WO2023207342A1 - 一种通信方法及相关装置 - Google Patents

一种通信方法及相关装置 Download PDF

Info

Publication number
WO2023207342A1
WO2023207342A1 PCT/CN2023/080004 CN2023080004W WO2023207342A1 WO 2023207342 A1 WO2023207342 A1 WO 2023207342A1 CN 2023080004 W CN2023080004 W CN 2023080004W WO 2023207342 A1 WO2023207342 A1 WO 2023207342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mobile relay
positioning
information
terminal device
Prior art date
Application number
PCT/CN2023/080004
Other languages
English (en)
French (fr)
Inventor
朱方园
许胜锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207342A1 publication Critical patent/WO2023207342A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and related devices.
  • the access and backhaul integrated (IAB) node of the road accesses a base station serving it through a wireless interface in a terminal-like manner.
  • the base station is called the donor base station.
  • the wireless interface link between the IAB node and the donor base station is called the backhaul link ( backhaul link).
  • IAB nodes provide similar functions and services to ordinary base stations for terminals accessing their cells.
  • the communication link between IAB nodes and terminals is called access link.
  • Common IAB nodes are generally fixed on the ground or in buildings and are not mobile.
  • the positioning measurement data of the terminal equipment are related to the cell, and the location management function (Location management function, LMF) determines the location of the terminal device based on the cell identifier (Cell ID) contained in the measurement data and the pre-stored cell location information.
  • the location management function Location management function, LMF
  • terminal devices may access the network by accessing mobile relays and move with the mobile relays.
  • the location of the mobile relay's cell is not fixed. Therefore, even if the LMF obtains the cell identity, it still cannot determine the location of the terminal device.
  • This application provides a communication method and related devices, so that the network side can accurately determine the location of the terminal device.
  • this application provides a communication method, which can be executed by the LMF, or can also be executed by components (such as chips, chip systems, etc.) configured in the LMF, or can also be executed by a device that can realize all or This application does not limit the logic modules or software implementation of some LMF functions.
  • the above-mentioned LMF serves terminal equipment.
  • the above-mentioned LMF serving the terminal device means that the LMF is responsible for calculating or determining the location of the terminal device based on the positioning measurement data of the terminal device.
  • the method includes: receiving measurement data of the first positioning process, the measurement data of the first positioning process contains information of the first cell, the first cell is the cell of the mobile relay, and the mobile relay has mobility; obtaining First information, the first information is associated with the above-mentioned mobile relay; according to the first information, send a first request message, the first request message is used to trigger the second positioning process for the mobile relay; receive the location information of the mobile relay , the location information of the mobile relay is determined based on the second positioning process; the location of the terminal device is determined based on the location information of the mobile relay and the measurement data of the first positioning process.
  • the measurement data of the first positioning process for the terminal device includes the information of the mobile relay cell, and the LMF serving the terminal device further obtains the first information associated with the mobile relay, such as serving the terminal
  • the first information obtained by the LMF of the device may be the identification of the access and mobility management function (AMF) serving the mobile relay (that is, the identification of the AMF is associated with the mobile relay), and based on The first information is to send a first request message to trigger the positioning process for the above-mentioned mobile relay, so as to obtain the location information of the mobile relay.
  • the LMF can be based on the location information of the mobile relay and the location of the terminal device.
  • Position measurement data to determine the location of the terminal device.
  • the above solution provides a method for determining the location of the terminal device in a scenario where the positioning measurement data of the terminal device is associated with the mobile relay, thus solving the problem that LMF cannot calculate the location of the terminal device due to the unstable location of the cell of the mobile relay.
  • the problem of location is helpful to accurately calculate the location of the terminal device.
  • the information of the first cell includes a cell identity of the first cell; and the above method further includes: determining the first cell based on the cell identity of the first cell. It is the mobile relay cell.
  • the information of the first cell further includes: first indication information, and the first indication information is used to indicate that the first cell is a mobile relay cell.
  • the information of the first cell includes the cell identity of the first cell, and the LMF can determine that the first cell is the mobile relay cell based on the cell identity.
  • the information of the first cell includes a cell identity and first indication information.
  • the first indication information is used to indicate that the first cell is a mobile relay cell.
  • the LMF can determine the first cell based on the first indication information.
  • a cell is a mobile relay cell. This application provides a variety of methods for LMF to determine that the first cell is a mobile relay cell, which is beneficial to improving flexibility.
  • the information of the first cell includes: first indication information; and the above method further includes: determining, according to the first indication information, to trigger the mobile relay initiation Second positioning process.
  • the information of the first cell may include first indication information, and the LMF may determine to trigger the second positioning process for the mobile relay according to the first indication information, so as to obtain the location information of the mobile relay, and then combine it with the first positioning process.
  • the measurement data and the location information of the mobile relay are used to determine the location of the terminal device.
  • obtaining the first information includes: sending a second request message to the first network element, where the second request message includes the cell identifier of the first cell; A network element receives a second response message, and the second response message includes the first information.
  • the first network element is any of the following: access network equipment, unified data management (UDM), unified database (unified data repository, UDR), or network repository function (NRF) ).
  • UDM unified data management
  • UDR unified data repository
  • NEF network repository function
  • LMF can obtain the first information in the following ways:
  • Method 1 LMF obtains the first information associated with the mobile relay from any one of the UDM, UDR or NRF network elements, where any one of the above network elements can store the first information.
  • the first information includes at least one of an identity of an AMF serving the mobile relay and an identity of the mobile relay.
  • the LMF obtains the first information from the access network device.
  • the access network device locally stores the context information of the mobile relay, and the context information includes the correspondence between the cell identifier of the first cell of the mobile relay and the first information.
  • the access network device receives the second request message, the first information corresponding to the cell identity of the first cell may be determined according to the context information of the mobile relay.
  • the first information includes the identification of the AMF.
  • Method three the first information is obtained from the AMF serving the terminal device.
  • the first information includes at least one of an identifier of the AMF and an identifier of the mobile relay, where the above identifier of the AMF refers to the identifier of the AMF serving the mobile relay.
  • this application provides a communication method, which can be executed by the AMF, or can also be executed by components (such as chips, chip systems, etc.) configured in the AMF, or can also be executed by a device that can realize all or This application does not limit the logic modules or software implementation of some AMF functions.
  • the above-mentioned AMF serves terminal equipment.
  • the method includes: determining that the first cell accessed by the terminal device is a cell of a mobile relay, the mobile relay is used to provide relay services between the terminal device and the access network device, and the mobile relay has mobility ; Acquire the first information, the first information includes at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay; send a first request message to the LMF, the first request message is used to trigger the initiation of the In the first positioning process, the first request message includes first information, and the first information is used to trigger the initiation of the second positioning process for the mobile relay.
  • the AMF serving the terminal device determines that the first cell accessed by the terminal device is the cell of the mobile relay, it obtains the first information associated with the mobile relay and sends the first information to the LMF serving the terminal device.
  • a request message the first request message includes first information, used to trigger the initiation of a first positioning process for the terminal device, and initiate a second positioning process for the mobile relay, so that the LMF serving the terminal device obtains the location of the mobile relay.
  • the location information solves the problem that the LMF serving the terminal device cannot calculate the location of the terminal device because the location of the mobile relay cell is not fixed, and is conducive to accurately calculating the location of the terminal device.
  • determining that the first cell accessed by the terminal device is a mobile relay cell includes: receiving a first message from the access network device, the first message includes the identifier of the first cell accessed by the terminal device and indication information, and the indication information is used to indicate that the first cell is a mobile relay cell.
  • obtaining the first information includes: sending a second request message to the first network element, where the second request message includes the cell identity of the first cell; A network element receives a second response message, and the second response message includes the first information.
  • the AMF may obtain the identity of the AMF serving the mobile relay and/or the identity of the mobile relay from the first network element (for example, the first network element may be UDM, UDR, NRF or access network equipment).
  • the first network element may be UDM, UDR, NRF or access network equipment.
  • AMF sends a second request message to UDM.
  • the second request message contains the cell identity of the first cell.
  • UDM can determine the corresponding The identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the UDM sends at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay to the AMF serving the terminal device.
  • the AMF serving the terminal device A second response message is received from the UDM, the second response message includes first information, and the first information includes at least one of an identity of an AMF serving the mobile relay and an identity of the mobile relay.
  • this application provides a communication method, which can be executed by a terminal device, or can be executed by components (such as chips, chip systems, etc.) configured in the terminal device, or can also be implemented by Logic modules or software implementations of all or part of the terminal equipment functions are not limited in this application.
  • the method includes: receiving location information from the mobile relay, the location information is used to indicate the location of the mobile relay, and the mobile relay has mobility; performing positioning measurement based on signals from the cell of the mobile relay, to obtain Positioning measurement data; send the above-mentioned position information and positioning measurement data to the LMF, and the above-mentioned position information and positioning measurement data are used to determine the position information of the terminal device.
  • the terminal device receives the location information from the mobile relay, performs positioning measurement based on the signal from the mobile relay's cell, obtains the positioning measurement data, and sends the above position information and positioning measurement data to the LMF serving the terminal device,
  • the LMF serving the terminal device In order to facilitate the LMF serving the terminal device to determine the location of the terminal device based on the above location information and positioning measurement data, it solves the problem that the LMF serving the terminal device cannot calculate the location of the terminal device because the location of the mobile relay cell is not fixed. problem, which is conducive to accurately calculating the location of the terminal device.
  • sending location information and positioning measurement data to the LMF includes: sending location information and positioning measurement data to the LMF through an uplink positioning message, and the uplink positioning message also carries The cell ID of the cell with mobile relay.
  • receiving location information from the mobile relay includes: receiving location information from the mobile relay in a broadcast message, the broadcast message carrying the mobile relay location information.
  • the present application provides a communication method, which can be executed by the access network device, or can also be executed by components (such as chips, chip systems, etc.) configured in the access network device, or can also be executed by the access network device. It can be implemented by a logic module or software that can realize all or part of the access network equipment functions, and this application does not limit this.
  • the method includes: determining that the first cell accessed by the terminal device is a cell of a mobile relay, the mobile relay is used to provide relay services between the terminal device and the access network device, and the mobile relay has mobility ; Receive the first request message from the LMF, the first request message is used to trigger the initiation of positioning measurement for the terminal device; obtain the positioning measurement data of the mobile relay, the positioning measurement data of the mobile relay is used to determine the location of the first cell; The LMF sends a first response message.
  • the first response message includes the positioning measurement data of the mobile relay and the positioning measurement data of the terminal device.
  • the positioning measurement data of the terminal device includes the information of the first cell.
  • the access network device determines that the first cell accessed by the terminal device is the cell of the mobile relay
  • the LMF serving the terminal device initiates a positioning request
  • it triggers the positioning of the mobile relay and obtains the mobile relay
  • the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay are reported together to the LMF serving the terminal device, so that the LMF serving the terminal device is based on the positioning measurement data of the mobile relay and the terminal
  • the device's positioning measurement data calculates the location of the terminal device, which solves the problem that the LMF serving the terminal device cannot calculate the location of the terminal device because the location of the mobile relay cell is not fixed, and is conducive to accurately calculating the location of the terminal device. s position.
  • determining that the first cell accessed by the terminal device is a mobile relay cell includes: determining the first cell based on pre-stored configuration information and information of the first cell.
  • the area is the cell of the mobile relay.
  • the information of the first cell includes the tracking area code (TAC) and/or the cell identity corresponding to the first cell.
  • the configuration information includes the cell information of the mobile relay.
  • the cell information includes the TAC and /or cell identification, and the cell information of the mobile relay includes the information of the first cell.
  • determining that the first cell accessed by the terminal device is a cell of the mobile relay includes: receiving first indication information from the mobile relay or the terminal device, An indication information is used to indicate that the first cell is a cell with mobility, and/or the mobile relay has mobility.
  • the access network device pre-stores the cell information of the mobile relay, including TAC and/or Cell ID, and the access network device compares the information of the first cell with the pre-stored cell information of the mobile relay. If If the information of the first cell is included in the cell information of the mobile relay, it is determined that the first cell is the cell of the mobile relay.
  • the access network device receives first indication information from the mobile relay or the terminal device, and the first indication information is used to indicate that the first cell is a cell with mobility, and/or the mobile relay Be mobile.
  • the terminal device may indicate to the access network device that the cell that the terminal device accesses is a cell with mobility.
  • the mobile relay indicates to the access network device that the mobile relay has mobility.
  • the F1 setup request (F1setup request) message sent by the mobile relay to the access network device carries indication information that the mobile relay has mobility.
  • any of the above methods can enable the access network device to determine that the first cell accessed by the terminal device is a mobile relay cell, which is beneficial to improving the flexibility of the access network device in determining that the first cell is a mobile relay cell. sex.
  • this application provides a communication method, which can be executed by the LMF, or can be executed by components (such as chips, chip systems, etc.) configured in the LMF, or can also be executed by a device that can realize all or This application does not limit the logic modules or software implementation of some LMF functions.
  • the above-mentioned LMF serves terminal equipment.
  • the method includes: obtaining the location information of the mobile relay and the location measurement data of the terminal device, the mobile relay has mobility, the location information of the mobile relay is used to determine the location of the first cell, and the location measurement data of the terminal device
  • the data includes information about the first cell, which is the cell of the mobile relay; the location of the terminal device is determined based on the location information of the mobile relay and the positioning measurement data of the terminal device.
  • the LMF serving the terminal device can obtain the location information of the mobile relay and the positioning measurement data of the terminal device, and determine the location of the terminal device based on the location information of the mobile relay and the positioning measurement data of the terminal device, so that First, even if the cell of the mobile relay is not fixed, the LMF serving the terminal device can obtain the location information of the mobile relay and then determine the location of the terminal device.
  • obtaining the location information of the mobile relay and the positioning measurement data of the terminal device includes: receiving the location information of the mobile relay and the location information of the terminal device from the terminal device. Position measurement data.
  • obtaining the location information of the mobile relay and the positioning measurement data of the terminal device includes: receiving the positioning measurement data of the mobile relay from the access network device and Positioning measurement data of the terminal device; determine the location information of the mobile relay based on the positioning measurement data of the mobile relay.
  • the LMF serving the terminal device obtains the location information of the mobile relay.
  • One possible design is to directly obtain the location information of the mobile relay from the terminal device.
  • Another possible design is to obtain the positioning measurement data of the mobile relay from the access network device, and determine the location information of the mobile relay based on the positioning measurement data of the mobile relay.
  • This application provides a variety of possible designs, which is beneficial to improving the flexibility of the LMF in obtaining the location information of the mobile relay.
  • the present application provides a communication method, which can be executed by a terminal device, or can be executed by components (such as chips, chip systems, etc.) configured in the terminal device, or can also be implemented by Logic modules or software implementations of all or part of the terminal equipment functions are not limited in this application.
  • the method includes: receiving a broadcast message from a cell.
  • the broadcast message includes first indication information.
  • the first indication information is used to indicate a type of cell.
  • the type of cell includes a mobile relay cell or a non-mobile relay cell. Cells and mobile relays have mobility; positioning measurements are performed based on the signals of cells whose cell type is non-mobile relay, and the positioning measurement excludes cells whose cell type is mobile relay.
  • the terminal device filters the cells used for positioning measurement, and only uses the signals of non-mobile cells for measurement to obtain positioning measurement data, so that the LMF serving the terminal device determines the terminal device based on the above positioning measurement data.
  • the problem of LMF being unable to determine the location of the terminal device due to changes in the location of the cell used for positioning measurement is solved, which is helpful for LMF to accurately calculate The location of the terminal device.
  • the present application provides a communication device that can implement the method described in any of the first to sixth aspects and any possible implementation manner of the first to sixth aspects.
  • the device includes corresponding units for performing the above method.
  • the units included in the device can be implemented by software and/or hardware.
  • the present application provides a communication device, which includes a processor.
  • the processor is coupled to a memory and can be used to execute a computer program in the memory to implement the method described in any of the first to sixth aspects and any possible implementation manner of the first to sixth aspects.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instructions.
  • the first to sixth aspects and the third aspect are performed. The method described in any possible implementation manner from the first aspect to the sixth aspect.
  • the present application provides a computer program product.
  • the computer program product includes instructions. When the instructions are executed, the first aspect to the sixth aspect and any possible implementation of the first aspect to the sixth aspect are implemented. The method described in the method.
  • the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, for implementing the first to sixth aspects and any possible implementation manner of the first to sixth aspects. the method described in .
  • the chip system can be composed of chips or include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of the IAB network architecture provided by the embodiment of this application.
  • Figure 2 is a schematic diagram of the communication process based on IAB technology provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the network architecture based on the service-oriented architecture provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of a network architecture based on a point-to-point interface provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of the positioning architecture based on the service-based architecture provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the positioning architecture based on the point-to-point interface provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the system architecture suitable for the method provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 9 is a detailed flow chart of the communication method shown in Figure 8 provided by the embodiment of the present application.
  • FIG 10 is another detailed flow diagram of the communication method shown in Figure 8 provided by the embodiment of the present application.
  • Figure 11 is another schematic flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 12 is a detailed flow diagram of the communication method shown in Figure 11 provided by the embodiment of the present application.
  • Figure 13 is another schematic flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 14 is a detailed flow chart of the communication method shown in Figure 13 provided by the embodiment of the present application.
  • Figure 15 is another schematic flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 16 is a detailed flow chart of the communication method shown in Figure 15 provided by the embodiment of the present application.
  • Figure 17 is a schematic flow chart of the second communication method provided by the embodiment of the present application.
  • Figure 18 is a detailed flow chart of the communication method shown in Figure 17 provided by the embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 20 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the technical solutions provided by this application can be applied to various communication systems, such as 5G mobile communication systems or NR.
  • the 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or independent networking (standalone, SA).
  • the technical solution provided by this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), and device to device (D2D) networks.
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called vehicle to other devices (vehicle to X, V2X, X can represent anything).
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication.
  • Terminal equipment can be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment , user agent or user device.
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication equipment
  • user agent user device
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • some examples of terminals can be: mobile phones, tablets, computers with wireless transceiver functions (such as laptops, handheld computers, etc.), mobile Internet devices (mobile internet device (MID), virtual reality (VR) device, augmented reality (AR) device, wireless terminal in industrial control (industrial control), wireless terminal in self-driving (self driving), remote control Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, and smart home Wireless terminals, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), with wireless communication functions Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile communications networks (public land mobile network, PLMN) wait.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-computer interconnection and object interconnection. IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations. Its main functions include collecting data (some terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • Access network (AN) equipment The access network can provide network access functions for authorized users in a specific area, and can use transmission tunnels of different qualities according to the user's level, business needs, etc.
  • the access network may be an access network using different access technologies.
  • 3GPP 3rd generation partnership project
  • non-3GPP (non- 3GPP) access technology 3rd generation partnership project
  • 3GPP access technology refers to access technology that complies with 3GPP standard specifications.
  • the access network equipment in the 5G system is called next generation node base station (gNB).
  • Non-3GPP access technologies refer to access technologies that do not comply with 3GPP standard specifications, such as air interface technologies represented by access points (APs) in wireless fidelity (Wi-Fi).
  • APs access points
  • Wi-Fi wireless fidelity
  • An access network that implements access network functions based on wireless communication technology can be called a radio access network (RAN).
  • the wireless access network can manage wireless resources, provide access services to terminal devices, and then complete the forwarding of control signals and user data between the terminal and the core network.
  • Radio access network equipment may include, for example, but is not limited to: radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver) station (BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), AP, wireless relay node, wireless backhaul node in the Wi-Fi system, Transmission point (TP) or transmission and reception point (TRP), etc., can also be gNB or transmission point (TRP or TP) in the 5G (such as NR) system, base station in the 5G system
  • RNC radio network controller
  • Node B Node B
  • BSC base
  • the radio access network equipment may include a gNB-centralized unit (CU) and a gNB-DU.
  • gNB-CU and gNB-DU are connected through the F1 interface.
  • the CU and the core network are connected through the next generation (NG) interface.
  • gNB-DU includes physical layer (PHY)/medium access control (medium access control, MAC)/radio link control (radio link control, RLC) layer function, used to provide access services for relay devices attached to the access network device.
  • gNB-DU can connect to gNB-CU through the F1 interface.
  • the gNB-DU can also be connected with the mobile terminal (mobile-termination, MT) function of the terminal device or mobile relay through the Uu interface.
  • MT mobile terminal
  • gNB-CU is used to control radio resource control (RRC) for all relay devices and terminal devices under it. For example, it can store the context of relay devices and terminal devices.
  • RRC radio resource control
  • gNB-CU can connect with the DU function of other relay devices through the F1 interface.
  • IAB node In 5G NR research, an IAB node is proposed.
  • the IAB node integrates a wireless access link and a wireless backhaul link.
  • the wireless access link is the communication between the terminal device and the IAB node.
  • Link, the wireless backhaul link is the communication link between IAB nodes, which mainly performs data backhaul.
  • After the IAB node is started, its MT function (functionality) will access the network through cell selection.
  • the IAB node does not require a wired transmission network for data return. Therefore, IAB nodes reduce the deployment requirements for wired transmission networks and can be deployed outdoors, indoors and other scenarios where it is difficult to deploy wired transmission networks.
  • the following describes the IAB network architecture and the communication process based on IAB technology in detail.
  • FIG 1 is a schematic diagram of the IAB network architecture provided by this embodiment of the present application. As shown in Figure 1, it includes 5G core network (5G core, 5GC) and NG RAN. NG-RAN supports IAB by wirelessly connecting the IAB node to the gNB that can serve the IAB node, which is named IAB-donor.
  • An IAB-host consists of an IAB-host-centralized unit (CU) and one or more IAB-host-DUs. The IAB node is connected to the upstream IAB node or IAB-host-DU via the mobile terminal function of the NR Uu port (named IAB-MT function of the IAB node).
  • 5G core 5G core
  • 5GC 5G core network
  • NG-RAN supports IAB by wirelessly connecting the IAB node to the gNB that can serve the IAB node, which is named IAB-donor.
  • An IAB-host consists of an IAB-host-centralized unit (CU) and one or more IAB-host-
  • the IAB node provides wireless backhaul to downstream IAB nodes and terminal devices through the network function of the NR Uu port (named IAB-DU function of the IAB node).
  • IAB-DU function of the IAB node named IAB-DU function of the IAB node.
  • NG, NR Uu and F1 are all logical interfaces, and the functions of each interface will not be described in detail here.
  • the IAB node can include two parts: MT and DU.
  • the MT functions similarly to the UE, communicating with the parent node through the Uu interface and providing data backhaul.
  • the DU of the IAB node is similar to the function of the DU in the gNB, including the functions of the PHY/MAC/RLC layer, communicating with the child nodes, and providing access services to the child nodes.
  • Figure 2 is a schematic diagram of a communication process based on IAB technology provided by an embodiment of the present application.
  • Step 201 The IAB node registers into the network.
  • the IAB node can initiate the registration process through the access network device to access the network.
  • the MT function of the IAB node accesses the network through cell selection.
  • step 201 includes step 2011 and step 2012.
  • Step 2011 The MT function of the IAB node sends a registration request message to the access network device.
  • the access network device receives the registration request message.
  • the MT function of the IAB node sends a registration request message to the access network device. After receiving the registration request message, the access network device can select a core network device for the MT function of the IAB node.
  • Step 2012 The access network device sends a registration request message to the selected core network device.
  • a registration request message may be sent to the core network device through an N2 message, where the above registration request message may indicate that the person requesting registration into the network is an IAB node.
  • the initial access process of the IAB node is the same as that of the conventional terminal device.
  • Step 202 The MT function of the IAB node initiates session establishment.
  • the MT function of the IAB node initiates session establishment, and then the core network device allocates an Internet protocol (IP) address to the MT function of the IAB node.
  • IP Internet protocol
  • the MT function of the IAB node uses the IP address to communicate with operation administration and maintenance (OAM). ) to interact.
  • OAM operation administration and maintenance
  • Step 203 OAM configures cell information for the IAB node, such as cell identity, TAC and other information.
  • cell information configured by the OAM for the IAB node is fixed. In other words, no matter where the IAB node moves, its cell information will not change. That is, the cell information of the IAB node will not change. The geographical location of the IAB node is irrelevant.
  • Step 204 The DU function of the IAB node sends an F1 configuration request (setup request) message to the host-CU.
  • the IAB node After the DU function of the IAB node selects the appropriate host radio access network (donor RAN) device, it sends an F1 configuration request message to the host-CU.
  • the F1 configuration request message carries the cell information supported by the host-CU, such as cell identification, TAC and other information.
  • the host-CU After receiving the F1 configuration request message, the host-CU activates the cell of the IAB node.
  • the host RAN in step 204 and the access network device in step 201 may be the same or different, without limitation.
  • Step 205 The host-CU may send a configuration update message to the core network device. Specifically, the host-CU may send a configuration update message to the core network device through a configuration update process.
  • Step 206 The host-CU sends an F1 configuration response (setup response) message to the DU function of the IAB node.
  • the F1 configuration response message carries activated cell information (cells to be activated list), where the activated cell information includes the cell identifier of the activated cell.
  • the meaning of the IAB node registering into the network is the same as the meaning of the MT function of the IAB node registering into the network.
  • the description of the MT function execution action of the IAB node may also be replaced by the execution action of the IAB node.
  • Mobile relay refers to a wireless access network device that integrates a wireless access link and a wireless backhaul link and is mobile.
  • the wireless access link is the communication between the terminal device and the mobile relay.
  • Link, the wireless backhaul link is the communication link between the mobile relay and the wireless access network equipment deployed on the ground without mobility.
  • the wireless backhaul link mainly performs data backhaul.
  • Mobile relay supports Uu, F1, E1, NG and X2 interfaces, and includes the functions of wireless access network equipment and MT functions.
  • the MT function is integrated in the mobile relay, and this functional entity is used as the Uu port termination point of the backhaul link between the mobile relay and the host wireless access network device or other mobile relays. When the mobile relay is activated, the MT function will perform cell selection to access the network.
  • mobile relays are mobile.
  • a vehicle is equipped with a relay that integrates a wireless access link and a wireless backhaul link so that it can move with the movement of the vehicle.
  • This is a typical mobile relay, that is, a vehicle-mounted relay ( vehicle mounted relay, VMR).
  • Host wireless access network equipment usually refers to wireless access network equipment deployed on the ground without mobility, through the backhaul link between the host RAN and the mobile relay and the access link provided by the mobile relay Provide network access to terminal equipment.
  • the host radio access network device may be composed of a CU and one or more DUs.
  • CU mainly handles non-real-time wireless high-level protocol stack functions, such as RRC layer protocol and packet data convergence protocol (PDCP) layer protocol
  • DU mainly handles PHY functions and layer 2 functions with higher real-time requirements.
  • PHY protocol CU and DU can communicate with each other through the F1 interface.
  • This application does not limit the number of mobile relays that the host RAN can connect to.
  • this application refers to the host wireless access network device as simply the access network device.
  • the access network equipment in the embodiments of this application refers to the host wireless access network equipment.
  • AMF network element belongs to the core network part and can be referred to as AMF for short. It is mainly used for the registration, mobility management and tracking area update process of terminals in mobile networks.
  • the access and mobility management network element terminates NAS messages, is responsible for registration management, connection management and reachability management, and allocates tracking area lists ( track area list, TA list) and mobility management, etc., and is responsible for forwarding session management (session management, SM) messages to the session management network element.
  • Session management function (SMF) network element It can be referred to as SMF for short.
  • SMF Session management function
  • UPF user plane function
  • UDM network element It can be referred to as UDM. It is mainly used to manage contract data and is responsible for notifying the corresponding network elements when the contract data is modified.
  • UDR network element It can be referred to as UDR. Mainly used to store and retrieve contract data, policy data and public architecture data, etc.; provides UDM, policy control function (PCF) network element (can be referred to as PCF for short) and network exposure function (network exposure function, NEF) network Yuan (can be abbreviated as NEF) to obtain relevant data.
  • PCF policy control function
  • NEF network exposure function
  • UDR can have different data access authentication mechanisms for different types of data, such as contract data and policy data, to ensure the security of data access; UDR can return appropriate reasons for illegal service operations or data access requests. Failure response for the value.
  • Application function (AF) network element may be referred to as AF.
  • Certain application layer services can be provided to terminal devices. When AF provides services to terminal devices, it has requirements for QoS and charging policies and needs to notify the network. At the same time, AF also needs the core network to feedback application-related information.
  • UPF network element It can be referred to as UPF for short. Mainly used to implement all or part of the following functions: interconnecting protocol data unit (PDU) sessions with the data network; packet routing and forwarding (for example, supporting uplink classification of traffic and forwarding to the data network) , supports branching points to support multi-homed PDU sessions); packet inspection, etc.
  • PDU protocol data unit
  • LMF network element It can be referred to as LMF for short.
  • LMF LTE positioning protocol
  • the NRPPa protocol (NR positioning protocol A) between LMF and gNB is used to control positioning measurements, including uplink measurements by gNB or downlink measurements by UE.
  • the LMF can interact with the target UE through the LPP protocol to deliver positioning-related assistance data.
  • the LMF is responsible for selecting the network positioning solution. The selection of the positioning solution is determined based on the accuracy and delay required by the positioning client, QoS requirements, and the positioning capabilities of the UE and gNB.
  • Figure 3 is a schematic diagram of a network architecture based on a service-oriented architecture provided by an embodiment of the present application.
  • the 5G network architecture can include three parts, namely the terminal equipment part, the data network (DN) and the operator network part.
  • the operator network may include one or more of the following network elements: authentication server function (AUSF) network element, NEF network element, LMF network element, UDM network element, UDR network element, NRF network element , AF network element, AMF network element, SMF network element, RAN network element, UPF network element, network slice selection function (NSSF) network element, network slice selection authentication and authorization function (network slice specific authentication and authorization function, NSSAAF) network elements and service communication proxy (service communication proxy, SCP) network elements, etc.
  • AUSF authentication server function
  • NEF authentication server function
  • Figure 4 is a schematic diagram of a network architecture based on a point-to-point interface provided by an embodiment of the present application.
  • network elements included in the network shown in Figure 4 and their related introduction please refer to the description of Figure 3 .
  • the difference between the network architecture shown in Figure 4 and Figure 3 is that in the network architecture shown in Figure 4, the interfaces between each network element are point-to-point interfaces rather than service-oriented interfaces.
  • FIG. 5 is a schematic diagram of the positioning architecture based on the service-oriented architecture provided by the embodiment of the present application.
  • the operator network may include one or more of the following network elements: NEF network element, UDM network element, UDR network element, AF network element, AMF network element, LMF network element, RAN network element, gateway Mobile location center (gateway mobile location center, GMLC) network element, location retrieval function (location retrieval function, LRF) network element, location services (location services, LCS) client (client).
  • the LCS client can use the Le reference point to access the LCS service from the GMLC.
  • GMLC is the first node in the public land mobile network (PLMN) that external LCS clients access (that is, GMLC supports the Le reference point).
  • PLMN public land mobile network
  • various network elements can communicate based on service-oriented interfaces, where Nxxx in the figure is a service-based interface.
  • Figure 6 is a schematic diagram of a positioning architecture based on a point-to-point interface provided by an embodiment of the present application.
  • network elements included in the network shown in Figure 6 and their related introduction please refer to the description of Figure 5 .
  • the difference between the network architecture shown in Figure 6 and Figure 5 is that in the network architecture shown in Figure 6, the interfaces between each network element are point-to-point interfaces rather than service-oriented interfaces.
  • Figure 7 is a schematic diagram of the system architecture suitable for the method provided by the embodiment of the present application.
  • the system 700 may include a core network 710, an access network device 720, a mobile relay 730 and a terminal device 740.
  • the system 700 may be, for example, a 5G system (5G system, 5GS).
  • the core network 710 may be a 5G core network (5G core, 5GC).
  • the core network 710 may include, but is not limited to, AMF, UDM, LMF, etc., and each network element may be used to implement respective functions.
  • AMF Access Management Function
  • UDM User Data Management Function
  • LMF Layer Management Function
  • each network element may be used to implement respective functions.
  • the access network device 720 can be connected to the core network 710 and can be used to provide network access functions for authorized terminals within the coverage area, manage wireless resources, and complete the forwarding of control signals and user data between the terminal device and the core network 710.
  • the access network device 720 can not only provide wireless access services for terminal devices, but also provide wireless backhaul functions for mobile relays (mobile relay 730 as shown in Figure 7), so that The mobile relay can access the core network 710 through the access network device 720.
  • the mobile relay 730 has mobility. For example, it can be deployed on a vehicle. On the one hand, it is connected to the access network device 720 through the wireless backhaul link, and then connected to the core network 710 through the access network device 720. On the other hand, it is Nearby terminal devices (including terminal devices within the vehicle or outside the vehicle that are close to the vehicle) provide wireless access links, allowing the terminal devices to access the network.
  • the terminal device 740 shown in Figure 7 is located outside the vehicle, and can access the mobile relay 730 through the wireless access link provided by the mobile relay 730, and then connect the access network device 720 to the access mobile relay 730.
  • the wireless backhaul link is connected to the core network 710.
  • FIG. 7 is only an example, showing a core network, a radio access network device, and a mobile relay. and a terminal device, but this shall not constitute any limitation on this application.
  • the quantity of each device can be one or more.
  • the number of mobile relays connected to the same wireless access network device may also be one or more.
  • the number of terminal devices accessing the same mobile relay may also be one or more.
  • the terminal device 740 may also be located inside the vehicle.
  • the terminal device receives the signals of the surrounding cells (the number of surrounding cells can be multiple), performs positioning measurements and reports the measurement data to the LMF, where the measurement The data contains cell identification.
  • the LMF can determine which cell's signal the terminal equipment is based on based on the cell identifier sent by the terminal equipment. Further, the LMF determines the location of the terminal equipment based on the pre-obtained location information of the cell.
  • the access network equipment receives the signal of the terminal equipment to perform positioning measurements, and reports the measurement data to the LMF, where the measurement data includes the cell ID of the base station.
  • the LMF can determine which cell performs the measurement of the measurement data based on the cell identity contained in the measurement data. Further, the LMF determines the location of the terminal device based on the pre-obtained location information of the cell. In summary, no matter which positioning process is used, the positioning measurement data of the terminal device is related to the cell, and LMF further determines the location of the terminal based on the cell information (such as the identity of the cell) contained in the measurement data.
  • the mobile relay can be a vehicle mounted relay (VMR) mounted on a vehicle.
  • VMR vehicle mounted relay
  • the terminal device may access the network by accessing the VMR and move with the VMR. .
  • the terminal equipment may perform positioning measurements based on the signal of the cell of the currently accessed VMR, for the network assisted positioning procedure .
  • the VMR cell may use the signal of the terminal device for positioning measurement, and the location of the VMR cell changes with the moving mobile relay. Therefore, even if the LMF obtains the cell identity, it cannot determine the location of the terminal device.
  • this application provides a communication method, taking the UE assisted positioning procedure as an example.
  • the terminal device selects multiple cells and uses the signals of multiple cells to perform positioning measurements.
  • the multiple cells may include mobile relay cells and non-mobile relay cells, or the multiple cells may only include mobile relay cells.
  • LMF in addition to obtaining positioning measurement data for the terminal device, , it is also necessary to obtain the location information of the mobile relay, that is, to position the mobile relay, and then the LMF can determine the location information of the terminal device based on the positioning measurement data of the terminal device and the location information of the mobile relay.
  • the location information of the mobile relay in this application can be understood as the location information of the MT function of the mobile relay, such as the location information of the VMR-MT, or the location information of the IAB-UE.
  • the positioning process for the mobile relay involved in this application can be understood as the positioning process for the MT function of the mobile relay, such as the positioning process for the VMR-MT, or the positioning process for the IAB-UE.
  • this application provides the following possible designs for how the LMF obtains the location information of the mobile relay:
  • Design 1 The LMF serving the terminal device determines that the positioning measurement data of the terminal device is associated with the mobile relay, where the mobile relay has mobility. Further, the LMF obtains the first information associated with the mobile relay, and based on The first information is to send a first request message to trigger a positioning process for the mobile relay, and thereby obtain the location information of the mobile relay.
  • Design 2 After the AMF serving the terminal device determines that the first cell accessed by the terminal device is the cell of the mobile relay, it obtains the first information associated with the mobile relay and sends a first request message to the LMF serving the terminal device. ,First The request message includes first information to trigger the initiation of a first positioning process for the terminal device and a second positioning process for the mobile relay, and then obtain the location information of the mobile relay through the measurement data of the second positioning process.
  • Design 3 The terminal device receives the location information from the mobile relay, and performs positioning measurement based on the signal from the mobile relay's cell to obtain positioning measurement data; the terminal device sends the first message to the LMF, and the first message carries the mobile relay.
  • the location information and positioning measurement data are provided so that the LMF can determine the location of the terminal device based on the location information and positioning measurement data of the mobile relay.
  • Design 4 After the access network device determines that the first cell accessed by the terminal device is the cell of the mobile relay, after the LMF serving the terminal device initiates a positioning request, the access network device combines the positioning measurement data of the terminal device with the mobile relay The subsequent positioning measurement data is reported to the LMF serving the terminal device, so that the LMF can determine the location of the terminal device.
  • the terminal device filters the cells used for positioning measurement, and only uses the signals of non-mobile cells for measurement to obtain positioning measurement data, so that the LMF serving the terminal device can be based on the above positioning measurement. data to determine the location of the terminal device.
  • first”, “second” and various numerical numbers in the embodiments shown below are only distinctions for convenience of description and are not used to limit the scope of the embodiments of the present application.
  • first positioning process and the second positioning process are used to distinguish different positioning processes.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship, but it does not exclude the situation that the related objects are in an “and” relationship. The specific meaning can be understood based on the context.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b, or c can represent: a, b, c; a and b; a and c; b and c; or a, b, and c.
  • a, b, c can be single or multiple.
  • the mobile relay in the embodiments described below may be a VMR or a mobile IAB, for example.
  • the access network device in the embodiments described below is the host radio access network device.
  • the LMF described in the article receives the uplink positioning message from the terminal device, and the terminal device is not limited to directly sending the uplink positioning message to the LMF.
  • the terminal device can send the uplink positioning message to the AMF serving the terminal device, and the AMF further Send the uplink positioning message to the LMF.
  • a mobile relay cell can also be called a mobile cell, or a VMR cell, or a mobile IAB cell, which can be understood to mean that the cell has mobility;
  • a non-mobile relay cell can also be called a mobile relay cell. It is a non-mobile cell, or a non-VMR cell, or a non-mobile IAB cell. It can be understood that the location of the cell is fixed.
  • location information refers to information used to describe a specific geographical location.
  • the location information of a mobile relay refers to the location information of a mobile relay.
  • the terminal device selects multiple cells and uses the signals of multiple cells to perform positioning measurements.
  • the multiple cells include mobile relay cells and non-mobile relay cells, or the multiple cells only include mobile relay cells.
  • the measurement data collected by the terminal device includes mobile relay cells.
  • the mobile relay can use the signal of the terminal device to perform positioning measurements. In this case, the measurement data collected by the mobile relay The identifier of the cell containing the mobile relay.
  • the core network equipment in addition to obtaining the positioning measurement data of the terminal device, it also needs to obtain the location information of the mobile relay. Then the core network equipment can be based on the positioning measurement data of the terminal device and the location information of the mobile relay. Location information determines the location of the terminal device.
  • the mobile relay is used to provide relay services between the terminal device and the access network device, and the mobile relay has mobility.
  • the terminal device may not sense whether the signal used for positioning measurement is the signal of the mobile relay cell, that is, the terminal device may use the signal of the mobile relay cell to perform Positioning measurement.
  • the terminal device can use the signal of the currently accessed mobile relay cell to perform positioning measurement, or it can use the signal of other mobile relay cells to perform positioning measurement. That is, the terminal device accesses
  • the mobile relay cell and the mobile relay cell used for positioning measurement may be the same cell or different cells, and this is not limited in the embodiment of the present application.
  • the cell currently accessed by the terminal device is cell 1
  • cell 1 is a cell of the mobile relay
  • cell 2 is also a cell of the mobile relay.
  • the terminal device can use the signal of cell 1 for positioning measurement, or it can also use the signal of cell 2.
  • the signal is used for positioning measurement, which is not limited in the embodiments of the present application.
  • Figures 8 to 10 are communication methods for design one
  • Figures 11 and 12 are communication methods for design two
  • Figures 13 and 14 are communication methods for design three
  • Figures 15 and 16 are for design four.
  • Communication method, Figure 17 and Figure 18 are for the second communication method proposed.
  • the communication method of Design 1 described above is first described below, that is, the LMF serving the terminal device determines that the positioning measurement data of the terminal device is associated with the mobile relay, where the mobile relay has mobility, and further, the service The LMF of the terminal device obtains the first information associated with the mobile relay, and based on the first information, sends a first positioning request message to trigger the initiation of a positioning process for the mobile relay, thereby obtaining the location information of the mobile relay.
  • Figure 8 is a schematic flow chart of the communication method 800 provided by the embodiment of the present application.
  • the method 800 shown in Figure 8 may include steps 801 to 805. Each step in method 800 is described in detail below.
  • Step 801 The LMF receives measurement data of the first positioning process, where the measurement data of the first positioning process includes information of the first cell.
  • the above-mentioned LMF is an LMF serving the terminal device (can be recorded as UE-LMF).
  • the first positioning process is needle Initiate a positioning process on the terminal device to obtain measurement data of the first positioning process.
  • the first cell is a cell of a mobile relay, and the mobile relay has mobility. In other words, the location of the cell is not fixed.
  • One possible implementation method is that the UE-LMF adopts the positioning process assisted by the terminal device and initiates the first positioning process to obtain the measurement data of the first positioning process.
  • the UE-LMF sends a downlink positioning message to the terminal device to trigger positioning of the terminal device.
  • the terminal device After receiving the downlink positioning message (downlink positioning message) from the UE-LMF, the terminal device performs positioning measurements based on the signals of the surrounding cells (such as positioning reference signal (PRS)). For example, the terminal device performs positioning measurements based on the first cell. Perform positioning measurement on the signal to obtain the measurement data of the first positioning process, and send an uplink positioning message (uplink positioning message) to the UE-LMF.
  • the uplink positioning message carries the measurement data of the first positioning process.
  • the measurement data of the first positioning process is The measurement data includes information about the first cell, such as the Cell ID of the first cell.
  • the parameters for positioning measurement performed by the terminal device based on the signal of the first cell are not limited in this application.
  • the terminal device may perform downlink reference signal time difference measurement on the PRS of the access network device, and/or the terminal device may measure the downlink reference signal received power of each beam.
  • the measurement data sent by the terminal device to the UE-LMF also includes a measurement report, and the measurement parameters included in the measurement report are not limited by this application.
  • the measurement parameters included in the measurement report may include the downlink reference signal time difference, and/or the downlink reference signal received power of each beam, and so on.
  • the terminal device can use the signal of the mobile relay cell currently accessed to perform positioning measurement. Moreover, in addition to using the signal of the mobile relay cell for positioning measurement, the terminal device can also use the signals of other cells for measurement at the same time.
  • other cells can be another cell of the mobile relay, or a cell of a non-mobile relay, for example, a cell of a base station installed on both sides of the road outside the car, that is, a fixed-location cell.
  • the UE-LMF uses a network-assisted positioning process to initiate the first positioning process, that is, the access network device performs measurements based on the signal sent by the terminal device and sends the measurement data to the UE-LMF , to facilitate the UE-LMF to determine the location of the terminal device.
  • the UE-LMF sends a network positioning message to the access network device (for example, the UE-LMF sends a network positioning message (network positioning message) to the AMF serving the terminal device, and the AMF sends the above network positioning message to the access network device) to trigger positioning of the terminal device.
  • the terminal device is connected to the access network device through a mobile relay.
  • the access network device triggers the mobile relay to perform positioning measurements on the terminal device (that is, the mobile relay performs measurements based on the signal sent by the terminal device to obtain the measurement of the first positioning process data).
  • the access network device sends a network positioning message to the UE-LMF.
  • the network positioning message carries the measurement data of the first positioning process.
  • the measurement data of the first positioning process is The data contains information about the first cell, such as the Cell ID of the first cell.
  • the mobile relay performs positioning and measurement parameters on the terminal equipment, which is not limited in this application.
  • the mobile relay measures the uplink relative arrival time, and/or the mobile relay measures the angle of arrival based on the beam in which the terminal device is located.
  • the measurement data sent by the access network device to the UE-LMF also includes a measurement report, and the measurement parameters included in the measurement report are not limited by this application.
  • the measurement parameters included in the measurement report may be uplink angle of arrival, and/or uplink relative arrival time, etc.
  • the UE-LMF can also use the terminal device-assisted positioning process and the network-assisted positioning process at the same time to initiate the first positioning process. That is, it can be understood that the first positioning process in this application includes both the terminal device-assisted positioning process and the network-assisted positioning process, then the measurement data of the first positioning process includes The positioning measurement data sent by the terminal device to the UE-LMF and the positioning measurement data sent by the access network device to the UE-LMF.
  • the LMF serving the terminal device can determine that the first cell is a mobile relay cell through the information of the first cell contained in the measurement data of the first positioning process.
  • the LMF's determination of the first cell being a mobile relay will be described in detail below. Several possible designs of relayed cells.
  • the first possible design is that the information of the first cell includes the Cell ID of the first cell, and the UE-LMF determines that the first cell is the mobile relay cell based on the Cell ID of the first cell.
  • the UE-LMF pre-stores the Cell ID of at least one mobile relay cell. Based on the Cell ID of the first cell, the UE-LMF can determine that the first cell is the mobile relay cell.
  • UE-LMF has 10 pre-stored Cell IDs (mobile relay cells), namely Cell ID#1, Cell ID#2,...Cell ID#10.
  • UE-LMF is based on the Cell of the first cell. ID, it can be determined that the first cell is the cell of the mobile relay.
  • the UE-LMF pre-stores the Cell ID of a non-mobile relay cell and its corresponding location information. Based on the Cell ID of the first cell, the UE-LMF can determine that the first cell is not a non-mobile relay cell, or That is, the first cell is a mobile relay cell. As shown in Table 2, Table 2 shows the corresponding relationship between multiple Cell IDs and location information. For example, the location information corresponding to Cell ID #1 is location information #1.
  • the information of the first cell also includes: first indication information, the first indication information is used to indicate that the first cell is a mobile relay cell, and the LMF can determine the first cell based on the first indication information.
  • a cell is a mobile relay cell.
  • the indication information may be a flag bit. For example, a flag bit of 1 indicates that the first cell is a mobile relay cell, and a flag bit of 0 indicates that the first cell is a non-mobile relay cell.
  • the LMF serving the terminal device may determine to trigger the second positioning process for the mobile relay based on the first indication information included in the information of the first cell.
  • the LMF serving the terminal device receives the measurement data of the first positioning process.
  • the measurement data includes the information of the first cell.
  • the information of the first cell includes the first indication information.
  • the LMF can perform the positioning based on the first indication information. , triggering the initiation of the second positioning process for the mobile relay, it can be understood that the first indication information triggers the LMF serving the terminal device to obtain the first information, and the LMF serving the terminal device then triggers the initiation of the second positioning process for the mobile relay based on the first information. Second positioning process.
  • Step 802 The LMF obtains first information, which is associated with the mobile relay.
  • the UE-LMF After the UE-LMF determines that the first cell is a mobile relay cell, it obtains the first information, and the first information is associated with the mobile relay. That is, the UE-LMF determines which mobile relay the first cell is associated with, and then determines Which mobile relay to perform positioning measurements on.
  • the UE-LMF sends a second request message to the first network element, where the second request message contains the cell identity of the first cell, and then receives a second response message from the first network element, and the second response message
  • the message contains first information.
  • the UE-LMF requests the first information from the first network element.
  • the first network element may be an access network device, or may be UDM, UDR, or NRF.
  • UE-LMF obtains the first information from any one of UDM, UDR, or NRF network elements.
  • UDM pre-stores the cell identity, the identity of the AMF serving the mobile relay, and the identity of the mobile relay. Correspondence between identifications.
  • the UE-LMF sends a request message to the UDM.
  • the request message contains the cell identity of the first cell.
  • the UDM can determine the identity of the corresponding AMF and the identity of the mobile relay.
  • the above-mentioned AMF It is the AMF serving mobile relay.
  • the UDM sends at least one of the identity of the AMF and the identity of the mobile relay to the UE-LMF.
  • the UE-LMF receives a response message from the UDM.
  • the response message contains the first information, and the first information includes At least one of the identifier of the AMF and the identifier of the mobile relay.
  • the corresponding relationships between the cell identity, the identity of the AMF serving the mobile relay, and the identity of the mobile relay are pre-stored in UDM as shown in Table 3 below:
  • Table 3 shows the corresponding relationship between multiple Cell IDs, AMF identifiers and mobile relay identifiers.
  • the AMF identifier corresponding to Cell ID#1 is AMF ID#1
  • the mobile relay identifier The identifier is mobile relay identifier #1.
  • the method for UDM to store the above corresponding relationship can be: taking VMR as an example, the MT function of VMR initiates a registration process to the network. Specifically, VMR sends a registration request message to the access network device. In the registration request message The cell identifier (such as Cell ID) corresponding to the cell carrying the VMR. The access network device selects an AMF for the MT function of the VMR and sends a registration request message to the AMF serving the VMR. The registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • the cell identifier such as Cell ID
  • the AMF serving the VMR sends the cell identity corresponding to the cell of the VMR to the UDM, and the UDM stores the identity of the MT function of the VMR, the identity of the AMF serving the VMR, and the cell identity corresponding to the cell of the VMR.
  • the above corresponding relationship can be stored in the UDM.
  • the UE-LMF can obtain at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay from the UDM, but this application shall not The embodiment constitutes any limitation.
  • the NRF or UDR may also store the above corresponding relationship. That is, the UE-LMF may also obtain at least the identity of the AMF serving the mobile relay and the identity of the mobile relay from the NRF or UDR. A sort of.
  • the identifier of the mobile relay may be the identifier of the MT function of the mobile relay, or may be the identifier of the IAB-UE.
  • the identity of the mobile relay may be the user permanent identifier (subscription permanent identifier, SUPI) of the VMR-MT, or the SUPI of the IAB-UE.
  • the UE-LMF obtains the first information from the access network device.
  • the UE-LMF sends a request message to the access network device, where the request message includes the cell identifier of the first cell.
  • the access network device determines the identity of the AMF serving the mobile relay corresponding to the cell identity, and the access network device sends a response message to the UE-LMF, where the response message includes the first information.
  • One piece of information includes the identification of the above-mentioned AMF.
  • the UE-LMF receives the response message from the access network device to obtain the identity of the AMF.
  • the access network device locally stores the context information of the mobile relay, and the context information includes the mobile relay.
  • the access network device may determine the identity of the AMF corresponding to the cell identity of the first cell according to the context information of the mobile relay.
  • the UE-LMF may also obtain the first information from the AMF serving the terminal device.
  • the first information includes the identity of the AMF serving the mobile relay and/or the identity of the mobile relay.
  • the first positioning process of the UE-LMF for the terminal device may be after obtaining the first information, that is, the UE-LMF may obtain the first information.
  • the first positioning process for the terminal device will be initiated; if the UE-LMF obtains the first information from UDM, UDR, NRF or access network equipment, the UE-LMF will initiate the first positioning process for the terminal device.
  • the first information may be acquired before the first information is acquired, that is, the UE-LMF may acquire the first information after acquiring the measurement data of the first positioning process.
  • the embodiment of the present application does not limit the order of step 801 and step 802.
  • the AMF (denoted as UE-AMF) serving the terminal device obtains the first information and sends the first information to the LMF serving the terminal device.
  • the LMF serving the terminal device Get the first information.
  • the process of UE-AMF obtaining the first information is as follows:
  • UE-AMF obtains the first information from UDM, NRF, or UDR.
  • UDM pre-stores the cell identity, the identity of the AMF serving the mobile relay, and the identity of the mobile relay. corresponding relationship.
  • the UE-AMF sends a request message to the UDM.
  • the request message includes the cell identity of the first cell.
  • the UDM can determine the identity of the corresponding AMF serving the mobile relay and the mobile relay address. Successive identification.
  • the UDM sends at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay to the UE-AMF.
  • the UE-AMF receives a response message from the UDM, where the response message includes the first Information, the first information includes at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • Table 3 shows the corresponding relationship between the cell identifier, the identifier of the AMF serving the mobile relay, and the identifier of the mobile relay pre-stored in the UDM.
  • the UE-AMF obtains the first information from the access network device.
  • the UE-AMF sends a request message to the access network device, where the request message includes the cell identifier of the first cell.
  • the access network device determines the identity of the AMF serving the mobile relay corresponding to the cell identity, and sends a response message to the UE-AMF.
  • the response message includes the first information, and the first information includes the above Identity of the AMF serving the mobile relay.
  • the UE-AMF receives the response message from the access network device to obtain the identity of the AMF serving the mobile relay.
  • the access network device locally stores context information of the mobile relay, and the context information includes the cell identity of the mobile relay and the identity of the AMF serving the mobile relay.
  • the access network device receives the request message from the UE-AMF, it can determine the identity of the AMF serving the mobile relay corresponding to the Cell ID of VMR based on the context information of the mobile relay.
  • the access network device can also proactively send the identification of the AMF serving the mobile relay to the UE-AMF. For example, when the access network device sends an N2 message associated with the terminal device to the UE-AMF, the N2 message carries the identifier of the AMF serving the mobile relay.
  • the process of sending the first information to UE-LMF is as follows:
  • the UE-AMF sends a positioning request message (which can also be directly called a request message, which is not limited in the embodiments of this application) to the UE-LMF.
  • the positioning request message is used to trigger the initiation of the first positioning process for the terminal device.
  • the positioning request message includes First information, the first information is used to trigger the initiation of a second positioning process for the mobile relay.
  • the UE-AMF sends a positioning request message to the UE-LMF.
  • the first information included in the positioning request message includes the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the positioning request message also includes the LCS Correlation identifier associated with the terminal device.
  • the UE-LMF triggers positioning of the terminal device and the mobile relay respectively. Since the positioning request message carries the identity of the AMF serving the mobile relay and the identity of the mobile relay, the UE-LMF can directly trigger the AMF to initiate a positioning process for the mobile relay based on the identity of the AMF. For example, the UE-LMF
  • the positioning process for the mobile relay can be triggered through the 5GC-MT-location request (LR) process.
  • LR 5GC-MT-location request
  • the UE-AMF sends a positioning request message to the UE-LMF, where the first information included in the positioning request message includes the identifier of the mobile relay.
  • the positioning request message also carries the LCS Correlation identifier associated with the terminal device.
  • the UE-LMF triggers positioning of the terminal device and the mobile relay respectively. Since the positioning request message only carries the identifier of the mobile relay, the UE-LMF can act as a positioning client to trigger the core network to initiate a positioning process for the mobile relay. For example, the UE-LMF can trigger the positioning procedure for the mobile relay through the 5GC-MT-LR procedure.
  • Step 803 The LMF sends a first request message based on the first information.
  • the first request message is used to trigger the initiation of a second positioning process for the mobile relay.
  • the first request message may be, for example, the positioning request message 1 described below.
  • the UE-LMF initiates a second positioning procedure based on the first information.
  • the second positioning procedure is used to locate the mobile relay. For example, UE-LMF, as a positioning client, sends positioning request message 1 to GMLC, and GMLC sends positioning request message 2 to the AMF serving the mobile relay.
  • the UE-LMF obtains the first information from UDM, UDR, or NRF.
  • the first information includes the identity of the AMF serving the mobile relay and the identity of the mobile relay, and the UE-LMF sends it to the GMLC.
  • Positioning request message 1 carries the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the GMLC Based on the received identity of the AMF and the identity of the mobile relay, the GMLC sends the positioning request message 2 Send to the corresponding AMF.
  • the positioning request message 2 sent by the GMLC carries the identifier of the mobile relay to indicate which mobile relay the AMF initiates the positioning process, that is, the second positioning process.
  • the UE-LMF obtains the first information from UDM, UDR, or NRF.
  • the first information includes one of the identification of the AMF and the identification of the mobile relay.
  • the information contains the identifier of the mobile relay.
  • the UE-LMF sends a positioning request message 1 to the GMLC.
  • the positioning request message 1 carries the identifier of the mobile relay.
  • the GMLC Query the identity of the AMF serving the mobile relay from the UDM, and send the positioning request message 2 to the corresponding AMF.
  • the positioning request message 2 sent by the GMLC carries the identifier of the mobile relay to instruct the GMLC to determine the AMF serving the mobile relay according to the identifier of the mobile relay (for example, the GMLC queries the mobile relay from the UDM according to the identifier of the mobile relay). The identification of the AMF), and then indicates which mobile relay the AMF initiates the positioning process, that is, the second positioning process.
  • the UE-LMF obtains the first information from the access network device, and the first information includes the identity of the AMF serving the mobile relay.
  • UE-LMF sends positioning request message 1 to GMLC.
  • this positioning request message 1 It carries the identity of the AMF of the mobile relay and the cell identity of the first cell.
  • the GMLC After receiving the positioning request message 1, the GMLC sends the positioning request message 2 to the corresponding AMF.
  • the positioning request message 2 sent by the GMLC carries the cell identity of the first cell, which is used by the AMF to determine the identity of the corresponding mobile relay based on the cell identity, that is, to determine which mobile relay initiates the positioning process, that is, the second Positioning process.
  • the content carried in the positioning request message sent by the UE-LMF to the GMLC and the content carried in the positioning request message sent by the GMLC to the AMF serving the mobile relay may be different.
  • the UE-LMF is sent to the AMF serving the mobile relay.
  • the positioning request message sent by GMLC is recorded as positioning request message 1
  • the positioning request message sent by GMLC to the AMF serving the mobile relay is recorded as positioning request message 2.
  • the AMF serving the mobile relay determines the identity of the corresponding mobile relay based on the cell identity as follows: the AMF serving the mobile relay locally stores the context information of the mobile relay, and the context information includes the mobile relay The cell identity of the first cell and the identity of the mobile relay. When the AMF receives the positioning request message, it may determine the identity of the mobile relay corresponding to the mobile relay of the first cell according to the context information of the mobile relay.
  • Step 804 LMF receives the location information of the mobile relay.
  • the above-mentioned LMF is an LMF serving the terminal device, and the location information is determined according to the second positioning process.
  • the LMF serving the mobile relay initiates a second positioning process for the mobile relay.
  • the mobile relay can perform measurements based on the signal of the cell of the access network device (that is, using terminal device-assisted positioning). process) to obtain the measurement data of the second positioning process.
  • the access network device may perform measurements based on the signal sent by the mobile relay (ie, network-assisted positioning process) to obtain measurement data of the second positioning process.
  • the specific execution process of the positioning process for the mobile relay is similar to the positioning process for the terminal device.
  • the network side selects an LMF for the mobile relay, and the LMF is responsible for determining the location information of the mobile relay based on the measurement data of the second positioning process.
  • the LMF serving the mobile relay can also use the terminal device-assisted positioning process and the network-assisted positioning process at the same time to initiate the second positioning process. That is, it can be understood that the second positioning process in this application includes both a terminal device-assisted positioning process and a network-assisted positioning process.
  • the LMF serving the mobile relay After the LMF serving the mobile relay calculates the location information of the mobile relay based on the measurement data of the second positioning process (assuming that the LMF serving the mobile relay knows the location of the access network equipment), the location information of the mobile relay is Sent to the LMF serving the terminal device. Correspondingly, the LMF serving the terminal device obtains the location information of the mobile relay.
  • the LMF serving the terminal device and the LMF serving the mobile relay may be the same LMF or different LMFs.
  • Step 805 The LMF determines the location of the terminal device based on the location information of the mobile relay and the measurement data of the first positioning process.
  • the LMF serving the terminal device obtains the location information of the mobile relay, and then combines it with the measurement data of the first positioning process (that is, the positioning measurement data of the terminal device) to calculate the location of the terminal device.
  • Figures 9 and 10 are an example of the communication method described in the embodiment shown in Figure 8. The difference between the embodiments shown in Figure 9 and Figure 10 is that in the embodiment shown in Figure 9, the UE-LMF obtains the first information from the UDM, and in the embodiment shown in Figure 10, the UE-LMF obtains the first information from the access The network device obtains the first information.
  • the method shown in Figure 9 includes steps 901 to 924. Each step of the method shown in Figure 9 will be described in detail below.
  • the mobile relay takes VMR as an example
  • UE-AMF refers to the AMF serving the UE
  • VMR-AMF refers to the AMF serving the VMR
  • the UE-LMF refers to the terminal device.
  • the prepared LMF, VMR-LMF is the LMF serving VMR.
  • the AMF serving the UE and the AMF serving the VMR may be the same AMF or different AMFs.
  • the LMF serving the UE and the LMF serving the VMR may be The same LMF may also be different LMFs, which is not limited in the embodiments of the present application.
  • Step 901 VMR obtains cell configuration information.
  • VMR obtains cell configuration information from OAM, where the cell configuration information includes the TAC and/or Cell ID of VMR's cell.
  • the DU function of VMR sends a F1setup (configuration) process to the access network device for performing activation of the VMR cell.
  • This process may refer to known technologies. It can be understood that the VMR is currently connected to the access network device, and the VMR accesses a certain cell of the access network device.
  • the access network device may also be called a host base station of the VMR node.
  • Step 902 The VMR sends a registration request message to the access network device.
  • the MT function of the VMR initiates the registration process to the network. Specifically, the VMR sends a registration request message to the access network device.
  • the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • the MT function of the VMR also It can be understood as IAB-UE.
  • Step 903 The access network device sends the N2 message to the VMR-AMF.
  • the access network equipment selects an AMF for the MT function of the VMR, and the AMF serves the VMR (that is, VMR-AMF).
  • the access network device sends an N2 message to the VMR-AMF.
  • the N2 message includes a registration request message.
  • the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • Step 904 VMR-AMF sends the cell identifier corresponding to VMR's cell and the identifier of VMR-AMF to UDM.
  • the VMR-AMF sends a request message to the UDM to request the UDM to store the above information.
  • the request message carries the cell identity corresponding to the cell of the VMR, the identity of the VMR-AMF, and the identity of the MT function of the VMR (such as SUPI or One or more of the generic public subscription identifier (GPSI).
  • Step 905 UDM stores the identity of the VMR-AMF, the cell identity, and the identity of the VMR.
  • UDM stores the identification of the VMR's MT function (such as SUPI or GPSI), the identification of the VMR-AMF (AMF ID), and the cell identification (such as Cell ID) corresponding to the VMR cell.
  • VMR MT function identifiers such as SUPI or GPSI
  • VMR-AMF identifiers AMF ID
  • the VMR can report the cell identity corresponding to the current cell to the core network, and trigger the core network to store the correspondence between the cell identity and the identity of the VMR-AMF.
  • the UDM in the above process can also be replaced with a UDR network element or an NRF network element.
  • FIG. 9 only illustrates an implementation manner of reporting the cell identity corresponding to the current cell to the core network through the registration process, and should not constitute any limitation on the embodiment of the present application.
  • VMR can also report the cell identity corresponding to the current cell to the core network through the service request process.
  • Step 906 VMR-AMF accepts the registration process of VMR and sends a registration acceptance message to VMR.
  • Step 907 VMR sends a broadcast message.
  • the broadcast message may carry indication information, and the indication information is used to indicate that the cell is a VMR cell, that is, a mobile cell.
  • Step 908 The UE registers with the core network.
  • the UE accesses the VMR cell and initiates the registration process.
  • the cell that the UE currently accesses is the cell of the VMR (the cell of the VMR that the UE accesses is different from the cell of the access network device that the VMR accesses). Since the VMR is mobile, the location of the VMR's cell will change as the VMR moves.
  • Step 909 UE-AMF sends a positioning request message to UE-LMF.
  • the positioning request message is used to trigger the UE-LMF to perform positioning for the UE.
  • the UE-AMF triggers positioning of the UE.
  • This process may be triggered by an external positioning client or by the UE, which is not limited by this application.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE, and sends a positioning request message to the UE-LMF, triggering the UE-LMF to position the UE.
  • UE-LMF LMF network element
  • the positioning request message sent by UE-AMF to UE-LMF contains the LCS Correlation identifier associated with the UE.
  • Step 910 if the UE-LMF adopts the UE assisted positioning procedure, then sends a downlink positioning message (downlink positioning message, DL positioning message) to the UE-AMF.
  • a downlink positioning message downlink positioning message, DL positioning message
  • Step 911 UE-AMF sends the above downlink positioning message to the UE.
  • the UE receives the downlink positioning message.
  • Step 912 After receiving the downlink positioning message, the UE performs positioning measurement based on the positioning reference signal (PRS) sent by the surrounding cells.
  • PRS positioning reference signal
  • the cell of the VMR currently accessed by the UE will also send PRS.
  • the UE can use the PRS of the VMR cell for measurement. .
  • the UE can also use other PRSs of surrounding cells for measurement, for example, base stations installed on both sides of the road outside the vehicle, that is, PRSs sent by cells at fixed locations.
  • the UE can also use the PRS of other cells of the VMR for measurement, that is, the cell of the VMR that the UE accesses and the cell used for positioning measurement can be the same cell or different cells.
  • the cell that the UE is currently accessing is Cell 1, and Cell 1 is the cell of VMR. There are also cells 2 and 3 around the UE. Cell 2 is the cell of VMR, and Cell 3 is the cell of the fixed base station. Then the UE can use The PRS of any one or more cells in Cell 1, Cell 2 and Cell 3 perform positioning measurements.
  • Step 913 The UE sends the uplink positioning message to the UE-AMF.
  • the uplink positioning message carries positioning measurement data, where the positioning measurement data includes a cell identifier, and the cell identifier is used to indicate which cell's PRS the UE uses for measurement.
  • the UE uses the PRS of the VMR cell for measurement, so the cell ID in the positioning measurement data includes the cell ID of VMR (Cell ID of VMR).
  • the above-mentioned uplink positioning message also carries indication information, and the indication information is used to indicate that the above-mentioned cell is a cell of the VMR, that is, the location of the cell changes with the movement of the VMR.
  • Step 914 UE-AMF sends the uplink positioning message to UE-LMF.
  • the cell ID in the positioning measurement data includes the cell ID of VMR (Cell ID of VMR).
  • UE-AMF also sends the LCS Correlation identifier associated with the UE to UE-LMF.
  • steps 910 to 914 in the figure are UE assisted positioning procedures.
  • UE-LMF can also use network assisted positioning procedure, then steps 910 to 914 can be replaced by Replace steps 1 to 5 below:
  • Step 1 If the UE-LMF adopts the network assisted positioning procedure, then send the network positioning message (network positioning message) to the UE-AMF.
  • Step 2 UE-AMF sends the network positioning message to the access network device.
  • Step 3 The access network device triggers the VMR to perform positioning measurement on the UE according to the network positioning message. It can be understood that the VMR collects positioning measurement data of the UE. For example, the VMR performs positioning measurements on signals sent by the UE to obtain positioning measurement data.
  • Step 4 The access network device sends a network positioning message to the UE-AMF.
  • the network positioning message carries positioning measurement data, where the positioning measurement data includes a cell identifier, and the cell identifier is used to indicate which cell's PRS the UE uses for measurement.
  • Step 5 UE-AMF sends the above network positioning message to UE-LMF.
  • VMR performs positioning measurement on the signal sent by the UE. Therefore, the cell ID in the positioning measurement data contains the cell ID of VMR (Cell ID of VMR).
  • the Cell ID contained in the positioning measurement data received by the UE-LMF will contain the VMR cell. Corresponding community ID.
  • steps 910 to 914, and steps 1 to 5 can be executed in parallel.
  • Step 915 Based on the positioning measurement data, the UE-LMF cannot determine the geographical location of the cell included in the positioning measurement data.
  • the UE uses the signal of the VMR cell for positioning measurement.
  • the VMR cell is in a mobile state and the UE-LMF cannot determine the location of the cell. Therefore, the location of the cell needs to be positioned (i.e., the location of the cell is not determined). VMR for positioning measurement).
  • the uplink positioning message includes the Cell ID of the cell, and the UE-LMF determines that the cell is a VMR cell based on the Cell ID.
  • the uplink positioning message also includes: first indication information, which is used to indicate that the cell is a VMR cell. Based on the first indication information, the UE-LMF can determine that the cell is a mobile relay community.
  • Step 916 UE-LMF sends a request message to UDM.
  • the above request message is used to request to query the identity of the VMR-AMF and/or the identity of the VMR.
  • the request message carries the cell identity (Cell ID of VMR) of the cell of the VMR.
  • Step 917 UDM sends a response message to UE-LMF.
  • the response message carries the identifier of the VMR-AMF and/or the identifier of the VMR (such as SUPI).
  • the UDM stores the corresponding relationship between the identification of the MT function of the VMR (such as SUPI or GPSI), the identification of the VMR-AMF (AMF ID), and the cell identification (such as Cell ID) corresponding to the VMR cell, as shown in Figure 8
  • UDM can query the identification of its corresponding VMR-AMF and/or the identification of VMR based on the cell identification, and return the above information to the UE-LMF.
  • Step 918 UE-LMF sends positioning request message 1 to GMLC.
  • UE-LMF acts as a positioning service client to trigger the 5GC-MT-LR process
  • the positioning request message 1 is used to trigger positioning of the VMR.
  • the positioning request message may be an LCS service request message.
  • the content carried in the positioning request message sent by the UE-LMF to the GMLC (that is, the positioning request message in step 918) and the positioning request message sent by the GMLC to the AMF serving the mobile relay (that is, the positioning request message in step 919)
  • the parameters carried in the positioning request message may be different.
  • the positioning request message sent by the UE-LMF to the GMLC is recorded as positioning request message 1
  • the positioning request message sent by the GMLC to the AMF serving the mobile relay is recorded as Request message 2 for positioning.
  • the parameters carried in the positioning request message 1 can be implemented in the following ways:
  • the positioning request message 1 carries the identifier of the VMR-AMF and the identifier of the VMR.
  • the GMLC can determine the AMF serving the VMR based on the identification of the VMR-AMF.
  • Method 2 The positioning request message 1 carries the identifier of the VMR-AMF and the cell identifier corresponding to the VMR cell.
  • the GMLC can determine the AMF serving the VMR based on the identification of the VMR-AMF.
  • Method 3 The positioning request message 1 carries the identifier of the VMR.
  • the GMLC can further query the UDM to request the identification of the VMR-AMF based on the identification of the VMR, thereby determining the AMF serving the VMR.
  • the UDM stores the identification of the VMR-AMF, the cell identification and the identification of the VMR.
  • GMLC can send the identification of VMR to UDM, and UDM determines the identification of VMR-AMF based on the identification of VMR.
  • Method 4 The positioning request message 1 carries the cell identity corresponding to the VMR cell.
  • the GMLC can further query the UDM to request the identity of the VMR-AMF and the identity of the VMR based on the cell identity corresponding to the cell of the VMR, thereby determining the AMF serving the VMR.
  • the UDM stores the identification of the VMR-AMF, the cell identification and the identification of the VMR.
  • the GMLC may send the cell identifier corresponding to the cell of the VMR to the UDM, and the UDM determines the identifier of the VMR-AMF based on the cell identifier corresponding to the cell of the VMR.
  • UDM in the above implementation methods can also be replaced with UDR network elements or NRF network elements.
  • Step 919 GMLC sends positioning request message 2 to VMR-AMF.
  • GMLC After GMLC determines the VMR-AMF, it sends a positioning request message 2 to the VMR-AMF.
  • the parameters carried in the positioning request message 2 can be implemented in the following ways:
  • the positioning request message 2 carries the identification of the VMR. For example, based on the methods one, three and four in the above step 918, the GMLC obtains the identification of the VMR.
  • the positioning request message 2 carries the cell identity corresponding to the VMR cell.
  • the GMLC obtains the cell identity corresponding to the VMR cell.
  • the positioning request message sent by the GMLC to the VMR-AMF may be a request message that calls the "Namf_Location_ProvidePositioningInfo" service operation.
  • Step 920 VMR-LMF initiates the positioning process.
  • the VMR-AMF selects the positioning network element LMF (VMR-LMF), which is responsible for positioning the VMR (that is, the LMF is responsible for positioning the VMR-MT or IAB-UE).
  • VMR-LMF initiates a positioning procedure, which is a positioning procedure for VMR.
  • the positioning procedure can be UE assisted positioning procedure (VMR-MT uses the PRS of the cell of the access network device for positioning measurement), and/or network assisted positioning procedure (access network equipment measures the position of VMR-MT).
  • VMR-MT uses the PRS of the cell of the access network device for positioning measurement
  • network assisted positioning procedure access network equipment measures the position of VMR-MT
  • VMR-LMF calculates the location information of VMR based on this positioning measurement data. Further, the VMR-LMF sends the location information of the VMR to the VMR-AMF. Correspondingly, VMR-AMF obtains the location information of VMR.
  • Step 921 VMR-AMF sends a positioning response message to GMLC.
  • the positioning response message carries the location information of the VMR.
  • the positioning response message is the response message to the positioning request message 2 in step 919.
  • Step 922 GMLC sends a positioning response message to UE-LMF. Specifically, the GMLC sends a location services (location services, LCS) response to the UE-LMF.
  • LCS location services
  • the positioning response message is the response message to the positioning request message 1 in step 918.
  • the UE-LMF receives the positioning response message and obtains the location information of the VMR.
  • VMR-AMF sends a positioning response message to UE-LMF through GMLC.
  • Step 923 The UE-LMF determines the location of the UE based on the location information of the VMR and the positioning measurement data of the UE.
  • the UE-LMF calculates the location of the UE based on the location information of the VMR and the positioning measurement data of the UE.
  • the specific method for the UE-LMF to calculate the location of the UE based on the location information of the VMR and the positioning measurement data of the UE is not limited in this embodiment.
  • Step 924 UE-LMF sends the location of the UE to UE-AMF.
  • the method shown in Figure 10 includes steps 1001 to 1024. Each step of the method shown in Figure 10 will be described in detail below.
  • the difference between the embodiments shown in Fig. 10 and Fig. 9 lies in the different ways of obtaining the first information.
  • the UE-LMF obtains the first information from the access network device.
  • the mobile relay takes VMR as an example
  • UE-AMF refers to the AMF serving the UE
  • VMR-AMF refers to the AMF serving the VMR
  • the UE-LMF refers to the terminal device.
  • LMF, VMR-LMF is the LMF that serves VMR.
  • the AMF serving the UE and the AMF serving the VMR may be the same AMF or different AMFs.
  • the LMF serving the UE and the LMF serving the VMR may be the same AMF.
  • the LMF may also be a different LMF, which is not limited in this embodiment.
  • Step 1001 VMR obtains cell configuration information.
  • Step 1002 The VMR sends a registration request message to the access network device.
  • the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • Step 1003 The access network device sends the N2 message to the VMR-AMF.
  • the N2 message includes a registration request message, and the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • the cell identifier such as Cell ID
  • steps 1001 to 1003 please refer to the relevant description of steps 901 to 903 in Figure 9, and will not be described in detail here.
  • Step 1004 The VMR-AMF stores the cell identifier and the VMR identifier.
  • Step 1005 VMR-AMF accepts the registration process of VMR and sends a registration acceptance message to VMR.
  • Step 1006 VMR sends a broadcast message.
  • the broadcast message may carry indication information, and the indication information is used to indicate that the cell is a VMR cell, that is, the cell has mobility.
  • Step 1007 the UE registers with the core network.
  • the UE accesses the VMR cell and initiates the registration process.
  • the cell that the UE currently accesses is the cell of the VMR (the cell of the VMR that the UE accesses is different from the cell of the access network device that the VMR accesses). Since the VMR is mobile, the cell of the VMR is also in a mobile state.
  • Step 1008 UE-AMF sends a positioning request message to UE-LMF.
  • the UE-AMF triggers positioning of the UE.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE, and sends a positioning request message to the UE-LMF, triggering the UE-LMF to position the UE.
  • UE-LMF LMF network element
  • the positioning request message sent by UE-AMF to UE-LMF contains the LCS Correlation identifier associated with the UE.
  • Step 1009 If the UE-LMF adopts the UE assisted positioning procedure, it sends a downlink positioning message (DL positioning message) to the UE-AMF.
  • DL positioning message downlink positioning message
  • Step 1010 UE-AMF sends the above downlink positioning message to the UE.
  • the UE receives the downlink positioning message.
  • Step 1011 the UE performs positioning measurement.
  • the UE After receiving the downlink positioning message, the UE performs positioning measurements based on the positioning reference signals (PRS) sent by surrounding cells.
  • PRS positioning reference signals
  • the cell of the VMR currently accessed by the UE will also send PRS, and the UE can use the PRS of the VMR cell for measurement.
  • Step 1012 The UE sends an uplink positioning message to the UE-AMF.
  • the uplink positioning message carries positioning measurement data, where the positioning measurement data includes a cell identifier, and the cell identifier is used to indicate which cell's PRS the UE uses for measurement.
  • the above-mentioned uplink positioning message also carries indication information, and the indication information is used to indicate that the above-mentioned cell is a VMR cell, that is, the cell has mobility.
  • Step 1013 UE-AMF sends the uplink positioning message to UE-LMF.
  • the UE uses the PRS of the cell of the VMR for measurement. Therefore, the cell ID in the positioning measurement data includes the cell ID of the VMR (Cell ID of VMR).
  • UE-AMF also sends the LCS Correlation identifier associated with the UE to UE-LMF.
  • steps 1009 to 1013 reference can be made to the relevant description of steps 910 to 914 in the embodiment shown in FIG. 9 , and will not be described in detail here.
  • UE-LMF can also trigger the use of UE assisted positioning procedure and network assisted positioning procedure to position the UE at the same time.
  • Step 1014 Based on the positioning measurement data, the UE-LMF cannot determine the geographical location of the cell included in the positioning measurement data.
  • the UE uses the signal of the VMR cell for positioning measurement.
  • the VMR cell is in a mobile state, and the UE-LMF cannot determine the location of the cell. Therefore, the location of the cell needs to be positioned (i.e., the location of the cell is not determined). VMR for positioning measurement).
  • the uplink positioning message includes the Cell ID of the cell, and the UE-LMF determines that the cell is a VMR cell based on the Cell ID.
  • the uplink positioning message also includes: first indication information, which is used to indicate that the cell is a VMR cell. Based on the first indication information, the UE-LMF can determine that the cell is a mobile relay community.
  • step 1014 please refer to the description of the embodiment shown in Figure 8, and will not be described in detail here.
  • Step 1015 UE-LMF sends a request message to the access network device.
  • the above request message is used to request to query the identity of the VMR-AMF.
  • the request message carries the cell ID of the VMR cell (Cell ID of VMR).
  • the UE-LMF may send a request message to the access network device through the UE-AMF.
  • Step 1016 The access network device sends a response message to the UE-LMF.
  • the response message carries the identification of the VMR-AMF.
  • the access network device may send a response message to the UE-LMF through the UE-AMF.
  • the access network device locally stores the context information of the VMR, and the context information includes the cell identifier of the VMR and the identifier of the VMR-AMF.
  • the identification of the VMR-AMF corresponding to the Cell ID of VMR can be determined based on the context information of the VMR.
  • Step 1017 UE-LMF sends positioning request message 1 to GMLC.
  • UE-LMF acts as a positioning service client to trigger the 5GC-MT-LR process
  • the positioning request message 1 is used to trigger positioning of the VMR.
  • the positioning request message 1 may be an LCS service request message.
  • the content carried in the positioning request message sent by the UE-LMF to the GMLC may be different from the content carried in the positioning request message sent by the GMLC to the AMF serving the mobile relay.
  • the UE-LMF sends the message to the GMLC.
  • the positioning request message sent is recorded as positioning request message 1
  • the positioning request message sent by GMLC to the AMF serving the mobile relay is recorded as positioning request message 2.
  • the positioning request message 1 carries the identifier of the VMR-AMF and the cell identifier corresponding to the VMR cell.
  • the GMLC can determine the AMF serving the VMR based on the identification of the VMR-AMF.
  • Step 1018 GMLC sends positioning request message 2 to VMR-AMF.
  • the GMLC After determining the VMR-AMF, the GMLC sends a positioning request message 2 to the VMR-AMF.
  • the positioning request message 2 carries the cell identifier corresponding to the VMR cell.
  • the positioning request message 2 sent by the GMLC to the VMR-AMF may be a request message that calls the "Namf_Location_ProvidePositioningInfo" service operation.
  • Step 1019 The VMR-AMF determines the VMR according to the identity of the cell and selects the VMR-LMF.
  • the VMR-AMF determines the corresponding VMR according to the corresponding relationship between the cell identifier and the identifier of the VMR stored in step 1004 and the cell identifier carried in the positioning request message 2.
  • Step 1020 VMR-LMF initiates the positioning process. Among them, VMR-LMF calculates the location information of VMR based on this positioning measurement data. Further, the VMR-LMF sends the location information of the VMR to the VMR-AMF. Correspondingly, VMR-AMF obtains the location information of VMR.
  • Step 1021 VMR-AMF sends a positioning response message to GMLC.
  • the positioning response message carries the location information of the VMR.
  • the positioning response message is the response message to the positioning request message 2 in step 1018.
  • Step 1022 GMLC sends a positioning response message to UE-LMF. Specifically, the GMLC sends a location services (location services, LCS) response to the UE-LMF.
  • LCS location services
  • the positioning response message is the response message to the positioning request message 1 in step 1017.
  • the UE-LMF receives the positioning response message and obtains the location information of the VMR.
  • VMR-AMF sends a positioning response message to UE-LMF through GMLC.
  • Step 1023 The UE-LMF determines the location of the UE based on the location information of the VMR and the positioning measurement data of the UE.
  • Step 1024 UE-LMF sends the location of the UE to UE-AMF.
  • step 1015 to step 1024 reference can be made to the relevant description of step 918 to step 924 in the embodiment shown in FIG. 9, and will not be described in detail here.
  • the measurement data of the first positioning process for the terminal device includes the information of the mobile relay cell, and the LMF serving the terminal device further obtains the first information associated with the mobile relay, such as serving the mobile device.
  • the identification of the AMF of the relay and sends a first request message according to the first information, which is used to trigger the positioning process for the above-mentioned mobile relay, and then the location information of the mobile relay can be obtained.
  • the LMF can be based on the mobile
  • the location information of the relay and the positioning measurement data of the terminal device are used to determine the location of the terminal device.
  • the above solution provides a method for determining the location of the terminal device in a scenario where the positioning measurement data of the terminal device is associated with the mobile relay, thus solving the problem that LMF cannot calculate the location of the terminal device due to the unstable location of the cell of the mobile relay.
  • the problem of location is helpful to accurately calculate the location of the terminal device.
  • the AMF (denoted as UE-AMF) serving the terminal device determines the access point of the terminal device.
  • the first cell is the cell of the mobile relay
  • the first information used to identify the mobile relay is obtained, and a first positioning request message is sent to the LMF (denoted as UE-LMF) serving the terminal device.
  • the first positioning request message is The first information is included to trigger a first positioning process for the terminal device and a second positioning process for the mobile relay, thereby obtaining location information of the mobile relay.
  • FIG. 11 is a schematic flow chart of the communication method 1100 provided by the embodiment of the present application.
  • the method 1100 shown in FIG. 11 may include steps 1101 to 1104. Each step in the method 1100 is described in detail below.
  • Step 1101 The UE-AMF determines that the first cell accessed by the terminal device is the mobile relay cell.
  • the above-mentioned mobile relay is used to provide relay services between terminal equipment and access network equipment, and the above-mentioned mobile relay has mobility.
  • the UE-AMF receives a first message from the access network device.
  • the first message includes an identifier of the first cell accessed by the terminal device and indication information.
  • the indication information is used to indicate the first cell.
  • a cell is a mobile relay cell. It can be understood that the access network device determines that the first cell accessed by the terminal device is a mobile relay cell, and therefore sends the identifier and indication information of the first cell to the UE-AMF.
  • the UE-AMF receives an N2 message from the access network device.
  • the N2 message includes the first message, that is, includes the cell identity of the first cell and indication information.
  • the indication information is used to indicate that the first cell is moving. Successive neighborhood.
  • the N2 message also includes a registration request message.
  • the UE-AMF receives a first message from the access network device, where the first message includes the identifier of the first cell accessed by the terminal device and the second accessed by the mobile relay.
  • the second cell is the cell of the access network equipment.
  • the UE-AMF may determine that the first cell accessed by the terminal device is the cell of the mobile relay according to the identity of the second cell accessed by the mobile relay. It can be understood that the access network device determines that the first cell accessed by the terminal device is a mobile relay cell, and therefore sends the identifier of the first cell and the identifier of the second cell to the UE-AMF.
  • the first message will include the identities of the two cells, and one of the cell identities (the identity of the second cell accessed by the mobile relay) ) is the cell identity of the access network equipment, which means that the other cell identity is the cell identity of the mobile relay.
  • Step 1102 UE-AMF obtains first information.
  • the first information includes the identity of the AMF serving the mobile relay and/or the identity of the mobile relay.
  • UE-AMF obtains the first information from UDM, UDR, or NRF.
  • UDM pre-stores the cell identity, the identity of the AMF serving the mobile relay, and the identity of the mobile relay. corresponding relationship.
  • the UE-AMF sends a request message to the UDM.
  • the request message includes the cell identity of the first cell.
  • the UDM can determine the identity of the corresponding AMF serving the mobile relay and the mobile relay address. Successive identification.
  • the UDM sends at least one of the identity of the AMF serving the mobile relay and the identity of the mobile relay to the UE-AMF.
  • the UE-AMF receives a response message from the UDM, and the response message contains the first information.
  • the first information includes at least one of the identification of the AMF serving the mobile relay and the identification of the mobile relay.
  • Table 3 shows the corresponding relationship between the cell identifier, the identifier of the AMF serving the mobile relay, and the identifier of the mobile relay pre-stored in the UDM.
  • the method for UDM to store the above corresponding relationship can be: taking VMR as an example, the MT function of VMR initiates a registration process to the network. Specifically, VMR sends a registration request message to the access network device. In the registration request message The cell identifier (such as Cell ID) corresponding to the cell carrying the VMR. The access network device selects an AMF for the MT function of the VMR and sends a registration request message to the AMF serving the VMR. The registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • the cell identifier such as Cell ID
  • the AMF serving the VMR sends the cell identity corresponding to the cell of the VMR to the UDM, and the UDM stores the identity of the MT function of the VMR, the identity of the AMF serving the VMR, and the cell identity corresponding to the cell of the VMR.
  • the UE-AMF obtains the first information from the access network device.
  • the UE-AMF sends a request message to the access network device, where the request message includes the cell identifier of the first cell.
  • the access network device determines the identity of the AMF serving the mobile relay corresponding to the cell identity, and sends a response message to the UE-AMF.
  • the response message includes the first information, and the first information includes the above Identity of the AMF serving the mobile relay.
  • the UE-AMF receives the response message from the access network device to obtain the identity of the AMF serving the mobile relay.
  • the access network device locally stores context information of the mobile relay, and the context information includes the cell identity of the mobile relay and the identity of the AMF serving the mobile relay.
  • the access network device receives the request message from the UE-LMF, it can determine the identity of the AMF serving the mobile relay corresponding to the Cell ID of VMR based on the context information of the mobile relay.
  • the access network device can also proactively send the identification of the AMF serving the mobile relay to the UE-AMF. For example, in step 1101, the access network device determines that the first cell accessed by the terminal device is the cell of the mobile relay, and the access network device sends an N2 message to the UE-AMF. The N2 message carries the information of the AMF serving the mobile relay. logo. It can be understood that when the access network device receives and determines that the first cell accessed by the terminal device is a mobile relay cell, the access network device actively sends the identification of the AMF serving the mobile relay to the UE-AMF.
  • Step 1103 UE-AMF sends a first request message to UE-LMF, where the first request message includes first information.
  • the first request message (which may also be referred to as the first positioning request message here) is used to trigger the initiation of the first positioning process for the terminal device.
  • the first request message includes first information, and the first information is used to trigger the initiation of the first positioning process for the mobile relay. Second positioning process.
  • UE-AMF sends a first positioning request message to UE-LMF.
  • the first information included in the bit request message includes the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the first positioning request message also includes an LCS Correlation identifier associated with the terminal device.
  • the UE-LMF triggers positioning of the terminal device and the mobile relay respectively.
  • the positioning process of the terminal device please refer to the relevant description in Figure 9 .
  • the UE-LMF can directly trigger the AMF to initiate a positioning process for the mobile relay based on the identity of the AMF. For example, the UE -LMF can trigger the positioning process for mobile relays through the 5GC-MT-LR process.
  • the UE-AMF sends a first positioning request message to the UE-LMF, and the first information included in the first positioning request message includes the identity of the mobile relay.
  • the first positioning request message also carries the LCS Correlation identifier associated with the terminal device.
  • the UE-LMF triggers positioning of the terminal device and the mobile relay respectively.
  • the first positioning request message only carries the identifier of the mobile relay
  • the UE-LMF can serve as a positioning client to trigger the core network to initiate a positioning process for the mobile relay.
  • the UE-LMF can trigger the positioning procedure for the mobile relay through the 5GC-MT-LR procedure.
  • the specific positioning process of the mobile relay please refer to the relevant description in Figure 9.
  • the difference between the second design and the first design is that the UE-LMF does not need to wait until the position of the UE cannot be determined based on the positioning measurement data before determining the position of the mobile relay, but directly triggers the AMF (or as a positioning function).
  • the client triggers the core network) to initiate a positioning process on the mobile relay to determine the location of the mobile relay.
  • Step 1104 UE-LMF sends a second request message based on the first information.
  • the UE-LMF sends a second request message (which may also be called a second positioning request message here) to the GMLC according to the first information to trigger positioning of the mobile relay.
  • a second request message (which may also be called a second positioning request message here)
  • the second positioning request message may be an LCS service request message.
  • the second positioning request message may be, for example, positioning request message 2 described below.
  • the UE-LMF sends a positioning request message 2 to the GMLC based on the first information.
  • the positioning request message 2 carries the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the GMLC determines which AMF serving the mobile relay to send the positioning request message 3.
  • the GMLC further sends the positioning request message 3 to the AMF serving the mobile relay.
  • the AMF serving the mobile relay sends a positioning request message 3.
  • the positioning request message 3 carries the identifier of the mobile relay.
  • the UE-LMF sends a positioning request message 2 to the GMLC based on the first information.
  • the positioning request message 2 carries the identifier of the mobile relay.
  • the GMLC Query the identity of the AMF serving the mobile relay to the first network element, and then determine which AMF serving the mobile relay to send the positioning request message 3 based on the identity of the AMF serving the mobile relay, and send the positioning request message 3 to the serving mobile relay.
  • the relay AMF sends a positioning request message 3.
  • the positioning request message 3 carries the identifier of the mobile relay.
  • the first network element stores the identity of the AMF serving the mobile relay and the identity of the mobile relay.
  • the GMLC may send the identity of the mobile relay to the first network element, and the first network element determines the identity of the AMF serving the mobile relay based on the identity of the mobile relay.
  • the UE-LMF sends the message to the GMLC
  • the positioning request message sent is recorded as positioning request message 2
  • the positioning request message sent by GMLC to the AMF serving the mobile relay is recorded as positioning request message 3.
  • the method shown in Figure 11 also includes: the LMF serving the terminal device receives the location information of the mobile relay determined based on the measurement data of the second positioning process; and the location information of the mobile relay based on the measurement data of the first positioning process. , determine the location information of the terminal device.
  • the LMF serving the mobile relay initiates the second positioning process for the mobile relay.
  • the mobile relay can measure based on the signal of the cell of the access network device (that is, using the terminal device-assisted positioning process) to obtain the second positioning. Process measurement data.
  • the access network device may perform measurements based on the signal sent by the mobile relay (ie, network-assisted positioning process) to obtain measurement data of the second positioning process.
  • the LMF serving the mobile relay can also use the UE assisted positioning procedure and the network assisted positioning procedure at the same time to initiate the second positioning procedure. That is, it can be understood that the second positioning process in this application includes both the terminal device-assisted positioning process and the network-assisted positioning process, then the measurement data of the second positioning process includes the mobile relay to the LMF serving the mobile relay. The positioning measurement data sent and the positioning measurement data sent by the access network equipment to the LMF serving the mobile relay.
  • the LMF serving the mobile relay further determines the location information of the mobile relay based on the measurement data of the second positioning process, and sends the location information of the mobile relay to the LMF serving the terminal device through GMLC.
  • the LMF serving the terminal device receives the location information of the mobile relay and combines it with the measurement data of the first positioning process (that is, the positioning measurement data of the terminal device) to calculate the location of the terminal device.
  • FIG. 12 is a detailed flowchart of the communication method described in the embodiment shown in FIG. 11 .
  • the method shown in Figure 12 includes steps 1201 to 1223. Each step of the method shown in Figure 12 will be described in detail below.
  • the mobile relay takes VMR as an example
  • UE-AMF refers to the AMF serving the UE
  • VMR-AMF refers to the AMF serving the VMR
  • the UE-LMF refers to the terminal device.
  • LMF, VMR-LMF is the LMF that serves VMR.
  • the AMF serving the UE and the AMF serving the VMR may be the same AMF or different AMFs.
  • the LMF serving the UE and the LMF serving the VMR may be The same LMF may also be different LMFs, which is not limited in the embodiments of the present application.
  • Step 1201 VMR obtains cell configuration information.
  • Step 1202 The VMR sends a registration request message to the access network device.
  • the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • Step 1203 The access network device sends the N2 message to the VMR-AMF.
  • the N2 message includes a registration request message, and the registration request message carries the cell identifier (such as Cell ID) corresponding to the cell of the VMR.
  • the cell identifier such as Cell ID
  • Step 1204 VMR-AMF sends the cell identity corresponding to VMR's cell and the identity of VMR-AMF to UDM.
  • Step 1205 UDM stores the identity of the VMR-AMF, the cell identity, and the identity of the VMR.
  • UDM stores the identification of the VMR's MT function (such as SUPI or GPSI), the identification of the VMR-AMF (AMF ID), and the cell identification (such as Cell ID) corresponding to the VMR cell.
  • VMR MT function identifiers such as SUPI or GPSI
  • VMR-AMF identifiers AMF ID
  • Step 1206 VMR-AMF accepts the registration process of VMR and sends a registration acceptance message to VMR.
  • steps 1201 to 1206 please refer to the relevant description of steps 901 to 906 in Figure 9. No further details will be given here.
  • Step 1207 VMR sends a broadcast message.
  • the broadcast message may carry indication information, and the indication information is used to indicate that the cell is a VMR cell, that is, the cell has mobility.
  • Step 1208 The UE accesses the VMR cell.
  • the UE accesses the VMR cell and initiates the registration process.
  • the cell that the UE currently accesses is the cell of the VMR (the cell of the VMR that the UE accesses is different from the cell of the access network device that the VMR accesses). Since the VMR is mobile, the cell of the VMR is also in a mobile state.
  • Step 1209 The UE sends a registration request message to the access network device.
  • Step 1210 The access network device sends the N2 message to the UE-AMF.
  • the N2 message carries a cell identifier, a registration request message, and indication information, and the indication information is used to indicate that the cell accessed by the terminal device is a VMR cell.
  • the UE-AMF receives an N2 message from the access network device.
  • the N2 message includes the identity of the cell of the VMR and the identity of the cell that the VMR accesses.
  • the cell that the VMR accesses is the access network. network equipment.
  • the UE-AMF may determine that the cell accessed by the terminal device is the cell of the VMR based on the identity of the cell accessed by the VMR.
  • Step 1211 UE-AMF sends a request message to UDM.
  • the UE-AMF triggers positioning of the UE.
  • the UE-AMF sends a request message to the UDM, and the request message carries the cell identity of the VMR.
  • Step 1212 UDM sends a response message to UE-AMF.
  • the response message carries the identification of the VMR and/or the identification of the VMR-AMF.
  • UDM stores the corresponding relationship between the identification of the MT function of the VMR (such as SUPI or GPSI), the identification of the VMR-AMF (AMF ID), and the cell identification (such as Cell ID) corresponding to the VMR cell through step 1205, as shown in Figure
  • UDM can query the corresponding VMR-AMF identification and/or VMR identification based on the cell identification of the VMR, and return the above information to the UE-AMF.
  • the UDM in the above steps can also be replaced with a UDR network element or an NRF network element.
  • Step 1213 UE-AMF sends a positioning request message to UE-LMF.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE and sends a positioning request message to the UE-LMF.
  • UE-LMF LMF network element
  • the positioning request message carries the identification of the VMR, the identification of the VMR-AMF and the LCS Correlation identifier associated with the terminal device to trigger positioning of the UE and the VMR respectively.
  • the positioning request message carries the identification of the VMR and the LCS Correlation identifier associated with the UE to trigger positioning of the UE and the VMR respectively.
  • Step 1214 The UE-LMF triggers positioning of the UE and the VMR respectively.
  • Step 1215 if the UE-LMF adopts the UE assisted positioning procedure, then sends a downlink positioning message (DL positioning message) to the UE-AMF.
  • DL positioning message downlink positioning message
  • Step 1216 UE-LMF positions the UE.
  • UE-LMF positions the UE.
  • Step 1217 UE-LMF sends positioning request message 2 to GMLC.
  • UE-LMF acts as a positioning service client to trigger the 5GC-MT-LR process
  • the positioning request message 2 is used to trigger positioning of the VMR.
  • the positioning request message 2 may be an LCS service request message.
  • the parameters carried in the positioning request message 2 can be implemented in the following ways:
  • the positioning request message 2 carries the identifier of the VMR-AMF and the identifier of the VMR.
  • the GMLC can determine the AMF serving the VMR based on the identification of the VMR-AMF.
  • the positioning request message 2 carries the identifier of the VMR-AMF and the cell identifier corresponding to the VMR cell.
  • the GMLC can determine the AMF serving the VMR based on the identification of the VMR-AMF.
  • Method 3 The positioning request message 2 carries the identifier of the VMR.
  • the GMLC can further query the UDM to request the identification of the VMR-AMF based on the identification of the VMR, thereby determining the AMF serving the VMR.
  • the UDM stores the identification of the VMR-AMF, the cell identification and the identification of the VMR.
  • GMLC can send the identification of VMR to UDM, and UDM determines the identification of VMR-AMF based on the identification of VMR.
  • Method 4 The positioning request message 2 carries the cell identity corresponding to the VMR cell.
  • the GMLC can further query the UDM to request the identity of the VMR-AMF and the identity of the VMR based on the cell identity corresponding to the cell of the VMR, thereby determining the AMF serving the VMR.
  • the UDM stores the identification of the VMR-AMF, the cell identification and the identification of the VMR.
  • the GMLC may send the cell identifier corresponding to the cell of the VMR to the UDM, and the UDM determines the identifier of the VMR-AMF based on the cell identifier corresponding to the cell of the VMR.
  • the UDM in step 1217 can also be replaced with a UDR network element or an NRF network element.
  • the content carried in the positioning request message sent by the UE-LMF to the GMLC may be different from the content carried in the positioning request message sent by the GMLC to the AMF serving the mobile relay.
  • the UE-LMF sends the message to the GMLC.
  • the positioning request message sent is recorded as positioning request message 2
  • the positioning request message sent by GMLC to the AMF serving the mobile relay is recorded as positioning request message 3.
  • Step 1218 GMLC sends positioning request message 3 to VMR-AMF.
  • GMLC After GMLC determines the VMR-AMF, it sends a positioning request message 3 to the VMR-AMF.
  • the parameters carried in the positioning request message 3 can be implemented in the following ways:
  • the positioning request message 3 carries the identification of the VMR. For example, based on the above methods one, three and four, the GMLC obtains the identification of the VMR.
  • the positioning request message 3 carries the cell identity corresponding to the VMR cell.
  • the GMLC obtains the cell identity corresponding to the VMR cell.
  • Step 1219 VMR-AMF initiates the positioning process.
  • VMR-AMF selects and locates the network element LMF (VMR-LMF), which is responsible for locating VMR (ie VMR-MT).
  • VMR-LMF initiates the positioning process, which is a positioning process for VMR.
  • the positioning process can be UE assisted positioning procedure (VMR-MT uses the PRS of the cell of the access network device for positioning measurement), and/or network assisted positioning procedure (access network equipment measures the position of VMR-MT).
  • VMR-LMF calculates the location information of VMR based on this positioning measurement data. Further, the VMR-LMF sends the location information of the VMR to the VMR-AMF. Correspondingly, VMR-AMF obtains the location information of VMR.
  • Step 1220 VMR-AMF sends a positioning response message to GMLC.
  • the positioning response message carries the location information of the VMR.
  • the positioning response message is the positioning request in step 1218. Find the response message for message 3.
  • Step 1221 GMLC sends a positioning response message to UE-LMF. Specifically, the GMLC sends a location services (location services, LCS) response to the UE-LMF.
  • the positioning response message is the response message to the positioning request message 2 in step 1217.
  • the UE-LMF receives the positioning response message and obtains the location information of the VMR.
  • VMR-AMF sends a positioning response message to UE-LMF through GMLC.
  • steps 1215 to 1216 and steps 1217 to 1221 can be performed simultaneously or separately.
  • the embodiment of the present application does not limit the order.
  • the positioning process for the UE and the positioning process for the UE are not limited.
  • the sequence of the VMR positioning process is not limited.
  • Step 1222 The UE-LMF determines the location of the UE based on the location information of the VMR and the positioning measurement data of the UE.
  • step 1222 can be referred to the relevant description in Figure 9 and will not be described in detail here.
  • Step 1223 UE-LMF sends the location of the UE to UE-AMF.
  • the AMF serving the terminal device determines that the first cell accessed by the terminal device is the cell of the mobile relay, it obtains the first information used to identify the mobile relay, and sends the first information to the LMF serving the terminal device.
  • a request message, the first request message includes first information to trigger the initiation of the first positioning process for the terminal device, and the initiation of the second positioning process for the mobile relay, so that the LMF serving the terminal device obtains the location information of the mobile relay , which solves the problem that the LMF serving the terminal device cannot calculate the location of the terminal device because the location of the mobile relay cell is not fixed, and is conducive to accurately calculating the location of the terminal device.
  • the terminal device receives the location information from the mobile relay, based on the location information from the mobile relay's cell.
  • the signal is positioned and measured to obtain positioning measurement data; the terminal device sends a first message to the LMF.
  • the first message carries the location information and positioning measurement data of the mobile relay, so that the LMF determines the terminal device based on the above location information and positioning measurement data. location information.
  • Figure 13 is a schematic flow chart of the communication method 1300 provided by the embodiment of the present application.
  • the method 1300 shown in FIG. 13 may include steps 1301 to 1303. Each step in method 1300 is described in detail below.
  • Step 1301 The terminal device receives location information from the mobile relay, and the location information is used to indicate the location of the mobile relay.
  • mobile relay has mobility.
  • the mobile relay can obtain its own location information in the following ways: the MT function of the mobile relay initiates a positioning process and requests to obtain its own location information from the network. For the specific process, refer to the existing mobile originating location request (MO-LR) process, which will not be described again here.
  • the AMF serving the mobile relay returns the location information of the mobile relay to the mobile relay, and then the mobile relay obtains its own location information.
  • the terminal device receives the location information from the mobile relay.
  • the mobile relay broadcasts its own location information (for example, it can be represented by geographical location information) through a broadcast message.
  • the broadcast message may also carry a timer, which is used to indicate the validity time of the location information.
  • the broadcast message also carries indication information, which is used to indicate that the mobile relay has mobility, that is, the cell of the mobile relay has mobility.
  • the broadcast message may be a system broadcast message, which is always sent.
  • the location information of the mobile relay obtained by the terminal device from the system broadcast message is the mobile relay Information about the current location.
  • the location information of the mobile relay in the system broadcast message will also change. In this way, the terminal device obtains the mobile relay information from the system broadcast message.
  • the location information is always the current location information.
  • the broadcast message may be a positioning reference signal (PRS) broadcast message, and the PRS broadcast may be sent to the terminal device only during the positioning process.
  • PRS positioning reference signal
  • the terminal device broadcasts the message from the PRS
  • the location information of the mobile relay obtained in is the information of the current location of the mobile relay.
  • the location information of the mobile relay in the PRS broadcast message will also change. In this way , the location information of the mobile relay obtained by the terminal device from the PRS broadcast message is always the current location information.
  • Step 1302 The terminal device performs positioning measurement based on signals from the mobile relay cell to obtain positioning measurement data.
  • the positioning process of the terminal device is triggered.
  • the terminal device can perform positioning measurement based on the signal from the mobile relay cell to obtain positioning measurement data.
  • positioning measurement data For the specific positioning process of the terminal device, please refer to the relevant description in Figure 9.
  • Step 1303 The terminal device sends the above location information and positioning measurement data to the LMF.
  • the above location information and positioning measurement data are used to determine the location information of the terminal device.
  • the terminal device obtains the location information of the mobile relay from the broadcast message, performs positioning measurement based on the information from the mobile relay's cell, and then sends the above position information and positioning measurement data to the LMF.
  • the terminal device sends the location information and positioning measurement data to the LMF through an uplink positioning message.
  • the uplink positioning message may also carry the cell identity of the mobile relay cell.
  • the cell identifier is used to indicate which cell's signal the terminal device performs positioning measurements on.
  • the method shown in Figure 13 also includes: the LMF serving the terminal device calculates the location of the terminal device based on the location information of the mobile relay and the positioning measurement data of the terminal device.
  • the LMF serving the terminal device calculates the location of the terminal device based on the location information of the mobile relay and the positioning measurement data of the terminal device.
  • FIG. 14 is a detailed flowchart of the communication method described in the embodiment shown in FIG. 13 .
  • the method shown in Figure 14 includes steps 1401 to 1415. Each step of the method shown in Figure 14 will be described in detail below. It should be understood that in the method shown in Figure 14, the mobile relay takes VMR as an example, UE-AMF refers to the AMF serving the UE, VMR-AMF refers to the AMF serving the VMR, and LMF refers to the LMF serving the terminal device. .
  • Step 1401 VMR registers with the core network.
  • Step 1402 VMR obtains cell configuration information.
  • VMR obtains cell configuration information from OAM, where the cell configuration information includes the TAC and/or Cell ID of VMR's cell.
  • Step 1403 The VMR sends an MO-LR request message to the access network device.
  • the MT function of the VMR sends an MO-LR request message to the access network device.
  • the MO-LR request message is used to request to obtain the location information of the VMR from the network.
  • Step 1404 VMR-AMF initiates the MO-LR process.
  • steps 1404, 1404, 1404, 1404, 1404, 1404, VMR-AMF initiates the MO-LR process.
  • MO-LR MO-LR process
  • Step 1405 VMR-AMF sends an MO-LR response message to VMR.
  • the response message carries the location information of VMR.
  • the MO-LR response message is a message in response to the MO-LR request message in step 1403.
  • Step 1406 The VMR sends a broadcast message, which carries the location information of the VMR.
  • the broadcast message may also carry a timer, which is used to indicate the validity time of the VMR's location information. Before the timer times out, the VMR's location information is valid. When the timer times out, the VMR's location information is invalid.
  • Step 1407 the UE registers with the core network.
  • the specific process please refer to the description of step 908 in Figure 9 .
  • Step 1408 UE-AMF sends a positioning request message to LMF.
  • the UE-AMF triggers positioning of the UE.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE and sends a positioning request message to the LMF, triggering the LMF to position the UE.
  • UE-LMF LMF network element
  • Step 1409 If the LMF adopts the UE assisted positioning procedure, it sends a downlink positioning message (DL positioning message) to the UE-AMF.
  • DL positioning message downlink positioning message
  • Step 1410 UE-AMF sends the above downlink positioning message to the UE.
  • the UE receives the downlink positioning message.
  • Step 1411 the UE performs positioning measurement and obtains the location information of the VMR from the broadcast message.
  • the UE after receiving the downlink positioning message, the UE performs positioning measurement based on the positioning reference signal (PRS) sent by the surrounding cells, and obtains the location information of the VMR from the broadcast message.
  • PRS positioning reference signal
  • the UE can also use other PRSs of surrounding cells for measurement, for example, base stations installed on both sides of the road outside the vehicle, that is, PRSs sent by cells at fixed locations.
  • the UE can also use the PRS of other cells of the VMR for measurement, that is, the cell of the VMR that the UE accesses and the cell used for positioning measurement can be the same cell or different cells.
  • the cell that the UE is currently accessing is Cell 1, and Cell 1 is the cell of VMR. There are also cells 2 and 3 around the UE. Cell 2 is the cell of VMR, and Cell 3 is the cell of the fixed base station. Then the UE can use The PRS of any one or more cells in Cell 1, Cell 2 and Cell 3 perform positioning measurements.
  • Step 1412 The UE sends an uplink positioning message to the UE-AMF.
  • the uplink positioning message carries the positioning measurement data of the UE and the location information of the VMR.
  • the positioning measurement data includes the cell identifier. Taking the UE assisted positioning procedure as an example, the cell identifier is used to indicate which cell's PRS the UE uses. Measurement.
  • Step 1413 UE-AMF sends the uplink positioning message to LMF.
  • Step 1414 The LMF calculates the location of the UE based on the location information of the VMR and the positioning measurement data of the UE.
  • the method by which the LMF calculates the location of the UE based on the location information of the VMR and the positioning measurement data of the UE is not limited by this application.
  • Step 1415 The LMF sends the location of the UE to the UE-AMF.
  • the terminal device receives the location information from the mobile relay, performs positioning measurement based on the signal from the mobile relay's cell, and obtains the positioning measurement data; sends the position information and positioning measurement data to the LMF, so that the LMF can base on the above position information and positioning measurement data to determine the location information of the terminal device.
  • the communication method of Design 4 provided by the embodiment of the present application is described in detail below, that is, the access network device determines After the first cell that the terminal device accesses is the cell of the mobile relay, after the LMF initiates a positioning request, the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay are reported to the LMF together, so that the LMF can determine the location of the terminal device. Location.
  • Figure 15 is a schematic flow chart of the communication method 1500 provided by the embodiment of the present application.
  • the method 1500 shown in FIG. 15 may include steps 1501 to 1504. Each step in method 1500 is described in detail below.
  • Step 1501 The access network device determines that the first cell accessed by the terminal device is a mobile relay cell.
  • mobile relay is used to provide relay services between terminal equipment and access network equipment.
  • Mobile relay has mobility.
  • the cell of mobile relay has mobility.
  • the access network device determines that the first cell is a cell of the mobile relay based on the pre-stored configuration information and the information of the first cell.
  • the information of the first cell includes the TAC and/or corresponding to the first cell.
  • the cell identifier and the configuration information include the cell information of the mobile relay, the cell information includes the TAC and/or the cell identifier, and the cell information of the mobile relay includes the information of the first cell.
  • the access network device has pre-stored cell information of the mobile relay, including TAC and/or Cell ID.
  • the access network device compares the information of the first cell with the pre-stored cell information of the mobile relay. If the information of the first cell is included in the cell information of the mobile relay, then it is determined that the first cell is the cell of the mobile relay.
  • the pre-stored configuration information of the access network device can be seen in Table 4.
  • the access network device determines that the first cell is a mobile relay cell.
  • TAC, or Cell ID, or TAC and Cell ID corresponding to the cell of the mobile relay may be pre-stored in the access network equipment, and this is not limited in the embodiments of the present application.
  • the access network device receives first indication information from the mobile relay or terminal device, where the first indication information is used to indicate that the first cell is a cell with mobility, and/or is in the process of moving. It has mobility.
  • the terminal device may indicate to the access network device that the cell that the terminal device accesses is a cell with mobility.
  • the terminal device indicates to the access network device in the RRC message that the cell to which the terminal device accesses is a cell with mobility.
  • the mobile relay indicates to the access network device that the mobile relay has mobility.
  • the F1 setup request (F1setup request) message sent by the mobile relay to the access network device carries indication information that the mobile relay has mobility.
  • any of the above methods can enable the access network device to determine that the first cell accessed by the terminal device is the cell of the mobile relay.
  • the access network device can also use other methods to determine that the first cell accessed by the terminal device is a mobile relay cell.
  • the access network device can also obtain which relay devices in the network are mobile relays through OAM configuration. Therefore, this application does not limit the specific implementation manner in which the access network device determines that the first cell accessed by the terminal device is a mobile relay cell.
  • Step 1502 The access network device receives a first request message from the LMF.
  • the first request message is used to trigger positioning measurement for the terminal device.
  • the above-mentioned LMF is an LMF serving the terminal device.
  • the access network device receives a first request message from the LMF, and the first request message is used to trigger the initiation of positioning measurement for the terminal device.
  • the access network device receives a network positioning message (network positioning message) from the LMF. positioning message).
  • the access network device triggers the mobile relay to initiate positioning measurement for the terminal device according to the first request message.
  • the access network device determines that the first cell is the cell of the mobile relay. Therefore, the access network device also triggers positioning measurement on the mobile relay.
  • the MT function of the relay performs positioning measurement, that is, the access network equipment collects the positioning measurement data of the mobile relay.
  • the access network device sends a request message to the mobile relay, triggering the mobile relay to perform positioning measurement on the terminal device, that is, the mobile relay collects the positioning measurement data of the terminal device.
  • the mobile relay can send the positioning measurement data of the terminal device to the access network device, so that the access network device can report the positioning measurement data of the mobile relay and the positioning measurement data of the terminal device to the service provider serving the terminal device. LMF.
  • Step 1503 The access network device obtains the positioning measurement data of the mobile relay.
  • the access network device After the access network device receives the first request message, since the access network device determines that the first cell is the cell of the mobile relay, the access network device also triggers positioning measurement of the MT function of the mobile relay, that is, the access network device The network access device collects the positioning measurement data of the mobile relay.
  • Step 1504 The access network device sends a first response message to the LMF.
  • the first response message includes the positioning measurement data of the mobile relay and the positioning measurement data of the terminal device.
  • the access network device After the access network device obtains the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay, it sends them to the LMF. For example, based on the network positioning message, the access network device sends the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay to the LMF through the AMF serving the terminal device.
  • the method shown in Figure 15 also includes: the UE-LMF determines the location information of the terminal device based on the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay.
  • the positioning measurement data of the mobile relay is collected in the cell of the access network device, the location information of the cell of the access network device is known to the UE-LMF, so the UE-LMF The positioning measurement data can be used to determine the location information of the mobile relay. Further, the positioning measurement data of the UE is collected by the cell of the mobile relay, and the UE-LMF calculates the position information of the UE based on the position information of the mobile relay and the positioning measurement data of the UE.
  • FIG. 16 is a detailed flowchart of the communication method described in the embodiment shown in FIG. 15 .
  • the method shown in Figure 16 includes steps 1601 to 1615. Each step of the method shown in Figure 16 will be described in detail below.
  • the mobile relay takes VMR as an example
  • UE-AMF refers to the AMF serving the UE
  • VMR-AMF refers to the AMF serving the VMR
  • the UE-LMF refers to the terminal device.
  • LMF, VMR-LMF is the LMF that serves VMR.
  • Step 1601 VMR registers with the core network.
  • Step 1602 VMR obtains cell configuration information.
  • VMR obtains cell configuration information from OAM, where the cell configuration information includes the TAC and/or Cell ID of VMR's cell.
  • Step 1603 VMR sends a broadcast message.
  • the broadcast message may carry indication information, and the indication information is used to indicate that the cell is a VMR cell, that is, a mobile cell.
  • Step 1604 The UE registers with the core network.
  • the UE accesses the VMR cell and initiates the registration process.
  • the cell currently accessed by the UE is the VMR cell (the VMR cell accessed by the UE is connected to the VMR accessed cell).
  • the cell of the network access device is a different cell). Since the VMR is mobile, the cell of the VMR is also in a mobile state.
  • Step 1605 UE-AMF sends a positioning request message to UE-LMF.
  • the UE-AMF triggers positioning of the UE.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE, and sends a positioning request message to the UE-LMF, triggering the UE-LMF to position the UE.
  • UE-LMF LMF network element
  • Step 1606 if the UE-LMF adopts the network assisted positioning procedure, then sends a network positioning message (network positioning message) to the UE-AMF.
  • a network positioning message network positioning message
  • Step 1607 UE-AMF sends the network positioning message to the access network device.
  • Step 1608 The access network device determines that the cell accessed by the UE is a VMR cell.
  • the access network device determines that the cell accessed by the UE is a VMR cell.
  • Step 1609 The access network equipment performs positioning measurement on the VMR. That is, the access network equipment collects the positioning measurement data of the VMR.
  • the access network device when the access network device performs positioning measurement on the VMR, it can be understood that the access network device performs positioning measurement on the VMR-MT (or IAB-UE).
  • Step 1610 VMR performs positioning measurement on the UE.
  • the access network device sends a request message to the VMR, triggering the VMR to perform positioning measurements on the terminal device.
  • the VMR collects positioning measurement data of the UE.
  • the VMR performs positioning measurements on signals sent by the UE to obtain positioning measurement data.
  • the parameters used by the VMR to perform positioning measurement on the signals sent by the UE are not limited in this application.
  • the VMR can measure the uplink angle of arrival for the beam where the UE is located.
  • step 1609 and step 1610 can be performed simultaneously or separately.
  • this application does not limit the order in which they are executed. That is, the embodiment of this application does not limit the access network equipment.
  • Step 1611 The VMR sends the positioning measurement data of the UE to the access network device.
  • the method for the VMR to send the positioning measurement data of the UE to the access network device may be: the VMR sends the positioning measurement data to the access network device through the F1 interface.
  • Step 1612 The access network device sends a network positioning message to the UE-AMF.
  • the network positioning message carries the positioning measurement data of the UE and the positioning measurement data of the VMR.
  • the positioning measurement data of the UE includes a cell identifier.
  • the cell identifier is used to indicate which cell the positioning measurement data of the UE is associated with.
  • the VMR positioning measurement data includes a cell identifier, which is used to indicate which cell the VMR positioning measurement data is associated with.
  • the VMR-MT uses the PRS of the cell of the access network device to perform measurements, and the positioning measurement data
  • the cell ID in contains the cell ID of the access network equipment (Cell ID of NG-RAN). Table 5 exemplarily shows the content of positioning measurement data reported by the access network device.
  • the positioning measurement data reported by the access network equipment includes the measurement data performed by the VMR to position the UE, for example, Cell ID of VMR and the positioning measurement report of the UE using the cell.
  • the positioning measurement data reported by the access network equipment also includes the measurement data performed by the access network equipment to position the VMR-MT, for example, Cell ID of NG-RAN, and the positioning measurement report of the VMR-MT using the cell.
  • the network positioning message may also carry indication information to indicate which measurement data is the positioning measurement data of the UE and which measurement data is the positioning measurement of the VMR. data.
  • Step 1613 UE-AMF sends a network positioning message to UE-LMF.
  • the network positioning message includes positioning measurement data of the VMR and positioning measurement data of the UE.
  • the network positioning message may also include the indication information in step 1612.
  • Step 1614 UE-LMF calculates the location of the UE.
  • the UE-LMF calculates the location information of the UE based on the positioning measurement data of the VMR and the positioning measurement data of the UE.
  • the positioning measurement data of VMR is collected by the cell of the access network device
  • the location information of the cell of the access network device is known to UE-LMF
  • UE-LMF uses the positioning measurement data of VMR. You can determine the location of the VMR.
  • the positioning measurement data of the UE is collected by the VMR cell, and the UE-LMF calculates the position information of the UE based on the position of the VMR and the positioning measurement data of the UE.
  • the UE-LMF After the UE-LMF receives the positioning measurement data of the VMR and the positioning measurement data of the UE, it cannot determine the location information of the cell corresponding to the cell identifier contained in the positioning measurement data of the UE.
  • the positioning measurement data determines the position of the VMR, and then the position information of the UE is calculated based on the position of the VMR and the positioning measurement data of the UE. It can be understood that the positioning measurement data of the VMR is associated with the cell identifier included in the positioning measurement data of the UE, and the positioning measurement data of the VMR is used to determine the location information of the cell corresponding to the cell identifier included in the positioning measurement data of the UE.
  • the UE-LMF learns which measurement data is the positioning measurement data of the VMR based on the indication information included in the network positioning message, and determines the location of the VMR based on the positioning measurement data. Then the UE-LMF determines the location of the VMR based on the location of the VMR and The UE’s positioning measurement data is used to calculate the UE’s location information.
  • the specific method for the UE-LMF to calculate the position of the UE based on the positioning measurement data of the VMR and the positioning measurement data of the UE is not limited in this embodiment.
  • Step 1615 UE-LMF sends the location of the UE to UE-AMF.
  • the access network device determines that the first cell accessed by the terminal device is the cell of the mobile relay
  • the LMF initiates a positioning request
  • it will also trigger positioning measurement of the mobile relay to obtain the positioning of the mobile relay. Measure the data, and report the positioning measurement data of the terminal device and the positioning measurement data of the mobile relay to the LMF, so that the LMF can determine the location of the terminal device.
  • the terminal device filters the cells used for positioning measurement, only uses the signals of non-mobile cells for measurement, and obtains positioning measurement data, so as to facilitate the core network.
  • the device determines the location information of the terminal device based on the above positioning measurement data.
  • Figure 17 is a schematic flow chart of the communication method 1700 provided by the embodiment of the present application.
  • the method 1700 shown in FIG. 17 may include step 1701 and step 1702. Each step in method 1700 is described in detail below.
  • Step 1701 The terminal device receives a broadcast message from the cell.
  • the broadcast message includes first indication information.
  • the first indication information is used to indicate the type of cell.
  • the cell type includes a mobile relay cell or a non-mobile relay cell (that is, a mobile cell or a non-mobile cell), and the mobile relay has mobility.
  • the above broadcast message also carries the TAC and/or cell identity supported by the cell.
  • the terminal device receives a broadcast message from cell 1.
  • the broadcast message includes indication information 1.
  • the indication information 1 indicates that cell 1 is a mobile relay cell.
  • the terminal device receives a broadcast message from cell 2.
  • the broadcast message includes indication information 2, and the indication information 2 indicates that cell 2 is a non-mobile relay cell.
  • the terminal device can determine which of the surrounding cells are mobile relay cells and which are non-mobile relay cells.
  • Step 1702 The terminal device performs positioning measurement based on the signal of the cell whose cell type is non-mobile relay, and the positioning measurement excludes the cell whose type is mobile relay.
  • the terminal equipment selects the signal of the non-mobile relay cell for positioning measurement.
  • the terminal device determines that cell 1 is a mobile relay cell and cell 2 is a non-mobile relay cell, the terminal device selects the signal of cell 2 for positioning measurement.
  • the terminal device For the specific process of the terminal device performing positioning measurement based on the signal of cell 2, please refer to the known technology, which will not be described in detail here.
  • FIG. 18 is a detailed flowchart of the communication method described in the embodiment shown in FIG. 17 .
  • the method shown in Figure 18 includes steps 1801 to 1813. Each step of the method shown in Figure 18 will be described in detail below. It should be understood that in the method shown in Figure 18, the mobile relay takes VMR as an example, UE-AMF refers to the AMF serving the UE, VMR-AMF refers to the AMF serving the VMR, and the UE-LMF refers to the terminal device. LMF.
  • the AMF serving the UE and the AMF serving the VMR may be the same AMF or different AMFs, which are not limited in the embodiment of the present application.
  • Step 1801 VMR registers with the core network.
  • Step 1802 VMR obtains cell configuration information.
  • VMR obtains cell configuration information from OAM, where the cell configuration information includes the TAC and/or Cell ID of VMR's cell.
  • Step 1803 VMR sends a broadcast message.
  • the broadcast message may carry first indication information, and the first indication information is used to indicate that the cell is a VMR cell, that is, a mobile cell.
  • Step 1804 the UE registers with the core network.
  • the UE accesses the VMR cell and initiates the registration process.
  • the cell that the UE currently accesses is the cell of the VMR (the cell of the VMR that the UE accesses is different from the cell of the access network device that the VMR accesses). Since the VMR is mobile, the cell of the VMR is also in a mobile state.
  • Step 1805 UE-AMF triggers location reporting. At a certain moment, the UE-AMF triggers positioning of the UE.
  • Step 1606 UE-AMF sends a positioning request message to UE-LMF.
  • the UE-AMF selects the LMF network element (UE-LMF) serving the UE, and sends a positioning request message to the UE-LMF, triggering the UE-LMF to position the UE.
  • UE-LMF LMF network element
  • Step 1807 if the UE-LMF adopts the UE assisted positioning procedure, send the Downstream positioning message.
  • Step 1808 UE-AMF sends the downlink positioning message to the UE.
  • Step 1809 The UE determines the cell used for positioning measurement.
  • the UE determines which cells can be used for positioning measurement based on the first indication information carried in the broadcast message of the cell. For example, the terminal device receives a broadcast message from cell 1.
  • the broadcast message includes indication information 1.
  • the indication information 1 indicates that cell 1 is a mobile relay cell.
  • the terminal device receives a broadcast message from cell 2.
  • the broadcast message includes indication information 2, and the indication information 2 indicates that cell 2 is a non-mobile relay cell. Then the terminal device uses the signal of cell 2 to perform positioning measurement.
  • Step 1810 The UE sends an uplink positioning message to the UE-AMF.
  • the uplink positioning message carries positioning measurement data for the terminal device, and the positioning measurement data includes the cell identifier of cell 2.
  • the positioning measurement data is used by the UE-LMF to determine the location information of the terminal device.
  • Step 1811 UE-AMF sends the above-mentioned uplink positioning message to UE-LMF.
  • Step 1812 The UE-LMF determines the location of the UE based on the positioning measurement data.
  • the UE-LMF calculates the location information of the UE based on the pre-stored location information of the fixed cell and the positioning measurement data of the terminal equipment.
  • Step 1813 UE-LMF sends the location of the UE to UE-AMF.
  • the terminal device filters the cells used for positioning measurement and only uses the signals of non-mobile cells for measurement to obtain positioning measurement data so that the LMF can determine the location information of the terminal device based on the above positioning measurement data. Only using signals from non-mobile relay cells for positioning measurement solves the problem of LMF being unable to determine the location of the terminal device due to changes in the location of the cell used for positioning measurement, and helps LMF accurately calculate the location of the terminal device.
  • Figures 19 to 22 are schematic structural diagrams of possible communication devices provided by embodiments of the present application.
  • Figure 19 is a schematic block diagram of a communication device 1900 provided by an embodiment of the present application.
  • the communication device 1900 includes a processing unit 1910 and a transceiver unit 1920.
  • the above device 1900 can be used to implement the functions of the terminal device in the above method embodiment, or the above device 1900 can include a module used to realize any function or operation of the terminal device in the above method embodiment, and the module can be fully or partially Implemented through software, hardware, firmware, or any combination thereof.
  • the above device 1900 can be used to implement the functions of the access network equipment in the above method embodiment, or the device 1900 can include a module for realizing any function or operation of the access network equipment in the above method embodiment, and the modules can all or implemented in part by software, hardware, firmware, or any combination thereof.
  • the above-mentioned device 1900 can be used to implement the functions of the LMF in the above-mentioned method embodiment, or the device 1900 can include a module for realizing any function or operation of the LMF in the above-mentioned method embodiment.
  • This module can be fully or partially implemented through software, Hardware, firmware, or any combination thereof.
  • the above-mentioned device 1900 can be used to implement the functions of the AMF in the above-mentioned method embodiments, or the device 1900 can include a module for realizing any function or operation of the AMF in the above-mentioned method embodiments.
  • This module can be fully or partially implemented through software, Hardware, firmware, or any combination thereof.
  • the transceiver unit 1920 is used to receive the measurement data of the first positioning process, and the measurement data of the first positioning process includes the first cell.
  • the first cell is a mobile relay cell, and the mobile relay has mobility;
  • the processing unit 1910 is used to obtain the first information, the first information is associated with the mobile relay;
  • the transceiver unit 1920 is also used to obtain the first information according to the first information , send the first request message,
  • the first request message is used to trigger the initiation of the second positioning process for the mobile relay;
  • the transceiver unit 1920 is also used to receive the location information of the mobile relay, which is determined according to the second positioning process;
  • the processing unit 1910 also Used to determine the location of the terminal device based on the location information of the mobile relay and the measurement data of the first positioning process.
  • the information of the first cell includes a cell identity of the first cell; and the processing unit 1910 is further configured to: based on the cell identity of the first cell, determine that the first cell is a mobile relay cell.
  • the information of the first cell further includes: first indication information, and the first indication information is used to indicate that the first cell is a mobile relay cell.
  • the information of the first cell also includes: first indication information; and the processing unit 1910 is further configured to: determine to trigger the second positioning process for the mobile relay according to the first indication information.
  • the processing unit 1910 is specifically configured to send a second request message to the first network element, where the second request message includes the cell identity of the first cell; and receive a second response message from the first network element, where the second response message includes the cell identifier of the first cell. a message.
  • the first network element is any one of the following: access network equipment, UDM, UDR, or NRF.
  • the first information includes at least one of an identity of the AMF and an identity of the mobile relay, and the AMF is an AMF serving the mobile relay.
  • the transceiver unit 1920 is used to receive a first request message, and the first request message is used to trigger the initiation of the first positioning process for the terminal device.
  • the first positioning request message includes first information, and the first information includes at least one of an identifier of the AMF and an identifier of the mobile relay.
  • the AMF is an AMF serving the mobile relay.
  • the mobile relay is used to connect the terminal device and the mobile relay. Relay services are provided between access network devices, and mobile relays have mobility; the transceiver unit 1920 is used to send a second request message according to the first information, and the second request message is used to trigger a second positioning process for the mobile relay. .
  • the processing unit 1910 is used to determine that the first cell accessed by the terminal device is the cell of the mobile relay, and the mobile relay is used to Relay services are provided between terminal equipment and access network equipment, and mobile relays have mobility; the processing unit 1910 is also used to obtain first information, where the first information includes the identification of the AMF serving the mobile relay and the mobile relay At least one of the identifiers; the transceiver unit 1920 is configured to send a first request message to the LMF, the first request message is used to trigger the initiation of the first positioning process for the terminal device, the first request message includes first information, and the first information is triggering a second positioning process for the mobile relay.
  • the processing unit 1910 is specifically configured to receive a first message from the access network device.
  • the first message includes an identifier of the first cell accessed by the terminal device and indication information.
  • the indication information is used to indicate that the first cell is a mobile phone. relay cell.
  • the processing unit 1910 is specifically configured to send a second request message to the first network element, where the second request message includes the cell identity of the first cell; and receive a second response message from the first network element, where the second response message includes First information.
  • the first network element is any one of the following: access network equipment, UDM, UDR, or NRF.
  • the transceiver unit 1920 is used to receive location information from the mobile relay, and the location information is used to indicate the location of the mobile relay,
  • the mobile relay has mobility; performs positioning measurements based on signals from the mobile relay's cells to obtain positioning measurement data; sends location information and positioning measurement data to the LMF, and the location information and positioning measurement data are used to determine the location information of the terminal device.
  • the transceiver unit 1920 is specifically configured to send location information and positioning measurements to the LMF through uplink positioning messages.
  • the uplink positioning message also carries the cell identity of the mobile relay cell.
  • the transceiver unit 1920 is specifically configured to receive location information from the mobile relay in a broadcast message, where the broadcast message carries the location information of the mobile relay.
  • the processing unit 1910 is used to determine that the first cell accessed by the terminal device is a mobile relay cell. After being used to provide relay services between terminal equipment and access network equipment, the mobile relay has mobility; the processing unit 1910 is also used to obtain the positioning measurement data of the mobile relay, and the positioning measurement data of the mobile relay is used to determine The location of the first cell; the transceiver unit 1920 is configured to receive the first request message from the LMF, and the first request message is used to trigger the initiation of positioning measurement for the terminal device; the transceiver unit 1920 is also configured to send a first response message to the LMF, the first The response message includes the positioning measurement data of the mobile relay and the positioning measurement data of the terminal device. The positioning measurement data of the terminal device includes the information of the first cell.
  • the processing unit 1910 is specifically configured to determine that the first cell is a cell of the mobile relay based on the pre-stored configuration information and the information of the first cell.
  • the information of the first cell includes the TAC and/or cell identity corresponding to the first cell.
  • the configuration information includes cell information of the mobile relay, the cell information includes TAC and/or cell identification, and the cell information of the mobile relay includes information of the first cell.
  • the processing unit 1910 is specifically configured to receive first indication information from the mobile relay or the terminal device.
  • the first indication information is used to indicate that the first cell is a cell with mobility, and/or the mobile relay has mobility. .
  • the transceiver unit 1920 is used to receive a broadcast message from the cell, and the broadcast message includes first indication information. Used to indicate the type of cell.
  • the type of cell includes a mobile relay cell or a non-mobile relay cell.
  • the mobile relay has mobility; the processing unit 1910 is used to perform processing based on the signal of a cell whose type is non-mobile relay. Positioning measurement, and positioning measurement excludes cells whose cell type is mobile relay.
  • each functional unit in various embodiments of the present application may be integrated into one processor, may exist independently, or may have two or more units integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • FIG 20 is another schematic block diagram of a communication device 2000 provided by an embodiment of the present application.
  • the device 2000 may be a chip system, or may be a device configured with a chip system to implement the communication function in the above method embodiment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 2000 may include a processor 2010 and a communication interface 2020.
  • the communication interface 2020 can be used to communicate with other devices through a transmission medium, so that the device 2000 can communicate with other devices.
  • the communication interface 2020 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the processor 2010 can use the communication interface 2020 to input and output data, and is used to implement the method described in any of the embodiments corresponding to Figures 8 to 18.
  • the apparatus 2000 can be used to implement the functions of access network equipment, terminal equipment, LMF or AMF in the above method embodiments.
  • the processor 2010 is used to implement the functions of the above-mentioned processing unit 1910, and the communication interface 2020 is used to implement the functions of the above-mentioned transceiver unit 1920. Function.
  • the apparatus 2000 further includes at least one memory 2030 for storing program instructions and/or data.
  • Memory 2030 and processor 2010 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 2010 may cooperate with the memory 2030.
  • Processor 2010 may execute program instructions stored in memory 2030. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the above-mentioned processor 2010, communication interface 2020 and memory 2030.
  • the processor 2010, the communication interface 2020, and the memory 2030 are connected through a bus 2040.
  • the bus 2040 is represented by a thick line in FIG. 20 , and the connection methods between other components are only schematically illustrated and not limited thereto.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 20, but it does not mean that there is only one bus or one type of bus.
  • FIG 21 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • the base station 2100 can perform the functions of the access network device in the above method embodiment.
  • the base station 2100 may include one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 2110 and one or more baseband units (BBU) (also called distributed units ( DU))2120.
  • the RRU 2110 may be called a transceiver unit, corresponding to the transceiver unit 1920 in Figure 19.
  • the RRU 2110 may also be called a transceiver, a transceiver circuit, a transceiver, etc., which may include at least one antenna 2111 and a radio frequency unit 2112.
  • the RRU 2110 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 2110 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending configuration information to terminal equipment.
  • the BBU 2120 part is mainly used for baseband processing, base station control, etc.
  • the RRU 2110 and the BBU 2120 may be physically installed together or physically separated, that is, a distributed base station.
  • the BBU 2120 is the control center of the base station, which can also be called a processing unit. It can correspond to the processing unit 1910 in Figure 19 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU can be used to control the base station to execute the operation process related to the access network equipment in the above method embodiment.
  • the BBU 2120 may be composed of one or more single boards. Multiple single boards may jointly support a single access standard wireless access network (such as an LTE network), or may support different access standard wireless access networks respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 2120 also includes a memory 2121 and a processor 2122.
  • the memory 2121 is used to store necessary instructions and data.
  • the processor 2122 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation process of the access network equipment in the above method embodiment.
  • the memory 2121 and processor 2122 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the base station 2100 shown in Figure 21 can implement various processes involving access network equipment in the above method embodiments.
  • the operations and/or functions of each module in the base station 2100 are respectively intended to implement the corresponding processes in the above method embodiments.
  • FIG 22 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 2200 has the functions of the terminal device in the method embodiment.
  • the terminal device 2200 includes a processor 2201 and a transceiver 2202.
  • the terminal device 2200 also includes a memory 2203.
  • the processor 2201, the transceiver 2202 and the memory 2203 can communicate with each other through internal connection channels and transmit control and/or data signals.
  • the memory 2203 uses To store a computer program, the processor 2201 is used to call and run the computer program from the memory 2203 to control the transceiver 2202 to send and receive signals.
  • the terminal device 2200 may also include an antenna 2204 for sending the uplink data or uplink control signaling output by the transceiver 2202 through wireless signals.
  • the terminal device 2200 also includes a Wi-Fi module 2211 for accessing a wireless network.
  • the above-mentioned processor 2201 and the memory 2203 can be combined into one processing device, and the processor 2201 is used to execute the program code stored in the memory 2203 to implement the above functions.
  • the memory 2203 may also be integrated in the processor 2201 or independent of the processor 2201.
  • the processor 2201 may correspond to the processing unit 1910 in FIG. 19 or the processor 2010 in FIG. 20 .
  • the above-mentioned transceiver 2202 may correspond to the transceiver unit 1920 in FIG. 19 or the communication interface 2020 in FIG. 20 .
  • the transceiver 2202 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the above terminal device 2200 may also include a power supply 2205, which is used to provide power to various devices or circuits in the terminal device 2200.
  • a power supply 2205 which is used to provide power to various devices or circuits in the terminal device 2200.
  • the terminal device 2200 may also include one or more of an input unit 2206, a display unit 2207, an audio circuit 2208, a camera 2209, a sensor 2210, etc.
  • the audio The circuitry may also include a speaker 2208a, a microphone 2208b, etc.
  • terminal device 2200 shown in Figure 22 can implement various processes involving the terminal device in the method embodiment.
  • the operations and/or functions of each module in the terminal device 2200 are respectively intended to implement the corresponding processes in the above method embodiments.
  • the computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the implementation corresponding to Figures 8 to 18. The method described in any of the examples.
  • This application also provides a computer-readable storage medium that stores a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, the computer is caused to execute the method described in any one of the embodiments corresponding to Figures 8 to 18.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmd logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (read-only memory). memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to refer to computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the units and modules in the embodiments of this application have the same meaning and can be used interchangeably.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or contain a or Data storage devices such as servers and data centers integrated with multiple available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs, DVDs), or semiconductor media (eg, solid state disks, SSDs) )wait.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

提供了一种通信方法及相关装置,该方法包括:服务于终端设备的LMF接收第一定位流程的测量数据,第一定位流程的测量数据中包含第一小区的信息,第一小区是移动中继的小区,移动中继具有移动性;获取第一信息,第一信息与移动中继相关联;根据第一信息,发送第一请求消息,第一请求消息用于触发针对移动中继发起第二定位流程;接收移动中继的位置信息,移动中继的位置信息是根据第二定位流程确定的;基于移动中继的位置信息和第一定位流程的测量数据,确定终端设备的位置,从而解决了LMF因小区位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。

Description

一种通信方法及相关装置
本申请要求于2022年04月29日提交中国国家知识产权局、申请号为202210469102.2、申请名称为“一种通信方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及相关装置。
背景技术
随着通信技术的发展,中继设备得以广泛应用,第五代移动通信系统(the fifth generation,5G)新无线(new radio,NR)研究中提出了集成无线接入链路和无线回传链路的接入回传一体化(integrated access and backhaul,IAB)的节点。IAB节点通过无线接口以类似终端的方式接入一个服务于它的基站,该基站称为宿主基站(donor base station),IAB节点和宿主基站之间的无线接口链路称为回传链路(backhaul link)。IAB节点对接入其小区的终端提供与普通基站类似的功能和服务,IAB节点与终端之间的通信链路称之为接入链路(access link)。通常的IAB节点一般固定在地面上或者楼宇中,不具备移动性。
在现有的定位技术中,无论是终端设备辅助的定位流程(UE assisted positioning procedure),还是网络辅助的定位流程(network assisted positioning procedure),终端设备的定位测量数据均和小区相关,位置管理功能(location management function,LMF)都是基于测量数据中包含的小区标识(cell identifier,Cell ID)和预存的小区的位置信息来确定终端设备的位置。
然而,移动中继普遍应用起来,终端设备可能会通过接入移动中继接入网络,并随着移动中继一起移动。在这种情况下,随着移动中继的移动,移动中继的小区的位置是不固定的,因此,LMF即便得到了小区标识,仍然无法确定出终端设备的位置。
因此,亟需提供一种方法,希望LMF能够准确地确定出终端设备的位置。
发明内容
本申请提供了一种通信方法及相关装置,以期网络侧能够准确地确定出终端设备的位置。
第一方面,本申请提供了一种通信方法,该方法可以由LMF执行,或者,也可以由配置在LMF中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分LMF功能的逻辑模块或软件实现,本申请对此不作限定。
其中,上述LMF服务于终端设备。上述LMF服务于终端设备的含义是该LMF负责根据该终端设备的定位测量数据来计算或者确定该终端设备的位置。
示例性地,该方法包括:接收第一定位流程的测量数据,第一定位流程的测量数据中包含第一小区的信息,第一小区是移动中继的小区,移动中继具有移动性;获取第一信息,第一信息与上述移动中继相关联;根据第一信息,发送第一请求消息,第一请求消息用于触发针对移动中继发起第二定位流程;接收移动中继的位置信息,移动中继的位置信息是根据第二定位流程确定的;基于移动中继的位置信息和第一定位流程的测量数据,确定终端设备的位置。
基于上述技术方案,针对终端设备的第一定位流程的测量数据中包括移动中继的小区的信息,则服务于终端设备的LMF进一步获取与移动中继关联的第一信息,如,服务于终端设备的LMF获取的第一信息可以是服务于移动中继的接入和移动性管理功能(access and mobility management function,AMF)的标识(即该AMF的标识与移动中继相关联),并根据第一信息,发送第一请求消息,用于触发针对上述移动中继发起定位流程,进而可以获取到移动中继的位置信息,这样一来,LMF可以基于移动中继的位置信息和终端设备的定位测量数据,确定出终端设备的位置。上述方案提供了终端设备的定位测量数据与移动中继关联的场景下,如何确定终端设备的位置的方法,从而解决了LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
结合第一方面,在第一方面的某些可能的实现方式中,第一小区的信息中包括第一小区的小区标识;以及上述方法还包括:基于第一小区的小区标识,确定第一小区是移动中继的小区。
可选地,第一小区的信息中还包括:第一指示信息,第一指示信息用于指示第一小区为移动中继的小区。
一种可能的设计是,第一小区的信息中包括第一小区的小区标识,LMF可以基于小区标识,确定第一小区是移动中继的小区。另一种可能的设计是,第一小区的信息包括小区标识和第一指示信息,第一指示信息用于指示第一小区是移动中继的小区,LMF可以基于第一指示信息,确定第一小区是移动中继的小区。本申请提供了多种LMF确定第一小区是移动中继的小区的方法,有利于提高灵活性。
结合第一方面,在第一方面的某些可能的实现方式中,第一小区的信息中包括:第一指示信息;以及上述方法还包括:根据第一指示信息,确定触发针对移动中继发起第二定位流程。
第一小区的信息中可以包括第一指示信息,LMF可以根据第一指示信息,确定触发针对移动中继发起第二定位流程,以获取到移动中继的位置信息,进而结合第一定位流程的测量数据和上述移动中继的位置信息,确定出终端设备的位置。
结合第一方面,在第一方面的某些可能的实现方式中,获取第一信息,包括:向第一网元发送第二请求消息,第二请求消息包含第一小区的小区标识;从第一网元接收第二响应消息,第二响应消息包含第一信息。
可选地,第一网元为以下任一项:接入网设备、统一数据管理(unified data management,UDM)、统一数据库(unified data repository,UDR)、或网络存储功能(network repository function,NRF)。
LMF可以通过如下方式获取第一信息:
方式一,LMF从UDM、UDR或NRF中任意一个网元获取与移动中继相关联的第一信息,其中,上述网元中的任意一个网元均可以存储有第一信息。其中,第一信息包括服务于移动中继的AMF的标识和移动中继的标识中的至少一种。
方式二,LMF从接入网设备获取第一信息。其中,接入网设备本地存储有移动中继的上下文信息,该上下文信息包含移动中继的第一小区的小区标识与第一信息的对应关系。当接入网设备接收第二请求消息时,可以根据移动中继的上下文信息确定与第一小区的小区标识对应的第一信息。其中,第一信息包括AMF的标识。
方式三,第一信息是从服务于终端设备的AMF获取的。其中,第一信息包括AMF的标识和移动中继的标识中的至少一种,上述AMF的标识指的是服务于移动中继的AMF的标识。
通过提供上述多种获取第一信息的方式,有利于提高LMF获取第一信息的灵活性。
第二方面,本申请提供了一种通信方法,该方法可以由AMF执行,或者,也可以由配置在AMF中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分AMF功能的逻辑模块或软件实现,本申请对此不作限定。
其中,上述AMF服务于终端设备。
示例性地,该方法包括:确定终端设备接入的第一小区是移动中继的小区,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性;获取第一信息,第一信息包括服务于移动中继的AMF的标识和移动中继的标识中的至少一种;向LMF发送第一请求消息,第一请求消息用于触发针对终端设备发起第一定位流程,第一请求消息包括第一信息,第一信息用于触发针对移动中继发起第二定位流程。
基于上述技术方案,服务于终端设备的AMF确定终端设备接入的第一小区是移动中继的小区后,获取与移动中继相关联的第一信息,并向服务于终端设备的LMF发送第一请求消息,第一请求消息包括第一信息,用于触发针对终端设备发起第一定位流程,并针对移动中继发起第二定位流程,以便于服务于终端设备的LMF获取到移动中继的位置信息,解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
结合第二方面,在第二方面的某些可能的实现方式中,确定终端设备接入的第一小区是移动中继的小区,包括:接收来自接入网设备的第一消息,第一消息中包括终端设备接入的第一小区的标识以及指示信息,指示信息用于指示第一小区是移动中继的小区。
结合第二方面,在第二方面的某些可能的实现方式中,获取第一信息,包括:向第一网元发送第二请求消息,第二请求消息包括第一小区的小区标识;从第一网元接收第二响应消息,第二响应消息中包含所述第一信息。
AMF可以从第一网元(例如,第一网元可以是UDM、UDR、NRF或接入网设备)获取服务于移动中继的AMF的标识和/或移动中继的标识。示例性地,以第一网元为UDM为例,AMF向UDM发送第二请求消息,该第二请求消息包含第一小区的小区标识,UDM基于第一小区的小区标识,可以确定出对应的服务于移动中继的AMF的标识和移动中继的标识。进一步地,UDM将服务于移动中继的AMF的标识和移动中继的标识中的至少一种发送给服务于终端设备AMF,相应地,服务于终端设备的AMF 接收来自UDM的第二响应消息,第二响应消息包含第一信息,第一信息包括服务于移动中继的AMF的标识和移动中继的标识中的至少一种。
第三方面,本申请提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置在终端设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分终端设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:接收来自移动中继的位置信息,该位置信息用于指示移动中继的位置,移动中继具有移动性;基于来自移动中继的小区的信号进行定位测量,得到定位测量数据;向LMF发送上述位置信息和定位测量数据,上述位置信息和定位测量数据用于确定终端设备的位置信息。
基于上述技术方案,终端设备接收来自移动中继的位置信息,基于来自移动中继的小区的信号进行定位测量,得到定位测量数据,向服务于终端设备的LMF发送上述位置信息和定位测量数据,以便于服务于终端设备的LMF基于上述位置信息和定位测量数据,确定终端设备的位置,解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
结合第三方面,在第三方面的某些可能的实现方式中,向LMF发送位置信息和定位测量数据,包括:通过上行定位消息向LMF发送位置信息和定位测量数据,上行定位消息中还携带有移动中继的小区的小区标识。
结合第三方面,在第三方面的某些可能的实现方式中,接收来自移动中继的位置信息,包括:从广播消息中接收来自移动中继的位置信息,广播消息中携带有移动中继的位置信息。
第四方面,本申请提供了一种通信方法,该方法可以由接入网设备执行,或者,也可以由配置在接入网设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分接入网设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:确定终端设备接入的第一小区是移动中继的小区,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性;接收来自LMF的第一请求消息,第一请求消息用于触发针对终端设备发起定位测量;获取移动中继的定位测量数据,移动中继的定位测量数据用于确定第一小区的位置;向LMF发送第一响应消息,第一响应消息包括移动中继的定位测量数据和终端设备的定位测量数据,终端设备的定位测量数据包括第一小区的信息。
基于上述技术方案,接入网设备确定终端设备接入的第一小区是移动中继的小区后,在服务于终端设备的LMF发起定位请求时,触发对移动中继的定位,获取到移动中继的定位测量数据,并将终端设备的定位测量数据和移动中继的定位测量数据一起上报给服务于终端设备的LMF,以便于服务于终端设备的LMF基于移动中继的定位测量数据和终端设备的定位测量数据,计算终端设备的位置,解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
结合第四方面,在第四方面的某些可能的实现方式中,确定终端设备接入的第一小区是移动中继的小区,包括:基于预存的配置信息和第一小区的信息,确定第一小 区是移动中继的小区,第一小区的信息包括第一小区对应的跟踪区域码(tracking area code,TAC)和/或小区标识,配置信息包括移动中继的小区信息,小区信息包括TAC和/或小区标识,移动中继的小区信息包括所述第一小区的信息。
结合第四方面,在第四方面的某些可能的实现方式中,确定终端设备接入的第一小区是移动中继的小区,包括:从移动中继或者终端设备接收第一指示信息,第一指示信息用于指示第一小区为具有移动性的小区,和/或,移动中继具有移动性。
一种可能的设计是,接入网设备预存有移动中继的小区信息,包括TAC和/或Cell ID,接入网设备将第一小区的信息和预存的移动中继的小区信息对比,若第一小区的信息包含在移动中继的小区信息中,则确定第一小区是移动中继的小区。
另一种可能的设计是,接入网设备从移动中继或者终端设备接收第一指示信息,该第一指示信息用于指示第一小区为具有移动性的小区,和/或,移动中继具有移动性。一示例,终端设备可以向接入网设备指示终端设备接入的小区为具有移动性的小区。又一示例,移动中继向接入网设备指示移动中继具有移动性。比如,移动中继向接入网设备发送的F1建立请求(F1setup request)消息中,携带移动中继具有移动性的指示信息。综上,上述任一种方式均可以使得接入网设备确定终端设备接入的第一小区是移动中继的小区,有利于提高接入网设备确定第一小区是移动中继的小区的灵活性。
第五方面,本申请提供了一种通信方法,该方法可以由LMF执行,或者,也可以由配置在LMF中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分LMF功能的逻辑模块或软件实现,本申请对此不作限定。
其中,上述LMF服务于终端设备。
示例性地,该方法包括:获取移动中继的位置信息和终端设备的定位测量数据,移动中继具有移动性,移动中继的位置信息用于确定第一小区的位置,终端设备的定位测量数据包括第一小区的信息,第一小区是移动中继的小区;根据移动中继的位置信息和终端设备的定位测量数据,确定终端设备的位置。
基于上述技术方案,服务于终端设备的LMF可以获取移动中继的位置信息和终端设备的定位测量数据,并根据移动中继的位置信息和终端设备的定位测量数据,确定终端设备的位置,这样一来,即便是移动中继的小区是不固定的,服务于终端设备的LMF也可以获取到移动中继的位置信息,进而确定出终端设备的位置。
结合第五方面,在第五方面的某些可能的实现方式中,获取移动中继的位置信息和终端设备的定位测量数据,包括:接收来自终端设备的移动中继的位置信息和终端设备的定位测量数据。
结合第五方面,在第五方面的某些可能的实现方式中,获取移动中继的位置信息和终端设备的定位测量数据,包括:接收来自接入网设备的移动中继的定位测量数据和终端设备的定位测量数据;基于移动中继的定位测量数据,确定移动中继的位置信息。
服务于终端设备的LMF获取移动中继的位置信息,一种可能的设计是,从终端设备直接移动中继的位置信息。另一种可能的设计是,从接入网设备获取移动中继的定位测量数据,并基于该移动中继的定位测量数据,确定出移动中继的位置信息。本申请提供了多种可能的设计,有利于提高LMF获取移动中继的位置信息的灵活性。
第六方面,本申请提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置在终端设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分终端设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:接收来自小区的广播消息,广播消息中包括第一指示信息,第一指示信息用于指示小区的类型,小区的类型包括移动中继的小区或者非移动中继的小区,移动中继具有移动性;基于小区的类型为非移动中继的小区的信号进行定位测量,且定位测量排除了小区的类型为移动中继的小区。
基于上述技术方案,终端设备对用于定位测量的小区进行筛选,只使用非移动小区的信号进行测量,得到定位测量数据,以便于服务于终端设备的LMF基于上述定位测量数据,确定出终端设备的位置信息,通过只选用非移动中继的小区的信号进行定位测量,解决了LMF由于用于定位测量的小区的位置发生变化而无法确定终端设备的位置的问题,有利于LMF准确地计算出终端设备的位置。
第七方面,本申请提供了一种通信装置,可以实现第一方面至第六方面以及第一方面至第六方面任一种可能实现方式中所述的方法。该装置包括用于执行上述方法的相应的单元。该装置包括的单元可以通过软件和/或硬件方式实现。
第八方面,本申请提供了一种通信装置,该装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的计算机程序,以实现第一方面至第六方面以及第一方面至第六方面任一种可能实现方式中所述的方法。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,以第一方面至第六方面以及第一方面至第六方面任一种可能实现方式中所述的方法。
第十方面,本申请提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被运行时,以实现第一方面至第六方面以及第一方面至第六方面任一种可能实现方式中所述的方法。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面至第六方面以及第一方面至第六方面任一种可能实现方式中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应当理解的是,本申请的第七方面至第十一方面与本申请的第一方面至第六方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例提供的IAB网络架构的示意图;
图2是本申请实施例提供的基于IAB技术的通信流程示意图;
图3是本申请实施例提供的基于服务化架构的网络架构示意图;
图4是本申请实施例提供的基于点对点接口的网络架构示意图;
图5是本申请实施例提供的基于服务化架构的定位架构示意图;
图6是本申请实施例提供的基于点对点接口的定位架构示意图;
图7是适用于本申请实施例提供的方法的系统架构示意图;
图8是本申请实施例提供的第一种通信方法的示意性流程图;
图9是本申请实施例提供的图8所示的通信方法的详细流程示意图;
图10是本申请实施例提供的图8所示的通信方法的又一详细流程示意图;
图11是本申请实施例提供的第一种通信方法的另一示意性流程图;
图12是本申请实施例提供的图11所示的通信方法的详细流程示意图;
图13是本申请实施例提供的第一种通信方法的又一示意性流程图;
图14是本申请实施例提供的图13所示的通信方法的详细流程示意图;
图15是本申请实施例提供的第一种通信方法的再一示意性流程图;
图16是本申请实施例提供的图15所示的通信方法的详细流程示意图;
图17是本申请实施例提供的第二种通信方法的示意性流程图;
图18是本申请实施例提供的图17所示的通信方法的详细流程示意图;
图19是本申请实施例提供的通信装置的示意性框图;
图20是本申请实施例提供的通信装置的又一示意性框图;
图21是本申请实施例提供的接入网设备的结构示意图;
图22是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:5G移动通信系统或NR。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
在具体介绍本申请实施例提供的通信方法之前,先对本申请涉及到的各网元做简单介绍:
1、终端设备:可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。在下文所示实施例中,终端设备、终端、UE可能交替使用,但其表达的含义相同。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile  internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是IoT系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
2、接入网(access network,AN)设备:接入网可以为特定区域的授权用户提供入网功能,并能够根据用户的级别、业务的需求等使用不同质量的传输隧道。接入网络可以为采用不同接入技术的接入网络。目前的无线接入技术有两种类型:第三代合作伙伴计划(3rd generation partnership project,3GPP)接入技术(例如3G、4G或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation node base station,gNB)。非3GPP接入技术是指不符合3GPP标准规范的接入技术,例如,以无线保真(wireless fidelity,Wi-Fi)中的接入点(access point,AP)为代表的空口技术。
基于无线通信技术实现接入网络功能的接入网可以称为无线接入网(radio access network,RAN)。无线接入网能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和用户数据在终端和核心网之间的转发。
无线接入网设备例如可以包括但不限于:无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(baseband unit,BBU),Wi-Fi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。本申请对无线接入网设备所采用的具体技术和具体设备形态不做限定。无线接入网设备可以包括gNB-集中单元(centralized unit,CU)和gNB-DU。gNB-CU和gNB-DU通过F1接口相连。CU和核心网之间通过下一代(next generation,NG)接口相连。gNB-DU包括物理层(phyical layer,PHY)/媒体接入控制(medium access  control,MAC)/无线链路控制(radio link control,RLC)层的功能,用于为该接入网设备下附着的中继设备提供接入服务。gNB-DU可以通过F1接口与gNB-CU连接。该gNB-DU也可以通过Uu接口与终端设备或移动中继的移动终端(mobile-termination,MT)功能连接。
gNB-CU用于对其下所有的中继设备和终端设备进行无线资源控制(radio resource control,RRC)控制,例如可以存储中继设备和终端设备的上下文等。gNB-CU可以通过F1接口与其它中继设备的DU功能连接。
3、IAB节点(node):在5G NR研究中提出了IAB节点,该IAB节点集成无线接入链路和无线回传链路,其中无线接入链路为终端设备与IAB节点之间的通信链路,无线回传链路为IAB节点之间的通信链路,主要进行数据回传。IAB节点启动后,其MT功能(functionality)将通过小区选择接入网络,IAB节点不需要有线传输网络进行数据回传。因此,IAB节点降低了对有线传输网络的部署要求,可以部署在室外、室内等不易部署有线传输网络的场景下。为更加清楚地理解IAB节点,下面对IAB网路架构和基于IAB技术进行通信的流程进行详细描述。
图1是本申请实施例提供的IAB网络架构的示意图。如图1所示,包括5G核心网(5G core,5GC)和NG RAN。NG-RAN通过IAB节点无线连接于能够服务于IAB节点的gNB来支持IAB,命名为IAB-宿主(donor)。IAB-宿主由一个IAB-宿主-集中式单元(centralized unit,CU)和一个或多个IAB-宿主-DU组成。IAB节点经由NR Uu口的移动终端功能(命名为IAB节点的IAB-MT功能)连接到上游IAB节点或IAB-宿主-DU。IAB节点通过NR Uu口的网络功能(命名为IAB节点的IAB-DU功能)向下游IAB节点和终端设备提供无线回传。图中NG、NR Uu和F1均属于逻辑接口,各接口的功能此处不再一一详述。IAB节点可以包括MT和DU两部分,MT类似于UE的功能,通过Uu接口与父节点进行通信,提供数据回传。IAB节点的DU类似于gNB中DU的功能,包含PHY/MAC/RLC层的功能,与子节点进行通信,为子节点提供接入服务。
图2是本申请实施例提供的基于IAB技术的通信流程示意图。
步骤201,IAB节点注册入网。
IAB节点可通过接入网设备发起注册流程实现入网。例如,IAB节点的MT功能通过小区选择来接入网络。具体地,步骤201包括步骤2011和步骤2012。
步骤2011,IAB节点的MT功能向接入网设备发送注册请求消息。相应地,接入网设备接收注册请求消息。
IAB节点的MT功能向接入网设备发送注册请求消息,接入网设备接收注册请求消息后,可以为IAB节点的MT功能选择核心网设备。
步骤2012,接入网设备将注册请求消息发送至所选择的核心网设备。例如,可以通过N2消息将注册请求消息发送至核心网设备,其中,上述注册请求消息中可以指示请求注册入网的是IAB节点。该过程中,IAB节点的初始接入过程与常规终端设备相同。
步骤202,IAB节点的MT功能发起会话建立。
IAB节点的MT功能发起会话建立,进而核心网设备给IAB节点的MT功能分配互联网协议(internet protocol,IP)地址,IAB节点的MT功能使用该IP地址跟操作管理维护(operation administration and maintenance,OAM)进行交互。
步骤203,OAM给IAB节点配置小区信息,如小区标识、TAC等信息。需要说明的是,在本申请实施例中,OAM给IAB节点配置小区信息是固定不变的,换言之,IAB节点不管移动到哪里,其小区信息不会发生变化,也即IAB节点的小区信息与IAB节点的地理位置无关。
步骤204,IAB节点的DU功能向宿主-CU发送F1配置请求(setup request)消息。
IAB节点的DU功能选择合适的宿主无线接入网(donor RAN)设备后,向宿主-CU发送F1配置请求消息,该F1配置请求消息中携带该宿主-CU支持的小区信息,如小区标识、TAC等信息。宿主-CU接收到该F1配置请求消息后,激活IAB节点的小区。
其中,步骤204中的宿主RAN跟步骤201中的接入网设备可以相同或者不同,不做限制。
步骤205,宿主-CU可以向核心网设备发送配置更新消息。具体地,宿主-CU可以通过配置更新流程向核心网设备发送配置更新消息。
步骤206,宿主-CU向IAB节点的DU功能发送F1配置响应(setup response)消息。该F1配置响应消息中携带激活后的小区信息(cells to be activated list),其中,激活后的小区信息包括激活后的小区的小区标识。
应理解,本申请实施例中,IAB节点注册入网的含义,跟IAB节点的MT功能注册入网的含义相同。换言之,在未作出特别说明的情况下,IAB节点的MT功能执行动作的描述也可以替换为IAB节点的执行动作。
还应理解,关于注册入网流程的具体内容可参照现有终端设备的入网流程,为了简洁,此处不做赘述。
4、移动中继:指的是集成了无线接入链路和无线回传链路且具有移动性的无线接入网设备,其中无线接入链路为终端设备与移动中继之间的通信链路,无线回传链路为移动中继和部署在地面上没有移动性的无线接入网设备之间的通信链路,无线回传链路主要进行数据回传。移动中继支持Uu、F1、E1、NG以及X2等接口,且包含了无线接入网设备的功能和MT功能。其中,MT功能集成于移动中继之中,该功能实体用于移动中继与宿主无线接入网设备或者其他移动中继之间的回传链路的Uu口终结点。当移动中继启动后MT功能会进行小区选择,从而接入到网络。
可以理解的是,与IAB节点不同的是,移动中继具有移动性。例如,通过在车辆上搭载集成了无线接入链路和无线回传链路的中继,使其可随着车辆的移动而移动,就是一种典型的移动中继,也就是车载中继(vehicle mounted relay,VMR)。
5、宿主无线接入网设备:通常指的是部署在地面上没有移动性的无线接入网设备,通过宿主RAN与移动中继之间的回传链路和移动中继提供的接入链路向终端设备提供网络接入。宿主无线接入网设备可以由CU和一个或多个DU组成。其中,CU主要处理非实时的无线高层协议栈功能,例如RRC层协议和分组数据汇聚层(packet data convergence protocol,PDCP)层协议,DU主要处理PHY功能和实时性需求较高的层2功能,例如PHY协议。CU和DU可通过F1接口相互通信。
本申请对于宿主RAN可以连接的移动中继的数量不作限定。
为了描述方便,本申请将宿主无线接入网设备简称为接入网设备。除非特殊声明,本申请实施例中的接入网设备均指的是宿主无线接入网设备。
下面对核心网部分的网元进行介绍。应理解,下文所列举的各核心网网元可分别通过英文缩略语来作为各自的简称。
6、AMF网元:AMF网元属于核心网络部分,可简称为AMF。主要用于移动网络中的终端的注册、移动性管理、跟踪区更新流程,接入和移动性管理网元终结了NAS消息、负责注册管理、连接管理以及可达性管理、分配跟踪区列表(track area list,TA list)以及移动性管理等,并且负责转发会话管理(session management,SM)消息到会话管理网元。
7、会话管理功能(session management function,SMF)网元:可简称为SMF。主要用于用户面功能(user plane function,UPF)网元选择,UPF网元重选,IP地址分配,会话的建立、修改和释放,服务质量(quality of service,QoS)控制;
8、UDM网元:可简称为UDM。主要用于管理签约数据,当签约数据修改的时候,负责通知相应的网元。
9、UDR网元:可简称为UDR。主要用于存储和检索签约数据、策略数据和公共架构数据等;供UDM、策略控制功能(policy control function,PCF)网元(可简称为PCF)和网络开放功能(network exposure function,NEF)网元(可简称为NEF)获取相关数据。UDR可以针对不同类型的数据如签约数据、策略数据有不同的数据接入鉴权机制,以保证数据接入的安全性;UDR对于非法的服务化操作或者数据接入请求,可以返回携带合适原因值的失败响应。
10、应用功能(application function,AF)网元:可简称为AF。可以向终端设备提供某种应用层服务,AF在向终端设备提供服务时,对QoS和计费策略(charging)有要求,且需要通知网络。同时,AF也需要核心网反馈应用相关的信息。
11、UPF网元:可简称为UPF。主要用于实现以下全部或者部分功能:将协议数据单元(protocol data unit,PDU)会话与数据网络互连;分组路由和转发(例如,支持对流量进行上行分类(uplink classifier)后转发到数据网络,支持分支节点(branching point)以支持多宿主(multi-homed)PDU会话);数据包检测等。
12、LMF网元:可简称为LMF。负责对目标UE的定位服务请求进行管理和控制,并通过LTE定位协议(LTE positioning protocol,LPP)向UE下发定位相关的辅助信息。LMF和gNB之间的NRPPa协议(NR positioning protocol A)用于控制定位测量,包括gNB进行的上行测量或UE进行的下行测量。LMF可以通过LPP协议与目标UE交互以下发定位相关的辅助数据。网络的定位方案选择由LMF负责,定位方案的选择基于定位客户端、QoS要求的精度和时延、以及UE和gNB的定位能力来决定的。
为便于理解本申请实施例,下面将结合图3和图4对适用于本申请实施例的5G网络架构进行详细介绍。
图3是本申请实施例提供的基于服务化架构的网络架构示意图。如图3所示,5G网络架构中可包括三部分,分别是终端设备部分、数据网络(data network,DN)和运营商网络部分。
其中,运营商网络可包括以下网元中的一个或多个:鉴权服务器功能(authentication server function,AUSF)网元、NEF网元、LMF网元、UDM网元、UDR网元、NRF网元、AF网元、AMF网元、SMF网元、RAN网元、UPF网元、网络切片选择功能(network slice selection function,NSSF)网元、网络切片选择的认证和授权功能(network slice specific  authentication and authorization function,NSSAAF)网元以及服务通信代理(service communication proxy,SCP)网元等。上述运营商网络中,除无线接入网部分之外的部分可以称为核心网络部分。图3所示的网络中,各部分网元可以基于服务化的接口进行通信,其中,图中的Nxxx就是基于业务的服务化的接口。应理解,部分网元的功能可以参考上文网元介绍中的描述,具体的可以参考已知的技术,此处不再赘述。
图4是本申请实施例提供的基于点对点接口的网络架构示意图。图4所示的网络中包括的网元及其相关介绍可以参考图3的描述。图4所示的网络架构与图3不同的是,图4所示的网络架构中,各个网元之间的接口是点对点的接口,而不是服务化的接口。
图5是本申请实施例提供的基于服务化架构的定位架构示意图。如图5所示,运营商网络可包括以下网元中的一个或多个:NEF网元、UDM网元、UDR网元、AF网元、AMF网元、LMF网元、RAN网元、网关移动位置中心(gateway mobile location center,GMLC)网元、位置检索功能(location retrieval function,LRF)网元、位置服务(location services,LCS)客户端(client)。其中,LCS客户端可以使用Le参考点从GMLC访问LCS服务。GMLC是外部LCS客户端访问公共陆地移动网络(public land mobile network,PLMN)中的第一个节点(即GMLC支持Le参考点)。在图5所示的网络中,各部分网元可以基于服务化的接口进行通信,其中,图中的Nxxx就是基于业务的服务化的接口。
图6是本申请实施例提供的基于点对点接口的定位架构示意图。图6所示的网络中包括的网元及其相关介绍可以参考图5的描述。图6所示的网络架构与图5不同的是,图6所示的网络架构中,各个网元之间的接口是点对点的接口,而不是服务化的接口。
为便于理解本申请实施例提供的通信方法,下面将对本申请实施例提供的通信方法的系统架构进行说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
图7是适用于本申请实施例提供的方法的系统架构示意图。如图7所示,该系统700可以包括核心网710、接入网设备720、移动中继730和终端设备740。
该系统700例如可以是5G系统(5G system,5GS)。在5GS中,核心网710可以是5G核心网(5G core,5GC)。示例性地,该核心网710可以包括但不限于,AMF、UDM、LMF等,各网元可用于实现各自的功能,具体的可以参看上文的描述。本申请对于核心网710中所包括的具体网元及其功能、数量和形态均不作限定。接入网设备720可连接于核心网710,可用于为覆盖范围内的授权终端提供入网功能,管理无线资源,并完成控制信号和用户数据在终端设备与核心网710之间的转发。
在本申请实施例中,该接入网设备720不仅可以为终端设备提供无线接入服务,还可以为移动中继(如图7所示的移动中继730)提供无线回传功能,以使得移动中继可以通过接入网设备720接入核心网710。移动中继730具有移动性,例如,可以部署在车辆上,一方面通过无线回传链路连接于接入网设备720,再通过接入网设备720连接至核心网710,另一方面为其附近的终端设备(包括车辆内或者车辆外与其距离较近的终端设备)提供无线接入链路,从而使得终端设备可以入网。例如,图7所示的终端设备740位于车辆外,可以通过移动中继730提供的无线接入链路接入移动中继730,再通过接入网设备720和接入移动中继730之间的无线回传链路接入到核心网710。
应理解,图7中仅为示例,示出了一个核心网、一个无线接入网设备、一个移动中继 和一个终端设备,但这不应对本申请构成任何限定。各设备的数量均可以为一个或多个。接入同一核心网的接入网设备可以为一个或多个。接入同一无线接入网设备的移动中继的数量也可以为一个或多个。接入同一移动中继的终端设备的数量也可以为一个或多个。
此外,图7中虽未示出,终端设备740也可以位于车辆内部。
在现有的定位技术中,存在不同的定位流程,例如针对UE assisted positioning procedure,终端设备接收周边小区的信号(周边小区的数量可以是多个)进行定位测量并向LMF上报测量数据,其中测量数据中包含小区标识。LMF可以基于终端设备发送的小区标识确定终端设备是基于哪个小区的信号做的测量,进一步地,LMF根据预先获取的该小区的位置信息确定终端设备的位置。再例如,针对network assisted positioning procedure,接入网设备接收终端设备的信号进行定位测量,并向LMF上报测量数据,其中测量数据中包含该基站的小区标识。LMF可以基于测量数据中包含的小区标识确定测量数据是哪个小区执行测量的,进一步地,LMF根据预先获取的该小区的位置信息确定终端设备的位置。综上所示,无论哪种定位流程,终端设备的定位测量数据均和小区相关,LMF都是基于测量数据中包含的小区信息(如小区的标识)来进一步确定终端的位置。
然而,移动中继普遍应用起来,例如,移动中继可以是搭载在车辆上的车载中继(vehicle mounted relay,VMR),终端设备可能会通过接入VMR接入网络,并随着VMR一起移动。在这种情况下,当网络侧需要对这类终端设备发起定位流程时,例如,针对UE assisted positioning procedure,终端设备可能基于当前接入的VMR的小区的信号做定位测量,针对network assisted positioning procedure,VMR的小区可能使用终端设备的信号进行定位测量,而VMR的小区的位置是随着移动的移动中继而变化的,因此,即使LMF获取到小区标识,也无法确定出终端设备的位置。
为解决上述问题,本申请提供了一种通信方法,以UE assisted positioning procedure举例说明,在定位流程中,终端设备选择了多个小区并使用多个小区的信号执行定位测量。其中,多个小区可能包括移动中继的小区和非移动中继的小区,或者,多个小区中只包括了移动中继的小区,对于LMF来说,除了获取到针对终端设备的定位测量数据,还需获取移动中继的位置信息,也即,对移动中继进行定位,进而LMF可以基于终端设备的定位测量数据和移动中继的位置信息,确定出终端设备的位置信息。
需要注意的是,本申请中的移动中继的位置信息可以理解为是移动中继的MT功能的位置信息,如VMR-MT的位置信息,或者IAB-UE的位置信息。本申请中所涉及的针对移动中继的定位流程可以理解为是针对移动中继的MT功能的定位流程,如针对VMR-MT的定位流程,或者针对IAB-UE的定位流程。
上述通信方法中,针对LMF如何获取移动中继的位置信息,本申请提供了如下几种可能的设计:
设计一:服务于终端设备的LMF确定该终端设备的定位测量数据与移动中继关联,其中,移动中继具有移动性,进一步地,LMF获取与移动中继相关联的第一信息,并基于第一信息,发送第一请求消息,以触发针对移动中继发起定位流程,进而获取到移动中继的位置信息。
设计二:服务于终端设备的AMF确定终端设备接入的第一小区是移动中继的小区后,获取与移动中继相关联的第一信息,并向服务于终端设备LMF发送第一请求消息,第一 请求消息包括第一信息,以触发针对终端设备发起第一定位流程,并针对移动中继发起第二定位流程,进而通过第二定位流程的测量数据获取到移动中继的位置信息。
设计三:终端设备接收来自移动中继的位置信息,并基于来自移动中继的小区的信号进行定位测量,得到定位测量数据;终端设备向LMF发送第一消息,第一消息携带有移动中继的位置信息和定位测量数据,以便于LMF基于上述移动中继的位置信息和定位测量数据,确定终端设备的位置。
设计四:接入网设备确定终端设备接入的第一小区是移动中继的小区后,在服务于终端设备的LMF发起定位请求后,接入网设备将终端设备的定位测量数据和移动中继的定位测量数据一起上报给服务于终端设备的LMF,以便于LMF确定终端设备的位置。
本申请还提供了另外一种通信方法,终端设备对用于定位测量的小区进行筛选,只使用非移动小区的信号进行测量,得到定位测量数据,以便于服务于终端设备的LMF基于上述定位测量数据,确定出终端设备的位置。
下面将结合具体的实施例分别详细描述上述通信方法。
为了更好地理解本申请实施例,首先做出如下几点说明:
第一,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,核心网设备或者接入网设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,核心网设备或者接入网设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第二,在下文示出的实施例中“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,第一定位流程和第二定位流程是为了区分不同的定位流程等。本领域技术人员可以理解,“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
第三,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但并不排除表示前后关联对象是一种“和”的关系的情况,具体表示的含义可以结合上下文进行理解。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
第四,下文所述的实施例中的移动中继例如可以是VMR或者mobile IAB。在无特殊说明的情况下,下文所述的实施例中的接入网设备是宿主无线接入网设备。
第五,在本申请实施例中,涉及网元A向网元B发送消息或数据包,以及网元B接收来自网元A的消息或数据包的相关描述,旨在说明该消息或数据包是要发给哪个网元,而并不限定它们之间是直接发送还是经由其他网元间接发送。
比如,文中所述的LMF接收来自终端设备的上行定位消息,并不限定终端设备是直接向LMF发送上行定位消息,例如,终端设备可以向服务于终端设备的AMF发送上行定位消息,AMF进一步地将上行定位消息发送给LMF。文中虽未一一罗列,但本领域的技术人员可以理解其含义。
第六,在本申请实施例中,移动中继的小区也可以称为移动小区,或者VMR小区,或者mobile IAB小区,可以理解为,该小区具有移动性;非移动中继的小区也可以称为非移动小区,或者非VMR小区,或者非mobile IAB小区,可以理解为,该小区的位置是固定的。
第七,在本申请实施例中,位置信息是指用于描述具体的地理位置的信息,例如,移动中继的位置信息是指移动中继的地理位置信息。
下面首先对上文中第一种通信方法进行详细描述,例如,针对UE assisted positioning procedure,终端设备选择了多个小区并使用多个小区的信号执行定位测量。其中,多个小区包括移动中继的小区和非移动中继的小区,或者,多个小区中只包括了移动中继的小区,在这种情况下,终端设备收集的测量数据中包含移动中继的小区的标识和非移动中继的小区的标识,再例如,针对network assisted positioning procedure,移动中继可以使用终端设备的信号进行定位测量,在这种情况下,移动中继收集的测量数据中包含移动中继的小区的标识。无论哪种定位流程,对于核心网设备来说,除了获取到终端设备的定位测量数据,还需获取移动中继的位置信息,进而核心网设备可以基于终端设备的定位测量数据和移动中继的位置信息,确定出终端设备的位置。
需要说明的是,在本申请实施例中,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性。在第一种通信方法中,针对UE assisted positioning procedure,终端设备可以不感知用于定位测量的信号是否是移动中继的小区的信号,也即,终端设备可以使用移动中继的小区的信号进行定位测量,这种情况下,终端设备可以使用当前接入的移动中继的小区的信号进行定位测量,也可以使用其他的移动中继的小区的信号进行定位测量,也即,终端设备接入的移动中继的小区和用于定位测量的移动中继的小区可以是同一小区,也可以是不同的小区,本申请实施例对此不作限定。
一示例,终端设备当前接入的小区为小区1,小区1是移动中继的小区,小区2也是移动中继的小区,终端设备可以使用小区1的信号进行定位测量,也可以使用小区2的信号进行定位测量,本申请实施例对此不作限定。
前已述及,上述通信方法中,针对服务于终端设备的LMF如何获取移动中继的位置信息,本申请提供了四种可能的设计,下面将结合附图分别描述上述四种可能的设计。其中,图8至图10是针对设计一的通信方法,图11和图12是针对设计二的通信方法,图13和图14是针对设计三的通信方法,图15和图16是针对设计四的通信方法,图17和图18是针对提出的第二种通信方法。
下面首先描述上文所述的设计一的通信方法,也即,服务于终端设备的LMF确定该终端设备的定位测量数据与移动中继关联,其中,移动中继具有移动性,进一步地,服务于终端设备的LMF获取与移动中继相关联的第一信息,并基于第一信息,发送第一定位请求消息,以触发针对移动中继发起定位流程,进而获取到移动中继的位置信息。
图8是本申请实施例提供的通信方法800的示意性流程图。图8所示的方法800可以包括步骤801至步骤805。下面详细说明方法800中的各个步骤。
步骤801,LMF接收第一定位流程的测量数据,该第一定位流程的测量数据中包含第一小区的信息。
其中,上述LMF是服务于终端设备的LMF(可记为UE-LMF)。第一定位流程是针 对终端设备发起的定位流程,以得到第一定位流程的测量数据。第一小区是移动中继的小区,该移动中继具有移动性,换言之,该小区的位置是不固定的。
一种可能的实现方式是,UE-LMF采用终端设备辅助的定位流程,发起第一定位流程,以获取到第一定位流程的测量数据。
示例性地,UE-LMF向终端设备发送下行定位消息,以触发对终端设备进行定位。终端设备接收到来自UE-LMF的下行定位消息(downlink positioning message)后,基于周围的小区的信号(如定位参考信号(positioning reference signal,PRS))进行定位测量,如,终端设备基于第一小区的信号进行定位测量,得到第一定位流程的测量数据,并向UE-LMF发送上行定位消息(uplink positioning message),该上行定位消息中携带第一定位流程的测量数据,该第一定位流程的测量数据中包含第一小区的信息,如第一小区的Cell ID。
其中,终端设备基于第一小区的信号进行定位测量的参数,本申请不做限定。例如,终端设备可以对接入网设备的PRS执行下行链路参考信号时间差测量,和/或终端设备可以测量每波束的下行链路参考信号接收功率。另外,终端设备发送至UE-LMF的测量数据中还包含测量报告,其中测量报告中包含的测量参数,本申请也不限定。例如,测量报告中包含的测量参数可以包含下行链路参考信号时间差,和/或每波束的下行链路参考信号接收功率等等。
其中,终端设备可以使用当前接入的移动中继的小区的信号进行定位测量,而且,终端设备除了使用移动中继的小区的信号进行定位测量之外,还可以同时使用其他小区的信号进行测量,其他小区可以是移动中继的另一小区,也可以是非移动中继的小区,例如,安装在车外道路两边的基站的小区,即固定位置的小区。
另一种可能的实现方式是,UE-LMF采用网络辅助的定位流程,发起第一定位流程,也即,接入网设备基于终端设备发送的信号进行测量,并把测量数据发送给UE-LMF,以便于UE-LMF确定终端设备的位置。
示例性地,UE-LMF向接入网设备发送网络定位消息(例如,UE-LMF向服务于终端设备的AMF发送网络定位消息(network positioning message),AMF将上述网络定位消息发送给接入网设备),以触发对终端设备进行定位。其中,终端设备通过移动中继连接该接入网设备。接入网设备接收到来自UE-LMF的网络定位消息后,触发移动中继对终端设备进行定位测量(也即,移动中继基于终端设备发送的信号进行测量,以得到第一定位流程的测量数据)。接入网设备接收到来自移动中继的第一定位流程的测量数据后,向UE-LMF发送网络定位消息,该网络定位消息中携带第一定位流程的测量数据,该第一定位流程的测量数据中包含第一小区的信息,如第一小区的Cell ID。
其中,移动中继对终端设备进行定位测量参数,本申请不做限定。例如,移动中继测量上行链路相对到达时间,和/或,移动中继根据终端设备所在的波束测量到达角。另外,接入网设备发送至UE-LMF的测量数据中还包含测量报告,其中测量报告中包含的测量参数,本申请也不限定。例如,该测量报告中包含的测量参数可以是上行到达角,和/或上行链路相对到达时间等等。
此外,需要说明的是,UE-LMF还可以同时采用终端设备辅助的定位流程以及网络辅助的定位流程,发起第一定位流程。即,可以理解为,本申请中的第一定位流程中同时包含终端设备辅助的定位流程以及网络辅助的定位流程,那么第一定位流程的测量数据包括 终端设备向UE-LMF发送的定位测量数据以及接入网设备向UE-LMF发送的定位测量数据。
可选地,服务于终端设备的LMF可以通过第一定位流程的测量数据中包含的第一小区的信息,确定第一小区是移动中继的小区,下面将详细描述LMF确定第一小区是移动中继的小区的几种可能的设计。
第一种可能的设计是,第一小区的信息中包括第一小区的Cell ID,UE-LMF基于第一小区的Cell ID,确定第一小区是移动中继的小区。一示例,UE-LMF预存有至少一个移动中继的小区的Cell ID,UE-LMF基于第一小区的Cell ID,可以确定第一小区是移动中继的小区。如表1所示,UE-LMF预存有10个Cell ID(移动中继的小区),分别为Cell ID#1、Cell ID#2、…Cell ID#10,UE-LMF基于第一小区的Cell ID,可以确定第一小区是移动中继的小区。
表1
又一示例,UE-LMF预存有非移动中继的小区的Cell ID及其对应的位置信息,UE-LMF基于第一小区的Cell ID,可以确定第一小区不是非移动中继的小区,也即,第一小区是移动中继的小区。如表2所示,表2中示出了多个Cell ID和位置信息的对应关系,例如,Cell ID#1对应的位置信息为位置信息#1。
表2
第二种可能的设计是,第一小区的信息中还包括:第一指示信息,该第一指示信息用于指示第一小区为移动中继的小区,LMF基于第一指示信息,可以确定第一小区是移动中继的小区。一示例,该指示信息可以是标志位,如,标志位为1表示第一小区是移动中继的小区,标志位为0表示第一小区是非移动中继的小区。
可选地,服务于终端设备的LMF可以基于第一小区的信息中包括的第一指示信息,确定触发针对移动中继发起第二定位流程。示例性地,服务于终端设备的LMF接收到第一定位流程的测量数据,该测量数据中包括第一小区的信息,第一小区的信息包括第一指示信息,LMF可以基于该第一指示信息,触发针对移动中继发起第二定位流程,可以理解为,第一指示信息触发服务于终端设备的LMF获取第一信息,服务于终端设备的LMF进而根据第一信息,触发针对移动中继发起第二定位流程。
步骤802,LMF获取第一信息,该第一信息与移动中继相关联。
UE-LMF确定第一小区是移动中继的小区后,获取第一信息,第一信息与移动中继相关联,也即,UE-LMF确定第一小区与哪个移动中继关联,进而可以确定对哪个移动中继进行定位测量。
一种可能的实现方式是,UE-LMF向第一网元发送第二请求消息,该第二请求消息包含第一小区的小区标识,进而从第一网元接收第二响应消息,第二响应消息包含第一信息。 换言之,UE-LMF从第一网元请求第一信息。
可选地,第一网元可以是接入网设备,也可以是UDM、UDR、或NRF。
一示例,UE-LMF从UDM、UDR、或NRF中的任意一个网元获取第一信息,以UDM为例,UDM中预存有小区标识、服务于移动中继的AMF的标识、移动中继的标识的对应关系。示例性地,UE-LMF向UDM发送请求消息,该请求消息包含第一小区的小区标识,UDM基于第一小区的小区标识,可以确定出对应的AMF的标识和移动中继的标识,上述AMF是服务于移动中继的AMF。进一步地,UDM将AMF的标识和移动中继的标识中的至少一种发送给UE-LMF,相应地,UE-LMF接收来自UDM的响应消息,该响应消息包含第一信息,第一信息包括AMF的标识和移动中继的标识中的至少一种。UDM中预存有小区标识、服务于移动中继的AMF的标识、移动中继的标识的对应关系如下表3所示:
表3
如表3所示,表3中示出了多个Cell ID、AMF的标识以及移动中继的标识的对应关系,例如,Cell ID#1对应的AMF的标识为AMF ID#1,移动中继的标识为移动中继的标识#1。
需要注意的是,UDM存储有上述对应关系的方法可以是:以VMR为例,VMR的MT功能向网络发起注册流程,具体地,VMR向接入网设备发送注册请求消息,该注册请求消息中携带有该VMR的小区对应的小区标识(例如Cell ID)。接入网设备为VMR的MT功能选择AMF,并向服务VMR的AMF发送注册请求消息,该注册请求消息中携带该VMR的小区对应的小区标识(例如Cell ID)。服务VMR的AMF将VMR的小区对应的小区标识发送给UDM,则UDM将VMR的MT功能的标识、服务VMR的AMF的标识以及VMR的小区对应的小区标识存储起来。
需要注意的是,UDM中可以存储有上述对应关系,换言之,UE-LMF可以从UDM中获取服务于移动中继的AMF的标识和移动中继的标识中的至少一种,但不应对本申请实施例构成任何限定,例如NRF或UDR也可以存储有上述对应关系,也即,UE-LMF也可以从NRF或UDR中获取服务于移动中继的AMF的标识和移动中继的标识中的至少一种。
其中,移动中继的标识可以是移动中继的MT功能的标识,或者可以是IAB-UE的标识。示例性地,移动中继的标识可以是VMR-MT的用户永久标识符(subscription permanent identifier,SUPI),或者是IAB-UE的SUPI。
又一示例,UE-LMF从接入网设备中获取第一信息。示例性地,UE-LMF向接入网设备发送请求消息,该请求消息包含第一小区的小区标识。接入网设备基于第一小区的小区标识,确定出该小区标识对应的服务于移动中继的AMF的标识,接入网设备向UE-LMF发送响应消息,该响应消息包含第一信息,第一信息包括上述AMF的标识。相应地,UE-LMF接收来自接入网设备的响应消息,以获取到AMF的标识。
需要注意的是,接入网设备本地存储有移动中继的上下文信息,该上下文信息包含移 动中继的第一小区的小区标识、服务该移动中继的AMF的标识。当接入网设备接收到来自UE-LMF的请求消息时,可以根据移动中继的上下文信息确定与第一小区的小区标识对应的AMF的标识。
可选地,UE-LMF还可以从服务于终端设备的AMF获取第一信息。
其中,第一信息包括服务于移动中继的AMF的标识和/或移动中继的标识。
需要说明的是,若UE-LMF从服务于终端设备的AMF获取第一信息,则UE-LMF针对终端设备的第一定位流程可以在获取第一信息之后,也即,UE-LMF可以在获取到第一信息之后,才会发起针对终端设备的第一定位流程;若UE-LMF从UDM、UDR、NRF或接入网设备获取第一信息,则UE-LMF针对终端设备的第一定位流程可以在获取第一信息之前,也即,UE-LMF可以在获取到第一定位流程的测量数据之后,才会获取第一信息。总的来说,本申请实施例不限定步骤801和步骤802的先后顺序。
一种可能的实现方式是,服务于终端设备的AMF(记为UE-AMF)获取到第一信息,并将第一信息发送给服务于终端设备的LMF,相应地,服务于终端设备的LMF获取到第一信息。
其中,UE-AMF获取第一信息的过程如下:
一种可能的设计是,UE-AMF从UDM、NRF、或UDR中获取第一信息,以UDM为例,UDM中预存有小区标识、服务于移动中继的AMF的标识、移动中继的标识的对应关系。示例性地,UE-AMF向UDM发送请求消息,该请求消息包含第一小区的小区标识,UDM基于第一小区的小区标识,可以确定出对应的服务于移动中继的AMF的标识和移动中继的标识。进一步地,UDM将服务于移动中继的AMF的标识和移动中继的标识中的至少一种发送给UE-AMF,相应地,UE-AMF接收来自UDM的响应消息,该响应消息包含第一信息,第一信息包括服务移动中继的AMF的标识和移动中继的标识中的至少一种。UDM中预存有小区标识、服务移动中继的AMF的标识、移动中继的标识的对应关系可以参看表3所示。
需要注意的是,UDM存储有上述对应关系的方法可以参考步骤802中的相关描述,此处不再赘述。
另一种可能的设计是,UE-AMF从接入网设备中获取第一信息。示例性地,UE-AMF向接入网设备发送请求消息,该请求消息包含第一小区的小区标识。接入网设备基于第一小区的小区标识,确定出该小区标识对应的服务于移动中继的AMF的标识,并向UE-AMF发送响应消息,响应消息包含第一信息,第一信息包括上述服务移动中继的AMF的标识。相应地,UE-AMF接收来自接入网设备的响应消息,以获取到服务移动中继的AMF的标识。
需要说明的是,接入网设备本地存储有移动中继的上下文信息,该上下文信息包含移动中继的小区标识、服务于移动中继的AMF的标识。当接入网设备接收来自UE-AMF的请求消息时,可以根据移动中继的上下文信息确定与Cell ID of VMR对应的服务于移动中继的AMF的标识。
此外,接入网设备还可以主动将服务移动中继的AMF的标识发送至UE-AMF。例如,接入网设备向UE-AMF发送该终端设备关联的N2消息时,该N2消息中携带服务移动中继的AMF的标识。
UE-AMF获取到第一信息后,向UE-LMF发送第一信息的过程如下:
UE-AMF向UE-LMF发送定位请求消息(也可以直接称为请求消息,本申请实施例对此不作限定),该定位请求消息用于触发针对终端设备发起第一定位流程,定位请求消息包括第一信息,该第一信息用于触发针对移动中继发起第二定位流程。
作为一种实现方法,UE-AMF向UE-LMF发送定位请求消息,该定位请求消息包括的第一信息包括服务于移动中继的AMF的标识和移动中继的标识。该定位请求消息中还包括与终端设备关联的LCS相关标识(LCS Correlation identifier)。相应地,UE-LMF接收到上述定位请求消息后,分别触发对终端设备和对移动中继进行定位。由于定位请求消息中携带有服务移动中继的AMF的标识和移动中继的标识,UE-LMF可以直接根据该AMF的标识触发该AMF对移动中继发起定位流程,示例性地,UE-LMF可以通过5GC-MT-定位请求(location request,LR)流程触发对移动中继的定位流程。
作为另一种实现方法,UE-AMF向UE-LMF发送定位请求消息,该定位请求消息包括的第一信息包括移动中继的标识。该定位请求消息还携带与终端设备关联的LCS Correlation identifier。相应地,UE-LMF接收到上述定位请求消息后,分别触发对终端设备和对移动中继进行定位。由于定位请求消息中只携带有移动中继的标识,UE-LMF可以作为定位客户端触发核心网针对该移动中继发起定位流程。示例性地,UE-LMF可以通过5GC-MT-LR流程触发对移动中继的定位流程。
步骤803,LMF根据第一信息,发送第一请求消息,该第一请求消息用于触发针对移动中继发起第二定位流程。
其中,第一请求消息例如可以是下文所述的定位请求消息1。
UE-LMF根据第一信息,发起第二定位流程,该第二定位流程用于定位移动中继。例如,UE-LMF作为定位客户端向GMLC发送定位请求消息1,GMLC向服务于移动中继的AMF发送定位请求消息2。
一种可能的设计是,UE-LMF从UDM、UDR、或NRF中获取到第一信息,第一信息包括服务于移动中继的AMF的标识和移动中继的标识,UE-LMF向GMLC发送定位请求消息1,该定位请求消息1中携带有服务于移动中继的AMF的标识和移动中继的标识,GMLC基于接收到的上述AMF的标识和移动中继的标识,将定位请求消息2发送给对应的AMF。其中,GMLC发送的定位请求消息2中携带有移动中继的标识,以指示AMF对哪个移动中继发起定位流程,即第二定位流程。
另一种可能的设计是,UE-LMF从UDM、UDR、或NRF中获取到第一信息,以UDM为例,第一信息包括AMF的标识和移动中继的标识中的一种,以第一信息中包含移动中继的标识为例,UE-LMF向GMLC发送定位请求消息1,该定位请求消息1中携带有移动中继的标识,GMLC接收到定位请求消息1后,根据移动中继的标识从UDM中查询服务移动中继的AMF的标识,并将定位请求消息2发送给对应的AMF。可以理解,GMLC发送的定位请求消息2中携带有移动中继的标识,以指示GMLC根据移动中继的标识确定服务移动中继的AMF(例如GMLC根据移动中继的标识从UDM查询移动中继的AMF的标识),进而指示该AMF对哪个移动中继发起定位流程,即第二定位流程。
又一种可能的设计是,UE-LMF从接入网设备获取到第一信息,第一信息包括服务于移动中继的AMF的标识。UE-LMF向GMLC发送定位请求消息1,该定位请求消息1中 携带有移动中继的AMF的标识和第一小区的小区标识,GMLC接收到定位请求消息1后,将定位请求消息2发送给对应的AMF。其中,GMLC发送的定位请求消息2中携带有第一小区的小区标识,以用于AMF基于小区标识确定对应的移动中继的标识,也即确定对哪个移动中继发起定位流程,即第二定位流程。
可以理解,因UE-LMF向GMLC发送的定位请求消息中携带的内容和GMLC向服务于移动中继的AMF发送的定位请求消息中携带的内容可能不同,为便于区分,这里将UE-LMF向GMLC发送的定位请求消息记为定位请求消息1,将GMLC向服务于移动中继的AMF发送的定位请求消息记为定位请求消息2。
需要注意的是,服务于移动中继的AMF基于小区标识确定对应的移动中继的标识的方式如下:服务移动中继的AMF本地存储有移动中继的上下文信息,该上下文信息包含移动中继的第一小区的小区标识、移动中继的标识。当AMF接收定位请求消息时,可以根据移动中继的上下文信息确定与第一小区的移动中继对应的移动中继的标识。
步骤804,LMF接收上述移动中继的位置信息。
其中,上述LMF为服务于终端设备的LMF,该位置信息是根据第二定位流程确定的。
一种可能的实现方式是,服务于移动中继的LMF针对移动中继发起第二定位流程,例如,移动中继可以基于接入网设备的小区的信号进行测量(即采用终端设备辅助的定位流程),以得到第二定位流程的测量数据。又例如,接入网设备可以基于移动中继发送的信号进行测量(即网络辅助的定位流程),以得到第二定位流程的测量数据。其中,针对移动中继的定位流程跟针对终端设备的定位流程的具体执行过程类似。在第二定位流程中,网络侧会为移动中继选择LMF,该LMF负责根据第二定位流程的测量数据确定移动中继的位置信息。
此外,需要说明的是,服务于移动中继的LMF还可以同时采用终端设备辅助的定位流程以及网络辅助的定位流程,发起第二定位流程。即,可以理解为,本申请中的第二定位流程中同时包含终端设备辅助的定位流程以及网络辅助的定位流程。
服务于移动中继的LMF根据第二定位流程的测量数据计算出移动中继的位置信息(假设服务于移动中继的LMF已知接入网设备的位置)之后,将移动中继的位置信息发送至服务于终端设备的LMF。相应地,服务于终端设备的LMF获取到移动中继的位置信息。
可以理解的是,服务于终端设备的LMF和服务于移动中继的LMF可以是同一个LMF,也可以是不同的LMF。
步骤805,LMF根据移动中继的位置信息和第一定位流程的测量数据,确定终端设备的位置。
服务于终端设备的LMF获取到该移动中继的位置信息,再结合第一定位流程的测量数据(即终端设备的定位测量数据),计算出终端设备的位置。
图9和图10是对图8所示的实施例中所述的通信方法的一示例。图9和图10所示的实施例的不同之处在于,图9所示的实施例中,UE-LMF从UDM获取第一信息,图10所示的实施例中,UE-LMF从接入网设备获取第一信息。
如图9所示,图9所示的方法包括步骤901至步骤924,下面将对图9所示方法的各个步骤进行详细描述。应理解,图9中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,UE-LMF是服务于终端设 备的LMF,VMR-LMF是服务于VMR的LMF。
还应理解,在本申请实施例中,服务于UE的AMF和服务于VMR的AMF可以是同一AMF,也可以是不同的AMF,类似地,服务于UE的LMF和服务于VMR的LMF可以是同一LMF,也可以是不同的LMF,本申请实施例对此不作限定。
步骤901,VMR获取到小区配置信息。
VMR从OAM获取小区配置信息,其中,小区配置信息包括VMR的小区的TAC和/或Cell ID。此外,VMR的DU功能向接入网设备发送F1setup(配置)流程,用于执行VMR的小区的激活,该流程可以参考已知的技术。可以理解为,VMR当前与该接入网设备进行连接,且该VMR接入的是该接入网设备的某个小区,该接入网设备还可以称为VMR节点的宿主基站。
步骤902,VMR向接入网设备发送注册请求消息。
VMR的MT功能向网络发起注册流程,具体地,VMR向接入网设备发送注册请求消息,该注册请求消息中携带该VMR的小区对应的小区标识(例如Cell ID),其中VMR的MT功能也可以理解为IAB-UE。
步骤903,接入网设备向VMR-AMF发送N2消息。
接入网设备为VMR的MT功能选择AMF,该AMF服务于VMR(也即VMR-AMF)。接入网设备向VMR-AMF发送N2消息,该N2消息中包括注册请求消息,注册请求消息中携带该VMR的小区对应的小区标识(如Cell ID)。
步骤904,VMR-AMF将VMR的小区对应的小区标识和VMR-AMF的标识发送给UDM。
示例性地,VMR-AMF向UDM发送请求消息,以请求UDM存储上述信息,该请求消息中携带有VMR的小区对应的小区标识、VMR-AMF的标识以及VMR的MT功能的标识(如SUPI或通用公共用户标识(generic public subscription identifier,GPSI))中的一项或多项。
步骤905,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。
UDM将VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID)以及VMR小区对应的小区标识(如Cell ID)存储起来。例如,不同的小区标识对应着不同的VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID),如图8中所述的表3所示。
可以理解,通过步骤902至步骤905,VMR可以将当前小区对应的小区标识上报给核心网,并触发核心网存储该小区标识以及VMR-AMF的标识之间的对应关系。此外,上述流程中的UDM还可以替换成UDR网元或者NRF网元。
应理解,图9仅是示例性地示出了通过注册流程上报当前小区对应的小区标识给核心网的一种实现方式,不应对本申请实施例构成任何限定。例如,VMR还可以通过业务请求(service request)流程将当前小区对应的小区标识上报给核心网。
步骤906,VMR-AMF接受VMR的注册流程,并向VMR发送注册接受消息。
步骤907,VMR发送广播消息。
可选地,该广播消息中可以携带指示信息,该指示信息用于指示该小区是VMR的小区,即移动小区。
步骤908,UE注册到核心网。
UE通过VMR的小区进行接入并发起注册流程。具体的过程可以参看已知的技术。可以理解,UE当前接入的小区是VMR的小区(UE接入的VMR的小区跟VMR接入的接入网设备的小区是不同的小区)。由于VMR具备移动性,该VMR的小区的位置会随着VMR的移动而变化。
步骤909,UE-AMF向UE-LMF发送定位请求消息。
该定位请求消息用于触发UE-LMF针对UE执行定位。
例如,某个时刻UE-AMF触发对UE进行定位。该流程可能是外部定位客户端触发的,或者是UE触发的,本申请并不限定。UE-AMF选择服务于UE的LMF网元(UE-LMF),并向UE-LMF发送定位请求消息,触发UE-LMF对UE进行定位。
其中,UE-AMF向UE-LMF发送定位请求消息中包含与UE关联的LCS Correlation identifier。
步骤910,如果UE-LMF采用UE assisted positioning procedure,则向UE-AMF发送下行定位消息(downlink positioning message,DL positioning message)。
步骤911,UE-AMF向UE发送上述下行定位消息。
相应地,UE接收下行定位消息。
步骤912,UE接收下行定位消息之后,根据周围小区发送的定位参考信号(PRS)进行定位测量,其中UE当前接入的VMR的小区也会发送PRS,UE可以使用该VMR的小区的PRS进行测量。
应理解,UE还可以使用周围小区的其他PRS进行测量,例如,安装在车外道路两边的基站,即固定位置的小区发送的PRS。
还应理解,UE还可以使用VMR的其他小区的PRS进行测量,也即,UE接入的VMR的小区和用于定位测量的小区可以是同一小区,也可以是不同的小区。
例如,UE当前接入的小区为小区1,小区1是VMR的小区,UE周围的小区还有小区2、小区3,小区2是VMR的小区,小区3是固定基站的小区,则UE可以使用小区1、小区2以及小区3中任意一个或多个小区的PRS进行定位测量。
步骤913,UE向UE-AMF发送上行定位消息。
该上行定位消息中携带有定位测量数据,其中,定位测量数据包含了小区标识,该小区标识用于指示该UE使用哪个小区的PRS进行测量。在本实施例中,UE使用该VMR小区的PRS进行测量,所以定位测量数据中的小区标识包含VMR的小区标识(Cell ID of VMR)。
可选地,上述上行定位消息中还携带有指示信息,该指示信息用于指示上述小区是VMR的小区,也即,该小区的位置随着VMR的移动而变化。
步骤914,UE-AMF将上行定位消息发送给UE-LMF。
本实施例中,如果是UE assisted positioning procedure,UE使用该VMR小区的PRS进行测量,因此,定位测量数据中的小区标识包含VMR的小区标识(Cell ID of VMR)。
其中,UE-AMF还将与UE关联的LCS Correlation identifier发送给UE-LMF。
需要说明的是,图中步骤910至步骤914是UE assisted positioning procedure。可选地,UE-LMF还可以采用network assisted positioning procedure,则步骤910至步骤914可以替 换为以下步骤一至步骤五:
步骤一,如果UE-LMF采用network assisted positioning procedure,则向UE-AMF发送网络定位消息(network positioning message)。
步骤二,UE-AMF将网络定位消息发送至接入网设备。
步骤三,接入网设备根据网络定位消息,触发VMR对UE进行定位测量。可以理解为,VMR收集UE的定位测量数据。例如,VMR对UE发送的信号进行定位测量,得到定位测量数据。
步骤四,接入网设备向UE-AMF发送网络定位消息。
该网络定位消息中携带有定位测量数据,其中,定位测量数据包含了小区标识,该小区标识用于指示该UE使用哪个小区的PRS进行测量。
步骤五,UE-AMF向UE-LMF发送上述网络定位消息。
如果是network assisted positioning procedure,VMR对UE发送的信号进行定位测量,因此,定位测量数据中的小区标识包含VMR的小区标识(Cell ID of VMR)。
可以看出,无论采用UE assisted positioning procedure还是network assisted positioning procedure,只要是使用了VMR的小区对UE进行定位测量,那么UE-LMF收到的定位测量数据中包含的Cell ID就会包含VMR的小区对应的小区标识。
需要说明的是,如果UE-LMF同时触发采用UE assisted positioning procedure以及network assisted positioning procedure对UE进行定位,那么步骤910至步骤914,以及步骤一至步骤五可以并行执行。
下面继续描述图9所示的实施例。
步骤915,UE-LMF基于定位测量数据,无法确定定位测量数据中包含的小区的地理位置。
以UE assisted positioning procedure为例说明,UE使用了VMR的小区的信号进行定位测量,VMR的小区处于移动状态,UE-LMF无法确定小区的位置,因此,需要对该小区的位置进行定位(即对VMR进行定位测量)。
一种可能的设计是,上行定位消息中包括小区的Cell ID,UE-LMF基于Cell ID,确定小区是VMR的小区。另一种可能的设计是,上行定位消息中还包括:第一指示信息,该第一指示信息用于指示小区为VMR的小区,UE-LMF基于第一指示信息,可以确定小区是移动中继的小区。关于上述两种设计的具体描述可以参看图8所示的实施例,此处不再详述。
步骤916,UE-LMF向UDM发送请求消息。
上述请求消息用于请求查询VMR-AMF的标识和/或VMR的标识,该请求消息中携带VMR的小区的小区标识(Cell ID of VMR)。
步骤917,UDM向UE-LMF发送响应消息。
该响应消息中携带VMR-AMF的标识和/或VMR的标识(如SUPI)。
示例性地,UDM存储有VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID)以及VMR小区对应的小区标识(如Cell ID)的对应关系,如图8所示实施例中的表3所示,UDM可以基于小区标识,查询其对应的VMR-AMF的标识和/或VMR的标识,并将上述信息返回给UE-LMF。
步骤918,UE-LMF向GMLC发送定位请求消息1。
例如,UE-LMF作为定位业务客户端触发5GC-MT-LR流程,该定位请求消息1用于触发对VMR进行定位。示例性地,该定位请求消息可以是LCS service request message。
应理解,UE-LMF向GMLC发送的定位请求消息中携带的内容(也即步骤918中的定位请求消息)和GMLC向服务于移动中继的AMF发送的定位请求消息(也即步骤919中的定位请求消息)中携带的参数可能不同,为便于区分,这里将UE-LMF向GMLC发送的定位请求消息记为定位请求消息1,将GMLC向服务于移动中继的AMF发送的定位请求消息记为定位请求消息2。
具体地,该定位请求消息1携带的参数有以下几种实现方式:
方式一,该定位请求消息1中携带VMR-AMF的标识和VMR的标识。这种情况下,GMLC可以根据VMR-AMF的标识确定服务VMR的AMF。
方式二,该定位请求消息1中携带VMR-AMF的标识和VMR的小区对应的小区标识。这种情况下,GMLC可以根据VMR-AMF的标识确定服务VMR的AMF。
方式三,该定位请求消息1中携带VMR的标识。这种情况下,GMLC可以根据VMR的标识向UDM进一步查询请求VMR-AMF的标识,从而确定服务VMR的AMF。
其中,根据步骤905,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。GMLC可以向UDM发送VMR的标识,UDM根据VMR的标识确定VMR-AMF的标识。
方式四,该定位请求消息1中携带VMR的小区对应的小区标识。这种情况下,GMLC可以根据VMR的小区对应的小区标识向UDM进一步查询请求VMR-AMF的标识和VMR的标识,从而确定服务VMR的AMF。
其中,根据步骤905,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。GMLC可以向UDM发送VMR的小区对应的小区标识,UDM根据VMR的小区对应的小区标识确定VMR-AMF的标识。
此外,上述几种实现方式中的UDM还可以替换成UDR网元或者NRF网元。
步骤919,GMLC向VMR-AMF发送定位请求消息2。
GMLC确定出VMR-AMF后,向VMR-AMF发送定位请求消息2,该定位请求消息2中携带的参数有以下几种实现方式:
1)该定位请求消息2中携带VMR的标识。例如,基于上述步骤918中的方式一、三和四的方法,GMLC获取VMR的标识。
2)该定位请求消息2中携带VMR的小区对应的小区标识。例如,基于上述步骤918中的方式二的方法,GMLC获取VMR的小区对应的小区标识。
示例性地,GMLC向VMR-AMF发送的定位请求消息可以是调用“Namf_Location_ProvidePositioningInfo”服务化操作的请求消息。
步骤920,VMR-LMF发起定位流程。
VMR-AMF选择定位网元LMF(VMR-LMF),该LMF负责定位VMR(即LMF负责定位VMR-MT或者IAB-UE)。VMR-LMF发起定位流程,该定位流程是针对VMR的定位流程,定位流程可以是UE assisted positioning procedure(VMR-MT使用接入网设备的小区的PRS进行定位测量),和/或,network assisted positioning procedure(接入网设备测量VMR-MT的位置)。具体的过程可以参看已知的技术,此处不再详述。
其中,VMR-LMF根据本次的定位测量数据计算出VMR的位置信息。进一步地,VMR-LMF将VMR的位置信息发送给VMR-AMF。相应地,VMR-AMF获取到VMR的位置信息。
步骤921,VMR-AMF向GMLC发送定位响应消息。
该定位响应消息中携带有对VMR的位置信息。该定位响应消息是步骤919中定位请求消息2的响应消息。
步骤922,GMLC向UE-LMF发送定位响应消息。具体地,GMLC向该UE-LMF发送定位服务(location services,LCS)响应。
该定位响应消息是步骤918中定位请求消息1的响应消息。相应地,UE-LMF接收定位响应消息,获取到VMR的位置信息。换言之,VMR-AMF通过GMLC向UE-LMF发送定位响应消息。
步骤923,UE-LMF根据VMR的位置信息和UE的定位测量数据,确定出UE的位置。
UE-LMF根据VMR的位置信息和UE的定位测量数据,计算出UE的位置。
其中,UE-LMF根据VMR的位置信息和UE的定位测量数据,计算出UE的位置的具体方法,本实施例对此不作限定。
步骤924,UE-LMF将UE的位置发送给UE-AMF。
如图10所示,图10所示的方法包括步骤1001至步骤1024,下面将对图10所示方法的各个步骤进行详细描述。图10和图9所示的实施例的不同之处在于,获取第一信息的方式不同。图10所示的实施例中,UE-LMF从接入网设备获取第一信息。
应理解,图10中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,UE-LMF是服务于终端设备的LMF,VMR-LMF是服务于VMR的LMF。
还应理解,在本实施例中,服务于UE的AMF和服务于VMR的AMF可以是同一AMF,也可以是不同的AMF,类似地,服务于UE的LMF和服务于VMR的LMF可以是同一LMF,也可以是不同的LMF,本实施例对此不作限定。
步骤1001,VMR获取到小区配置信息。
步骤1002,VMR向接入网设备发送注册请求消息。
该注册请求消息中携带该VMR的小区对应的小区标识(例如Cell ID)。
步骤1003,接入网设备向VMR-AMF发送N2消息。
该N2消息中包括注册请求消息,注册请求消息中携带该VMR的小区对应的小区标识(如Cell ID)。
步骤1001至步骤1003的具体过程可以参看图9中步骤901至步骤903的相关描述,此处不再详述。
步骤1004,VMR-AMF存储小区标识和VMR的标识。
步骤1005,VMR-AMF接受VMR的注册流程,并向VMR发送注册接受消息。
步骤1006,VMR发送广播消息。
可选地,该广播消息中可以携带指示信息,该指示信息用于指示该小区是VMR的小区,即该小区具有移动性。
步骤1007,UE注册到核心网。
UE通过VMR的小区进行接入并发起注册流程。具体的过程可以参看已知的技术。可以理解,UE当前接入的小区是VMR的小区(UE接入的VMR的小区跟VMR接入的接入网设备的小区是不同的小区)。由于VMR具备移动性,该VMR的小区也处于移动状态。
步骤1008,UE-AMF向UE-LMF发送定位请求消息。
某个时刻UE-AMF触发对UE进行定位。UE-AMF选择服务于UE的LMF网元(UE-LMF),并向UE-LMF发送定位请求消息,触发UE-LMF对UE进行定位。
其中,UE-AMF向UE-LMF发送定位请求消息中包含与UE关联的LCS Correlation identifier。
步骤1009,如果UE-LMF采用UE assisted positioning procedure,则向UE-AMF发送下行定位消息(DL positioning message)。
步骤1010,UE-AMF向UE发送上述下行定位消息。
相应地,UE接收下行定位消息。
步骤1011,UE进行定位测量。
UE接收下行定位消息之后,根据周围小区发送的定位参考信号(PRS)进行定位测量,其中UE当前接入的VMR的小区也会发送PRS,UE可以使用该VMR的小区的PRS进行测量。
步骤1012,UE向UE-AMF发送上行定位消息。
该上行定位消息中携带有定位测量数据,其中,定位测量数据包含了小区标识,该小区标识用于指示该UE使用哪个小区的PRS进行测量。
可选地,上述上行定位消息中还携带有指示信息,该指示信息用于指示上述小区是VMR的小区,也即,该小区具有移动性。
步骤1013,UE-AMF将上行定位消息发送给UE-LMF。
本实施例中,如果是UE assisted positioning procedure,UE使用该VMR的小区的PRS进行测量,因此,定位测量数据中的小区标识包含VMR的小区标识(Cell ID of VMR)。
其中,UE-AMF还将与UE关联的LCS Correlation identifier发送给UE-LMF。
需要说明的是,步骤1009至步骤1013的相关描述可以参看图9所示实施例中步骤910至步骤914的相关描述,此处不再详述。
需要说明的是,UE-LMF还可以同时触发采用UE assisted positioning procedure以及network assisted positioning procedure对UE进行定位。
步骤1014,UE-LMF基于定位测量数据,无法确定定位测量数据中包含的小区的地理位置。
以UE assisted positioning procedure为例说明,UE使用了VMR的小区的信号进行定位测量,VMR的小区处于移动状态,UE-LMF无法确定小区的位置,因此,需要对该小区的位置进行定位(即对VMR进行定位测量)。
一种可能的设计是,上行定位消息中包括小区的Cell ID,UE-LMF基于Cell ID,确定小区是VMR的小区。另一种可能的设计是,上行定位消息中还包括:第一指示信息,该第一指示信息用于指示小区为VMR的小区,UE-LMF基于第一指示信息,可以确定小区是移动中继的小区。
关于步骤1014的具体过程可以参看图8所示的实施例的描述,此处不再详述。
步骤1015,UE-LMF向接入网设备发送请求消息。
上述请求消息用于请求查询VMR-AMF的标识,该请求消息中携带VMR的小区的小区标识(Cell ID of VMR)。
具体地,UE-LMF可以通过UE-AMF向接入网设备发送请求消息。
步骤1016,接入网设备向UE-LMF发送响应消息。
该响应消息中携带VMR-AMF的标识。具体地,接入网设备可以通过UE-AMF向UE-LMF发送响应消息。
需要注意的是,接入网设备本地存储有VMR的上下文信息,该上下文信息包含VMR的小区标识、VMR-AMF的标识。当接入网设备接收来自UE-LMF的请求消息时,可以根据VMR的上下文信息确定与Cell ID of VMR对应的VMR-AMF的标识。
步骤1017,UE-LMF向GMLC发送定位请求消息1。
例如,UE-LMF作为定位业务客户端触发5GC-MT-LR流程,该定位请求消息1用于触发对VMR进行定位。示例性地,该定位请求消息1可以是LCS service request message。
可以理解,UE-LMF向GMLC发送的定位请求消息中携带的内容和GMLC向服务于移动中继的AMF发送的定位请求消息中携带的内容可能不同,为便于区分,这里将UE-LMF向GMLC发送的定位请求消息记为定位请求消息1,将GMLC向服务于移动中继的AMF发送的定位请求消息记为定位请求消息2。
具体地,该定位请求消息1携带VMR-AMF的标识和VMR的小区对应的小区标识。这种情况下,GMLC可以根据VMR-AMF的标识确定服务VMR的AMF。
步骤1018,GMLC向VMR-AMF发送定位请求消息2。
GMLC确定出VMR-AMF后,向VMR-AMF发送定位请求消息2,该定位请求消息2携带VMR的小区对应的小区标识。
示例性地,GMLC向VMR-AMF发送的定位请求消息2可以是调用“Namf_Location_ProvidePositioningInfo”服务化操作的请求消息。
步骤1019,VMR-AMF根据小区的标识确定VMR,选择VMR-LMF。
具体地,VMR-AMF根据步骤1004中存储小区标识和VMR的标识的对应关系以及定位请求消息2中携带的小区标识,确定对应的VMR。
步骤1020,VMR-LMF发起定位流程。其中,VMR-LMF根据本次的定位测量数据计算出VMR的位置信息。进一步地,VMR-LMF将VMR的位置信息发送给VMR-AMF。相应地,VMR-AMF获取到VMR的位置信息。
步骤1021,VMR-AMF向GMLC发送定位响应消息。
该定位响应消息中携带有VMR的位置信息。该定位响应消息是步骤1018中定位请求消息2的响应消息。
步骤1022,GMLC向UE-LMF发送定位响应消息。具体地,GMLC向该UE-LMF发送定位服务(location services,LCS)响应。
该定位响应消息是步骤1017中定位请求消息1的响应消息。相应地,UE-LMF接收定位响应消息,获取到VMR的位置信息。换言之,VMR-AMF通过GMLC向UE-LMF发送定位响应消息。
步骤1023,UE-LMF根据VMR的位置信息和UE的定位测量数据,确定出UE的位置。
步骤1024,UE-LMF将UE的位置发送给UE-AMF。
需要说明的是,步骤1015至步骤1024的详细过程可以参看图9所示实施例中步骤918至步骤924的相关描述,此处不再详述。
基于上述技术方案,针对终端设备的第一定位流程的测量数据中包括移动中继的小区的信息,则服务于终端设备的LMF进一步获取与移动中继关联的第一信息,如,服务于移动中继的AMF的标识,并根据第一信息,发送第一请求消息,用于触发针对上述移动中继发起定位流程,进而可以获取到移动中继的位置信息,这样一来,LMF可以基于移动中继的位置信息和终端设备的定位测量数据,确定出终端设备的位置。上述方案提供了终端设备的定位测量数据与移动中继关联的场景下,如何确定终端设备的位置的方法,从而解决了LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
下面对本申请实施例提供的另一通信方法(即上文提及的设计二的通信方法)进行详细描述,也即,服务于终端设备的AMF(记为UE-AMF)确定终端设备接入的第一小区是移动中继的小区后,获取用于标识移动中继的第一信息,并向服务于终端设备的LMF(记为UE-LMF)发送第一定位请求消息,第一定位请求消息包括第一信息,以触发针对终端设备发起第一定位流程,针对移动中继发起第二定位流程,进而获取到移动中继的位置信息。
图11是本申请实施例提供的通信方法1100的示意性流程图。图11所示的方法1100可以包括步骤1101至步骤1104。下面详细说明方法1100中的各个步骤。
步骤1101,UE-AMF确定终端设备接入的第一小区是移动中继的小区。
上述移动中继用于在终端设备和接入网设备之间提供中继服务,且上述移动中继具有移动性。
一种可能的实现方式是,UE-AMF接收来自接入网设备的第一消息,该第一消息中包括终端设备接入的第一小区的标识以及指示信息,该指示信息用于指示第一小区是移动中继的小区。可以理解为,接入网设备判断终端设备接入的第一小区是移动中继的小区,因此向UE-AMF发送第一小区的标识以及指示信息。
示例性地,UE-AMF接收来自接入网设备的N2消息,该N2消息包括第一消息,也即,包括第一小区的小区标识和指示信息,指示信息用于指示第一小区是移动中继的小区。可选地,该N2消息中还包括注册请求消息。
作为另外一种可能的实现方式是,UE-AMF接收来自接入网设备的第一消息,该第一消息中包括终端设备接入的第一小区的标识以及移动中继的接入的第二小区的标识,该第二小区是接入网设备的小区。UE-AMF可以根据移动中继的接入的第二小区的标识判断终端设备接入的第一小区是移动中继的小区。可以理解为,接入网设备判断终端设备接入的第一小区是移动中继的小区,因此向UE-AMF发送第一小区的标识以及第二小区的标识。换句话说,只有在终端设备接入移动中继的小区的情况下,第一消息才会包括两个小区的标识,而其中的一个小区标识(移动中继的接入的第二小区的标识)是接入网设备的小区的标识,这就说明了另一个小区标识是移动中继的小区的标识。
步骤1102,UE-AMF获取第一信息。
其中,第一信息包括服务于移动中继的AMF的标识和/或移动中继的标识。
一种可能的设计是,UE-AMF从UDM、UDR、或NRF中获取第一信息,以UDM为例,UDM中预存有小区标识、服务于移动中继的AMF的标识、移动中继的标识的对应关系。示例性地,UE-AMF向UDM发送请求消息,该请求消息包含第一小区的小区标识,UDM基于第一小区的小区标识,可以确定出对应的服务于移动中继的AMF的标识和移动中继的标识。进一步地,UDM将服务于移动中继的AMF的标识和移动中继的标识中的至少一种发送给UE-AMF,相应地,UE-AMF接收来自UDM的响应消息,响应消息包含第一信息,第一信息包括服务移动中继的AMF的标识和移动中继的标识中的至少一种。UDM中预存有小区标识、服务移动中继的AMF的标识、移动中继的标识的对应关系可以参看表3所示。
需要注意的是,UDM存储有上述对应关系的方法可以是:以VMR为例,VMR的MT功能向网络发起注册流程,具体地,VMR向接入网设备发送注册请求消息,该注册请求消息中携带有该VMR的小区对应的小区标识(例如Cell ID)。接入网设备为VMR的MT功能选择AMF,并向服务VMR的AMF发送注册请求消息,该注册请求消息中携带该VMR的小区对应的小区标识(例如Cell ID)。服务VMR的AMF将VMR的小区对应的小区标识发送给UDM,则UDM将VMR的MT功能的标识、服务VMR的AMF的标识以及VMR的小区对应的小区标识存储起来。
另一种可能的设计是,UE-AMF从接入网设备中获取第一信息。示例性地,UE-AMF向接入网设备发送请求消息,该请求消息包含第一小区的小区标识。接入网设备基于第一小区的小区标识,确定出该小区标识对应的服务于移动中继的AMF的标识,并向UE-AMF发送响应消息,响应消息包含第一信息,第一信息包括上述服务移动中继的AMF的标识。相应地,UE-AMF接收来自接入网设备的响应消息,以获取到服务移动中继的AMF的标识。
需要说明的是,接入网设备本地存储有移动中继的上下文信息,该上下文信息包含移动中继的小区标识、服务于移动中继的AMF的标识。当接入网设备接收来自UE-LMF的请求消息时,可以根据移动中继的上下文信息确定与Cell ID of VMR对应的服务于移动中继的AMF的标识。
此外,作为另一种实现方式,接入网设备还可以主动将服务移动中继的AMF的标识发送至UE-AMF。例如,在步骤1101中,接入网设备判断终端设备接入的第一小区是移动中继的小区,接入网设备向UE-AMF发送N2消息,N2消息中携带服务移动中继的AMF的标识。可以理解为,当接入网设备接收判断终端设备接入的第一小区是移动中继的小区时,接入网设备主动地将服务移动中继的AMF的标识发送至UE-AMF。
步骤1103,UE-AMF向UE-LMF发送第一请求消息,该第一请求消息中包含第一信息。
该第一请求消息(这里也可以称为第一定位请求消息)用于触发针对终端设备发起第一定位流程,第一请求消息包括第一信息,该第一信息用于触发针对移动中继发起第二定位流程。
示例性地,作为一种实现方法,UE-AMF向UE-LMF发送第一定位请求消息,第一定 位请求消息包括的第一信息包括服务于移动中继的AMF的标识和移动中继的标识。该第一定位请求消息中还包括与终端设备关联的LCS Correlation identifier。相应地,UE-LMF接收到上述第一定位请求消息后,分别触发对终端设备和对移动中继进行定位。其中,对终端设备的定位流程的具体步骤可以参看图9的相关描述。由于第一定位请求消息中携带有服务移动中继的AMF的标识和移动中继的标识,UE-LMF可以直接根据该AMF的标识触发该AMF对移动中继发起定位流程,示例性地,UE-LMF可以通过5GC-MT-LR流程触发对移动中继的定位流程。
示例性地,作为另一种实现方法,UE-AMF向UE-LMF发送第一定位请求消息,第一定位请求消息包括的第一信息包括移动中继的标识。该第一定位请求消息还携带与终端设备关联的LCS Correlation identifier。相应地,UE-LMF接收到上述第一定位请求消息后,分别触发对终端设备和对移动中继进行定位。其中,对终端设备的定位流程的具体步骤可以参看图9的相关描述。由于第一定位请求消息中只携带有移动中继的标识,UE-LMF可以作为定位客户端触发核心网针对该移动中继发起定位流程。示例性地,UE-LMF可以通过5GC-MT-LR流程触发对移动中继的定位流程。具体的对移动中继的定位流程可以参看图9的相关描述。
换句话说,这种设计二和设计一的区别在于,UE-LMF可以不用等基于定位测量数据无法确定出UE的位置才去确定移动中继的位置,而是直接触发该AMF(或者作为定位客户端触发核心网)对移动中继发起定位流程来确定移动中继的位置。
步骤1104,UE-LMF根据第一信息,发送第二请求消息。
具体地,UE-LMF根据第一信息,向GMLC发送第二请求消息(这里也可以称为第二定位请求消息),以触发对移动中继进行定位。
示例性地,第二定位请求消息可以是LCS service request message。第二定位请求消息例如可以是下文所述的定位请求消息2。
示例性地,如果步骤1103中,第一信息包含服务移动中继的AMF的标识和移动中继的标识,UE-LMF根据第一信息,向该GMLC发送定位请求消息2,该定位请求消息2中携带有服务移动中继的AMF的标识和移动中继的标识,GMLC基于服务移动中继的AMF的标识,确定出向哪一个服务移动中继的AMF发送定位请求消息3,GMLC进一步地向该服务移动中继的AMF发送定位请求消息3,该定位请求消息3中携带移动中继的标识。
如果步骤1103中,第一信息包含移动中继的标识,UE-LMF根据第一信息,向该GMLC发送定位请求消息2,该定位请求消息2中携带移动中继的标识,GMLC根据移动中继的标识向第一网元查询服务移动中继的AMF的标识,进而基于服务移动中继的AMF的标识,确定出向哪一个服务移动中继的AMF发送定位请求消息3,并向该服务移动中继的AMF发送定位请求消息3,该定位请求消息3中携带移动中继的标识。其中,第一网元存储服务移动中继的AMF的标识以及移动中继的标识。GMLC可以向第一网元发送移动中继的标识,第一网元根据移动中继的标识确定服务移动中继的AMF的标识。
可以理解,因UE-LMF向GMLC发送的定位请求消息中携带的内容和GMLC向服务于移动中继的AMF发送的定位请求消息中携带的内容不同,为便于区分,这里将UE-LMF向GMLC发送的定位请求消息记为定位请求消息2,将GMLC向服务于移动中继的AMF发送的定位请求消息记为定位请求消息3。
此外,图11所示的方法还包括:服务于终端设备的LMF接收根据第二定位流程的测量数据确定的移动中继的位置信息;根据第一定位流程的测量数据和移动中继的位置信息,确定终端设备的位置信息。
服务于移动中继的LMF针对移动中继发起第二定位流程,例如,移动中继可以基于接入网设备的小区的信号进行测量(即采用终端设备辅助的定位流程),以得到第二定位流程的测量数据。又例如,接入网设备可以基于移动中继发送的信号进行测量(即网络辅助的定位流程),以得到第二定位流程的测量数据。
此外,需要说明的是,服务于移动中继的LMF还可以同时采用UE assisted positioning procedure以及network assisted positioning procedure,发起第二定位流程。即,可以理解为,本申请中的第二定位流程中同时包含终端设备辅助的定位流程以及网络辅助的定位流程,那么第二定位流程的测量数据包括移动中继向服务于移动中继的LMF发送的定位测量数据以及接入网设备向服务于移动中继的LMF发送的定位测量数据。
服务于移动中继的LMF进一步地基于第二定位流程的测量数据,确定出移动中继的位置信息,并将移动中继的位置信息通过GMLC发送给服务于终端设备的LMF。
服务于终端设备的LMF接收移动中继的位置信息,再结合第一定位流程的测量数据(也即终端设备的定位测量数据),计算出终端设备的位置。
图12是对图11所示的实施例中所述的通信方法的详细流程示意图。
如图12所示,图12所示的方法包括步骤1201至步骤1223,下面将对图12所示方法的各个步骤进行详细描述。应理解,图12中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,UE-LMF是服务于终端设备的LMF,VMR-LMF是服务于VMR的LMF。
还应理解,在本申请实施例中,服务于UE的AMF和服务于VMR的AMF可以是同一AMF,也可以是不同的AMF,类似地,服务于UE的LMF和服务于VMR的LMF可以是同一LMF,也可以是不同的LMF,本申请实施例对此不作限定。
步骤1201,VMR获取到小区配置信息。
步骤1202,VMR向接入网设备发送注册请求消息。
该注册请求消息中携带该VMR的小区对应的小区标识(例如Cell ID)。
步骤1203,接入网设备向VMR-AMF发送N2消息。
该N2消息中包括注册请求消息,注册请求消息中携带该VMR的小区对应的小区标识(如Cell ID)。
步骤1204,VMR-AMF将VMR的小区对应的小区标识和VMR-AMF的标识发送给UDM。
步骤1205,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。
UDM将VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID)以及VMR小区对应的小区标识(如Cell ID)存储起来。例如,不同的小区标识对应着不同的VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID),如图8中所述的表3所示。
步骤1206,VMR-AMF接受VMR的注册流程,并向VMR发送注册接受消息。
步骤1201至步骤1206的具体过程可以参看图9中步骤901至步骤906的相关描述, 此处不再详述。
步骤1207,VMR发送广播消息。
可选地,该广播消息中可以携带指示信息,该指示信息用于指示该小区是VMR的小区,即该小区具有移动性。
步骤1208,UE通过VMR的小区接入。
UE通过VMR的小区进行接入并发起注册流程。具体的过程可以参看已知的技术。可以理解,UE当前接入的小区是VMR的小区(UE接入的VMR的小区跟VMR接入的接入网设备的小区是不同的小区)。由于VMR具备移动性,该VMR的小区也处于移动状态。
步骤1209,UE向接入网设备发送注册请求消息。
步骤1210,接入网设备向UE-AMF发送N2消息。
作为一种可能的实现方式,该N2消息中携带有小区标识、注册请求消息以及指示信息,指示信息用于指示终端设备接入的小区为VMR的小区。
作为另外一种可能的实现方式是,UE-AMF接收来自接入网设备的N2消息,该N2消息中包括VMR的小区的标识以及VMR接入的小区的标识,VMR接入的小区是接入网设备的小区。UE-AMF可以根据VMR接入的小区的标识判断终端设备接入的小区为VMR的小区。
步骤1211,UE-AMF向UDM发送请求消息。
某个时刻UE-AMF触发对UE进行定位。UE-AMF向UDM发送请求消息,该请求消息中携带有VMR的小区标识。
步骤1212,UDM向UE-AMF发送响应消息。
该响应消息中携带有VMR的标识和/或VMR-AMF的标识。
示例性地,UDM通过步骤1205存储了VMR的MT功能的标识(如SUPI或GPSI)、VMR-AMF的标识(AMF ID)以及VMR小区对应的小区标识(如Cell ID)的对应关系,如图8所示实施例中的表3所示,UDM可以基于VMR的小区标识,查询其对应的VMR-AMF的标识和/或VMR的标识,并将上述信息返回给UE-AMF。
此外,上述步骤中的UDM还可以替换成UDR网元或者NRF网元。
步骤1213,UE-AMF向UE-LMF发送定位请求消息。
UE-AMF选择服务于UE的LMF网元(UE-LMF),并向UE-LMF发送定位请求消息。
作为一种实现方法,该定位请求消息中携带有VMR的标识、VMR-AMF的标识以及终端设备关联的LCS Correlation identifier,以分别触发对UE和对VMR进行定位。
作为另一种实现方法,该定位请求消息中携带有VMR的标识、与UE关联的LCS Correlation identifier,以分别触发对UE和对VMR进行定位。
步骤1214,UE-LMF分别触发对UE和对VMR进行定位。
步骤1215,如果UE-LMF采用UE assisted positioning procedure,则向UE-AMF发送下行定位消息(DL positioning message)。
步骤1216,UE-LMF对UE进行定位。具体的定位流程可以参看图9的相关描述,此处不再赘述。
步骤1217,UE-LMF向GMLC发送定位请求消息2。
例如,UE-LMF作为定位业务客户端触发5GC-MT-LR流程,该定位请求消息2用于触发对VMR进行定位。示例性地,该定位请求消息2可以是LCS service request message。
具体地,该定位请求消息2携带的参数有以下几种实现方式:
方式一,该定位请求消息2中携带VMR-AMF的标识和VMR的标识。这种情况下,GMLC可以根据VMR-AMF的标识确定服务VMR的AMF。
方式二,该定位请求消息2中携带VMR-AMF的标识和VMR的小区对应的小区标识。这种情况下,GMLC可以根据VMR-AMF的标识确定服务VMR的AMF。
方式三,该定位请求消息2中携带VMR的标识。这种情况下,GMLC可以根据VMR的标识向UDM进一步查询请求VMR-AMF的标识,从而确定服务VMR的AMF。
其中,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。GMLC可以向UDM发送VMR的标识,UDM根据VMR的标识确定VMR-AMF的标识。
方式四,该定位请求消息2中携带VMR的小区对应的小区标识。这种情况下,GMLC可以根据VMR的小区对应的小区标识向UDM进一步查询请求VMR-AMF的标识和VMR的标识,从而确定服务VMR的AMF。
其中,UDM存储VMR-AMF的标识、小区标识以及VMR的标识。GMLC可以向UDM发送VMR的小区对应的小区标识,UDM根据VMR的小区对应的小区标识确定VMR-AMF的标识。
此外,步骤1217中的UDM还可以替换成UDR网元或者NRF网元。
应理解,UE-LMF向GMLC发送的定位请求消息中携带的内容和GMLC向服务于移动中继的AMF发送的定位请求消息中携带的内容可能不同,为便于区分,这里将UE-LMF向GMLC发送的定位请求消息记为定位请求消息2,将GMLC向服务于移动中继的AMF发送的定位请求消息记为定位请求消息3。
步骤1218,GMLC向VMR-AMF发送定位请求消息3。
GMLC确定出VMR-AMF后,向VMR-AMF发送定位请求消息3,该定位请求消息3中携带的参数有以下几种实现方式:
1)该定位请求消息3中携带VMR的标识。例如,基于上述方式一、三和四的方法,GMLC获取VMR的标识。
2)该定位请求消息3中携带VMR的小区对应的小区标识。例如,基于上述方式二的方法,GMLC获取VMR的小区对应的小区标识。
步骤1219,VMR-AMF发起定位流程。
VMR-AMF选择定位网元LMF(VMR-LMF),该LMF负责定位VMR(即VMR-MT)。VMR-LMF发起定位流程,该定位流程是针对VMR的定位流程,定位流程可以是UE assisted positioning procedure(VMR-MT使用接入网设备的小区的PRS进行定位测量),和/或,network assisted positioning procedure(接入网设备测量VMR-MT的位置)。具体的过程可以参看已知的技术,此处不再详述。其中,VMR-LMF根据本次的定位测量数据计算出VMR的位置信息。进一步地,VMR-LMF将VMR的位置信息发送给VMR-AMF。相应地,VMR-AMF获取到VMR的位置信息。
步骤1220,VMR-AMF向GMLC发送定位响应消息。
该定位响应消息中携带有对VMR的位置信息。该定位响应消息是步骤1218中定位请 求消息3的响应消息。
步骤1221,GMLC向UE-LMF发送定位响应消息。具体地,GMLC向该UE-LMF发送定位服务(location services,LCS)响应。该定位响应消息是步骤1217中定位请求消息2的响应消息。
相应地,UE-LMF接收定位响应消息,获取到对VMR的位置信息。换言之,VMR-AMF通过GMLC向UE-LMF发送定位响应消息。
需要说明的是,步骤1215至步骤1216和步骤1217至步骤1221可以同时进行,也可以分开进行,当分开进行时,本申请实施例对其先后顺序不作限定,换言之,针对UE的定位流程和针对VMR的定位流程的先后顺序不作限定。
步骤1222,UE-LMF根据VMR的位置信息和UE的定位测量数据,确定出UE的位置。
需要说明的是,步骤1222的详细过程可以参看图9的相关描述,此处不再详述。
步骤1223,UE-LMF将UE的位置发送给UE-AMF。
基于上述技术方案,服务于终端设备的AMF确定终端设备接入的第一小区是移动中继的小区后,获取用于标识移动中继的第一信息,并向服务于终端设备的LMF发送第一请求消息,第一请求消息包括第一信息,以触发针对终端设备发起第一定位流程,针对移动中继发起第二定位流程,以便于服务于终端设备的LMF获取到移动中继的位置信息,解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
下面对本申请实施例提供的又一通信方法(即上文提及的设计三的通信方法)进行详细描述,也即,终端设备接收来自移动中继的位置信息,基于来自移动中继的小区的信号进行定位测量,得到定位测量数据;终端设备向LMF发送第一消息,第一消息携带有移动中继的位置信息和定位测量数据,以便于LMF基于上述位置信息和定位测量数据,确定终端设备的位置信息。
图13是本申请实施例提供的通信方法1300的示意性流程图。图13所示的方法1300可以包括步骤1301至步骤1303。下面详细说明方法1300中的各个步骤。
步骤1301,终端设备接收来自移动中继的位置信息,该位置信息用于指示移动中继的位置。
其中,移动中继具有移动性。
移动中继可以通过如下方式获取自身的位置信息:移动中继的MT功能发起定位流程,请求从网络中获取自己的位置信息。具体的过程参考现有的移动始发定位(mobile originating location request,MO-LR)流程,这里不再赘述。服务移动中继的AMF将移动中继的位置信息返回至移动中继,进而移动中继获取到自身的位置信息。
终端设备接收来自移动中继的位置信息,一种可能的实现方式是,移动中继通过广播消息将自己的位置信息(如可以用地理位置信息来表示)进行广播。
可选地,广播消息中还可以携带定时器(timer),该定时器用于指示该位置信息的有效时间。
可选地,广播消息中还携带有指示信息,该指示信息用于指示移动中继具有移动性,也即移动中继的小区具有移动性。
作为一种实现方式,在本申请实施例中,广播消息可以是系统广播消息,该系统广播是一直发送的,换言之,终端设备从系统广播消息中获取的移动中继的位置信息是移动中继当前所处的位置的信息,当移动中继发生移动的情况下,系统广播消息中的移动中继的位置信息也会发生变化,这样一来,终端设备从系统广播消息中获取的移动中继的位置信息一直是当前的位置信息。
作为另一种实现方式,在本申请实施例中,广播消息可以是定位参考信号(PRS)广播消息,该PRS广播可以只在定位流程中才向终端设备发送,换言之,终端设备从PRS广播消息中获取的移动中继的位置信息是移动中继当前所处的位置的信息,当移动中继发生移动的情况下,PRS广播消息中的移动中继的位置信息也会发生变化,这样一来,终端设备从PRS广播消息中获取的移动中继的位置信息一直是当前的位置信息。
步骤1302,终端设备基于来自移动中继的小区的信号进行定位测量,得到定位测量数据。
某一时刻触发对终端设备的定位流程,终端设备可以基于来自移动中继的小区的信号进行定位测量,以得到定位测量数据,具体的对终端设备的定位流程可以参看图9的相关描述。
步骤1303,终端设备向LMF发送上述位置信息和定位测量数据。
上述位置信息和定位测量数据用于确定终端设备的位置信息。
终端设备从广播消息中获取移动中继的位置信息,基于来自移动中继的小区的信息进行定位测量后,向LMF发送上述位置信息和定位测量数据。
可选地,终端设备通过上行定位消息向LMF发送位置信息和定位测量数据,该上行定位消息中还可以携带有移动中继的小区的小区标识。小区标识用于指示终端设备是基于哪个小区的信号进行定位测量的。
可选地,图13所示的方法还包括:服务于终端设备的LMF基于移动中继的位置信息和对终端设备的定位测量数据,计算终端设备的位置。具体的计算过程可以参看已知的技术,此处不再详述。
图14是对图13所示的实施例中所述的通信方法的详细流程示意图。
如图14所示,图14所示的方法包括步骤1401至步骤1415,下面将对图14所示方法的各个步骤进行详细描述。应理解,图14中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,LMF是服务于终端设备的LMF。
步骤1401,VMR注册到核心网。具体的注册流程可以参考图9所示的实施例,此处不再赘述。
步骤1402,VMR获取到小区配置信息。
VMR从OAM获取小区配置信息,其中,小区配置信息包括VMR的小区的TAC和/或Cell ID。
步骤1403,VMR向接入网设备发送MO-LR请求消息。
具体地,VMR的MT功能向接入网设备发送MO-LR请求消息,MO-LR请求消息用于请求从网络中获取VMR的位置信息。
步骤1404,VMR-AMF发起MO-LR流程。具体的过程可以参看已知的技术。
步骤1405,VMR-AMF向VMR发送MO-LR响应消息,该响应消息中携带VMR的位置信息。其中,MO-LR响应消息是响应步骤1403中MO-LR请求消息的消息。
步骤1406,VMR发送广播消息,该广播消息中携带VMR的位置信息。
可选地,广播消息中还可以携带定时器,该定时器用于指示VMR的位置信息的有效时间,当定时器超时之前,VMR的位置信息有效,当定时器超时,该VMR的位置信息无效。
步骤1407,UE注册到核心网。具体过程可以参看图9中步骤908的描述。
步骤1408,UE-AMF向LMF发送定位请求消息。
某个时刻UE-AMF触发对UE进行定位。UE-AMF选择服务于UE的LMF网元(UE-LMF),并向LMF发送定位请求消息,触发LMF对UE进行定位。
步骤1409,如果LMF采用UE assisted positioning procedure,则向UE-AMF发送下行定位消息(DL positioning message)。
步骤1410,UE-AMF向UE发送上述下行定位消息。
相应地,UE接收下行定位消息。
步骤1411,UE进行定位测量,并从广播消息中获取VMR的位置信息。
例如,UE接收下行定位消息之后,根据周围小区发送的定位参考信号(PRS)进行定位测量,并从广播消息中获取VMR的位置信息。
应理解,UE还可以使用周围小区的其他PRS进行测量,例如,安装在车外道路两边的基站,即固定位置的小区发送的PRS。
还应理解,UE还可以使用VMR的其他小区的PRS进行测量,也即,UE接入的VMR的小区和用于定位测量的小区可以是同一小区,也可以是不同的小区。
例如,UE当前接入的小区为小区1,小区1是VMR的小区,UE周围的小区还有小区2、小区3,小区2是VMR的小区,小区3是固定基站的小区,则UE可以使用小区1、小区2以及小区3中任意一个或多个小区的PRS进行定位测量。
步骤1412,UE向UE-AMF发送上行定位消息。
该上行定位消息中携带有UE的定位测量数据和VMR的位置信息,其中,定位测量数据包含了小区标识,以UE assisted positioning procedure为例,该小区标识用于指示该UE使用哪个小区的PRS进行测量。
步骤1413,UE-AMF将上行定位消息发送给LMF。
步骤1414,LMF基于VMR的位置信息和UE的定位测量数据,计算出UE的位置。
其中,LMF基于VMR的位置信息和UE的定位测量数据,计算出UE的位置的方法,本申请不做限定。
步骤1415,LMF将UE的位置发送给UE-AMF。
基于上述技术方案,终端设备接收来自移动中继的位置信息,基于来自移动中继的小区的信号进行定位测量,得到定位测量数据;向LMF发送位置信息和定位测量数据,以便于LMF基于上述位置信息和定位测量数据,确定终端设备的位置信息。解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
下面对本申请实施例提供的设计四的通信方法进行详细描述,也即,接入网设备确定 终端设备接入的第一小区是移动中继的小区后,在LMF发起定位请求后,将终端设备的定位测量数据和移动中继的定位测量数据一起上报给LMF,以便于LMF确定终端设备的位置。
图15是本申请实施例提供的通信方法1500的示意性流程图。图15所示的方法1500可以包括步骤1501至步骤1504。下面详细说明方法1500中的各个步骤。
步骤1501,接入网设备确定终端设备接入的第一小区是移动中继的小区。
其中,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性,换言之,移动中继的小区具有移动性。
一种可能的实现方式是,接入网设备基于预存的配置信息和第一小区的信息,确定第一小区是移动中继的小区,第一小区的信息包括第一小区对应的TAC和/或小区标识,配置信息包括移动中继的小区信息,小区信息包括TAC和/或小区标识,移动中继的小区信息包括第一小区的信息。换言之,接入网设备预存有移动中继的小区信息,包括TAC和/或Cell ID,接入网设备将第一小区的信息和预存的移动中继的小区信息对比,若第一小区的信息包含在移动中继的小区信息中,则确定第一小区是移动中继的小区。其中,接入网设备预存的配置信息可以参看表4所示。
表4
例如,第一小区的TAC为TAC#1,Cell ID为Cell ID#1,则接入网设备确定该第一小区是移动中继的小区。
应理解,接入网设备中可以预存有移动中继的小区对应的TAC,或Cell ID,或TAC和Cell ID,本申请实施例对此不作限定。
另一种可能的实现方式是,接入网设备从移动中继或者终端设备接收第一指示信息,该第一指示信息用于指示第一小区为具有移动性的小区,和/或,移动中继具有移动性。一示例,终端设备可以向接入网设备指示终端设备接入的小区为具有移动性的小区。比如,终端设备在RRC消息中向接入网设备指示终端设备接入的小区为具有移动性的小区。又一示例,移动中继向接入网设备指示移动中继具有移动性。比如,移动中继向接入网设备发送的F1建立请求(F1setup request)消息中,携带移动中继具有移动性的指示信息。
综上,上述任一种方式均可以使得接入网设备确定终端设备接入的第一小区是移动中继的小区。接入网设备还可以通过其他方法确定终端设备接入的第一小区是移动中继的小区,比如接入网设备还可以通过OAM配置获取网络中哪些中继设备是移动中继。因此本申请并不限定接入网设备确定终端设备接入的第一小区是移动中继的小区的具体实现方式。
步骤1502,接入网设备接收来自LMF的第一请求消息,第一请求消息用于触发针对终端设备发起定位测量。
上述LMF是服务于终端设备的LMF。
示例性地,接入网设备接收来自LMF的第一请求消息,该第一请求消息用于触发针对终端设备发起定位测量。例如,接入网设备接收来自LMF的网络定位消息(network  positioning message)。接入网设备一方面会根据第一请求消息触发移动中继针对终端设备发起定位测量,此外,接入网设备确定第一小区是移动中继的小区,因此,接入网设备还触发对移动中继的MT功能进行定位测量,即接入网设备收集移动中继的定位测量数据。
例如,接入网设备向移动中继发送请求消息,触发移动中继对终端设备进行定位测量,即移动中继收集终端设备的定位测量数据。可以理解,移动中继可以将终端设备的定位测量数据发送给接入网设备,以便于接入网设备将移动中继的定位测量数据和终端设备的定位测量数据一起上报给服务于终端设备的LMF。
步骤1503,接入网设备获取移动中继的定位测量数据。
接入网设备接收到第一请求消息后,由于接入网设备确定第一小区是移动中继的小区,因此,接入网设备还会触发对移动中继的MT功能进行定位测量,即接入网设备收集移动中继的定位测量数据。
步骤1504,接入网设备向LMF发送第一响应消息,第一响应消息包括移动中继的定位测量数据和终端设备的定位测量数据。
接入网设备获取到终端设备的定位测量数据和移动中继的定位测量数据后,将其发送给LMF。例如,接入网设备基于网络定位消息(network positioning message),通过服务于终端设备的AMF,将终端设备的定位测量数据和移动中继的定位测量数据发送给LMF。
可选地,图15所示的方法还包括:UE-LMF根据终端设备的定位测量数据和移动中继的定位测量数据,确定终端设备的位置信息。
其中,由于移动中继的定位测量数据是接入网设备的小区进行收集的,该接入网设备的小区的位置信息对UE-LMF来说是已知的,因此UE-LMF根据移动中继的定位测量数据可以去确定移动中继的位置信息。进一步地,UE的定位测量数据是移动中继的小区进行收集的,UE-LMF根据移动中继的位置信息和UE的定位测量数据,计算出UE的位置信息。
图16是对图15所示的实施例中所述的通信方法的详细流程示意图。
如图16所示,图16所示的方法包括步骤1601至步骤1615,下面将对图16所示方法的各个步骤进行详细描述。应理解,图16中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,UE-LMF是服务于终端设备的LMF,VMR-LMF是服务于VMR的LMF。
步骤1601,VMR注册到核心网。具体的注册流程可以参考图9所示的实施例,此处不再赘述。
步骤1602,VMR获取到小区配置信息。
VMR从OAM获取小区配置信息,其中,小区配置信息包括VMR的小区的TAC和/或Cell ID。
步骤1603,VMR发送广播消息。
可选地,该广播消息中可以携带指示信息,该指示信息用于指示该小区是VMR的小区,即移动小区。
步骤1604,UE注册到核心网。
UE通过VMR的小区进行接入并发起注册流程。具体的过程可以参看已知的技术。可以理解,UE当前接入的小区是VMR的小区(UE接入的VMR的小区跟VMR接入的接 入网设备的小区是不同的小区)。由于VMR具备移动性,该VMR的小区也处于移动状态。
步骤1605,UE-AMF向UE-LMF发送定位请求消息。
某个时刻UE-AMF触发对UE进行定位。UE-AMF选择服务于UE的LMF网元(UE-LMF),并向UE-LMF发送定位请求消息,触发UE-LMF对UE进行定位。
步骤1606,如果UE-LMF采用network assisted positioning procedure,则向UE-AMF发送网络定位消息(network positioning message)。
步骤1607,UE-AMF将网络定位消息发送至接入网设备。
步骤1608,接入网设备确定UE接入的小区是VMR的小区。具体的流程可以参看图15中步骤1501的相关描述,此处不再赘述。
步骤1609,接入网设备对VMR进行定位测量。即接入网设备收集VMR的定位测量数据。
其中,接入网设备对VMR进行定位测量可以理解接入网设备对VMR-MT(或者IAB-UE)进行定位测量。
步骤1610,VMR对UE进行定位测量。
接入网设备向VMR发送请求消息,触发VMR对终端设备进行定位测量。可以理解为,VMR收集UE的定位测量数据。例如,VMR对UE发送的信号进行定位测量,得到定位测量数据。其中,VMR对UE发送的信号进行定位测量的参数,本申请不做限定。例如,VMR可以对UE所在的波束测量上行到达角。
需要说明的是,步骤1609和步骤1610可以同时进行,也可以分开进行,当两个步骤分开进行时,本申请不限定其执行的先后顺序,也即,本申请实施例不限定接入网设备对VMR进行定位测量和VMR对UE进行定位测量的先后顺序。
步骤1611,VMR向接入网设备发送UE的定位测量数据。
例如,VMR向接入网设备发送UE的定位测量数据的方法可以是:VMR通过F1接口,定位测量数据发送至接入网设备。
步骤1612,接入网设备向UE-AMF发送网络定位消息。
该网络定位消息中携带有UE的定位测量数据和VMR的定位测量数据,其中,UE的定位测量数据包含了小区标识,该小区标识用于指示UE的定位测量数据与哪个小区关联。同样地,VMR的定位测量数据包含了小区标识,该小区标识用于指示VMR的定位测量数据与哪个小区关联,例如,VMR-MT使用该接入网设备的小区的PRS进行测量,定位测量数据中的小区标识包含接入网设备的小区标识(Cell ID of NG-RAN)。表5示例性地示出了接入网设备上报的定位测量数据的内容。如表5所示,接入网设备上报的定位测量数据包括VMR执行的对UE进行定位的测量数据,例如,Cell ID of VMR和使用该小区对UE进行的定位测量报告。接入网设备上报的定位测量数据还包括接入网设备执行的对VMR-MT进行定位的测量数据,例如,Cell ID of NG-RAN,使用该小区对VMR-MT进行的定位测量报告。
表5

可选地,为了区分UE的定位测量数据和VMR的定位测量数据,该网络定位消息中还可以携带指示信息,用于指示哪个测量数据是UE的定位测量数据、哪个测量数据是VMR的定位测量数据。
步骤1613,UE-AMF向UE-LMF发送网络定位消息。
其中,网络定位消息中包括VMR的定位测量数据和UE的定位测量数据。
可选地,网络定位消息中还可以包括步骤1612中的指示信息。
步骤1614,UE-LMF计算UE的位置。
UE-LMF根据VMR的定位测量数据和UE的定位测量数据,计算出UE的位置信息。
其中,由于VMR的定位测量数据是接入网设备的小区进行收集的,该接入网设备的小区的位置信息对UE-LMF来说是已知的,因此UE-LMF根据VMR的定位测量数据可以去确定VMR的位置。进一步地,UE的定位测量数据是VMR的小区进行收集的,UE-LMF根据VMR的位置和UE的定位测量数据,计算出UE的位置信息。
作为一种实现方式,UE-LMF收到VMR的定位测量数据和UE的定位测量数据之后,无法判断UE的定位测量数据中包含的小区标识对应的小区的位置信息,则UE-LMF根据VMR的定位测量数据确定VMR的位置,然后根据VMR的位置和UE的定位测量数据,计算出UE的位置信息。可以理解为,VMR的定位测量数据与UE的定位测量数据中包含的小区标识关联,该VMR的定位测量数据就是为了确定UE的定位测量数据中包含的小区标识对应的小区的位置信息。
作为另外一种实现方式,UE-LMF根据网络定位消息中包括的指示信息获知哪个测量数据是VMR的定位测量数据,并根据该定位测量数据确定VMR的位置,然后UE-LMF根据VMR的位置和UE的定位测量数据,计算出UE的位置信息。
其中,UE-LMF根据VMR的定位测量数据和UE的定位测量数据,计算出UE的位置的具体方法,本实施例对此不作限定。
步骤1615,UE-LMF将UE的位置发送给UE-AMF。
基于上述技术方案,接入网设备确定终端设备接入的第一小区是移动中继的小区后,在LMF发起定位请求后,还会触发对移动中继进行定位测量,得到移动中继的定位测量数据,并将终端设备的定位测量数据和移动中继的定位测量数据一起上报给LMF,以便于LMF确定终端设备的位置。解决了服务于终端设备的LMF因移动中继的小区的位置不固定,而无法计算出终端设备的位置的问题,有利于准确地计算出终端设备的位置。
下面将结合图17详细描述本申请提供的另外一种通信方法,也即终端设备对用于定位测量的小区进行筛选,只使用非移动小区的信号进行测量,得到定位测量数据,以便于核心网设备基于上述定位测量数据,确定出终端设备的位置信息。
图17是本申请实施例提供的通信方法1700的示意性流程图。图17所示的方法1700可以包括步骤1701和步骤1702。下面详细说明方法1700中的各个步骤。
步骤1701,终端设备接收来自小区的广播消息,该广播消息中包括第一指示信息,该 第一指示信息用于指示小区的类型。
其中,小区的类型包括移动中继的小区或者非移动中继的小区(也即移动小区或非移动小区),移动中继具有移动性。
可以理解,上述广播消息中还携带有小区支持的TAC和/或小区标识。
示例性地,终端设备接收到来自小区1的广播消息,该广播消息中包括指示信息1,指示信息1指示小区1是移动中继的小区,类似地,终端设备接收到来自小区2的广播消息,该广播消息中包括指示信息2,指示信息2指示小区2是非移动中继的小区。换言之,终端设备可以确定周围的小区哪些是移动中继的小区,哪些是非移动中继的小区。
步骤1702,终端设备基于小区的类型为非移动中继的小区的信号进行定位测量,且定位测量排除了小区的类型为移动中继的小区。
终端设备选择非移动中继的小区的信号进行定位测量。
示例性地,终端设备确定小区1是移动中继的小区,小区2是非移动中继的小区,则终端设备选择小区2的信号进行定位测量。终端设备基于小区2的信号进行定位测量的具体流程可以参看已知的技术,此处不再详述。
图18是对图17所示的实施例中所述的通信方法的详细流程示意图。
如图18所示,图18所示的方法包括步骤1801至步骤1813,下面将对图18所示方法的各个步骤进行详细描述。应理解,图18中所示的方法中,移动中继以VMR为例,UE-AMF是指服务于UE的AMF,VMR-AMF是指服务于VMR的AMF,UE-LMF是服务于终端设备的LMF。
还应理解,在本申请实施例中,服务于UE的AMF和服务于VMR的AMF可以是同一AMF,也可以是不同的AMF,本申请实施例对此不作限定。
步骤1801,VMR注册到核心网。具体的注册流程可以参考图9所示的实施例,此处不再赘述。
步骤1802,VMR获取到小区配置信息。
VMR从OAM获取小区配置信息,其中,小区配置信息包括VMR的小区的TAC和/或Cell ID。
步骤1803,VMR发送广播消息。
可选地,该广播消息中可以携带第一指示信息,该第一指示信息用于指示该小区是VMR的小区,即移动小区。
步骤1804,UE注册到核心网。
UE通过VMR的小区进行接入并发起注册流程。具体的过程可以参看已知的技术。可以理解,UE当前接入的小区是VMR的小区(UE接入的VMR的小区跟VMR接入的接入网设备的小区是不同的小区)。由于VMR具备移动性,该VMR的小区也处于移动状态。
步骤1805,UE-AMF触发启动位置上报。某个时刻UE-AMF触发对UE进行定位。
步骤1606,UE-AMF向UE-LMF发送定位请求消息。
UE-AMF选择服务于UE的LMF网元(UE-LMF),并向UE-LMF发送定位请求消息,触发UE-LMF对UE进行定位。
步骤1807,如果UE-LMF采用UE assisted positioning procedure,则向UE-AMF发送 下行定位消息。
步骤1808,UE-AMF将下行定位消息发送至UE。
步骤1809,UE确定用于定位测量的小区。
UE基于小区的广播消息中携带的第一指示信息,确定哪些小区可以用于进行定位测量。示例性地,终端设备接收到来自小区1的广播消息,该广播消息中包括指示信息1,指示信息1指示小区1是移动中继的小区,类似地,终端设备接收到来自小区2的广播消息,该广播消息中包括指示信息2,指示信息2指示小区2是非移动中继的小区。则终端设备使用小区2的信号进行定位测量。
步骤1810,UE向UE-AMF发送上行定位消息。
该上行定位消息中携带有对终端设备的定位测量数据,定位测量数据中包括小区2的小区标识。定位测量数据用于UE-LMF确定终端设备的位置信息。
步骤1811,UE-AMF向UE-LMF发送上述上行定位消息。
步骤1812,UE-LMF基于定位测量数据,确定UE的位置。
UE-LMF根据预存的固定小区的位置信息以及对终端设备的定位测量数据,计算出UE的位置信息。
步骤1813,UE-LMF将UE的位置发送给UE-AMF。
基于上述技术方案,终端设备对用于定位测量的小区进行筛选,只使用非移动小区的信号进行测量,得到定位测量数据,以便于LMF基于上述定位测量数据,确定出终端设备的位置信息,通过只选用非移动中继的小区的信号进行定位测量,解决了LMF由于用于定位测量的小区的位置发生变化而无法确定终端设备的位置的问题,有利于LMF准确地计算出终端设备的位置。
图19至图22为本申请实施例提供的可能的通信装置的结构示意图。
图19是本申请实施例提供的通信装置1900的示意性框图。
如图19所示,通信装置1900包括处理单元1910和收发单元1920。
上述装置1900可以用于实现上述方法实施例中终端设备的功能,或者,上述装置1900可以包括用于实现上述方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。上述装置1900可以用于实现上述方法实施例中接入网设备的功能,或者,装置1900可以包括用于实现上述方法实施例中接入网设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。上述装置1900可以用于实现上述方法实施例中LMF的功能,或者,装置1900可以包括用于实现上述方法实施例中LMF的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。上述装置1900可以用于实现上述方法实施例中AMF的功能,或者,装置1900可以包括用于实现上述方法实施例中AMF的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
示例性地,当装置1900用于实现图8所示的方法实施例中LMF的功能时,收发单元1920用于接收第一定位流程的测量数据,第一定位流程的测量数据中包含第一小区的信息,第一小区是移动中继的小区,移动中继具有移动性;处理单元1910用于获取第一信息,第一信息与移动中继相关联;收发单元1920还用于根据第一信息,发送第一请求消息, 第一请求消息用于触发针对移动中继发起第二定位流程;收发单元1920还用于接收移动中继的位置信息,移动中继的位置信息是根据第二定位流程确定的;处理单元1910还用于基于移动中继的位置信息和第一定位流程的测量数据,确定终端设备的位置。
可选地,第一小区的信息中包括第一小区的小区标识;以及处理单元1910还用于:基于第一小区的小区标识,确定第一小区是移动中继的小区。
可选地,第一小区的信息中还包括:第一指示信息,第一指示信息用于指示第一小区为移动中继的小区。
可选地,第一小区的信息中还包括:第一指示信息;以及处理单元1910还用于:根据第一指示信息,确定触发针对移动中继发起第二定位流程。
可选地,处理单元1910具体用于向第一网元发送第二请求消息,第二请求消息包含第一小区的小区标识;从第一网元接收第二响应消息,第二响应消息包含第一信息。
可选地,第一网元为以下任一项:接入网设备、UDM、UDR、或NRF。
可选地,第一信息包括AMF的标识和移动中继的标识中的至少一种,AMF是服务于移动中继的AMF。
示例性地,当装置1900用于实现图11所示的方法实施例中LMF的功能时,收发单元1920用于接收第一请求消息,第一请求消息用于触发针对终端设备发起第一定位流程,第一定位请求消息中包含第一信息,第一信息包括AMF的标识和移动中继的标识中的至少一种,AMF是服务于移动中继的AMF,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性;收发单元1920用于根据第一信息,发送第二请求消息,第二请求消息用于触发针对移动中继发起第二定位流程。
示例性地,当装置1900用于实现图11所示的方法实施例中AMF的功能时,处理单元1910用于确定终端设备接入的第一小区是移动中继的小区,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性;处理单元1910还用于获取第一信息,第一信息包括服务于移动中继的AMF的标识和移动中继的标识中的至少一种;收发单元1920用于向LMF发送第一请求消息,第一请求消息用于触发针对终端设备发起第一定位流程,第一请求消息包括第一信息,第一信息用于触发针对移动中继发起第二定位流程。
可选地,处理单元1910具体用于接收来自接入网设备的第一消息,第一消息中包括终端设备接入的第一小区的标识以及指示信息,指示信息用于指示第一小区是移动中继的小区。
可选地,处理单元1910具体用于向第一网元发送第二请求消息,第二请求消息包括第一小区的小区标识;从第一网元接收第二响应消息,第二响应消息中包含第一信息。
可选地,第一网元为以下任一项:接入网设备、UDM、UDR、或NRF。
示例性地,当装置1900用于实现图13所示的方法实施例中终端设备的功能时,收发单元1920用于接收来自移动中继的位置信息,位置信息用于指示移动中继的位置,移动中继具有移动性;基于来自移动中继的小区的信号进行定位测量,得到定位测量数据;向LMF发送位置信息和定位测量数据,位置信息和定位测量数据用于确定终端设备的位置信息。
可选地,收发单元1920具体用于通过上行定位消息向LMF发送位置信息和定位测量 数据,上行定位消息中还携带有移动中继的小区的小区标识。
可选地,收发单元1920具体用于从广播消息中接收来自移动中继的位置信息,广播消息中携带有移动中继的位置信息。
示例性地,当装置1900用于实现图15所示的方法实施例中接入网设备的功能时,处理单元1910用于确定终端设备接入的第一小区是移动中继的小区,移动中继用于在终端设备和接入网设备之间提供中继服务,移动中继具有移动性;处理单元1910还用于获取移动中继的定位测量数据,移动中继的定位测量数据用于确定第一小区的位置;收发单元1920用于接收来自LMF的第一请求消息,第一请求消息用于触发针对终端设备发起定位测量;收发单元1920还用于向LMF发送第一响应消息,第一响应消息包括移动中继的定位测量数据和终端设备的定位测量数据,终端设备的定位测量数据包括第一小区的信息。
可选地,处理单元1910具体用于基于预存的配置信息和第一小区的信息,确定第一小区是移动中继的小区,第一小区的信息包括第一小区对应的TAC和/或小区标识,配置信息包括移动中继的小区信息,小区信息包括TAC和/或小区标识,移动中继的小区信息包括第一小区的信息。
可选地,处理单元1910具体用于从移动中继或者终端设备接收第一指示信息,第一指示信息用于指示第一小区为具有移动性的小区,和/或,移动中继具有移动性。
示例性地,当装置1900用于实现图17所示的方法实施例中终端设备的功能时,收发单元1920用于接收来自小区的广播消息,广播消息中包括第一指示信息,第一指示信息用于指示小区的类型,小区的类型包括移动中继的小区或者非移动中继的小区,移动中继具有移动性;处理单元1910用于基于小区的类型为非移动中继的小区的信号进行定位测量,且定位测量排除了小区的类型为移动中继的小区。
有关上述处理单元1910和收发单元1920更详细的描述可以直接参考上述方法实施例中相关描述直接得到,这里不加赘述。
应理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图20是本申请实施例提供的通信装置2000的另一示意性框图。该装置2000可以为芯片系统,或者,也可以为配置了芯片系统,以用于实现上述方法实施例中通信功能的装置。在本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图20所示,该装置2000可以包括处理器2010和通信接口2020。其中,通信接口2020可用于通过传输介质和其它设备进行通信,从而用于装置2000可以和其它设备进行通信。所述通信接口2020例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器2010可利用通信接口2020输入输出数据,并用于实现图8至图18对应的实施例中任一实施例所述的方法。具体地,该装置2000可用于实现上述方法实施例接入网设备、终端设备、LMF或AMF的功能。
当装置2000用于实现图8至图18对应的实施例中任一实施例所述的方法时,处理器2010用于实现上述处理单元1910的功能,通信接口2020用于实现上述收发单元1920的功能。
可选地,该装置2000还包括至少一个存储器2030,用于存储程序指令和/或数据。存储器2030和处理器2010耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2010可能和存储器2030协同操作。处理器2010可能执行存储器2030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述处理器2010、通信接口2020以及存储器2030之间的具体连接介质。本申请实施例在图20中以处理器2010、通信接口2020以及存储器2030之间通过总线2040连接。总线2040在图20中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图20中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图21是本申请实施例提供的接入网设备的结构示意图,例如可以为基站的结构示意图。该基站2100可执行上述方法实施例中接入网设备的功能。如图21所示,该基站2100可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)2110和一个或多个基带单元(BBU)(也可称为分布式单元(DU))2120。所述RRU 2110可以称为收发单元,与图19中的收发单元1920对应。可选地,该RRU 2110还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线2111和射频单元2112。可选地,RRU 2110可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 2110部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送配置信息。所述BBU 2120部分主要用于进行基带处理,对基站进行控制等。所述RRU 2110与BBU 2120可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 2120为基站的控制中心,也可以称为处理单元,可以与图19中的处理单元1910对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于接入网设备的操作流程。
在一个示例中,所述BBU 2120可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 2120还包括存储器2121和处理器2122。所述存储器2121用以存储必要的指令和数据。所述处理器2122用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接入网设备的操作流程。所述存储器2121和处理器2122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图21所示的基站2100能够实现上述方法实施例中涉及接入网设备的各个过程。基站2100中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
图22是本申请实施例提供的终端设备的结构示意图。该终端设备2200具有方法实施例中的终端设备的功能。如图22所示,该终端设备2200包括处理器2201和收发器2202。可选地,该终端设备2200还包括存储器2203。其中,处理器2201、收发器2202和存储器2203之间可以通过内部连接通路互相通信,传输控制和/或数据信号,该存储器2203用 于存储计算机程序,该处理器2201用于从该存储器2203中调用并运行该计算机程序,以控制该收发器2202收发信号。可选地,终端设备2200还可以包括天线2204,用于将收发器2202输出的上行数据或上行控制信令通过无线信号发送出去。可选地,该终端设备2200还包括Wi-Fi模块2211,用于接入无线网络中。
上述处理器2201可以和存储器2203可以合成一个处理装置,处理器2201用于执行存储器2203中存储的程序代码来实现上述功能。具体实现时,该存储器2203也可以集成在处理器2201中,或者独立于处理器2201。该处理器2201可以与图19中的处理单元1910或图20中的处理器2010对应。
上述收发器2202可以与图19中的收发单元1920或图20中的通信接口2020对应。收发器2202可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
可选地,上述终端设备2200还可以包括电源2205,用于给终端设备2200中的各种器件或电路提供电源。
除此之外,为了使得该终端设备的功能更加完善,该终端设备2200还可以包括输入单元2206、显示单元2207、音频电路2208、摄像头2209和传感器2210等中的一个或多个,所述音频电路还可以包括扬声器2208a、麦克风2208b等。
应理解,图22所示的终端设备2200能够实现方法实施例中涉及终端设备的各个过程。终端设备2200中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行图8至图18对应的实施例中任一实施例所述的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当所述计算机程序被运行时,使得计算机执行图8至图18对应的实施例中任一实施例所述的方法。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only  memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。本申请实施例中的单元和模块含义相同,可以交叉使用。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或 多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,应用于位置管理功能LMF,所述LMF服务于终端设备,所述方法包括:
    接收第一定位流程的测量数据,所述第一定位流程的测量数据中包含第一小区的信息,所述第一小区是移动中继的小区,所述移动中继具有移动性;
    获取第一信息,所述第一信息与所述移动中继相关联;
    根据所述第一信息,发送第一请求消息,所述第一请求消息用于触发针对所述移动中继发起第二定位流程;
    接收所述移动中继的位置信息,所述移动中继的位置信息是根据所述第二定位流程确定的;
    基于所述移动中继的位置信息和所述第一定位流程的测量数据,确定所述终端设备的位置。
  2. 如权利要求1所述的方法,其特征在于,所述第一小区的信息中包括所述第一小区的小区标识;以及所述方法还包括:
    基于所述第一小区的小区标识,确定所述第一小区是移动中继的小区。
  3. 如权利要求2所述的方法,其特征在于,所述第一小区的信息中还包括:第一指示信息,所述第一指示信息用于指示所述第一小区为移动中继的小区。
  4. 如权利要求2所述的方法,其特征在于,所述第一小区的信息中还包括:第一指示信息;以及所述方法还包括:
    根据所述第一指示信息,确定触发针对所述移动中继发起所述第二定位流程。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述获取第一信息,包括:
    向第一网元发送第二请求消息,所述第二请求消息包含所述第一小区的小区标识;
    从所述第一网元接收第二响应消息,所述第二响应消息包含所述第一信息。
  6. 如权利要求5所述的方法,其特征在于,所述第一网元为以下任一项:接入网设备、统一数据管理UDM、统一数据库UDR、或网络存储功能NRF。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一信息包括接入和移动性管理功能AMF的标识和所述移动中继的标识中的至少一种,所述AMF是服务于所述移动中继的AMF。
  8. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一信息是从服务于所述终端设备的AMF获取的。
  9. 一种通信方法,其特征在于,应用于接入和移动性管理功能AMF,所述AMF服务于终端设备,所述方法包括:
    确定所述终端设备接入的第一小区是移动中继的小区,所述移动中继用于在所述终端设备和接入网设备之间提供中继服务,所述移动中继具有移动性;
    获取第一信息,所述第一信息包括服务于所述移动中继的AMF的标识和所述移动中继的标识中的至少一种;
    向位置管理功能LMF发送第一请求消息,所述第一请求消息用于触发针对所述终端设备发起第一定位流程,所述第一请求消息包括所述第一信息,所述第一信息用于触发针对所述移动中继发起第二定位流程。
  10. 如权利要求9所述的方法,其特征在于,所述确定所述终端设备接入的第一小区是移动中继的小区,包括:
    接收来自所述接入网设备的第一消息,所述第一消息中包括所述终端设备接入的第一小区的标识以及指示信息,所述指示信息用于指示所述第一小区是移动中继的小区。
  11. 如权利要求9或10所述的方法,其特征在于,所述获取第一信息,包括:
    向第一网元发送第二请求消息,所述第二请求消息包括所述第一小区的小区标识;
    从所述第一网元接收第二响应消息,所述第二响应消息中包含所述第一信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一网元为以下任一项:接入网设备、统一数据管理UDM、统一数据库UDR、或网络存储功能NRF。
  13. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    接收来自移动中继的位置信息,所述位置信息用于指示所述移动中继的位置,所述移动中继具有移动性;
    基于来自所述移动中继的小区的信号进行定位测量,得到定位测量数据;
    向位置管理功能LMF发送所述位置信息和所述定位测量数据,所述位置信息和所述定位测量数据用于确定所述终端设备的位置。
  14. 如权利要求13所述的方法,其特征在于,所述向LMF发送所述位置信息和所述定位测量数据,包括:
    通过上行定位消息向所述LMF发送所述位置信息和所述定位测量数据,所述上行定位消息中还携带有所述移动中继的小区的小区标识。
  15. 如权利要求13或14所述的方法,其特征在于,所述接收来自移动中继的位置信息,包括:
    从广播消息中接收来自所述移动中继的位置信息,所述广播消息中携带有所述移动中继的位置信息。
  16. 一种通信方法,其特征在于,应用于接入网设备,所述方法包括:
    确定终端设备接入的第一小区是移动中继的小区,所述移动中继用于在所述终端设备和所述接入网设备之间提供中继服务,所述移动中继具有移动性;
    接收来自位置管理功能LMF的第一请求消息,所述第一请求消息用于触发针对所述终端设备发起定位测量;
    获取所述移动中继的定位测量数据,所述移动中继的定位测量数据用于确定所述第一小区的位置;
    向所述LMF发送第一响应消息,所述第一响应消息包括所述移动中继的定位测量数据和所述终端设备的定位测量数据,所述终端设备的定位测量数据包括所述第一小区的信息。
  17. 如权利要求16所述的方法,其特征在于,所述确定终端设备接入的第一小区是移动中继的小区,包括:
    基于预存的配置信息和所述第一小区的信息,确定所述第一小区是所述移动中继的小区,所述第一小区的信息包括所述第一小区对应的跟踪区域码TAC和/或小区标识,所述配置信息包括移动中继的小区信息,所述小区信息包括TAC和/或小区标识,所述移动中继的小区信息包括所述第一小区的信息。
  18. 如权利要求16所述的方法,其特征在于,所述确定终端设备接入的第一小区是移动中继的小区,包括:
    从所述移动中继或者所述终端设备接收第一指示信息,所述第一指示信息用于指示第一小区为具有移动性的小区,和/或,所述移动中继具有移动性。
  19. 一种通信方法,其特征在于,应用于位置管理功能LMF,所述LMF服务于终端设备,所述方法包括:
    获取移动中继的位置信息和所述终端设备的定位测量数据,所述移动中继具有移动性,所述移动中继的位置信息用于确定第一小区的位置,所述终端设备的定位测量数据包括所述第一小区的信息,所述第一小区是所述移动中继的小区;
    根据所述移动中继的位置信息和所述终端设备的定位测量数据,确定所述终端设备的位置。
  20. 如权利要求19所述的方法,其特征在于,所述获取移动中继的位置信息和所述终端设备的定位测量数据,包括:
    接收来自所述终端设备的所述移动中继的位置信息和所述终端设备的定位测量数据。
  21. 如权利要求19所述的方法,其特征在于,所述获取移动中继的位置信息和所述终端设备的定位测量数据,包括:
    接收来自接入网设备的所述移动中继的定位测量数据和所述终端设备的定位测量数据;
    基于所述移动中继的定位测量数据,确定所述移动中继的位置信息。
  22. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    接收来自小区的广播消息,所述广播消息中包括第一指示信息,所述第一指示信息用于指示所述小区的类型,所述小区的类型包括移动中继的小区或者非移动中继的小区,所述移动中继具有移动性;
    基于小区的类型为非移动中继的小区的信号进行定位测量,且所述定位测量排除了小区的类型为移动中继的小区。
  23. 一种通信装置,其特征在于,包括用于实现如权利要求1至22中任一项所述的方法的单元。
  24. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至22中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至22中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至22中任一项所述的方法。
PCT/CN2023/080004 2022-04-29 2023-03-07 一种通信方法及相关装置 WO2023207342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210469102.2A CN117014809A (zh) 2022-04-29 2022-04-29 一种通信方法及相关装置
CN202210469102.2 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207342A1 true WO2023207342A1 (zh) 2023-11-02

Family

ID=88517295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080004 WO2023207342A1 (zh) 2022-04-29 2023-03-07 一种通信方法及相关装置

Country Status (2)

Country Link
CN (1) CN117014809A (zh)
WO (1) WO2023207342A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104429154A (zh) * 2012-07-05 2015-03-18 日本电气株式会社 利用移动通信系统的定位
US20150312832A1 (en) * 2012-11-21 2015-10-29 Zte Corporation Method for Relocating Gateway, Mobile Management Entity and Host Base Station
EP3783986A1 (en) * 2019-08-19 2021-02-24 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for reducing interference caused to positioning signals in a wireless communication system
CN114365548A (zh) * 2019-09-16 2022-04-15 高通股份有限公司 无线通信系统中的中继发现
CN114365541A (zh) * 2019-09-16 2022-04-15 高通股份有限公司 中继切换确定

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104429154A (zh) * 2012-07-05 2015-03-18 日本电气株式会社 利用移动通信系统的定位
US20150312832A1 (en) * 2012-11-21 2015-10-29 Zte Corporation Method for Relocating Gateway, Mobile Management Entity and Host Base Station
EP3783986A1 (en) * 2019-08-19 2021-02-24 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for reducing interference caused to positioning signals in a wireless communication system
CN114365548A (zh) * 2019-09-16 2022-04-15 高通股份有限公司 无线通信系统中的中继发现
CN114365541A (zh) * 2019-09-16 2022-04-15 高通股份有限公司 中继切换确定

Also Published As

Publication number Publication date
CN117014809A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US11653178B2 (en) Positioning service level
WO2019157961A1 (zh) 通信方法及装置
US20230148189A1 (en) Apparatus and method for providing low-latency location information service in wireless communication system
WO2008092395A1 (fr) Procédé, système et dispositif de négociation de capacité de localisation dans un réseau wimax
WO2020168173A1 (en) Systems and architectures for support of high-performance location in a next generation radio access network
US20220225082A1 (en) Communication Method, Communication Apparatus, and Storage Medium
KR20210118608A (ko) UPF 서비스 기반 Packet Delay Status Event Exposure Service 방법 및 장치
WO2023207342A1 (zh) 一种通信方法及相关装置
WO2023060409A1 (zh) 感知控制方法、装置、设备、系统及存储介质
WO2022104531A1 (zh) 连接方法及相关装置
WO2023197772A1 (zh) 一种通信方法及相关装置
WO2023185424A1 (zh) 无线通信的方法和装置
CN116097764A (zh) 提供无线电接入和核心网络与相关节点之间灵活通信的方法
WO2023045741A1 (zh) 定位方法及装置、可读存储介质
WO2023071587A1 (zh) 通信方法和通信装置
US20230116776A1 (en) Method and device for controlling terminal connection state for providing ultra-low-latency location information service in wireless communication system
WO2023024948A1 (zh) 位置确定的方法和装置
WO2022022392A1 (zh) 一种终端设备的数据关联方法及装置
WO2023185423A1 (zh) 一种执行网络管理服务意图的方法、装置和系统
WO2023030018A1 (zh) 通信的方法和装置
WO2023051427A1 (zh) 通信的方法和装置
WO2022206850A1 (zh) 信息传递方法及装置
US20230262563A1 (en) Managing multiple subscriber identities in cellular network
WO2023179397A1 (zh) 一种授权方法及装置
WO2023103575A1 (zh) 组播/广播通信的方法与相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794778

Country of ref document: EP

Kind code of ref document: A1