WO2023207254A1 - 一种基于部分时间戳信息的无线传感器网络时间同步方法 - Google Patents

一种基于部分时间戳信息的无线传感器网络时间同步方法 Download PDF

Info

Publication number
WO2023207254A1
WO2023207254A1 PCT/CN2023/075322 CN2023075322W WO2023207254A1 WO 2023207254 A1 WO2023207254 A1 WO 2023207254A1 CN 2023075322 W CN2023075322 W CN 2023075322W WO 2023207254 A1 WO2023207254 A1 WO 2023207254A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
node
information
synchronization
timestamp information
Prior art date
Application number
PCT/CN2023/075322
Other languages
English (en)
French (fr)
Inventor
王恒
彭政岑
马文巧
Original Assignee
重庆邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学 filed Critical 重庆邮电大学
Publication of WO2023207254A1 publication Critical patent/WO2023207254A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the technical field of wireless sensor networks and relates to a wireless sensor network time synchronization method based on partial time stamp information.
  • the time synchronization problem in wireless sensor networks is the estimation of two clock parameters, clock frequency offset and phase offset.
  • the time synchronization method only considers the estimation of clock frequency deviation, although the deviation in clock operating frequency between nodes can be eliminated, the initial clock phase deviation will always exist, and true synchronization between nodes cannot be achieved.
  • the time synchronization method only considers the estimation of clock phase offset, although the local time between nodes can be consistent, it can only maintain synchronization for a short period of time. Because the existence of clock frequency deviation will cause clock deviation to accumulate rapidly, thereby shortening the synchronization period.
  • nodes In order to ensure that synchronization accuracy meets network requirements, nodes must frequently resynchronize, and excessive synchronization operations will cause a large amount of energy consumption. Therefore, to achieve long-term synchronization between nodes and avoid additional energy overhead due to synchronization requirements, it is necessary to jointly estimate the clock frequency deviation and phase deviation, and at the same time correct the clock frequency deviation and initial phase deviation between nodes.
  • the purpose of the present invention is to provide a wireless sensor network time synchronization method based on partial timestamp information. Without exchanging timestamps, it only relies on the local time of the preset clock source node to return the confirmation frame, to be synchronized.
  • the node can obtain synchronization information, jointly estimate the clock frequency offset and phase offset, and achieve synchronization with the reference node.
  • a wireless sensor network time synchronization method based on partial timestamp information which transmits partial timestamp information and response time interval information through the local time of the preset clock source node returning the confirmation frame, avoiding the interaction of timestamps, and targeting Gaussian
  • the maximum likelihood estimation method and the best linear unbiased estimation method are respectively used to simultaneously estimate the clock frequency offset and phase offset to achieve synchronization between nodes.
  • the node A to be synchronized sends a data packet to the clock source node at a fixed period T.
  • the node A to be synchronized sends an ordinary data packet without a timestamp to the clock source node B, and records the sent data packet. local time is
  • node A to be synchronized After receiving the acknowledgment frame, node A to be synchronized records the received local time. And calculate the response time interval compensation D i according to the communication cycle;
  • step S4 Determine whether the synchronization round has reached the set value N. If it has been reached, the node A to be synchronized will compensate the estimated clock frequency offset and phase offset according to the recorded timestamp and response time interval. Otherwise, return to step S1 to continue partial timestamp information exchange. ;
  • the node A to be synchronized corrects the clock according to the estimated clock frequency offset and phase offset, and synchronizes with the clock source node B.
  • step S3 the response time interval compensation D i is calculated according to the communication cycle as:
  • Get partial timestamp information and response interval information calculate:
  • d (AB) and d (BA) respectively represent the fixed delay experienced by information in the uplink and downlink
  • ⁇ (AB) and ⁇ (AB) respectively represent the node A to be synchronized relative to the clock source node B. clock frequency deviation and phase deviation; and represent the random delays experienced by information in the uplink and downlink respectively.
  • the maximum likelihood estimation method is used to estimate the clock frequency offset and phase offset.
  • the steps are as follows:
  • [ ⁇ ] j represents the j-th element of the vector [ ⁇ ].
  • R1 Reconstruct the linear clock parameter estimation model of node A to be synchronized:
  • is the rate parameter of exponential random delay.
  • R2 Based on the obtained observation information Derive the best linear unbiased estimator of clock frequency deviation ⁇ (AB) and clock phase deviation ⁇ (AB) .
  • the calculation formula is as follows:
  • C 1 is the covariance matrix of the noise matrix Z.
  • the method of the present invention can estimate both the clock frequency offset and the clock phase offset without exchanging timestamp information, achieving complete synchronization between nodes and making up for the time stamp-free synchronization.
  • Mechanism shortcomings At the same time, the synchronization function can be embedded in the sending and receiving of ordinary data, avoiding additional communication overhead.
  • the method of the present invention uses the maximum likelihood estimation method and the best linear unbiased estimation method respectively under the Gaussian random delay and exponential random delay models to achieve joint estimation of clock frequency deviation and phase deviation, enriching part of the time Application scenarios of stamp information synchronization mechanism.
  • Figure 1 is a schematic diagram of partial time stamp information synchronous communication of the present invention
  • Figure 2 is a flow chart of a partial timestamp information synchronization method according to an embodiment of the present invention
  • Figure 3 is a comparison diagram between clock frequency offset estimation performance and CRLB under Gaussian random delay according to the embodiment of the present invention
  • Figure 4 is a comparison diagram between clock phase offset estimation performance and CRLB under Gaussian random delay according to the embodiment of the present invention
  • Figure 5 is a diagram showing clock frequency offset estimation results under exponential random delay according to the embodiment of the present invention.
  • Figure 6 is a diagram showing clock phase offset estimation results under exponential random delay according to the embodiment of the present invention.
  • Figure 1 is a schematic diagram of partial timestamp information synchronization communication proposed by the present invention.
  • Node B is the clock source node B, which provides the reference time.
  • Node A is the node to be synchronized, which is synchronized through partial timestamp information. Method is synchronized with Node B.
  • Node A to be synchronized sends a data packet to clock source node B at a fixed period T.
  • node A to be synchronized in local time Send data packets to clock source node B at all times; clock source node B is in local time moment a packet is received and then waits for a period of time at the preset local time
  • the mathematical formula of the partial timestamp synchronization communication process between node A to be synchronized and clock source node B is expressed as follows:
  • ⁇ (AB) represents the clock frequency offset of node A to be synchronized relative to clock source node B
  • d (AB) represents the fixed delay experienced by the data packet in the uplink
  • ⁇ (AB) represents the clock phase deviation of the node A to be synchronized relative to the clock source node B
  • d ( BA ) represents the fixed time experienced by the acknowledgment frame in the downlink Yan
  • [ ⁇ ] j represents the j-th element of the vector [ ⁇ ].
  • CRLB Cramer-Rao Lower Bound
  • C 1 is the covariance matrix of the noise matrix Z.
  • FIG. 2 is a flow chart of a partial timestamp information synchronization method according to an embodiment of the present invention.
  • the present invention provides a clock frequency offset and phase offset estimation method based on a partial timestamp information synchronization mechanism, as shown in Figure 2.
  • the specific steps are as follows:
  • Node A to be synchronized sends a normal data packet to clock source node B, and records the local time sent as
  • clock source node B After clock source node B receives the data packet, it records the reception time as According to the relation Calculate the local time when the acknowledgment frame is returned, and then wait for a period of time before Return confirmation frame at all times;
  • node A to be synchronized After receiving the confirmation frame, node A to be synchronized records the received local time. And calculate the response time interval compensation;
  • Node A to be synchronized corrects the clock based on the estimated clock frequency offset and phase offset, and synchronizes with clock source node B;
  • Figure 3 shows a comparison chart of clock frequency offset estimation performance and CRLB under Gaussian random delay. It can be seen from the figure that the mean square error of the clock frequency offset ⁇ (AB) maximum likelihood estimator coincides with CRLB, and gradually decreases with the increase of the number of interactions N, which shows that the clock frequency under the Gaussian random delay described in the present invention The partial estimator is efficient.
  • Figure 4 shows a comparison chart between clock phase offset estimation performance and CRLB under Gaussian random delay. It can also be seen from the figure that the clock phase offset estimator of the present invention is effective under Gaussian random delay.
  • Figure 5 shows the clock frequency offset estimation results under exponential random delay. It can be seen from the figure that the mean square error of the best linear estimator of the clock frequency offset ⁇ (AB) reaches the order of 10 -2 , and gradually decreases with the increase of the number of interactions N, which shows that under the exponential random delay described in the present invention The clock frequency offset estimator is effective.
  • Figure 6 shows a diagram of the clock frequency offset estimation results under exponential random delay. It can also be seen from the figure that the clock phase offset estimator of the present invention is effective under exponential random delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于部分时间戳信息的无线传感器网络时间同步方法,属于无线传感器网络技术领域,本方法通过预设时钟源节点返回确认帧的本地时间传递部分时间戳信息和响应时间间隔信息,避免时间戳的交互,并针对高斯随机时延和指数随机时延,分别采用最大似然估计方法和最佳线性无偏估计方法同时估计时钟频偏与相偏,实现节点间的同步。本发明不依赖专用的同步帧传递同步信息,同步功能可以嵌入到现有的网络数据流中,有效减少了同步能耗。

Description

一种基于部分时间戳信息的无线传感器网络时间同步方法 技术领域
本发明属于属于无线传感器网络技术领域,涉及一种基于部分时间戳信息的无线传感器网络时间同步方法。
背景技术
从本质上来看,无线传感器网络中的时间同步问题就是时钟频偏与相偏两个时钟参数的估计问题。然而,如果时间同步方法只考虑时钟频偏的估计,虽然可以消除节点间时钟运行频率的偏差,但是初始的时钟相位偏差会一直存在,节点间无法达到真正的同步。另一方面,如果时间同步方法只考虑时钟相偏的估计,虽然节点间的本地时间可以达到一致,但只能维持短时间的同步。因为时钟频率偏差的存在会导致时钟偏差快速累积,进而缩短同步周期。为了保证同步精度符合网络要求,节点间就必须频繁地进行再同步,而过多的同步操作会带来大量的能量消耗。因此,要实现节点间的长时间同步,避免由于同步需求带来的额外能量开销,就必须对时钟频偏与相偏进行联合估计,同时校正节点间的时钟频率偏差和初始相位偏差。
目前,绝大多数无线传感器网络时间同步方案都需要完整的时间戳信息来估计时钟频偏与相偏。近年来,一种仅依靠有限时间戳信息就能实现时钟参数估计的同步方案备受关注。它通过接收者对发送者的预定义响应时间间隔传递同步信息,避免了时间戳的交互,因此称之为免时间戳同步。在该方案中,待同步节点利用自身收发数据包的时间戳以及已知的响应时间间隔信息进行时钟参数的估计,参数估计功能可以嵌入到现有的网络数据流,大幅度降低了同步能耗。但是现有的免时间戳同步方案只能提供时钟频偏的估计,无法提供时钟相偏的估计,在一定程度上制约了有限时间戳信息同步方案在实际无线传感器网络中的应用。
发明内容
有鉴于此,本发明的目的在于提供一种基于部分时间戳信息的无线传感器网络时间同步方法,在不交互时间戳的情况下,仅依靠预设时钟源节点返回确认帧的本地时间,待同步节点就能够获取同步信息,对时钟频偏与相偏进行联合估计,实现与参考节点的同步。
为达到上述目的,本发明提供如下技术方案:
一种基于部分时间戳信息的无线传感器网络时间同步方法,通过预设时钟源节点返回确认帧的本地时间传递部分时间戳信息和响应时间间隔信息,避免时间戳的交互,并针对高斯 随机时延和指数随机时延,分别采用最大似然估计方法和最佳线性无偏估计方法同时估计时钟频偏与相偏,实现节点间的同步。
进一步,具体包括以下步骤;
S1:待同步节点A以固定的周期T向时钟源节点发送数据包,在第i个通信周期中,待同步节点A发送不包含时间戳的普通数据包给时钟源节点B,并记录发送的本地时间为
S2:时钟源节点B接收到数据包后记录接收时刻为然后等待一段时间,在预设的本地时间时刻返回不含时间戳信息的确认帧,其中根据关系式计算返回确认帧的本地时间,ρ是一个大于1且接近于1的已知常数,Di是响应时间间隔补偿,定义为Di=ρ(i-1)T;
S3:待同步节点A接收到确认帧后记录接收的本地时间并根据通信周期计算响应时间间隔补偿Di
S4:判断同步轮次是否达到设定值N,若已达到,待同步节点A根据记录的时间戳和响应时间间隔补偿估计时钟频偏与相偏,反之返回步骤S1继续进行部分时间戳信息交互;
S5:待同步节点A根据估计出的时钟频偏与相偏校正时钟,与时钟源节点B同步。
进一步,步骤S3中,所述根据通信周期计算响应时间间隔补偿Di为:
获取部分时间戳信息和响应时间间隔信息计算:
进一步,基于时间戳之间的关系,得到第i个通信周期的时钟参数估计模型;
其中,d(AB)和d(BA)分别表示信息在上行链路和下行链路中经历的固定时延;ψ(AB)和θ(AB)分别表示待同步节点A相对于时钟源节点B的时钟频偏与相偏;分别表示信息在上行链路和下行链路中经历的随机时延。
进一步,在高斯随机时延下,利用最大似然估计方法估计时钟频偏与相偏,步骤如下:
B1:定义α=1/1+ψ(AB),β=θ(AB)/1+ψ(AB),将时钟参数估计模型转换为线性模型:
Λi=-Diα+(ρ-1)β+Yi
其中,
B2:根据待同步节点A经过N轮信息获取的观测信息推导时钟频偏ψ(AB)和时钟相偏θ(AB)的最大似然估计量,计算公式如下:

ΦA_MLE=(ΜHM)-1ΜHΛ
α=[ΦA_MLE]1
β=[ΦA_MLE]2

其中[·]j表示向量[·]的第j个元素。
进一步,在指数时延下,利用最佳线性无偏估计方法估计时钟频偏与相偏,步骤如下:
R1:重构待同步节点A的线性时钟参数估计模型:
其中,λ是指数随机时延的速率参数。
R2:根据获取的观测信息推导时钟频偏ψ(AB)和时钟相偏θ(AB)的最佳线性无偏估计量,计算公式如下:



其中,C1是噪声矩阵Z的协方差矩阵。
本发明的有益效果在于:本发明所述的方法在不交互时间戳信息的情况下,既能估计时钟频偏,又能估计时钟相偏,实现节点间完整的同步,弥补了免时间戳同步机制的不足。同时,同步功能可以嵌入到普通数据的收发中,避免了额外的通信开销。本发明所述的方法在高斯随机时延和指数随机时延模型下,分别采用最大似然估计方法和最佳线性无偏估计方法实现了时钟频偏与相偏的联合估计,丰富了部分时间戳信息同步机制的应用场景。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明的部分时间戳信息同步通信示意图;
图2为本发明实施例的部分时间戳信息同步方法流程图;
图3为本发明实施例的高斯随机时延下时钟频偏估计性能与CRLB对比图;
图4为本发明实施例的高斯随机时延下时钟相偏估计性能与CRLB对比图;
图5为本发明实施例的指数随机时延下时钟频偏估计结果图;
图6为本发明实施例的指数随机时延下时钟相偏估计结果图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明 的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
请参阅图1~图6,图1为本发明所提部分时间戳信息同步通信示意图,其中,节点B是时钟源节点B,提供基准时间,节点A是待同步节点,通过部分时间戳信息同步方法与节点B同步。待同步节点A以固定的周期T向时钟源节点B发送数据包。在第i个通信周期中,待同步节点A在本地时间时刻发送数据包给时钟源节点B;时钟源节点B在本地时间时刻接收到数据包,然后等待一段时间,在预设的本地时间时刻返回确认帧,其中,ρ是一个大于1且接近于1的已知常数,Di=(i-1)T是响应时间间隔补偿;待同步节点A接收到确认帧后记录接收时间为并根据通信周期计算响应时间间隔补偿Di,获取部分时间戳信息和响应时间间隔信息(即:),其中数据包和确认帧都不包含时间戳。根据时钟模型,待同步节点A与时钟源节点B之间的部分时间戳同步通信过程的数学公式表示如下:

其中,ψ(AB)表示待同步节点A相对于时钟源节点B的时钟频偏,d(AB)表示数据包在上行链路中经历的固定时延,表示数据包在下行链路中经历的随机时延,θ(AB)表示待同步节点A相对于时钟源节点B的时钟相偏,d(BA)表示确认帧在下行链路中经历的固定时延,表示确认帧在下行链路中经历的随机时延。
将式(1)和(2)带入关系式得到第i个通信周期的时钟参数估计模型;
定义α=1/1+ψ(AB),β=θ(AB)/1+ψ(AB),将上述时钟参数估计模型转换为线性模型:
Λi=-Diα+(ρ-1)β+Yi       (4)
其中,
根据待同步节点A经过N轮信息获取的观测信息将式(4)写成如下矩阵形式:
假设均是独立且服从高斯分布的随机变量,均值为0,方差为σ2,则Yi也是均值为0,方差为(1+ρ22的高斯随机变量。利用最大似然估计方法,推导时钟频偏ψ(AB)和时钟相偏θ(AB)的估计量,计算公式如下:
ΦA_MLE=(ΜHM)-1ΜHΛ        (6)
α=[ΦA_MLE]1          (7)
β=[ΦA_MLE]2          (8)

其中[·]j表示向量[·]的第j个元素。
为了评估时钟参数估计器的性能,可以推导出最大似然估计量的克拉美罗下限(Cramer-Rao Lower Bound,CRLB)如下:

其中
假设均是独立且服从指数分布的随机变量,速率参数为λ,则Yi是独立指数随机变量的线性组合。利用最佳线性无偏估计方法计算时钟参数的估计量,首先重构待同步节点A的线性时钟参数估计模型:
然后根据获取的观测信息推导时钟频偏ψ(AB)和时钟相偏θ(AB)的最佳线性无偏估计量,计算公式如下:



其中,C1是噪声矩阵Z的协方差矩阵。
实施例:
图2为本发明实施例的部分时间戳信息同步方法流程图。本发明提供了基于部分时间戳信息同步机制的时钟频偏与相偏的估计方法,如图2所示,具体步骤如下:
K1:同步过程开始;
K2:待同步节点A发送普通数据包给时钟源节点B,并记录发送的本地时间为
K3:时钟源节点B接收到数据包后记录接收时刻为根据关系式计算返回确认帧的本地时间,然后等待一段时间,在时刻返回确认帧;
K4:待同步节点A接收到确认帧后记录接收的本地时间并计算响应时间间隔补偿;
K5~K7:判断同步轮次是否达到设定值N,若已达到,待同步节点A根据记录的时间戳和响应时间间隔补偿估计时钟频偏与相偏,反之,则i=i+1,进入K2继续进行部分时间戳信息交互。
K8:待同步节点A根据估计出的时钟频偏与相偏校正时钟,与时钟源节点B同步;
K9:同步过程结束。
图3给出了高斯随机时延下时钟频偏估计性能与CRLB对比图。由图可知,时钟频偏ψ(AB)最大似然估计器的均方误差与CRLB重合,并且随着交互次数N的增加逐渐减小,这表明本发明所述的高斯随机时延下时钟频偏估计器是有效的。图4给出了高斯随机时延下时钟相偏估计性能与CRLB对比图,同样由图可知,本发明所述的高斯随机时延下时钟相偏估计器是有效的。
图5给出了指数随机时延下时钟频偏估计结果图。由图可知,时钟频偏ψ(AB)最佳线性估计器的均方误差达到10-2数量级,并且随着交互次数N的增加逐渐减小,这表明本发明所述的指数随机时延下时钟频偏估计器是有效的。图6给出了指数随机时延下时钟频偏估计结果图,同样由图可知,本发明所述的指数随机时延下时钟相偏估计器是有效的。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

  1. 一种基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:通过预设时钟源节点返回确认帧的本地时间传递部分时间戳信息和响应时间间隔信息,避免时间戳的交互,并针对高斯随机时延和指数随机时延,分别采用最大似然估计方法和最佳线性无偏估计方法同时估计时钟频偏与相偏,实现节点间的同步。
  2. 根据权利要求1所述的基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:具体包括以下步骤;
    S1:待同步节点A以固定的周期T向时钟源节点发送数据包,在第i个通信周期中,待同步节点A发送不包含时间戳的普通数据包给时钟源节点B,并记录发送的本地时间为
    S2:时钟源节点B接收到数据包后记录接收时刻为然后等待一段时间,在预设的本地时间时刻返回不含时间戳信息的确认帧,其中根据关系式计算返回确认帧的本地时间,ρ是一个大于1且接近于1的已知常数,Di是响应时间间隔补偿,定义为Di=ρ(i-1)T;
    S3:待同步节点A接收到确认帧后记录接收的本地时间并根据通信周期计算响应时间间隔补偿Di
    S4:判断同步轮次是否达到设定值N,若已达到,待同步节点A根据记录的时间戳和响应时间间隔补偿估计时钟频偏与相偏,反之返回步骤S1继续进行部分时间戳信息交互;
    S5:待同步节点A根据估计出的时钟频偏与相偏校正时钟,与时钟源节点B同步。
  3. 根据权利要求2所述的基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:步骤S3中,所述根据通信周期计算响应时间间隔补偿Di为:
    获取部分时间戳信息和响应时间间隔信息计算:
  4. 根据权利要求3所述的基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:基于时间戳之间的关系,得到第i个通信周期的时钟参数估计模型;
    其中,d(AB)和d(BA)分别表示信息在上行链路和下行链路中经历的固定时延;ψ(AB)和θ(AB)分别表示待同步节点A相对于时钟源节点B的时钟频偏与相偏;分别表示信息在上行链路和下行链路中经历的随机时延。
  5. 根据权利要求4所述的基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:在高斯随机时延下,利用最大似然估计方法估计时钟频偏与相偏,步骤如下:
    B1:定义α=1/1+ψ(AB),β=θ(AB)/1+ψ(AB),将时钟参数估计模型转换为线性模型:
    Λi=-Diα+(ρ-1)β+Yi
    其中,
    B2:根据待同步节点A经过N轮信息获取的观测信息推导时钟频偏ψ(AB)和时钟相偏θ(AB)的最大似然估计量,计算公式如下:

    ΦA_MLE=(ΜHM)-1ΜHΛ
    α=[ΦA_MLE]1
    β=[ΦA_MLE]2

    其中[·]j表示向量[·]的第j个元素。
  6. 根据权利要求5所述的基于部分时间戳信息的无线传感器网络时间同步方法,其特征在于:在指数时延下,利用最佳线性无偏估计方法估计时钟频偏与相偏,步骤如下:
    R1:重构待同步节点A的线性时钟参数估计模型:
    其中,λ是指数随机时延的速率参数;
    R2:根据获取的观测信息推导时钟频偏ψ(AB)和时钟相偏θ(AB)的最佳线 性无偏估计量,计算公式如下:



    其中,C1是噪声矩阵Z的协方差矩阵。
PCT/CN2023/075322 2022-04-27 2023-02-10 一种基于部分时间戳信息的无线传感器网络时间同步方法 WO2023207254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210492440.8A CN114710828B (zh) 2022-04-27 2022-04-27 一种基于部分时间戳信息的无线传感器网络时间同步方法
CN202210492440.8 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023207254A1 true WO2023207254A1 (zh) 2023-11-02

Family

ID=82176232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075322 WO2023207254A1 (zh) 2022-04-27 2023-02-10 一种基于部分时间戳信息的无线传感器网络时间同步方法

Country Status (2)

Country Link
CN (1) CN114710828B (zh)
WO (1) WO2023207254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710828B (zh) * 2022-04-27 2023-05-23 重庆邮电大学 一种基于部分时间戳信息的无线传感器网络时间同步方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936519A (zh) * 2019-01-18 2019-06-25 重庆邮电大学 基于定时响应的工业无线传感网时钟频率偏移估计方法
CN112118623A (zh) * 2020-09-22 2020-12-22 东南大学 多节点传感器采集系统网络时间同步方法及系统
CN113055828A (zh) * 2021-03-16 2021-06-29 重庆邮电大学 一种基于信标网络的多跳时间同步方法
US20220039042A1 (en) * 2018-09-27 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods, second node and apparatus for determining clock asynchronization
CN114710828A (zh) * 2022-04-27 2022-07-05 重庆邮电大学 一种基于部分时间戳信息的无线传感器网络时间同步方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245427B2 (en) * 2011-10-12 2016-01-26 Tyco Fire & Security Gmbh System and method for synchronization of networked fire alarm panels
WO2018098791A1 (zh) * 2016-12-01 2018-06-07 重庆邮电大学 适用于多跳无线传感器网络的时钟同步频率偏移估计方法
CN110460553B (zh) * 2019-09-12 2021-08-31 重庆邮电大学 一种免时间戳交互的隐含节点时钟频率偏移估计方法
CN110572232B (zh) * 2019-09-12 2020-11-06 重庆邮电大学 一种基于动态响应的免时间戳同步频率偏移跟踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039042A1 (en) * 2018-09-27 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods, second node and apparatus for determining clock asynchronization
CN109936519A (zh) * 2019-01-18 2019-06-25 重庆邮电大学 基于定时响应的工业无线传感网时钟频率偏移估计方法
CN112118623A (zh) * 2020-09-22 2020-12-22 东南大学 多节点传感器采集系统网络时间同步方法及系统
CN113055828A (zh) * 2021-03-16 2021-06-29 重庆邮电大学 一种基于信标网络的多跳时间同步方法
CN114710828A (zh) * 2022-04-27 2022-07-05 重庆邮电大学 一种基于部分时间戳信息的无线传感器网络时间同步方法

Also Published As

Publication number Publication date
CN114710828A (zh) 2022-07-05
CN114710828B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020147727A1 (zh) 基于定时响应的工业无线传感网时钟频率偏移估计方法
WO2016173358A1 (zh) 一种适用于wia-pa网络的时钟同步频率偏移估计方法
US10931391B2 (en) One-step time stamping of synchronization packets for networked devices
US7865760B2 (en) Use of T4 timestamps to calculate clock offset and skew
US6141324A (en) System and method for low latency communication
US8023976B2 (en) Method and system for accurate clock synchronization for communication networks
WO2023207254A1 (zh) 一种基于部分时间戳信息的无线传感器网络时间同步方法
Wang et al. Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks
CN102244603B (zh) 传输承载时间的报文的方法、设备及系统
CN104507156A (zh) 针对无线网络的基于ieee 1588ptp机制的时间同步改进方法
WO2009076908A1 (zh) 一种网络时钟同步的方法、装置及系统
US20120311168A1 (en) Method for improving accuracy in computation of one-way transfer time for network time synchronization
CN110401505A (zh) 一种无线网络精确时间同步方法
US20120246265A1 (en) Time synchronization in wireless networks
WO2023077760A1 (zh) 一种面向工业无线与tsn融合的跨网时间同步方法
CN110460553A (zh) 一种免时间戳交互的隐含节点时钟频率偏移估计方法
WO2013182009A1 (zh) 一种利用WiFi-direct的时间同步方法和系统
CN105376173A (zh) 一种发送窗口流量控制方法和终端
CN111556559B (zh) 基于免时间戳交互与单向消息传播的混合时钟同步方法
WO2019144802A1 (zh) 一种数据的传输方法及其相关设备
WO2018098791A1 (zh) 适用于多跳无线传感器网络的时钟同步频率偏移估计方法
CN112751641B (zh) 一种tsn网络时间同步方法、设备及储存介质
CN113014515B (zh) 一种支持异构网络时间同步时延补偿的方法和交换机
WO2015000127A1 (zh) 一种信息处理方法及装置
US9749210B2 (en) Method for measuring network throughput

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794690

Country of ref document: EP

Kind code of ref document: A1