WO2023207833A1 - 一种光接入设备、光接入的方法和系统 - Google Patents

一种光接入设备、光接入的方法和系统 Download PDF

Info

Publication number
WO2023207833A1
WO2023207833A1 PCT/CN2023/090022 CN2023090022W WO2023207833A1 WO 2023207833 A1 WO2023207833 A1 WO 2023207833A1 CN 2023090022 W CN2023090022 W CN 2023090022W WO 2023207833 A1 WO2023207833 A1 WO 2023207833A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
downlink data
service
pon
unit
Prior art date
Application number
PCT/CN2023/090022
Other languages
English (en)
French (fr)
Inventor
林连魁
颜林志
张伦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207833A1 publication Critical patent/WO2023207833A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present application relates to the field of optical access, and, more specifically, to an optical access device, an optical access method and a system.
  • This application provides an optical access device, an optical access method and a system.
  • the optical access equipment provided by this application can realize rapid forwarding of services based on the information of service packets, thereby achieving the purpose of improving communication quality, saving energy consumption, and improving user experience.
  • inventions of the present application provide an optical access device.
  • the device includes: a network processing unit, a service flow forwarding unit, a service scheduling management unit and at least two passive optical network PON ports.
  • the network processing unit is configured to obtain the service message information of the first downlink data packet after receiving the first downlink data packet.
  • the service message information includes address information, priority and protocol information of the service message, and the first downlink data packet is the first data packet of the service flow.
  • the network processing unit determines, according to the service attribute information corresponding to the service message information, that the forwarding outlet of the second downlink data packet is the first PON port among the at least two PON ports, and establishes the first downlink The corresponding relationship between the service message information corresponding to the data packet and the first PON port.
  • the service attribute information includes at least one of the following: service flow attribute, priority, type, traffic size, customer package type, and arrival time of the first downlink data packet or the second downlink data packet.
  • the network processing unit sends the corresponding relationship to the service flow forwarding unit for storage.
  • the network processing unit is also configured to obtain the service message information of the second downlink data packet after receiving the second downlink data packet.
  • the service flow forwarding unit determines that the forwarding port of the second downlink data packet is the first PON port based on the stored correspondence between the service message information and the first PON port.
  • the second downlink data packet is a data packet of the service flow other than the first downlink data packet.
  • the service scheduling management unit is configured to send the first downlink data packet and the second downlink data packet to the first PON port.
  • the at least two PON ports are used to send the first downlink data packet and the second downlink data packet.
  • the address information of the above-mentioned service packet may be a destination/source media access control (MAC) address and a destination/source Internet protocol (IP) address.
  • the protocol information of the above-mentioned service message may be transmission control protocol (transmission control protocol, TCP) or user datagram protocol (user datagram protocol, UDP) message header information.
  • service flow attributes may include the type of service flow, service bandwidth or service delay or service jitter, etc.
  • this application establishes the corresponding relationship between service message information and PON ports.
  • the optical access device connects When receiving the non-first data packet of the service message and forwarding it again, the optical access equipment of this application will not deeply analyze the non-first data packet again, but directly forward the data through the established corresponding relationship. The packet is sent to the corresponding PON port.
  • the optical access equipment provided by this application can realize rapid forwarding of service data packets, thereby improving communication efficiency and saving power consumption.
  • the network processing unit is further configured to send the first downlink data packet to the service scheduling management unit.
  • the access device provided by this application deeply analyzes the first data packet of the business flow and then forwards the first data packet according to the corresponding relationship.
  • the service scheduling management unit sends the first downlink data packet or the second downlink data packet to the The first PON port.
  • the device further includes: a service distribution unit.
  • the service distribution unit is configured to receive the first downlink data packet and the second downlink data packet, and send the first downlink data packet and the second downlink data packet to the network for processing unit.
  • the device further includes: a dedicated line direct unit.
  • the dedicated line direct-through unit is used to transparently transmit the first downlink data packet and the second downlink data packet corresponding to the dedicated line service to the second PON port among the at least two PON ports.
  • the access equipment provided by this application can directly transparently transmit dedicated line services through the dedicated line pass-through unit without centralized processing and forwarding, and can achieve ultra-low latency effects.
  • the device further includes: a service resource coordination unit and a network processing unit, further configured to send the service attribute information to the service resource coordination unit.
  • the service resource coordination unit determines a resource reservation strategy or resource orchestration strategy based on the service attribute information.
  • the device further includes: at least one PON module/board card.
  • the at least one PON module/board slices or timeslots the messages in the first downlink data packet and the second downlink data packet based on the resource reservation policy or the resource orchestration policy. Process, and arrange and transmit according to the preset PON frame format.
  • the access equipment provided by this application has the ability to support hard slicing and hard time slots, that is, the PON access downlink can be time division multiplexing (TDM) or a data transmission mode that can be combined with TDM.
  • TDM time division multiplexing
  • the PON access downlink can be time division multiplexing (TDM) or a data transmission mode that can be combined with TDM.
  • the at least one PON module/board is further configured to add a first downlink data packet to the first downlink data packet and the second downlink data packet.
  • An identifier wherein the first identifier is used to identify that the service flow is a hard slot service.
  • the device further includes: a first dynamic bandwidth allocation unit and at least one PON module/board card.
  • the service scheduling management unit is configured to receive an uplink bandwidth request, and send a scheduling policy and the uplink bandwidth request to the first dynamic bandwidth allocation unit, where the scheduling policy includes: uplink interface bandwidth, system forwarding Capacity, user access request bandwidth, user service flow priority, service value, service delay and service jitter indicator requirements.
  • the first dynamic bandwidth allocation unit is configured to receive the scheduling policy and the uplink bandwidth request, based on the scheduling policy, the uplink bandwidth request, the capability of the at least one PON module/board card, and the uplink interface bandwidth Determine the effective bandwidth of the at least one PON module/board card.
  • the access device provided by this application implements system-level bandwidth allocation through the first dynamic bandwidth allocation unit in combination with scheduling policies, uplink bandwidth requests, PON module/board card capabilities, and uplink interface bandwidth, so that the uplink bandwidth The accuracy of the allocation is improved, avoiding the waste of uplink resources, thereby achieving the purpose of saving power consumption.
  • the at least one PON module/board card includes a second dynamic bandwidth allocation unit, the second dynamic bandwidth allocation unit is configured to determine the effective bandwidth according to the effective bandwidth. Describe the upstream bandwidth configuration of at least two PON ports.
  • the PON module/board card of the access device also includes a second dynamic bandwidth allocation unit.
  • the second dynamic bandwidth allocation unit is combined with the first dynamic bandwidth allocation unit to achieve PON port-level uplink bandwidth. Allocation, thereby further improving the accuracy of uplink bandwidth allocation and achieving the purpose of saving power consumption.
  • the device further includes: an optical transmission network OTN interface and an Ethernet interface.
  • OTN interface is used for uplink connection to the OTN network to implement OTN connection services.
  • Ethernet interface is used for uplink connection to the IP network to implement protocol IP services for interconnection between networks.
  • the access equipment provided by this application can be expanded to support OTN dedicated line and Ethernet dedicated line services, and can support application requirements in multiple scenarios.
  • the device further includes: an acceleration engine, where the acceleration engine is used for business acceleration.
  • embodiments of the present application provide an optical access method.
  • the method is applied to optical access equipment, or may be executed by a chip or circuit configured in the optical access equipment, which is not limited in this application.
  • the method includes: after receiving the first downlink data packet, obtaining the service message information of the first downlink data packet, wherein the service message information includes the address information, priority and protocol of the service message Information, the first downlink data packet is the first data packet of the service flow.
  • the service attribute information corresponding to the service packet information it is determined that the forwarding outlet of the second downlink data packet is the first PON port, and the service packet information corresponding to the first downlink data packet and the first PON port are established.
  • the service attribute information includes at least one of the following: business flow attribute, priority, type, traffic size, customer package type, the first downlink data packet or all The arrival time of the second downlink data packet.
  • After receiving the second downlink data packet obtain the service message information of the second downlink data packet. Based on the corresponding relationship between the service packet information and the first PON port, it is determined that the forwarding port of the second downlink data packet is the first PON port, wherein the second downlink data packet is the service Stream data packets other than the first downlink data packet. Send the first downlink data packet and the second downlink data packet to the first PON port. Send the first downlink data packet and the second downlink data packet.
  • the method further includes: saving the corresponding relationship between the service message information and the first PON port.
  • the method further includes: sending the first downlink data packet or the second downlink data packet to the first downlink data packet based on the service attribute information.
  • One PON port One PON port.
  • the method further includes: transparently transmitting the first downlink data packet and the second downlink data packet corresponding to the dedicated line service.
  • the method further includes: determining the resource reservation policy or resource orchestration policy based on the service attribute information.
  • the method further includes: based on the resource reservation policy or the resource orchestration policy, the first downlink data packet and the second downlink data packet are processed based on the resource reservation policy or the resource orchestration policy.
  • the messages in the data packet are sliced or slotted, and arranged and transmitted according to the preset PON frame format.
  • the method further includes: adding a first identifier to the first downlink data packet and the second downlink data packet, wherein the first downlink data packet An identifier is used to identify that the service flow is a hard time slot service.
  • the method further includes: receiving an uplink bandwidth request, and sending a scheduling policy and the uplink bandwidth request, wherein the scheduling policy includes: uplink interface bandwidth, System forwarding capability, user access request bandwidth, user service flow priority, service value, service delay and service jitter index requirements.
  • Receive the scheduling policy and the uplink bandwidth request and determine the effective bandwidth of the at least one PON module/board based on the scheduling policy, the uplink bandwidth request, the capability of the at least one PON module/board, and the uplink interface bandwidth. .
  • the method further includes: determining at least two PON port uplink bandwidth configurations according to the effective bandwidth.
  • inventions of the present application provide a network system.
  • the system includes: optical line terminal OLT and multiple optical network units ONU.
  • the OLT and the ONU communicate through at least one downlink wavelength channel and one or more wavelength channels, wherein the OLT includes all of the above-mentioned first aspect and any possible implementation manner of the first aspect. mentioned equipment.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is used to receive signals from other communication devices other than the communication device and transmit them to the processor.
  • the processor executes code instructions to implement the above. The method in the second aspect or any of the possible implementations.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program (which may also be called code, or instructions) that when run on a computer causes the computer to execute the method in the above second aspect or any possible implementation of the second aspect.
  • inventions of the present application provide a computer program product.
  • the computer program product includes: a computer program that, when run, causes the computer to perform the method in the above second aspect or any possible implementation manner of the second aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and a memory, the processor is coupled to the memory, and the processor is used to control the device to implement the method in the above second aspect or any possible implementation manner of the second aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the arrangement of the memory and the processor.
  • ROM read-only memory
  • relevant data interaction processes such as sending a request message, may be a process of outputting a request message from the processor, and receiving a response message may be a process of receiving the message by the processor.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively called a transceiver.
  • the processing device in the seventh aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.
  • the processor When implemented by software, the processor may be a general-purpose processor and implemented by reading software code stored in a memory.
  • the memory may be integrated in the processor or may be located outside the processor and exist independently.
  • FIG. 1 is a schematic diagram of the PON system architecture applicable to the embodiment of this application.
  • Figure 2 is a schematic structural diagram of an access device 200 provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an access device 300 provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an access device 400 provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an access device 500 provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an access device 600 provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an access device 700 provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an access device 800 provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of an optical access method 900 provided by an embodiment of the present application.
  • Figure 10 is a schematic block diagram of the access device 1000 provided by the embodiment of the present application.
  • Figure 11 is a schematic block diagram of the access device 1100 provided by the embodiment of the present application.
  • words such as “exemplary” or “for example” are used to express examples, illustrations or illustrations, and embodiments or designs described as “exemplary” or “for example” should not are to be construed as preferred or advantageous over other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • the service flow is a resource carrying service data.
  • FIG. 1 shows a schematic diagram of the passive optical network (PON) system architecture applicable to the embodiment of the present application.
  • PON technology is a point-to-multipoint optical fiber access technology.
  • the PON system includes optical line terminal (optical line terminal, OLT) equipment, optical distribution network (optical distribution network, ODN) equipment and at least one optical network unit (optical network unit, ONU) equipment.
  • OLT device is connected to the ODN device, and the ODN device is connected to multiple ONU devices.
  • the OLT device provides a network-side interface.
  • the OLT device is connected to the upper-layer network-side devices (such as switches, routers, etc.), and the lower layer is connected to one or more ODN devices.
  • ODN equipment includes passive optical splitters for optical power distribution, trunk optical fibers connected between the passive optical splitters and OLT, and branch optical fibers connected between the passive optical splitters and ONU equipment.
  • the ODN device When transmitting downlink data, the ODN device transmits the downlink data from the OLT device to each ONU device through the optical splitter.
  • the ODN device when transmitting upstream data, the ODN device aggregates the upstream data from the ONU device and transmits it to the OLT device.
  • OLT equipment is usually located in the center office (CO), and ONU equipment is located at or near the user's home.
  • the ONU device provides a user-side interface and is connected to the ODN device.
  • OLT equipment basically adopts a centralized processing architecture or a distributed processing architecture.
  • the centralized processing architecture is mainly composed of PON line cards and switching processing modules.
  • the PON line cards are mainly used for line physical layer and link layer processing, and the switching processing modules are used to complete all business processing and forwarding in the OLT equipment. and monitoring and management of the entire system.
  • the distributed processing architecture sets the business switching function in the switching processing module as a separate module, reducing the need for switching processing modules. Block dependencies.
  • each PON line card requires an independent network processor (NP)/packet processor (PP) ) to perform corresponding entrance user-level business processing, and the OLT device also needs to set up a separate business acceleration engine. Therefore, as the PON bandwidth gradually increases, the equipment's requirements for NP/PP processing capabilities and the cache capacity of the service acceleration engine are getting higher and higher, causing the system cost and power consumption to rise sharply.
  • NP network processor
  • PP packet processor
  • this application proposes an optical access device and network system that automatically identifies the business attribute information of the business flow during the data forwarding process and realizes rapid forwarding of the business based on the business attribute information, thereby improving the communication quality. , to save energy consumption and improve user experience.
  • the access equipment provided by this application has native automatic acceleration capabilities. In addition, it is also compatible with optical transmission network (OTN) and Ethernet dedicated line services.
  • OTN optical transmission network
  • FIG. 2 shows a schematic structural diagram of an access device 200 provided by an embodiment of the present application.
  • the access device 200 includes: a network processing unit 210, a service flow forwarding unit 220, and a service scheduling management unit. unit 230 and at least two passive optical network PON ports 240.
  • the access device 200 is used to receive the downlink data packet of the service flow from the upstream device or upstream node, and use the downlink data packet to be the first downlink data packet of the service flow (hereinafter, the first downlink data packet is taken as an example) Or perform different data packet forwarding processes for the non-first downlink data packet of the service flow (the second downlink data packet is taken as an example below).
  • the network processing unit 210 is configured to receive the downlink data packet of the service flow from the upstream device or upstream node of the receiving device 200 .
  • the network processing unit 210 obtains the service message information of the first downlink data packet.
  • the network processing unit 210 obtains service attribute information corresponding to the service message information according to the obtained service message information, and determines that the forwarding outlet of the second downlink data packet is the first PON port among at least two PON ports.
  • the network processing unit 210 establishes a corresponding relationship between the service packet information corresponding to the first downlink data packet and the first PON port.
  • the network processing unit 210 After the network processing unit 210 establishes the corresponding relationship between the service message information corresponding to the first downlink data packet and the first PON port, the network processing unit 210 compares the service message information corresponding to the first downlink data packet with the first PON port. The corresponding relationship between a PON port is sent to the service flow forwarding unit 220 for storage.
  • the above-mentioned service message information includes the address information, priority and protocol information of the service message.
  • the address information of the above-mentioned service packet may be a MAC address, an IP address, etc.
  • the protocol information of the service packet can be TCP or UDP packet header information, etc.
  • the above-mentioned service attribute information includes at least one of the following: service flow attribute, priority, type, traffic size, customer package type, and arrival time of the first downlink data packet or the second downlink data packet.
  • the network processing unit 220 is also configured to send the first downlink data packet to the service scheduling management unit 230.
  • the service scheduling management unit 230 After receiving the first downlink data packet sent by the network processing unit 220, the service scheduling management unit 230 sends the first downlink data packet to the first PON port. After receiving the first downlink data packet, the first PON port forwards the first downlink data packet to the downstream device or downstream node.
  • At least two passive optical network PON ports 240 can be regarded as belonging to the same PON module/board.
  • the PON module/board 240 includes at least two passive optical network PON ports. (The first PON port, the second PON port...the Nth PON port). Wherein, the first PON port is one of at least two PON ports 240. It should be understood that the number of PON modules/boards 240 in Figure 2 is only an example and not a limitation.
  • the access device provided by the embodiment of the present application may also include multiple PON modules/boards.
  • the network processing unit 230 when the network processing unit 230 sends the first downlink data packet to the service scheduling management unit 230, the network processing unit 230 combines the service message information corresponding to the first downlink data packet with the first PON Port pair Before the corresponding relationship is sent to the service flow forwarding unit 220, it may also occur after the network processing unit 230 sends the corresponding relationship between the service message information corresponding to the first downlink data packet and the first PON port to the service flow forwarding unit 220. , this application is not limited.
  • the network processing unit 210 obtains the service message information of the second downlink data packet after receiving the second downlink data packet. After obtaining the service message information of the second downlink data packet, the second downlink data packet is sent to the service flow forwarding unit 220.
  • the service flow forwarding unit 230 determines that the forwarding port of the second downlink data packet is the first PON port based on the stored correspondence between the service message information and the first PON port, and sends the second downlink data packet to the service scheduling management unit. 240.
  • the service scheduling management unit 240 sends the second downlink data packet to the first PON port.
  • the first PON port forwards the second downlink data packet to the downstream device or downstream node.
  • the service message information of the second downlink data packet obtained by the network processing unit 210 is the same as the service message of the first downlink data packet.
  • the message information is the same.
  • the network processing unit 210 no longer performs in-depth analysis on the second downlink data packet, and sends the second downlink data packet to the service flow forwarding unit 230, so that the service flow forwarding unit 230 receives the After the second downlink data packet, the second downlink data packet is sent based on the correspondence between the saved service message information and the PON port.
  • the access device no longer performs in-depth analysis on the non-first data packet of the service flow, but implements the non-first downstream analysis based on the corresponding relationship between the saved service packet information and the PON port. Fast forwarding of data packets improves communication efficiency and saves device power consumption.
  • an access device 300 provided by the embodiment of the present application can be used to provide forwarding services for such services.
  • the access device 300 can be as shown in Figure On the basis of the access device 200 shown in 2, a dedicated line direct unit 250 for forwarding dedicated line services is added.
  • Figure 3 it is a schematic structural diagram of an access device 300 provided by an embodiment of the present application.
  • the access device 300 includes: a dedicated line direct unit 250.
  • the services have higher data access/interconnection requirements and higher service requirements.
  • the access device (specifically, it may be the network processing unit 210) learns that the data transmitted by the downlink data packet is dedicated line service data according to the service message information, and then directly forwards the downlink data packet to Direct line unit 250.
  • the dedicated line direct-through unit 250 is configured to transparently transmit the first downlink data packet and the second downlink data packet corresponding to the dedicated line service to the corresponding PON port, such as the second PON port.
  • the network processing unit 210 the service flow forwarding unit 220, the service scheduling management unit 230, and the at least two PON ports 240, please refer to the relevant description of the corresponding modules in Figure 2 above, and will not be described again here.
  • the second PON port corresponds to the dedicated line service and can be used only to transmit the dedicated line service, or can be allocated as a PON port that is only not occupied by other services during the transmission of the dedicated line service. When there is no When transmitting dedicated line services, the second PON port can still be used to transmit other services.
  • the access equipment provided by this application can realize fast forwarding of dedicated line services without centralized forwarding processing, and can achieve the purpose of ultra-low latency.
  • FIG 4 shows a schematic structural diagram of an access device 400 provided by an embodiment of the present application, which can be used for hard time slot services. transmission.
  • the access device 400 may be based on the access device 200 shown in Figure 2, with a service resource coordination unit 260 for transmitting hard time slot services added.
  • the access device 400 includes: a network processing unit 210, a service flow forwarding unit 220, a service scheduling management unit 230, a service resource collaboration unit 260, a first PON module/board 240 and a second PON module/board 270 .
  • the first PON module/board card 240 includes at least two PON ports.
  • the network processing unit 210 After receiving the first downlink data packet, the network processing unit 210 obtains the first downlink data packet according to the service packet information.
  • the service attribute information of the packet is received, and the service attribute information is sent to the service resource coordination unit 260.
  • the business resource collaboration unit 260 determines a resource reservation strategy or resource orchestration strategy based on the service attribute information.
  • the service scheduling management unit 230 sends the downlink data packet to the PON module/board card 240 or to the PON after controlling the service attribute information, such as bandwidth and priority constraints. Modules/Boards 270.
  • the PON module/board that receives the downlink data packet transmits the downlink data packet to the PON line in a broadcast manner.
  • the service scheduling management unit 230 will perform resource prediction control of slices or hard time slots, that is, the downlink bandwidth is prioritized to ensure hard time slot transmission.
  • the time slot service sends downlink data packets to the PON module/board 240 or to the PON module/board 270.
  • the PON module/board that receives the downlink data packet slices/times the PON frame (such as 125us frame) according to the resource reservation policy or resource orchestration policy, and arranges and transmits it according to the preset PON frame format.
  • preset may include predefined definitions, for example, protocol definitions.
  • pre-definition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device. This application does not limit its specific implementation method.
  • the functions of the network processing unit 210, the service flow forwarding unit 220, the service scheduling management unit 230, and the at least two PON ports 240 can refer to the relevant description of the corresponding modules in Figure 2 above.
  • the functions of the PON module/board 270 Reference can be made to the functions of the PON module/board 240 in Figure 2, which will not be described again here.
  • the access device 400 may also be based on the access device 300 shown in FIG. 3 and add a service resource coordination unit 260 for transmitting hard time slot services. That is, the parts of Figure 4 that are not shown in Figure 3 should also be within the protection scope of this application.
  • the access equipment provided by this application has the ability to support hard slicing and hard time slots, that is, the PON access downlink can be time division multiplexing or a data transmission mode that combines broadcast and time division multiplexing to ensure that it can be achieved It can securely isolate business flows and ensure that delay-sensitive services are allocated certain bandwidth to improve communication quality.
  • FIG. 5 shows a schematic structural diagram of an access device 500 provided by an embodiment of the present application.
  • the access device 500 may be based on the access device 200 shown in FIG. 2, and add a first dynamic bandwidth allocation unit 280 for determining the effective bandwidth of the PON module/board card.
  • the access device 500 includes: a network processing unit 210, a service flow forwarding unit 220, a service scheduling management unit 230, a first PON module/board 240, and a second PON module/board 270. and a first dynamic bandwidth allocation unit 280.
  • the first PON module/board card 240 includes at least two PON ports.
  • the first PON module/board card 240 or the second PON module/board card 270 sends an uplink bandwidth request to the service scheduling management unit 230.
  • the service scheduling management unit 230 is configured to receive the uplink bandwidth request, and send the scheduling policy and the uplink bandwidth request to the first dynamic bandwidth allocation unit 280, where the scheduling policy includes: uplink interface bandwidth, system forwarding capability, user access request bandwidth, user Indicator requirements for service flow priority, service value, service delay, and service jitter.
  • the first dynamic bandwidth allocation unit 280 is configured to receive the scheduling policy and the uplink bandwidth request, and determine the effective bandwidth of the PON module/board based on the scheduling policy, the uplink bandwidth request, the capabilities of the PON module/board, and the uplink interface bandwidth.
  • the service scheduling management unit 230 after receiving the uplink bandwidth request from the PON module/board card, not only sends the uplink bandwidth request to the first dynamic bandwidth allocation unit 280 but also forwards the scheduling policy to the first dynamic bandwidth allocation unit 280 .
  • the first dynamic bandwidth allocation unit 280 determines the effective bandwidth allocated to the PON module/board based on the scheduling policy and request received from the service scheduling management unit 230, combined with the capabilities of the PON module/board and the uplink interface bandwidth.
  • the uplink bandwidth request received by the service scheduling management unit 230 from the PON module/board is generated based on comprehensive processing of the ONU's historical bandwidth application and the ONU's effective utilization of historical bandwidth.
  • the functions of the network processing unit 210, the service flow forwarding unit 220, the service scheduling management unit 230, and the at least two PON ports 240 can refer to the relevant description of the corresponding modules in Figure 2 above.
  • the functions of the PON module/board 270 Reference can be made to the functions of the PON module/board 240 in Figure 2, which will not be described again here.
  • first dynamic bandwidth allocation unit 280 is added in combination with the access device 300 shown in Figure 3, or the first dynamic bandwidth allocation unit 280 is added in combination with the access device 400 shown in Figure 4.
  • the embodiments of the present application also provide respectively A schematic structural diagram of the access device 600 and the access device 700 shown in Figure 6 and Figure 7 is shown.
  • for the function of the first dynamic bandwidth allocation unit 280 please refer to the relevant description in Figure 5 above.
  • the access device provided by this application implements system-level bandwidth allocation through the first dynamic bandwidth allocation unit, which improves the accuracy of uplink bandwidth allocation, avoids waste of uplink resources, and achieves the purpose of saving power consumption.
  • the embodiment of the present application proposes the access device 800 shown in Figure 8.
  • the access device 800 includes: a service scheduling management unit 230, a first PON module/board 240, a second PON module/board 270, a first dynamic bandwidth allocation unit 280 and a second dynamic allocation unit 2901 and 2902.
  • the first PON module/board card 240 includes at least two PON ports.
  • the second dynamic allocation unit 2901 belongs to the first PON module/board 240
  • the second dynamic allocation unit 2902 belongs to the first PON module/board 270.
  • the second dynamic bandwidth allocation unit 2901 is used to determine the upstream bandwidth of at least two PON ports in the PON module/board based on the effective bandwidth allocated by the first dynamic bandwidth allocation unit 280 configuration. Specifically, the second dynamic bandwidth allocation unit 2901 can determine the user level ( PON port level) upstream bandwidth allocation and issued to the corresponding ONU equipment.
  • uplink bandwidth allocation at the PON port level can also be implemented in conjunction with the access device 600 shown in Figure 6 and the access device 700 shown in Figure 7 , that is, in the access device 600 shown in Figure 6 or the access device 700 shown in Figure 7 A corresponding second dynamic bandwidth allocation unit is added to the PON module/board in the access device 700 shown in Figure 7 to achieve user-level uplink bandwidth allocation.
  • the access device provided by this application implements uplink bandwidth allocation at the PON port level through the second dynamic bandwidth allocation unit, thereby further improving the accuracy of uplink bandwidth allocation and improving communication quality.
  • Figure 9 is a schematic flow chart of an optical transmission method 900 provided by an embodiment of the present application. Specifically, the method 900 can be applied to the access device 200 as shown in FIG. 2 . The method 900 is described with reference to FIG. 2 . As shown in Figure 9, the method includes the following steps.
  • S901 After receiving the first downlink data packet, obtain the service message information of the first downlink data packet.
  • the network processing unit 210 after receiving the first downlink data packet, obtains the service message information of the first downlink data packet.
  • the service message information includes the address information, priority and protocol information of the service message
  • the first downlink data packet is the first data packet of the service flow.
  • S902 Determine the forwarding outlet of the second downlink data packet to be the first PON port according to the service attribute information corresponding to the service packet information.
  • the network processing unit 210 determines the second downlink data according to the service attribute information corresponding to the service message information.
  • the packet forwarding exit is the first PON port.
  • the service attribute information includes at least one of the following: service flow attribute, priority, type, traffic size, customer package type, and arrival time of the first downlink data packet or the second downlink data packet.
  • S903 Establish a corresponding relationship between the service packet information corresponding to the first downlink data packet and the first PON port, and save the corresponding relationship.
  • the network processing unit 210 establishes a corresponding relationship between the service message information corresponding to the first downlink data packet and the first PON port, and sends the corresponding relationship to the service flow forwarding unit 220 for storage.
  • S904 After receiving the second downlink data packet, obtain the service message information of the second downlink data packet.
  • the network processing unit 210 continues to receive the second downlink data packet, and after receiving the second downlink data packet, obtains the service message information of the second downlink data packet.
  • S905 Based on the correspondence between the saved service packet information and the first PON port, determine that the forwarding port of the second downlink data packet is the first PON port.
  • the network processing unit 210 obtains the service message information of the second downlink data packet and finds that the second downlink data packet is a data packet in the service flow other than the first downlink data packet, that is, it is not the first data packet. At this time, the network processing unit 210 no longer continues to parse the service message of the second downlink data packet, but sends the second downlink data packet to the service flow forwarding unit 220. After receiving the data packet, it is determined that the forwarding port of the second downlink data packet is the first PON port according to the corresponding relationship between the saved service message information and the first PON port, and the second downlink data packet is sent to the service scheduling management unit 230 .
  • S906 Send the first downlink data packet and the second downlink data packet to the first PON port.
  • the network processing unit 210 determines that the forwarding port of the first downlink data packet is the first PON port, and the service flow forwarding unit 220 determines that the forwarding port of the second downlink data packet is the first PON port, the network processing unit 210
  • the first downlink data packet is sent to the service scheduling management unit 230.
  • the service flow forwarding unit 220 sends the second downlink data packet to the service scheduling management unit 230, and the first downlink data packet and the first downlink data packet are sent to the service scheduling management unit 230.
  • the second downstream data packet is sent to the first PON port.
  • the network processing unit 210 may send the first downlink data packet to the service scheduling management unit 230 at any time before S901 to S903, which is not limited in this application.
  • S907 Send the first downlink data packet and the second downlink data packet.
  • the first PON port in the PON module/board card 240 forwards the first downlink data packet to the downstream device or downstream node.
  • the time at which the first downlink data packet arrives at the service scheduling management unit 230 may be different from the time at which the second downlink data packet arrives at the service scheduling management unit 230.
  • the time at which the first downlink data packet arrives at the first PON port , and the time when the second downlink data packet arrives at the first PON port may be different, that is, the service scheduling management unit 230 may forward the first data packet to the first PON port after receiving the first downlink data packet, and It is not necessary to forward at the same time.
  • the optical access device when the optical access device receives the non-first data packet corresponding to the service flow, it can realize the downlink data packet through the established corresponding relationship between the service message information and the PON port. Fast forwarding without having to deeply analyze the second downlink data packet again reduces the communication delay and further improves the performance of the communication system.
  • FIG 10 is a schematic block diagram of the access device 1000 provided by the embodiment of the present application.
  • the access device 1000 includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiver unit 1010 can implement corresponding communication functions, and the processing unit 1010 is used for data processing.
  • the transceiver unit 1010 may also be called a communication interface or a communication unit.
  • the access device 1000 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 1020 may read the instructions and/or data in the storage unit, so that the access device 1000 realize the aforementioned Actions S902, S903, S905 and S906 performed by the optical access device in the method embodiment (method 900).
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 1020 may read the instructions and/or data in the storage unit, so that the access device 1000 realize the aforementioned Actions S902, S903, S905 and S906 performed by the optical access device in the method embodiment (method 900).
  • this embodiment of the present application also provides an access device 1100.
  • the access device 1100 includes a processor 1110.
  • the processor 1110 is coupled to a memory 1120.
  • the memory 1120 is used to store computer programs or instructions and/or data.
  • the processor 1110 is used to execute the computer programs or instructions and/or data stored in the memory 1120. , so that the method in the above method embodiment of FIG. 9 is executed, that is, the processor 1110 is used to implement the operations performed by the optical access device in the above method embodiment.
  • the access device 1100 includes one or more processors 1110 .
  • the access device 1100 may also include a memory 1120.
  • the access device 1100 may include one or more memories 1120 .
  • the memory 1120 can be integrated with the processor 1110 or provided separately.
  • the access device 1100 may also include a transceiver 1130, which is used for receiving and/or transmitting signals.
  • the processor 1110 is used to control the transceiver 1130 to receive and/or transmit signals.
  • processors in the embodiments of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or other well-known in the art any other form of storage media.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the optical access device may be one or more chips.
  • the optical access device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit (MCU), or a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • said computer program product package Contains one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions may be transmitted from one website, computer, server or data center to another website through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means. , computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种光接入设备、光接入的方法和系统。该设备中的网络处理单元用于接收第一下行数据包和第二下行数据包后,分别获取第一下行数据包的业务报文信息和第二下行数据包的业务报文信息。同时根据业务报文信息对应的业务属性信息确定第二下行数据包的转发出口为第一PON端口。建立业务报文信息与第一PON端口的对应关系,并将对应关系发送给业务流转发单元中保存。业务流转发单元基于对应关系确定第二下行数据包的转发端口是第一PON端口。业务调度管理单元将第一下行数据包和第二下行数据包发送至第一PON端口。至少两个PON端口用于发送第一下行数据包和第二下行数据包。本申请提供的设备,能够实现业务的快速转发,节约能耗。

Description

一种光接入设备、光接入的方法和系统
本申请要求于2022年4月29日提交中国国家知识产权局、申请号为202210466534.8、申请名称为“一种光接入设备、光接入的方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光接入领域,并且,更具体地,涉及一种光接入设备、光接入的方法和系统。
背景技术
随着接入网系统的演进,单波传输速率已从10G提升至50G,未来还将向着100G发发展。由于系统的容量越来越大,使得设备的功耗也越来越高。因此,如何减少不必要的数据转发,实现绿色、节能、智能化网络的应用称为亟待解决的问题。
发明内容
本申请提供一种光接入设备、光接入的方法和系统。本申请提供的光接入设备能够根据业务报文的信息实现业务的快速转发,从而达到提高通信质量,节约能耗,提升用户体验的目的。
第一方面,本申请实施例提供了一种光接入设备。该设备包括:网络处理单元、业务流转发单元、业务调度管理单元和至少两个无源光网络PON端口。其中,所述网络处理单元,用于接收第一下行数据包后,获取所述第一下行数据包的业务报文信息。其中,所述业务报文信息包括所述业务报文的地址信息、优先级以及协议信息,所述第一下行数据包为业务流的首个数据包。所述网络处理单元,根据所述业务报文信息对应的业务属性信息,确定第二下行数据包的转发出口为所述至少两个PON端口中的第一PON端口,建立所述第一下行数据包对应的业务报文信息与所述第一PON端口的对应关系。其中,所述业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间。所述网络处理单元,将所述对应关系发送给所述业务流转发单元进行保存。所述网络处理单元,还用于接收第二下行数据包后,获取所述第二下行数据包的业务报文信息。所述业务流转发单元,基于保存的所述业务报文信息与所述第一PON端口的对应关系,确定所述第二下行数据包的转发端口是所述第一PON端口。其中,所述第二下行数据包为所述业务流除所述第一下行数据包之外的数据包。所述业务调度管理单元,用于将所述第一下行数据包和所述第二下行数据包发送至所述第一PON端口。所述至少两个PON端口,用于发送所述第一下行数据包和所述第二下行数据包。
示例性地,上述业务报文的地址信息可以是目的/源媒体存取控制(media access control,MAC)地址、目的/源互联网协议(internet protocol address,IP)地址。上述业务报文的协议信息可以是传输控制协议(transmission control protocol,TCP)或者用户数据报协议(user datagram protocol,UDP)报文头信息。
此外上述业务流属性可以包括业务流的类别、业务带宽或者业务时延或者业务的抖动等。
基于上述方案,本申请通过建立业务报文信息与PON端口的对应关系,当光接入设备接 收到该业务报文的非首个数据包,并进行再次转发时,本申请的光接入设备不会对非首个数据包再次深度解析,而是通过已经建立的对应关系,直接将数据包发送到对应的PON端口。本申请提供的光接入设备,可以实现业务数据包的快速转发,从而提高通信的效率,节约功耗。
结合第一方面,在第一方面的某些实现方式中,所述网络处理单元,还用于将所述第一下行数据包发送给所述业务调度管理单元。
基于上述方案,本申请提供的接入设备对业务流的首个数据包深度解析后,将该首个数据包按照对应关系实现转发。
结合第一方面,在第一方面的某些实现方式中,所述业务调度管理单元,基于所述业务属性信息将所述第一下行数据包或者所述第二下行数据包发送至所述第一PON端口。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:业务分发单元。所述业务分发单元,用于接收所述第一下行数据包和所述第二下行数据包,并将所述第一下行数据包和所述第二下行数据包发送给所述网络处理单元。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:专线直通单元。所述专线直通单元,用于将专线业务对应的所述第一下行数据包和所述第二下行数据包透传给所述至少两个PON端口中的第二PON端口。
基于上述方案,本申请提供的接入设备对于专线业务可以直接通过专线直通单元直接透传,不会经过集中处理转发,能够实现超低时延的效果。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:业务资源协同单元所述网络处理单元,还用于将所述业务属性信息发送给所述业务资源协同单元。所述业务资源协同单元,基于所述业务属性信息确定资源预留策略或资源编排策略。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:至少一个PON模块/板卡。所述至少一个PON模块/板卡,基于所述资源预留策略或所述资源编排策略对所述第一下行数据包和所述第二下行数据包中的报文进行切片或时隙化处理,并按照预设的PON帧格式进行编排与传送。
基于上述方案,本申请提供的接入设备具备支持硬切片和硬时隙的能力,即PON接入下行可以是时分复用(time division multiplexing,TDM)或者能够结合TDM的数据传送模式。通过对报文进行切片或时隙化处理,能够在实现业务流安全隔离的同时,满足时延敏感业务的带宽、时延和抖动的要求。
结合第一方面,在第一方面的某些实现方式中,所述至少一个PON模块/板卡,还用于在所述第一下行数据包和所述第二下行数据包中添加第一标识,其中,所述第一标识用于标识所述业务流为硬时隙业务。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:第一动态带宽分配单元和至少一个PON模块/板卡。其中,所述业务调度管理单元,用于接收上行带宽请求,并向所述第一动态带宽分配单元发送调度策略和所述上行带宽请求,其中,所述调度策略包括:上行接口带宽、系统转发能力、用户接入请求带宽、用户业务流优先级、业务价值、业务时延以及业务抖动的指标要求。所述第一动态带宽分配单元,用于接收所述调度策略和所述上行带宽请求,基于所述调度策略、所述上行带宽请求、所述至少一个PON模块/板卡的能力以及上行接口带宽确定所述至少一个PON模块/板卡的有效带宽。
基于上述方案,本申请提供的接入设备通过第一动态带宽分配单元结合调度策略、上行带宽请求、PON模块/板卡的能力以及上行接口带宽实现系统级别的带宽分配,使得上行带宽 的分配的准确性得到提升,避免上行资源的浪费,从而实现节约功耗的目的。
结合第一方面,在第一方面的某些实现方式中,所述至少一个PON模块/板卡包括第二动态带宽分配单元,所述第二动态带宽分配单元用于根据所述有效带宽确定所述至少两个PON端口上行带宽配置。
基于上述方案,本申请提供的接入设备的PON模块/板卡还包括第二动态带宽分配单元,该第二动态带宽分配单元与第一动态带宽分配单元结合,能够实现PON端口级别的上行带宽分配,从而进一步提高上行带宽的分配的准确性,实现节约功耗的目的。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:光传输网OTN接口、以太网接口。其中,所述OTN接口,用于上行连接OTN网络,实现OTN连接业务。所述以太网接口,用于上行连接IP网络,实现网络之间互连的协议IP业务。
基于上述方案,本申请提供的接入设备能够扩展支持OTN专线以及以太网专线业务,能够支持多场景的应用需求。
结合第一方面,在第一方面的某些实现方式中,所述设备还包括:加速引擎,所述加速引擎用于业务加速。
第二方面,本申请实施例提供了一种光接入的方法。所述方法应用于光接入设备,或者,也可以由配置于光接入设备中的芯片或电路执行,本申请对此不作限定。该方法包括:接收第一下行数据包后,获取所述第一下行数据包的业务报文信息,其中,所述业务报文信息包括所述业务报文的地址信息、优先级以及协议信息,所述第一下行数据包为业务流的首个数据包。根据所述业务报文信息对应的业务属性信息,确定第二下行数据包的转发出口为第一PON端口,建立所述第一下行数据包对应的业务报文信息与所述第一PON端口的对应关系,并保存所述对应关系,其中,所述业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间。接收所述第二下行数据包后,获取所述第二下行数据包的业务报文信息。基于所述业务报文信息与所述第一PON端口的对应关系,确定所述第二下行数据包的转发端口是所述第一PON端口,其中,所述第二下行数据包为所述业务流除所述第一下行数据包之外的数据包。将所述第一下行数据包和所述第二下行数据包发送至所述第一PON端口。发送所述第一下行数据包和所述第二下行数据包。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:保存所述业务报文信息与所述第一PON端口的对应关系。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:基于所述业务属性信息将所述第一下行数据包或者所述第二下行数据包发送至所述第一PON端口。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:透传专线业务对应的所述第一下行数据包和所述第二下行数据包。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:基于所述业务属性信息确定所资源预留策略或资源编排策略。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:基于所述资源预留策略或所述资源编排策略对所述第一下行数据包和所述第二下行数据包中的报文进行切片或时隙化处理,并按照预设的PON帧格式进行编排与传送。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:在所述第一下行数据包和所述第二下行数据包中添加第一标识,其中,所述第一标识用于标识所述业务流为硬时隙业务。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:接收上行带宽请求,并发送调度策略和所述上行带宽请求,其中,所述调度策略包括:上行接口带宽、系统转发能力、用户接入请求带宽、用户业务流优先级、业务价值、业务时延以及业务抖动的指标要求。接收所述调度策略和所述上行带宽请求,基于所述调度策略、所述上行带宽请求、至少一个PON模块/板卡的能力以及上行接口带宽确定所述至少一个PON模块/板卡的有效带宽。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:根据所述有效带宽确定至少两个PON端口上行带宽配置。
第三方面,本申请实施例提供了一种网络系统。该系统包括:光线路终端OLT和多个光网络单元ONU。其中,所述OLT和所述ONU之间通过至少一个下行波长通道和一个及以上波长通道进行通信,其中,所述OLT包括上述第一方面以及第一方面中任一种可能实现方式中的所述设备。
第四方面,本申请实施例提供了一种芯片。所述芯片包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器,所述处理器通过执行代码指令用于实现上述第二方面或其中任一种可能的实现方式中的方法。
第五方面,本申请实施例提供了一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第六方面,本申请实施例提供了一种计算机程序产品。该计算机程序产品包括:计算机程序,当该计算机程序被运行时,使得计算机执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第七方面,本申请实施例提供一种通信装置。该装置包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送请求消息可以为从处理器输出请求消息的过程,接收响应消息可以为处理器接收消息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第七方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第二方面和第七方面带来的有益效果具体可以参考第一方面中有益效果的描述,此处不再赘述。
附图说明
图1是本申请实施例适用的PON系统架构示意图。
图2是本申请实施例提供的一种接入设备200的示意性结构图。
图3是本申请实施例提供的一种接入设备300的示意性结构图。
图4是本申请实施例提供的一种接入设备400的示意性结构图。
图5是本申请实施例提供的一种接入设备500的示意性结构图。
图6是本申请实施例提供的一种接入设备600的示意性结构图。
图7是本申请实施例提供的一种接入设备700的示意性结构图。
图8是本申请实施例提供的一种接入设备800的示意性结构图。
图9是本申请实施例提供的一种光接入方法900的示意性流程图。
图10是本申请实施例提供的接入设备1000的示意性框图。
图11是本申请实施例提供的接入设备1100的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
第一、在下文示出的本申请实施例中的文字说明或者附图中的术语,“第一”、“第二”等以及各种数字编号仅为描述方便进行的区分,而不必用于描述特定的顺序或者先后次序,并不用来限制本申请实施例的范围。例如,在本申请实施例中用于区分不同的下行数据包等。
第二、下文示出的本申请实施例中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或者单元。
第三、在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
第四,在本申请实施例中字符“/”一般表示前后关联对象是一种“或”的关系。
第五,在本申请实施例中,业务流为承载业务数据的资源。
图1示出了本申请实施例适用的无源光网络(passive optical network,PON)系统架构示意图。PON技术是一种点到多点的光纤接入技术。PON系统包括光线路终端(optical line terminal,OLT)设备、光分配网络(optical distribution network,ODN)设备和至少一个光网络单元(optical network unit,ONU)设备。其中,OLT设备与ODN设备连接,ODN设备与多个ONU设备连接。OLT设备提供网络侧接口,OLT设备连接上层的网络侧设备(如交换机、路由器等),下层连接一个或者多个ODN设备。
ODN设备包括用于光功率分配的无源光分光器、连接在无源光分光器和OLT之间的主干光纤,以及连接在无源光分光器和ONU设备之间的分支光纤。传输下行数据时,ODN设备将OLT设备下行的数据通过分光器传输到各个ONU设备。同样地,传输上行数据时,ODN设备将ONU设备的上行数据汇聚后传输到OLT设备。
一般地,OLT设备通常位于中心机房(center office,CO),ONU设备位于用户家中或家附近。ONU设备提供用户侧接口,同时与ODN设备相连。
当前,OLT设备基本上均采用集中式处理架构或分布式处理架构。集中式处理架构主要由PON线卡和交换处理模块构成,其中,PON线卡主要用于线路物理层及链路层的处理,交换处理模块则用于完成OLT设备内的全部业务处理和转发,以及整个系统的监控和管理。分布式处理架构将交换处理模块中的业务交换功能设置为单独的模块,减少了对交换处理模 块的依赖。然而,无论是对于集中处理式的接入网设备系统架构还是分布式处理架构,每块PON线卡下都需要有独立的网络处理器(network processor,NP)/分组处理器(packet processor,PP)进行相应的入口用户级的业务处理,同时OLT设备还需要单独设置业务加速引擎。因此,随着PON带宽的逐渐增大,设备对NP/PP的处理能力的要求,以及对业务加速引擎的缓存容量的要求越来越高,使得系统的成本和功耗急剧上升。
基于上述问题,本申请提出了一种光接入设备和网络系统,通过在数据转发的过程中自动识别业务流的业务属性信息,并基于业务属性信息实现业务的快速转发,从而达到提高通信质量,节约能耗,提升用户体验的目的。本申请提供的接入设备具备原生的自动加速能力,此外,还可以兼容光传输网(optical transmission network,OTN)以及以太网的专线业务。
图2示出了本申请实施例提供的一种接入设备200的示意性结构图,如图2所示,该接入设备200包括:网络处理单元210、业务流转发单元220、业务调度管理单元230以及至少两个无源光网络PON端口240。
其中,该接入设备200用于从上游设备或者上游节点接收业务流的下行数据包,并根据下行数据包为该业务流的首个下行数据包(以下以第一下行数据包为例)或者为该业务流的非首个下行数据包(以下以第二下行数据包为例),执行不同的数据包转发流程。
具体地,网络处理单元210,用于从该接收设备200的上游设备或者上游节点接收业务流的下行数据包。
对于接入设备200接收第一下行数据包的情况,该网络处理单元210在接收到第一下行数据包后,该网络处理单元210获取第一下行数据包的业务报文信息。该网络处理单元210根据获取的业务报文信息获取业务报文信息对应的业务属性信息,并确定第二下行数据包的转发出口为至少两个PON端口中的第一PON端口。同时,该网络处理单元210建立第一下行数据包对应的业务报文信息与第一PON端口的对应关系。该网络处理单元210建立了第一下行数据包对应的业务报文信息与第一PON端口的对应关系后,该网络处理单元210,将第一下行数据包对应的业务报文信息与第一PON端口的对应关系发送给业务流转发单元220进行保存。
其中,上述业务报文信息包括业务报文的地址信息、优先级以及协议信息。
示例性的,上述业务报文的地址信息可以是MAC地址、IP地址等。业务报文的协议信息可以是TCP或者UDP报文头信息等。
上述业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间。
网络处理单元220,还用于将第一下行数据包发送给业务调度管理单元230。
业务调度管理单元230收到网络处理单元220发送的第一下行数据包后,将第一下行数据包发送至第一PON端口。该第一PON端口收到第一下行数据包后,将第一下行数据包转发给下游设备或者下游节点。
在图2中,至少两个无源光网络PON端口240可以视为属于同一个PON模块/板卡,此时,可以理解为PON模块/板卡240上包括至少两个无源光网络PON端口(第一PON端口、第二PON端口……第N PON端口)。其中,第一PON端口为至少两个PON端口240中的一个。应理解,图2中的PON模块/板卡240的数量仅为示例,而非限定,本申请实施例提供的接入设备还可以包括多个PON模块/板卡。
此外,需要说明的是,该网络处理单元230将第一下行数据包发送给业务调度管理单元230可以是在网络处理单元230将第一下行数据包对应的业务报文信息与第一PON端口的对 应关系发送给业务流转发单元220的之前,也可以发生在网络处理单元230将第一下行数据包对应的业务报文信息与第一PON端口的对应关系发送给业务流转发单元220的之后,本申请并不限定。
对于接入设备200接收第二下行数据包的情况,该网络处理单元210在接收到第二下行数据包后,获取第二下行数据包的业务报文信息。并在获取了第二下行数据包的业务报文信息后,将该第二下行数据包发送给业务流转发单元220。业务流转发单元230,基于保存的业务报文信息与第一PON端口的对应关系,确定第二下行数据包的转发端口是第一PON端口,并将第二下行数据包发送给业务调度管理单元240。业务调度管理单元240收到第二下行数据包后,将该第二下行数据包发送给第一PON端口。第一PON端口收到第二下行数据包后,将第二下行数据包转发给下游设备或者下游节点。
需要说明的是,由于该第二下行数据包为业务流对应的非首个数据包,因此,网络处理单元210获取的第二下行数据包的业务报文信息与第一下行数据包的业务报文信息相同,此时,该网络处理处理单元210不再对第二下行数据包进行深度解析,将该第二下行数据包发送给业务流转发单元230,使得业务流转发单元230在接收到第二下行数据包后,基于保存的业务报文信息与PON端口的对应关系,实现对第二下行数据包的发送。
综上所述,本申请提供的接入设备,对于业务流的非首个数据包,不再进行深度解析,而是基于保存的业务报文信息与PON端口的对应关系实现对非首个下行数据包的快速转发,从而提高了通信的效率,节约了设备的功耗。
对于特定的专线业务来说,为了保证业务的传输效率和可靠性,本申请实施例提供的一种接入设备300可以用于对此类业务提供转发服务,该接入设备300可以是在图2所示的接入设备200的基础上,增加用于转发专线业务的专线直通单元250。如图3所示,为本申请实施例提供的一种接入设备300的示意性结构图。该接入设备300包括:专线直通单元250。
具体地,对于专线业务流的下行数据包,示例性的,即有较高数据接入/互联要求、较高服务要求的业务。接入设备(具体地,可以是网络处理单元210)接收到此类下行数据包后,根据业务报文信息获知该下行数据包传输的数据为专线业务数据,则将该下行数据包直接转发给专线直通单元250。该专线直通单元250用于将专线业务对应的所述第一下行数据包和所述第二下行数据包透传给对应的PON端口,例如第二PON端口。其中,网络处理单元210、业务流转发单元220、业务调度管理单元230、至少两个PON端口240的功能可以参考上述图2中对应模块的相关说明,此处不再赘述。
应理解,该第二PON端口为该专线业务对应的PON端口,可以只用于传输该专线业务,或者,被分配为仅在专线业务传输的过程中不被其他业务占用的PON端口,当没有专线业务传输时,该第二PON端口仍然可以用于传输其他业务。
基于上述方案,本申请提供的接入设备对于专线业务可以实现快速转发,不经过集中转发处理,可以达到超低时延的目的。
为了满足需要进行切片隔离或者需要进行硬时隙传送的业务的传输要求,图4示出了本申请实施例提供的一种接入设备400的示意性结构图,能够用于硬时隙业务的传输。如图4所示,该接入设备400可以是在图2所示的接入设备200的基础上,增加用于传输硬时隙业务的业务资源协同单元260。具体地,该接入设备400包括:网络处理单元210、业务流转发单元220、业务调度管理单元230、业务资源协同单元260、第一PON模块/板卡240和第二PON模块/板卡270。其中,第一PON模块/板卡240包括至少两个PON端口。
具体地,网络处理单元210接收第一下行数据包后,根据业务报文信息获知第一下行数 据包的业务属性信息,并将该业务属性信息发送给业务资源协同单元260。该业务资源协同单元260基于业务属性信息确定资源预留策略或资源编排策略。
在一种可实现的方式中,对于传统要求的业务,业务调度管理单元230根据业务属性信息,例如带宽以及优先级的约束控制后,将下行数据包发送至PON模块/板卡240或者至PON模块/板卡270。接收到下行数据包的PON模块/板卡按照广播的方式将下行数据包向PON线路传送。
在另一种可实现的方式中,对于需要进行切片隔离或者需要进行硬时隙传送的业务,业务调度管理单元230将进行切片或者硬时隙的资源预测控制,即下行带宽优先用于保证硬时隙业务,将下行数据包发送至PON模块/板卡240或者至PON模块/板卡270。接收到下行数据包的PON模块/板卡按照资源预留策略或资源编排策略对PON帧(例如125us帧)进行切片/时化处理,按照预设PON帧格式进行编排与传送。
应理解,该“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
其中,网络处理单元210、业务流转发单元220、业务调度管理单元230、至少两个PON端口240的功能可以参考上述图2中对应模块的相关说明,此外,该PON模块/板卡270的功能可以参考图2中PON模块/板卡240的功能,此处不再赘述。
应理解,图4中的PON模块/板卡的数量仅为示例,并非限定。
此外,该接入设备400也可以是在图3所示的接入设备300的基础上,增加用于传输硬时隙业务的业务资源协同单元260。即图4相较于图3中未画出的部分,也应在本申请的保护范围之内。
基于上述方案,本申请提供的接入设备具备支持硬切片和硬时隙的能力,即PON接入下行可以是时分复用或者将广播与时分复用相结合的数据传送模式,以确保可以实现业务流的安全隔离,同时能够保证对时延敏感的业务分配确定的带宽,以提高通信质量。
对于上行业务传输,图5示出了本申请实施例提供的一种接入设备500的示意性结构图。该接入设备500可以是在图2所示的接入设备200的基础上,增加用于确定PON模块/板卡有效带宽的第一动态带宽分配单元280。具体地,如图5所示,该接入设备500包括:网络处理单元210、业务流转发单元220、业务调度管理单元230、第一PON模块/板卡240、第二PON模块/板卡270以及第一动态带宽分配单元280。其中,第一PON模块/板卡240包括至少两个PON端口。
具体地,对于上行业务传输时,第一PON模块/板卡240或者第二PON模块/板卡270向业务调度管理单元230发送上行带宽请求。业务调度管理单元230用于接收上行带宽请求,并向第一动态带宽分配单元280发送调度策略和上行带宽请求,其中,调度策略包括:上行接口带宽、系统转发能力、用户接入请求带宽、用户业务流优先级、业务价值、业务时延以及业务抖动的指标要求。第一动态带宽分配单元280,用于接收调度策略和上行带宽请求,基于调度策略、上行带宽请求、PON模块/板卡的能力以及上行接口带宽确定PON模块/板卡的有效带宽。
具体的,业务调度管理单元230接收到PON模块/板卡的上行带宽请求后,不仅将上行带宽请求发送给第一动态带宽分配单元280,同时将调度策略转发给第一动态带宽分配单元280。第一动态带宽分配单元280基于从业务调度管理单元230接收到的调度策略和请求,同时再结合PON模块/板卡的能力以及上行接口带宽,来确定为PON模块/板卡分配的有效带宽。
在一种可实现的方式中,业务调度管理单元230接收到PON模块/板卡的上行带宽请求是基于ONU的历史申请带宽以及ONU对历史带宽的有效利用情况作综合处理后生成的。
其中,网络处理单元210、业务流转发单元220、业务调度管理单元230、至少两个PON端口240的功能可以参考上述图2中对应模块的相关说明,此外,该PON模块/板卡270的功能可以参考图2中PON模块/板卡240的功能,此处不再赘述。
应理解,图5中的PON模块/板卡的数量仅为示例,并非限定。
此外,结合图3所示的接入设备300,增加第一动态带宽分配单元280,或者结合图4所示的接入设备400,增加第一动态带宽分配单元280,本申请实施例还分别提供了如图6所示和图7所示接入设备600和接入设备700的示意性结构图。在图6和图7中,第一动态带宽分配单元280的作用可参考上述图5中的相关说明,其他单元的作用可分别参考图3或者图4中对应单元的说明,此处不再赘述。
基于上述方案,本申请提供的接入设备通过第一动态带宽分配单元实现系统级别的带宽分配,使得上行带宽的分配的准确性得到提升,避免上行资源的浪费,从而实现节约功耗的目的。
为了进一步提高上行带宽的分配的准确性,在图5所示的接入设备500的基础上,本申请实施例提出了如图8所示的接入设备800,在图8所示的示意性结构图中,该接入设备800包括:业务调度管理单元230、第一PON模块/板卡240、第二PON模块/板卡270、第一动态带宽分配单元280以及第二动态分配单元2901和2902。其中,第一PON模块/板卡240包括至少两个PON端口。第二动态分配单元2901属于第一PON模块/板卡240,第二动态分配单元2902属于第一PON模块/板卡270。
具体地,以第二动态带宽分配单元2901为例,该第二动态带宽分配单元2901用于根据第一动态带宽分配单元280分配的有效带宽确定PON模块/板卡中至少两个PON端口上行带宽配置。具体地,该第二动态带宽分配单元2901可以结合第一动态带宽分配单元280给出的带宽约束、用户带宽分配规则以及结合ONU设备带宽的请求以及ONU设备带宽历史请求统计数据,确定用户级别(PON端口级别)的上行带宽分配,并下发给相应的ONU设备。
应理解,同样可结合图6所示的接入设备600以及结合图7所示的接入设备700来实现PON端口级别的上行带宽分配的功能,即在图6所示的接入设备600或图7所示的接入设备700中的PON模块/板卡上添加相应的第二动态带宽分配单元,以实现用户级别的上行带宽分配。
基于上述方案,本申请提供的接入设备通过第二动态带宽分配单元来实现PON端口级别的上行带宽分配,从而进一步提高上行带宽的分配的准确性,提升通信质量。
图9为本申请实施例提供的一种光传输的方法900的示意性流程图。具体地,该方法900可以应用于如图2所示的接入设备200中。结合图2,对该方法900进行说明。如图9所示,该方法包括如下多个步骤。
S901,接收第一下行数据包后,获取第一下行数据包的业务报文信息。
具体的,光接入设备200中,网络处理单元210接收第一下行数据包后,获取第一下行数据包的业务报文信息。其中,业务报文信息包括业务报文的地址信息、优先级以及协议信息,第一下行数据包为业务流的首个数据包。
S902,根据业务报文信息对应的业务属性信息,确定第二下行数据包的转发出口为第一PON端口。
具体的,网络处理单元210根据业务报文信息对应的业务属性信息,确定第二下行数据 包的转发出口为第一PON端口。其中,业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间。
S903,建立第一下行数据包对应的业务报文信息与第一PON端口的对应关系,并保存对应关系。
具体的,网络处理单元210建立第一下行数据包对应的业务报文信息与第一PON端口的对应关系,并将该对应关系发送至业务流转发单元220进行保存。
S904,接收第二下行数据包后,获取第二下行数据包的业务报文信息。
具体地,网络处理单元210继续接收第二下行数据包,并在接收到第二下行数据包后,获取第二下行数据包的业务报文信息。
S905,基于保存的业务报文信息与第一PON端口的对应关系,确定第二下行数据包的转发端口是第一PON端口。
具体地,网络处理单元210获取到获取第二下行数据包的业务报文信息,发现该第二下行数据包为业务流除第一下行数据包之外的数据包,即非首个数据包时,该网络处理单元210不再继续解析第二下行数据包的业务报文,而是将该第二下行数据包发送给业务流转发单元220,该业务流转发单元220接收到该第二下行数据包后,根据保存的业务报文信息与第一PON端口的对应关系,确定第二下行数据包的转发端口是第一PON端口,并将该第二下行数据包发送至业务调度管理单元230。
S906,将第一下行数据包和第二下行数据包发送至第一PON端口。
具体地,当网络处理单元210确定第一下行数据包的转发端口是第一PON端口,以及业务流转发单元220确定第二下行数据包的转发端口是第一PON端口后,网络处理单元210将第一下行数据包发送至业务调度管理单元230,业务流转发单元220将第二下行数据包发送至业务调度管理单元230,并通过业务调度管理单元230将第一下行数据包和第二下行数据包发送至第一PON端口。
需要说明的是,网络处理单元210可以在S901至S903之前的任何时候将该第一下行数据包发送至业务调度管理单元230,本申请不做限定。
S907,发送第一下行数据包和第二下行数据包。
具体地,PON模块/板卡240中的第一PON端口收到第一下行数据包和第二下行数据后,将第一下行数据包转发给下游设备或者下游节点。
应理解,第一下行数据包到达业务调度管理单元230的时间,与第二下行数据包到达业务调度管理单元230的时间可以不同,同时,第一下行数据包到达第一PON端口的时间,与第二下行数据包到达第一PON端口的时间可以不同,即,业务调度管理单元230可以在接收到第一下行数据包后,就将第一数据包转发给第一PON端口,而不必同时转发。
基于本申请实施例提供的光接入的方法,当光接入设备收到业务流对应的非首个数据包时,可通过建立的业务报文信息与PON端口的对应关系实现下行数据包的快速转发,而不必对第二下行数据包再次深度解析,降低了通信的时延,进一步地,提升了通信系统的性能。
图10是本申请实施例提供的接入设备1000的示意性框图。该接入设备1000包括收发单元1010和处理单元1020。收发单元1010可以实现相应的通信功能,处理单元1010用于进行数据处理。收发单元1010还可以称为通信接口或通信单元。
可选地,该接入设备1000还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1020可以读取存储单元中的指令和/或数据,以使得接入设备1000实现前述的 方法实施例(方法900)中的光接入设备所执行的动作S902、S903、S905以及S906。
如图11所示,本申请实施例还提供一种接入设备1100。该接入设备1100包括处理器1110,处理器1110与存储器1120耦合,存储器1120用于存储计算机程序或指令和/或数据,处理器1110用于执行存储器1120存储的计算机程序或指令和/或数据,使得上文图9的方法实施例中的方法被执行,即该处理器1110用于实现上文方法实施例中由光接入设备执行的操作。
可选地,该接入设备1100包括的处理器1110为一个或多个。
可选地,如图11所示,该接入设备1100还可以包括存储器1120。
可选地,该接入设备1100包括的存储器1120可以为一个或多个。
可选地,该存储器1120可以与该处理器1110集成在一起,或者分离设置。
可选地,如图11所示,该接入设备1100还可以包括收发器1130,收发器1130用于信号的接收和/或发送。例如,处理器1110用于控制收发器1130进行信号的接收和/或发送。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
此外,本申请实施例提供的光接入设备可以是一个或多个芯片。例如,该光接入设备可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包 括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种光接入设备,其特征在于,包括:网络处理单元、业务流转发单元、业务调度管理单元和至少两个无源光网络PON端口,
    所述网络处理单元,用于接收第一下行数据包后,获取所述第一下行数据包的业务报文信息,其中,所述业务报文信息包括所述业务报文的地址信息、优先级以及协议信息,所述第一下行数据包为业务流的首个数据包;
    所述网络处理单元,根据所述业务报文信息对应的业务属性信息,确定第二下行数据包的转发出口为所述至少两个PON端口中的第一PON端口,建立所述第一下行数据包对应的业务报文信息与所述第一PON端口的对应关系,其中,所述业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间;
    所述网络处理单元,将所述对应关系发送给所述业务流转发单元进行保存;
    所述网络处理单元,还用于接收第二下行数据包后,获取所述第二下行数据包的业务报文信息;
    所述业务流转发单元,基于保存的所述业务报文信息与所述第一PON端口的对应关系,确定所述第二下行数据包的转发端口是所述第一PON端口,其中,所述第二下行数据包为所述业务流除所述第一下行数据包之外的数据包;
    所述业务调度管理单元,用于将所述第一下行数据包和所述第二下行数据包发送至所述第一PON端口;
    所述至少两个PON端口,用于发送所述第一下行数据包和所述第二下行数据包。
  2. 根据权利要求1所述的设备,其特征在于,
    所述网络处理单元,还用于将所述第一下行数据包发送给所述业务调度管理单元。
  3. 根据权利要求1或2所述的设备,其特征在于,
    所述业务调度管理单元,基于所述业务属性信息将所述第一下行数据包或者所述第二下行数据包发送至所述第一PON端口。
  4. 根据权利要求1至3中任一项所述的设备,其特征在于,所述设备还包括:业务分发单元,
    所述业务分发单元,用于接收所述第一下行数据包和所述第二下行数据包,并将所述第一下行数据包和所述第二下行数据包发送给所述网络处理单元。
  5. 根据权利要求1至4中任一项所述的设备,其特征在于,所述设备还包括:专线直通单元,
    所述专线直通单元,用于将专线业务对应的所述第一下行数据包和所述第二下行数据包透传给所述至少两个PON端口中的第二PON端口。
  6. 根据权利要求1至5中任一项所述的设备,其特征在于,所述设备还包括:业务资源协同单元,
    所述网络处理单元,还用于将所述业务属性信息发送给所述业务资源协同单元;
    所述业务资源协同单元,基于所述业务属性信息确定资源预留策略或资源编排策略。
  7. 根据权利要求6所述的设备,其特征在于,所述设备还包括:至少一个PON模块/板卡,所述至少一个PON模块/板卡,基于所述资源预留策略或所述资源编排策略对所述第一下行数据包和所述第二下行数据包中的报文进行切片或时隙化处理,并按照预设的PON帧格式进行编排与传送。
  8. 根据权利要求1所述的设备,其特征在于,
    所述至少一个PON模块/板卡,还用于在所述第一下行数据包和所述第二下行数据包中添加第一标识,其中,所述第一标识用于标识所述业务流为硬时隙业务。
  9. 根据权利要求1所述的设备,其特征在于,所述设备还包括:第一动态带宽分配单元和至少一个PON模块/板卡,
    所述业务调度管理单元,用于接收上行带宽请求,并向所述第一动态带宽分配单元发送调度策略和所述上行带宽请求,其中,所述调度策略包括:上行接口带宽、系统转发能力、用户接入请求带宽、用户业务流优先级、业务价值、业务时延以及业务抖动的指标要求;
    所述第一动态带宽分配单元,用于接收所述调度策略和所述上行带宽请求,基于所述调度策略、所述上行带宽请求、所述至少一个PON模块/板卡的能力以及上行接口带宽确定所述至少一个PON模块/板卡的有效带宽。
  10. 根据权利要求9所述的设备,其特征在于,所述至少一个PON模块/板卡包括第二动态带宽分配单元,所述第二动态带宽分配单元用于根据所述有效带宽确定所述至少两个PON端口上行带宽配置。
  11. 根据权利要求1至10中任一项所述的设备,其特征在于,所述设备还包括:光传输网OTN接口、以太网接口,
    所述OTN接口,用于上行连接OTN网络,实现OTN连接业务;
    所述以太网接口,用于上行连接IP网络,实现网络之间互连的协议IP业务。
  12. 一种光接入的方法,其特征在于,包括:
    接收第一下行数据包后,获取所述第一下行数据包的业务报文信息,其中,所述业务报文信息包括所述业务报文的地址信息、优先级以及协议信息,所述第一下行数据包为业务流的首个数据包;
    根据所述业务报文信息对应的业务属性信息,确定第二下行数据包的转发出口为第一PON端口;
    建立所述第一下行数据包对应的业务报文信息与所述第一PON端口的对应关系,并保存所述对应关系,其中,所述业务属性信息包括以下至少一项:业务流属性、优先级、类型、流量大小、客户套餐类型、所述第一下行数据包或所述第二下行数据包的到达时间;
    接收所述第二下行数据包后,获取所述第二下行数据包的业务报文信息;
    基于所述业务报文信息与所述第一PON端口的对应关系,确定所述第二下行数据包的转发端口是所述第一PON端口,其中,所述第二下行数据包为所述业务流除所述第一下行数据包之外的数据包;
    将所述第一下行数据包和所述第二下行数据包发送至所述第一PON端口;
    发送所述第一下行数据包和所述第二下行数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    基于所述业务属性信息将所述第一下行数据包或者所述第二下行数据包发送至所述第一PON端口。
  14. 根据权利要求12或者13所述的方法,其特征在于,
    透传专线业务对应的所述第一下行数据包和所述第二下行数据包。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:基于所述业务属性信息确定资源预留策略或资源编排策略。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:基于所述资源预留策略或所述资源编排策略对所述第一下行数据包和所述第二下行数据包中的报文进行切片或时隙化处理,并按照预设的PON帧格式进行编排与传送。
  17. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述第一下行数据包和所述第二下行数据包中添加第一标识,其中,所述第一标识用于标识所述业务流为硬时隙业务。
  18. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收上行带宽请求,并发送调度策略和所述上行带宽请求,其中,所述调度策略包括:上行接口带宽、系统转发能力、用户接入请求带宽、用户业务流优先级、业务价值、业务时延以及业务抖动的指标要求;
    接收所述调度策略和所述上行带宽请求,基于所述调度策略、所述上行带宽请求、所述至少一个PON模块/板卡的能力以及上行接口带宽确定所述至少一个PON模块/板卡的有效带宽。
  19. 根据权利要求18所述的方法,其特征在于,根据所述有效带宽确定至少两个PON端口上行带宽配置。
  20. 一种网络系统,其特征在于,所述网络系统包括:光线路终端OLT和多个光网络单元ONU,所述OLT和所述ONU之间通过至少一个下行波长通道和一个及以上波长通道进行通信,其中,所述OLT包括如权利要求1至11中任一项所述的设备。
PCT/CN2023/090022 2022-04-29 2023-04-23 一种光接入设备、光接入的方法和系统 WO2023207833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210466534.8 2022-04-29
CN202210466534.8A CN117014743A (zh) 2022-04-29 2022-04-29 一种光接入设备、光接入的方法和系统

Publications (1)

Publication Number Publication Date
WO2023207833A1 true WO2023207833A1 (zh) 2023-11-02

Family

ID=88517646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090022 WO2023207833A1 (zh) 2022-04-29 2023-04-23 一种光接入设备、光接入的方法和系统

Country Status (2)

Country Link
CN (1) CN117014743A (zh)
WO (1) WO2023207833A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197627A (zh) * 2007-12-24 2008-06-11 中兴通讯股份有限公司 一种无源光网络业务的节能运行方法及系统
CN101741712A (zh) * 2008-11-18 2010-06-16 华为技术有限公司 支持基站数据交换的装置、系统及方法
CN102394776A (zh) * 2011-11-02 2012-03-28 深圳市共进电子股份有限公司 无源光网络中olt对onu进行动态网络配置的方法
WO2016132088A1 (fr) * 2015-02-19 2016-08-25 Sigfox Communication sans fil entre un reseau d'acces et un terminal a portee d'une pluralite de stations de base de type semi-duplex dudit reseau d'acces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197627A (zh) * 2007-12-24 2008-06-11 中兴通讯股份有限公司 一种无源光网络业务的节能运行方法及系统
CN101741712A (zh) * 2008-11-18 2010-06-16 华为技术有限公司 支持基站数据交换的装置、系统及方法
CN102394776A (zh) * 2011-11-02 2012-03-28 深圳市共进电子股份有限公司 无源光网络中olt对onu进行动态网络配置的方法
WO2016132088A1 (fr) * 2015-02-19 2016-08-25 Sigfox Communication sans fil entre un reseau d'acces et un terminal a portee d'une pluralite de stations de base de type semi-duplex dudit reseau d'acces

Also Published As

Publication number Publication date
CN117014743A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN107786465B (zh) 一种用于处理低延迟业务流的方法和装置
US20220217051A1 (en) Method, Device, and System for Determining Required Bandwidth for Data Stream Transmission
TWI478534B (zh) 用於對雙層網路中的上行傳輸時間進行調度的頭端節點、分支節點及其方法
EP3979577A1 (en) Queue congestion control method, apparatus, device and storage medium
US9900100B2 (en) Optical line terminal, communication control method, and communication control program
US20230300500A1 (en) Data Transmission Method and Related Device
WO2011140945A1 (zh) 一种业务数据传输方法及装置
WO2021254366A1 (zh) 切片数据传输方法及装置、电子设备及计算机可读存储介质
EP4387262A1 (en) Service data transmission method and related device
WO2018228025A1 (zh) 一种频谱整理的方法、装置、设备和系统
US11824963B2 (en) Packet processing method and device
WO2023207833A1 (zh) 一种光接入设备、光接入的方法和系统
US20230337266A1 (en) Method, and electronic device for allocating routing resources of wifi6 router
US11296813B2 (en) Packet processing method and device
US20220239996A1 (en) Bandwidth Assignment Method and Apparatus, and Bandwidth Check Method and Apparatus
CN116828024A (zh) 业务连接的标识方法、装置、系统及存储介质
WO2023005378A1 (zh) 一种级联ont的处理方法、装置和系统
CN109698982B (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
CN109150747B (zh) 一种变更业务带宽的方法、装置及计算机可读存储介质
Baziana i‐WABA: An efficient wavelengths arrangement and bandwidth allocation WDMA protocol for passive optical intra‐rack data center networks
CN113872880B (zh) 网络、数据传输的方法和装置
WO2024103769A1 (zh) 数据传输方法、装置、系统、设备及存储介质
WO2023142845A1 (zh) 一种时频资源的分配方法及相关设备
WO2022237860A1 (zh) 报文处理方法、资源分配方法以及相关设备
CN117081967A (zh) 传输检测方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795266

Country of ref document: EP

Kind code of ref document: A1