WO2023142845A1 - 一种时频资源的分配方法及相关设备 - Google Patents

一种时频资源的分配方法及相关设备 Download PDF

Info

Publication number
WO2023142845A1
WO2023142845A1 PCT/CN2022/142742 CN2022142742W WO2023142845A1 WO 2023142845 A1 WO2023142845 A1 WO 2023142845A1 CN 2022142742 W CN2022142742 W CN 2022142742W WO 2023142845 A1 WO2023142845 A1 WO 2023142845A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
message
management device
access management
time
Prior art date
Application number
PCT/CN2022/142742
Other languages
English (en)
French (fr)
Inventor
甘爽
谌金豆
李苗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22923630.2A priority Critical patent/EP4456637A1/en
Publication of WO2023142845A1 publication Critical patent/WO2023142845A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and in particular to a method for allocating time-frequency resources and related equipment.
  • Fiber to the room is a new home network access architecture
  • the optical fiber is pulled out from the signal box and placed in each room, and the optical cat is connected to the optical gateway through the optical fiber in each room and Provide users with a reliable wireless access point (access point, AP), so that wireless signals can cover every corner of the home scene.
  • a two-layer centralized scheduling architecture is proposed in which the optical gateway controls the optical modem for downlink time-frequency resource allocation and station (station, STA) uplink access management and control.
  • the optical gateway will issue instructions to the optical modem according to the air interface information, buffer information, and service type reported by the optical modem to allocate time-frequency resources for STAs.
  • the energy-saving status of STAs is independently maintained and updated by the optical modem. Assuming that the optical modem caches the downlink data corresponding to the STA in the dormant state, after the optical modem reports the cached information and service type to the optical gateway, the optical gateway thinks it can allocate time for the STA. frequency resources and send scheduling decisions to the optical modem. However, since the STA is in a dormant state, the STA will not receive the data sent by the optical modem, resulting in a waste of time-frequency resources.
  • the present application provides a method for allocating time-frequency resources and related equipment, which avoids waste of time-frequency resources.
  • the present application provides a method for allocating time-frequency resources.
  • the method is executed by an access management device.
  • the access management device receives the first message sent by the first AP.
  • the first message is used to instruct the first STA associated with the first AP to enter the sleep state.
  • the access management device determines that the first STA is in a dormant state according to the first message, and performs time-frequency resource scheduling, so as to allocate the first time-frequency resource to the STA in an awake state.
  • the first AP may know whether the first STA is in the awake state or in the sleep state. If the first STA enters the dormant state from the awake state, the first AP sends a message to the access management device to notify the first STA to enter the dormant state. The access management device will not allocate time-frequency resources for the first STA. In this way, even if there is data to be transmitted between the first AP and the first STA, the time-frequency resources will not be occupied and the first STA in the dormant state will not be occupied. The STA performs data interaction, avoiding the waste of time-frequency resources.
  • the second STA associated with the first AP is in the awake state
  • the access management device allocating the first time-frequency resource to the STA in the awake state includes: the access management device sends the first AP to the first AP A scheduling message, where the first scheduling message is used to instruct the first AP to use the first time-frequency resource to perform data interaction with the second STA in an awake state.
  • the access management device is associated with the second AP, and the second STA associated with the second AP is in an awake state
  • the allocation of the first time-frequency resource by the access management device to the STA in the awake state includes: The access management device sends a first scheduling message to the second AP, where the first scheduling message is used to instruct the second AP to use the first time-frequency resource to perform data interaction with the second STA in an awake state.
  • the access management device allocates time-frequency resources.
  • the access management device allocates the first time-frequency resource to the second STA associated with the second STA, which improves the flexibility of the solution.
  • the first message includes a first message type, an identifier of the first AP, and an identifier of the first STA.
  • the content carried in the first message is introduced, so that the access management device can formulate a scheduling policy according to the first message.
  • the first message is an optical network unit management control interface (ONU management and control interface, OMCI) message
  • the first message includes a first message type field and a first message content field
  • the first message type field Indicates the first message type
  • the first message content field indicates the identity of the first AP and the identity of the first STA.
  • the first message may adopt the OMCI message format defined in the existing standard, which facilitates standardized implementation of this solution.
  • the first message is an Ethernet frame
  • the first message includes a first type length field and a first load field
  • the first type length field indicates the first message type
  • the first load field indicates the first AP and the identity of the first STA.
  • the first message may be carried in an Ethernet frame format defined in an existing standard, which facilitates standardized implementation of the solution and improves the scalability of the solution.
  • the method further includes: the access management device receives a second message sent by the first AP, where the second message is used to instruct the first STA to enter the wake-up state.
  • the access management device determines that the first STA is in the awake state according to the second message, and sends a second scheduling message to the first AP, where the second scheduling message is used to instruct the first AP to use the second time-frequency resource to communicate with the STA in the awake state.
  • the first STA performs data exchange.
  • the first AP if the first STA switches from the sleep state to the wake-up state, the first AP will also notify the access management device, so that the access management device re-allocates time-frequency resources for the first STA to ensure that the first AP Data interaction with the first STA can be performed normally.
  • the second message includes the size of the data to be transmitted between the first AP and the first STA and a traffic identification mark (Traffic Identification, TID), so that the access management device can more reasonably provide The first STA allocates time-frequency resources.
  • TID Traffic Identification
  • the access management device before the access management device receives the first message sent by the first AP, the first time-frequency resource is pre-allocated to the first STA by the access management device.
  • a specific application scenario is provided.
  • the access management device may pre-allocate the first time-frequency resource to the first STA.
  • this pre-allocation operation can be understood as a local scheduling decision of the access management device, and does not necessarily pre-allocate the first time-frequency resource to the first STA through scheduling.
  • the access management device After the first STA switches to the dormant state, the access management device will readjust the decision to allocate the first time-frequency resource to other STAs in the wake-up state, ensuring that the first time-frequency resource can be effectively used.
  • the access management device is an optical gateway, and the first AP is an optical modem.
  • the access management device is an optical line terminal (optical line terminal, OLT), and the first AP is an optical network unit (optical network unit, ONU).
  • OLT optical line terminal
  • ONU optical network unit
  • this solution is applied to an optical access scenario, specifically an FTTR scenario, which realizes WIFI coverage of a home network and realizes reasonable allocation of time-frequency resources in this scenario.
  • this solution is applied to copper wire access scenarios, and the access management device is an access controller (access controller, AC), and the AC is connected to the AP through copper wires, which expands the applicable scenarios of this solution.
  • access controller access controller, AC
  • the present application provides a method for allocating time-frequency resources. This method is performed by the AP.
  • the AP acquires first state information of a first STA associated with the AP, where the first state information includes that the first STA enters a sleep state.
  • the AP sends a first message to the access management device, and the first message is used to instruct the first STA to enter the dormant state, so that the access management device determines that the first STA is in the dormant state, and allocates the first time-frequency resource For STAs in the awake state.
  • the second STA associated with the AP is in an awake state
  • the method further includes: the AP receives the first scheduling message sent by the access management device.
  • the AP performs data interaction with the second STA in an awake state by using the first time-frequency resource indicated by the first scheduling message.
  • the first message includes a first message type, an identifier of the first AP, and an identifier of the first STA.
  • the first message is an OMCI message
  • the first message includes a first message type field and a first message content field
  • the first message type field indicates the first message type
  • the first message content field indicates the AP's ID and the ID of the first STA.
  • the first message is an Ethernet frame
  • the first message includes a first type length field and a first load field
  • the first type length field indicates the first message type
  • the first load field indicates the identity of the AP and the identity of the first STA.
  • the updated first state information includes that the first STA enters the wake-up state
  • the method further includes: the AP sends a second message to the access management device, and the second message is used to instruct the first STA to enter the wake-up state .
  • the AP receives the second scheduling message sent by the access management device.
  • the AP performs data interaction with the first STA in an awake state by using the second time-frequency resource indicated by the second scheduling message.
  • the second message includes the size and TID of data to be transmitted between the AP and the first STA.
  • the first time-frequency resource is pre-allocated to the first STA by the access management device.
  • the access management device is an optical gateway, and the AP is an optical modem.
  • the access management device is an OLT, and the AP is an ONU.
  • the access management device is an AC.
  • the present application provides an access management device, including: a transceiver unit and a processing unit.
  • the transceiving unit is configured to: receive a first message sent by a first access point AP, where the first message is used to instruct a first STA associated with the first AP to enter a sleep state.
  • the processing unit is configured to: determine according to the first message that the first STA is in a dormant state, and allocate a first time-frequency resource to an STA in an awake state.
  • the second STA associated with the first AP is in an awake state.
  • the processing unit is specifically configured to: control the transceiver unit to send a first scheduling message to the first AP, the first scheduling message is used to instruct the first AP to use the first time-frequency resource and to be awake
  • the second STA in the state performs data interaction.
  • the present application provides an AP, including: a transceiver unit and a processing unit.
  • the processing unit is configured to: acquire first state information of a first station STA associated with the AP, where the first state information includes that the first STA enters a sleep state.
  • the transceiver unit is configured to: send a first message to an access management device, where the first message is used to instruct the first STA to enter a sleep state, so that the access management device determines that the first STA is in a sleep state state, and allocate the first time-frequency resource to the STA in the awake state.
  • the second STA associated with the AP is in an awake state.
  • the transceiving unit is specifically configured to: receive the first scheduling message sent by the access management device.
  • the processing unit is specifically configured to: use the first time-frequency resource indicated by the first scheduling message to perform data interaction with the second STA in an awake state.
  • the present application provides an access management device, including: a processor, a memory, and a transceiver.
  • the processor, the memory and the transceiver are connected to each other through a wire, and the processor invokes the program code in the memory to execute the method shown in any one of the implementation manners of the first aspect above.
  • the present application provides an AP, including: a processor, a memory, and a transceiver.
  • the processor, the memory and the transceiver are connected to each other through a wire, and the processor invokes the program code in the memory to execute the method shown in any one of the implementation manners of the second aspect above.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by hardware, any one of the above-mentioned steps executed by the access management device in the first aspect can be realized. Some or all steps of the method.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein, when the computer program is executed by hardware, any one of the methods performed by the AP in the second aspect above can be implemented. some or all of the steps.
  • the first AP may know whether the first STA is in an awake state or in a sleep state. If the first STA enters the dormant state from the awake state, the first AP sends a message to the access management device to notify the first STA to enter the dormant state. Furthermore, the access management device performs time-frequency resource scheduling according to the message reported by the first AP, so as to allocate the time-frequency resource to the STA in the wake-up state. In this way, even if there is data to be transmitted between the first AP and the first STA, time-frequency resources will not be occupied for data interaction with the first STA in a dormant state, thereby avoiding waste of time-frequency resources.
  • Figure 1 is a schematic diagram of the system architecture of FTTH
  • Figure 2 is a schematic diagram of the system architecture of FTTR
  • FIG. 3 is a schematic diagram of a first embodiment of a method for allocating time-frequency resources in the present application
  • FIG. 4 is a schematic diagram of the first frame structure of the first message in the present application.
  • FIG. 5 is a schematic diagram of a second frame structure of the first message in the present application.
  • FIG. 6 is a schematic diagram of a third frame structure of the first message in this application.
  • FIG. 7 is a schematic diagram of the content of the status information of the AP in this application.
  • FIG. 8 is a schematic diagram of a second embodiment of a method for allocating time-frequency resources in the present application.
  • FIG. 9 is a schematic structural diagram of a possible access management device
  • FIG. 10 is a schematic structural diagram of another possible access management device.
  • FIG. 11 is a schematic structural diagram of a possible AP
  • Fig. 12 is a schematic structural diagram of another possible AP.
  • the present application provides a method for allocating time-frequency resources and related equipment, which avoids waste of time-frequency resources.
  • first and second in the specification and claims of the present application and the above drawings are used to distinguish similar objects, but not to limit a specific sequence or sequence. It is to be understood that the above terms are interchangeable under appropriate circumstances such that the embodiments described herein can be practiced in sequences other than those described herein.
  • the terms “comprising” and “having”, as well as any variations thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, system, product, or device comprising a series of steps or units is not necessarily limited to those steps or units explicitly listed, but may include steps or units not explicitly listed or for these processes, methods, products, or Other steps or units inherent to equipment.
  • PON Passive optical network
  • FTTH fiber to the home
  • ONU optical network unit
  • FIG. 1 is a schematic diagram of the system architecture of FTTH.
  • the optical line terminal (OLT) is connected to the upper network side equipment (such as switches, routers, etc.), and the lower layer is connected to one or more optical distribution networks (ODN).
  • the ODN includes a passive optical splitter for optical power distribution, a trunk fiber connected between the passive optical splitter and the OLT, and a branch fiber connected between the passive optical splitter and the ONU.
  • the ODN When transmitting data downstream, the ODN transmits the downstream data of the OLT to each ONU through an optical splitter, and the ONU selectively receives the downstream data carrying its own identification.
  • the ODN When transmitting data upstream, the ODN combines the optical signals sent by N ONUs into one optical signal and transmits it to the OLT.
  • the ONU provides a user-side interface for the OAN and is connected to the ODN at the same time. If the ONU provides user port functions at the same time, such as the ONU provides Ethernet user ports or traditional telephone service (plain old telephone service, POTS) user ports, it is called an optical network termination (ONT).
  • ONT optical network termination
  • the optical fiber can be further extended to the residents' rooms. Installing the ONU inside the room shortens the distance between the user terminal and the ONU and improves the signal quality. This application scenario is called fiber to the room (FTTR).
  • FTTR fiber to the room
  • FIG. 2 is a schematic diagram of the system architecture of the FTTR.
  • FTTR network and FTTH network can be regarded as two-stage PON system.
  • the OLT in the first-level PON system (FTTH) is deployed in the central computer room, and the ONU is deployed in the information box of the home.
  • the OLT in the second-level PON system (FTTR) can replace the ONU in the FTTH and be deployed in the information box of the home.
  • the OLT in the FTTR scenario has similar functions to the OLT in the FTTH scenario.
  • the similar function of ONU in. That is to say, the OLT in FTTR can be used as a network device connecting FTTH and FTTR.
  • the ONU in FTTR can be deployed in each room of the home to connect with user terminals.
  • the ONU and the ONU in FTTH are essentially the same type of network equipment. The difference is that in FTTH, the ONU is generally deployed in an information box, and there is usually an access point (access point, AP) between it and the user terminal.
  • AP access point
  • the ONU enters each room, and the ONU also has the function of an AP, which can directly connect to the user terminal through WiFi.
  • the OLT can implement unified management and configuration of all ONUs. For example, the OLT may allocate uplink and downlink time-frequency resources to the user terminal associated with the ONU for data interaction between the ONU and the user terminal. It should be noted that in FTTR, the OLT can also be called “optical gateway”, and the ONU can also be called “optical modem” or “edge ONU”, and this application does not limit their specific names.
  • the method for allocating time-frequency resources can be applied to not only the optical access scenario described above, but also the copper wire access scenario.
  • the aforementioned OLT is replaced by an access controller (AC), the AC is connected to all APs through copper wires, and the AC performs unified management and configuration on all APs.
  • AC access controller
  • the OLT, optical gateway and AC are collectively referred to as “access management equipment” below, the ONU and optical modem are referred to as “APs”, and the user terminals associated with APs are referred to as “stations”. STA)".
  • FIG. 3 is a schematic diagram of a first embodiment of a method for allocating time-frequency resources in the present application.
  • the method for allocating time-frequency resources includes the following steps.
  • the first AP acquires energy saving state information of the first STA.
  • the first AP is associated with the first STA, and the first AP locally stores energy-saving state information of the first STA, wherein the energy-saving state information is used to reflect that the first STA is in an awake state or a sleep state.
  • the first STA notifies the first AP, and then the first AP updates the locally stored energy saving state information of the first STA.
  • the energy-saving state information of the first STA is that the first STA enters a sleep state. It should be noted that many energy-saving interaction mechanisms between APs and STAs are defined in the current standard, for example, the fast power save mechanism defined in the 802.11 protocol. This application does not limit the first AP to obtain the first STA The specific implementation manner of the energy-saving status information.
  • the first AP sends a first message to the access management device.
  • the first message sent by the first AP to the access management device is used to instruct the first STA associated with the first AP to enter a sleep state.
  • FIG. 4 is a schematic diagram of a first frame structure of a first message in this application.
  • the first message includes a first message type, an identifier of the first AP, and an identifier of the first STA.
  • the access management device can learn from the first message type that the first message reflects the energy saving state of the STA, and learn that the first message reflects the information related to the first AP and the first STA according to the identity of the first AP and the identity of the first STA. Energy saving state of the associated first STA.
  • the above-mentioned first message type may be used as an independent field to directly instruct the STA to enter the sleep state.
  • the above-mentioned first message type is used as an independent field only to indicate the type of the first message.
  • other specified fields in the first message will also be used to indicate that the STA enters the dormant state, for example
  • the specified field includes 1 bit. If the bit is 0, it indicates the wake-up state, and if the bit is 1, it indicates the sleep state.
  • the first message may also include other content such as a message identifier, which is not specifically limited here.
  • the above-mentioned first message may adopt a newly defined message structure, or may adopt a message structure defined in an existing standard.
  • Several implementation manners in which the first message adopts a message structure in an existing standard are introduced below with reference to examples.
  • Embodiment 1 The first message uses an optical network unit management and control interface (ONU management and control interface, OMCI) message.
  • ONU management and control interface OMCI
  • FIG. 5 is a schematic diagram of a second frame structure of the first message in this application.
  • the OMCI message encapsulated by the gigabit passive optical network encapsulation method includes: a GEM frame header (GPON encapsulation method header, GEM header), which is used to indicate the start of the frame.
  • transaction correlation identifier a set of messages corresponding to a request and a response.
  • message type used to define the message type.
  • Device type (device identifier): Among them, 0xA represents the Baseline class, and 0xB represents the Extend class.
  • Message identifier The size is 4 bytes, the entity ID is two bytes, and the instance ID is two bytes.
  • OMCI tail mainly used to fill the check code.
  • the message type field indicates the first message type, and the present application may add a new message type to the message types already defined in the existing standard, for the AP to report the STA's energy-saving status to the access management device.
  • the message type field may be set to 0x1d.
  • a message content field is also defined, through which the identity of the first AP and the identity of the first STA can be indicated.
  • Embodiment 2 The first message is carried by an Ethernet frame.
  • FIG. 6 is a schematic diagram of a third frame structure of the first message in this application.
  • the Ethernet frame includes: destination address (destination address), source address (source address), type length (type/length) and load (data).
  • the type length field indicates the first message type, and this application may add a new message type among the message types defined in the existing standard, for the AP to report the STA's energy-saving status to the access management device.
  • the Type Length field may be set to 0xAABB.
  • the load field is also defined, and the load field can indicate the identity of the first AP and the identity of the first STA.
  • the above first message may adopt the message format of OMCI, or may be carried by an Ethernet frame on the upper layer of the OMCI message. If the present application is applied to a copper wire access scenario, the above-mentioned first message will be carried by an Ethernet frame.
  • the access management device determines according to the first message that the first STA is in a dormant state, and allocates the first time-frequency resource to the STA in an awake state.
  • the access management device may learn from the first message that the first STA associated with the first AP has entered the dormant state, then the access management device may allocate the first time-frequency resource to other STAs that are currently in the awake state .
  • the first STA has data to be transmitted with the first STA before entering the sleep state, and the first AP may report information related to the data to be transmitted to the access management device
  • the access management device will consider that the first STA can participate in scheduling. For example, the access management device may pre-allocate the first time-frequency resource to the first STA. Wherein, this pre-allocation operation can be understood as a local scheduling decision of the access management device, and does not necessarily pre-allocate the first time-frequency resource to the first STA through scheduling. After the first STA switches to the dormant state, the access management device will readjust the scheduling decision to allocate the first time-frequency resource to other STAs in the awake state. For another example, the access management device allocates time-frequency resources for the first STA through an actual scheduling operation, and after the first STA switches to a dormant state, the access management device temporarily no longer allocates time-frequency resources for the first STA.
  • the first AP can also obtain the energy-saving status of the first STA. information and report to the access management device, then the access management device will not allocate time-frequency resources for the first STA. That is to say, no matter whether the first AP and the first STA are currently going to perform data interaction, as long as the first STA enters the dormant state, the first AP will notify the access management device, and the access management device will not Then allocate time-frequency resources for the first STA.
  • the manner in which the access management device allocates the first time-frequency resource will be introduced below in combination with several specific application scenarios.
  • Application Scenario 1 The access management device allocates time-frequency resources to the second STA associated with the first AP.
  • the second STA associated with the first AP is in an awake state, and there is data to be transmitted between the first AP and the second STA. Since the first AP will not notify the access management device that the second STA enters the sleep state, the access management device will determine that the second STA is in the wake-up state and allocate time-frequency resources to the second STA. Specifically, the access management device sends a first scheduling message to the first AP, and the first AP uses the first time-frequency resource indicated by the first scheduling message to perform data interaction with the second STA.
  • Application Scenario 2 The access management device allocates time-frequency resources to the second STA associated with the second AP.
  • FIG. 7 is a schematic diagram of content of status information of an AP in this application.
  • the AP status information includes: AP ID, scheduling flag, STA ID, energy-saving flag, modulation and coding strategy (Modulation and Coding Strategy, MCS), traffic identification flag (Traffic Identification, TID) and pending Transfer data size.
  • the data to be transmitted includes uplink data and/or downlink data.
  • the scheduling flag is used to indicate whether the AP can participate in the scheduling decision of the access management device. For example, if the scheduling flag is 0, it means that the AP cannot participate in the scheduling decision of the access management device, and if the scheduling flag is 1, it means that the AP can participate in the scheduling decision of the access management device. Scheduling decisions.
  • the energy-saving flag is used to indicate the energy-saving state of the STA associated with the AP. For example, an energy-saving flag of 0 indicates that the STA is in an awake state, and an energy-saving flag of 1 indicates that the STA is in a sleep state.
  • the flow identity mark is used to indicate the types of services transmitted between the AP and the STA.
  • the access management device may determine that the second STA associated with the second AP is in an awake state by comparing the state information of each AP, and allocate time-frequency resources to the second STA. Specifically, the access management device sends a first scheduling message to the second AP, and the second AP uses the first time-frequency resource indicated by the first scheduling message to perform data interaction with the second STA.
  • the first AP may know whether the first STA is in an awake state or in a sleep state. If the first STA enters the dormant state from the awake state, the first AP sends a message to the access management device to notify the first STA to enter the dormant state. Furthermore, the access management device performs time-frequency resource scheduling according to the message reported by the first AP, so as to allocate the time-frequency resource to the STA in the wake-up state. In this way, even if there is data to be transmitted between the first AP and the first STA, time-frequency resources will not be occupied for data interaction with the first STA in a dormant state, thereby avoiding waste of time-frequency resources.
  • the first AP will also notify the access management device, and then the access management device will re-allocate time-frequency resources for the first STA .
  • the following will be introduced through specific embodiments.
  • FIG. 8 is a schematic diagram of a second embodiment of a method for allocating time-frequency resources in this application.
  • the method for allocating time-frequency resources includes the following steps.
  • the first AP acquires the energy saving status information of the first STA.
  • the first STA When the energy saving state of the first STA changes, the first STA notifies the first AP, and then the first AP updates the locally stored energy saving state information of the first STA.
  • the energy-saving state information of the first STA is that the first STA enters the wake-up state. It should be understood that, for a specific implementation manner for the first AP to obtain the energy-saving status information of the first STA, reference may be made to the relevant description of step 303 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • the first AP sends a second message to the access management device.
  • the second message sent by the first AP to the access management device is used to instruct the first STA associated with the first AP to enter the wake-up state.
  • the message format of the second message in this embodiment is similar to that of the first message in the embodiment shown in FIG. 3 above, and the only difference lies in the content of the indication.
  • the second message includes the second message type, the identifier of the first AP, and the identifier of the first STA.
  • the format of the second message reference may be made to the related introduction to the format of the first message in the embodiment shown in FIG. 3 , and details are not repeated here.
  • the second message may also include MCS, TID, and the size of data to be transmitted between the first AP and the first STA, so that the access management device can more reasonably allocate time-frequency resources. It should be noted that, if the second message adopts the message format shown in FIG. 5 above, the MCS, TID and the size of the data to be transmitted are carried in the message content field. If the second message adopts the message format shown in FIG. 6 above, the MCS, TID and the size of the data to be transmitted are carried in the payload field.
  • the access management device sends a second scheduling message to the first AP.
  • the access management device updates the locally stored state information of the first STA according to the second message reported by the first AP.
  • the energy-saving flag will be set to 0 to indicate that the first STA is in the wake-up state, and the scheduling flag to be 1 to indicate that the first AP can participate in the scheduling decision of the access management device.
  • the access management device may allocate the second time-frequency resource to the first STA according to information such as MCS, TID, and data size to be transmitted in the second message, and send a second scheduling message to the first AP to notify the Scheduling decisions.
  • the first AP performs data interaction with the first STA by using the second time-frequency resource.
  • the first AP performs data interaction with the first STA by using the second time-frequency resource indicated by the second scheduling message.
  • the method for allocating time-frequency resources in the embodiment of the present application is introduced above, and the access management device and the AP in the embodiment of the present application are introduced below.
  • Fig. 9 is a schematic structural diagram of a possible access management device.
  • the access management device includes a transceiver unit 901 and a processing unit 902 .
  • the transceiving unit 901 is configured to perform message transceiving operations in the embodiments shown in FIG. 3 and FIG. 8 .
  • the processing unit 902 is configured to perform other operations in the embodiments shown in FIG. 3 and FIG. 8 above except message sending and receiving.
  • Fig. 10 is a schematic structural diagram of another possible access management device.
  • the access management device includes a processor 1001 , a memory 1002 and a transceiver 1003 .
  • the processor 1001, memory 1002 and transceiver 1003 are connected to each other through wires, wherein the memory 1002 is used to store program instructions and data.
  • Transceiver 1003 includes a transmitter and a receiver. Specifically, the transceiver 1003 is configured to perform the operations of sending and receiving messages in the above embodiments shown in FIG. 3 and FIG. 8 .
  • the processor 1001 is configured to perform other operations in the above embodiments shown in FIG. 3 and FIG. 8 except message sending and receiving.
  • the processor 1001 may include the processing unit 902 shown in FIG. 9 above
  • the transceiver 1003 may include the transceiver unit 901 shown in FIG. 9 above.
  • Fig. 11 is a schematic structural diagram of a possible AP.
  • the access management device includes a transceiver unit 1101 and a processing unit 1102 .
  • the transceiving unit 1101 is configured to perform the operations of sending and receiving messages in the above embodiments shown in FIG. 3 and FIG. 8 .
  • the processing unit 1102 is configured to perform other operations in the above embodiments shown in FIG. 3 and FIG. 8 except message sending and receiving.
  • Fig. 12 is a schematic structural diagram of another possible AP.
  • the AP includes a processor 1201 , a memory 1202 and a transceiver 1203 .
  • the processor 1201, memory 1202 and transceiver 1203 are connected to each other through wires, wherein the memory 1202 is used to store program instructions and data.
  • Transceiver 1203 includes a transmitter and a receiver. Specifically, the transceiver 1203 is configured to perform the operations of sending and receiving messages in the above embodiments shown in FIG. 3 and FIG. 8 .
  • the processor 1201 is configured to perform other operations in the above-mentioned embodiments shown in FIG. 3 and FIG. 8 except message sending and receiving.
  • the processor 1201 may include the processing unit 1102 shown in FIG. 11 above
  • the transceiver 1203 may include the transceiver unit 1101 shown in FIG. 11 above.
  • the processor shown in the above-mentioned Fig. 10 and Fig. 12 can adopt a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit ASIC, or at least one integrated circuit for Relevant programs are executed to realize the technical solutions provided by the embodiments of the present application.
  • the memories shown in FIGS. 10 and 12 above can store operating systems and other application programs.
  • the program codes for realizing the technical solutions provided by the embodiments of the present application are stored in a memory and executed by a processor.
  • the processor may include a memory inside.
  • the processor and memory are two separate structures.
  • the above-mentioned processing unit or processor can be a central processing unit, a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , transistor logic devices, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种时频资源的分配方法及相关设备。本申请实施例方法包括:首先,AP获取与AP关联的第一STA的第一状态信息,该第一状态信息包括第一STA进入休眠状态。之后,AP向接入管理设备发送第一消息,第一消息用于指示第一STA进入休眠状态。进而,接入管理设备根据第一消息更新本地维护的第一STA的状态信息,并进行时频资源调度以将第一时频资源分配给处于唤醒状态的STA。通过上述方式,就算第一AP与第一STA之间具有待传输的数据,也不会占用时频资源与进入休眠状态的第一STA进行数据交互,避免了时频资源的浪费。

Description

一种时频资源的分配方法及相关设备
本申请要求于2022年1月26日提交中国国家知识产权局、申请号为202210096407.3、申请名称为“一种时频资源的分配方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种时频资源的分配方法及相关设备。
背景技术
光纤到房间(fiber to the room,FTTR)是一种新的家庭网络接入架构,将光纤从信号箱拉出布放到每一个房间,光猫通过每个房间的光纤接入到光网关并为用户提供可靠的无线接入点(access point,AP),让无线信号覆盖到家庭场景的每一个角落。随着FTTR架构的不断演进,通过光网关控制光猫进行下行时频资源分配以及站点(station,STA)上行接入管控的两层集中式调度架构被提出。光网关会根据光猫上报的空口信息、缓存信息以及业务类型向光猫下发指令,以为STA分配时频资源。
然而,STA的节能状态由光猫独立维护与更新,假设光猫缓存有休眠状态STA对应的下行数据,光猫将缓存信息以及业务类型上报到光网关后,光网关认为可以为该STA分配时频资源并发送调度决策到光猫。但是,由于STA处于休眠状态,STA并不会接收光猫发送的数据,导致时频资源的浪费。
发明内容
本申请提供了一种时频资源的分配方法及相关设备,避免了时频资源的浪费。
第一方面,本申请提供了一种时频资源的分配方法。该方法由接入管理设备执行。首先,接入管理设备接收第一AP发送的第一消息。其中,该第一消息用于指示与第一AP关联的第一STA进入休眠状态。进而,接入管理设备根据第一消息确定所述第一STA处于休眠状态,并进行时频资源调度,以将第一时频资源分配给处于唤醒状态的STA。
在该实施方式中,第一AP可以获知第一STA处于唤醒状态还是休眠状态。如果第一STA从唤醒状态进入休眠状态,第一AP会向接入管理设备发送消息以通知第一STA进入休眠状态。接入管理设备就不会为第一STA分配时频资源,这样一来,就算第一AP与第一STA之间具有待传输的数据,也不会占用时频资源与进入休眠状态的第一STA进行数据交互,避免了时频资源的浪费。
在一些可能的实施方式中,与第一AP关联的第二STA处于唤醒状态,接入管理设备将第一时频资源分配给处于唤醒状态的STA包括:接入管理设备向第一AP发送第一调度消息,第一调度消息用于指示第一AP采用第一时频资源与处于唤醒状态的第二STA进行数据交互。在该实施方式中,提供了一种接入管理设备分配时频资源的具体实施方式,增强了本方案的实用性。
在一些可能的实施方式中,接入管理设备与第二AP关联,与第二AP关联的第二STA处于唤醒状态,接入管理设备将第一时频资源分配给处于唤醒状态的STA包括:接入管理设备向第二AP发送第一调度消息,第一调度消息用于指示第二AP采用第一时频资源与处于唤醒状态的第二STA进行数据交互。在该实施方式中,提供了另一种接入管理设备分配时频资源的具体实施方式,如果包括第一STA在内与第一AP关联的所有STA都进入休眠状态,第一AP暂时将不再参与资源调度,接入管理设备将第一时频资源分配给与第二STA关联的第二STA,提高了本方案的灵活性。
在一些可能的实施方式中,第一消息包括第一消息类型、第一AP的标识和第一STA的标识。在该实施方式中,介绍了第一消息所携带的内容,便于接入管理设备根据第一消息制定调度策略。
在一些可能的实施方式中,第一消息为光网络单元管理控制接口(ONU management and control interface,OMCI)消息,第一消息包括第一消息类型字段和第一消息内容字段,第一消息类型字段指示第一消息类型,第一消息内容字段指示第一AP的标识和第一STA的标识。在该实施方式中,第一消息可以采用现有标准中定义的OMCI消息格式,便于本方案进行标准化实现。
在一些可能的实施方式中,第一消息为以太网帧,第一消息包括第一类型长度字段和第一负载字段,第一类型长度字段指示第一消息类型,第一负载字段指示第一AP的标识和第一STA的标识。在该实施方式中,第一消息可以采用现有标准中定义的以太网帧格式承载,便于本方案进行标准化实现,并提高了本方案的扩展性。
在一些可能的实施方式中,方法还包括:接入管理设备接收第一AP发送的第二消息,第二消息用于指示第一STA进入唤醒状态。接入管理设备根据第二消息确定所述第一STA处于唤醒状态,并向第一AP发送第二调度消息,第二调度消息用于指示第一AP采用第二时频资源与处于唤醒状态的第一STA进行数据交互。在该实施方式中,若第一STA从休眠状态又切换到唤醒状态,第一AP也会通知接入管理设备,以便接入管理设备重新为第一STA分配时频资源,以保证第一AP与第一STA可以正常进行数据交互。
在一些可能的实施方式中,第二消息包括第一AP与第一STA之间待传输的数据大小和流量身份标记(Traffic Identification,TID),以便于接入管理设备根据实际需要更合理地为第一STA分配时频资源。
在一些可能的实施方式中,接入管理设备接收第一AP发送的第一消息之前,第一时频资源由接入管理设备预分配给第一STA。在该实施方式中,提供了一种具体的应用场景,第一STA处于唤醒状态时,接入管理设备可以将第一时频资源预分配给第一STA。其中,这种预分配的操作可以理解为接入管理设备本地的调度决策,并不一定通过调度实际将第一时频资源预分配给第一STA。在第一STA切换到休眠状态后,接入管理设备将重新调整调到决策,以将第一时频资源分配给处于唤醒状态的其他STA,保证了第一时频资源能有得到有效利用。
在一些可能的实施方式中,接入管理设备是光网关,第一AP是光猫。或者,接入管理设备是光线路终端(optical line terminal,OLT),第一AP是光网络单元(optical network unit,ONU)。在该实施方式中,本方案应用于光接入场景,具体可以是FTTR的场景,实现了家庭网络的WIFI覆盖,并实现了该场景下时频资源的合理调配。
在一些可能的实施方式中,本方案应用于铜线接入场景,接入管理设备是接入控制器(accesscontroller,AC),AC通过铜线与AP连接,扩展了本本方案适用的场景。
第二方面,本申请提供了一种时频资源的分配方法。该方法由AP执行。首先,AP获取与AP关联的第一STA的第一状态信息,该第一状态信息包括第一STA进入休眠状态。进而,AP向接入管理设备发送第一消息,第一消息用于指示第一STA进入休眠状态,以使得接入管理设备确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
在一些可能的实施方式中,与AP关联的第二STA处于唤醒状态,方法还包括:AP接收接入管理设备发送的第一调度消息。AP采用第一调度消息指示的第一时频资源与处于唤醒状态的第二STA进行数据交互。
在一些可能的实施方式中,第一消息包括第一消息类型、第一AP的标识和第一STA的标识。
在一些可能的实施方式中,第一消息为OMCI消息,第一消息包括第一消息类型字段和第一消息内容字段,第一消息类型字段指示第一消息类型,第一消息内容字段指示AP的标识和第一STA的标识。
在一些可能的实施方式中,第一消息为以太网帧,第一消息包括第一类型长度字段和第一负载字段,第一类型长度字段指示第一消息类型,第一负载字段指示AP的标识和第一STA的标识。
在一些可能的实施方式中,更新后的第一状态信息包括第一STA进入唤醒状态,方法还包括:AP向接入管理设备发送第二消息,第二消息用于指示第一STA进入唤醒状态。AP接收接入管理设备发送的第二调度消息。AP采用第二调度消息指示的第二时频资源与处于唤醒状态的第一STA进行数据交互。
在一些可能的实施方式中,第二消息包括AP与第一STA之间待传输的数据大小和TID。
在一些可能的实施方式中,AP获取第一STA的第一状态信息之前,第一时频资源由接入管理设备预分配给第一STA。
在一些可能的实施方式中,接入管理设备是光网关,AP是光猫。或者,接入管理设备是OLT,AP是ONU。
在一些可能的实施方式中,接入管理设备是AC。
第三方面,本申请提供了一种接入管理设备,包括:收发单元和处理单元。所述收发单元用于:接收第一接入点AP发送的第一消息,所述第一消息用于指示与所述第一AP关联的第一STA进入休眠状态。所述处理单元用于:根据所述第一消息确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
在一些可能的实施方式中,与所述第一AP关联的第二STA处于唤醒状态。所述处理单元具体用于:控制所述收发单元向所述第一AP发送第一调度消息,所述第一调度消息用于指示所述第一AP采用所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
第四方面,本申请提供了一种AP,包括:收发单元和处理单元。所述处理单元用于:获取与所述AP关联的第一站点STA的第一状态信息,所述第一状态信息包括所述第一STA进入休眠状态。所述收发单元用于:向接入管理设备发送第一消息,所述第一消息用于指示所述第一STA进入休眠状态,以使得所述接入管理设备确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
在一些可能的实施方式中,与所述AP关联的第二STA处于唤醒状态。所述收发单元具体用于:接收所述接入管理设备发送的第一调度消息。所述处理单元具体用于:采用所述第一调度消息指示的所述第一时频资源与处于唤醒状态的第二STA进行数据交互。
第五方面,本申请提供了一种接入管理设备,包括:处理器、存储器以及收发器。其中,该处理器、该存储器以及该收发器通过线路互相连接,该处理器调用该存储器中的程序代码用于执行上述第一方面中任一实施方式所示的方法。
第六方面,本申请提供了一种AP,包括:处理器、存储器以及收发器。其中,该处理器、该存储器以及该收发器通过线路互相连接,该处理器调用该存储器中的程序代码用于执行上述第二方面中任一实施方式所示的方法。
第七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,其中,计算机程序被硬件执行时能够实现上述第一方面中由接入管理设备执行的任意一种方法的部分或全部步骤。
第八方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,其中,计算机程序被硬件执行时能够实现上述第二方面中由AP执行的任意一种方法的部分或全部步骤。
本申请实施例中,第一AP可以获知第一STA处于唤醒状态还是休眠状态。如果第一STA从唤醒状态进入休眠状态,第一AP会向接入管理设备发送消息以通知第一STA进入休眠状态。进而,接入管理设备将根据第一AP上报的消息进行时频资源调度,以将时频资源分配给处于唤醒状态的STA。这样一来,就算第一AP与第一STA之间具有待传输的数据,也不会占用时频资源与进入休眠状态的第一STA进行数据交互,避免了时频资源的浪费。
附图说明
图1为FTTH的系统架构示意图;
图2为FTTR的系统架构示意图;
图3为本申请中时频资源的分配方法的第一个实施例示意图;
图4为本申请中第一消息的第一种帧结构示意图;
图5为本申请中第一消息的第二种帧结构示意图;
图6为本申请中第一消息的第三种帧结构示意图;
图7为本申请中AP的状态信息的内容示意图;
图8为本申请中时频资源的分配方法的第二个实施例示意图;
图9为一种可能的接入管理设备的结构示意图;
图10为另一种可能的接入管理设备的结构示意图;
图11为一种可能的AP的结构示意图;
图12为另一种可能的AP的结构示意图。
具体实施方式
本申请提供了一种时频资源的分配方法及相关设备,避免了时频资源的浪费。需要说明的是,本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”等用于区别类似的对象,而非限定特定的顺序或先后次序。应该理解,上述术语在适当情况下可以互换,以便在本申请描述的实施例能够以除了在本申请描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
无源光网络(passive optical network,PON)是光接入网的一种实现技术,PON是一种点对多点传送的光接入技术。当前的PON系统主要用于光纤到户(fiber to the home,FTTH)场景,每个家庭用户只会有一个光网络单元(optical network unit,ONU)。
图1为FTTH的系统架构示意图。光线路终端(optical line terminal,OLT)连接上层的网络侧设备(如交换机、路由器等),下层连接一个或者多个光分配网络(optical distribution network,ODN)。ODN包括用于光功率分配的无源光分光器、连接在无源光分光器和OLT之间的主干光纤,以及连接在无源光分光器和ONU之间的分支光纤。下行传输数据时,ODN将OLT下行的数据通过分光器传输到各个ONU,ONU选择性接收携带自身标识的下行数据。上行传输数据时,ODN将N路ONU发送的光信号组合成一路光信号传输到OLT。ONU为OAN提供用户侧接口,同时与ODN相连。如果ONU同时提供用户端口功能,如ONU提供以太网用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为光网络终端(optical network termination,ONT)。
在FTTH的基础上,为了解决家庭网络WIFI覆盖的问题,还可以把光纤进一步延伸至住户房间内。在房间内部安装ONU,这样就缩小了用户终端与ONU的距离,提高了信号质量。这种应用场景称之为光纤到房间(fiber to the room,FTTR)。
图2为FTTR的系统架构示意图。FTTR网络和FTTH网络可以看作是两级PON系统。第一级PON系统(FTTH)中的OLT部署在中心机房,ONU部署在家庭的信息箱中。第二级PON系统(FTTR)中的OLT可以代替FTTH中的ONU部署在家庭的信息箱中,该OLT在FTTR场景中具备与FTTH场景中OLT的类似功能,同时该OLT也可以具备与FTTH场景中ONU的类似功能。也即是说,FTTR中的OLT可以作为FTTH和FTTR之间起承上启下作用的网络设备。FTTR中的ONU可以部署在家庭的各房间内,用于和用户终端之间相连,该ONU和FTTH中的ONU在本质上是同一类型的网络设备。不同的是,FTTH中ONU一般部署在信息箱内,与用户终端之间通常还会相隔一个接入点(accesspoint,AP)。而FTTR中ONU进入每个房间,并且该ONU还具备AP的功能,可直接与用户终端进行WiFi连接。
应理解,在FTTR中,OLT可以实现对所有ONU的统一管理和配置。例如,OLT可以给与ONU关联的用户终端分配上下行的时频资源,用于ONU与用户终端进行数据交互。需要说明的是,在FTTR中,OLT也可以称之为“光网关”,ONU也可以称之为“光猫”或“边缘ONU”,本申请不限定其具体的名称。
还应理解,本申请所提供的时频资源的分配方法除了可应用于上述介绍的光接入场景外,还可以应用于铜线接入场景。例如,采用接入控制器(accesscontroller,AC)代替上述的OLT,AC通过铜线与所有AP连接,AC对所有AP进行统一管理和配置。
为了便于介绍,下文中统一将OLT、光网关和AC称之为“接入管理设备”,将ONU和光猫称之为“AP”,将与AP关联的用户终端称之为“站点(station,STA)”。
图3为本申请中时频资源的分配方法的第一个实施例示意图。在该示例中,时频资源的分配方法包括如下步骤。
301、第一AP获取第一STA的节能状态信息。
本实施例中,第一AP与第一STA关联,第一AP本地存储有第一STA的节能状态信息,其中,该节能状态信息用于反映第一STA处于唤醒状态或休眠状态。当第一STA的节能状态发生改变时,第一STA会通知第一AP,进而第一AP更新本地存储的第一STA的节能状态信息。在本实施例中,第一STA的节能状态信息为第一STA进入休眠状态。需要说明的是,当 前的标准中定义了很多AP与STA之间的节能交互机制,例如,802.11协议中定义的快速省电(fast power save)机制,本申请不限定第一AP获取第一STA的节能状态信息的具体实现方式。
302、第一AP向接入管理设备发送第一消息。
第一AP向接入管理设备发送的第一消息用于指示与第一AP关联的第一STA进入休眠状态。图4为本申请中第一消息的第一种帧结构示意图。如图4所示,第一消息包括第一消息类型、第一AP的标识和第一STA的标识。其中,接入管理设备可以根据第一消息类型获知该第一消息是反映STA节能状态的消息,并根据第一AP的标识和第一STA的标识获知该第一消息反映的是与第一AP关联的第一STA的节能状态。作为一种实现方式,上述第一消息类型可以作为一个独立的字段直接指示STA进入休眠状态。作为另一种实现方式,上述第一消息类型作为一个独立的字段仅用于指示该第一消息的类型,在此基础上还将结合第一消息中的其他指定字段指示STA进入休眠状态,例如该指定字段包括1个比特位,若该比特位是0则表示唤醒状态,若该比特位是1则表示休眠状态。应理解,第一消息除了包括上述介绍的内容外,还可以包括消息标识等其他内容,具体此处不做限定。
需要说明的是,上述第一消息可以采用新定义的消息结构,也可以采用现有标准中定义的消息结构。下面结合示例介绍几种第一消息采用现有标准中消息结构的实施方式。
实施方式1:第一消息采用光网络单元管理控制接口(ONU management and control interface,OMCI)消息。
图5为本申请中第一消息的第二种帧结构示意图。如图5所示,采用吉比特无源光网络封装方法(gigabit passive optical network encapsulation method,GPON)封装的OMCI消息包括:GEM帧头(GPON encapsulation method header,GEM header),用于指示帧开始。处理相关标识符(transaction correlation identifier):一组对应请求和响应的消息。消息类型(message type):用于定义消息类型。设备类型(device identifier):其中,0xA表示Baseline类,0xB表示Extend类。消息标识符(message identifier):大小为4字节,两字节的实体ID,两字节的实例ID。消息内容(message contents):用于表示帧净荷。OMCI尾部(OMCItrailer):主要用来填充校验码。在该实施方式中,消息类型字段指示第一消息类型,本申请可以在现有标准已经定义的消息类型中新增一种消息类型,用于AP向接入管理设备上报STA的节能状态。作为一个示例,可以将消息类型字段设置为0x1d。并且,对消息内容字段也进行了定义,通过消息内容字段可以指示第一AP的标识和第一STA的标识。
实施方式2:第一消息通过以太网帧承载。
图6为本申请中第一消息的第三种帧结构示意图。如图6所示,以太网帧包括:目的地址(destination address)、源地址(source address)、类型长度(type/length)和负载(data)。其中,类型长度字段指示第一消息类型,本申请可以在现有标准已经定义的消息类型中新增一种消息类型,用于AP向接入管理设备上报STA的节能状态。作为一个示例,可以将类型长度字段设置为0xAABB。并且,对负载字段也进行了定义,通过负载字段可以指示第一AP的标识和第一STA的标识。
需要说明的是,若本申请应用于光接入的PON系统中,上述第一消息既可以采用OMCI的消息格式,也可以通过OMCI消息上一层的以太网帧承载。若本申请应用于铜线接入场景中,上述第一消息将通过以太网帧承载。
303、接入管理设备根据第一消息确定第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
本实施例中,接入管理设备可以根据第一消息获知与第一AP关联的第一STA进入休眠状态,那么,接入管理设备可以将第一时频资源分配给当前处于唤醒状态的其他STA。
应理解,在一种可能的实施方式中,第一STA在进入休眠状态之前与第一STA之间具有待传输数据,第一AP可以将与待传输数据相关的信息上报至接入管理设备,接入管理设备会认为第一STA可以参与调度。例如,接入管理设备可以将第一时频资源预分配给第一STA。其中,这种预分配的操作可以理解为接入管理设备本地的调度决策,并不一定通过调度实际将第一时频资源预分配给第一STA。在第一STA切换到休眠状态后,接入管理设备将重新调整调度决策,以将第一时频资源分配给处于唤醒状态的其他STA。又例如,接入管理设备通过实际的调度操作为第一STA分配了时频资源,在第一STA切换到休眠状态后,接入管理设备暂时将不再为第一STA分配时频资源。
需要说明的是,在实际应用中,就算第一AP与第一STA没有进行数据交互或者第一AP与第一STA之间没有待传输的数据,第一AP也可以获取第一STA的节能状态信息并上报给接入管理设备,那么接入管理设备就不会为第一STA分配时频资源。也就是说,无论当前第一AP与第一STA是否要进行数据交互,只要第一STA进入休眠状态第一AP就会通知接入管理设备,在第一STA重新唤醒之前接入管理设备将不再为第一STA分配时频资源。
下面将结合几种具体应用场景对接入管理设备分配第一时频资源的方式进行介绍。
应用场景1:接入管理设备给与第一AP关联的第二STA分配时频资源。
本实施例中,与第一AP关联的第二STA处于唤醒状态,且第一AP与第二STA之间具有待传输的数据。由于第一AP不会通知接入管理设备第二STA进入休眠状态,接入管理设备会确定第二STA处于唤醒状态并给第二STA分配时频资源。具体地,接入管理设备向第一AP发送第一调度消息,第一AP采用第一调度消息指示的第一时频资源与第二STA进行数据交互。
应用场景2:接入管理设备给与第二AP关联的第二STA分配时频资源。
本实施例中,包括第一STA在内与第一AP关联的所有STA都进入休眠状态,第一AP暂时将不再参与接入管理设备的调度决策。应理解,接入管理设备本地存储有与之关联的所有AP的状态信息。作为一个示例,图7为本申请中AP的状态信息的内容示意图。如图7所示,AP的状态信息包括:AP的标识、调度标记、STA的标识、节能标记、调制与编码策略(Modulation and Coding Strategy,MCS)、流量身份标记(Traffic Identification,TID)和待传输数据大小。该待传输数据包括上行数据和/或下行数据。其中,调度标记用于指示AP是否能参与接入管理设备的调度决策,例如,调度标记为0表示AP不能参与接入管理设备的调度决策,调度标记为1表示AP可以参与接入管理设备的调度决策。节能标记用于指示与AP关联的STA的节能状态,例如,节能标记为0表示STA处于唤醒状态,节能标记为1表示STA处于休眠状态。流量身份标记用于指示AP与STA之间传输的各业务类型。接入管理设备通过对比各AP的状态信息可以确定与第二AP关联的第二STA处于唤醒状态并给第二STA分配时频资源。具体地,接入管理设备向第二AP发送第一调度消息,第二AP采用第一调度消息指示的第一时频资源与第二STA进行数据交互。
本申请实施例中,第一AP可以获知第一STA处于唤醒状态还是休眠状态。如果第一STA从唤醒状态进入休眠状态,第一AP会向接入管理设备发送消息以通知第一STA进入休眠状态。进而,接入管理设备将根据第一AP上报的消息进行时频资源调度,以将时频资源分配给处于唤醒状态的STA。这样一来,就算第一AP与第一STA之间具有待传输的数据,也不会占用时频资源与进入休眠状态的第一STA进行数据交互,避免了时频资源的浪费。
需要说明的是,如果与第一AP关联的第一STA又从休眠状态切换到唤醒状态,第一AP也会通知接入管理设备,进而接入管理设备将重新为第一STA分配时频资源。下面通过具体实施例进行介绍。
图8为本申请中时频资源的分配方法的第二个实施例示意图。在该示例中,时频资源的分配方法包括如下步骤。
801、第一AP获取第一STA的节能状态信息。
当第一STA的节能状态发生改变时,第一STA会通知第一AP,进而第一AP更新本地存储的第一STA的节能状态信息。在本实施例中,第一STA的节能状态信息为第一STA进入唤醒状态。应理解,第一AP获取第一STA的节能状态信息的具体实现方式可以参考图3所示实施例中步骤303的相关描述,此处不再赘述。
802、第一AP向接入管理设备发送第二消息。
第一AP向接入管理设备发送的第二消息用于指示与第一AP关联的第一STA进入唤醒状态。应理解,本实施例中的第二消息与上述图3所示实施例中的第一消息的消息格式是类似的,区别只在于指示的内容不同。其中,第二消息包括第二消息类型、第一AP的标识和第一STA的标识。关于第二消息的格式可以参考图3所示实施例中对第一消息格式的相关介绍,此处不再赘述。
在一些可能的实施方式中,第二消息还可以包括MCS、TID和第一AP与第一STA之间待传输的数据大小,以便于接入管理设备根据实际需要更合理地为第一STA分配时频资源。需要说明的是,若第二消息采用如上述图5所示的消息格式,则MCS、TID和待传输数据大小承载在消息内容字段。若第二消息采用如上述图6所示的消息格式,则MCS、TID和待传输数据大小承载在负载字段。
803、接入管理设备向第一AP发送第二调度消息。
接入管理设备根据第一AP上报的第二消息更新本地存储的第一STA的状态信息。以上述图7为例,由于第一STA进入唤醒状态,节能标记将置0表示第一STA处于唤醒状态,并且调度标记为1表示第一AP可以参与接入管理设备的调度决策。进而,接入管理设备可以根据第二消息中的MCS、TID和待传输数据大小等信息为第一STA分配第二时频资源,并向第一AP发送第二调度消息,以通知本次的调度决策。
804、第一AP采用第二时频资源与第一STA进行数据交互。
第一AP采用第二调度消息指示的第二时频资源与第一STA进行数据交互。
上面对本申请实施例中时频资源的分配方法进行了介绍,下面对本申请实施例中的接入管理设备和AP进行介绍。
图9为一种可能的接入管理设备的结构示意图。如图9所示,接入管理设备包括收发单元901和处理单元902。具体地,收发单元901用于执行上述图3和图8所示实施例中消息收发的操作。处理单元902用于执行上述图3和图8所示实施例中除消息收发外的其他操作。
图10为另一种可能的接入管理设备的结构示意图。该接入管理设备包括处理器1001、存储器1002以及收发器1003。该处理器1001、存储器1002以及收发器1003通过线路互相连接,其中,存储器1002用于存储程序指令和数据。收发器1003包含发射机和接收机。具体地,收发器1003用于执行上述图3和图8所示实施例中消息收发的操作。处理器1001用于执行上述图3和图8所示实施例中除消息收发外的其他操作。在一种可能的实现方式中, 处理器1001可以包括上述图9所示的处理单元902,收发器1003可以包括上述图9所示的收发单元901。
图11为一种可能的AP的结构示意图。如图11所示,接入管理设备包括收发单元1101和处理单元1102。具体地,收发单元1101用于执行上述图3和图8所示实施例中消息收发的操作。处理单元1102用于执行上述图3和图8所示实施例中除消息收发外的其他操作。
图12为另一种可能的AP的结构示意图。该AP包括处理器1201、存储器1202以及收发器1203。该处理器1201、存储器1202以及收发器1203通过线路互相连接,其中,存储器1202用于存储程序指令和数据。收发器1203包含发射机和接收机。具体地,收发器1203用于执行上述图3和图8所示实施例中消息收发的操作。处理器1201用于执行上述图3和图8所示实施例中除消息收发外的其他操作。在一种可能的实现方式中,处理器1201可以包括上述图11所示的处理单元1102,收发器1203可以包括上述图11所示的收发单元1101。
需要说明的是,上述图10和图12中所示的处理器可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路ASIC,或者至少一个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。上述图10和图12中所示的存储器可以存储操作系统和其他应用程序。在通过软件或者固件来实现本申请实施例提供的技术方案时,用于实现本申请实施例提供的技术方案的程序代码保存在存储器中,并由处理器来执行。在一实施例中,处理器内部可以包括存储器。在另一实施例中,处理器和存储器是两个独立的结构。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体地,例如:上述处理单元或处理器可以是中央处理器,通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,上述实施例描述的方法步骤可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替 换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种时频资源的分配方法,其特征在于,包括:
    接入管理设备接收第一接入点AP发送的第一消息,所述第一消息用于指示与所述第一AP关联的第一STA进入休眠状态;
    所述接入管理设备根据所述第一消息确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
  2. 根据权利要求1所述的方法,其特征在于,与所述第一AP关联的第二STA处于唤醒状态,所述接入管理设备将所述第一时频资源分配给处于唤醒状态的STA包括:
    所述接入管理设备向所述第一AP发送第一调度消息,所述第一调度消息用于指示所述第一AP采用所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
  3. 根据权利要求1所述的方法,其特征在于,所述接入管理设备与第二AP关联,与所述第二AP关联的第二STA处于唤醒状态,所述接入管理设备将所述第一时频资源分配给处于唤醒状态的STA包括:
    所述接入管理设备向所述第二AP发送第一调度消息,所述第一调度消息用于指示所述第二AP采用所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一消息包括第一消息类型、所述第一AP的标识和所述第一STA的标识。
  5. 根据权利要求4所述的方法,其特征在于,所述第一消息为光网络单元管理控制接口OMCI消息,所述第一消息包括第一消息类型字段和第一消息内容字段,所述第一消息类型字段指示所述第一消息类型,所述第一消息内容字段指示所述第一AP的标识和所述第一STA的标识。
  6. 根据权利要求4所述的方法,其特征在于,所述第一消息为以太网帧,所述第一消息包括第一类型长度字段和第一负载字段,所述第一类型长度字段指示所述第一消息类型,所述第一负载字段指示所述第一AP的标识和所述第一STA的标识。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入管理设备接收所述第一AP发送的第二消息,所述第二消息用于指示所述第一STA进入唤醒状态;
    所述接入管理设备根据所述第二消息确定所述第一STA处于唤醒状态,并向所述第一AP发送第二调度消息,所述第二调度消息用于指示所述第一AP采用第二时频资源与处于唤醒状态的所述第一STA进行数据交互。
  8. 根据权利要求7所述的方法,其特征在于,所述第二消息包括所述第一AP与所述第一STA之间待传输的数据大小和流量身份标记TID。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述接入管理设备接收所述第一AP发送的第一消息之前,所述第一时频资源由所述接入管理设备预分配给所述第一STA。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述接入管理设备是光网关,所述第一AP是光猫;或者,所述接入管理设备是光线路终端OLT,所述第一AP是光网络单元ONU。
  11. 根据权利要求1、2、3、4、5、7、8或9所述的方法,其特征在于,所述接入管理设备是接入控制器AC。
  12. 一种时频资源的分配方法,其特征在于,包括:
    接入点AP获取与所述AP关联的第一站点STA的第一状态信息,所述第一状态信息包括所述第一STA进入休眠状态;
    所述AP向接入管理设备发送第一消息,所述第一消息用于指示所述第一STA进入休眠状态,以使得所述接入管理设备确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
  13. 根据权利要求12所述的方法,其特征在于,与所述AP关联的第二STA处于唤醒状态,所述方法还包括:
    所述AP接收所述接入管理设备发送的第一调度消息;
    所述AP采用所述第一调度消息指示的所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一消息包括第一消息类型、所述第一AP的标识和所述第一STA的标识。
  15. 根据权利要求14所述的方法,其特征在于,所述第一消息为光网络单元管理控制接口OMCI消息,所述第一消息包括第一消息类型字段和第一消息内容字段,所述第一消息类型字段指示所述第一消息类型,所述第一消息内容字段指示所述AP的标识和所述第一STA的标识。
  16. 根据权利要求14所述的方法,其特征在于,所述第一消息为以太网帧,所述第一消息包括第一类型长度字段和第一负载字段,所述第一类型长度字段指示所述第一消息类型,所述第一负载字段指示所述AP的标识和所述第一STA的标识。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,更新后的所述第一状态信息包括所述第一STA进入唤醒状态,所述方法还包括:
    所述AP向所述接入管理设备发送第二消息,所述第二消息用于指示所述第一STA进入唤醒状态;
    所述AP接收所述接入管理设备发送的第二调度消息;
    所述AP采用所述第二调度消息指示的第二时频资源与处于唤醒状态的所述第一STA进行数据交互。
  18. 根据权利要求17所述的方法,其特征在于,所述第二消息包括所述AP与所述第一STA之间待传输的数据大小和流量身份标记TID。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述AP获取所述第一STA的第一状态信息之前,所述第一时频资源由所述接入管理设备预分配给所述第一STA。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述接入管理设备是光网关,所述AP是光猫;或者,所述接入管理设备是光线路终端OLT,所述AP是光网络单元ONU。
  21. 根据权利要求12、13、14、15、17、18或19所述的方法,其特征在于,所述接入管理设备是接入控制器AC。
  22. 一种接入管理设备,其特征在于,包括:收发单元和处理单元;
    所述收发单元用于:接收第一接入点AP发送的第一消息,所述第一消息用于指示与所述第一AP关联的第一STA进入休眠状态;
    所述处理单元用于:根据所述第一消息确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
  23. 根据权利要求22所述的接入管理设备,其特征在于,与所述第一AP关联的第二STA处于唤醒状态,所述处理单元具体用于:
    控制所述收发单元向所述第一AP发送第一调度消息,所述第一调度消息用于指示所述第一AP采用所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
  24. 一种接入点AP,其特征在于,包括:收发单元和处理单元;
    所述处理单元用于:获取与所述AP关联的第一站点STA的第一状态信息,所述第一状态信息包括所述第一STA进入休眠状态;
    所述收发单元用于:向接入管理设备发送第一消息,所述第一消息用于指示所述第一STA进入休眠状态,以使得所述接入管理设备确定所述第一STA处于休眠状态,并将第一时频资源分配给处于唤醒状态的STA。
  25. 根据权利要求24所述的AP,其特征在于,与所述AP关联的第二STA处于唤醒状态,所述收发单元具体用于:接收所述接入管理设备发送的第一调度消息;
    所述处理单元具体用于:采用所述第一调度消息指示的所述第一时频资源与处于唤醒状态的所述第二STA进行数据交互。
PCT/CN2022/142742 2022-01-26 2022-12-28 一种时频资源的分配方法及相关设备 WO2023142845A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22923630.2A EP4456637A1 (en) 2022-01-26 2022-12-28 Time-frequency resource allocation method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210096407.3 2022-01-26
CN202210096407.3A CN116567834A (zh) 2022-01-26 2022-01-26 一种时频资源的分配方法及相关设备

Publications (1)

Publication Number Publication Date
WO2023142845A1 true WO2023142845A1 (zh) 2023-08-03

Family

ID=87470475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142742 WO2023142845A1 (zh) 2022-01-26 2022-12-28 一种时频资源的分配方法及相关设备

Country Status (3)

Country Link
EP (1) EP4456637A1 (zh)
CN (1) CN116567834A (zh)
WO (1) WO2023142845A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063394A1 (en) * 2010-09-15 2012-03-15 Ricoh Company, Ltd. Access point, communication control method and recording medium
WO2020029771A1 (zh) * 2018-08-10 2020-02-13 展讯通信(上海)有限公司 睡眠状态的确定方法、终端及可读介质
CN113543203A (zh) * 2020-04-14 2021-10-22 海能达通信股份有限公司 一种通信资源分配和通信节点唤醒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063394A1 (en) * 2010-09-15 2012-03-15 Ricoh Company, Ltd. Access point, communication control method and recording medium
WO2020029771A1 (zh) * 2018-08-10 2020-02-13 展讯通信(上海)有限公司 睡眠状态的确定方法、终端及可读介质
CN113543203A (zh) * 2020-04-14 2021-10-22 海能达通信股份有限公司 一种通信资源分配和通信节点唤醒的方法

Also Published As

Publication number Publication date
CN116567834A (zh) 2023-08-08
EP4456637A1 (en) 2024-10-30

Similar Documents

Publication Publication Date Title
CN109302372B (zh) 一种通信方法、设备及存储介质
US9504089B2 (en) System and method for wireless station bridging
JP5068199B2 (ja) 帯域割当の機器および方法
US7978698B2 (en) Terminal for performing multiple access transmission suitable to a transmission path having varied characteristics
US20070058659A1 (en) Method for providing requested quality of service
JP2023551375A (ja) 送変電設備のモノのインターネットにおけるノード設備の無線通信方法及びシステム
US20240267288A1 (en) Data transmission method and system in time-sensitive network
WO2010096993A1 (zh) 一种业务适配的方法和业务适配装置
BR9713149A (pt) Sistema de comunicações de telefonia celular e de gerenciamento de rede de transporte através de um enlace de comunicações com o primeiro sistema.
CN103166823B (zh) 应用于家庭的令牌传递方法
JP2015507419A (ja) アップリンク帯域幅およびダウンリンク帯域幅を割り当てるための方法、デバイス、およびネストされたシステム
JP2002077213A (ja) 加入者無線アクセスシステム
WO2019114544A1 (zh) 一种数据传送的方法、设备和系统
JP6015323B2 (ja) 通信システム、通信方法、中継装置及び親局装置
WO2023142845A1 (zh) 一种时频资源的分配方法及相关设备
CN106688304B (zh) 采用使能TR-069的CPE代理的ZigBee系统管理
CN114175827B (zh) 通信方法、通信装置及系统
WO2023208116A1 (zh) 一种管控方法、装置、通信设备和计算机存储介质
CN111480364B (zh) 接入控制方法、装置和可读存储介质
CN102572944A (zh) 支持epon无线接入的mac协议帧结构
CN110493822B (zh) 点对多点通信装置和系统
CN113079578A (zh) 一种智慧屏无线投屏数据的优先传输方法及系统
CN110574457B (zh) 无线网络中的软接入点和接入点
WO2011079687A1 (zh) 微波接入方法及多业务传送设备
WO2023045689A1 (zh) 一种上行传输资源的分配方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923630

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024014503

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022923630

Country of ref document: EP

Effective date: 20240722

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024014503

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240715