WO2023207748A1 - 旁链路定位处理方法、装置、终端及可读存储介质 - Google Patents

旁链路定位处理方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2023207748A1
WO2023207748A1 PCT/CN2023/089476 CN2023089476W WO2023207748A1 WO 2023207748 A1 WO2023207748 A1 WO 2023207748A1 CN 2023089476 W CN2023089476 W CN 2023089476W WO 2023207748 A1 WO2023207748 A1 WO 2023207748A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
sci
time slot
indication information
resource
Prior art date
Application number
PCT/CN2023/089476
Other languages
English (en)
French (fr)
Inventor
司晔
彭淑燕
王园园
邬华明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207748A1 publication Critical patent/WO2023207748A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a side link positioning processing method, device, terminal and readable storage medium.
  • positioning functions have been widely used. For example, in services such as positioning tracking and ranging, it is often necessary to apply positioning functions.
  • positioning base stations usually position targets that need to be positioned.
  • the terminal In a sidelink (SL) communication system, the terminal may not be connected to the network, making it impossible to realize the positioning function of the terminal. Therefore, the existing technology has the problem of poor reliability of terminal positioning in the side-link communication system.
  • Embodiments of the present application provide a side-link positioning processing method, device, terminal and readable storage medium, which can solve the problem of poor reliability of terminal positioning in the side-link communication system.
  • a side link positioning processing method including:
  • the first terminal sends target side link control information SCI, the target SCI is used to indicate the side link SL positioning reference signal PRS resource information, the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data.
  • a side link positioning processing method including:
  • the second terminal receives the target side link control information SCI from the first terminal.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data. ;
  • the second terminal performs a target operation based on the SL PRS resource information
  • the target operation includes at least one of the following:
  • a side link positioning processing device including:
  • the sending module is used to send the target side link control information SCI.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data.
  • a side link positioning processing device including:
  • a receiving module configured to receive target side link control information SCI from the first terminal.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or is shared with the data. SCI;
  • Execution module used to perform target operations based on the SL PRS resource information
  • the target operation includes at least one of the following:
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect, or the steps of implementing the method described in the second aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to send target side link control information SCI, and the target SCI is used to indicate side link SL positioning reference signal PRS resource information,
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data;
  • the communication interface is used to receive target side link control information SCI from the first terminal, the target SCI is used to indicate the side link SL positioning reference signal PRS resource information, the target SCI is the SCI of the dedicated SL PRS or the data Shared SCI;
  • the processor is configured to perform a target operation based on the SL PRS resource information; wherein the target operation The operation includes at least one of the following: SL resource selection; sending SL PRS according to the SCI indication; and receiving the SL PRS indicated by the SCI.
  • a seventh aspect provides a communication system, including: a first terminal and a second terminal.
  • the first terminal can be used to perform the steps of the side link positioning processing method as described in the first aspect.
  • the second terminal It can be used to perform the steps of the side link positioning processing method described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method as described in the first aspect
  • the embodiment of this application clarifies that the SL PRS resource information is indicated through the SCI of the dedicated SL PRS or the SCI shared with the data.
  • the terminal in the side link communication system can directly perform SL PRS transmission according to the indicated SL PRS resource information to realize the side link. path positioning function, thereby improving the reliability of terminal positioning in the side link communication system.
  • Figure 1 is a schematic diagram of the network structure applicable to the embodiment of the present application.
  • Figure 2 is a flow chart of a side link positioning processing method provided by an embodiment of the present application.
  • Figure 3 is an example diagram of resource blocks in a side link positioning processing method provided by an embodiment of the present application.
  • Figure 4 is a flow chart of another side link positioning processing method provided by an embodiment of the present application.
  • Figure 5 is a structural diagram of a side link positioning processing device provided by an embodiment of the present application.
  • Figure 6 is a structural diagram of another side link positioning processing device provided by an embodiment of the present application.
  • Figure 7 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID Mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle user equipment
  • PUE pedestrian terminals
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service machines and other terminal-side equipment
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. .
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless device.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • the base station may be called a Node B or an Evolved Node B.
  • the base station is not limited to specific technical terms. It needs to be explained that , in the embodiment of this application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • the LTE system supports SL transmission, that is, data transmission between terminals directly on the physical layer.
  • LTE sidelink communicates based on broadcast. Although it can be used to support basic security communications of vehicle to everything (V2X), it is not suitable for other more advanced V2X services.
  • the fifth generation mobile communication technology (5th-Generation, 5G) New Radio (NR) system will support more advanced sidelink transmission design, such as unicast, multicast or multicast, etc., thus supporting more comprehensive services type.
  • NR sidelink includes the following channels: Physical Sidelink Control Channel (PSCCH), Physical Sidelink Shared Channel (Physical Sidelink Shared Channel, PSSCH), physical sidelink broadcast channel (Physical Sidelink Broadcast Channel, PSBCH), physical sidelink feedback channel (Physical Sidelink Discovery Feedback Channel, PSFCH).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PSFCH Physical Sidelink Discovery Feedback Channel
  • PSSCH allocates resources in units of sub-channels, and adopts a continuous resource allocation method in the frequency domain.
  • the time domain resource of PSCCH is the number of symbols configured by the higher layer
  • the frequency domain size is the parameter configured by the higher layer
  • the frequency domain resource limit of PSCCH is less than or equal to the size of one subchannel
  • PSCCH is located within the range of the lowest subchannel of PSSCH.
  • the PSFCH channel is configured on the SL resource pool in a periodic manner (such as P_PSFCH).
  • P_PSFCH resource time slot
  • the PSFCH channel occupies 1 or 2 symbols and is located at the last 2nd and 3rd symbols of the slot.
  • the previous symbol of PSFCH is the Automatic Gain Control (AGC) symbol.
  • AGC Automatic Gain Control
  • the symbol name of the AGC symbol can be set according to actual needs.
  • the AGC symbol can be understood as a repetition of the PSFCH symbol, but the function is for AGC adjustment.
  • the last symbol of PSFCH is Gap.
  • PSFCH resources consist of time domain resources, frequency domain resources and code domain resources.
  • the code domain uses the ZC (Zadoff Chu) sequence.
  • the generation of the code sequence depends on the cyclic shift (CS), u and v, where u and v are the group identifier and sequence identifier of the ZC sequence respectively.
  • the PSFCH resource carries 1 bit of information bit for positive acknowledgment (ACK)/negative acknowledgment (Negative Acknowledgment, NACK) feedback.
  • ACK positive acknowledgment
  • NACK Negative Acknowledgment
  • PSFCH resources have a fixed mapping relationship with PSCCH/PSSCH.
  • One/multiple PSCCH/PSSCH opportunities can correspond to a PSFCH occasion.
  • One PSCCH/PSSCH resource can correspond to multiple PSFCH resources.
  • the UE performs PSFCH transmission, it determines multiple corresponding PSFCH resources based on the received PSCCH/PSSCH resources, and determines a transmitted PSFCH resource based on the terminal identifier (Identifier, ID).
  • NR V2X defines two resource allocation modes (mode), one is mode1, which schedules resources for the base station; the other is mode2, where the terminal decides what resources to use for transmission.
  • the resource information may come from the base station's broadcast message or preconfigured information. If the terminal works within the range of the base station And it has a Radio Resource Control (RRC) connection with the base station, which can be mode1 and/or mode2. If the terminal works within the range of the base station but does not have an RRC connection with the base station, it can only work in mode2. If the UE is outside the base station range, it can only work in mode2 and perform V2X transmission based on preconfigured information.
  • RRC Radio Resource Control
  • the transmitting terminal (TX UE) first determines the resource selection window.
  • the lower boundary of the resource selection window is at the T1 time after the resource selection is triggered, and the upper boundary of the resource selection is at the T2 time after the trigger, where T2 It is a value selected by the terminal implementation method within the packet delay budget (packet delay budget, PDB) transmitted by its transport block (TB).
  • PDB packet delay budget
  • the terminal Before resource selection, the terminal needs to determine the candidate resource set for resource selection, based on the reference signal received power (Reference Signal Received Power, RSRP) measured on the resources in the resource selection window and the corresponding RSRP. The threshold is compared. If the RSRP is lower than the RSRP threshold, the resource can be included in the alternative resource set.
  • RSRP Reference Signal Received Power
  • the UE After the resource set is determined, the UE randomly selects transmission resources from the candidate resource set.
  • the terminal can reserve transmission resources for subsequent transmissions during this transmission.
  • NR V2X supports a chained resource reservation method, that is, a Sidelink Control Information (SCI) can reserve the current resource, and can reserve up to two additional resources. In the next resource, you can Indicate two more reserved resources. Within the selection window, resources can be continuously reserved using dynamic reservation.
  • SCI Sidelink Control Information
  • the side link positioning processing method includes:
  • Step 201 the first terminal sends the target side link control information SCI.
  • the target SCI is used to indicate the side link positioning reference signal (Sidelink Positioning Reference Signal, SL PRS) resource information.
  • the target SCI is the SCI of the dedicated SL PRS. or SCI with data sharing.
  • the first terminal may send the target SCI to the second terminal.
  • the first terminal can be understood as the transmitter of SL PRS
  • the second terminal is the transmitter of SL PRS.
  • Receiving end in some embodiments, the first terminal can also be understood as a scheduling terminal, and the second terminal can include a sending end of SL PRS and a receiving end of SL PRS.
  • the second terminal After the second terminal receives the target SCI, it can perform a target operation based on the SL PRS resource information; wherein the target operation includes at least one of the following: SL resource selection; sending an SL PRS according to the SCI indication; receiving the SL PRS resource information.
  • the SL PRS is used for SL positioning measurements.
  • the selected resources include but are not limited to at least one of SL PRS resources, data transmission resources and other resources.
  • Resource selection may also include at least one resource selection-related process such as resource re-selection, re-evaluation, and resource preemption.
  • the above-mentioned dedicated SCI can be understood as the SCI format (Format) 1-X specifically used to indicate SL PRS, and X is not A.
  • Shared SCI can be understood as the expanded SCI Format 1-A, or other shared SCI formats (Format).
  • the above-mentioned target SCI may be the first-level SCI.
  • the embodiment of this application clarifies that the SL PRS resource information is indicated through the SCI of the dedicated SL PRS or the SCI shared with the data.
  • the terminal in the side link communication system can directly perform SL PRS transmission according to the indicated SL PRS resource information to realize the side link. path positioning function, thereby improving the reliability of terminal positioning in the side link communication system.
  • the dedicated SCI includes at least one of the following indication information:
  • a first SL PRS enable flag is used to indicate whether there is an SL PRS in the first time slot where the dedicated SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • Time-frequency resource pattern indication information of SL PRS
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the indication information included in the dedicated SCI may directly indicate the value of the target parameter; or it may be a set or range or candidate value of the target parameter determined by the protocol, network side device configuration, or network side device preconfiguration, and then determined by the target parameter.
  • SCI instructions can reduce overhead.
  • the sequence number of the PSCCH where the SCI is located in the PSCCH group can be understood as the identification of the PSCCH where the SCI is located in the SL PRS resource block, or the PSCCH sequence number in the PSCCH transmission opportunity of the PSCCH where the SCI is located in the SL PRS resource block.
  • a group of PSCCHs and a group of SL PRSs can be stipulated by network side equipment (or network side preconfiguration) and/or protocols to have a mapping relationship, and this group of PSCCHs and SL PRSs occupy the same time slot.
  • the SCI in PSCCH is used to indicate the SL PRS resources in this group of SL PRS.
  • the group of PSCCHs can be arranged through frequency division multiplexing (Frequency Division Multiplex, FDM), for example, it can be arranged in a resource block (Resource Block, RB) level FDM and/or time division multiplexing (TDM) manner.
  • FDM Frequency Division Multiplex
  • RB resource block
  • TDM time division multiplexing
  • SL PRSs share the same frequency domain resource block and are distinguished by FDM (such as FDM at the resource element (Resource Element, RE) level) and/or TDM and/or Code Division Multiplexing (Code Division Multiplexing, CDM)/ arrangement.
  • the network test equipment (or network side preconfiguration) and/or the protocol agree that this group of PSCCHs are arranged in FDM (such as RB-level FDM) and/or TDM, and are associated with corresponding PSCCH sequence numbers.
  • the terminal can obtain more information about this group of PSCCH and this group of SL PRS, such as time-frequency location, through the sequence number of the PSCCH in the PSCCH group.
  • the above SL PRS resource identification can be understood as the SL PRS resource index (index).
  • the SL PRS resource identification can be replaced by the SL PRS configuration identification.
  • the mapping relationship between the SL PRS resource identifier and the SL PRS resource can be obtained by at least one method: protocol agreement, network side device configuration (or preconfiguration), and terminal selection.
  • the SL PRS resource IDs are sorted in the order agreed upon by the protocol, such as resource ID pairs
  • the corresponding resource is determined by at least one of the preset frequency domain position, time domain position and sequence, and the sequence of the IDs is arranged in the order of frequency domain, time domain and/or code domain. For example, frequency domain first and then time domain, or code domain first and then frequency domain and then code domain, etc.
  • different SL PRS resources correspond to different frequency domain positions, which can be explained as under the comb structure, different SL PRS resources correspond to different comb offsets (or RE offsets); different SL PRS resources correspond to different time domain positions, which can be explained as Different SL PRS resources correspond to different symbols in a slot, or different slots; different SL PRS resources correspond to different sequences, which can be interpreted as different cyclic shifts and/or sequence IDs corresponding to different SL PRS.
  • the SL PRS time-frequency location indication information includes:
  • Frequency domain position indication information the frequency domain position indication information is used to indicate at least one of the frequency domain starting position and bandwidth;
  • Time domain position indication information the time domain position indication information is used to indicate at least one of the starting symbol in the time slot and the number of symbols in the time slot.
  • the frequency domain starting position may be a relative frequency domain position or a relative offset relative to the target SCI frequency domain position.
  • the frequency domain starting position is indicated by an offset relative to the lowest frequency domain position of the PSCCH corresponding to the target SCI, and the offset unit may be a PRB or a subchannel (subchannel) or a PSCCH bandwidth.
  • the lowest frequency domain position can be understood as the lowest PRB or the lowest subchannel.
  • the relative offset is a downward offset, that is, the starting position of the SL PRS frequency domain is not higher than the lowest frequency domain position of the SCI.
  • the SCI may indicate that the lowest frequency domain position of the SL PRS and the PSCCH is offset by X PSCCH bandwidths.
  • the frequency domain starting position of the SL PRS can be obtained from the sequence number indicating the PSCCH in the SCI.
  • An optional implementation mode the network side equipment (or network side preconfiguration) and/or the protocol agrees that a group of PSCCHs (PSCCHs are arranged by FDM (such as RB-level FDM) and/or TDM) and a group of SL PRS have Mapping relationship (a group of SL PRSs share the same frequency domain resource block, distinguished/arranged by FDM (such as RE-level FDM) and/or TDM and/or CDM). And this group of PSCCH and SL PRS occupy the same slot.
  • FDM such as RB-level FDM
  • TDM Time Division Multiple Access
  • the SCI in the PSCCH is used to indicate the SL PRS resources in this set of SL PRS.
  • the network side equipment (or network side preconfiguration) and/or protocol agree that this group of PSCCHs are arranged in FDM (such as RB-level FDM) and/or TDM, and are associated with corresponding PSCCH sequence numbers. Among them, the lowest frequency domain position of the PSCCH with sequence number 0 is the same as the lowest frequency domain position of the SL PRS.
  • the terminal receiving the SCI can obtain the sequence number of the PSCCH indicated in the SCI. Pass the PSCCH sequence number to and the current PSCCH time-frequency position to determine the frequency domain position (or time-frequency position) of the PSCCH with sequence number 0 in the PSCCH group. At the same time, the lowest frequency domain position of SL PRS was obtained.
  • the bandwidth or bandwidth granularity of the SL PRS is an integer multiple of the bandwidth of the PSCCH corresponding to the SCI.
  • the starting position of the frequency domain is the same as the starting position of the target SCI frequency domain, that is, the offset is 0.
  • the frequency domain starting position and bandwidth can be represented by joint coding (such as resource indicator value (RIV)).
  • the above time domain location can also be agreed by the protocol, configured by the network side device, or preconfigured by the network side device. Such as protocol agreement, network-side device configuration or network-side device pre-configuration. The relationship between the SL PRS starting symbol and the symbol where the target SCI is located.
  • the SL PRS starting symbol is located at the first symbol after the PSCCH corresponding to the SCI, or is located at a symbol of the PSCCH corresponding to the SCI (such as the first symbol of the SCI), or there is an agreement or network agreement with the PSCCH corresponding to the target SCI.
  • Side device configuration or network side device preconfigured symbol offset is located at the first symbol after the PSCCH corresponding to the SCI, or is located at a symbol of the PSCCH corresponding to the SCI (such as the first symbol of the SCI), or there is an agreement or network agreement with the PSCCH corresponding to the target SCI.
  • the starting symbol is the symbol position relative to symbol 0 or the last symbol of the slot, or the symbol position relative to the first symbol or the last symbol of the target SCI (i.e. symbol offset)
  • the starting symbol position of SL PRS can be obtained from the position of PSCCH.
  • the network side device configuration (or network side device preconfiguration) and/or the protocol agrees on a set of PSCCH (PSCCH arranged through FDM (such as RB-level FDM) and/or TDM) and a set of SL PRS Have a mapping relationship (a group of SL PRSs share the same frequency domain resource block, distinguished/arranged by FDM (such as RE-level FDM) and/or TDM and/or CDM). And this group of PSCCH and SL PRS occupy the same slot.
  • the SCI in PSCCH is used to indicate the PRS resources in this set of SL PRS.
  • the terminal obtains the PSCCH position indicated by the SCI, and obtains the time domain position of the SL PRS through the preconfigured/agreed mapping relationship.
  • the number of symbols may or may not include symbols occupied by the ACG and/or GAP of the SL PRS.
  • the comb structure may be determined by protocol agreement, network side device configuration, or network side device configuration. If there are multiple comb sizes, the terminal can select a certain comb size and indicate it through the target SCI.
  • the comb offset can be understood or replaced by a resource unit offset (Resource Element offset, RE offset).
  • resource unit offset Resource Element offset, RE offset
  • protocol agreement protocol agreement
  • network side device configuration If the comb size is set or the network side device is pre-configured to be N, then the UE selects a comb offset of 0 to N-1 and indicates it through the target SCI.
  • the comb offset is related to the terminal ID, and can be generated by the terminal ID according to the protocol agreement, network side device configuration, or network side device preconfiguration. For example, in multicast, terminals with different member IDs have different comb offsets.
  • the comb offset is related to the PSCCH sequence number, which can be generated by the PSCCH sequence number according to the protocol agreement, network side device configuration, or network side device preconfiguration.
  • protocol agreement network side device configuration or network side device pre-configuration cyclic shift. If there are X cyclic shifts, the terminal selects one of X and indicates it through the target SCI.
  • cyclic shift is related to the PSCCH sequence number, and the cyclic shift can be obtained through the PSCCH sequence number according to the protocol agreement, network side device configuration, or network side device preconfiguration.
  • sequence ID is related to the terminal ID, and may be equal to the terminal ID or generated by the terminal ID according to protocol agreement, network side device configuration, or network side device preconfiguration.
  • the terminal ID can be one of the following: source ID, destination ID, member ID, UE ID predefined by the protocol or preconfigured by the manufacturer, application layer or IP layer ID, and based on the high-level ID (such as source ID, destination ID, application layer ID and IP layer ID) generated physical layer ID, etc.
  • sequence ID is related to the PSCCH sequence number, and the sequence ID can be obtained through the PSCCH sequence number according to the protocol agreement, network side device configuration, or network side device preconfiguration.
  • the above time-frequency resource pattern can be understood or replaced by a relative resource unit offset (relative RE offset).
  • multiple SL PRS patterns can be pre-configured by protocol agreement, network side equipment configuration or network side equipment.
  • the terminal selects one and indicates it through the target SCI.
  • the multiple SL PRS patterns can be a fixed symbol number and comb size. Multiple SL PRS patterns.
  • the above-mentioned second time slot is located in one or more time slots after the first time slot.
  • the second time slot may be a time slot within one cycle after the first time slot.
  • the first indication information may include at least one of the following:
  • the first sub-instruction information is used to indicate time-frequency location information
  • the second sub-instruction information is used to indicate the number of resources.
  • the time domain location information that the first indication information may indicate may include: repeated SL PRS At least one of the gaps between resource slot positions and duplicate SL PRS resources.
  • the time slot position can be understood as the time slot offset relative to the first time slot.
  • the frequency domain location information that the first indication information may indicate may include: at least one of a repeated SL PRS resource frequency domain starting location and bandwidth.
  • the number of resources indicated by the above-mentioned second sub-instruction information may represent the number of repeated SL PRS resources.
  • the time domain positions of multiple SL PRS resources can be represented by joint coding; the frequency domain positions of multiple SL PRS resources can be represented by joint coding.
  • the following parameters of repeated or reserved SL PRS resources are the same, and the parameters include at least one of the following: comb, comb offset, cyclic shift, sequence ID, pattern, bandwidth, frequency domain starting position, time slot The time domain position, period, priority, destination ID and source ID.
  • the time-frequency positions of SL PRS resources of different periods are the same.
  • the SL PRS resource includes the SL PRS of the first time slot of each cycle and/or repeated SL PRS.
  • multiple different cycles may be pre-configured by protocol agreement, network side device configuration, or network side device, and the terminal selects one and indicates it through the target SCI.
  • Priority indication information includes but is not limited to the priority of SL PRS and other SL signals or channels, the priority of SL PRS transmission and SL PRS reception, the priority of SL PRS transmission and other SL signals or channels, the priority of positioning services, At least one of the priority of the terminal.
  • the above destination ID can be generated from the destination ID of layer-2, and the above source ID can be generated from the destination ID of layer-2.
  • the destination ID and source ID can be calculated accordingly from the destination ID of layer-2.
  • the above positioning measurement reporting request may be used to request the second terminal to measure SL PRS and/or report a specific measurement quantity.
  • the method further includes:
  • the first terminal obtains SL PRS configuration information
  • the first terminal determines the target SCI based on the SL PRS configuration information.
  • the SL PRS configuration information can be understood as the SL PRS configuration information in the resource pool or SL PRS resource block. That is, obtaining the SL PRS configuration information can be understood as: obtaining the SL PRS configuration in the resource pool or SL PRS resource block. Information or obtain the SL PRS configuration information in the resource pool or SL PRS resource block.
  • the SL PRS configuration information can be obtained by at least one method such as network side device configuration, network side device preconfiguration, protocol agreement, other terminal configuration and other terminal preconfiguration. arrive.
  • the SL PRS configuration information includes at least one of the following:
  • the configuration information of the PSCCH may include at least one of PSCCH time domain location configuration and PSCCH frequency domain location configuration, wherein the PSCCH time domain location configuration includes the number of PSCCH opportunities for each time slot, the number of PSCCH opportunities for each PSCCH opportunity. At least one of the number of symbols, the position of the PSCCH opportunity in each time slot, and the PSCCH cycle.
  • the PSCCH frequency domain position configuration includes at least one of the number of physical resource blocks (PRBs) occupied by one PSCCH and the PSCCH frequency domain candidate position.
  • PRBs physical resource blocks
  • PSCCH frequency domain candidate positions for example, take the total bandwidth of the resource pool as an example, take the number of PRBs occupied by PSCCH as the granularity, and represent the PSCCH candidate positions through a bitmap (Bitmap). 1 in the Bitmap indicates that the continuous PRB can be used as a candidate location, and 0 indicates that it cannot be used as a candidate location.
  • the SL PRS configuration information also includes configuration parameters of the SL PRS resource block.
  • multiple terminals can share the same SL PRS resource block.
  • SL PRS for multiple terminals share the same resource block, and the SL PRS sent by multiple terminals pass through different comb offset (or RE offset) and symbol positions (optionally, different Symbols belong to different Slots and/or Or the same slot), sequence at least one distinction; SL PRS resources are allocated in a more regular way.
  • different SL PRS resources in the SL PRS resource block pass different symbol positions Distinguishing; if the symbol positions of different SL PRS resources are the same, different SL PRS resources can be distinguished by different comb offsets; if the symbol positions and comb offsets of different SL PRS resources are the same, different SL PRS resources can be distinguished by different sequences distinguish. Alternatively, different sequences can be different cyclic shifts and/or different sequence IDs.
  • the bandwidth of the SL PRS resource block occupies the entire SL BWP bandwidth, or the bandwidth of the entire SL resource pool.
  • the SL PRS resource block can also be expressed as SL PRS resource group, SL PRS resource set, SL PRS frequency layer, etc.
  • the SL PRS resource block satisfies at least one of the following:
  • the frequency domain of one SL PRS resource block occupies continuous PRBs, and the time domain of one SL PRS resource block occupies at least one time slot and occupies continuous symbols in one time slot;
  • the first characteristics of different SL PRS resources contained in the same SL PRS resource block are the same, and the first characteristics include at least one of the following: SL PRS bandwidth, comb size, number of symbols, and available cyclic shift; optionally,
  • the first feature can be jointly configured for different SL PRS resources included in the same SL PRS resource block, or the first feature can be configured independently for different SL PRS resources, and the content of the configured first feature is the same;
  • Different SL PRS resources within an SL PRS resource block are distinguished by at least one of different comb offsets (or RE offsets), symbol positions (optionally, different Symbols belong to different slots and/or the same slot) and sequence ;
  • different SL PRS resources contained in the SL PRS resource block are distinguished by different second characteristics.
  • the second characteristics include at least one of comb offset (or RE offset), symbol position and sequence;
  • each SL PRS resource in the SL PRS resource block is mapped starting from the lowest PRB or lowest subchannel of the SL resource block;
  • each SL PRS resource in the SL PRS resource block occupies the entire bandwidth of the SL PRS resource block;
  • an SL PRS resource in the SL PRS resource block has Z consecutive symbols, and Z is a positive integer;
  • the symbols spaced between SL PRS resources at different time domain locations include intervals. (GAP) symbol and at least one of the automatic gain control AGC symbol;
  • each SL PRS resource in the SL PRS resource block is associated with an SL PRS resource serial number or an SL PRS resource identifier (index); optionally, the SL PRS resource serial number is the serial number of the SL PRS resource in the entire time slot, or It is the sequence number of the SL PRS resource after the PSCCH opportunity;
  • the first symbol of the SL PRS resource block is used for automatic gain control AGC, and the last symbol is the GAP symbol;
  • the PSCCH of the SL PRS resource block has at least one PSCCH transmission opportunity (PSCCH occasion) in the time domain; among them, one transmission opportunity occupies N consecutive symbols starting from the Xth symbol (such as the second symbol), and N Multiple PSCCHs on each symbol can be frequency division multiplexed and/or time division multiplexed and/or code division multiplexed.
  • PSCCHs can be used to indicate different SL PRS resources within the SL PRS resource block.
  • X and N are positive integers;
  • the starting symbols of different PSCCH transmission opportunities are different (the number of consecutive symbols occupied may be the same or different);
  • the previous symbol of different PSCCH transmission opportunities is used for AGC;
  • the PSCCH in the m-th PSCCH transmission opportunity in the SL PRS resource block is used to indicate the SL PRS resources located after the m-th PSCCH opportunity and before the m+1-th PSCCH transmission opportunity, m is Positive integer; that is, the PSCCH in the m-th PSCCH transmission opportunity does not indicate the SL PRS resources after other PSCCH transmission opportunities; optionally, these SL PRS resources indicated by the SCCH in the m-th PSCCH transmission opportunity are passed through different comb Distinguish with at least one of offset (or RE offset), symbol position and sequence;
  • the symbols spaced between PSCCHs at different time domain positions include at least one of GAP symbols and AGC symbols;
  • one PSCCH in the SL PRS resource block occupies M consecutive M PRBs (or subchannels) in the SL PRS resource block bandwidth, and M is a positive integer;
  • a PSCCH in the SL PRS resource block is associated with a PSSCH.
  • the PSCCH and the PSSCH are frequency division multiplexed.
  • the PSSCH starts mapping from the first PRB or subchannel outside the highest or lowest frequency domain position of the PSCCH, and the PSSCH and the PSCCH In the frequency domain, it occupies a total of P consecutive PRBs or subchannels, and P is a positive integer.
  • the PSSCH is used to carry the second level SCI, and is indicated by the SCI in PSCCH;
  • the PSCCH with the lowest frequency domain position in the SL PRS resource block (or the PSCCH sequence number is 0, or the PSCCH sequence number is the smallest) is mapped from the lowest PRB (lowest subchannel) of the SL resource block;
  • the PSCCH in the SL PRS resource block is associated with the PSCCH sequence number (or index); optionally, the PSCCH sequence number is the sequence number of the PSCCH in the entire time slot, or the PSCCH sequence number in the PSCCH transmission opportunity associated with the PSCCH;
  • Different SL PRS resource blocks have different third characteristics, and the third characteristics include at least one of the following: SL PRS bandwidth, comb size, number of symbols, and available cyclic shift; optionally, different SL PRS can be configured
  • the resource blocks jointly configure the third feature, or the third feature can be configured independently for different SL PRS resource blocks, and the content of the configured first feature is the same.
  • Different SL PRS resources in the SL PRS resource block within a time slot have a first mapping relationship with the corresponding PSCCH;
  • the characteristics satisfied by the above-mentioned SL PRS resource block and/or the corresponding relevant parameters in the characteristics can be determined by at least one method such as protocol agreement, network side device configuration (or network side device preconfiguration), and terminal selection.
  • the first mapping relationship may include: SL PRS resources distinguished by different second characteristics are mapped to PSCCHs at different time-frequency positions.
  • the second characteristics include comb offset, symbol position and sequence at least one of.
  • the PSCCH corresponding to the SL PRS occupying the preset comb offset/symbol/sequence will be mapped to the preset PSCCH time-frequency position.
  • the PSCCH time-frequency position having the first mapping relationship with the SL PRS resource is related to the second characteristic of the SL PRS.
  • the PSCCH in a certain PSCCH transmission opportunity is used to indicate the SL PRS resources after the PSCCH and the SL PRS resources before the next PSCCH opportunity.
  • the first mapping relationship is the mapping relationship between the PSCCH in the PSCCH transmission opportunity, the SL PRS after the PSCCH, and the SL PRS resource before the subsequent PSCCH opportunity.
  • a certain SL PRS resource has a first mapping relationship (or association) with the PSCCH time-frequency position (or time-frequency domain starting position) or frequency domain position (or frequency domain starting position), which is the same as the SL PRS resource. It is related to at least one of the source's frequency domain position (such as comb offset), time domain position (such as starting symbol position), and sequence (such as cyclic shift value).
  • the number of PSCCHs in a PRS resource block is greater than or equal to the number of SL PRS resources in frequency division/time division/code division.
  • the number of PSCCHs is less than the number of SL PRS resources in frequency division/time division/code division, then the remaining SL PRS resources for which the mapping relationship cannot be obtained are unavailable. That is to say, if the number of PSCCHs in a certain time slot is less than the number of SL PRS resources distinguished by the second feature, then the SL PRS resources that do not have a mapping relationship in the time slot are unavailable.
  • the PSCCH in a certain PSCCH transmission opportunity is used to indicate the SL PRS after the PSCCH and the SL PRS before the next PSCCH opportunity. Then, the number of PSCCHs in the PSCCH transmission opportunity is greater than or equal to the SL PRS before the next PSCCH opportunity after the PSCCH opportunity, and the number of SL PRS resources distinguished by frequency division/time division/code division. In some embodiments, if the number of PSCCHs in a certain PSCCH transmission opportunity is less than the number of SL PRS resources in frequency division/time division/code division, then the remaining SL PRS resources for which the mapping relationship cannot be obtained are unavailable.
  • SL PRS resources are sorted first in the frequency domain (such as comb offset or RE Offset), then in the time domain (such as different symbols), and then in the code domain (such as different cyclic shifts) (or other sequences in reverse)
  • PSCCH is sorted in the frequency domain (such as PRB or subchannel level) first, and then in the time domain (or other order in reverse); then the SL PRS resources with a fixed order (or sequence number) can find the corresponding sorted PSCCH (or, corresponding serial number PSCCH).
  • the frequency domain is sorted from low to high, the time domain is from front to back, and the code domain is sorted from small to large (or the code domain is sorted from small to large, the frequency domain is from high to low, and the time domain is sorted from front to back); similarly, PSCCH Sort from low to high in the frequency domain (such as in PRB or subchannel order) and from front to back in the time domain.
  • SL PRS resources can be distinguished by frequency division and/or code division, and PSCCH can be distinguished by frequency division; SL PRS resources can be divided into frequency domain first, then code domain (or vice versa). Sorting, PSCCH can be sorted from low to high in frequency domain first. Then, the SL PRS resource with a fixed sequence number can find the corresponding PSCCH.
  • SL PRS resources can be distinguished by frequency division (such as comb offet or RE Offset), and PSCCH can be distinguished by frequency division (such as PRB or subchannel level); SL PRS resources can be sorted in the frequency domain. , PSCCH can be sorted from low to high in the frequency domain. Then, the corresponding PSCCH can be found by fixing the SL PRS resource with a certain sequence number.
  • the starting position of the corresponding PSCCH frequency domain is the lowest frequency domain position of the SL PRS resource block; for an SL PRS with an RE offset of 1, the corresponding PSCCH frequency domain (PRB or subchannel) )
  • the starting position is the lowest frequency domain position of the SL PRS resource block + 1 PSCCH bandwidth; for the SL PRS with RE offset of n, the corresponding PSCCH frequency domain (PRB or subchannel) starting position is the lowest frequency domain position of the SL PRS resource block + n*PSCCH bandwidth.
  • the corresponding starting position of the PSCCH frequency domain is the lowest frequency domain position of the SL PRS resource block + n* (PSCCH + PSSCH bandwidth).
  • the pattern of the SL resource block (SL PRS block) in one time slot is shown in Figure 3.
  • resources used to transmit AGC, resources used to transmit SCI (i.e., PSCCH resources), resources used to transmit SL PRS and resources corresponding to GAP can be included.
  • the resource that transmits SCI can transmit multiple target SCIs.
  • the multiple target SCIs include SCI 1, SCI 2, SCI 3 and SCI 4, and SCI 1, SCI 2, SCI 3 and SCI 4 are replicated. Use transmission.
  • the resources used to transmit SL PRS can be shared by multiple terminals.
  • the SL PRS is mapped starting from the predefined/preconfigured lowest subchannel/lowest PRB.
  • the resource/resource starting position/resource ending position of the SCI is determined based on the SL PRS RE offset.
  • the subchannel number of SL PRS is equal to SL PRS RE offset.
  • the configuration parameters of the SL PRS resource block include at least one of the following:
  • the time domain position of the SL PRS resource block may include the available symbol position in the time slot, available At least one of the slot position and period used.
  • the frequency domain position of the SL PRS resource block may include: frequency domain starting position (starting Subchannel or starting PRB) and bandwidth.
  • the frequency domain positions of different time slots of the SL PRS resource block may be the same or different.
  • the comb structure size can be replaced by the comb offset position or the resource unit offset position available to the terminal.
  • the above-mentioned cyclic shift information may include available cyclic shift values and available cyclic shift numbers.
  • the above-mentioned PSCCH configuration information may include at least one of the following: the symbol position occupied by the PSCCH in a slot (such as the starting position or the end position), the number of symbols occupied by the PSCCH in a slot, the bandwidth occupied by a PSCCH (such as the number of occupied PRBs) or the number of subchannels), the number of symbols occupied by a PSCCH, the number of PSCCHs, the symbol position occupied by each PSCCH opportunity in a slot, the number of symbols occupied by each PSCCH opportunity in a slot, the number of PSCCH opportunities in a slot, the symbol where the PSCCH is located Frequency domain locations available for PSCCH transmission.
  • the frequency domain position used for PSCCH transmission on the symbol where the PSCCH is located can be used to transmit multiple PSCCHs, where different PSCCHs can be continuously distributed in the frequency domain or discontinuously distributed (such as discontinuous uniform distribution).
  • the frequency domain location used for PSCCH transmission can be represented by a bitmap.
  • the bandwidth represented by the entire bitmap length is the same as the SL PRS resource block bandwidth; 1 bit in the bitmap indicates whether the PRB or subchannel of length N can be used for PSCCH transmission (optionally, N is determined by the protocol or network preconfiguration/configuration), a bit of 1 means it is possible, and a bit of 0 means that the bandwidth is not allowed; the bitmap length is SL PRS resource block bandwidth/1 bit in the bitmap represents the length.
  • the frequency domain position with bit 0 in the bitmap can be used to transmit PSSCH to carry the second level SCI.
  • the symbol position occupied by PSCCH within a slot can be represented by a Bitmap, where the length of the Bitmap is the number of symbols in the SL PRS resource block or slot, and a bit of 1 represents the symbol or starting symbol occupied by the PSCCH.
  • the symbol position occupied by each PSCCH opportunity in a slot can be represented by a Bitmap, where the length of the Bitmap is the number of symbols in the SL PRS resource block, and a bit of 1 represents the symbol position occupied by each PSCCH opportunity.
  • the symbol or starting point occupied by the PSCCH start symbol can be represented by a Bitmap, where the length of the Bitmap is the number of symbols in the SL PRS resource block, and a bit of 1 represents the symbol position occupied by each PSCCH opportunity.
  • the symbol or starting point occupied by the PSCCH start symbol is the number of symbols in the SL PRS resource block
  • the information indicated by the target SCI includes second indication information for the second level SCI in the two-level SCI, and the second level SCI is used to jointly indicate the target SCI with the target SCI.
  • SL PRS resource information is used to jointly indicate the target SCI with the target SCI.
  • the second indication information is used to indicate at least one of the following:
  • the PRB or sub-channel occupied by the physical side-link shared channel PSSCH that carries the second-level SCI for example, at least one of the following can be indicated: the starting PRB (or subchannel) position and the number of PRB (or subchannel);
  • the symbols occupied by the PSSCH carrying the second-level SCI can indicate at least one of the following: starting symbol position and number of symbols;
  • DMRS Demodulation Reference Signal
  • the SL PRS time domain position of the first time slot where the target SCI is located
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the third time slot where the second-level SCI is located;
  • the indication of the DMRS pattern may include at least one of the following: DMRS symbol number, DMRS symbol location, DMRS comb structure, and DMRS RE location. Further, multiple DMRS patterns can be agreed upon by the protocol, network-side device configuration, or network-side device pre-configured, and one can be indicated through the target SCI.
  • the second-level SCI includes at least one of the following:
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the time slot where the second-level SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the resource information of SL PRS is jointly indicated through the first-level SCI and the second-level SCI
  • the following parameters can be flexibly allocated in the first-level SCI and the second-level SCI:
  • the second-level SCI may include the remaining parameters among the above parameters.
  • the PSSCH carrying the second-level SCI satisfies at least one of the following:
  • the PSSCH and PSCCH are frequency division multiplexed
  • the PSSCH is not frequency division multiplexed with SL PRS;
  • the PSSCH and PRS occupy different symbols
  • the PSSCH is mapped starting from the first symbol of DMRS
  • the PSSCH and DMRS adopt resource unit RE level frequency division multiplexing
  • the number of DMRS ports corresponding to the PSSCH is 1;
  • the number of DMRS symbols corresponding to the PSSCH is 1 or 2;
  • the multiple DMRS symbols corresponding to the PSSCH are not consecutive;
  • the DMRS corresponding to the PSSCH has a comb structure, and REs are distributed at equal intervals;
  • the DMRS corresponding to the PSSCH is at the same RE position of the overlapping PRB as the SL PRS of the first symbol.
  • the characteristics that the PSSCH satisfies and/or the corresponding relevant parameters in the characteristics can be determined by at least one of protocol agreement, network side device configuration (or network side device preconfiguration), and terminal selection.
  • the second-level SCI format is a format used to transmit SL PRS configuration parameters and data transmission.
  • the second-level SCI includes fourth indication information associated with the SL PRS, and the fourth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is an SL PRS in the reserved time slot;
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the above-mentioned second-level SCI may also include information in the existing second-level SCI.
  • the information in the existing second-level SCI may include at least one of the following: hybrid automatic Hybrid Automatic Repeat Request (HARQ) process, New Data Indicator (NDI), Redundancy Version (RV), source ID, destination ID, HARQ feedback activation/deactivation, unicast group Broadcast instructions, channel status Information (Channel State Information, CSI) feedback request, zone identification (Zone ID) and communication distance requirements.
  • the indication information of the SL PRS resource may include at least one of the time slot position, symbol position, bandwidth, frequency domain starting position, comb, comb offset, cyclic shift, sequence ID, pattern and period only used for SL PRS transmission. item.
  • the resources used to transmit the SL PRS and the resources used to transmit data are located in different resource pools.
  • an independent resource pool can be set up for SL PRS.
  • the PSCCH search space and control resource set can be redesigned;
  • the resources used to transmit the SL PRS and the resources used to transmit data are located in the same resource pool. That is, a shared resource pool. At this time, the PSCCH location needs to meet existing rules.
  • the information indicated by the shared SCI includes at least one of the following:
  • the format information of the second-level SCI which includes the format used to transmit SL PRS configuration parameters and data transmission;
  • the bandwidth of SL PRS and PSSCH may be inconsistent, if there is SL PRS in the current time slot, it can be indicated by the second level SCI.
  • the existing first SCI indication needs to be reinterpreted at this time, such as frequency domain resource allocation indication, second level SCI format information and time domain resources. Allocation instructions are reinterpreted.
  • the information indicated by the existing first SCI includes at least one of the following: priority of scheduled data, frequency domain resource allocation, time domain resource allocation, PSSCH reference signal pattern, second level SCI format, second level SCI code rate Offset, number of PSSCH DMRS ports, modulation and coding scheme (MCS), MCS table indication, number of PSFCH symbols, resource reservation period and reserved bits.
  • the frequency domain resource allocation indication satisfies any of the following:
  • the frequency domain resource allocation indication is used to determine the frequency domain location of the PSSCH.
  • the frequency domain location of the PSSCH is The position can include bandwidth and/or starting position (the starting position can also be replaced by the ending position);
  • the frequency domain resource allocation indication is used to determine the frequency domain location of the SL PRS.
  • the SL PRS occupies an independent slot and is not multiplexed with the PSSCH;
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH and the frequency domain location of SL PRS.
  • the PSSCH bandwidth may be different from the SL PRS bandwidth.
  • the preset code point is used to determine the SL PRS Enable/disable; if SL PRS is enabled, the current slot and/or reserved slot have SL PRS; if SL PRS is disabled, then the current slot and/or reserved slot do not have SL PRS; for example, if If SL PRS exists, the frequency domain position of SL PRS is predefined/preconfigured/configured.
  • the bandwidth of the SL PRS is the same as the bandwidth of the PSSCH, or in other words, the SL PRS determines the bandwidth and location according to the frequency resource indication value (Frequency Resource Indication Value, FRIV) of SCI format 1-A.
  • FRIV Frequency Resource Indication Value
  • the above-mentioned second-level SCI format also includes a new second-level SCI format for transmitting SL PRS configuration parameters or transmitting SL PRS configuration parameters and data transmission.
  • a new second-level SCI format for transmitting SL PRS configuration parameters or transmitting SL PRS configuration parameters and data transmission.
  • the format used to transmit SL PRS configuration parameters or transmit SL PRS configuration parameters and data transmission can be expressed as SCI format 2-D.
  • the reserved time slot indication in the time domain resource allocation indication is used to indicate (or be reinterpreted as) any of the following: time slots used only for data transmission, time slots shared by data and SL PRS, and A time slot used only for SL PRS transmissions.
  • the fifth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is SL PRS in the fourth time slot;
  • the symbols occupied by SL PRS are used to represent the symbol positions of the fourth time slot
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the current Whether the slot and/or reserved slot have SL PRS the bitmap length is the number of slots in the current slot and/or reserved slot.
  • a reserved bit may be used to indicate whether the Xth slot has SL PRS or not. Based on this indication, in one SCI, it can only indicate whether there is SL PRS in a slot or not.
  • the indication corresponding to the third SL PRS enable flag can be ignored or defaulted to 0.
  • the symbol positions potentially occupied by SL PRS can be pre-configured by protocol agreement, network side device configuration or network side device, and the UE selects a specific symbol position among the potentially occupied symbols.
  • SL PRS is sent and indicated by the target SCI.
  • symbols occupied by SL PRS may or may not contain symbols occupied by AGC and/or GAP.
  • the second terminal can know the 2nd SCI format based on the first-level SCI, determine the PRB occupied by the 2nd SCI format, and perform decoding normally.
  • the second terminal can also determine which symbols are occupied by the data (through the SL PRS indicated by the first-level SCI). Occupied symbols, you can exclude the symbols occupied by SL PRS and obtain information about which symbols are occupied by the data) for normal decoding.
  • an embodiment of the present application also provides a side link positioning processing method, including:
  • Step 401 The second terminal receives the target side link control information SCI from the first terminal.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the data. Shared SCI;
  • Step 402 the second terminal performs the target operation based on the SL PRS resource information
  • the target operation includes at least one of the following:
  • the target SCI is the first level SCI of the two-level SCI.
  • the dedicated SCI includes at least one of the following indication information:
  • a first SL PRS enablement identifier is used to indicate whether there is an SL PRS in the first time slot where the dedicated SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the SL PRS time domain position indication information includes:
  • Frequency domain position indication information the frequency domain position indication information is used to indicate at least one of the frequency domain starting position and bandwidth;
  • Time domain position indication information the time domain position indication information is used to indicate at least one of the starting symbol in the time slot and the number of symbols in the time slot.
  • the first indication information includes at least one of the following:
  • the first sub-instruction information is used to indicate time-frequency location information
  • the second sub-instruction information is used to indicate the number of resources.
  • the information indicated by the target SCI includes second indication information for the second level SCI in the two-level SCI, and the second level SCI is used to jointly indicate the SL PRS resource information with the target SCI.
  • the second indication information is used to indicate at least one of the following:
  • the SL PRS time domain position of the first time slot where the target SCI is located
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the third time slot where the second-level SCI is located;
  • the second-level SCI includes at least one of the following:
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the time slot where the second-level SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the PSSCH carrying the second-level SCI satisfies at least one of the following:
  • the PSSCH and PSCCH are frequency division multiplexed
  • the PSSCH is not frequency division multiplexed with SL PRS;
  • the PSSCH and PRS occupy different symbols
  • the PSSCH is mapped starting from the first symbol of DMRS
  • the PSSCH and DMRS adopt resource unit RE level frequency division multiplexing
  • the number of DMRS ports corresponding to the PSSCH is 1;
  • the number of DMRS symbols corresponding to the PSSCH is 1 or 2;
  • the multiple DMRS symbols corresponding to the PSSCH are not consecutive;
  • the DMRS corresponding to the PSSCH has a comb structure, and REs are distributed at equal intervals;
  • the DMRS corresponding to the PSSCH is at the same RE position of the overlapping PRB as the SL PRS of the first symbol.
  • the PSSCH that one terminal can occupy is continuous with the subchannel or PRB corresponding to the PSCCH, and the PSSCH starts from the first PRB or subchannel outside the highest or lowest frequency domain position of the PSCCH.
  • Mapping, PSSCH and PSCCH occupy a total of P consecutive PRBs or subchannels in the frequency domain.
  • PSSCH and PSCCH occupied by different terminals can also be frequency division multiplexed. For example, different terminals can occupy continuous PRBs or subchannels in the frequency domain for sending the PSSCH and PSCCH occupied by the terminals.
  • the second-level SCI format is a format used to transmit SL PRS configuration parameters and data transmission.
  • the second-level SCI includes fourth indication information associated with the SL PRS, and the fourth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is an SL PRS in the reserved time slot;
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the resources used to transmit the SL PRS and the resources used to transmit data are located in different resource pools.
  • the information indicated by the shared SCI includes at least one of the following:
  • the format information of the second-level SCI which includes the format used to transmit SL PRS configuration parameters and data transmission;
  • the frequency domain resource allocation indication satisfies any of the following:
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH
  • the frequency domain resource allocation indication is used to determine the frequency domain location of the SL PRS
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH and the frequency domain location of SL PRS.
  • the reserved time slot indication in the time domain resource allocation indication is used to indicate any of the following: time slots used only for data transmission, time slots shared by data and SL PRS, and time slots used only for SL PRS transmission. time slot.
  • the fifth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is SL PRS in the fourth time slot;
  • Symbols occupied by SL PRS are used to represent the symbols of the fourth time slot. Location;
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the execution subject may be a side link positioning processing device.
  • the side link positioning processing method performed by the side link positioning processing device is used as an example to illustrate the side link positioning processing device provided by the embodiment of the present application.
  • the side link positioning processing device 500 includes:
  • the sending module 501 is used to send the target side link control information SCI.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data.
  • the target SCI is the first level SCI of the two-level SCI.
  • the dedicated SCI includes at least one of the following indication information:
  • a first SL PRS enable flag is used to indicate whether there is an SL PRS in the first time slot where the dedicated SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the SL PRS time domain position indication information includes:
  • Frequency domain position indication information the frequency domain position indication information is used to indicate at least one of the frequency domain starting position and bandwidth;
  • Time domain position indication information the time domain position indication information is used to indicate at least one of the starting symbol in the time slot and the number of symbols in the time slot.
  • the first indication information includes at least one of the following:
  • the first sub-instruction information is used to indicate time-frequency location information
  • the second sub-instruction information is used to indicate the number of resources.
  • the side link positioning processing device 500 also includes:
  • Determining module configured to determine the target SCI based on the SL PRS configuration information.
  • the SL PRS configuration information includes at least one of the following:
  • the PSCCH configuration information includes at least one of PSCCH time domain location configuration and PSCCH frequency domain location configuration, wherein the PSCCH time domain location configuration includes the number of PSCCH opportunities in each time slot, each Number of symbols of PSCCH opportunities, PSCCH opportunities in each slot
  • the PSCCH frequency domain location configuration includes at least one of the number of physical resource blocks (PRBs) occupied by one PSCCH and PSCCH frequency domain candidate locations.
  • PRBs physical resource blocks
  • the SL PRS configuration information also includes configuration parameters of the SL PRS resource block.
  • the SL PRS resource block satisfies at least one of the following:
  • the frequency domain of one SL PRS resource block occupies continuous PRBs, and the time domain of one SL PRS resource block occupies at least one time slot and occupies continuous symbols in one time slot;
  • the first characteristics of different SL PRS resources contained in the same SL PRS resource block are the same, and the first characteristics include at least one of the following: SL PRS bandwidth, comb size, number of symbols, and available cyclic shift;
  • Different SL PRS resources contained in one SL PRS resource block are distinguished by at least one of different comb offsets, symbol positions and sequences;
  • different SL PRS resources contained in the SL PRS resource block are distinguished by different second characteristics, and the second characteristics include at least one of comb offset, symbol position and sequence;
  • each SL PRS resource in the SL PRS resource block is mapped starting from the lowest PRB or lowest sub-channel of the SL resource block;
  • each SL PRS resource in the SL PRS resource block occupies the entire bandwidth of the SL PRS resource block;
  • one SL PRS resource in the SL PRS resource block lasts Z symbols, and Z is a positive integer
  • the symbols spaced between SL PRS resources at different time domain positions include at least one of GAP symbols and automatic gain control AGC symbols;
  • each SL PRS resource in the SL PRS resource block is associated with an SL PRS resource sequence number or SL PRS resource identifier;
  • the first symbol of the SL PRS resource block is used for AGC, and the last symbol is the GAP symbol;
  • the PSCCH of the SL PRS resource block has at least one PSCCH transmission opportunity in the time domain;
  • the PSCCH in the m-th PSCCH transmission opportunity in the SL PRS resource block is used to indicate that it is located after the m-th PSCCH opportunity and is located at the m+1-th PSCCH transmission opportunity.
  • the previous SL PRS resource, m is a positive integer;
  • the PSCCH in the m-th PSCCH transmission opportunity in the SL PRS resource block is used to indicate the SL PRS resources located after the m-th PSCCH opportunity and before the m+1-th PSCCH transmission opportunity, m is positive integer;
  • a PSCCH in the SL PRS resource block occupies L consecutive symbols, and L is a positive integer
  • the symbols spaced between PSCCHs at different time domain positions include at least one of GAP symbols and AGC symbols;
  • one PSCCH in the SL PRS resource block occupies M consecutive M PRBs or M consecutive sub-channels in the SL PRS resource block bandwidth, M is a positive integer;
  • a PSCCH in the SL PRS resource block is associated with a PSSCH;
  • the PSCCH with the lowest frequency domain position in the SL PRS resource block is mapped starting from the lowest PRB or lowest subchannel of the SL resource block;
  • the PSCCH in the SL PRS resource block is associated with the PSCCH sequence number or PSCCH identifier;
  • Different SL PRS resource blocks have different third characteristics, and the third characteristics include at least one of the following: SL PRS bandwidth, comb size, number of symbols, and available cyclic shift;
  • Different SL PRS resources in the SL PRS resource block within a time slot have a first mapping relationship with the corresponding PSCCH;
  • the first mapping relationship includes: SL PRS resources distinguished by different second characteristics are mapped to PSCCHs at different time-frequency positions, and the second characteristics include at least one of comb offset, symbol position and sequence. item.
  • the configuration parameters of the SL PRS resource block include at least one of the following:
  • the information indicated by the target SCI includes second indication information for the second level SCI in the two-level SCI, and the second level SCI is used to jointly indicate the SL PRS resource information with the target SCI.
  • the second indication information is used to indicate at least one of the following:
  • the SL PRS time domain position of the first time slot where the target SCI is located
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the third time slot where the second-level SCI is located;
  • the second-level SCI includes at least one of the following:
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the time slot where the second-level SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the PSSCH carrying the second-level SCI satisfies at least one of the following:
  • the PSSCH and PSCCH are frequency division multiplexed
  • the PSSCH is not frequency division multiplexed with SL PRS;
  • the PSSCH and PRS occupy different symbols
  • the PSSCH is mapped starting from the first symbol of DMRS
  • the PSSCH and DMRS adopt resource unit RE level frequency division multiplexing
  • the number of DMRS ports corresponding to the PSSCH is 1;
  • the number of DMRS symbols corresponding to the PSSCH is 1 or 2;
  • the multiple DMRS symbols corresponding to the PSSCH are not consecutive;
  • the DMRS corresponding to the PSSCH has a comb structure, and REs are distributed at equal intervals;
  • the DMRS corresponding to the PSSCH is at the same RE position of the overlapping PRB as the SL PRS of the first symbol.
  • the second-level SCI format is a format used to transmit SL PRS configuration parameters and data transmission.
  • the second-level SCI includes fourth indication information associated with the SL PRS, and the fourth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is an SL PRS in the reserved time slot;
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the resources used to transmit the SL PRS and the resources used to transmit data are located in different resource pools, that is, a dedicated resource pool for SL PRS transmission.
  • the information indicated by the shared SCI includes at least one of the following:
  • the format information of the second-level SCI which includes the format used to transmit SL PRS configuration parameters and data transmission;
  • the frequency domain resource allocation indication satisfies any of the following:
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH
  • the frequency domain resource allocation indication is used to determine the frequency domain location of the SL PRS
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH and the frequency domain location of SL PRS.
  • the reserved time slot indication in the time domain resource allocation indication is used to indicate any of the following: time slots used only for data transmission, time slots shared by data and SL PRS, and time slots used only for SL PRS transmission. time slot.
  • the fifth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is an SL PRS in the fourth time slot;
  • the symbols occupied by SL PRS are used to represent the symbol positions of the fourth time slot
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the side link positioning processing device 600 includes:
  • the receiving module 601 is configured to receive target side link control information SCI from the first terminal.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the data. Shared SCI;
  • Execution module 602 used to execute target operations based on the SL PRS resource information
  • the target operation includes at least one of the following:
  • the target SCI is the first level SCI of the two-level SCI.
  • the dedicated SCI includes at least one of the following indication information:
  • a first SL PRS enable flag is used to indicate whether there is an SL PRS in the first time slot where the dedicated SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the SL PRS time domain position indication information includes:
  • Frequency domain position indication information the frequency domain position indication information is used to indicate at least one of the frequency domain starting position and bandwidth;
  • Time domain position indication information the time domain position indication information is used to indicate at least one of the starting symbol in the time slot and the number of symbols in the time slot.
  • the first indication information includes at least one of the following:
  • the first sub-instruction information is used to indicate time-frequency location information
  • the second sub-instruction information is used to indicate the number of resources.
  • the information indicated by the target SCI includes second indication information for the second level SCI in the two-level SCI, and the second level SCI is used to jointly indicate the SL PRS resource information with the target SCI.
  • the second indication information is used to indicate at least one of the following:
  • the SL PRS time domain position of the first time slot where the target SCI is located
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the third time slot where the second-level SCI is located;
  • the second-level SCI includes at least one of the following:
  • a second SL PRS enable flag is used to indicate whether there is an SL PRS in the time slot where the second-level SCI is located;
  • the SL PRS resource identifier is used to represent the resource sequence number selected by the first terminal for SL PRS in the resource pool or SL PRS resource block;
  • the first indication information is used to indicate repeated or reserved SL PRS resources for a second time slot, where the second time slot is different from the first time slot;
  • the PSSCH carrying the second-level SCI satisfies at least one of the following:
  • the PSSCH and PSCCH are frequency division multiplexed
  • the PSSCH is not frequency division multiplexed with SL PRS;
  • the PSSCH and PRS occupy different symbols
  • the PSSCH is mapped starting from the first symbol of DMRS
  • the PSSCH and DMRS adopt resource unit RE level frequency division multiplexing
  • the number of DMRS ports corresponding to the PSSCH is 1;
  • the number of DMRS symbols corresponding to the PSSCH is 1 or 2;
  • the multiple DMRS symbols corresponding to the PSSCH are not consecutive;
  • the DMRS corresponding to the PSSCH has a comb structure, and REs are distributed at equal intervals;
  • the DMRS corresponding to the PSSCH is at the same RE position of the overlapping PRB as the SL PRS of the first symbol.
  • the second-level SCI format is a format used to transmit SL PRS configuration parameters and data transmission.
  • the second-level SCI includes fourth indication information associated with the SL PRS, and the fourth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is an SL PRS in the reserved time slot;
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the resources used to transmit the SL PRS and the resources used to transmit data are located in different resource pools.
  • the information indicated by the shared SCI includes at least one of the following:
  • the format information of the second-level SCI which includes the format used to transmit SL PRS configuration parameters and data transmission;
  • the frequency domain resource allocation indication satisfies any of the following:
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH
  • the frequency domain resource allocation indication is used to determine the frequency domain location of the SL PRS
  • the frequency domain resource allocation indication is used to determine the frequency domain location of PSSCH and the frequency domain location of SL PRS.
  • the reserved time slot indication in the time domain resource allocation indication is used to indicate any of the following: time slots used only for data transmission, time slots shared by data and SL PRS, and time slots used only for SL PRS transmission. time slot.
  • the fifth indication information includes at least one of the following:
  • the third SL PRS enable flag is used to indicate whether there is SL PRS in the fourth time slot;
  • the symbols occupied by SL PRS are used to represent the symbol positions of the fourth time slot
  • the fourth time slot includes at least one of a time slot in which the shared SCI is located and a reserved time slot.
  • the side link positioning processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the side link positioning processing device provided by the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 4, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores information that can run on the processor 701.
  • Programs or instructions, when executed by the processor 701, implement each step of the above side link positioning processing embodiment and can achieve the same technical effect. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the communication interface is used to send target side link control information SCI.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data; or, the communication interface is used to receive the target side link control information SCI from the first terminal, the target SCI is used to indicate the side link SL positioning reference signal PRS resource Information, the target SCI is a SCI of a dedicated SL PRS or a SCI shared with data;
  • the processor is configured to perform a target operation based on the SL PRS resource information; wherein the target operation includes at least one of the following: SL resource selection; according to The SCI indicates that the SL PRS is sent; the SL PRS indicated by the SCI is received.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, etc. At least some parts.
  • the terminal 800 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 810 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and at least one of other input devices 8072 . Touch panel 8071, also known as touch screen.
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be described in detail here.
  • the radio frequency unit 801 after receiving downlink data from the network side device, the radio frequency unit 801 can transmit it to the processor 810 for processing; in addition, the radio frequency unit 801 can send uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 809 may include volatile memory or non-volatile memory, or memory 809 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 810.
  • the radio frequency unit 801 is used to send target side link control information SCI.
  • the target SCI is used to indicate the side link SL positioning reference signal PRS resource information.
  • the target SCI is the SCI of the dedicated SL PRS or the SCI shared with the data. ;
  • the radio frequency unit 801 is configured to receive target side link control information SCI from the first terminal, the target SCI is used to indicate the side link SL positioning reference signal PRS resource information, the target SCI is the SCI of the dedicated SL PRS or the same as the SCI of the dedicated SL PRS. SCI for data sharing;
  • the processor is configured to perform a target operation based on the SL PRS resource information; wherein the target operation includes at least one of the following: SL resource selection; sending an SL PRS according to the SCI indication; receiving the SL PRS indicated by the SCI.
  • Embodiments of the present application also provide a readable storage medium, the readable storage medium stores a program or instructions, and when the program or instructions are executed by a processor, each process of the above side link positioning processing method embodiment is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above side-link positioning processing method. Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned side link positioning process.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a first terminal and a second terminal.
  • the first terminal is used to perform various processes in Figure 2 and the above method embodiments.
  • the second terminal is used to Each process in Figure 4 and the above method embodiments is executed, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种旁链路定位处理方法、装置、终端及可读存储介质,属于通信技术领域,本申请实施例的旁链路定位处理方法包括:第一终端发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。

Description

旁链路定位处理方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2022年04月24日在中国提交的中国专利申请No.202210435231.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种旁链路定位处理方法、装置、终端及可读存储介质。
背景技术
随着通信技术的发展,定位功能得到广泛应用。例如,在定位跟踪和测距等服务中,通常需要应用定位功能。目前通常由定位基站对需要定位的目标进行定位,在旁链路(Sidelink,SL)通信系统中由于终端可能没有接入网络,从而使得无法实现终端的定位功能。因此,现有技术存在旁链路通信系统中的终端定位的可靠性较差的问题。
发明内容
本申请实施例提供一种旁链路定位处理方法、装置、终端及可读存储介质,能够解决旁链路通信系统中的终端定位的可靠性较差的问题。
第一方面,提供了一种旁链路定位处理方法,包括:
第一终端发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
第二方面,提供了一种旁链路定位处理方法,包括:
第二终端从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
所述第二终端基于所述SL PRS资源信息执行目标操作;
其中,所述目标操作包括以下至少一项:
SL资源选择;
根据所述SCI指示,发送SL PRS;
接收所述SCI指示的SL PRS。
第三方面,提供了一种旁链路定位处理装置,包括:
发送模块,用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
第四方面,提供了一种旁链路定位处理装置,包括:
接收模块,用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
执行模块,用于基于所述SL PRS资源信息执行目标操作;
其中,所述目标操作包括以下至少一项:
SL资源选择;
根据所述SCI指示,发送SL PRS;
接收所述SCI指示的SL PRS。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,通信接口用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
或者,通信接口用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
处理器用于基于所述SL PRS资源信息执行目标操作;其中,所述目标操 作包括以下至少一项:SL资源选择;根据所述SCI指示,发送SL PRS;接收所述SCI指示的SL PRS。
第七方面,提供了一种通信系统,包括:第一终端及第二终端,所述第一终端可用于执行如第一方面所述的旁链路定位处理方法的步骤,所述第二终端可用于执行如第二方面所述的旁链路定位处理方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
本申请实施例明确了通过专用SL PRS的SCI或与数据共享的SCI指示SL PRS资源信息,这样,旁链路通信系统中的终端可以直接根据指示SL PRS资源信息进行SL PRS传输,实现旁链路定位功能,从而提高旁链路通信系统中终端定位的可靠性。
附图说明
图1是本申请实施例可应用的网络结构示意图;
图2是本申请实施例提供的一种旁链路定位处理方法的流程图;
图3是本申请实施例提供的一种旁链路定位处理方法中资源块的示例图;
图4是本申请实施例提供的另一种旁链路定位处理方法的流程图;
图5是本申请实施例提供的一种旁链路定位处理装置的结构图;
图6是本申请实施例提供的另一种旁链路定位处理装置的结构图;
图7是本申请实施例提供的通信设备的结构图;
图8是本申请实施例提供的终端的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile  Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、旁链路(Sidelink,SL)传输。
LTE系统支持SL传输,即终端之间直接在物理层上进行数据传输。LTE sidelink是基于广播进行通讯的,虽然可用于支持车联网(vehicle to everything,V2X)的基本安全类通信,但不适用于其他更高级的V2X业务。第五代移动通信技术(5th-Generation,5G)新空口(New Radio,NR)系统将支持更加先进的sidelink传输设计,例如,单播、多播或组播等,从而可以支持更全面的业务类型。
NR sidelink包括如下信道:物理旁链路控制信道(Physical Sidelink Control Channel,PSCCH),物理旁链路共享信道(Physical Sidelink Shared  Channel,PSSCH),物理旁链路广播信道(Physical Sidelink Broadcast Channel,PSBCH),物理旁链路反馈信道(Physical Sidelink Discovery Feedback Channel,PSFCH)。
其中,PSSCH以子信道为单位进行资源分配,频域上采用连续的资源分配方式。PSCCH的时域资源为高层配置的符号数,频域大小为高层配置的参数,且PSCCH的频域资源限制小于或等于一个子信道的大小,且PSCCH位于PSSCH的最低子信道的范围内。
PSFCH信道通过周期(例如P_PSFCH)的方式配置在SL资源池(resource pool)上。在SL resource pool内的资源时隙(slot)k,如果k mod P_PSFCH=0,则用户设备(User Equipment,UE)认为在slot k上存在PSFCH资源。PSFCH信道占用1或2个符号(symbols),位于slot的最后第2和第3个symbol。PSFCH的前一个符号(symbol)为自动增益控制(Automatic Gain Control,AGC)symbol。该AGC symbol的符号名称可以根据实际需要进行设置,该AGC symbol可以理解为PSFCH symbol的重复,只是功能是用于AGC调整。PSFCH的后一个symbol为间隔(Gap)。
PSFCH资源由时域资源,频域资源和码域资源组成。其码域采用ZC(Zadoff Chu)序列,码序列产生取决于循环移位(cyclic shift,CS)、u和v,其中u和v分别为ZC序列的组标识和序列标识。PSFCH资源携带1比特(bit)信息位,用于肯定确认(Acknowledgement,ACK)/否定确认(Negative Acknowledgement,NACK)反馈。
PSFCH资源与PSCCH/PSSCH有固定的映射关系。一个/多个PSCCH/PSSCH机会(occassions)可以对应到一个PSFCH occasion。一个PSCCH/PSSCH资源可以对应多个PSFCH资源。UE做PSFCH传输的时候,根据所接收的PSCCH/PSSCH资源确定其对应的多个PSFCH资源,并根据终端标识(Identifier,ID)确定一个传输的PSFCH资源。
二、NR SL资源分配方式。
NR V2X定义了两种资源分配模式(mode),一种是mode1,为基站调度资源;另一种是mode2,终端自己决定使用什么资源进行传输。此时资源信息可能来自基站的广播消息或者预配置的信息。终端如果工作在基站范围内 并且与基站有无线资源控制(Radio Resource Control,RRC)连接,可以是mode1和/或mode2,终端如果工作在基站范围内但与基站没有RRC连接,只能工作在mode2。如果UE在基站范围外,那么只能工作在mode2,根据预配置的信息来进行V2X传输。
对于mode 2,具体的工作方式如下:
1)发送终端(TX UE)在资源选择被触发后,首先确定资源选择窗口,资源选择窗口的下边界在资源选择触发后的T1时间,资源选择的上边界在触发后的T2时间,其中T2是终端实现的方式在其传输块(Transport Block,TB)传输的包延迟预算(packet delay budget,PDB)内选择的值,T2不早于T1。
2)终端在资源选择的之前,需要确定资源选择的备选资源集合(candidate resource set),根据资源选择窗口内的资源上测量的参考信号接收功率(Reference Signal Received Power,RSRP)与相应的RSRP阈值(threshold)做对比,如果RSRP低于RSRP threhold,那么该资源可以纳入备选资源集合。
3)资源集合确定后,UE随机在备选资源集合中选择传输资源。
另外,终端在本次传输可以为接下来的传输预留传输资源。
NR V2X支持链式的资源预留方式,也就是,一个旁链路控制信息(Sidelink Control Information,SCI)可以预留当前的资源,最多可以在额外预留两个资源,在下一个资源中,可以再指示两个预留资源。在选择窗内,可以采用动态预留的方式持续预留资源。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的旁链路定位处理方法进行详细地说明。
参照图2,本申请实施例提供了一种旁链路定位处理方法,如图2所示,该旁链路定位处理方法包括:
步骤201,第一终端发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路定位参考信号(Sidelink Positioning Reference Signal,SL PRS)资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
本申请实施例中,上述第一终端可以向第二终端发送目标SCI。在一些实施中,该第一终端可以理解为SL PRS的发送端,则第二终端为SL PRS的 接收端;在一些实施例中,该第一终端也可以理解为调度(scheduling)终端,则该第二终端可以包括SL PRS的发送端和SL PRS的接收端。在第二终端接收到目标SCI后,可以基于所述SL PRS资源信息执行目标操作;其中,所述目标操作包括以下至少一项:SL资源选择;根据所述SCI指示,发送SL PRS;接收所述SCI指示的SL PRS。该SL PRS用于SL定位测量。
需要说明的是,终端进行资源选择过程中,选择的资源包含但不限于用于SL PRS资源、数据发送的资源和其他资源至少之一。资源选择还可以包含资源重选、重评估、资源抢占等至少之一资源选择有关的过程。
可选地,上述专用SCI可以理解为专门用于指示SL PRS的SCI格式(Format)1-X,X不为A。共享SCI可以理解为扩展后的SCI Format 1-A,或其他共享的SCI格式(Format)。
可选地,在一些实施例中,上述目标SCI可以为第一级SCI。
本申请实施例明确了通过专用SL PRS的SCI或与数据共享的SCI指示SL PRS资源信息,这样,旁链路通信系统中的终端可以直接根据指示SL PRS资源信息进行SL PRS传输,实现旁链路定位功能,从而提高旁链路通信系统中终端定位的可靠性。
可选地,所述专用SCI包括以下至少一项指示信息:
SCI所在的PSCCH的在PSCCH资源组中的序号;
SL资源块标识;
第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述第一时隙的SL PRS时频位置指示信息;
SL PRS的梳状(comb)结构指示信息;
SL PRS的梳状偏移(comb offset)指示信息;
SL PRS的循环移位(cyclic shift)指示信息;
SL PRS的序列标识指示信息;
SL PRS的时频资源图样(pattern)指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识(destination ID);
SL PRS关联的资源标识(source ID);
定位测量上报请求。
本申请实施例中,专用SCI包括的指示信息可以是直接指示目标参数的值;或者由协议约定、网络侧设备配置或网络侧设备预配置目标参数的集合或范围或候选取值,再由目标SCI指示,可以减少开销。
针对SCI所在的PSCCH在PSCCH组中的序号,可以理解为SCI所在的PSCCH在SL PRS资源块中的标识,或者SCI所在的PSCCH在SL PRS资源块中的PSCCH发送机会中的PSCCH序号。可以由网络侧设备(或者网络侧预配置)和/或协议约定一组PSCCH与一组SL PRS具有映射关系,且这组PSCCH与SL PRS占据了相同的时隙。PSCCH中的SCI用于指示这组SL PRS中的SL PRS资源。其中,该一组PSCCH可以通过频分复用(Frequency Division Multiplex,FDM),例如,可以资源块(Resource Block,RB)级的FDM和/或时分复用(Time division multiplexing,TDM)的方式排列。例如,一组SL PRS共享相同的频域资源块,通过FDM(如资源单元(Resource Element,RE)级的FDM)和/或TDM和/或码分复用(Code Division Multiplexing,CDM)区分/排列。在一些实施例中网络测设备(或者网络侧预配置)和/或协议约定这组PSCCH通过FDM(如RB级的FDM)和/或TDM的方式排列,并关联相应的PSCCH序号。终端可以通过PSCCH在PSCCH组中的序号,获得这组PSCCH与这组SL PRS更多的信息,如时频位置。
上述SL PRS资源标识(ID)可以理解为SL PRS资源索引(index),在一些实施例中,SL PRS资源标识可以替换为SL PRS配置标识。其中,所述SL PRS资源标识与SL PRS资源的映射关系可以由协议约定、网络侧设备配置(或者预配置)和终端选择至少一种方式获得。
可选地,所述SL PRS资源ID按照协议约定的顺序排序,如资源ID对 应的资源由预设频域位置、时域位置和序列至少之一确定,ID的顺序排列按照频域、时域和/或码域的先后顺序排列。例如先频域后时域,或者先码域后频域再码域等。可选地,不同SL PRS资源对应不同的频域位置,可以解释为comb结构下,不同SL PRS资源对应不同的comb offset(或RE offset);不同SL PRS资源对应不同的时域位置,可以解释为不同的SL PRS资源对应一个slot内不同的symbol,或者不同的slot;不同的SL PRS资源对应不同的序列,可以解释为不同SL PRS对应的不同的循环移位和/或序列ID。
可选地,所述SL PRS时频位置指示信息包括:
频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
可选地,频域起始位置可以为相对于目标SCI频域位置的相对频域位置或者相对偏移。例如,通过相对于目标SCI对应的PSCCH的最低频域位置的偏移指示频域起始位置,偏移的单位可以是PRB或者子信道(subchannel)或PSCCH带宽。其中,最低频域位置可以理解为最低PRB或者最低subchannel。可选地,所述相对偏移为向下偏移,即SL PRS频域起始位置不高于SCI最低频域位置。可选地,若偏移的单位为PSCCH带宽,SCI中可指示SL PRS与PSCCH最低频域位置偏移了X个PSCCH带宽。
可选地,SL PRS的频域起始位置可以由SCI中指示PSCCH的序号获得。一种可选实施方式:网络侧设备(或者网络侧预配置)和/或协议约定一组PSCCH(PSCCH通过FDM(如RB级的FDM)和/或TDM的方式排列)与一组SL PRS具有映射关系(一组SL PRS共享相同的频域资源块,通过FDM(如RE级的FDM)和/或TDM和/或CDM区分/排列)。且这组PSCCH与SL PRS占据了相同的slot。PSCCH中的SCI用于指示这组SL PRS中的SL PRS资源。网络侧设备(或者网络侧预配置)和/或协议约定这组PSCCH通过FDM(如RB级的FDM)和/或TDM的方式排列,并关联相应的PSCCH序号。其中,序号为0的PSCCH的最低频域位置与SL PRS的最低频域位置相同。接收SCI的终端可以获得SCI中指示的PSCCH的序号。通过PSCCH序号以 及当前PSCCH时频位置确定PSCCH组中序号为0的PSCCH的频域位置(或时频位置)。同时,获得了SL PRS的最低频域位置。
可选地,SL PRS的带宽或带宽的粒度是SCI对应的PSCCH的带宽的整数倍。可选地,在SCI中指示PRS带宽为PSCCH的倍数即可。
可选地,频域起始位置与目标SCI频域起始位置相同,即偏移为0。此外,频域起始位置和带宽可以通过联合编码(如资源指示值(Resource indicator value,RIV))表示。可选地,上述时域位置还可以由协议约定、网络侧设备配置或网络侧设备预配置。如协议约定、网络侧设备配置或网络侧设备预配置SL PRS起始symbol和目标SCI所在的symbol的关系。如比如:SL PRS起始symbol位于SCI对应的PSCCH后的第一个symbol,或者位于SCI对应的PSCCH某个symbol(如SCI第一个symbol),或者与目标SCI对应的PSCCH有协议约定、网络侧设备配置或网络侧设备预配置的symbol偏移。
可选地,起始symbol为相对于该slot的symbol 0或者最后一个symbol的symbol位置,或者相对于该目标SCI的第一个symbol或最后一个symbol的symbol位置(即symbol偏移)
可选地,SL PRS的起始symbol位置可以由PSCCH所在位置获得。在一些实施方式中,网络侧设备配置(或者网络侧设备预配置)和/或协议约定一组PSCCH(PSCCH通过FDM(如RB级的FDM)和/或TDM的方式排列)与一组SL PRS具有映射关系(一组SL PRS共享相同的频域资源块,通过FDM(如RE级的FDM)和/或TDM和/或CDM区分/排列)。且这组PSCCH与SL PRS占据了相同的slot。PSCCH中的SCI用于指示这组SL PRS中的PRS资源。终端获得了SCI指示的PSCCH位置,并通过预先配置/约定的映射关系,获得SL PRS的时域位置。可选地,symbol数可以包含或不包含SL PRS的ACG和/或GAP占用的symbol。
可选地,针对comb结构可以由协议约定、网络侧设备配置或网络侧设备配置。若comb大小(size)有多个,那么终端可以选择某个comb size,并通过目标SCI指示。
可选地,针对comb offset可以理解或替换为资源单元偏移(Resource Element offset,RE offset)。例如,一些实施例中,协议约定、网络侧设备配 置或者网络侧设备预配置comb size为N,那么UE选择comb offset为0~N-1之一,并通过目标SCI指示。在一些实施例中,comb offset与终端ID有关,可以通过终端ID按照协议约定、网络侧设备配置或网络侧设备预配置的方式生成。比如组播中,不同成员(member)ID的终端对应的comb offset不同。在一些实施例中,comb offset与PSCCH序号有关,可以通过PSCCH序号按照协议约定、网络侧设备配置或网络侧设备预配置的方式生成。
可选地,协议约定、网络侧设备配置或网络侧设备预配置cyclic shift,若cyclic shift为X个,则终端选择X中的一个,并通过目标SCI指示。在一些实施例中,cyclic shift与PSCCH序号有关,可以通过PSCCH序号按照协议约定、网络侧设备配置或网络侧设备预配置的获得cyclic shift。
可选地,在一些实施例中,协议约定、网络侧设备配置或网络侧设备预配置多个序列,终端选择一个,并通过目标SCI指示。在一些实施例中,序列ID与终端ID有关,可以等于终端ID或者通过终端ID按照协议约定、网络侧设备配置或网络侧设备预配置的方式生成。其中终端ID可以是以下之一:source ID、destination ID、member ID,协议预定义或厂商预配置的UE ID、应用层或IP层ID、以及根据高层ID(例如source ID、destination ID、应用层ID和IP层ID)生成的物理层ID等。在一些实施例中,序列ID与PSCCH序号有关,可以通过PSCCH序号按照协议约定、网络侧设备配置或网络侧设备预配置的获得序列ID。
可选地,上述时频资源pattern可以理解或替换为相对资源单元偏移(relative RE offset)。其中,可以由协议约定、网络侧设备配置或网络侧设备预配置多个SL PRS pattern,终端选择一个,并通过目标SCI指示,该多个SL PRS pattern可以为固定的symbol数和comb size下的多个SL PRS pattern。
可选地,上述第二时隙位于第一时隙之后的一个或者多个时隙,例如,在一些实施例中,第二时隙可以为第一时隙之后的一个周期内的时隙。其中,所述第一指示信息可以包括以下至少一项:
第一子指示信息,所述第一子指示信息用于指示时频位置信息;
第二子指示信息,所述第二子指示信息用于指示资源数。
例如,第一指示信息可以指示的时域位置信息可以包括:重复的SL PRS 资源时隙位置和重复的SL PRS资源之间的gap中的至少一项。其中,时隙位置可以理解为相对于第一时隙的时隙偏移。第一指示信息可以指示的频域位置信息可以包括:重复的SL PRS资源频域起始位置和带宽中的至少一项。上述第二子指示信息指示的资源数可以表示重复的SL PRS资源的个数。其中,多个SL PRS资源的时域位置可以通过联合编码的方式表示;多个SL PRS资源的频域位置可以通过联合编码的方式表示。
可选地,重复或预留的SL PRS资源的如下参数相同,所述参数包含以下至少之一:comb、comb offset、cyclic shift、序列ID、pattern、带宽、频域起始位置、时隙内的时域位置、周期、优先级、destination ID和source ID。
可选地,不同周期的SL PRS资源的时频位置相同。其中SL PRS资源包括每个周期第一个时隙的SL PRS和/或重复的SL PRS。在一些实施例中,可以由协议约定、网络侧设备配置或网络侧设备预配置多个不同的周期,终端选择一个,并通过目标SCI指示。
优先级指示信息包括但不限于SL PRS与其他SL信号或信道的优先级,SL PRS发送与SL PRS接收的优先级,SL PRS发送与其他SL信号或信道的优先级,定位服务的优先级,终端的优先级等至少之一。
可选地,上述destination ID可以由层2(layer-2)的destination ID生成,上述source ID可以由layer-2的destination ID生成。例如可以由layer-2的destination ID进行相应的计算生成destination ID和source ID。
可选地,上述定位测量上报请求可以用于请求第二终端测量SL PRS和/或上报特定的测量量。
可选地,在一些实施例中,所述方法还包括:
所述第一终端获取SL PRS配置信息;
所述第一终端基于所述SL PRS配置信息确定所述目标SCI。
本申请实施例中,SL PRS配置信息可以理解为资源池或SL PRS资源块中的SL PRS配置信息,即获取SL PRS配置信息可以理解为:在资源池或SL PRS资源块中获取SL PRS配置信息或者获取资源池或SL PRS资源块中的SL PRS配置信息。其中,所述SL PRS配置信息可以由网络侧设备配置、网络侧设备预配置、协议约定、其他终端配置和其他终端预配置等至少一种方式得 到。
可选地,所述SL PRS配置信息包括以下至少一项:
SL PRS可用的时域位置;
SL PRS可用的频域位置;
SL PRS带宽或SL PRS带宽候选集合;
梳状结构或梳状结构候选集合;
符号数或符号数候选集合;
循环移位数或cyclic shift候选集合;
周期或周期候选集合;
SL PRS的时频资源图样或SL PRS的时频资源图样候选集合;
序列标识或序列标识候选集合;
SL PRS优先级或SL PRS优先级候选集合;
SL PRS关联的物理旁链路控制信道PSCCH(或SCI)的配置信息。
所述PSCCH的配置信息可以包括PSCCH时域位置配置和PSCCH频域位置配置中的至少一项,其中,所述PSCCH时域位置配置包括每个时隙的PSCCH机会个数、每个PSCCH机会的符号数、每个时隙中PSCCH机会的位置和PSCCH周期中的至少一项,所述PSCCH频域位置配置包括一个PSCCH占用的物理资源块PRB数和PSCCH频域候选位置中的至少一项。
针对PSCCH频域候选位置,例如,以resource pool总带宽为例,以PSCCH占用的PRB数为粒度,通过比特位图(Bitmap)表示PSCCH候选位置。Bitmap中1表示该连续的PRB可以作为候选位置,0表示不可以作为候选位置。
可选地,在一些实施例中,所述SL PRS配置信息还包括SL PRS资源块的配置参数。
本申请实施例中,多个终端可以共享相同的SL PRS资源块。其中,用于多个终端的SL PRS共享相同的资源块,多个终端发送的SL PRS通过不同的comb offset(或RE offset)、symbol位置(可选地,不同的Symbol属于不同的Slot和/或相同的slot)、序列至少之一区分;SL PRS的资源以一种较为规则的方式分配。
可选地,SL PRS资源块中的不同的SL PRS资源通过不同的symbol位置 区分;若不同的SL PRS资源的symbol位置相同,不同的SL PRS资源可以通过不同的comb offset区分;若不同的SL PRS资源的symbol位置以及comb offset相同,不同的SL PRS资源可以通过不同的序列区分。可选地,不同的序列可以是不同的cyclic shift和/或不同的序列ID。
可选地,SL PRS资源块的带宽占据整个SL BWP带宽,或者整个SL资源池的带宽。
可选地,SL PRS资源块还可以表示为SL PRS资源组,SL PRS资源集,SL PRS频率层等等。
其中,所述SL PRS资源块满足以下至少一项:
一个SL PRS资源块的频域占据连续的PRB,且一个SL PRS资源块的时域占据至少一个时隙且在一个时隙内占据连续的符号;
在相同的SL PRS资源块包含的不同SL PRS资源的第一特征相同,所述第一特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;可选地,可以针对相同的SL PRS资源块包含的不同SL PRS资源联合配置第一特征,也可以针对不同的SL PRS资源独立配置第一特征,且配置的第一特征的内容相同;
一个SL PRS资源块内不同SL PRS资源通过不同的comb offset(或RE offset)、symbol位置(可选地,不同的Symbol属于不同的slot和/或相同的slot)和序列中的至少一项区分;
一个时隙内,SL PRS资源块内包含的不同SL PRS资源通过不同的第二特征区分,第二特征包括comb offset(或RE offset)、symbol位置和序列中的至少一项;
一个时隙内,SL PRS资源块中的每个SL PRS资源从SL资源块的最低PRB或最低subchannel开始映射;
一个时隙内,SL PRS资源块中的每个SL PRS资源占据SL PRS资源块整个带宽;
一个时隙内,SL PRS资源块中的一个SL PRS资源连续Z个symbol,Z为正整数;
一个时隙内,不同时域位置的SL PRS资源之间间隔的符号包括间隔 (GAP)符号和自动增益控制AGC符号中的至少一项;
一个时隙内,SL PRS资源块内的每个SL PRS资源关联SL PRS资源序号或SL PRS资源标识(index);可选地,SL PRS资源序号为整个时隙内SL PRS资源的序号,或者是PSCCH机会后的SL PRS资源的序号;
一个时隙内,SL PRS资源块的第一个符号用于自动增益控制AGC,最后一个符号为GAP符号;
一个时隙内,SL PRS资源块的PSCCH在时域上有至少一次PSCCH发送机会(PSCCH occasion);其中,一次发送机会占据第X符号(如第二符号)开始的连续N个符号,且N个符号上多个PSCCH可频分复用和/或时分复用和/或码分复用,不同的PSCCH可用于指示SL PRS资源块内不同的SL PRS资源,X与N为正整数;可选地,不同的PSCCH发送机会的起始符号不同(占据的连续的符号数可以相同或不同);可选地,不同的PSCCH发送机会的前一个符号用于AGC;
一个时隙内,SL PRS资源块中第m次PSCCH发送机会中的PSCCH用于指示位于所述第m次PSCCH机会后,且位于第m+1次PSCCH发送机会前的SL PRS资源,m为正整数;即第m次PSCCH发送机会中的PSCCH并不指示其他PSCCH发送机会后的SL PRS资源;可选地,该第m次PSCCH发送机会中的SCCH指示的这些SL PRS资源通过不同的comb offset(或RE offset)、symbol位置和序列中的至少一项进行区分;
一个时隙内,SL PRS资源块中的一个PSCCH占据连续L个symbol,L为正整数;可选地,L=N或被N整除;
一个时隙内,不同时域位置的PSCCH之间间隔的符号包括GAP符号和AGC符号中的至少一项;
一个时隙内,SL PRS资源块中的一个PSCCH占据SL PRS资源块带宽中连续M个PRB(或者subchannel),M为正整数;
一个时隙内,SL PRS资源块内的一个PSCCH关联一个PSSCH,PSCCH与PSSCH频分复用,PSSCH从PSCCH最高或最低的频域位置外的第一个PRB或subchannel开始映射,且PSSCH与PSCCH在频域一共占据连续的P个PRB或subchannel,P为正整数。可选地,所述PSSCH用于携带第二级 SCI,并由PSCCH中的SCI指示;
一个时隙内,SL PRS资源块中的频域位置最低(或者PSCCH序号为0,或PSCCH序号最小)的PSCCH从SL资源块的最低PRB(最低subchannel)开始映射;
一个时隙内,SL PRS资源块内的PSCCH关联PSCCH序号(或index);可选地,PSCCH序号为整个时隙内PSCCH的序号,或者是PSCCH关联的PSCCH发送机会中的PSCCH序号;
不同的SL PRS资源块具有不同的第三特征,所述第三特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;可选地,可以针对不同的SL PRS资源块联合配置第三特征,也可以针对不同的SL PRS资源块独立配置第三特征,且配置的第一特征的内容相同。
一个时隙内的SL PRS资源块中不同的SL PRS资源与对应的PSCCH具有第一映射关系;
一个资源池内配置或预配置至少一个SL PRS资源块。
可选地,上述SL PRS资源块满足的特征和/或特征中对应的相关参数,可以通过协议约定、网络侧设备配置(或者网络侧设备预配置)和终端选择至少一种方式确定。
本申请实施例中,所述第一映射关系可以包括:通过不同第二特征区分的SL PRS资源映射到不同时频位置的PSCCH,所述第二特征包括梳状偏移、符号位置和序列中的至少一项。此时,占据预设comb offset/symbol/序列的SL PRS对应的PSCCH,会映射到预设的PSCCH时频位置。换句话说,与SL PRS资源的具有第一映射关系的PSCCH时频位置与SL PRS的第二特征有关。
可选地,若一个slot内,有多个PSCCH发送机会,某PSCCH发送机会中PSCCH用于指示该PSCCH后的SL PRS资源,后一个PSCCH机会前的SL PRS资源。那么,第一映射关系为PSCCH发送机会中PSCCH与该PSCCH后的SL PRS,后一个PSCCH机会前的SL PRS资源的映射关系。
换句话说,某个SL PRS资源具有第一映射关系(或关联)的PSCCH时频位置(或时频域起始位置)或频域位置(或频域起始位置),与SL PRS资 源的频域位置(如comb offset)、时域位置(如起始symbol位置)、序列(如cyclic shift取值)至少之一有关。
可选地,在一些实施例中,一个slot内,PRS资源块的PSCCH个数大于或等于频分/时分/码分的SL PRS资源数。在一些实施例中,若PSCCH个数小于频分/时分/码分的SL PRS资源数,那么剩余无法获得映射关系的SL PRS资源不可用。也就是说,若某一时隙中PSCCH的数量小于通过第二特征区分的SL PRS资源的数量,则该时隙内没有获得映射关系的SL PRS资源不可用。可选地,若一个slot内,有多个PSCCH发送机会,某PSCCH发送机会中PSCCH用于指示该PSCCH后的SL PRS,后一个PSCCH机会前的SL PRS。那么,PSCCH发送机会中的PSCCH个数大于或等于该PSCCH机会后后一个PSCCH机会前的SL PRS,通过频分/时分/码分区分的SL PRS资源数。在一些实施例中,若某PSCCH发送机会中PSCCH个数小于频分/时分/码分的SL PRS资源数,那么剩余无法获得映射关系的SL PRS资源不可用。
在一些实施例中,SL PRS资源通过先频域(如comb offet或RE Offset)、再时域(如不同symbol)、再码域(如不同的cyclic shift)排序(或者反过来的其他顺序),PSCCH按照先频域(如PRB或subchannel level)、再时域排序(或者反过来的其他顺序);那么固定某个排序(或序号)的SL PRS资源可以找到对应排序的PSCCH(或者,对应序号的PSCCH)。例如,频域从低到高、时域从前到后、码域从小到大的排序(或者码域从小到大、频域从高到低、时域从前到后的排序);同理,PSCCH按照频域从低到高(如按照PRB或subchannel顺序)、时域从前到后的排序。
在一些实施例中,SL PRS资源可以通过频分和/或码分的方式进行区分,PSCCH可以通过频分的方式进行区分;SL PRS资源可以通过先频域、再码域(或者反过来)排序,PSCCH可以按照先频域从低到高的顺序进行排序。那么,固定某个序号的SL PRS资源可以找到对应的PSCCH。
在一些实施例中,SL PRS资源可以通过频分(如comb offet或RE Offset)的方式进行区分,PSCCH可以通过频分(如PRB或subchannel level)的方式进行区分;SL PRS资源可以频域排序,PSCCH可以按照频域从低到高的顺序进行排序。那么,固定某个序号的SL PRS资源可以找到对应的PSCCH。 比如:RE offset为0的SL PRS,对应的PSCCH频域(PRB或subchannel)起始位置为SL PRS资源块最低频域位置;RE offset为1的SL PRS,对应的PSCCH频域(PRB或subchannel)起始位置为SL PRS资源块最低频域位置+1个PSCCH带宽;RE offset为n的SL PRS,对应的PSCCH频域(PRB或subchannel)起始位置为SL PRS资源块最低频域位置+n*PSCCH带宽。可选地,若一个PSCCH还关联一个PSSCH,那么RE offset为n的SL PRS,对应的PSCCH频域(PRB或subchannel)起始位置为SL PRS资源块最低频域位置+n*(PSCCH+PSSCH带宽)。
本申请实施例中,一个时隙内的SL资源块(SL PRS block)的图样如图3所示。在图3中,可以包括用于传输AGC的资源、用于传输SCI的资源(即PSCCH资源),用于传输SL PRS的资源和GAP对应的资源。其中,传输SCI的资源可以传输多个目标SCI,如图3所示,多个目标SCI包括SCI 1、SCI 2、SCI 3和SCI 4,且SCI 1、SCI 2、SCI 3和SCI 4进行复用传输。用于传输SL PRS的资源可以由多个终端共享。
可选地,所述SL PRS从预定义/预配置的最低subchannel/最低PRB开始映射。
可选地,SCI的资源/资源起始位置/资源结束位置根据SL PRS RE offset确定。
可选地,SL PRS的subchannel number等于SL PRS RE offset。
可选地,所述SL PRS资源块的配置参数包括以下至少一项:
SL PRS资源块标识;
SL PRS资源块时域位置;
SL PRS资源块频域位置;
时隙内一个终端能够占用SL PRS的符号数;
时隙内SL PRS的占用符号位置;
梳状结构大小;
循环移位信息;
PSCCH的配置信息。
其中,SL PRS资源块时域位置可以包括时隙内的可用symbol位置、可 用的时隙位置和周期中的至少一项。SL PRS资源块频域位置可以包括:频域起始位置(起始Subchannel或起始PRB)和带宽。可选地,SL PRS资源块的不同时隙的频域位置可以相同也可以不同。
针对梳状结构大小可以替换为终端可用的梳状偏移位置或者资源单元偏移位置。
上述循环移位信息可以包括可用的循环移位值和可用的循环移位数。
上述PSCCH的配置信息可以包括以下至少一项:一个slot内PSCCH占据的symbol位置(如起始位置或结束位置)、一个slot内PSCCH占据的symbol数、一个PSCCH占用的带宽(如占用的PRB数或subchannel数)、一个PSCCH占用的symbol数、PSCCH个数、一个slot内每个PSCCH机会占据的symbol位置、一个slot内每个PSCCH机会占据的symbol数、一个slot内PSCCH机会数、PSCCH所在symbol上可用于PSCCH传输的频域位置。
可选地,PSCCH所在symbol上用于PSCCH传输的频域位置可用于传输多个PSCCH,其中不同的PSCCH可以频域连续分布或者非连续分布(如非连续的均匀分布)。可选地,用于PSCCH传输的频域位置可以通过bitmap表示,全部bitmap长度表示的带宽与SL PRS资源块带宽相同;Bitmap中1位表示长度为N的PRB或subchannel是否可以用于PSCCH传输(可选地,N由协议约定或网络预配置/配置),bit为1代表可以,为0带宽不可以;bitmap长度为SL PRS资源块带宽/bitmap中1位表示长度。可选地,bitmap中bit为0的频域位置可以用于传输PSSCH,用于携带第二级SCI。
可选地,一个slot内PSCCH占据的symbol位置可以通过Bitmap表示,其中Bitmap长度为SL PRS资源块或slot的符号数,bit为1表示PSCCH占据的符号或起始符号。
可选地,一个slot内每个PSCCH机会占据的symbol位置可以通过Bitmap表示,其中Bitmap长度为SL PRS资源块的符号数,bit为1表示每个PSCCH机会占据的symbol位置PSCCH占据的符号或起始符号。
可选地,在一些实施例中,所述目标SCI指示的信息包括对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
可选地,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
所述第二级SCI的码率;
所述第二级SCI的格式;
承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;例如可以指示以下至少一项:起始PRB(或subchannel)位置和PRB(或subchannel)数;
承载所述第二级SCI的PSSCH占用的符号;例如可以指示以下至少一项:起始符号位置和符号数;
承载所述第二级SCI的PSSCH对应的解调参考信号(Demodulation Reference Signal,DMRS)图样;
承载所述第二级SCI的PSSCH对应的DMRS端口指示;
所述目标SCI所在的第一时隙的SL PRS时域位置;
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
SL PRS资源块标识。
DMRS图样的指示可以包括以下至少一项:DMRS symbol数、DMRS symbol所在位置、DMRS comb结构和DMRS RE位置。进一步地,可以协议约定、网络侧设备配置或网络侧设备预配置DMRS pattern多个,通过目标SCI指示一个。
可选地,在一些实施例中,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
需要说明的是,在本申请实施例中,由于通过第一级SCI和第二级SCI联合指示SL PRS的资源信息,因此,以下参数可以在第一级SCI和第二级SCI中灵活分配:所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;SL PRS的梳状结构指示信息;SL PRS的梳状偏移指示信息;SL PRS的循环移位指示信息;SL PRS的序列标识指示信息;SL PRS的时域资源图样指示信息;第一指示信息;SL PRS的周期指示信息;SL PRS的优先级指示信息;SL PRS关联的目标地址标识;SL PRS关联的资源标识。例如,第一级SCI包括以上参数中的部分参数,则第二级SCI可以包括以上参数中的剩余参数。
可选地,在一些实施例中,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
所述PSSCH与PSCCH频分复用;
所述PSSCH不与SL PRS频分复用;
所述PSSCH与PRS占据不同的符号;
所述PSSCH从DMRS第一个符号开始映射;
所述PSSCH与DMRS采用资源单元RE级频分复用;
所述PSSCH对应的DMRS的端口数为1;
所述PSSCH对应的DMRS的符号数为1或2;
所述PSSCH对应的多个DMRS符号不连续;
所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
可选地,上述PSSCH满足的特征和/或特征中对应的相关参数,可以通过协议约定、网络侧设备配置(或者网络侧设备预配置)和终端选择中的至少一种方式确定。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
第四时隙中SL PRS的频域位置指示信息;
第四时隙中SL PRS的梳状结构指示信息
第四时隙中SL PRS的梳状偏移指示信息;
第四时隙中SL PRS的循环移位指示信息;
第四时隙中SL PRS的序列标识指示信息;
第四时隙中SL PRS的时域资源图样指示信息;
第四时隙中SL PRS的优先级指示信息;
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
应理解,上述第二级SCI中除了上述第二指示信息之外,还可以包括现有第二级SCI中的信息,该现有第二级SCI中的信息可以包括以下至少一项:混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程、新数据指示(New Data Indicator,NDI)、冗余版本(Redundancy Version,RV)、source ID、destination ID、HARQ反馈激活/去激活、单播组播广播指示、信道状态 信息(Channel State Information,CSI)反馈请求、域标识(Zone ID)和通信距离要求。
其中,SL PRS资源的指示信息可以包括仅用于SL PRS传输的时隙位置、symbol位置、带宽、频域起始位置、comb、comb offset、cyclic shift、序列ID、pattern和周期中的至少一项。
可选地,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于不同的资源池。
本申请实施例中,可以针对SL PRS设置独立的资源池。此时PSCCH搜索空间、控制资源集(Coreset)可以重新设计;
当然,在其他实施例中,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于相同的资源池。即共享资源池,此时PSCCH位置需要满足现有的规则。
可选地,在一些实施例中,所述共享SCI指示的信息包括以下至少一项:
频域资源分配指示;
第二级SCI的格式信息,所述第二级SCI的格式信息包括用于传输SL PRS配置参数和数据传输的格式;
时域资源分配指示;
在预留比特或预设码点中的第五指示信息。
本申请实施例中,由于SL PRS与PSSCH带宽可能不一致,当前时隙,如果有SL PRS,则可以通过第二级SCI指示。
需要说明的是,由于SL PRS与PSSCH共享SCI,此时需要对现有第一SCI指示的部分信息进行重释义,例如,对频域资源分配指示、第二级SCI的格式信息和时域资源分配指示进行重释义。其中,现有第一SCI指示的信息包括以下至少一项:调度的数据的优先级、频域资源分配、时域资源分配、PSSCH参考信号图样、第二级SCI格式、第二级SCI码率偏移、PSSCH DMRS端口数、调制和编码方案(Modulation and coding scheme,MCS)、MCS表格指示、PSFCH符号数、资源预留周期和保留bit。
例如,在一些实施例中,所述频域资源分配指示满足以下任一项:
所述频域资源分配指示用于确定PSSCH的频域位置,该PSSCH的频域 位置可以包括带宽和/或起始位置(该起始位置也可以替换为终止位置);
所述频域资源分配指示用于确定SL PRS的频域位置,例如SL PRS占用独立的slot,不与PSSCH复用的方案;
所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置。
在频域资源分配指示重释义为所述频域资源分配指示用于确定PSSCH的频域位置时,PSSCH带宽可以与SL PRS带宽不同。
在频域资源分配指示重释义为所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置的情况下,在一实施例中,预设码点用于确定SL PRS的使能/去使能;若SL PRS使能,则当前slot和/或预留slot有SL PRS;若SL PRS去使能,则当前slot和/或预留slot无SL PRS;例如,若存在SL PRS,则SL PRS的频域位置为预定义/预配置/配置的。在另一实施例中,SL PRS的带宽与PSSCH的带宽相同,或者说,SL PRS根据SCI format 1-A的频率资源指示值(Frequency Resource Indication Value,FRIV)确定带宽和位置。
针对上述第二级SCI格式除了包括括现有第二级SCI Format-A/B/C,还包括用于传输SL PRS配置参数或传输SL PRS配置参数和数据传输的新的第二级SCI格式,,其中用于传输SL PRS配置参数或传输SL PRS配置参数和数据传输的格式可以表示为SCI format 2-D。
可选地,所述时域资源分配指示中的预留时隙指示用于指示(或者重释义为)以下任一项:仅用于数据传输的时隙、数据与SL PRS共享的时隙和仅用于SL PRS传输的时隙。
可选地,所述第五指示信息包括以下至少一项:
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示第四时隙是否存在SL PRS;
SL PRS占用的符号,所述SL PRS占用的符号用于表示第四时隙的符号位置;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
针对上述第三SL PRS使能标识在一实施例中可以通过bitmap表示当前 slot和/或预留slot有无SL PRS,bitmap长度为当前slot和/或预留slot的slot数目。在另一实施例中可以保留比特(reserved bit)指示第X个slot有/无SL PRS。基于这种指示,一个SCI中,只能指示一个slot中有或者没有SL PRS。
可选地,若第四时隙有PRS,该第三SL PRS使能标识对应的指示可以忽略或者默认为0。
针对SL PRS占用的符号,在一些实施例中,可以由协议约定、网络侧设备配置或网络侧设备预配置SL PRS潜在占用的符号位置,UE在潜在占用的符号中选择特定的符号位置用于SL PRS发送,并通过目标SCI指示。
可选地,SL PRS占用的符号可包含或不包含AGC和/或GAP占用的符号。
应理解,第二终端根据第一级SCI,可以知道2nd SCI format,判断2nd SCI format占用的PRB,正常进行解码,第二终端也可以判断数据占用哪些symbol(通过第一级SCI指示的SL PRS占用的符号,就可以排除掉SL PRS占用的符号,获得数据占用哪些symbol的信息)正常进行解码。
参照图4,本申请实施例还提供了一种旁链路定位处理方法,包括:
步骤401,第二终端从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
步骤402,所述第二终端基于所述SL PRS资源信息执行目标操作;
其中,所述目标操作包括以下至少一项:
SL资源选择;
根据所述SCI指示,发送SL PRS;
接收所述SCI指示的SL PRS。
可选地,所述目标SCI为两级SCI中第一级SCI。
可选地,所述专用SCI包括以下至少一项指示信息:
SCI所在的PSCCH的在PSCCH资源组中的序号;
SL资源块标识;
第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,所述SL PRS时域位置指示信息包括:
频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
可选地,所述第一指示信息包括以下至少一项:
第一子指示信息,所述第一子指示信息用于指示时频位置信息;
第二子指示信息,所述第二子指示信息用于指示资源数。
可选地,所述目标SCI指示的信息包括对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
可选地,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
所述第二级SCI的码率;
所述第二级SCI的格式;
承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;
承载所述第二级SCI的PSSCH占用的符号;
承载所述第二级SCI的PSSCH对应的解调参考信号DMRS图样;
承载所述第二级SCI的PSSCH对应的DMRS端口指示;
所述目标SCI所在的第一时隙的SL PRS时域位置;
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
SL PRS资源块标识。
可选地,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
所述PSSCH与PSCCH频分复用;
所述PSSCH不与SL PRS频分复用;
所述PSSCH与PRS占据不同的符号;
所述PSSCH从DMRS第一个符号开始映射;
所述PSSCH与DMRS采用资源单元RE级频分复用;
所述PSSCH对应的DMRS的端口数为1;
所述PSSCH对应的DMRS的符号数为1或2;
所述PSSCH对应的多个DMRS符号不连续;
所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
可选地,若所述PSSCH与PSCCH频分复用,则一个终端能够占用的PSSCH与PSCCH对应的subchannel或PRB连续,PSSCH从PSCCH最高或最低的频域位置外的第一个PRB或subchannel开始映射,PSSCH与PSCCH在频域一共占据连续的P个PRB或subchannel。不同终端占用的PSSCH与PSCCH也可以频分复用。比如,不同终端可以占据频域连续的PRB或subchannel,用于发送终端占用的PSSCH和PSCCH。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
第四时隙中SL PRS的频域位置指示信息;
第四时隙中SL PRS的梳状结构指示信息
第四时隙中SL PRS的梳状偏移指示信息;
第四时隙中SL PRS的循环移位指示信息;
第四时隙中SL PRS的序列标识指示信息;
第四时隙中SL PRS的时域资源图样指示信息;
第四时隙中SL PRS的优先级指示信息;
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
可选地,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于不同的资源池。
可选地,所述共享SCI指示的信息包括以下至少一项:
频域资源分配指示;
第二级SCI的格式信息,所述第二级SCI的格式信息包括用于传输SL PRS配置参数和数据传输的格式;
时域资源分配指示;
在预留比特或预设码点中的第五指示信息。
可选地,所述频域资源分配指示满足以下任一项:
所述频域资源分配指示用于确定PSSCH的频域位置;
所述频域资源分配指示用于确定SL PRS的频域位置;
所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置。
可选地,所述时域资源分配指示中的预留时隙指示用于指示以下任一项:仅用于数据传输的时隙、数据与SL PRS共享的时隙和仅用于SL PRS传输的时隙。
可选地,所述第五指示信息包括以下至少一项:
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示第四时隙是否存在SL PRS;
SL PRS占用的符号,所述SL PRS占用的符号用于表示第四时隙的符号 位置;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
本申请实施例提供的旁链路定位处理方法,执行主体可以为旁链路定位处理装置。本申请实施例中以旁链路定位处理装置执行旁链路定位处理方法为例,说明本申请实施例提供的旁链路定位处理装置。
参照图5,本申请实施例还提供一种旁链路定位处理装置,如图5所示,该旁链路定位处理装置500包括:
发送模块501,用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
可选地,所述目标SCI为两级SCI中第一级SCI。
可选地,所述专用SCI包括以下至少一项指示信息:
SCI所在的PSCCH的在PSCCH资源组中的序号;
SL资源块标识;
第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,所述SL PRS时域位置指示信息包括:
频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
可选地,所述第一指示信息包括以下至少一项:
第一子指示信息,所述第一子指示信息用于指示时频位置信息;
第二子指示信息,所述第二子指示信息用于指示资源数。
可选地,所述旁链路定位处理装置500还包括:
获取模块,用于获取SL PRS配置信息;
确定模块,用于基于所述SL PRS配置信息确定所述目标SCI。
可选地,所述SL PRS配置信息包括以下至少一项:
SL PRS可用的时域位置;
SL PRS可用的频域位置;
SL PRS带宽或SL PRS带宽候选集合;
梳状结构或梳状结构候选集合;
符号数或符号数候选集合;
循环移位(cyclic shift)数或cyclic shift候选集合;
周期或周期候选集合;
SL PRS的时频资源图样或SL PRS的时频资源图样候选集合;
序列标识或序列标识候选集合;
SL PRS优先级或SL PRS优先级候选集合;
SL PRS关联的物理旁链路控制信道PSCCH的配置信息。
可选地,所述PSCCH的配置信息包括PSCCH时域位置配置和PSCCH频域位置配置中的至少一项,其中,所述PSCCH时域位置配置包括每个时隙的PSCCH机会个数、每个PSCCH机会的符号数、每个时隙中PSCCH机会 的位置和PSCCH周期中的至少一项,所述PSCCH频域位置配置包括一个PSCCH占用的物理资源块PRB数和PSCCH频域候选位置中的至少一项。
可选地,所述SL PRS配置信息还包括SL PRS资源块的配置参数。
可选地,所述SL PRS资源块满足以下至少一项:
一个SL PRS资源块的频域占据连续的PRB,且一个SL PRS资源块的时域占据至少一个时隙且在一个时隙内占据连续的符号;
在相同的SL PRS资源块包含的不同SL PRS资源的第一特征相同,所述第一特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;
一个SL PRS资源块内包含的不同SL PRS资源通过不同的梳状偏移、符号位置和序列中的至少一项区分;
一个时隙内,SL PRS资源块内包含的不同SL PRS资源通过不同的第二特征区分,第二特征包括梳状偏移、符号位置和序列中的至少一项;
一个时隙内,SL PRS资源块中的每个SL PRS资源从SL资源块的最低PRB或最低子信道开始映射;
一个时隙内,SL PRS资源块中的每个SL PRS资源占据所述SL PRS资源块整个带宽;
一个时隙内,SL PRS资源块中的一个SL PRS资源连续Z个符号,Z为正整数;
一个时隙内,不同时域位置的SL PRS资源之间间隔的符号包括GAP符号和自动增益控制AGC符号中的至少一项;
一个时隙内,SL PRS资源块内的每个SL PRS资源关联SL PRS资源序号或SL PRS资源标识;
一个时隙内,SL PRS资源块的第一个符号用于AGC,最后一个符号为GAP符号;
一个时隙内,SL PRS资源块的PSCCH在时域上有至少一次PSCCH发送机会;
一个时隙内,SL PRS资源块中第m次PSCCH发送机会中的PSCCH用于指示位于所述第m次PSCCH机会后,且位于第m+1次PSCCH发送机会 前的SL PRS资源,m为正整数;
一个时隙内,SL PRS资源块中第m次PSCCH发送机会中的PSCCH用于指示位于所述第m次PSCCH机会后,且位于第m+1次PSCCH发送机会前的SL PRS资源,m为正整数;
一个时隙内,SL PRS资源块中的一个PSCCH占据连续L个符号,L为正整数;
一个时隙内,不同时域位置的PSCCH之间间隔的符号包括GAP符号和AGC符号中的至少一项;
一个时隙内,SL PRS资源块中的一个PSCCH占据SL PRS资源块带宽中连续M个PRB或连续M个子信道,M为正整数;
一个时隙内,SL PRS资源块内的一个PSCCH关联一个PSSCH;
一个时隙内,SL PRS资源块中的频域位置最低的PSCCH从SL资源块的最低PRB或最低子信道开始映射;
一个时隙内,SL PRS资源块内的PSCCH关联PSCCH序号或PSCCH标识;
不同的SL PRS资源块的第三特征不同,所述第三特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;
一个时隙内的SL PRS资源块中不同的SL PRS资源与对应的PSCCH具有第一映射关系;
一个资源池内配置或预配置至少一个SL PRS资源块。
可选地,所述第一映射关系包括:通过不同第二特征区分的SL PRS资源映射到不同时频位置的PSCCH,所述第二特征包括梳状偏移、符号位置和序列中的至少一项。
可选地,所述SL PRS资源块的配置参数包括以下至少一项:
SL PRS资源块标识;
SL PRS资源块时域位置;
SL PRS资源块频域位置;
时隙内一个终端能够占用SL PRS的符号数;
时隙内SL PRS的占用符号位置;
梳状结构大小;
循环移位信息;
PSCCH的配置信息。
可选地,所述目标SCI指示的信息包括对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
可选地,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
所述第二级SCI的码率;
所述第二级SCI的格式;
承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;
承载所述第二级SCI的PSSCH占用的符号;
承载所述第二级SCI的PSSCH对应的解调参考信号DMRS图样;
承载所述第二级SCI的PSSCH对应的DMRS端口指示;
所述目标SCI所在的第一时隙的SL PRS时域位置;
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
SL PRS资源块标识。
可选地,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
所述PSSCH与PSCCH频分复用;
所述PSSCH不与SL PRS频分复用;
所述PSSCH与PRS占据不同的符号;
所述PSSCH从DMRS第一个符号开始映射;
所述PSSCH与DMRS采用资源单元RE级频分复用;
所述PSSCH对应的DMRS的端口数为1;
所述PSSCH对应的DMRS的符号数为1或2;
所述PSSCH对应的多个DMRS符号不连续;
所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
第四时隙中SL PRS的频域位置指示信息;
第四时隙中SL PRS的梳状结构指示信息
第四时隙中SL PRS的梳状偏移指示信息;
第四时隙中SL PRS的循环移位指示信息;
第四时隙中SL PRS的序列标识指示信息;
第四时隙中SL PRS的时域资源图样指示信息;
第四时隙中SL PRS的优先级指示信息;
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
可选地,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于不同的资源池,即SL PRS传输的专用资源池。
可选地,所述共享SCI指示的信息包括以下至少一项:
频域资源分配指示;
第二级SCI的格式信息,所述第二级SCI的格式信息包括用于传输SL PRS配置参数和数据传输的格式;
时域资源分配指示;
在预留比特或预设码点中的第五指示信息。
可选地,所述频域资源分配指示满足以下任一项:
所述频域资源分配指示用于确定PSSCH的频域位置;
所述频域资源分配指示用于确定SL PRS的频域位置;
所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置。
可选地,所述时域资源分配指示中的预留时隙指示用于指示以下任一项:仅用于数据传输的时隙、数据与SL PRS共享的时隙和仅用于SL PRS传输的时隙。
可选地,所述第五指示信息包括以下至少一项:
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示第四时隙是否存在SL PRS;
SL PRS占用的符号,所述SL PRS占用的符号用于表示第四时隙的符号位置;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
参照图6,本申请实施例还提供一种旁链路定位处理装置,如图6所示,该旁链路定位处理装置600包括:
接收模块601,用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
执行模块602,用于基于所述SL PRS资源信息执行目标操作;
其中,所述目标操作包括以下至少一项:
SL资源选择;
根据所述SCI指示,发送SL PRS;
接收所述SCI指示的SL PRS。
可选地,所述目标SCI为两级SCI中第一级SCI。
可选地,所述专用SCI包括以下至少一项指示信息指示信息:
SCI所在的PSCCH的在PSCCH资源组中的序号;
SL资源块标识;
第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,所述SL PRS时域位置指示信息包括:
频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
可选地,所述第一指示信息包括以下至少一项:
第一子指示信息,所述第一子指示信息用于指示时频位置信息;
第二子指示信息,所述第二子指示信息用于指示资源数。
可选地,所述目标SCI指示的信息包括对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
可选地,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
所述第二级SCI的码率;
所述第二级SCI的格式;
承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;
承载所述第二级SCI的PSSCH占用的符号;
承载所述第二级SCI的PSSCH对应的解调参考信号DMRS图样;
承载所述第二级SCI的PSSCH对应的DMRS端口指示;
所述目标SCI所在的第一时隙的SL PRS时域位置;
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
SL PRS资源块标识。
可选地,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
SL PRS的梳状结构指示信息;
SL PRS的梳状偏移指示信息;
SL PRS的循环移位指示信息;
SL PRS的序列标识指示信息;
SL PRS的时域资源图样指示信息;
第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
SL PRS的周期指示信息;
SL PRS的优先级指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求。
可选地,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
所述PSSCH与PSCCH频分复用;
所述PSSCH不与SL PRS频分复用;
所述PSSCH与PRS占据不同的符号;
所述PSSCH从DMRS第一个符号开始映射;
所述PSSCH与DMRS采用资源单元RE级频分复用;
所述PSSCH对应的DMRS的端口数为1;
所述PSSCH对应的DMRS的符号数为1或2;
所述PSSCH对应的多个DMRS符号不连续;
所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
可选地,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
第四时隙中SL PRS的频域位置指示信息;
第四时隙中SL PRS的梳状结构指示信息
第四时隙中SL PRS的梳状偏移指示信息;
第四时隙中SL PRS的循环移位指示信息;
第四时隙中SL PRS的序列标识指示信息;
第四时隙中SL PRS的时域资源图样指示信息;
第四时隙中SL PRS的优先级指示信息;
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
SL PRS关联的目标地址标识;
SL PRS关联的资源标识;
定位测量上报请求;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
可选地,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于不同的资源池。
可选地,所述共享SCI指示的信息包括以下至少一项:
频域资源分配指示;
第二级SCI的格式信息,所述第二级SCI的格式信息包括用于传输SL PRS配置参数和数据传输的格式;
时域资源分配指示;
在预留比特或预设码点中的第五指示信息。
可选地,所述频域资源分配指示满足以下任一项:
所述频域资源分配指示用于确定PSSCH的频域位置;
所述频域资源分配指示用于确定SL PRS的频域位置;
所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置。
可选地,所述时域资源分配指示中的预留时隙指示用于指示以下任一项:仅用于数据传输的时隙、数据与SL PRS共享的时隙和仅用于SL PRS传输的时隙。
可选地,所述第五指示信息包括以下至少一项:
第三SL PRS使能标识,所述第三SL PRS使能标识用于指示第四时隙是否存在SL PRS;
SL PRS占用的符号,所述SL PRS占用的符号用于表示第四时隙的符号位置;
其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
本申请实施例中的旁链路定位处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的旁链路定位处理装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的 程序或指令,该程序或指令被处理器701执行时实现上述旁链路定位处理实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;或者,通信接口用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;处理器用于基于所述SL PRS资源信息执行目标操作;其中,所述目标操作包括以下至少一项:SL资源选择;根据所述SCI指示,发送SL PRS;接收所述SCI指示的SL PRS。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理单元(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072中的至少一种。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控 制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801接收来自网络侧设备的下行数据后,可以传输给处理器810进行处理;另外,射频单元801可以向网络侧设备发送上行数据。通常,射频单元801包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括易失性存储器或非易失性存储器,或者,存储器809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器809包括但不限于这些和任意其它适合类型的存储器。
处理器810可包括一个或多个处理单元;可选地,处理器810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,射频单元801用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
或者,射频单元801用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
处理器用于基于所述SL PRS资源信息执行目标操作;其中,所述目标操作包括以下至少一项:SL资源选择;根据所述SCI指示,发送SL PRS;接收所述SCI指示的SL PRS。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述旁链路定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述旁链路定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述旁链路定位处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一终端及第二终端,所述第一终端用于执行如图2及上述各个方法实施例的各个过程,所述第二终端用于执行如图4及上述各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还 包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种旁链路定位处理方法,包括:
    第一终端发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
  2. 根据权利要求1所述的方法,其中,所述目标SCI为两级SCI中的第一级SCI。
  3. 根据权利要求1所述的方法,所述方法还包括:
    所述第一终端获取SL PRS配置信息;
    所述第一终端基于所述SL PRS配置信息确定所述目标SCI。
  4. 根据权利要求3所述的方法,其中,所述SL PRS配置信息包括以下至少一项:
    SL PRS可用的时域位置;
    SL PRS可用的频域位置;
    SL PRS带宽或SL PRS带宽候选集合;
    梳状结构或梳状结构候选集合;
    符号数或符号数候选集合;
    循环移位数或循环移位cyclic shift候选集合;
    周期或周期候选集合;
    SL PRS的时频资源图样或SL PRS的时频资源图样候选集合;
    序列标识或序列标识候选集合;
    SL PRS优先级或SL PRS优先级候选集合;
    SL PRS关联的物理旁链路控制信道PSCCH的配置信息。
  5. 根据权利要求4所述的方法,其中,所述PSCCH的配置信息包括PSCCH时域位置配置和PSCCH频域位置配置中的至少一项,其中,所述PSCCH时域位置配置包括每个时隙的PSCCH机会个数、每个PSCCH机会的符号数、每个时隙中PSCCH机会的位置和PSCCH周期中的至少一项,所述PSCCH频域位置配置包括一个PSCCH占用的物理资源块PRB数和 PSCCH频域候选位置中的至少一项。
  6. 根据权利要求3所述的方法,其中,所述SL PRS配置信息还包括SL PRS资源块的配置参数。
  7. 根据权利要求6所述的方法,其中,所述SL PRS资源块满足以下至少一项:
    一个SL PRS资源块的频域占据连续的PRB,且一个SL PRS资源块的时域占据至少一个时隙且在一个时隙内占据连续的符号;
    在相同的SL PRS资源块包含的不同SL PRS资源的第一特征相同,所述第一特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;
    一个SL PRS资源块内包含的不同SL PRS资源通过不同的梳状偏移、符号位置和序列中的至少一项区分;
    一个时隙内,SL PRS资源块内包含的不同SL PRS资源通过不同的第二特征区分,第二特征包括梳状偏移、符号位置和序列中的至少一项;
    一个时隙内,SL PRS资源块中的每个SL PRS资源从SL资源块的最低PRB或最低子信道开始映射;
    一个时隙内,SL PRS资源块中的每个SL PRS资源占据所述SL PRS资源块整个带宽;
    一个时隙内,SL PRS资源块中的一个SL PRS资源连续Z个符号,Z为正整数;
    一个时隙内,不同时域位置的SL PRS资源之间间隔的符号包括间隔GAP符号和自动增益控制AGC符号中的至少一项;
    一个时隙内,SL PRS资源块内的每个SL PRS资源关联SL PRS资源序号或SL PRS资源标识;
    一个时隙内,SL PRS资源块的第一个符号用于AGC,最后一个符号为GAP符号;
    一个时隙内,SL PRS资源块的PSCCH在时域上有至少一次PSCCH发送机会;
    一个时隙内,SL PRS资源块中第m次PSCCH发送机会中的PSCCH用 于指示位于所述第m次PSCCH机会后,且位于第m+1次PSCCH发送机会前的SL PRS资源,m为正整数;
    一个时隙内,SL PRS资源块中的一个PSCCH占据连续L个符号,L为正整数;
    一个时隙内,不同时域位置的PSCCH之间间隔的符号包括GAP符号和AGC符号中的至少一项;
    一个时隙内,SL PRS资源块中的一个PSCCH占据SL PRS资源块带宽中连续M个PRB或连续M个子信道,M为正整数;
    一个时隙内,SL PRS资源块内的一个PSCCH关联一个PSSCH;
    一个时隙内,SL PRS资源块中的频域位置最低的PSCCH从SL资源块的最低PRB或最低子信道开始映射;
    一个时隙内,SL PRS资源块内的PSCCH关联PSCCH序号或PSCCH标识;
    不同的SL PRS资源块的第三特征不同,所述第三特征包括以下至少一项:SL PRS带宽、梳状大小、符号数和可用循环移位;
    一个时隙内的SL PRS资源块中不同的SL PRS资源与对应的PSCCH具有第一映射关系;
    一个资源池内配置或预配置至少一个SL PRS资源块。
  8. 根据权利要求7所述的方法,其中,所述第一映射关系包括:通过不同第二特征区分的SL PRS资源映射到不同时频位置的PSCCH,所述第二特征包括梳状偏移、符号位置和序列中的至少一项。
  9. 根据权利要求6所述的方法,其中,所述SL PRS资源块的配置参数包括以下至少一项:
    SL PRS资源块标识;
    SL PRS资源块时域位置;
    SL PRS资源块频域位置;
    时隙内一个终端能够占用SL PRS的符号数;
    时隙内SL PRS的占用符号位置;
    梳状结构大小;
    循环移位信息;
    PSCCH的配置信息。
  10. 根据权利要求1所述的方法,其中,所述专用SCI包括以下至少一项指示信息:
    SCI所在的PSCCH的在PSCCH资源组中的序号;
    SL资源块标识;
    第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
    SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
    所述第一时隙的SL PRS时频位置指示信息;
    SL PRS的梳状结构指示信息;
    SL PRS的梳状偏移指示信息;
    SL PRS的循环移位指示信息;
    SL PRS的序列标识指示信息;
    SL PRS的时频资源图样指示信息;
    第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SLPRS资源,所述第二时隙与所述第一时隙不同;
    SL PRS的周期指示信息;
    SL PRS的优先级指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求。
  11. 根据权利要求10所述的方法,其中,所述SL PRS时域位置指示信息包括:
    频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
    时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
  12. 根据权利要求10所述的方法,其中,所述第一指示信息包括以下至少一项:
    第一子指示信息,所述第一子指示信息用于指示时频位置信息;
    第二子指示信息,所述第二子指示信息用于指示资源数。
  13. 根据权利要求1所述的方法,其中,所述目标SCI指示的信息包括对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
  14. 根据权利要求13所述的方法,其中,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
    所述第二级SCI的码率;
    所述第二级SCI的格式;
    承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;
    承载所述第二级SCI的PSSCH占用的符号;
    承载所述第二级SCI的PSSCH对应的解调参考信号DMRS图样;
    承载所述第二级SCI的PSSCH对应的DMRS端口指示;
    所述目标SCI所在的第一时隙的SL PRS时域位置;
    第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
    SL PRS资源块标识。
  15. 根据权利要求13所述的方法,其中,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
    第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
    SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
    所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
    SL PRS的梳状结构指示信息;
    SL PRS的梳状偏移指示信息;
    SL PRS的循环移位指示信息;
    SL PRS的序列标识指示信息;
    SL PRS的时域资源图样指示信息;
    第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
    SL PRS的周期指示信息;
    SL PRS的优先级指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求。
  16. 根据权利要求13所述的方法,其中,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
    所述PSSCH与PSCCH频分复用;
    所述PSSCH不与SL PRS频分复用;
    所述PSSCH与PRS占据不同的符号;
    所述PSSCH从DMRS第一个符号开始映射;
    所述PSSCH与DMRS采用资源单元RE级频分复用;
    所述PSSCH对应的DMRS的端口数为1;
    所述PSSCH对应的DMRS的符号数为1或2;
    所述PSSCH对应的多个DMRS符号不连续;
    所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
    所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
  17. 根据权利要求13所述的方法,其中,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
  18. 根据权利要求13所述的方法,其中,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
    第四时隙中SL PRS的频域位置指示信息;
    第四时隙中SL PRS的梳状结构指示信息
    第四时隙中SL PRS的梳状偏移指示信息;
    第四时隙中SL PRS的循环移位指示信息;
    第四时隙中SL PRS的序列标识指示信息;
    第四时隙中SL PRS的时域资源图样指示信息;
    第四时隙中SL PRS的优先级指示信息;
    第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
    预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求;
    其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
  19. 根据权利要求1所述的方法,其中,第一终端发送目标旁链路控制信息SCI之后,所述方法还包括:
    所述第一终端根据所述SL PRS资源信息,发送SL PRS。
  20. 根据权利要求1所述的方法,其中,在所述目标SCI为专用SCI的情况下,用于传输所述SL PRS的资源和用于传输数据的资源位于不同的资源池。
  21. 根据权利要求1所述的方法,其中,所述共享SCI指示的信息包括以下至少一项:
    频域资源分配指示;
    第二级SCI的格式信息,所述第二级SCI的格式信息包括用于传输SL PRS配置参数和数据传输的格式;
    时域资源分配指示;
    在预留比特或预设码点中的第五指示信息。
  22. 根据权利要求21所述的方法,其中,所述频域资源分配指示满足以下任一项:
    所述频域资源分配指示用于确定PSSCH的频域位置;
    所述频域资源分配指示用于确定SL PRS的频域位置;
    所述频域资源分配指示用于确定PSSCH的频域位置和SL PRS的频域位置。
  23. 根据权利要求21所述的方法,其中,所述时域资源分配指示中的预留时隙指示用于指示以下任一项:仅用于数据传输的时隙、数据与SL PRS共享的时隙和仅用于SL PRS传输的时隙。
  24. 根据权利要求21所述的方法,其中,所述第五指示信息包括以下至少一项:
    第三SL PRS使能标识,所述第三SL PRS使能标识用于指示第四时隙是否存在SL PRS;
    SL PRS占用的符号,所述SL PRS占用的符号用于表示第四时隙的符号位置;
    其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
  25. 一种旁链路定位处理方法,包括:
    第二终端从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
    所述第二终端基于所述SL PRS资源信息执行目标操作;
    其中,所述目标操作包括以下至少一项:
    SL资源选择;
    根据所述SCI指示,发送SL PRS;
    接收所述SCI指示的SL PRS。
  26. 根据权利要求25所述的方法,其中,所述目标SCI为两级SCI中的第一级SCI。
  27. 根据权利要求25所述的方法,其中,所述专用SCI包括以下至少一项指示信息:
    SCI所在的PSCCH的在PSCCH资源组中的序号;
    SL资源块标识;
    第一SL PRS使能标识,所述第一SL PRS使能标识用于指示所述专用SCI所在的第一时隙是否存在SL PRS;
    SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
    所述第一时隙的SL PRS时域位置指示信息;
    SL PRS的梳状结构指示信息;
    SL PRS的梳状偏移指示信息;
    SL PRS的循环移位指示信息;
    SL PRS的序列标识指示信息;
    SL PRS的时域资源图样指示信息;
    第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
    SL PRS的周期指示信息;
    SL PRS的优先级指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求。
  28. 根据权利要求27所述的方法,其中,所述SL PRS时域位置指示信息包括:
    频域位置指示信息,所述频域位置指示信息用于指示频域起始位置和带宽中的至少一项;
    时域位置指示信息,所述时域位置指示信息用于指示时隙内的起始符号和时隙内的符号数中的至少一项。
  29. 根据权利要求27所述的方法,其中,所述第一指示信息包括以下至少一项:
    第一子指示信息,所述第一子指示信息用于指示时频位置信息;
    第二子指示信息,所述第二子指示信息用于指示资源数。
  30. 根据权利要求26所述的方法,其中,所述目标SCI指示的信息包括 对两级SCI中第二级SCI的第二指示信息,所述第二级SCI用于与所述目标SCI联合指示所述SL PRS资源信息。
  31. 根据权利要求30所述的方法,其中,在所述目标SCI为专用SCI的情况下,所述第二指示信息用于指示以下至少一项:
    所述第二级SCI的码率;
    所述第二级SCI的格式;
    承载所述第二级SCI的物理旁链路共享信道PSSCH占用的PRB或子信道;
    承载所述第二级SCI的PSSCH占用的符号;
    承载所述第二级SCI的PSSCH对应的解调参考信号DMRS图样;
    承载所述第二级SCI的PSSCH对应的DMRS端口指示;
    所述目标SCI所在的第一时隙的SL PRS时域位置;
    第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的第三时隙是否存在SL PRS;
    SL PRS资源块标识。
  32. 根据权利要求30所述的方法,其中,在所述目标SCI为专用SCI的情况下,所述第二级SCI包括以下至少一项:
    第二SL PRS使能标识,所述第二SL PRS使能标识用于指示所述第二级SCI所在的时隙是否存在SL PRS;
    SL PRS资源标识,所述SL PRS资源标识用于表示所述第一终端在资源池或SL PRS资源块中选择用于SL PRS的资源序号;
    所述目标SCI所在的第一时隙的SL PRS时域位置指示信息;
    SL PRS的梳状结构指示信息;
    SL PRS的梳状偏移指示信息;
    SL PRS的循环移位指示信息;
    SL PRS的序列标识指示信息;
    SL PRS的时域资源图样指示信息;
    第一指示信息,所述第一指示信息用于指示第二时隙重复或预留的SL PRS资源,所述第二时隙与所述第一时隙不同;
    SL PRS的周期指示信息;
    SL PRS的优先级指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求。
  33. 根据权利要求30所述的方法,其中,在所述目标SCI为专用SCI的情况下,承载所述第二级SCI的PSSCH满足以下至少一项:
    所述PSSCH与PSCCH频分复用;
    所述PSSCH不与SL PRS频分复用;
    所述PSSCH与PRS占据不同的符号;
    所述PSSCH从DMRS第一个符号开始映射;
    所述PSSCH与DMRS采用资源单元RE级频分复用;
    所述PSSCH对应的DMRS的端口数为1;
    所述PSSCH对应的DMRS的符号数为1或2;
    所述PSSCH对应的多个DMRS符号不连续;
    所述PSSCH对应的DMRS为梳状结构,且RE等间隔分布;
    所述PSSCH对应的DMRS与第一个符号的SL PRS在重叠的PRB的RE位置相同。
  34. 根据权利要求30所述的方法,其中,在所述目标SCI为共享SCI的情况下,所述第二级SCI格式为用于传输SL PRS配置参数和数据传输的格式。
  35. 根据权利要求30所述的方法,其中,在所述目标SCI为共享SCI的情况下,所述第二级SCI包括与SL PRS关联的第四指示信息,所述第四指示信息包括以下至少一项:
    第四时隙中SL PRS的频域位置指示信息;
    第四时隙中SL PRS的梳状结构指示信息
    第四时隙中SL PRS的梳状偏移指示信息;
    第四时隙中SL PRS的循环移位指示信息;
    第四时隙中SL PRS的序列标识指示信息;
    第四时隙中SL PRS的时域资源图样指示信息;
    第四时隙中SL PRS的优先级指示信息;
    第三SL PRS使能标识,所述第三SL PRS使能标识用于指示预留时隙否存在SL PRS;
    预留仅用于SL PRS的时隙中SL PRS资源的指示信息;
    SL PRS关联的目标地址标识;
    SL PRS关联的资源标识;
    定位测量上报请求;
    其中,所述第四时隙包括所述共享SCI所在的时隙和预留时隙中的至少一项。
  36. 一种旁链路定位处理装置,包括:
    发送模块,用于发送目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI。
  37. 一种旁链路定位处理装置,包括:
    接收模块,用于从第一终端接收目标旁链路控制信息SCI,所述目标SCI用于指示旁链路SL定位参考信号PRS资源信息,所述目标SCI为专用SL PRS的SCI或与数据共享的SCI;
    执行模块,用于基于所述SL PRS资源信息执行目标操作;
    其中,所述目标操作包括以下至少一项:
    SL资源选择;
    根据所述SCI指示,发送SL PRS;
    接收所述SCI指示的SL PRS。
  38. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至35任一项所述的旁链路定位处理方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至35任一项所述的旁链路定位处理方法的步骤。
PCT/CN2023/089476 2022-04-24 2023-04-20 旁链路定位处理方法、装置、终端及可读存储介质 WO2023207748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210435231.X 2022-04-24
CN202210435231.XA CN116981048A (zh) 2022-04-24 2022-04-24 旁链路定位处理方法、装置、终端及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023207748A1 true WO2023207748A1 (zh) 2023-11-02

Family

ID=88481915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089476 WO2023207748A1 (zh) 2022-04-24 2023-04-20 旁链路定位处理方法、装置、终端及可读存储介质

Country Status (2)

Country Link
CN (1) CN116981048A (zh)
WO (1) WO2023207748A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044683A1 (en) * 2017-05-05 2019-02-07 Huawei Technologies Co., Ltd. Method and Apparatus for Determining Reference Signal Sequence, Computer Program Product, and Computer Readable Storage Medium
CN111835486A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 一种信息传输方法及终端
CN113890697A (zh) * 2020-07-02 2022-01-04 维沃移动通信有限公司 旁链路辅助信息的通知方法、装置及电子设备
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044683A1 (en) * 2017-05-05 2019-02-07 Huawei Technologies Co., Ltd. Method and Apparatus for Determining Reference Signal Sequence, Computer Program Product, and Computer Readable Storage Medium
CN111835486A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 一种信息传输方法及终端
CN113890697A (zh) * 2020-07-02 2022-01-04 维沃移动通信有限公司 旁链路辅助信息的通知方法、装置及电子设备
CN114257355A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端

Also Published As

Publication number Publication date
CN116981048A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
KR101888772B1 (ko) 공유된 스펙트럼에서 lte/lte-a 통신들을 위한 가상 캐리어들
JP2021503830A (ja) 無線通信システムにおける装置及び方法、並びにコンピュータ可読記憶媒体
EP4179810A2 (en) Methods and apparatus for resource sharing in the sidelink
JP7057749B2 (ja) 端末
CN104471999B (zh) 上行控制信息的发送方法和装置
JP2018520611A (ja) 無線通信のための電子機器及び無線通信方法
WO2014175923A1 (en) Hybrid reference signals for wireless communication
EP2950575A1 (en) Radio communication system, t erminal device, base station device, radio communication method, and integrated circuit
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
KR20210111334A (ko) 전자 디바이스, 정보 처리 장치, 및 정보 처리 방법
WO2023046053A1 (zh) 参考信号的传输方法、装置及相关设备
WO2016112992A1 (en) Selective scheduling grant rejection for spectrum sharing in a wireless network
US20240080148A1 (en) Csi measurement resource processing method and apparatus, terminal, and readable storage medium
JP2023533352A (ja) 伝送方法、決定方法、伝送装置、決定装置、通信機器及び端末
CN115804184A (zh) 触发资源集的报告
CN111294940A (zh) 发射功率的分配方法及装置、存储介质、终端
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
CN103748821B (zh) 上行控制信息的发送方法和装置
US20230082126A1 (en) Information transmission method and apparatus, and terminal device
WO2023207748A1 (zh) 旁链路定位处理方法、装置、终端及可读存储介质
TW201933921A (zh) 一種通道資源集的指示方法及裝置、電腦存儲媒介
CN115701730A (zh) 旁链路反馈信息的信道接入方法、处理方法及相关设备
WO2024032541A1 (zh) 旁链路定位方法、装置、终端及存储介质
WO2023198173A1 (zh) 确定sl定位参考信号资源的方法、终端及网络侧设备
WO2024008006A1 (zh) 信息处理方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795181

Country of ref document: EP

Kind code of ref document: A1