WO2023207905A1 - 天线、电子设备和通信方法 - Google Patents

天线、电子设备和通信方法 Download PDF

Info

Publication number
WO2023207905A1
WO2023207905A1 PCT/CN2023/090309 CN2023090309W WO2023207905A1 WO 2023207905 A1 WO2023207905 A1 WO 2023207905A1 CN 2023090309 W CN2023090309 W CN 2023090309W WO 2023207905 A1 WO2023207905 A1 WO 2023207905A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
nfc
passive
switch
active antenna
Prior art date
Application number
PCT/CN2023/090309
Other languages
English (en)
French (fr)
Inventor
秦源
曹立鑫
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207905A1 publication Critical patent/WO2023207905A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of electronic communication technology, and in particular, to an antenna, electronic equipment and a communication method.
  • NFC Near Field Communication
  • the NFC function on the mobile phone makes users' daily use more convenient.
  • the NFC function of the mobile phone can be used as a bus card, access control card, meal card, etc.
  • an NFC terminal with NFC functionality communicates with an NFC reader.
  • the NFC antenna with the NFC terminal includes an NFC antenna coil.
  • the NFC antenna coil passes through the magnetic field generated by the active coil in the NFC reader.
  • An induced current is induced to drive the NFC terminal to work.
  • the NFC antenna coil is misaligned with the active coil of the NFC reader, the magnetic field vector generated by the active coil of the NFC reader is reversed inside and outside the active coil.
  • the NFC The magnetic field in the antenna coil is the superposition of vectors in two directions, which causes the magnetic flux in the NFC antenna coil to decrease.
  • the NFC antenna will have an area where it cannot work, that is, a blind area, resulting in poor NFC performance of the NFC terminal. Therefore, how to expand The area within which the NFC antenna can work in the blind zone is a technical problem that needs to be solved by those skilled in the art.
  • the invention discloses an antenna, an electronic device and a communication method to solve the problem of poor NFC performance of an NFC terminal.
  • embodiments of the present application disclose an antenna for communicating with an NFC terminal, including: an NFC active antenna coil, at least one passive coil connected to a switch, and a controller, wherein: the at least one connection A passive coil with a switch is connected to the controller, the at least one passive coil with a switch is built into the NFC active antenna coil, and the geometric center of the at least one passive coil with a switch is connected Deviating from the geometric center of the NFC active antenna coil; when a partial area of the NFC active antenna coil is opposite to the sensing area of the NFC terminal for communication, the controller controls at least one sensor away from the sensing area. The switch in the passive coil is closed.
  • an embodiment of the present application discloses an electronic device, including a device mainboard and the antenna described in the first aspect.
  • the device mainboard includes an antenna chip, and the antenna is electrically connected to the antenna chip.
  • an embodiment of the present application discloses a communication method, which is applied to the electronic device described in the second aspect, including: detecting the relative position of the NFC active antenna coil and the sensing area of the NFC terminal; When a partial area of the antenna coil is opposite to the sensing area of the NFC terminal, the switch in at least one passive coil away from the sensing area is controlled to close.
  • the technical solution disclosed in the embodiment of this application includes: an NFC active antenna coil, at least one passive coil connected to a switch, and a controller, wherein: the at least one passive coil connected to a switch is connected to the controller, The at least one passive coil connected to the switch is built into the NFC active antenna coil, and the geometric center of the at least one passive coil connected to the switch deviates from the geometric center of the NFC active antenna coil; in When a partial area of the NFC active antenna coil is opposite to the sensing area of the NFC terminal for communication, the controller controls the switch in at least one of the passive coils away from the sensing area to close. So by enhancing the NFC active antenna The magnetic field in the coil increases the magnetic flux in the passive coil of the NFC terminal, thereby increasing the working area in the working blind zone of the NFC terminal and improving the NFC performance of the NFC terminal.
  • Figure 1 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIGS. 2 to 7 are schematic structural diagrams of the first antenna disclosed in embodiments of the present invention.
  • FIGS 8 to 10 are schematic structural diagrams of the second antenna disclosed in the embodiment of the present invention.
  • Figures 11 to 13 are schematic structural diagrams of a third antenna disclosed in embodiments of the present invention.
  • Figures 14 to 24 are schematic structural diagrams of the fourth antenna disclosed in embodiments of the present invention.
  • FIGS 25 to 29 are schematic structural diagrams of the fifth antenna disclosed in the embodiment of the present invention.
  • Figure 30 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • the embodiment of the present application discloses a communication device, including an electronic device 100 and an NFC terminal 200.
  • the electronic device is provided with a device mainboard and an antenna.
  • the device mainboard includes an antenna chip, and the antenna and the antenna chip are electrically connected.
  • the electronic device 100 can be a mobile phone, a tablet, etc.
  • the antenna chip can be an NFC chip, and the antenna can include an NFC active antenna coil, and the NFC active antenna coil can communicate with the NFC terminal 200 .
  • the NFC terminal 200 includes an antenna coil.
  • the area where the antenna coil of the NFC terminal 200 is located is the sensing area of the NFC terminal 200.
  • the NFC active antenna coil 101 of the electronic device 100 is arranged opposite to the antenna coil 201.
  • the NFC active antenna coil 101 is in the energized state. In this case, an induced magnetic field is generated, and the antenna coil 201 induces an induced current in the magnetic field generated by the NFC active antenna coil 101, allowing communication between the NFC active antenna coil 101 and the NFC terminal.
  • the switch 103 controlling the passive coil 102 of at least one passive coil far away from the sensing area of the NFC terminal is closed.
  • a current opposite to the current in the NFC active antenna coil 101 is generated in the passive coil 102.
  • the direction of the magnetic field outside the circle of the passive coil 102 is consistent with the magnetic field inside the circle of the NFC active antenna coil 101. The directions are the same.
  • the direction of the magnetic field within the circle of the antenna coil 201 includes the direction of the magnetic field outside the circle of the passive coil 102, the direction of the magnetic field within the circle of the NFC active antenna coil 101, and the direction of the magnetic field outside the circle of the NFC active antenna coil 101. .
  • the shape of the antenna coil 201 of the NFC terminal 200 and the NFC active antenna coil 101 of the electronic device 100 can be square or circular, and the shape of the passive coil 102 can be the same as the shape of the NFC active antenna coil 101 Accordingly, the area of the passive coil 102 is smaller than the area of the NFC active antenna coil 101 .
  • the geometric center of the NFC active antenna coil 101 of the electronic device 100 is directly opposite to the geometric center of the antenna coil 201, the communication efficiency between the NFC terminal 200 and the electronic device 100 is higher, which improves the success rate of card reading by the NFC terminal 200.
  • the success rate of the NFC terminal 200 reading the card is low. Therefore, the number of the electronic device 100 increases.
  • the workable area in the NFC blind zone is a necessary way to improve the success rate of card reading by the NFC terminal 200.
  • An antenna disclosed in the embodiment of the present application is used to communicate with an NFC terminal.
  • the antenna disclosed in the embodiment of the present application includes an NFC active antenna coil 101, a controller (not shown in the figure) and at least one connected with a switch 103.
  • the controller controls the switch in at least one passive coil 102 far away from the sensing area to close, so that the passive coil 102 generates and
  • the current in the NFC active antenna coil 101 is the opposite current.
  • the direction of the magnetic field outside the circle of the passive coil 102 is the same as the direction of the magnetic field inside the circle of the NFC active antenna coil 101.
  • the switch 103 can be a single-pole single-throw switch, and the passive coil 102 can be set in a position far away from the antenna coil in the NFC active antenna coil 101.
  • a passive coil 102 is connected to a single-pole single-throw switch, and one end of the passive coil 102 is Due to the connection with the movable contact of the single-pole single-throw switch, one end of the passive coil 102 is connected with the static contact of the single-pole single-throw switch.
  • the NFC active antenna coil 101 and the passive coil 102 connected to the switch 103 are on the same horizontal plane. When the switch 103 is open, the passive coil 102 in the NFC active antenna coil 101 is not closed, and no coupling current is generated in the passive coil 102.
  • the passive coil 102 in the NFC active antenna coil 101 is not closed.
  • an induced current in the opposite direction to the current in the NFC active antenna coil 101 will be generated in the passive coil 102.
  • the direction of the magnetic field in the circle of the passive coil 102 is the same as that in the circle of the NFC active antenna coil 101.
  • the direction of the magnetic field is opposite, and the direction of the magnetic field outside the circle of the passive coil 102 is the same as the direction of the magnetic field inside the circle of the NFC active antenna coil 101 .
  • the passive coil 102 is single, and the passive coil 102 is built in the edge area of the NFC active antenna coil 101 .
  • the NFC active antenna coil 101 in Figure 3 As deviating to the right relative to the antenna coil 201 of the NFC terminal 200 as an example, as shown in Figures 2 to 7, after the terminal device is powered on, the NFC built-in in the terminal device
  • the current direction of the active antenna coil 101 is clockwise.
  • a passive coil 102 with a single-pole single-throw switch is built into the NFC active antenna coil 101.
  • the single-pole single-throw switch is turned off, the NFC active antenna coil 101
  • the passive coil 102 is not closed, so no coupling current is generated.
  • the direction of the magnetic field in the circle of the NFC active antenna coil 101 is inward, and the direction of the magnetic field in the circle of the NFC active antenna coil 101 is outward.
  • the NFC active antenna coil 101 When the SPST switch is closed, the NFC active antenna coil 101 When the passive coil 102 in the NFC is closed, an induced current in the opposite direction to the current of the NFC active antenna coil 101 will be generated. The magnetic field generated by the induced current of the passive coil 102 will be in contact with the NFC active antenna coil 101 within the circle of the passive coil 102. The direction of the magnetic field inside the circle is opposite, and the magnetic field generated by the induced current of the passive coil 102 outside the circle of the passive coil 102 has the same direction as the magnetic field inside the circle of the NFC active antenna coil 101 .
  • the magnetic field on the left side inside the NFC active antenna coil 101 is enhanced.
  • the source coil 102 is located on the right side of the NFC active antenna coil 101, since the magnetic field generated by the passive coil 102 attenuates relatively large, the change in the magnetic field is not obvious.
  • the magnetic field in the circle of the NFC active antenna coil 101 is different from that of the NFC terminal.
  • the position where the magnetic fields generated by the antenna coils 200 cancel each other will move to the left. Therefore, the blind zone 300 also moves to the left, thereby increasing the area where NFC can work in the blind zone 300, improving the NFC performance of the NFC terminal, and effectively improving the NFC card reading. success rate.
  • the switch state of the switch 103 in each passive coil 102 is sequentially switched from the off state. is in the closed state until the switch state of the switch 103 of at least one passive coil 102 away from the sensing area is switched to the closed state.
  • NFC active antenna coil 101 as shown in Figure 3 as being deviated to the right relative to the antenna coil 201 of the NFC terminal 200 as an example, as shown in Figures 8 to 10, two single-pole single-throw antennas with SPST can be added to the NFC active antenna coil 101.
  • the passive coil 102 of the switch can be combined into four states through two single-pole single-throw switches to produce four different effects.
  • both switches 103 are in the off state, the magnetic field in the NFC active antenna coil 101 There is no effect; when the switch 103 of the passive coil 102 on the left side of the NFC active antenna coil 101 is closed and the switch 103 of the passive coil 102 of the right NFC active antenna coil 101 is open, the blind zone 300 will move to the right.
  • the blind zone 300 (Optimizing the right blind zone), increasing the area where NFC can work within the blind zone 300; in the NFC active antenna coil 101, the switch 103 of the passive coil 102 on the left side is turned off, and the NFC active antenna coil 101 on the right side is switched off.
  • the switch 103 of the source coil 102 is closed, the blind zone 300 will move to the left (optimizing the left blind zone), which increases the area where NFC can work in the blind zone; the switch of the passive coil 102 on the left side of the NFC active antenna coil 101 103 and the switch 103 of the passive coil 102 of the NFC active antenna coil 101 on the right are both closed, the blind zone 300 will expand outward, increasing the area where NFC can work in the blind zone.
  • the switch 103 can be a single-pole double-throw switch, and two adjacent passive coils 102 are connected to a single-pole double-throw switch.
  • At least one passive coil 102 connected to a switch in the NFC active antenna coil 101 is arranged at intervals, and the NFC active antenna coil 101 and at least one passive coil 102 connected to a switch 103 are on the same horizontal plane.
  • the passive coil 102 may be disposed in the NFC active antenna coil 101 at a position far away from the antenna coil, and one passive coil 102 is connected to a single-pole single-throw switch.
  • One end of the two adjacent passive coils 102 is connected to the static contact of the single-pole double-throw switch, and the other end of one of the two adjacent passive coils 102 is used to connect to the static contact of the single-pole double-throw switch.
  • the first moving contact is connected, and the other end of the other passive coil 102 is used to connect with the second moving contact of the single pole double throw switch.
  • two passive coils 102 in the NFC active antenna coil 101 are arranged adjacently, and a single-pole double-throw switch is connected between the two passive coils 102.
  • the three states of the switch can produce three different effects.
  • the single-pole double-throw switch is turned off, the passive coil 102 in the NFC active antenna coil 101 is not closed, so no coupling current is generated.
  • the NFC active antenna coil 101 The direction of the magnetic field in the circle is inward, and the direction of the magnetic field in the circle of the NFC active antenna coil 101 is outward.
  • the passive coil 102 on the left side of the NFC active antenna coil 101 is closed, which will generate an induced current in the opposite direction to the current of the NFC active antenna coil 101.
  • Passive The direction of the magnetic field generated by the induced current of the coil 102 is opposite to that of the NFC active antenna coil 101 within the circle of the passive coil 102.
  • the magnetic field generated by the induced current of the passive coil 102 is opposite to the direction of the magnetic field outside the circle of the passive coil 102.
  • the directions of the magnetic fields within the loops of the NFC active antenna coil 101 are the same.
  • the magnetic field on the right side of the inside of the NFC active antenna coil 101 is enhanced.
  • the source coil 102 is located on the left side of the NFC active antenna coil 101, since the magnetic field generated by the passive coil 102 attenuates relatively large, the change in the magnetic field is not obvious. At this time, the magnetic field in the circle of the NFC active antenna coil 101 is different from that of the NFC terminal.
  • the magnetic field generated by the antenna coil of 200 mutually The offset position will move to the right, so the blind zone will also move to the right, thereby increasing the area where NFC can work in the blind zone, improving the NFC performance of the NFC terminal, and effectively improving the success rate of NFC card swiping and card reading.
  • the passive coil 102 on the right side of the NFC active antenna coil 101 is closed, which will generate an induced current in the opposite direction to the current of the NFC active antenna coil 101.
  • Passive The direction of the magnetic field generated by the induced current of the coil 102 is opposite to that of the NFC active antenna coil 101 within the circle of the passive coil 102.
  • the magnetic field generated by the induced current of the passive coil 102 is opposite to the direction of the magnetic field outside the circle of the passive coil 102.
  • the directions of the magnetic fields within the loops of the NFC active antenna coil 101 are the same.
  • the magnetic field on the left side inside the NFC active antenna coil 101 is enhanced.
  • the source coil 102 is located on the right side of the NFC active antenna coil 101, since the magnetic field generated by the passive coil 102 attenuates relatively large, the change in the magnetic field is not obvious.
  • the magnetic field in the circle of the NFC active antenna coil 101 is different from that of the NFC terminal.
  • the position where the magnetic fields generated by the 200 antenna coil cancel each other will move to the left. Therefore, the blind zone also moves to the left, thus increasing the area where NFC can work in the blind zone, improving the NFC performance of the NFC terminal, and effectively improving the success of NFC card swiping and card reading. Rate.
  • the NFC active antenna coil 101 has multiple passive coils 102 built into it, and the multiple passive coils 102 are installed in the NFC.
  • the source antenna coil 101 is arranged at intervals.
  • the switch 103 of the passive coil 102 of the NFC active antenna coil 101 that is far away from the antenna coil is closed.
  • four passive coils 102 with single-pole single-throw switches are added to the NFC active antenna coil 101. Sixteen states can be generated through the sixteen states of the four single-pole single-throw switches.
  • S1 represents the switch in the upper left corner
  • S2 represents the switch in the upper right corner
  • S3 represents the switch in the lower left corner
  • S4 represents the switch in the lower right corner.
  • 0 indicates that the switch 103 is in the open state
  • 1 indicates that the switch 103 is in the closed state.
  • the passive coil 102 in the NFC active antenna coil 101 is closed, which will generate an induced current in the opposite direction to the current of the NFC active antenna coil 101.
  • the induced current generated by the passive coil 102 The direction of the magnetic field in the circle of the passive coil 102 is opposite to that in the circle of the NFC active antenna coil 101.
  • the magnetic field generated by the induced current of the passive coil 102 is in the same direction as the magnetic field in the circle of the NFC active antenna coil 101 outside the circle of the passive coil 102.
  • the magnetic fields in the circle are in the same direction.
  • the magnetic field inside the NFC active antenna coil 101 is enhanced. Therefore, the blind area will also move, thereby increasing the area where NFC can work in the blind area, improving the NFC performance of the NFC terminal, and effectively improving the success rate of NFC card swiping and card reading.
  • the switches 103 of the four passive coils 102 are all in the off state.
  • the four SPST can be switched.
  • the switch performs state traversal until the NFC terminal is in a working state.
  • the NFC active antenna coil 101 is compared to the antenna of the NFC terminal 200. For example, if the coil deviates to the right, multiple passive coils 102 are built into the NFC active antenna coil 101. The multiple passive coils 102 are spaced apart within the NFC active antenna coil 101. The NFC active antenna coil 101 is misaligned with the antenna coil. In this case, the switch 103 of the passive coil 102 of the NFC active antenna coil 101 located far away from the antenna coil is closed. As shown in Figures 25 to 29, two passive coils 102 with single-pole double-throw switches are added to the NFC active antenna coil 101. Four states can be generated by combining the four states of the two single-pole double-throw switches.
  • S1 represents the upper switch
  • S2 represents the lower switch
  • 1 represents the connection status of switch S1 and port 1
  • 2 represents the connection status of switch S1 and port 2
  • 3 represents the connection status of switch S2 and port 3
  • 4 represents the connection status of switch S2 and port 4.
  • the passive coil 102 in the NFC active antenna coil 101 is closed, which will generate an induced current in the opposite direction to the current in the NFC active antenna coil 101.
  • the induced current in the passive coil 102 The magnetic field generated in the circle of the passive coil 102 is opposite to the magnetic field in the circle of the NFC active antenna coil 101.
  • the magnetic field generated by the induced current of the passive coil 102 is in the same direction as the NFC active antenna coil outside the circle of the passive coil 102.
  • the magnetic field direction within the circle of 101 is the same.
  • the magnetic field inside the NFC active antenna coil 101 is enhanced. Therefore, the blind area will also move, thereby increasing the area where NFC can work in the blind area, improving the NFC performance of the NFC terminal, and effectively improving the success rate of NFC card swiping and card reading.
  • the state can be traversed by starting two single-pole double-throw switches until the NFC terminal can work. Two single-pole double-throw switches are used to realize the update. Based on the adaptive optimization of the card swiping blind zone of the electronic device 100 in multiple directions, it not only increases the area where the NFC terminal can work in the blind zone, but also saves the space of the electronic device.
  • the embodiment of the present application discloses a communication method, which can be executed by the electronic device in the above embodiment.
  • the method includes the following steps:
  • Step S3000 Detect the relative position of the NFC active antenna coil and the sensing area of the NFC terminal.
  • the relative position of the NFC active antenna coil and the sensing area of the NFC terminal includes the direct opposition of the NFC active antenna coil and the sensing area of the NFC terminal and the misalignment of the NFC active antenna coil and the sensing area of the NFC terminal, which can be determined by NFC
  • the degree of deviation between the antenna and the NFC terminal determines the misalignment between the NFC antenna coil and the antenna coil.
  • the NFC active antenna coil of the electronic device deviates from the geometric center of the antenna coil of the NFC terminal, the NFC active The antenna coil is misaligned with the sensing area of the NFC terminal.
  • detecting the relative position of the NFC active antenna coil and the sensing area of the NFC terminal includes: detecting the actual signal strength of the NFC terminal; and determining the actual signal strength according to the corresponding relationship between the signal strength and the relative position.
  • the relative position corresponding to the signal strength when the actual signal strength is lower than the threshold, determines that a partial area of the NFC active antenna coil is opposite to the sensing area of the NFC terminal.
  • the relationship between the signal strength of the NFC terminal and the relative position between the NFC terminal and the electronic device can be stored in the electronic device. Different relative positions correspond to different signal strengths.
  • the threshold is used as the benchmark, and the signal strength lower than the threshold corresponds to the relative position.
  • the position is the facing position, and the relative position corresponding to the signal strength not lower than the threshold is the misaligned position.
  • the threshold can be determined according to the actual situation, and is not limited in the embodiments of the present application. Therefore, after the electronic device detects the actual signal strength of the NFC terminal, the actual relative position between the NFC terminal and the electronic device is determined according to the corresponding relationship between the signal strength and the relative position.
  • Step S3001 When a partial area of the NFC active antenna coil is opposite to the sensing area of the NFC terminal, control the switch in at least one passive coil away from the sensing area to close. So that the current in the passive coil is opposite to the current in the NFC active antenna coil.

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种天线、电子设备及通信方法,该天线包括:NFC有源天线线圈、至少一个连接有开关的无源线圈和控制器,其中:所述至少一个连接有开关的无源线圈与所述控制器连接,所述至少一个连接有开关的无源线圈内置于NFC有源天线线圈中,且所述至少一个连接有开关的无源线圈的几何中心偏离所述NFC有源天线线圈的几何中心;在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,所述控制器控制远离所述感应区域的至少一个所述无源线圈中的所述开关闭合。

Description

天线、电子设备和通信方法
交叉引用
本发明要求在2022年04月28日提交中国专利局、申请号为202210461851.0、发明名称为“天线、电子设备和通信方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及电子通讯技术领域,尤其涉及一种天线、电子设备及通信方法。
背景技术
近距离无线通讯技术(Near Field Communication,NFC)是一种短距高频的无线电技术,其是由非接触式射频识别演变而来,在单一芯片上结合感应式读卡器,感应式卡片和点对点的功能,能在短距离内与兼容设备进行识别和数据交换。目前已经普遍运用在了手机等移动终端上,手机上的NFC功能让用户的日常使用更加便捷,可以用手机NFC功能充当公交卡、门禁卡和饭卡等。
在一些场景下,带有NFC功能的NFC终端与NFC读取器之间进行通信,带有NFC终端的NFC天线包括NFC天线线圈,NFC天线线圈通过NFC读取器中的有源线圈产生的磁场感应出感应电流,从而驱动NFC终端工作,在NFC天线线圈与NFC读取器的有源线圈错位时,NFC读取器的有源线圈产生的磁场矢量在有源线圈内外是反向的,NFC天线线圈内的磁场就是两个方向的矢量的叠加,导致NFC天线线圈内的磁通量会减小,NFC天线线圈与有源线圈之间的错位程度越大,NFC天线线圈内的磁通量越小,NFC天线线圈产生的感应电流越小,无法驱动NFC终端工作。所以NFC天线会出现不能工作的区域,即盲区,导致NFC终端的NFC性能较差,因此,如何扩大 盲区内NFC天线可以工作的面积是本领域技术人员需要解决的技术问题。
发明内容
本发明公开了一种天线、电子设备及通信方法,以解决NFC终端的NFC性能较差的问题。
第一方面,本申请实施例公开了一种天线,用于和NFC终端进行通信,包括:NFC有源天线线圈、至少一个连接有开关的无源线圈和控制器,其中:所述至少一个连接有开关的无源线圈与所述控制器连接,所述至少一个连接有开关的无源线圈内置于所述NFC有源天线线圈中,且所述至少一个连接有开关的无源线圈的几何中心偏离所述NFC有源天线线圈的几何中心;在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,所述控制器控制远离所述感应区域的至少一个所述无源线圈中的所述开关闭合。
第二方面,本申请实施例公开了一种电子设备,包括设备主板和第一方面所述的天线,所述设备主板包括天线芯片,所述天线与所述天线芯片电连接。
第三方面,本申请实施例公开了一种通信方法,应用于第二方面所述的电子设备,包括:检测NFC有源天线线圈与NFC终端的感应区域的相对位置;在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对时,控制远离所述感应区域的至少一个所述无源线圈中的所述开关闭合。
本申请实施例公开的技术方案,包括:NFC有源天线线圈、至少一个连接有开关的无源线圈和控制器,其中:所述至少一个连接有开关的无源线圈与所述控制器连接,所述至少一个连接有开关的无源线圈内置于所述NFC有源天线线圈中,且所述至少一个连接有开关的无源线圈的几何中心偏离所述NFC有源天线线圈的几何中心;在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,所述控制器控制远离所述感应区域的至少一个所述无源线圈中的所述开关闭合。因此通过增强NFC有源天线 线圈中的磁场,从而增大NFC终端的无源线圈内的磁通量,从而增大NFC终端的工作盲区内的工作面积,提高NFC终端的NFC性能。
附图说明
图1为本发明实施例公开的一种通信装置的结构示意图;
图2至图7为本发明实施例公开的第一种天线的结构示意图;
图8至图10为本发明实施例公开的第二种天线的结构示意图;
图11至图13为本发明实施例公开的第三种天线的结构示意图;
图14至图24为本发明实施例公开的第四种天线的结构示意图;
图25至图29为本发明实施例公开的第五种天线的结构示意图
图30为本发明实施例公开的通信方法的流程示意图。
附图标记说明:
100-电子设备、101-NFC有源天线线圈、102-无源线圈、103-开关;
200-NFC终端、201-天线线圈;
300-盲区。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明各个实施例公开的技术方案。
请参考图1至图29,本申请实施例公开了一种通信装置,包括电子设备100和NFC终端200,电子设备内设置有设备主板和天线,设备主板包括天线芯片,天线和天线芯片电连接,其中,电子设备100可以为手机、平板等,天线芯片可以为NFC芯片,天线可以包括NFC有源天线线圈,该NFC有源天线线圈可以与NFC终端200之间进行通讯。
NFC终端200包括天线线圈,NFC终端200的天线线圈所在的区域为NFC终端200的感应区域,电子设备100的NFC有源天线线圈101与天线线圈201相对设置,NFC有源天线线圈101在通电的情况下,产生感应磁场,天线线圈201在NFC有源天线线圈101产生的磁场中感应出感应电流,使得NFC有源天线线圈101与NFC终端之间进行通信。
在NFC有源天线线圈101的部分区域与NFC终端的感应区域相对,即NFC有源天线线圈101的部分区域与天线线圈201相对时,说明NFC有源天线线圈101与NFC终端的感应区域错位,此时控制远离NFC终端的感应区域的至少一个无源线圈中的无源线圈102的开关103闭合。在开关103闭合的情况下,无源线圈102中产生与NFC有源天线线圈101中的电流相反的电流,无源线圈102的圈外的磁场方向与NFC有源天线线圈101的圈内的磁场方向同向,天线线圈201的圈内的磁场方向包括无源线圈102的圈外的磁场方向、NFC有源天线线圈101的圈内的磁场方向和NFC有源天线线圈101的圈外的磁场方向。
具体来讲,NFC终端200的天线线圈201和电子设备100的NFC有源天线线圈101的形状可以为方形,也可以为圆形,无源线圈102的形状可以和NFC有源天线线圈101的形状相适应设置,无源线圈102的面积小于NFC有源天线线圈101的面积。在电子设备100的NFC有源天线线圈101与天线线圈201的几何中心正对时,NFC终端200和电子设备100之间的通信效率较高,提高了NFC终端200读卡的成功率,在电子设备100的NFC有源天线线圈101与天线线圈201的几何中心偏离时,即NFC有源天线线圈101与天线线圈201错位,NFC终端200读卡的成功率较低,因此,增加电子设备100的NFC盲区内可以工作的面积是提高NFC终端200读卡的成功率的必要途径。
本申请实施例公开的一种天线,用于和NFC终端进行通信,本申请实施例公开的天线包括NFC有源天线线圈101、控制器(图中未示出)和至少一个连接有开关103的无源线圈102,至少一个连接有开关103的无源线圈102 与控制器连接,至少一个连接有开关103内置于NFC有源天线线圈101中,且至少一个连接有开关103的无源线圈102的几何中心偏离NFC有源天线线圈101的几何中心。在NFC有源天线线圈101的部分区域与NFC终端200的感应区域相对以进行通信时,控制器控制远离感应区域的至少一个无源线圈102中的开关闭合,以使无源线圈102中产生与NFC有源天线线圈101中的电流相反的电流,对应的,无源线圈102的圈外的磁场方向与NFC有源天线线圈101的圈内的磁场方向同向。
其中,开关103可以为单刀单掷开关,无源线圈102可以设置在NFC有源天线线圈101中远离天线线圈的位置,一个无源线圈102连接一个单刀单掷开关,无源线圈102的一端用于与单刀单掷开关的动触点连接,无源线圈102的一端与单刀单掷开关的静触点连接,NFC有源天线线圈101和连接有开关103的无源线圈102处于同一个水平面。在开关103断开的情况下,NFC有源天线线圈101中的无源线圈102不闭合,无源线圈102中不会产生耦合电流,在开关103闭合的情况下,NFC有源天线线圈101中的无源线圈102闭合,无源线圈102中会产生与NFC有源天线线圈101中的电流方向相反的感应电流,无源线圈102的圈内的磁场方向与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的圈外的磁场方向与NFC有源天线线圈101的圈内的磁场方向相同。
在一种可能的实现方式中,无源线圈102为单个,无源线圈102内置于NFC有源天线线圈101的边沿区域。
例如,以图3中NFC有源天线线圈101相对于NFC终端200的天线线圈201向右偏离为例,如图2至图7所示的,在终端设备通电后,内置于终端设备中的NFC有源天线线圈101的电流方向为顺时针方向,在NFC有源天线线圈101中内置一个带单刀单掷开关的无源线圈102,当单刀单掷开关断开时,NFC有源天线线圈101中的无源线圈102不闭合,从而不会产生耦合电流,NFC有源天线线圈101的圈内的磁场方向向内,NFC有源天线线圈101的圈内的磁场方向向外。当单刀单掷开关闭合时,NFC有源天线线圈101 中的无源线圈102闭合,会产生与NFC有源天线线圈101的电流方向相反的感应电流,无源线圈102的感应电流产生的磁场在无源线圈102的圈内与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的感应电流产生的磁场在无源线圈102的圈外与NFC有源天线线圈101的圈内的磁场方向相同。无源线圈102的感应电流在无源线圈102的圈外产生的磁场与NFC有源天线线圈101的圈内的磁场叠加之后,NFC有源天线线圈101的内部的左侧的磁场增强,在无源线圈102位于NFC有源天线线圈101的右侧时,由于无源线圈102产生的磁场衰减相对较大,因此磁场变化不明显,此时NFC有源天线线圈101的圈内的磁场与NFC终端200的天线线圈产生的磁场相互抵消的位置会向左移,因此,盲区300也向左移动,从而增加盲区300内NFC可以工作的面积,提高了NFC终端的NFC性能,有效提高NFC刷卡读卡的成功率。
在一种可能的实现方式中,在NFC有源天线线圈101的部分区域与NFC终端200的感应区域相对以进行通信时,依次将各无源线圈102中开关103的开关状态由断开状态切换为闭合状态,直至将远离感应区域的至少一个无源线圈102的开关103的开关状态切换为闭合状态。
进一步,以图3中NFC有源天线线圈101相对于NFC终端200的天线线圈201向右偏离为例,如图8至图10,可以在NFC有源天线线圈101中增设两个带单刀单掷开关的无源线圈102,通过两个单刀单掷开关可以组合出四种状态,产生四种不同的效果,在两个开关103都处于断开状态时,对NFC有源天线线圈101中的磁场没有影响;在NFC有源天线线圈101中左侧的无源线圈102的开关103闭合,右侧的NFC有源天线线圈101的无源线圈102的开关103断开时,盲区300会向右移动(优化右侧盲区),增加了盲区300内NFC可以工作的面积;在NFC有源天线线圈101中左侧的无源线圈102的开关103断开,右侧的NFC有源天线线圈101的无源线圈102的开关103闭合时,盲区300会向左移动(优化左侧盲区),增加了盲区内NFC可以工作的面积;在NFC有源天线线圈101中左侧的无源线圈102的开关 103和右侧的NFC有源天线线圈101的无源线圈102的开关103均闭合时,盲区300会呈现四周往外扩大的状态,增加了盲区内NFC可以工作的面积。
在一种可能的实现方式中,无源线圈102为多个,开关103可以为单刀双掷开关,相邻的两个无源线圈102连接一个单刀双掷开关。
NFC有源天线线圈101中的至少一个连接有开关的无源线圈102间隔设置,且NFC有源天线线圈101和至少一个连接有开关103的无源线圈102处于同一个水平面。无源线圈102可以设置在NFC有源天线线圈101中远离天线线圈的位置,一个无源线圈102连接一个单刀单掷开关。相邻的两个无源线圈102的一端均与单刀双掷开关的静触点连接,相邻的两个无源线圈102中的一个无源线圈102的另一端用于与单刀双掷开关的第一动触点连接,另一个无源线圈102的另一端用于与单刀双掷开关的第二动触点连接。
具体来讲,如图11至图13所示的,NFC有源天线线圈101中两个无源线圈102相邻设置,两个无源线圈102之间连接一个单刀双掷开关,通过单刀双掷开关的三种状态可以产生三种不同的效果,当单刀双掷开关断开时,NFC有源天线线圈101中的无源线圈102不闭合,从而不会产生耦合电流,NFC有源天线线圈101的圈内的磁场方向向内,NFC有源天线线圈101的圈内的磁场方向向外。
在单刀双掷开关处于与端口1的连接状态时,NFC有源天线线圈101中的左侧的无源线圈102闭合,会产生与NFC有源天线线圈101的电流方向相反的感应电流,无源线圈102的感应电流产生的磁场在无源线圈102的圈内与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的感应电流产生的磁场在无源线圈102的圈外与NFC有源天线线圈101的圈内的磁场方向相同。无源线圈102的感应电流在无源线圈102的圈外产生的磁场与NFC有源天线线圈101的圈内的磁场叠加之后,NFC有源天线线圈101的内部的右侧的磁场增强,在无源线圈102位于NFC有源天线线圈101的左侧时,由于无源线圈102产生的磁场衰减相对较大,因此磁场变化不明显,此时NFC有源天线线圈101的圈内的磁场与NFC终端200的天线线圈产生的磁场相互 抵消的位置会向右移,因此,盲区也向右移动,从而增加盲区内NFC可以工作的面积,提高了NFC终端的NFC性能,有效提高NFC刷卡读卡的成功率。
在单刀双掷开关处于与端口2的连接状态时,NFC有源天线线圈101中的右侧的无源线圈102闭合,会产生与NFC有源天线线圈101的电流方向相反的感应电流,无源线圈102的感应电流产生的磁场在无源线圈102的圈内与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的感应电流产生的磁场在无源线圈102的圈外与NFC有源天线线圈101的圈内的磁场方向相同。无源线圈102的感应电流在无源线圈102的圈外产生的磁场与NFC有源天线线圈101的圈内的磁场叠加之后,NFC有源天线线圈101的内部的左侧的磁场增强,在无源线圈102位于NFC有源天线线圈101的右侧时,由于无源线圈102产生的磁场衰减相对较大,因此磁场变化不明显,此时NFC有源天线线圈101的圈内的磁场与NFC终端200的天线线圈产生的磁场相互抵消的位置会向左移,因此,盲区也向左移动,从而增加盲区内NFC可以工作的面积,提高了NFC终端的NFC性能,有效提高NFC刷卡读卡的成功率。
进一步,以图3中NFC有源天线线圈101相对于NFC终端200的天线线圈向右偏离为例,NFC有源天线线圈101中内置多个无源线圈102,多个无源线圈102在NFC有源天线线圈101内间隔设置,在NFC有源天线线圈101与天线线圈错位的情况下,将NFC有源天线线圈101中远离天线线圈的位置的无源线圈102的开关103闭合。如图14至图24所示的,在NFC有源天线线圈101中增加了四个带单刀单掷开关的无源线圈102,通过四个单刀单掷开关组合的十六种状态可以产生十六种不同的效果,其中,S1表示的是左上角的开关,S2表示的是右上角的开关,S3表示的是左下角的开关,S4表示的是右下角的开关。如表1所示的,其中0表示开关103处于断开状态,1表示开关103处于闭合状态。
表1开关状态及对应的效果
在单刀单掷开关处于闭合状态时,NFC有源天线线圈101中的无源线圈102闭合,会产生与NFC有源天线线圈101的电流方向相反的感应电流,无源线圈102的感应电流产生的磁场在无源线圈102的圈内与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的感应电流产生的磁场在无源线圈102的圈外与NFC有源天线线圈101的圈内的磁场方向相同。无源线圈102的感应电流在无源线圈102的圈外产生的磁场与NFC有源天线线圈101的圈内的磁场叠加之后,NFC有源天线线圈101的内部的磁场增强。因此,盲区也会移动,从而增加盲区内NFC可以工作的面积,提高了NFC终端的NFC性能,有效提高NFC刷卡读卡的成功率。
进一步,在实际工作时,正常状态下,四个无源线圈102的开关103均处于断开状态,当电子设备100的NFC有源天线线圈101处于工作盲区300时,可以对四个单刀单掷开关进行状态遍历,直至NFC终端处于可以工作的状态。通过四个带有单刀单掷开关的无源线圈102实现更多方向上NFC终端200的盲区的自适应优化,可进一步提升不同方向上NFC的工作性能。
进一步,以图3中NFC有源天线线圈101相对于NFC终端200的天线 线圈向右偏离为例,NFC有源天线线圈101中内置多个无源线圈102,多个无源线圈102在NFC有源天线线圈101内间隔设置,在NFC有源天线线圈101与天线线圈错位的情况下,将NFC有源天线线圈101中远离天线线圈的位置的无源线圈102的开关103闭合。如图25至图29所示的,在NFC有源天线线圈101中增加了两个带单刀双掷开关的无源线圈102,通过两个带单刀双掷开关组合的四种状态可以产生四种不同的效果,如表2所示的,其中,S1表示上侧的开关,S2表示的下侧的开关,1表示开关S1与端口1的连接状态,2表示开关S1与端口2的连接状态,3表示开关S2与端口3的连接状态,4表示开关S2与端口4的连接状态。
表2开关状态及对应的效果
在单刀双掷开关处于连接端口的状态时,NFC有源天线线圈101中的无源线圈102闭合,会产生与NFC有源天线线圈101的电流方向相反的感应电流,无源线圈102的感应电流产生的磁场在无源线圈102的圈内与NFC有源天线线圈101的圈内的磁场方向相反,无源线圈102的感应电流产生的磁场在无源线圈102的圈外与NFC有源天线线圈101的圈内的磁场方向相同。无源线圈102的感应电流在无源线圈102的圈外产生的磁场与NFC有源天线线圈101的圈内的磁场叠加之后,NFC有源天线线圈101的内部的磁场增强。因此,盲区也会移动,从而增加盲区内NFC可以工作的面积,提高了NFC终端的NFC性能,有效提高NFC刷卡读卡的成功率。
实际工作时,当NFC有源天线线圈101的位置处于工作盲区300时,可以通过启动两个单刀双掷开关进行状态遍历,直至NFC终端可以工作的状态,用两个单刀双掷开关在实现更多方向上电子设备100刷卡盲区的自适应优化的基础上,不仅增大了盲区内NFC终端可以工作的面积,还节省了电子设备的空间。
如图30所示的,本申请实施例公开了一种通信方法,其可以由上述实施例中的电子设备执行,该方法包括以下步骤:
步骤S3000:检测NFC有源天线线圈与NFC终端的感应区域的相对位置。
具体来讲,NFC有源天线线圈与NFC终端的感应区域的相对位置包括N FC有源天线线圈与NFC终端的感应区域正对和NFC有源天线线圈与NFC终端的感应区域错位,可以通过NFC天线与NFC终端之间的偏离程度确定NFC天线线圈与天线线圈之间的错位位置,具体是,电子设备的NFC有源天线线圈与所述NFC终端的天线线圈的几何中心偏离时,NFC有源天线线圈与NFC终端的感应区域错位。
在一种可能的实现方式中,检测NFC有源天线线圈与NFC终端的感应区域的相对位置包括:检测所述NFC终端的实际信号强度;根据信号强度与相对位置的对应关系,确定所述实际信号强度对应的所述相对位置,在所述实际信号强度低于阈值的情况下,确定所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对。其中,电子设备内可以存储NFC终端的信号强度和NFC终端与电子设备之间的相对位置的关系,不同的相对位置对应不同的信号强度,以阈值作为基准,低于阈值的信号强度对应的相对位置为正对位置,不低于阈值的信号强度对应的相对位置为错位位置。阈值可以根据实际情况确定,本申请实施例在此并不作限定。因此,在电子设备检测到NFC终端的实际信号强度之后,按照信号强度和相对位置的对应关系,确定出NFC终端和电子设备之间的实际的相对位置。
步骤S3001:在NFC有源天线线圈的部分区域与NFC终端的感应区域相对时,控制远离感应区域的至少一个无源线圈中的开关闭合。以使所述无源线圈中产生与所述NFC有源天线线圈中的电流相反的电流。
值得注意的是,本申请实施例公开的通信方法与上述实施例有相同或类似之处,可以互相参照,本申请实施例在此不再赘述。
通过本申请实施例公开的技术方案,通过增强NFC有源天线线圈中的磁 场,从而增大NFC终端的无源线圈内的磁通量,从而增大NFC终端的工作盲区内的工作面积,提高NFC终端的NFC性能。
本发明上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (11)

  1. 一种天线,用于和NFC终端进行通信,所述天线包括NFC有源天线线圈、至少一个连接有开关的无源线圈和控制器,其中:
    所述至少一个连接有开关的无源线圈与所述控制器连接,所述至少一个连接有开关的无源线圈内置于所述NFC有源天线线圈中,且所述至少一个连接有开关的无源线圈的几何中心偏离所述NFC有源天线线圈的几何中心;
    在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,所述控制器控制远离所述感应区域的至少一个所述无源线圈中的所述开关闭合。
  2. 根据权利要求1所述的天线,其中,所述无源线圈为多个,所述NFC有源天线线圈中的所述至少一个连接有开关的无源线圈间隔设置。
  3. 根据权利要求1或2所述的天线,其中,所述NFC有源天线线圈和所述至少一个连接有开关的无源线圈处于同一个水平面。
  4. 根据权利要求2所述的天线,其中,所述开关包括单刀双掷开关,相邻的两个所述无源线圈连接一个所述单刀双掷开关;
    相邻的两个所述无源线圈的一端均与所述单刀双掷开关的静触点连接,相邻的两个所述无源线圈中的一个所述无源线圈的另一端用于与所述单刀双掷开关的第一动触点连接,另一个所述无源线圈的另一端用于与所述单刀双掷开关的第二动触点连接。
  5. 根据权利要求2所述的天线,其中,在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,依次将各所述无源线圈中开关的开关状态由断开状态切换为闭合状态,直至将远离所述感应区域的至少一个所述无源线圈的所述开关的开关状态切换为闭合状态。
  6. 根据权利要求1所述的天线,其中,所述开关包括单刀单掷开关,一个所述无源线圈连接一个所述单刀单掷开关,所述无源线圈的一端用于与所述单刀单掷开关的动触点连接,所述无源线圈的另一端与所述单刀单掷开关的静触点连接。
  7. 根据权利要求1所述的天线,其中,所述无源线圈为单个,所述无源线圈内置于所述NFC有源天线线圈的边沿区域。
  8. 一种电子设备,包括设备主板和权利要求1至7任一项所述的天线,所述设备主板包括天线芯片,所述天线与所述天线芯片电连接。
  9. 一种通信方法,应用于权利要求8所述的电子设备,包括:
    检测NFC有源天线线圈与NFC终端的感应区域的相对位置;
    在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对时,控制远离所述感应区域的至少一个无源线圈中的开关闭合。
  10. 根据权利要求9所述的通信方法,其中,所述检测NFC有源天线线圈与NFC终端的感应区域的相对位置包括:
    检测所述NFC终端的实际信号强度;
    根据信号强度与相对位置的对应关系,确定所述实际信号强度对应的所述相对位置,在所述实际信号强度低于阈值的情况下,确定所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对。
  11. 根据权利要求9所述的通信方法,其中,在所述NFC有源天线线圈的部分区域与所述NFC终端的感应区域相对以进行通信时,依次将各所述无源线圈中开关的开关状态由断开状态切换为闭合状态,直至将远离所述感应区域的至少一个所述无源线圈的所述开关的开关状态切换为闭合状态。
PCT/CN2023/090309 2022-04-28 2023-04-24 天线、电子设备和通信方法 WO2023207905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210461851.0 2022-04-28
CN202210461851.0A CN114899587A (zh) 2022-04-28 2022-04-28 天线、电子设备和通信方法

Publications (1)

Publication Number Publication Date
WO2023207905A1 true WO2023207905A1 (zh) 2023-11-02

Family

ID=82720213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090309 WO2023207905A1 (zh) 2022-04-28 2023-04-24 天线、电子设备和通信方法

Country Status (2)

Country Link
CN (1) CN114899587A (zh)
WO (1) WO2023207905A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899587A (zh) * 2022-04-28 2022-08-12 维沃移动通信有限公司 天线、电子设备和通信方法
CN116031614A (zh) * 2022-09-16 2023-04-28 维沃移动通信有限公司 电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299407A (zh) * 2011-06-17 2011-12-28 北京握奇数据系统有限公司 一种感应天线、电子标签和电子标签读写器
US20130126622A1 (en) * 2011-08-08 2013-05-23 David Finn Offsetting shielding and enhancing coupling in metallized smart cards
CN103904424A (zh) * 2013-12-20 2014-07-02 上海坤锐电子科技有限公司 苹果全卡nfc方案的无源信号增强天线帖
CN107069185A (zh) * 2015-11-06 2017-08-18 联发科技股份有限公司 用于近场通信的天线
CN109120310A (zh) * 2011-11-15 2019-01-01 高通股份有限公司 多频带发射天线
CN111541038A (zh) * 2020-04-29 2020-08-14 维沃移动通信有限公司 Nfc天线的电路结构、电子设备及增强磁场强度的方法
CN216354807U (zh) * 2021-06-25 2022-04-19 华为技术有限公司 Nfc天线及电子设备
CN114899587A (zh) * 2022-04-28 2022-08-12 维沃移动通信有限公司 天线、电子设备和通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241395A (ja) * 2006-03-06 2007-09-20 Nec Tokin Corp 非接触型icカードリーダライタ
JP5798974B2 (ja) * 2012-04-13 2015-10-21 株式会社ユニバーサルエンターテインメント 識別情報アクセス装置
JP6318964B2 (ja) * 2014-08-08 2018-05-09 株式会社デンソーウェーブ カードリーダ
WO2016088263A1 (ja) * 2014-12-05 2016-06-09 三菱電機エンジニアリング株式会社 共振型電力伝送装置及び給電範囲制御装置
KR102405446B1 (ko) * 2015-08-10 2022-06-08 삼성전자주식회사 안테나 장치 및 전자 장치
US10985465B2 (en) * 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
CN106329061B (zh) * 2016-08-29 2019-01-29 青岛海信移动通信技术股份有限公司 天线装置及具有该天线装置的移动终端
CN209691958U (zh) * 2019-04-18 2019-11-26 上海飞聚微电子有限公司 一种高频双天线及高频无源智能电子锁
CN110110837A (zh) * 2019-05-28 2019-08-09 上海安费诺永亿通讯电子有限公司 一种双频rfid电子标签及制备方法
CN211428345U (zh) * 2019-11-04 2020-09-04 北京美餐造物科技有限公司 一种rfid读写器天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299407A (zh) * 2011-06-17 2011-12-28 北京握奇数据系统有限公司 一种感应天线、电子标签和电子标签读写器
US20130126622A1 (en) * 2011-08-08 2013-05-23 David Finn Offsetting shielding and enhancing coupling in metallized smart cards
CN109120310A (zh) * 2011-11-15 2019-01-01 高通股份有限公司 多频带发射天线
CN103904424A (zh) * 2013-12-20 2014-07-02 上海坤锐电子科技有限公司 苹果全卡nfc方案的无源信号增强天线帖
CN107069185A (zh) * 2015-11-06 2017-08-18 联发科技股份有限公司 用于近场通信的天线
CN111541038A (zh) * 2020-04-29 2020-08-14 维沃移动通信有限公司 Nfc天线的电路结构、电子设备及增强磁场强度的方法
CN216354807U (zh) * 2021-06-25 2022-04-19 华为技术有限公司 Nfc天线及电子设备
CN114899587A (zh) * 2022-04-28 2022-08-12 维沃移动通信有限公司 天线、电子设备和通信方法

Also Published As

Publication number Publication date
CN114899587A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2023207905A1 (zh) 天线、电子设备和通信方法
EP3131209B1 (en) Nfc antenna architecture for mobile communication device with single-piece metal housing
US9130262B2 (en) Direction control antenna and method of controlling the same
JP4367717B2 (ja) 近距離無線通信用アンテナおよび携帯機器
KR101664970B1 (ko) 코일 안테나 및 비접촉 정보매체
US9793961B2 (en) Communication method between a dual interface NFC card inserted into an NFC terminal, and an NFC device
TWI223775B (en) Non-contact IC card
CN110324480B (zh) 多屏幕折叠终端的天线切换方法、装置、终端及存储介质
CN107592405B (zh) 一种天线调谐参数的处理方法及移动终端
CN103907265A (zh) 受电装置、送电装置及无线电力传输系统
US9473215B2 (en) Apparatus comprising inductive coupling communication means
WO2023197964A1 (zh) 折叠设备
US10790574B2 (en) Housing of electronic device and electronic device
WO2024056000A1 (zh) 电子设备
KR20220052663A (ko) 안테나를 포함하는 폴더블 전자 장치
JP2009176027A (ja) 無線通信装置及び無線通信システム
CN111864352B (zh) 一种近场通信天线、电子设备、销售点终端及移动电话
CN107408758A (zh) 天线、天线控制方法、天线控制装置及天线系统
JP2007142688A (ja) 電磁誘導方式の無線通信システムで適応型アンテナを有するシステム
CN209860137U (zh) 一种天线结构及具有其的移动终端
CN111490805B (zh) Nfc通信
CN105940551B (zh) 一种通信终端
US9939947B2 (en) Touch communications device with multiple partial firmwares and related method
JP2016535469A (ja) アンテナ装置および端末
KR20160043900A (ko) 코일 구조체 및 그를 이용한 무선 전력 수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795338

Country of ref document: EP

Kind code of ref document: A1