機能構成の一例を示す図である。図13に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
図13は、基地局10の機能構成の一例を示す図である。図13に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。
設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。
制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、LBTを行う機能を含む。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。
<端末20>
図14は、端末20の機能構成の一例を示す図である。図14に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
図14は、端末20の機能構成の一例を示す図である。図14に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。
設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。
制御部240は、端末20の制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210を送信機と呼び、受信部220を受信機と呼んでもよい。
<付記1>
本実施の形態により、少なくとも、下記の付記項1~6に示す端末、基地局、及び通信方法が提供される。
(付記項1)
アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成する制御部と、
前記制御情報を前記アップリンク制御チャネルで送信する送信部と
を備える端末。
(付記項2)
前記送信部は、サポートする前記制御情報のサイズの上限を基地局に報告する
付記項1に記載の端末。
(付記項3)
前記アップリンク制御チャネルで送信する制御情報に対して使用する符号化率の最大値として、所定の値よりも大きい値を基地局から受信すると想定する
付記項1又は2に記載の端末。
(付記項4)
前記制御部は、前記制御情報のサイズが前記上限を超えないように、前記制御情報の一部をパンクチャする
付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
制御情報をアップリンク制御チャネルで端末から受信する受信部と、
前記アップリンク制御チャネルで前記端末から受信する前記制御情報において、サイズに上限があることを想定する制御部と、
を備える基地局。
(付記項6)
アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成し、
前記制御情報を前記アップリンク制御チャネルで送信する、
端末が実行する通信方法。
本実施の形態により、少なくとも、下記の付記項1~6に示す端末、基地局、及び通信方法が提供される。
(付記項1)
アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成する制御部と、
前記制御情報を前記アップリンク制御チャネルで送信する送信部と
を備える端末。
(付記項2)
前記送信部は、サポートする前記制御情報のサイズの上限を基地局に報告する
付記項1に記載の端末。
(付記項3)
前記アップリンク制御チャネルで送信する制御情報に対して使用する符号化率の最大値として、所定の値よりも大きい値を基地局から受信すると想定する
付記項1又は2に記載の端末。
(付記項4)
前記制御部は、前記制御情報のサイズが前記上限を超えないように、前記制御情報の一部をパンクチャする
付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
制御情報をアップリンク制御チャネルで端末から受信する受信部と、
前記アップリンク制御チャネルで前記端末から受信する前記制御情報において、サイズに上限があることを想定する制御部と、
を備える基地局。
(付記項6)
アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成し、
前記制御情報を前記アップリンク制御チャネルで送信する、
端末が実行する通信方法。
第1項~第6項のいずれによっても、サポートする帯域幅を制限された端末が、アップリンク制御チャネルにより適切に制御情報を送信することを可能とする技術が提供される。付記項2によれば、基地局が端末の上限に関する能力を把握できる。付記項3、4によれば、サイズに上限がある場合でも適切に制御情報を送信できる。
<付記2>
更に、本実施の形態により、少なくとも、下記の付記項1~6に示す端末、基地局、及び通信方法が提供される。
(付記項1)
制御情報を複数の制御情報に分ける制御部と、
前記複数の制御情報を複数のアップリンク制御チャネル用リソースで送信する送信部と
を備える端末。
(付記項2)
前記制御部は、前記制御情報を、1つのアップリンク制御チャネル用リソースで送信できる上限のサイズを持つ第1制御情報と、第1制御情報以外の第2制御情報に分ける
付記項1に記載の端末。
(付記項3)
前記送信部は、アップリンク制御チャネルの繰り返し送信のための設定に基づいて、前記複数の制御情報を前記複数のアップリンク制御チャネル用リソースで送信する
付記項1又は2に記載の端末。
(付記項4)
前記送信部は、前記複数の制御情報のうちの少なくともいずれか1つの制御情報を、所定の変調次数よりも大きな変調次数を持つ変調方式で変調して送信する
付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
複数の制御情報を複数のアップリンク制御チャネル用リソースで端末から受信する受信部と、
前記複数の制御情報から1つの制御情報を生成する制御部と
を備える基地局。
(付記項6)
制御情報を複数の制御情報に分け、
前記複数の制御情報を複数のアップリンク制御チャネル用リソースで送信する
端末が実行する通信方法。
更に、本実施の形態により、少なくとも、下記の付記項1~6に示す端末、基地局、及び通信方法が提供される。
(付記項1)
制御情報を複数の制御情報に分ける制御部と、
前記複数の制御情報を複数のアップリンク制御チャネル用リソースで送信する送信部と
を備える端末。
(付記項2)
前記制御部は、前記制御情報を、1つのアップリンク制御チャネル用リソースで送信できる上限のサイズを持つ第1制御情報と、第1制御情報以外の第2制御情報に分ける
付記項1に記載の端末。
(付記項3)
前記送信部は、アップリンク制御チャネルの繰り返し送信のための設定に基づいて、前記複数の制御情報を前記複数のアップリンク制御チャネル用リソースで送信する
付記項1又は2に記載の端末。
(付記項4)
前記送信部は、前記複数の制御情報のうちの少なくともいずれか1つの制御情報を、所定の変調次数よりも大きな変調次数を持つ変調方式で変調して送信する
付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
複数の制御情報を複数のアップリンク制御チャネル用リソースで端末から受信する受信部と、
前記複数の制御情報から1つの制御情報を生成する制御部と
を備える基地局。
(付記項6)
制御情報を複数の制御情報に分け、
前記複数の制御情報を複数のアップリンク制御チャネル用リソースで送信する
端末が実行する通信方法。
第1項~第6項のいずれによっても、サポートする帯域幅を制限された端末が、アップリンク制御チャネルにより適切に制御情報を送信することを可能とする技術が提供される。付記項2によれば、制御情報のサイズが上限を超えた場合でも制御情報を適切に送信できる。付記項3によれば、アップリンク制御チャネルの繰り返しの仕組みを利用して、分割された複数の制御情報を送信できるy。付記項4によれば、1つのアップリンク制御チャネル用リソースで送信できる制御情報のサイズに制限がある場合でも制御情報を適切に送信できる。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図13及び図14)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
上記実施形態の説明に用いたブロック図(図13及び図14)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図10に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図11に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
また、端末20あるいは基地局10を車両2001に備えてもよい。図16に車両2001の構成例を示す。図16に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態に係る端末20あるいは基地局10は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 基地局
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート)
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート)
Claims (6)
- アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成する制御部と、
前記制御情報を前記アップリンク制御チャネルで送信する送信部と
を備える端末。 - 前記送信部は、サポートする前記制御情報のサイズの上限を基地局に報告する
請求項1に記載の端末。 - 前記アップリンク制御チャネルで送信する制御情報に対して使用する符号化率の最大値として、所定の値よりも大きい値を基地局から受信すると想定する
請求項1に記載の端末。 - 前記制御部は、前記制御情報のサイズが前記上限を超えないように、前記制御情報の一部をパンクチャする
請求項1に記載の端末。 - 制御情報をアップリンク制御チャネルで端末から受信する受信部と、
前記アップリンク制御チャネルで前記端末から受信する前記制御情報において、サイズに上限があることを想定する制御部と、
を備える基地局。 - アップリンク制御チャネルで送信可能なサイズに上限を有する制御情報を生成し、
前記制御情報を前記アップリンク制御チャネルで送信する、
端末が実行する通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018092 WO2023203625A1 (ja) | 2022-04-18 | 2022-04-18 | 端末、基地局、及び通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018092 WO2023203625A1 (ja) | 2022-04-18 | 2022-04-18 | 端末、基地局、及び通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023203625A1 true WO2023203625A1 (ja) | 2023-10-26 |
Family
ID=88419415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/018092 WO2023203625A1 (ja) | 2022-04-18 | 2022-04-18 | 端末、基地局、及び通信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023203625A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020512746A (ja) * | 2017-03-24 | 2020-04-23 | クアルコム,インコーポレイテッド | ワイヤレス通信のためのアップリンク制御チャネル構成 |
JP2020530234A (ja) * | 2018-01-25 | 2020-10-15 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおける物理アップリンク制御チャネルにおいて複数のアップリンク制御情報を送信する方法およびこのための装置 |
-
2022
- 2022-04-18 WO PCT/JP2022/018092 patent/WO2023203625A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020512746A (ja) * | 2017-03-24 | 2020-04-23 | クアルコム,インコーポレイテッド | ワイヤレス通信のためのアップリンク制御チャネル構成 |
JP2020530234A (ja) * | 2018-01-25 | 2020-10-15 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおける物理アップリンク制御チャネルにおいて複数のアップリンク制御情報を送信する方法およびこのための装置 |
Non-Patent Citations (1)
Title |
---|
NTT DOCOMO INC: "Evolution of reduced capability for Rel-18", 3GPP DRAFT; RWS-210269, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210628 - 20210702, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025826 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023203625A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023203626A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023209779A1 (ja) | 端末及び通信方法 | |
WO2023209781A1 (ja) | 端末及び通信方法 | |
WO2023209780A1 (ja) | 端末及び通信方法 | |
WO2023203629A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203627A1 (ja) | 端末、基地局及び通信方法 | |
WO2023210010A1 (ja) | 端末及び通信方法 | |
WO2023210016A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203734A1 (ja) | 端末及び通信方法 | |
WO2023210017A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203624A1 (ja) | 端末、基地局及び通信方法 | |
WO2023210011A1 (ja) | 端末及び通信方法 | |
WO2024034102A1 (ja) | 端末及び通信方法 | |
WO2023203628A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203735A1 (ja) | 端末及び通信方法 | |
WO2024034101A1 (ja) | 端末及び通信方法 | |
WO2023210012A1 (ja) | 端末、基地局及び通信方法 | |
WO2023218880A1 (ja) | 端末及び通信方法 | |
WO2023203781A1 (ja) | 端末、基地局及び通信方法 | |
WO2023210013A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203704A1 (ja) | 端末、基地局、及び通信方法 | |
WO2023203732A1 (ja) | 端末、基地局及び通信方法 | |
WO2024095486A1 (ja) | 端末及び通信方法 | |
WO2023195141A1 (ja) | 端末、基地局及び通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22938428 Country of ref document: EP Kind code of ref document: A1 |