WO2023207635A9 - 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置 - Google Patents

燃料电池车辆及排氢阀/排水阀故障诊断方法和装置 Download PDF

Info

Publication number
WO2023207635A9
WO2023207635A9 PCT/CN2023/088445 CN2023088445W WO2023207635A9 WO 2023207635 A9 WO2023207635 A9 WO 2023207635A9 CN 2023088445 W CN2023088445 W CN 2023088445W WO 2023207635 A9 WO2023207635 A9 WO 2023207635A9
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
hydrogen
duty cycle
fuel cell
Prior art date
Application number
PCT/CN2023/088445
Other languages
English (en)
French (fr)
Other versions
WO2023207635A1 (zh
Inventor
余阳阳
孟德水
张龙海
蒋尚峰
陈国钱
赵亚欣
Original Assignee
宇通客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇通客车股份有限公司 filed Critical 宇通客车股份有限公司
Publication of WO2023207635A1 publication Critical patent/WO2023207635A1/zh
Publication of WO2023207635A9 publication Critical patent/WO2023207635A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of fuel cells, and specifically relates to a fuel cell vehicle and a hydrogen discharge valve/drainage valve fault diagnosis method and device.
  • Hydrogen fuel cell vehicles are new energy vehicles with broad development and application prospects. They have many advantages such as short hydrogenation time and long cruising range. In particular, proton exchange membrane fuel cells are widely used in the field of hydrogen fuel cell vehicles because of their cleanliness and high energy efficiency.
  • a hydrogen exhaust valve and a drain valve are provided in the fuel cell system to regularly discharge the nitrogen in the hydrogen and the liquid water collected in the steam-water separator.
  • Hydrogen exhaust valves and drain valves are mostly in the form of solenoid valves without signal feedback. Therefore, if they malfunction during system operation, they cannot be effectively identified, resulting in a decrease in hydrogen utilization and an increase in hydrogen exhaust concentration.
  • the Chinese invention patent application with application publication number CN112054230A discloses a fault diagnosis method and system for hydrogen fuel cell drainage and exhaust devices. This method uses calibration to construct different hydrogen injection duty cycles under different inlet and outlet air pressures, temperatures and other conditions. Flow MAP diagram, and then obtain the hydrogen injection standard outlet flow based on the hydrogen injection duty cycle during actual operation, and compare it with the theoretical consumption calculated through the fuel cell operating current. If the hydrogen injection standard outlet flow is greater than the theoretical consumption, hydrogen will be discharged. The valve status is normal, otherwise it is abnormal.
  • This invention patent application actually focuses more on the judgment of the water content of the fuel cell system rather than the judgment of the failure of the hydrogen drain valve itself. When the hydrogen drain valve cannot be opened, the flow rates of the two should be basically the same.
  • the object of the present invention is to provide a fuel cell vehicle and a hydrogen exhaust valve/drainage valve fault diagnosis method and device to solve the problem of high misjudgment rate in hydrogen exhaust valve/drainage valve fault diagnosis in the prior art.
  • the invention provides a hydrogen discharge valve/drainage valve fault diagnosis method, which includes a valve failure diagnosis method, and/or a valve failure diagnosis method, and the valve is a hydrogen discharge valve or a drainage valve;
  • the valve cannot be opened fault diagnosis method includes the following steps:
  • the valve failure diagnosis method includes the following steps:
  • the duty cycle data includes each The duty cycle during each control valve closing process, the hydrogen inlet pressure discrete value data includes the hydrogen inlet pressure discrete value during each control valve closing process;
  • the present invention analyzes the changes in the fuel cell system when the valve cannot be opened or closed, and finds that when the hydrogen discharge valve or the drain valve fails to open, the hydrogen inlet pressure will increase.
  • the hydrogen exhaust valve or drain valve fails to close, the duty cycle of the pressure control device will increase.
  • this method detects the hydrogen inlet pressure to determine whether the hydrogen exhaust valve or drain valve cannot be opened. Failure, the duty cycle of the pressure control device is detected to determine whether the hydrogen exhaust valve or drain valve has a failure to close, which effectively solves the problem of being unable to determine whether the valve in the non-switch feedback state is faulty.
  • This method needs to fit the acquired data and perform fault diagnosis on the hydrogen exhaust valve and drain valve based on the overall change trend.
  • the fault identification is more effective and reliable, and the fault diagnosis is improved.
  • the normal pressure value is obtained by using the following method: obtaining the pressure fitting value within the set initial time period in the pressure fitting curve, and based on the pressure fitting value within the set initial time period. The combined value determines the normal value of pressure.
  • the beneficial effect of the above technical solution is: since the valve is generally normal and trouble-free at the initial moment, the pressure fitting value in the initial time period is directly used as the normal pressure value to diagnose the failure of the valve to open, which is simple but has high accuracy. .
  • the normal value of the duty cycle is obtained by using the following method: obtaining the duty cycle fitting value within the set initial time period in the duty cycle fitting curve, and according to the set initial The fitted value of the duty cycle within the time period determines the normal value of the duty cycle.
  • the set pressure threshold and the set duty cycle threshold are respectively obtained by the following methods:
  • the beneficial effect of the above technical solution is that by using the laboratory simulation method, the real situation can be accurately obtained to obtain the appropriate set pressure threshold and set duty cycle threshold.
  • the set pressure threshold and the set duty cycle threshold are respectively obtained by the following methods:
  • the fault judgment current is obtained as follows: frequency distribution calculation is performed on all operating currents of the fuel cell, and the operating current with the highest frequency is obtained as the fault judgment current.
  • the beneficial effect of the above technical solution is that directly selecting the operating current with the highest frequency as the fault judgment current can effectively realize the fault diagnosis of the valve.
  • the fuel cell system is controlled to shut down.
  • the beneficial effect of the above technical solution is that controlling the shutdown of the fuel cell system can protect the fuel cell.
  • a hydrogen discharge valve/drainage valve fault diagnosis device of the present invention includes a memory and a processor.
  • the processor is used to execute instructions stored in the memory to implement the hydrogen discharge valve/drainage valve fault diagnosis method introduced above, and achieve Same beneficial effects as this method.
  • a fuel cell vehicle of the present invention includes a hydrogen fuel cell system.
  • the hydrogen fuel cell system includes a hydrogen fuel cell, a pressure sensor for detecting the hydrogen inlet pressure, and a pressure control device.
  • the pressure control device is used to change the occupancy rate.
  • the air ratio is to maintain a constant pressure in the hydrogen storage chamber; it also includes a memory and a processor, and the processor is used to execute instructions stored in the memory to implement the hydrogen exhaust valve/drain valve fault diagnosis method introduced above, and achieve the same The method has the same beneficial effects.
  • Figure 1 is a schematic diagram of the hydrogen exhaust valve/drainage valve fault diagnosis principle of the present invention
  • Figure 2 is a diagram of the data fitting performance phenomenon of the present invention.
  • Figure 3 is a flow chart of the fault threshold determination method of the present invention.
  • Figure 4 is a flow chart of the hydrogen exhaust valve/drainage valve fault diagnosis method of the present invention.
  • Figure 5 is a structural diagram of the hydrogen exhaust valve/drainage valve fault diagnosis device of the present invention.
  • the hydrogen exhaust valve and the drain valve periodically open and close at a certain frequency to discharge the nitrogen in the hydrogen and the liquid water in the water separator.
  • Hydrogen is stored in a sealed cavity.
  • the cavity is equipped with three ports: one front end and two back ends. One of the back ends is used to output hydrogen from the cavity for chemical reactions (the flow rate is fixed under the same current), and the other back end is used to carry out chemical reactions.
  • the front end discharges nitrogen and water at certain intervals, and under the control of the pressure control device, hydrogen is injected into the chamber through the front end to keep the pressure in the chamber constant.
  • the pressure control device generally includes a proportional valve. By setting different duty cycles, the opening of the proportional valve changes.
  • the pressure control device When the front end is in an open state, in order to maintain a stable pressure in the chamber, the pressure control device generally adopts feedforward adjustment. That is, when it is found that the rear end is in an open state, the duty cycle controlled by the pressure control device will be increased immediately to Maintain a constant pressure in the chamber; when in a stable state, the pressure control device generally uses feedback adjustment (such as PI adjustment), that is, after the rear end changes, the front end is adjusted through the pressure control device according to the changes in the rear end.
  • feedback adjustment such as PI adjustment
  • hydrogen pressure control generally uses feedforward adjustment. Using feedforward adjustment will inevitably increase the duty cycle of the pressure control device, the hydrogen pressure and The duty cycle will change intermittently.
  • the control valve the valve is a hydrogen exhaust valve or a drain valve
  • hydrogen gas will enter the chamber at the front end to maintain a constant pressure in the chamber. If it cannot be opened due to valve failure, the valve that should be changed to the open state will still be closed.
  • the present invention uses a big data platform to analyze the duty cycle of the pressure control device and the change of the hydrogen inlet pressure to diagnose the failure of the hydrogen discharge valve and the drain valve, thereby realizing a hydrogen discharge method of the present invention.
  • the present invention organizes, filters and analyzes the differences of the fuel cell operating data to fit its changing trend through big data screening, uses the changing trend data to perform fault diagnosis on the hydrogen exhaust valve and the drain valve, and then performs fault confirmation in conjunction with after-sales service and replacement of faulty parts to ensure the safe and reliable operation of the fuel cell system.
  • FIG. 4 An embodiment of a hydrogen discharge valve/drainage valve fault diagnosis method. This embodiment is implemented in a fuel cell controller. That is, the fuel cell controller performs data processing, analysis and judgment based on the collected data to determine the hydrogen discharge valve/drainage valve.
  • the valve failure type is shown in Figure 4. The implementation steps of the entire method are as follows:
  • Step 1 Obtain the operating data of the fuel cell system through the vehicle-side remote monitoring T-box and save it on the big data platform (server, including data storage and data processing calculation functions) to obtain the fuel cell operating current I, hydrogen inlet pressure P, Pressure control device duty cycle signal PWM, hydrogen exhaust valve and drain valve control signals.
  • server including data storage and data processing calculation functions
  • Step 2 Considering the accuracy of the fault judgment model. The more script data, the higher the accuracy. Calculate the frequency distribution of the operating current of the fuel cell system. Specifically, the size of the operating current can be used as the abscissa, and the frequency of the operating current ( That is, the number of occurrences) is the ordinate, and the current point with the largest frequency is selected as the fault judgment current point I.
  • Step 3 Diagnose the fault of the hydrogen exhaust valve:
  • the hydrogen exhaust valve cannot be opened.
  • the maximum hydrogen inlet pressure data is the maximum hydrogen inlet pressure during each control of the opening of the hydrogen discharge valve. That is to say, each time the hydrogen discharge valve control status is 1, it corresponds to a maximum hydrogen inlet pressure.
  • the hydrogen exhaust valve cannot be closed.
  • Step 4 Diagnose the fault of the drain valve:
  • the maximum hydrogen inlet pressure data is the maximum hydrogen inlet pressure during each control of the opening of the drain valve. That is to say, each time the drain valve control status is 1, it corresponds to a maximum hydrogen inlet pressure.
  • Step 5 After the judgment is completed, on the one hand, the fault information is transmitted to the driver through the instrument or the fuel cell system is immediately controlled to shut down. On the other hand, the fault information is sent to the after-sales technician through the mobile phone APP for fault confirmation.
  • the after-sales technician first needs to confirm whether there is a problem with the valve's power supply. At this time, only a 24V power supply device is needed to power the valve. If a 24V power supply device is used to power the valve, If the valve can work normally, it means there is a problem with the power supply of the valve, and the power supply needs to be checked; if the valve still cannot work normally, it means there is no problem with the power supply of the valve, and after-sales technicians need to test the valve itself. If the valve can open and close normally, there should be a sound of solenoid valve action when it opens and closes normally.
  • the after-sales technician can send a control signal to the valve to control it to close or open. If you cannot hear it at this time, If you hear the sound of the solenoid valve operating, it is confirmed that the valve is faulty. You can choose to replace the valve at this time.
  • Method 1 Use the laboratory to build a simulated fault environment in which the hydrogen exhaust valve fails to open and a normal environment in which the hydrogen exhaust valve works normally.
  • the fuel cell system is placed in a fault environment and a normal environment respectively to work in the two environments (including The maximum value of the hydrogen inlet pressure data when the fuel cell operating current is the fault judgment current I is obtained from the fault environment (multiple experiments can be done in the fault environment), and all the maximum values of the hydrogen inlet pressure obtained in the two environments are numerically fitted in chronological order.
  • the difference between the values fitted in the two environments is used as the set pressure threshold ⁇ P1.
  • a value can be fitted for each experiment, and the average value of the values fitted multiple times is used as the value simulated in the fault environment.
  • Method 2 Obtain the maximum hydrogen inlet pressure data in the historical operation process when the fuel cell operating current is the fault judgment current I, when the hydrogen exhaust valve fails to open and when the hydrogen exhaust valve is normal, and compare them in chronological order.
  • the maximum values of all hydrogen inlet pressures obtained in the two situations are numerically fitted, and the difference between the fitted values in the two situations is used as the set duty cycle threshold.
  • Each group can fit one data, and the average value of the values fitted multiple times is used as the model for the failure of the hydrogen exhaust valve to open.
  • the combined value there may be multiple sets of data under normal conditions of the hydrogen exhaust valve, and each group can be fitted with one data.
  • the average value of the values fitted multiple times is used as the fitted value under normal conditions of the hydrogen exhaust valve. numerical value.
  • the present invention has the following characteristics:
  • the present invention analyzes the phenomenon caused when the valve cannot be opened/cannot be closed, and concludes that when the valve cannot be opened, it will cause hydrogen inlet Excessive pressure and failure of the valve to close will lead to the conclusion that the duty cycle of the pressure control device is too large. This conclusion is used to detect the hydrogen inlet pressure of the fuel cell system and the duty cycle of the pressure control device to determine whether the valve has failed, thus providing an effective and feasible diagnostic method for fault detection of the hydrogen exhaust valve and drain valve.
  • FIG. 5 An embodiment of a hydrogen exhaust valve/drainage valve fault diagnosis device of the present invention, its structure is shown in Figure 5, including a memory, a processor and an internal bus.
  • the processor and the memory complete mutual communication and data through the internal bus. Interaction.
  • the memory includes at least one software function module stored in the memory.
  • the processor executes various functional applications and data processing by running the software programs and modules stored in the memory to implement a hydrogen discharge introduced in the method embodiment of the present invention. Valve/Drain Valve Troubleshooting Methods.
  • the processor may be a microprocessor MCU, a programmable logic device FPGA and other processing devices.
  • Memory can be various memories that use electrical energy to store information, such as RAM, ROM, etc.; it can also be various memories that use magnetic energy to store information, such as hard disks, floppy disks, magnetic tapes, magnetic core memories, magnetic bubble memories, U disks, etc. ; It can also be various types of memories that use optical methods to store information, such as CDs, DVDs, etc.; Of course, it can also be other types of memories, such as quantum memory, graphene memory, etc.
  • Fuel cell vehicle examples are:
  • a fuel cell vehicle embodiment of the present invention includes a vehicle controller VCU and a hydrogen fuel cell system.
  • the hydrogen fuel cell system includes a fuel cell controller, a fuel cell and various fuel cell accessories.
  • the fuel cell accessories include a hydrogen exhaust valve. and a drain valve, as well as a pressure sensor and a pressure control device for detecting the hydrogen inlet pressure.
  • the hydrogen drain valve and the drain valve are respectively used to drain the nitrogen in the hydrogen and the liquid water in the water separator.
  • the pressure control device is used to control Hydrogen gas is injected from the front end of the hydrogen storage chamber to maintain a constant hydrogen pressure in the chamber.
  • the fuel cell controller includes a memory and a processor.
  • Various computer program instructions are stored in the memory of the fuel cell controller.
  • the vehicle controller VCU includes a memory and a processor.
  • Various computers are also stored in the memory of the vehicle controller VCU. Program instructions.
  • the first is: the fuel cell controller connects the pressure sensor and the pressure control device through lines to obtain the information detected by the pressure sensor and the duty cycle of the pressure control device; the computer program instructions in the memory of the fuel cell controller include implementation of the present invention A computer program instruction for a hydrogen exhaust valve/drainage valve fault diagnosis method.
  • the processor of the fuel cell controller executes the computer program instructions stored in the memory of the fuel cell controller to implement the method of the present invention, and combines the information detected by the pressure sensor and the duty cycle of the pressure control device to implement the hydrogen exhaust valve/drainage valve fault diagnosis method introduced in the method embodiment of the present invention.
  • the second is: the vehicle controller VCU connects the pressure sensor and the pressure control device through lines to obtain the information detected by the pressure sensor and the duty cycle of the pressure control device; the computer program instructions in the memory of the vehicle controller VCU include implementation
  • the present invention provides a computer program instruction for a hydrogen exhaust valve/drainage valve fault diagnosis method.
  • the processor of the vehicle controller VCU executes the computer program instructions stored in the memory of the vehicle controller VCU to implement the method of the present invention, and combines the pressure
  • the information detected by the sensor and the duty cycle of the pressure control device implement the hydrogen exhaust valve/drainage valve fault diagnosis method introduced in the method embodiment of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于燃料电池技术领域,具体涉及一种燃料电池车辆及排氢阀/排水阀故障诊断方法和装置。本发明方法包括阀门无法打开故障诊断方法,以及阀门无法关闭故障诊断方法,阀门为排氢阀或排水阀,该方法针对氢气入口压力进行检测来判断排氢阀或排水阀是否发生无法打开故障,对压力控制装置的占空比进行检测来判断排氢阀或排水阀是否发生无法关闭故障,有效解决了无法判断无开关反馈状态的阀门是否故障的问题。而且,该方法对获取的数据进行拟合,依据整体变化趋势实现对排氢阀和排水阀进行故障诊断,对故障识别更加有效可靠,提高了故障诊断的准确性,避免误判造成的燃料电池系统频繁开关机的情况出现。

Description

燃料电池车辆及排氢阀/排水阀故障诊断方法和装置 技术领域
本发明属于燃料电池技术领域,具体涉及一种燃料电池车辆及排氢阀/排水阀故障诊断方法和装置。
背景技术
氢能燃料电池汽车是具有广阔发展和应用前景的新能源汽车,其具有加氢时间短、续航里程长等诸多优点。特别是质子交换膜燃料电池,因其清洁、能量效率高等优点被广泛应用于氢燃料电池汽车领域。
在燃料电池系统中设置有排氢阀和排水阀,用于定期排放氢气中的氮气和汽水分离器中收集的液态水。排氢阀和排水阀大多采用电磁阀的形式,无信号反馈,因而其在系统运行过程中若发生故障则无法被有效识别,从而造成氢气利用率下降以及氢气尾排浓度升高等。
申请公布号为CN112054230A的中国发明专利申请公开了一种用于氢燃料电池排水排气装置的故障诊断方法及系统,该方法通过标定构建不同进出气压力、温度等条件下不同氢喷占空比的流量MAP图,然后根据实际工作时的氢喷占空比获取氢喷标准出口流量,与通过燃料电池工作电流计算的理论消耗量作对比,若氢喷标准出口流量大于理论消耗量则排氢阀状态正常,反之则不正常。该发明专利申请实际更侧重于燃料电池系统含水量的判断,而非排氢阀自身故障的判断,当排氢阀无法打开时,两者流量应基本相同,当排氢阀无法关闭时,氢喷标准出口流量应远高于理论消耗量,且燃料电池系统运行较为复杂,影响因素较多,一方面通过标定的方法构建MAP工作量较大,另一方面此种方法实时分析造成的误判较多,容易频繁引起系统的故障关机,不利于系统的稳定运行。
发明内容
本发明的目的在于提供一种燃料电池车辆及排氢阀/排水阀故障诊断方法和装置,用以解决现有技术中对排氢阀/排水阀故障诊断误判率高的问题。
为解决上述技术问题,本发明所提供的技术方案以及技术方案对应的有益效果如下:
本发明提供了一种排氢阀/排水阀故障诊断方法,包括阀门无法打开故障诊断方法,和/或阀门无法关闭故障诊断方法,且所述阀门为排氢阀或排水阀;
所述阀门无法打开故障诊断方法包括如下步骤:
1a)获取需排查时间段内燃料电池工作电流为故障判断电流、且阀门控制状态为控制打开时的氢气入口压力最大值数据,所述氢气入口压力最大值数据包括每一次控制阀门打开过程中的氢气入口压力最大值;
1b)按照时间顺序对获取的所有氢气入口压力最大值进行曲线拟合,得到阀门对应的压力拟合曲线;
1c)若压力拟合曲线中某一时间段内的压力拟合值持续大于阀门对应的压力正常值,且大于的程度为大于设定压力阈值,则判定阀门发生无法打开故障;
所述阀门无法关闭故障诊断方法包括如下步骤:
2a)获取需排查时间段内燃料电池工作电流为故障判断电流、且阀门控制状态为控制关闭时的压力控制装置的占空比数据和氢气入口压力离散值数据,所述占空比数据包括每一次控制阀门关闭过程中的占空比,所述氢气入口压力离散值数据包括每一次控制阀门关闭过程中的氢气入口压力离散值;
2b)排除氢气入口压力值与对应设置的设定压力值之间的值偏差大于设定偏差值的数据,对剩余数据按照时间顺序对所有占空比进行曲线拟合,得到阀门对应的占空比拟合曲线;
2c)若占空比拟合曲线中某一时间段内的占空比拟合值持续大于占空比正常值,且大于的程度为大于设定占空比阈值,则判定阀门发生无法关闭故障。
上述技术方案的有益效果为:本发明对阀门发生无法打开以及无法关闭时燃料电池系统的变化情况进行分析,发现排氢阀或排水阀发生无法打开故障时,会使氢气入口压力有所提升,排氢阀或排水阀发生无法关闭故障时,压力控制装置的占空比会有所增大,基于这些发现,该方法针对氢气入口压力进行检测来判断排氢阀或排水阀发生是否发生无法打开故障,对压力控制装置的占空比进行检测来判断排氢阀或排水阀是否发生无法关闭故障,有效解决了无法判断无开关反馈状态的阀门是否故障的问题。而且,基于瞬时数据存在误判率高的情况,该方法需要对获取的数据进行拟合,依据整体变化趋势实现对排氢阀和排水阀进行故障诊断,对故障识别更加有效可靠,提高了排氢阀、排水阀发生无法打开以及无法关闭故障诊断的准确性,避免误判造成的燃料电池系统频繁开关机、影响客户体验的情况出现。
作为方法的进一步改进,步骤1c)中,所述压力正常值采用如下方法获取得到:获取压力拟合曲线中设定初始时间段内的压力拟合值,根据设定初始时间段内的压力拟合值确定压力正常值。
上述技术方案的有益效果为:由于阀门在初始时刻一般为正常无故障的,故直接利用初始时间段内的压力拟合值作为压力正常值对阀门的无法打开故障进行诊断,简单但精度较高。
作为方法的进一步改进,步骤2c)中,所述占空比正常值采用如下方法获取得到:获取占空比拟合曲线中设定初始时间段内的占空比拟合值,根据设定初始时间段内的占空比拟合值确定占空比正常值。
上述技术方案的有益效果为:由于阀门在初始时刻一般为正常无故障的,故直接利用初始时间段内的占空比拟合值作为占空比正常值对阀门的无法关闭故障进行诊断,简单但精度较高。
作为方法的进一步改进,所述设定压力阈值和设定占空比阈值分别采用如下方法得到:
搭建模拟阀门发生无法打开故障的故障环境以及排氢阀/排水阀正常工作的正常环境,将燃料电池系统分别置于故障环境和正常环境中工作,分别在两种环境中获取燃料电池工作电流为故障判断电流时的氢气入口压力最大值数据,按照时间顺序分别对两种环境中获取的所有氢气入口压力最大值进行数值拟合,将两种环境中拟合出的数值的差值作为设定压力阈值;
搭建模拟阀门发生无法关闭故障的故障环境以及阀门正常工作的正常环境,将燃料电池系统分别置于故障环境和正常环境中工作,分别在两种环境中获取燃料电池工作电流为故障判断电流时的压力控制装置的占空比数据,按照时间顺序分别对两种环境中获取的所有占空比进行数值拟合,将两种环境拟合出的数值的差值作为设定占空比阈值。
上述技术方案的有益效果为:采用实验室模拟方法,可以准确获取真实情况以得到合适的设定压力阈值和设定占空比阈值。
作为方法的进一步改进,所述设定压力阈值和设定占空比阈值分别采用如下方法得到:
获取历史运行过程中燃料电池工作电流为故障判断电流时的分别在阀门发生无法打开故障情况和阀门正常情况下的氢气入口压力最大值数据,按照时间顺序分别对两种情况中获取的所有氢气入口压力最大值进行数值拟合,将两种情况中拟合出的数值的差值作为设定压力阈值;
获取历史运行过程中燃料电池工作电流为故障判断电流时的分别在阀门发生无法关闭故障情况和阀门正常情况下的压力控制装置的占空比数据,按照时间顺序分别对两种情况中获取的所有占空比进行数值拟合,将两种情况中拟合出的数值的差值作为设定占空比阈值。
上述技术方案的有益效果为:利用历史数据,可以得到合适的设定压力阈值和设定占空比阈值。
作为方法的进一步改进,所述故障判断电流采用如下方法得到:对燃料电池的所有工作电流进行频率分布计算,获取频率最大的工作电流为故障判断电流。
上述技术方案的有益效果为:直接选取频率最大的工作电流为故障判断电流可以有效实现对阀门的故障诊断。
作为方法的进一步改进,在判定阀门发生无法打开故障或无法关闭故障时,控制燃料电池系统关机。
上述技术方案的有益效果为:控制燃料电池系统关机可实现对燃料电池的保护。
本发明的一种排氢阀/排水阀故障诊断装置,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现上述介绍的排氢阀/排水阀故障诊断方法,并达到与该方法相同的有益效果。
本发明的一种燃料电池车辆,包括氢燃料电池系统,所述氢燃料电池系统包括氢燃料电池、用于检测氢气入口压力的压力传感器和压力控制装置,所述压力控制装置用于通过改变占空比以维持储存氢容腔中压力恒定;还包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现上述介绍的排氢阀/排水阀故障诊断方法,并达到与该方法相同的有益效果。
附图说明
图1是本发明的排氢阀/排水阀故障诊断原理示意图;
图2是本发明的数据拟合表现现象图;
图3是本发明的故障阈值确定方法流程图;
图4是本发明的排氢阀/排水阀故障诊断方法流程图;
图5是本发明的排氢阀/排水阀故障诊断装置的结构图。
具体实施方式
在燃料电池车辆中的燃料电池系统正常工作的情况下,排氢阀和排水阀以一定频率周期性打开和关闭,排出氢气中的氮气和分水器中的液态水。氢气储存在一个密封容腔中,该容腔设置有三个端口:一个前端和两个后端,其中一个后端用于从容腔中输出氢气进行化学反应(相同电流下流量固定),另一个后端以一定的时间间隔排放氮气和水,在压力控制装置的控制下,通过前端向容腔中注入氢气,保持容腔中压力恒定。压力控制装置一般包括有比例阀,通过给定不同的占空比,使比例阀的开度发生变化,给定的占空比越大,比例阀的开度越大。在前端处于打开的状态下,为维持容腔中压力稳定,压力控制装置一般采用前馈调节,即,在发现后端处于打开状态时会立马使压力控制装置控制的占空比增大,以维持容腔中压力恒定;在处于稳定状态时,压力控制装置一般采用反馈调节(例如PI调节),即,后端变化后,依据后端变化情况来通过压力控制装置调整前端。
当排氢阀和排水阀正常工作时,间歇地排出部分氢气,氢压控制为维持压力稳定,一般采用前馈调节,采用前馈调节必然会增大压力控制装置的占空比,氢压以及占空比会有间歇性的变化。控制阀门(阀门为排氢阀或排水阀)打开时,前端会有氢气进入容腔中以维持容腔中压力恒定,若由于阀门故障导致无法打开,本应改变为打开状态的阀门仍处于关闭状态,也就是说,后端无氢气排出,但前端有更多的氢气进入,氢气入口压力相对正常状态会有一定的上升;阀门关闭时,若由于阀门故障导致无法关闭,本应改变为关闭状态的阀门仍处于打开状态,也就是说,此时有大量氢气直接从尾排排出,为维持氢气入口压力,压力控制装置势必会使占空比相应增大,以维持容腔中压力恒定。整个原理如图1所示。
基于图1以及上述介绍的原理,本发明通过大数据平台分析压力控制装置的占空比以及氢气入口压力的变化实现对排氢阀、排水阀故障的诊断,从而实现本发明的一种排氢阀/排水阀故障诊断方法、一种排氢阀/排水阀故障诊断装置、以及一种燃料电池车辆。下面结合附图和实施例,对本发明进行详细说明。
方法实施例:
由于实际运行过程中压力控制装置的占空比和氢气入口压力非定值,存在一定的上下波动,若直接利用采集监测的瞬时变化值进行故障诊断,很容易造成误判。因而,本发明对燃料电池运行数据进行整理、筛选和差异性分析,以通过大数据筛选拟合其变化趋势,利用变化趋势数据对排氢阀和排水阀进行故障诊断,再结合售后进行故障确认和故障件更换,保证燃料电池系统的安全可靠运行。
一种排氢阀/排水阀故障诊断方法实施例,本实施例在燃料电池控制器中实现,即燃料电池控制器依据采集的数据并进行数据处理、分析与判断,以确定排氢阀/排水阀的故障类型,如图4所示,整个方法的实施步骤如下:
步骤一,通过车端远程监控T-box获取燃料电池系统的运行数据,并保存在大数据平台(服务器,包括数据存储和数据处理计算功能),获取燃料电池工作电流I、氢气入口压力P、压力控制装置占空比信号PWM、排氢阀和排水阀控制信号。
步骤二,考虑故障判断模型的准确性,脚本数据越多,准确性越高,对燃料电池系统的工作电流进行频率分布计算,具体可以以工作电流的大小为横坐标,以工作电流的频率(即出现次数)为纵坐标,选取频率最大的电流点作为故障判断电流点I。
步骤三,对排氢阀进行故障判断:
1、排氢阀无法打开故障。
1)筛选需排查时间段内燃料电池的工作电流为故障电流点I、且排氢阀控制状态为1(即排氢阀控制状态为控制排氢阀打开)条件下的氢气入口压力最大值数据,这里的氢气入口压力最大值数据为每次控制排氢阀打开过程中的氢气入口压力最大值,也就是说,每一次排氢阀控制状态为1对应一个氢气入口压力最大值。
2)按照时间顺序对筛选的氢气入口压力最大值进行曲线拟合,得到排氢阀对应的压力拟合曲线,如图2所示。
3)计算压力拟合曲线中初始时间段内的压力拟合值的平均值(此处取平均值是因为初始时间段内的压力拟合曲线可能并不是一条水平线)并作为压力正常值,当压力拟合曲线中出现某一时间段内的压力拟合值持续性的大于压力正常值且大于的程度为设定压力阈值△P1,则判定排氢阀发生无法打开故障。需说明的是,这里直接将初始时间段内压力拟合值的平均值作为压力正常值是因为,一般情况下初始时间段内排氢阀都是正常的,过了一段时间才会发生故障。
2、排氢阀无法关闭故障。
1)筛选需排查时间段内燃料电池的工作电流为故障电流点I、且排氢阀控制状态为0(即排氢阀控制状态为控制排氢阀关闭)条件下的压力控制装置的占空比数据和氢气入口压力离散值数据,这里的占空比数据为每次控制排氢阀关闭过程中的占空比,所述氢气入口压力离散值数据为每次控制排氢阀关闭过程中的氢气入口压力离散值,由于排氢阀处于关闭状态是一段持续的时间段,而在这个持续的时间段采集的占空比和氢气入口压力并非只有一个值,而是一串离散的数值,因而这里的占空比和氢气入口压力离散值便均是一串离散的数值。
2)排除氢气入口压力值与目标压力值偏差较大的点(根据系统控制精度确定,一般为+3~4Kpa),进而对剩余的数据点按照时间顺序对所有占空比进行曲线拟合,得到排氢阀对应的占空比拟合曲线。
3)计算占空比拟合曲线中初始时间段内的占空比拟合值的平均值(此处取平均值是因为初始时间段内的占空比拟合曲线可能并不是一条水平线)并作为占空比正常值,当占空比拟合曲线中出现某一时间段内的占空比拟合值持续性的大于占空比正常值且大于的程度为设定占空比阈值△PWM1,则判定排氢阀发生无法关闭故障。需说明的是,这里直接将初始时间段内占空比拟合值的平均值作为占空比正常值是因为,一般情况下初始时间段内排氢阀都是正常的,过了一段时间才会发生故障。
步骤四,对排水阀进行故障判断:
1、排水阀无法打开故障。
1)筛选需排查时间段内燃料电池的工作电流为故障电流点I、且排水阀控制状态为1(即排水阀控制状态为控制排水阀打开)条件下的氢气入口压力最大值数据,这里的氢气入口压力最大值数据为每次控制排水阀打开过程中的氢气入口压力最大值,也就是说,每一次排水阀控制状态为1对应一个氢气入口压力最大值。
2)按照时间顺序对筛选的氢气入口压力最大值进行曲线拟合,得到排水阀对应的压力拟合曲线。
3)计算压力拟合曲线中初始时间段内的压力拟合值的平均值(此处取平均值是因为初始时间段内的压力拟合曲线可能并不是一条水平线)并作为压力正常值,当压力拟合曲线中出现某一时间段内的压力拟合值持续性的大于压力正常值且大于的程度为设定压力阈值△P2,则判定排水阀发生无法打开故障。需说明的是,这里直接将初始时间段内压力拟合值的平均值作为压力正常值是因为,一般情况下初始时间段内排水阀都是正常的,过了一段时间才会发生故障。
2、排水阀无法关闭故障。
1)筛选需排查时间段内燃料电池的工作电流为故障电流点I、且排水阀控制状态为0(即排水阀控制状态为控制排水阀关闭)条件下的压力控制装置的占空比数据和氢气入口压力离散值数据,这里的占空比数据为每次控制排水阀关闭过程中的占空比,所述氢气入口压力离散值数据为每次控制排水阀关闭过程中的氢气入口压力离散值,由于排水阀处于关闭状态是一段持续的时间段,而在这个持续的时间段采集的占空比和氢气入口压力并非只有一个值,而是一串离散的数值,这里的占空比和氢气入口压力离散值便均是一串离散的数值。
2)排除氢气入口压力值与目标压力值偏差较大的点(根据系统控制精度确定,一般为+3~4Kpa),进而对剩余的数据点按照时间顺序对所有占空比进行曲线拟合,得到排水阀对应的占空比拟合曲线。
3)计算占空比拟合曲线中初始时间段内的占空比拟合值的平均值(此处取平均值是因为初始时间段内的占空比拟合曲线可能并不是一条水平线)并作为占空比正常值,当占空比拟合曲线中出现某一时间段内的占空比拟合值持续性的大于占空比正常值且大于的程度为设定占空比阈值△PWM2,则判定排水阀发生无法关闭故障。需说明的是,这里直接将初始时间段内占空比拟合值的平均值作为占空比正常值是因为,一般情况下初始时间段内排水阀都是正常的,过了一段时间才会发生故障。
步骤五,在判断完毕后,一方面将故障信息通过仪表传递给驾驶员或者立即控制燃料电池系统停机,另一方面将故障信息通过手机APP发送售后技术人员进行故障确认。
若诊断为阀门发生无法打开或者无法关闭故障,售后技术人员首先需要确认的是阀门供电是否有问题,此时只需要将一个24V的供电装置对阀门进行供电,若在使用24V供电装置对其供电的情况下,阀门能够正常工作,则说明阀门供电出现问题,需对其供电进行排查;阀门仍然无法正常工作,则说明阀门供电无问题,售后技术人员需要对阀门本身进行检测。若阀门能够正常打开和关闭,那么其在正常打开和关闭的时刻应该有一个电磁阀动作的声音,基于此,售后技术人员可对阀门发出控制信号,控制其关闭或打开,此时若听不到电磁阀动作的声音,那么确认阀门发生故障。此时可选择更换阀门。
在上述的步骤三和步骤四中,出现了多个阈值,包括排氢阀对应的设定压力阈值△P1和设定占空比阈值△PWM1,以及排水阀对应的设定压力阈值△P2和设定占空比阈值△PWM2。这四个阈值总体可以采用两种方式来确定,一种是利用实验室模拟故障测试得到,另一种是利用历史数据计算得到,如图3所示。下面以排氢阀的设定压力阈值△P1为例展开介绍,对于其设定占空比阈值△PWM1、以及排水阀的设定压力阈值△P2和设定占空比阈值△PWM2的原理均相同,这里不再赘述。
方式1,利用实验室搭建模拟排氢阀发生无法打开故障的故障环境以及排氢阀正常工作的正常环境,将燃料电池系统分别置于故障环境和正常环境中工作,分别在两种环境(其中故障环境可做多次实验)中获取燃料电池工作电流为故障判断电流I时的氢气入口压力最大值数据,按照时间顺序对两种环境中获取的所有氢气入口压力最大值进行数值拟合,将两种环境中拟合出的数值的差值作为设定压力阈值△P1。其中,在故障环境做多次实验时,每一次实验均可拟合出一个数值,将多次拟合出的数值的平均值作为故障环境模拟出的数值。
方式2,获取历史运行过程中燃料电池工作电流为故障判断电流I条件下,分别在排氢阀发生无法打开故障情况和排氢阀正常情况下的氢气入口压力最大值数据,按照时间顺序分别对两种情况中获取的所有氢气入口压力最大值进行数值拟合,将两种情况中拟合出的数值的差值作为设定占空比阈值。其中,在排氢阀发生无法打开故障情况可能有多组数据,每一组均可拟合出一个数据,将多次拟合出的数值的平均值作为排氢阀发生无法打开故障情况中拟合出的数值;在排氢阀正常情况可能有多组数据,每一组均可拟合出一个数据,将多次拟合出的数值的平均值作为排氢阀正常情况中拟合出的数值。
综上,本发明具有如下特点:
1)针对燃料电池系统中阀门由于采用电磁阀的形式而无开关状态反馈的问题,本发明对阀门无法打开/无法关闭时造成的现象进行分析,从而得出在阀门无法打开时会造成氢气入口压力过大,以及阀门无法关闭时会造成压力控制装置的占空比过大的结论。利用该结论对燃料电池系统的氢气入口压力、压力控制装置的占空比进行检测,以确定阀门是否发生故障,从而为排氢阀和排水阀的故障检测提供一种有效可行的诊断方法。
2)依托大数据平台进行数据处理和分析,使得故障识别更加有效可靠,避免燃料电池控制器自身故障误判造成系统的频繁开关机,影响客户体验。
3)设置有故障提醒功能,可将排氢阀和排水阀故障信息传递给客户和售后技术人员,便于维护保养。
装置实施例:
本发明的一种排氢阀/排水阀故障诊断装置实施例,其结构如图5所示,包括存储器、处理器和内部总线,处理器、存储器之间通过内部总线完成相互间的通信和数据交互。存储器包括至少一个存储于存储器中的软件功能模块,处理器通过运行存储在存储器中的软件程序以及模块,执行各种功能应用以及数据处理,实现本发明的方法实施例中介绍的一种排氢阀/排水阀故障诊断方法。
其中,处理器可以为微处理器MCU、可编程逻辑器件FPGA等处理装置。存储器可为利用电能方式存储信息的各式存储器,例如RAM、ROM等;也可为利用磁能方式存储信息的各式存储器,例如硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘等;还可为利用光学方式存储信息的各式存储器,例如CD、DVD等;当然,还可为其他方式的存储器,例如量子存储器、石墨烯存储器等。
燃料电池车辆实施例:
本发明的一种燃料电池车辆实施例,包括整车控制器VCU和氢燃料电池系统,该氢燃料电池系统包括燃料电池控制器、燃料电池和各种燃料电池附件,燃料电池附件包括排氢阀和排水阀,以及用于检测氢气入口压力的压力传感器和压力控制装置,其中,排氢阀和排水阀分别用于排出氢气中的氮气和分水器中的液态水,压力控制装置用于控制从储存氢的容腔的前端注入氢气以维持容腔中氢气压力恒定。燃料电池控制器包括存储器和处理器,燃料电池控制器的存储器中存储有各种计算机程序指令;整车控制器VCU包括存储器和处理器,整车控制器VCU的存储器中也存储有各种计算机程序指令。
为了实现本发明的一种排氢阀/排水阀故障诊断方法,可采用如下两种方式实现:
第一种为:燃料电池控制器通过线路连接压力传感器和压力控制装置,以获取压力传感器检测的信息以及压力控制装置的占空比;燃料电池控制器的存储器中的计算机程序指令包括实现本发明的一种排氢阀/排水阀故障诊断方法的计算机程序指令,燃料电池控制器的处理器执行燃料电池控制器的存储器中存储的实现本发明方法的计算机程序指令,并结合压力传感器检测的信息以及压力控制装置的占空比,实现本发明的方法实施例中介绍的排氢阀/排水阀故障诊断方法。
第二种为:整车控制器VCU通过线路连接压力传感器和压力控制装置,以获取压力传感器检测的信息以及压力控制装置的占空比;整车控制器VCU的存储器中的计算机程序指令包括实现本发明的一种排氢阀/排水阀故障诊断方法的计算机程序指令,整车控制器VCU的处理器执行整车控制器VCU的存储器中存储的实现本发明方法的计算机程序指令,并结合压力传感器检测的信息以及压力控制装置的占空比,实现本发明的方法实施例中介绍的排氢阀/排水阀故障诊断方法。

Claims (9)

  1. 一种排氢阀/排水阀故障诊断方法,其特征在于,包括阀门无法打开故障诊断方法,和/或阀门无法关闭故障诊断方法,且所述阀门为排氢阀或排水阀;
    所述阀门无法打开故障诊断方法包括如下步骤:
    1a)获取需排查时间段内燃料电池工作电流为故障判断电流、且阀门控制状态为控制打开时的氢气入口压力最大值数据,所述氢气入口压力最大值数据包括每一次控制阀门打开过程中的氢气入口压力最大值;
    1b)按照时间顺序对获取的所有氢气入口压力最大值进行曲线拟合,得到阀门对应的压力拟合曲线;
    1c)若压力拟合曲线中某一时间段内的压力拟合值持续大于阀门对应的压力正常值,且大于的程度为大于设定压力阈值,则判定阀门发生无法打开故障;
    所述阀门无法关闭故障诊断方法包括如下步骤:
    2a)获取需排查时间段内燃料电池工作电流为故障判断电流、且阀门控制状态为控制关闭时的压力控制装置的占空比数据和氢气入口压力离散值数据,所述占空比数据包括每一次控制阀门关闭过程中的占空比,所述氢气入口压力离散值数据包括每一次控制阀门关闭过程中的氢气入口压力离散值;
    2b)排除氢气入口压力值与对应设置的设定压力值之间的值偏差大于设定偏差值的数据,对剩余数据按照时间顺序对所有占空比进行曲线拟合,得到阀门对应的占空比拟合曲线;
    2c)若占空比拟合曲线中某一时间段内的占空比拟合值持续大于占空比正常值,且大于的程度为大于设定占空比阈值,则判定阀门发生无法关闭故障。
  2. 根据权利要求1所述的排氢阀/排水阀故障诊断方法,其特征在于,步骤1c)中,所述压力正常值采用如下方法获取得到:获取压力拟合曲线中设定初始时间段内的压力拟合值,根据设定初始时间段内的压力拟合值确定压力正常值。
  3. 根据权利要求1所述的排氢阀/排水阀故障诊断方法,其特征在于,步骤2c)中,所述占空比正常值采用如下方法获取得到:获取占空比拟合曲线中设定初始时间段内的占空比拟合值,根据设定初始时间段内的占空比拟合值确定占空比正常值。
  4. 根据权利要求1所述的排氢阀/排水阀故障诊断方法,其特征在于,所述设定压力阈值和设定占空比阈值分别采用如下方法得到:
    搭建模拟阀门发生无法打开故障的故障环境以及阀门正常工作的正常环境,将燃料电池系统分别置于故障环境和正常环境中工作,分别在两种环境中获取燃料电池工作电流为故障判断电流时的氢气入口压力最大值数据,按照时间顺序分别对两种环境中获取的所有氢气入口压力最大值进行数值拟合,将两种环境中拟合出的数值的差值作为设定压力阈值;
    搭建模拟阀门发生无法关闭故障的故障环境以及阀门正常工作的正常环境,将燃料电池系统分别置于故障环境和正常环境中工作,分别在两种环境中获取燃料电池工作电流为故障判断电流时的压力控制装置的占空比数据,按照时间顺序分别对两种环境中获取的所有占空比进行数值拟合,将两种环境拟合出的数值的差值作为设定占空比阈值。
  5. 根据权利要求1所述的排氢阀/排水阀故障诊断方法,其特征在于,所述设定压力阈值和设定占空比阈值分别采用如下方法得到:
    获取历史运行过程中燃料电池工作电流为故障判断电流时的分别在阀门发生无法打开故障情况和阀门正常情况下的氢气入口压力最大值数据,按照时间顺序分别对两种情况中获取的所有氢气入口压力最大值进行数值拟合,将两种情况中拟合出的数值的差值作为设定压力阈值;
    获取历史运行过程中燃料电池工作电流为故障判断电流时的分别在阀门发生无法关闭故障情况和阀门正常情况下的压力控制装置的占空比数据,按照时间顺序分别对两种情况中获取的所有占空比进行数值拟合,将两种情况中拟合出的数值的差值作为设定占空比阈值。
  6. 根据权利要求1~5任一项所述的排氢阀/排水阀故障诊断方法,其特征在于,所述故障判断电流采用如下方法得到:对燃料电池的所有工作电流进行频率分布计算,获取频率最大的工作电流为故障判断电流。
  7. 根据权利要求1所述的排氢阀/排水阀故障诊断方法,其特征在于,在判定阀门发生无法打开或关闭故障时,控制燃料电池系统关机。
  8. 一种排氢阀/排水阀故障诊断装置,其特征在于,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现如权利要求1~7任一项所述的排氢阀/排水阀故障诊断方法。
  9. 一种燃料电池车辆,包括氢燃料电池系统,其特征在于,所述氢燃料电池系统包括氢燃料电池、用于检测氢气入口压力的压力传感器和压力控制装置,所述压力控制装置用于通过改变占空比以维持储存氢容腔中压力恒定;还包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现如权利要求1~7任一项所述的排氢阀/排水阀故障诊断方法。
PCT/CN2023/088445 2022-04-29 2023-04-14 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置 WO2023207635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474101.7 2022-04-29
CN202210474101.7A CN116706157B (zh) 2022-04-29 2022-04-29 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置

Publications (2)

Publication Number Publication Date
WO2023207635A1 WO2023207635A1 (zh) 2023-11-02
WO2023207635A9 true WO2023207635A9 (zh) 2024-01-11

Family

ID=87834481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088445 WO2023207635A1 (zh) 2022-04-29 2023-04-14 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置

Country Status (2)

Country Link
CN (1) CN116706157B (zh)
WO (1) WO2023207635A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410529A (zh) * 2023-12-15 2024-01-16 深圳市氢蓝时代动力科技有限公司 燃料电池阳极尾气排放检测方法、装置、设备及介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468851C (zh) * 2004-06-02 2009-03-11 丰田自动车株式会社 排气阀的故障诊断装置
JP4028544B2 (ja) * 2004-11-30 2007-12-26 本田技研工業株式会社 燃料電池システム及び該システムにおける燃料ガス経路の故障検知方法
JP4756465B2 (ja) * 2005-12-16 2011-08-24 トヨタ自動車株式会社 燃料電池システム及び移動体
JP2014032815A (ja) * 2012-08-02 2014-02-20 Honda Motor Co Ltd 燃料電池システムの遮断弁故障検知方法
KR102286838B1 (ko) * 2017-01-05 2021-08-05 현대자동차주식회사 연료전지 공기공급시스템의 밸브 고장진단 및 비상운전을 위한 장치
KR20200054513A (ko) * 2018-11-12 2020-05-20 현대자동차주식회사 차량용 연료전지 시스템의 수소압력센서 오차 수정 방법 및 이에 따른 연료전지 시스템
CN112993337B (zh) * 2019-12-14 2022-05-17 中国科学院大连化学物理研究所 一种适用于燃料电池衰减过程的水管理故障诊断系统
CN113036186B (zh) * 2019-12-25 2023-08-04 宇通客车股份有限公司 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置
CN112054230B (zh) * 2020-09-15 2022-02-08 上海燃料电池汽车动力系统有限公司 一种用于氢燃料电池排水排气装置的故障诊断方法及系统
CN113571745B (zh) * 2021-07-27 2022-07-08 广东省武理工氢能产业技术研究院 一种氢燃料电池的故障诊断处理方法及装置
CN215731813U (zh) * 2021-08-19 2022-02-01 北京亿华通科技股份有限公司 一种车载燃料电池的发动机排水排氢监控装置
CN113410493B (zh) * 2021-08-19 2021-11-05 北京亿华通科技股份有限公司 用于燃料电池发动机排水阀的自动监控装置及其标定方法
CN114914481A (zh) * 2022-04-08 2022-08-16 玉柴芯蓝新能源动力科技有限公司 燃料电池排氢阀冰堵故障检测方法、装置、系统及燃料电池

Also Published As

Publication number Publication date
CN116706157B (zh) 2024-05-24
CN116706157A (zh) 2023-09-05
WO2023207635A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
CN110600773B (zh) 燃料电池系统中空气供给系统的故障诊断方法及装置
CN113036186B (zh) 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置
CN108344947A (zh) 一种非侵入式的燃料电池故障诊断方法
WO2023207635A9 (zh) 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置
CN112373352A (zh) 一种燃料电池系统故障诊断及容错控制方法
KR102632527B1 (ko) 디지털 트윈을 이용한 연료전지 에너지 관리시스템의 이상진단 시스템 및 방법
WO2023164965A1 (zh) 一种储能系统中直流绝缘监测方法及终端
CN110443481A (zh) 基于混合k-近邻算法的配电自动化终端状态评价系统及方法
CN108169678B (zh) 一种模拟燃料电池的电控开发测试系统
CN117360332A (zh) 一种高可用的氢动力系统控制方法
WO2023088355A1 (zh) 一种传感器智能数据重构方法及系统
CN113937324B (zh) 一种燃料电池车辆空气泄露诊断方法及装置
CN207690924U (zh) 供氢控制装置
CN1624490A (zh) 氢/氧质子交换膜燃料电池堆的水淹诊断方法
CN114142069A (zh) 一种基于燃料电池健康状态评估的在线监控装置及方法
CN114706347A (zh) 一种用于电解加工机床的故障诊断系统及诊断方法
CN115939462A (zh) 一种非侵入式多堆燃料电池系统故障诊断装置及方法
CN114583218B (zh) 一种燃料电池系统、氢系统瓶阀故障检测方法及装置
CN112234940B (zh) 考虑限功率与运行效率的逆变器输出功率异常预警方法
CN211900884U (zh) 风机监测设备
CN114115198A (zh) 一种面向装配生产线的分布式诊断与优化控制方法及控制系统
Quan et al. Study on fault tree analysis of fuel cell stack malfunction
CN113189912A (zh) 车间设备能源在线监测与控制系统
CN110955201A (zh) 一种软水供应系统自动检测性运行的系统及控制方法
CN110333708A (zh) 基于水力机组技术供水水压数据关联的诊断控制方法、系统、存储介质和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795068

Country of ref document: EP

Kind code of ref document: A1