WO2019144802A1 - 一种数据的传输方法及其相关设备 - Google Patents

一种数据的传输方法及其相关设备 Download PDF

Info

Publication number
WO2019144802A1
WO2019144802A1 PCT/CN2019/070905 CN2019070905W WO2019144802A1 WO 2019144802 A1 WO2019144802 A1 WO 2019144802A1 CN 2019070905 W CN2019070905 W CN 2019070905W WO 2019144802 A1 WO2019144802 A1 WO 2019144802A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
server
data
air interface
initial
Prior art date
Application number
PCT/CN2019/070905
Other languages
English (en)
French (fr)
Inventor
马志斌
季莉
赵其勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019144802A1 publication Critical patent/WO2019144802A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present application relates to the field of communications, and in particular, to a method for transmitting data and related devices.
  • TCP Transmission Control Protocol
  • IETF Internet Engineering Task Force
  • RRC Authentication Request
  • the transmission layer transmission control method in the prior art is mainly based on trial and packet loss detection. After the sender finds that there is a packet loss, it considers that congestion may occur in the network, and adopts a backoff measure for reducing the transmission window to reduce the packet transmission rate.
  • a typical congestion control process mainly includes:
  • the congestion window (cwnd) is first set to the value of 1 to 2 maximum segment size (MSS). After each confirmation of a new segment is received, the congestion window is increased by up to one MSS value. In this way, the sender's congestion window cwnd is gradually increased.
  • RTT round-trip time
  • the sender adopts a different strategy than the slow start, but Set the cwnd value to the value after the slow start threshold ssthresh is halved, and then start the congestion avoidance algorithm ("addition increase"), causing the congestion window to increase linearly slowly.
  • the transmitting end has no accurate perception of the transmission state of the network, and there is slow start and packet loss blind evacuation, and the bandwidth utilization of the network is low, which is not suitable for data transmission in the wireless transmission link, and is not suitable for future mobile internet services. High speed, efficient, stable, low latency transmission requirements.
  • the embodiment of the present application provides a data transmission method and related device, which are used to sense a transmission state of a network and improve network bandwidth utilization.
  • a first aspect of the present application provides a data transmission method, including: receiving, by a server, air interface bandwidth characterization information sent by a base station, where the air interface bandwidth characterization information is used to indicate a data transmission rate of a base station air interface, and the air interface bandwidth
  • the characterization information includes one or more of the following: the base station medium access control MAC layer scheduling rate of the radio link control RLC layer protocol data unit PDU, the scheduling data amount of the MAC layer to the RLC layer PDU, the terminal And reporting, by the terminal, a channel quality indicator (CQI) to the base station, or a channel state indicator CSI reported by the terminal to the base station, where the CSI includes a channel quality identifier CQI, a rank indication RI, and a precoding matrix PMI; and then the server is characterized according to the air interface bandwidth.
  • CQI channel quality indicator
  • the server in this implementation manner can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, and sense the transmission state of the network, and quickly adjust the data transmission rate according to the data transmission rate of the air interface of the base station, thereby improving the network bandwidth utilization.
  • the server sends the target data according to the air interface bandwidth characterization information, including: the server, according to the air interface bandwidth characterization information,
  • the target cache amount is sent by the target data, and the target cache amount is an amount of data that the base station needs to cache the target data.
  • the server is refined to send the target data according to the air interface characterization information, and the target data is sent according to the target cache amount, so that the embodiment of the present application is more operable.
  • the method before the server receives the air interface bandwidth characterization information sent by the base station, the method further includes: the server receiving the base station An available cache message, the available cache message includes an available cache space and a number of concurrent data streams, the available cache space is used to indicate an available cache space of the radio bearer RB where the target data is located, and the concurrent data stream number is used for Indicates the number of services occupying the available cache space at the same time; the server determines the target cache amount according to the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the server determines the target cache amount according to the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the server determines, according to the available cache space, the number of concurrent data streams, and the initial bandwidth
  • the method further includes: the server sending an initial performance probe packet to the base station, where the initial performance probe packet is a continuous data packet; the server receiving a first acknowledgement ACK fed back by the terminal, where the first ACK is the An ACK sent by the terminal when the base station receives the initial performance sounding packet; the server determines the initial bandwidth according to a receiving interval of the first ACK.
  • the manner of determining the initial bandwidth is specifically introduced, so that the steps of the embodiment of the present application are more complete.
  • the method further includes: the server determining an initial data transmission amount of the target data according to the initial bandwidth, an initial delay, and the target buffer amount, where the initial delay is determined by the server according to the first ACK
  • the receiving interval is determined; the server sends the target data to the base station in an initial period, and the total amount of transmission of the target data in the initial period is the initial data sending amount.
  • the manner of determining the amount of data sent in the initial period is described, so that the embodiment of the present application is more feasible.
  • the receiving, by the server, the air interface bandwidth characterization information sent by the base station includes: the server receiving the base station in a first period Send air interface bandwidth characterization information.
  • the server can receive the air interface characterization information in the first cycle, which increases the operability of the embodiment.
  • the method further includes: Receiving, by the server, a service type sent by the base station, where the service type includes a data flow type of target data; and the server is adjusted according to the available cache space, the number of concurrent data streams, the initial bandwidth, and the service type.
  • the target cache amount is adjusted according to the available cache space, the number of concurrent data streams, the initial bandwidth, and the service type.
  • the server also adjusts the target cache amount according to the service type, so that the amount of data buffered by the base station is at a more reasonable level, and the bandwidth utilization is improved.
  • the method further includes: receiving, by the server, the second ACK fed back by the terminal in the first period, where the The second ACK is an ACK sent when the data sent by the server in the previous period of the first period of the first period is received by the terminal; the server determines the correction according to the data sending amount of the first period and the second ACK. value.
  • the manner of determining the correction value is specifically described, so that the embodiment is more feasible.
  • the server sends the target data according to the air interface bandwidth characterization information, that the server is configured according to the air interface in a second period.
  • the bandwidth characterization information and the correction value send the target data, the second period is a subsequent period of the first period, and the first period and the second period are adjacent periods.
  • the server also corrects the transmission of the target data according to the correction value, so that the data transmission is more accurate.
  • a second aspect of the embodiments of the present application provides a data transmission method, in which a base station sends air interface bandwidth characterization information to a server, so that the server sends target data according to the air interface bandwidth characterization information, and the air interface bandwidth characterization information indication a data transmission rate of the air interface of the base station, where the target buffer quantity is the amount of data that the base station needs to buffer, and the air interface bandwidth characterization information includes one or more of the following: the base station medium access control MAC layer to the wireless chain The scheduling rate of the RLC layer protocol data unit PDU, the amount of scheduling data of the MAC layer to the RLC layer PDU, the channel quality indicator CQI reported by the terminal to the base station, or the channel state indicator CSI reported by the terminal to the base station,
  • the CSI includes a channel quality indicator CQI, a rank indication RI, and a precoding matrix PMI.
  • the base station in the implementation manner sends the air interface characterization information to the server, and then the server can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, sense the transmission state of the network, and quickly adjust the data transmission according to the data transmission rate of the air interface of the base station. Rate, increasing network bandwidth utilization.
  • the method before the sending, by the base station, the air interface bandwidth characterization information, the method further includes: sending, by the base station, an available cache Message to the server, the available cache message includes an available cache space and a number of concurrent data streams, so that the server determines a target cache amount according to the available cache message and an initial bandwidth, where the available cache space is the target data
  • the available buffer space of the radio bearer RB where the number of concurrent data streams is the number of services occupying the available cache space at the same time.
  • the base station also sends available cache information to the server, making the embodiment more complete.
  • the method further includes: the base station identifying, according to a data flow feature of the target data sent by the terminal, a service type of the target data; the base station sends the service type to the server, so that the server adjusts the service according to the service type, the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the amount of target cache In this implementation manner, the base station also sends the service type to the server, so that the server can more accurately determine the size of the target cache amount.
  • a third aspect of the present application provides a server, including: a first receiving unit, configured to receive air interface bandwidth characterization information sent by a base station, where the air interface bandwidth characterization information is used to indicate a data transmission rate of a base station air interface,
  • the air interface bandwidth characterization information includes one or more of the following: the base station medium access control MAC layer to the radio link control RLC layer protocol data unit PDU scheduling rate, the MAC layer to the RLC layer PDU scheduling data volume And the terminal reports the channel quality identifier CQI of the base station, or the channel status indicator CSI reported by the terminal to the base station, where the CSI includes a channel quality identifier CQI, a rank indicator RI, and a precoding matrix PMI; the first sending unit uses And transmitting the target data according to the air interface bandwidth characterization information.
  • the server in this implementation manner can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, and sense the transmission state of the network, and quickly adjust the data transmission rate according to the data transmission rate of the air interface of the base station, thereby improving the network bandwidth utilization.
  • the first sending unit is specifically configured to: send the target data according to the air interface bandwidth characterization information and a target cache amount.
  • the target cache amount is an amount of data that the base station needs to cache the target data.
  • the server is refined to send the target data according to the air interface characterization information, and the target data is sent according to the target cache amount, so that the embodiment of the present application is more operable.
  • the server further includes: a second receiving unit, configured to receive an available cache message sent by the base station, where the available The cached message includes an available cache space and a number of concurrent data streams, where the available cache space is used to indicate an available cache space of the radio bearer RB where the target data is located, and the number of concurrent data streams is used to indicate that the available cache space is occupied at the same time.
  • a number of services a first determining unit, configured to determine a target cache amount according to the available cache space, the number of concurrent data streams, and an initial bandwidth.
  • the server further includes: a second sending unit, configured to send an initial performance detection packet to the base station, where the initial The performance detection packet is a continuous data packet, and the third receiving unit is configured to receive a first acknowledgement ACK fed back by the terminal, where the first ACK is an ACK sent by the terminal when the initial performance probe packet is received by the base station. a second determining unit, configured to determine the initial bandwidth according to a receiving interval of the first ACK. In this implementation manner, the manner of determining the initial bandwidth is specifically introduced, so that the steps of the embodiment of the present application are more complete.
  • the server further includes: a third determining unit, configured to use the initial bandwidth, the initial delay, and the target Determining an initial data transmission amount of the target data, where the initial delay is determined by the server according to a receiving interval of the first ACK, and a third sending unit, configured to send, to the base station, an initial period The initial data transmission amount.
  • a third determining unit configured to use the initial bandwidth, the initial delay, and the target Determining an initial data transmission amount of the target data, where the initial delay is determined by the server according to a receiving interval of the first ACK
  • a third sending unit configured to send, to the base station, an initial period The initial data transmission amount.
  • the first receiving unit is specifically configured to: receive the air interface bandwidth characterization information by the base station in a first period.
  • the server can receive the air interface characterization information in the first cycle, which increases the operability of the embodiment.
  • the server further includes: a fourth receiving unit, configured to receive a service type sent by the base station, the service type And a data stream type including the target data; the first adjusting unit is configured to adjust the target cache amount according to the available cache space, the number of concurrent data streams, the initial bandwidth, and the service type.
  • the server also adjusts the target cache amount according to the service type, so that the amount of data buffered by the base station is at a more reasonable level, and the bandwidth utilization is improved.
  • the server further includes: a fifth receiving unit, configured to receive the second ACK fed back by the terminal in the first period
  • the second ACK is an ACK sent when the data sent by the server in the previous period of the first period is received by the terminal
  • the fourth determining unit is configured to send data according to the first period.
  • the second ACK determination correction value is specifically described, so that the embodiment is more feasible.
  • the first sending unit is further configured to: according to the air interface bandwidth characterization information and the correction in a second period
  • the value transmits the target data
  • the second period is a subsequent period of the first period
  • the first period and the second period are adjacent periods.
  • the server also corrects the transmission of the target data according to the correction value, so that the data transmission is more accurate.
  • a fourth aspect of the embodiments of the present application provides a base station, where the base station includes: a first sending unit, configured to send air interface bandwidth characterization information to a server, so that the server characterization information according to the air interface bandwidth Transmitting the target data, the air interface bandwidth characterization information indicating a data transmission rate of the air interface of the base station, where the target buffer quantity is the amount of data that the base station needs to buffer, and the air interface bandwidth characterization information includes one or more of the following: The base station media access control MAC layer scheduling rate of the radio link control RLC layer protocol data unit PDU, the scheduling data amount of the MAC layer to the RLC layer PDU, the channel quality identifier CQI reported by the terminal to the base station, or the terminal The channel state indicator CSI is reported to the base station, where the CSI includes a channel quality indicator CQI, a rank indicator RI, and a precoding matrix PMI.
  • the base station in the implementation manner sends the air interface characterization information to the server, and then the server can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, sense the transmission state of the network, and quickly adjust the data transmission according to the data transmission rate of the air interface of the base station. Rate, increasing network bandwidth utilization.
  • the base station further includes: a second sending unit, configured to send an available cache message to the server, where the available cache The message includes an available cache space and a number of concurrent data streams, so that the server determines a target cache amount according to the available cache message and an initial bandwidth, where the available cache space is an available cache space of the radio bearer RB where the target data is located.
  • the number of concurrent data streams is the number of services occupying the available cache space at the same time.
  • the base station also sends available cache information to the server, making the embodiment more complete.
  • the base station further includes: an identifying unit, configured to identify, according to the data flow feature of the target data sent by the terminal a service type of the target data; a third sending unit, configured to send the service type to the server, so that the server is configured according to the service type, the available cache space, the number of concurrent data streams, and The initial bandwidth adjusts the target cache amount.
  • the base station also sends the service type to the server, so that the server can more accurately determine the size of the target cache amount.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the server receives the air interface bandwidth characterization information sent by the base station, where the air interface bandwidth characterization information is used to indicate the data transmission rate of the base station air interface, and the air interface bandwidth characterization information includes One or more of the following: the base station medium access control MAC layer to the radio link control RLC layer protocol data unit PDU scheduling rate, the MAC layer to the RLC layer PDU scheduling data amount, the terminal reported to the station a channel quality indicator CQI of the base station, or a channel state indicator CSI reported by the terminal to the base station, where the CSI includes a channel quality indicator CQI, a rank indication RI, and a precoding matrix PMI; and then the server characterization information transmission target according to the air interface bandwidth data.
  • the air interface bandwidth characterization information includes One or more of the following: the base station medium access control MAC layer to the radio link control RLC layer protocol data unit PDU scheduling rate, the MAC layer to the RLC layer PDU scheduling data amount, the terminal reported to the station a channel quality indicator CQI of the base station
  • the server in this implementation manner can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, and sense the transmission state of the network, and quickly adjust the data transmission rate according to the data transmission rate of the air interface of the base station, thereby improving the network bandwidth utilization.
  • FIG. 1 is a schematic structural diagram of a system applied to a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another system applied to a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a message option of a data transmission method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another message option according to a data transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another message option according to a data transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another message option according to a data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another message option according to a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another message option according to a data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a server according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a server according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a server according to an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a base station according to an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method and related device, which are used to sense a transmission state of a network and improve network bandwidth utilization.
  • the data transmission method in the present application can be applied to a server and a base station, wherein the server and the base station in the present application can establish a communication connection, and the server in the application can be a radio access network (RAN) transmission agent.
  • RAN radio access network
  • the embodiment of the present application is applicable to the network architecture shown in FIG. 1.
  • the server sends data to the base station through the core network, and the base station sends the received data to the terminal, where, as shown in FIG.
  • the base station in the embodiment can receive and cache data sent by the server.
  • an embodiment of a data transmission method in an embodiment of the present application includes:
  • the base station sends a communication request to the server.
  • the base station initiates communication negotiation before the data stream initiates transmission, and sends a communication request to the server, where the communication request includes a cross-layer communication capability indication and communication request information, where the cross-layer communication capability indication is used to indicate that the base station has Cross-layer communication capability, the communication request information is used to request to establish a communication connection with the server.
  • the server sends a communication confirmation message to the base station.
  • the server after receiving the communication request sent by the base station, the server generates communication confirmation information according to the communication request, and sends the communication confirmation information to the base station to establish a communication connection, where the communication confirmation information includes cross-layer communication.
  • the capability indication and the communication confirmation information, the cross-layer communication capability indication is used to indicate that the server has cross-layer communication capability, and the communication confirmation information is used to confirm establishing a communication connection with the base station.
  • the communication request request may also be sent by the server side, and the base station side responds to the communication confirmation to establish a communication connection, and the specific sender and the responder are not limited herein.
  • the base station sends an available buffer space and a number of concurrent data streams to the server.
  • the base station sends the available cache space and the number of concurrent data streams to the server before starting the data transmission, where the available cache space is the radio bearer of the target data (radio bearer) , RB) available cache space, the number of concurrent data streams is the number of services occupying the available cache space at the same time. For example, if the terminal downloads video and browses the webpage at the same time, the number of concurrent data streams is 2; the server can use the cache space and concurrently according to the cache space.
  • the number of data streams determines the amount of buffered data of the target data in the base station, and determines the transmission rate.
  • the server sends an initial performance probe packet to the base station.
  • the server in order to determine the data transmission capability of the base station, the server sends an initial performance detection packet to the base station, where the initial performance detection packet contains a small amount of data.
  • the base station sends an initial performance detection packet to the terminal.
  • the base station after receiving the initial performance detection packet sent by the server, the base station sends an initial performance detection packet to the terminal, where the initial performance detection packet is a continuously transmitted data packet.
  • the terminal generates an ACK according to the received initial performance probe packet.
  • an ACK corresponding to the initial performance detection packet is generated, and the ACK indicates that the terminal receives the initial performance detection packet.
  • the terminal sends an ACK to the server.
  • the ACK is sent to the server.
  • the server determines an initial bandwidth and an initial delay according to the ACK.
  • the server determines the initial bandwidth and the initial delay according to the time of the received ACK and the time interval of each ACK, where the initial bandwidth may reflect the data capacity of the base station.
  • the server determines the target cache amount according to the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the target cache amount is determined according to the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the server may The available buffer space and the number of concurrent data streams determine the available buffer amount of the target data.
  • the available buffer amount of the target data may be the quotient of the available cache space and the number of concurrent data streams, and then determine the target cache amount according to the available buffer amount of the target data and the initial bandwidth. .
  • the server determines an initial data sending amount of the target data according to the initial bandwidth, the initial delay, and the target buffer amount.
  • the initial data transmission amount of the target data is determined according to the initial bandwidth, the initial delay, and the target cache amount.
  • the initial data transmission amount is specifically: the product of the initial bandwidth and the initial delay plus the target buffer amount.
  • the server sends an initial data sending amount to the base station in an initial period.
  • the initial data transmission amount is sent to the base station in the initial period, and the initial period is an initial period in which the server transmits the target data.
  • the initial period may be one RTT. After the initial period, the data transmission rate basically reaches the available bandwidth of the air interface. After the initial period, you can enter a continuous short period (which can be 0.5 RTT), such as the first period, the second period, and so on.
  • the base station sends the air interface bandwidth characterization information to the server in the first period.
  • the air interface bandwidth characterization information of the first period is sent to the server, where the air interface bandwidth characterization information may indicate the air interface of the base station.
  • Data transmission rate air interface bandwidth
  • the first period is one period after the initial period, and is not necessarily the adjacent period of the initial period.
  • the air interface bandwidth characterization information includes one or more of the following: a base station media access control (MAC) layer to a radio link control layer (radio link control (RLC) protocol data unit (protocol)
  • the scheduling rate of the data unit (PDU) the amount of scheduling data of the MAC layer to the RLC layer PDU, the channel quality indicator (CQI) reported by the terminal to the base station, or the channel state information reported by the terminal to the base station (channel state information, CSI), where CSI includes CQI, rank indication (RI), and pre-coding matrix index (PMI).
  • the base station needs to simultaneously send the concurrent data stream number to the server.
  • the server sends the target data according to the air interface bandwidth characterization information.
  • the server after receiving the air interface bandwidth characterization information sent by the base station, the server rapidly measures the network transmission rate of the data according to the air interface bandwidth characterization information, and performs target data transmission according to the measured network transmission rate.
  • the server calculates the air interface bandwidth according to the preset CQI-air interface bandwidth model, and the CQI-air interface bandwidth model can implement online learning and correction.
  • the base station further identifies the service type of the target data according to the data flow characteristics of the target data sent by the server, and sends the service type to the server, so that the server according to the available cache space, the number of concurrent data streams, the initial bandwidth, and
  • the service type updates the target cache amount, so that the amount of buffered data transmitted by the base station air interface is maintained at a necessary and reasonable level corresponding to the service type, and the utilization ratio of the available bandwidth of the air interface is improved.
  • the server establishes a communication connection with the base station; in the data transmission process, the base station sends the air interface bandwidth characterization information to the base station, where the air interface bandwidth characterization information indicates the data transmission rate of the base station air interface, and then the server according to the received air interface.
  • the bandwidth characterization information sends the target data.
  • the server in the present application can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, sense the transmission status of the network, and quickly adjust the data transmission rate according to the data transmission rate of the air interface of the base station, thereby improving the network bandwidth utilization.
  • an embodiment of a method for transmitting data in the embodiment of the present application includes:
  • the base station sends a communication request to the server.
  • the server sends a communication confirmation message to the base station.
  • the base station sends an available buffer space and a number of concurrent data streams to the server.
  • the server sends an initial performance detection packet to the base station.
  • the base station sends an initial performance detection packet to the terminal.
  • the terminal generates an ACK according to the received initial performance probe packet.
  • the terminal sends an ACK to the server.
  • the server determines an initial bandwidth and an initial delay according to the ACK.
  • the server determines the target cache amount according to the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • the server determines an initial data sending amount of the target data according to the initial bandwidth, the initial delay, and the target buffer amount.
  • the server sends an initial data sending amount to the base station in an initial period, where the initial period is an initial period in which the server sends the target data.
  • the base station sends the air interface bandwidth characterization information to the server in the first period.
  • the steps 401 to 412 are similar to the 301 to 312 in the corresponding embodiment of FIG. 3, and details are not described herein.
  • the terminal feeds back an ACK to the server in the first cycle.
  • the terminal feeds back an ACK to the server in the first cycle, where the ACK is an ACK sent by the server when the terminal receives the data sent by the server one cycle before the first cycle received by the base station.
  • the server determines the correction value according to the first period air interface bandwidth characterization information and the ACK.
  • the correction value is determined according to the data transmission quantity of the first period received before, wherein the determining the correction value is: determining the first period according to the first period air interface bandwidth characterization information. a data transmission rate of the air interface of the base station, and determining a first data transmission quantity according to the data transmission rate, determining an actual air interface transmission rate according to the first period ACK, and determining a second transmission quantity according to the actual air interface transmission rate, and finally according to the foregoing first The difference between the transmission amount and the second transmission amount determines the first period correction value.
  • the server sends the target data according to the air interface bandwidth characterization information and the correction value in the second period.
  • the server corrects the data transmission amount (or the data transmission rate) of the second period according to the received air interface bandwidth characterization information and the correction value obtained in the first period, so that the amount of data buffered by the base station is substantially balanced. For example, if the correction amount is calculated to be 5, and the data transmission amount calculated based on the received air interface bandwidth characterization information is 100, the data amount 95 needs to be transmitted in the second period after the correction.
  • the server establishes a communication connection with the base station; in the data transmission process, the base station sends the air interface bandwidth characterization information to the base station, where the air interface bandwidth characterization information indicates the data transmission rate of the base station air interface, and then the server according to the received air interface.
  • the bandwidth characterization information sends the target data.
  • the server in the present application can obtain the data transmission rate of the air interface of the base station according to the air interface bandwidth characterization information, sense the transmission status of the network, and quickly adjust the data transmission rate according to the data transmission rate of the air interface of the base station, thereby improving network bandwidth utilization, and the implementation is implemented. For example, the amount of transmission data of the subsequent transmission period can be corrected according to the correction amount, so that the transmission is more accurate.
  • the information transfer between the base station and the server in the corresponding embodiment of FIG. 3 and the corresponding embodiment in FIG. 4 can be implemented by inserting a custom option in the option field of the TCP packet header, and for the uplink, the base station sends cross-layer cooperation.
  • Information to the server, the option structure can be as shown in Figure 5 below:
  • the first byte of the option indicating the option type, the custom type number 10, is used for the cross-layer collaborative information bearer of the solution of the present application;
  • Option 3-5 bytes, carrying specific cross-layer collaborative interaction information.
  • Option 3-5 byte cross-layer coordination information field which can be defined as shown in Figure 6a or 6b;
  • the server transmission control entity or the RAN transmission strong transmission control entity sends cross-layer coordination information to the base station, and the option structure can be as shown in FIG. 8:
  • the downlink cross-layer coordination field information length is only 1 byte, which can be defined as shown in FIG. 9;
  • Cross-layer communication capability indication 2 bits, 00: no bearer information, invalid field; 11: cross-layer communication capability specified in the present application scheme; 01: no cross-city communication capability specifically specified in the present application;
  • Service type 4 bits, 0000: No bearer information, invalid field;
  • Non-0000 The base station fills in the service type number according to the SC service identification module identification result, for example, 1111-VR virtual reality service, 1110-video service, 1101-webpage Browse the business, etc.
  • the scheduling rate of the MAC layer to the RLC layer PDU 16 bits, field unit 100 kbps, for example, 0000000011110000, characterizing the scheduling rate of the MAC layer to the RLC layer PDU is 24 Mbps;
  • Available buffer space of RB radio bearer 8 bits, 00000000: No bearer information, invalid field; Non-00000000: Announces the available buffer space of a specific RB radio bearer, unit 100KByte, for example, 00001111, available cache space is 1500KByte, 11111111, available The cache space is 25500KByte.
  • the sequence information of the last segment of the selective acknowledgement (SACK) SACK that has received the discontinuous data packet may be deleted, and the byte space occupied by the SACK option is reduced. Does not affect the transmission performance.
  • an embodiment of the server in the embodiment of the present application includes:
  • the first receiving unit 1001 is configured to receive air interface bandwidth characterization information sent by the base station, where the air interface bandwidth characterization information is used to indicate a data transmission rate of the air interface of the base station, and the air interface bandwidth characterization information includes one or more of the following: base station media access control The scheduling rate of the radio link control RLC layer protocol data unit PDU, the amount of scheduling data of the MAC layer to the RLC layer PDU, the channel quality indicator CQI reported by the terminal to the base station, or the channel state indicator CSI reported by the terminal to the base station, CSI Include a channel quality indicator CQI, a rank indicator RI, and a precoding matrix PMI;
  • the first sending unit 1002 is configured to send the target data according to the air interface bandwidth characterization information.
  • the server sends the target data according to the air interface characterization information sent by the base station, and the server in the application can sense the transmission state of the network and improve the network bandwidth utilization.
  • FIG. 11 is a schematic diagram of another embodiment of a server according to an embodiment of the present application.
  • the server includes: The first receiving unit 1101 and the first transmitting unit 1102.
  • the first receiving unit 1101 is specifically configured to:
  • the receiving base station transmits the air interface bandwidth characterization information in the first period.
  • the first sending unit 1102 is specifically configured to:
  • the receiving base station transmits the air interface bandwidth characterization information in the first period.
  • the target data is transmitted according to the air interface bandwidth characterization information and the correction value, and the second period is the latter period of the first period, and the first period and the second period are adjacent periods.
  • the server further includes:
  • the second receiving unit 1103 is configured to receive an available cache message sent by the base station, where the available cache message includes an available buffer space and a number of concurrent data streams, where the available buffer space is used to indicate an available buffer space of the radio bearer RB where the target data is located, and the number of concurrent data streams Used to indicate the number of services occupying the available cache space at the same time;
  • the first determining unit 1104 is configured to determine a target cache amount according to the available buffer space, the number of concurrent data streams, and the initial bandwidth.
  • a second sending unit 1105 configured to send an initial performance detection packet to the base station, where the initial performance detection packet is a continuous data packet;
  • the third receiving unit 1106 is configured to receive a first acknowledgement ACK that is sent by the terminal, where the first ACK is an ACK that is sent when the terminal receives the initial performance probe packet by using the base station;
  • the second determining unit 1107 is configured to determine an initial bandwidth according to a receiving interval of the first ACK.
  • the third determining unit 1108 is configured to determine an initial data sending amount of the target data according to the initial bandwidth, the initial delay, and the target buffer amount, where the initial delay is determined by the server according to the receiving interval of the first ACK;
  • the third sending unit 1109 is configured to send an initial data sending amount to the base station in an initial period.
  • the fourth receiving unit 1110 is configured to receive a service type sent by the base station, where the service type includes a data stream type of the target data.
  • the first adjusting unit 1111 is configured to adjust the target buffer amount according to the available buffer space, the number of concurrent data streams, the initial bandwidth, and the service type.
  • a fifth receiving unit 1112 configured to receive a second ACK fed back by the terminal in the first period, where the second ACK is an ACK sent by the server in the previous period of the first period of the first period received by the terminal;
  • the fourth determining unit 1113 is configured to determine a correction value according to the data transmission amount of the first period and the second ACK.
  • FIG. 12 is a schematic diagram of an embodiment of a base station according to an embodiment of the present application:
  • the first sending unit 1201 is configured to send air interface bandwidth characterization information to the server, so that the server sends the target data according to the air interface bandwidth characterization information, and the air interface bandwidth characterization information indicates the data transmission rate of the base station air interface, where the target buffer amount is the amount of data that the base station needs to cache.
  • the air interface bandwidth characterization information includes one or more of the following: a base station medium access control MAC layer scheduling rate of the radio link control RLC layer protocol data unit PDU, a scheduling data amount of the MAC layer to the RLC layer PDU, and a terminal reporting
  • the channel quality indicator CQI to the base station, or the channel state indicator CSI reported by the terminal to the base station, the CSI includes a channel quality indicator CQI, a rank indication RI, and a precoding matrix PMI.
  • the second sending unit 1202 is configured to send an available cache message to the server, where the available cache message includes an available cache space and a concurrent data stream, so that the server determines the target cache amount according to the available cache message and the initial bandwidth, where the available cache space is the target data.
  • the available buffer space of the radio bearer RB, and the number of concurrent data streams is the number of services occupying the available cache space at the same time.
  • the identifying unit 1203 is configured to identify, according to a data flow feature of the target data sent by the terminal, a service type of the target data;
  • the third sending unit 1204 is configured to send the service type to the server, so that the server adjusts the target cache amount according to the service type, the available cache space, the number of concurrent data streams, and the initial bandwidth.
  • FIG. 10 to FIG. 12 are a detailed description of the server and the base station in the embodiment of the present application from the perspective of the modular functional entity.
  • the server and the base station in the embodiments of the present application are described in detail below.
  • FIG. 13 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • the server 1300 may generate a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 1322 (for example, One or more processors) and memory 1332, one or more storage media 1330 that store application 1342 or data 1344 (eg, one or one storage device in Shanghai).
  • the memory 1332 and the storage medium 1330 may be short-term storage or persistent storage.
  • the program stored on storage medium 1330 can include one or more modules (not shown), each of which can include a series of instruction operations in the server.
  • the central processor 1322 can be configured to communicate with the storage medium 1330 on which a series of instruction operations in the storage medium 1330 are performed.
  • Server 1300 may also include one or more power sources 1326, one or more wired or wireless network interfaces 1350, one or more input and output interfaces 1358, and/or one or more operating systems 1341, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 1341 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the server in the above embodiment may be based on the server structure shown in FIG.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 1400 may generate a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 1422 (for example, One or more processors and memory 1432, one or more storage media 1430 that store application 1442 or data 1444 (eg, one or one storage device in Shanghai).
  • the memory 1432 and the storage medium 1430 may be short-term storage or persistent storage.
  • the program stored on storage medium 1430 may include one or more modules (not shown), each of which may include a series of instruction operations in the base station.
  • central processor 1422 can be configured to communicate with storage medium 1430 to perform a series of instruction operations in storage medium 1430 on base station 1400.
  • Base station 1400 can also include one or more power supplies 1426, one or more wired or wireless network interfaces 1450, one or more input and output interfaces 1458, and/or one or more operating systems 1441, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 1441 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the base station in the above embodiments may be based on the base station structure shown in FIG.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg, Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • a website site eg, computer, server or data center
  • DSL digital subscriber line
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据的传输方法及其相关设备,用于感知网络的传输状态,提高网络带宽利用率。本申请实施例方法包括:服务器接收基站发送的空口带宽表征信息,其中,该空口带宽表征信息用于指示基站空口的数据传输速率,且该空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;然后服务器根据所述空口带宽表征信息发送目标数据。

Description

一种数据的传输方法及其相关设备
本申请要求于2018年1月24日提交中国专利局、申请号为201810072502.3、申请名称为“一种数据的传输方法及其相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据的传输方法及其相关设备。
背景技术
目前互联网,包括移动互联网,传输层数据主要基于传输控制协议(Transmission Control Protocol,TCP)实现可靠传输,TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议,由因特网工程任务组(Internet Engineering Task Force,IETF)的认证请求(Request For Comment,RFC)793定义,TCP协议对互联网的发展作出过重要贡献。但是,随着互联网用户应用业务的发展,特别是未来5G移动互联网业务,如高清视频、虚拟现实(Virtual Reality,VR)等业务,对数据传输提出“高速,高效,稳定,低时延”的要求。
现有技术中的传输层传输控制方法,主要基于试探和丢包检测,发送端发现存在丢包后,便认为网络中可能出现拥塞状况,采取降低发送窗口的退避措施,降低数据包发送速率,具体地,典型拥塞控制过程主要包括:
1)慢启动过程:在连接建立后,发送端先探测性发送数据包,从小到大逐渐增大发送窗口,由于发送端发送窗口=min(接收端接收窗口,发送端拥塞窗口),这需要发送端由小到大逐渐增大拥塞窗口。通常在刚刚开始发送报文段时,先把拥塞窗口(congestion window,cwnd)设置为1至2个最大报文段(maximum segment size,MSS)的数值。而在每收到一个对新的报文段的确认后,把拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送方的拥塞窗口cwnd。
2)拥塞避免:为了防止拥塞窗口cwnd增长过大引起网络拥塞,还需要设置一个慢开始门限ssthresh状态变量,当cwnd<ssthresh时,使用慢启动算法,当cwnd>ssthresh时,停止使用慢开始算法而改用拥塞避免算法(当cwnd=ssthresh时,既可使用慢开始算法,也可使用拥塞控制避免算法),进入拥塞避免阶段后,拥塞窗口CWND缓慢地增大,每经过一个CWND数据发送轮次,约一个往返时间(round-trip time,RTT),发送端的拥塞窗口CWND增加1个MSS,而不是加倍。
3)快速重传和快速恢复:在早期的传输控制中,无论在慢启动阶段还是拥塞避免阶段,若发送方判断网络出现拥塞,就把慢开始门限ssthresh设置为出现拥塞时的发送窗口值的一半(不能小于2),然后把拥塞窗口cwnd重新设置为1,重新执行慢启动算法。为了提升网络可用带宽的利用率,提出了快速重传和快速恢复算法。当发送端连续收到三个重复确认,便快速重传相关可能丢失的数据包,而不等待数据包确认超时;由于网络可能并没有发生拥塞,发送端采取与慢启动不同的策略,而是把cwnd值设置为慢开始门限ssthresh 减半后的数值,然后开始执行拥塞避免算法(“加法增大”),使拥塞窗口缓慢地线性增大。
现有技术中的发送端对网络的传输状态无准确感知,存在慢启动和丢包盲目退避,网络的带宽利用率低,并不适合无线传输环节的数据传输,更不适合未来移动互联业务“高速,高效,稳定,低时延”传输的要求。
发明内容
本申请实施例提供了一种数据的传输方法及其相关设备,用于感知网络的传输状态,提高网络带宽利用率。
本申请实施例的第一方面提供了一种数据的传输方法,包括:服务器接收基站发送的空口带宽表征信息,其中,该空口带宽表征信息用于指示基站空口的数据传输速率,且该空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;然后服务器根据所述空口带宽表征信息发送目标数据。本实现方式中的服务器可以根据空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
在一种可能的设计中,在本申请实施例第一方面的第一种实现方式中,所述服务器根据所述空口带宽表征信息发送目标数据包括:所述服务器根据所述空口带宽表征信息以及目标缓存量发送所述目标数据,所述目标缓存量为所述基站需要缓存所述目标数据的数据量。本实现方式中,细化了服务器除了根据空口表征信息发送目标数据之外,还会根据目标缓存量发送该目标数据,使得本申请实施例更加具有可操作性。
在一种可能的设计中,在本申请实施例第一方面的第二种实现方式中,所述服务器接收基站发送的空口带宽表征信息之前,所述方法还包括:所述服务器接收所述基站发送的可用缓存消息,所述可用缓存消息包括可用缓存空间和并发数据流数,所述可用缓存空间用于指示所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数用于指示同时占用所述可用缓存空间的业务个数;所述服务器根据所述可用缓存空间、所述并发数据流数和初始带宽确定所述目标缓存量。本实现方式中,具体说明了目标缓存量的一种确定方式,使得本申请实施例的步骤更加完善。
在一种可能的设计中,在本申请实施例第一方面的第三种实现方式中,所述服务器根据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量之前,所述方法还包括:所述服务器向所述基站发送初始性能探测包,所述初始性能探测包为连续的数据包;所述服务器接收终端反馈的第一确认ACK,所述第一ACK为所述终端通过所述基站接收到所述初始性能探测包时发出的ACK;所述服务器根据所述第一ACK的接收间隔确定所述初始带宽。本实现方式中,具体介绍了初始带宽的确定方式,使得本申请实施例的步骤更加完善。
在一种可能的设计中,在本申请实施例第一方面的第四种实现方式中,所述服务器根 据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量之后,所述方法还包括:所述服务器根据所述初始带宽、初始时延和所述目标缓存量确定所述目标数据的初始数据发送量,所述初始时延由所述服务器根据所述第一ACK的接收间隔确定得到;所述服务器在初始周期向所述基站发送所述目标数据,所述目标数据在所述初始周期中的发送总量为所述初始数据发送量。本实现方式中,说明了在初始周期发送的数据量的确定方式,使得本申请实施例更加具有可行性。
在一种可能的设计中,在本申请实施例第一方面的第五种实现方式中,所述服务器接收所述基站发送的空口带宽表征信息包括:所述服务器在第一周期接收所述基站发送空口带宽表征信息。本实现方式中,说明了服务器可以在第一周期接收空口表征信息,增加了实施例的可操作性。
在一种可能的设计中,在本申请实施例第一方面的第六种实现方式中,所述服务器在初始周期向所述基站发送所述初始数据发送量之后,所述方法还包括:所述服务器接收所述基站发送的业务类型,所述业务类型包括目标数据的数据流类型;所述服务器根据所述可用缓存空间、所述并发数据流数、所述初始带宽和所述业务类型调整所述目标缓存量。本实现方式中,服务器还会根据业务类型调整目标缓存量,使得基站缓存的数据量处于更加合理的水平,提高带宽利用率。
在一种可能的设计中,在本申请实施例第一方面的第七种实现方式中,所述方法还包括:所述服务器在所述第一周期接收终端反馈的第二ACK,所述第二ACK为所述终端接收到的所述第一周期的前一个周期所述服务器发送的数据时发出的ACK;所述服务器根据所述第一周期的数据发送量以及所述第二ACK确定修正值。本实现方式中,具体说明了修正值的确定方式,使得实施例更具可行性。
在一种可能的设计中,在本申请实施例第一方面的第八种实现方式中,所述服务器根据所述空口带宽表征信息发送目标数据包括:所述服务器在第二周期根据所述空口带宽表征信息以及所述修正值发送所述目标数据,所述第二周期为所述第一周期的后一个周期,所述第一周期和所述第二周期为相邻周期。本实现方式中,服务器还会根据修正值修正目标数据的发送,使得数据发送更加准确。
本申请实施例的第二方面提供了一种数据的传输方法包括:基站向服务器发送空口带宽表征信息,以使得所述服务器根据所述空口带宽表征信息发送目标数据,所述空口带宽表征信息指示基站空口的数据传输速率,所述目标缓存量为所述基站需要缓存的数据量,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI。本实现方式中的基站向服务器发送空口表征信息,然后服务器可以根据该空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
在一种可能的设计中,在本申请实施例第二方面的第一种实现方式中,所述基站向所 述服务器发送空口带宽表征信息之前,所述方法还包括:所述基站发送可用缓存消息至所述服务器,所述可用缓存消息包括可用缓存空间和并发数据流数,以使得所述服务器根据所述可用缓存消息及初始带宽确定目标缓存量,所述可用缓存空间为所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数为同时占用所述可用缓存空间的业务个数。本实现方式中,基站还会发送可用缓存信息至服务器,使得实施例更具完整性。
在一种可能的设计中,在本申请实施例第二方面的第二种实现方式中,所述方法还包括:所述基站根据所述终端发送的所述目标数据的数据流特征识别所述目标数据的业务类型;所述基站发送所述业务类型至所述服务器,以使得所述服务器根据所述业务类型、所述可用缓存空间、所述并发数据流数和所述初始带宽调整所述目标缓存量。本实现方式中,基站还会发送业务类型至服务器,使得服务器可以更准确地判断目标缓存量的大小。
本申请实施例的第三方面提供了一种服务器,包括:第一接收单元,用于接收基站发送的空口带宽表征信息,所述空口带宽表征信息用于指示基站空口的数据传输速率,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;第一发送单元,用于根据所述空口带宽表征信息发送目标数据。本实现方式中的服务器可以根据空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
在一种可能的设计中,在本申请实施例第三方面的第一种实现方式中,所述第一发送单元具体用于:根据所述空口带宽表征信息以及目标缓存量发送所述目标数据,所述目标缓存量为所述基站需要缓存所述目标数据的数据量。本实现方式中,细化了服务器除了根据空口表征信息发送目标数据之外,还会根据目标缓存量发送该目标数据,使得本申请实施例更加具有可操作性。
在一种可能的设计中,在本申请实施例第三方面的第二种实现方式中,所述服务器还包括:第二接收单元,用于接收所述基站发送的可用缓存消息,所述可用缓存消息包括可用缓存空间和并发数据流数,所述可用缓存空间用于指示所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数用于指示同时占用所述可用缓存空间的业务个数;第一确定单元,用于根据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量。本实现方式中,具体说明了目标缓存量的一种确定方式,使得本申请实施例的步骤更加完善。
在一种可能的设计中,在本申请实施例第三方面的第三种实现方式中,所述服务器还包括:第二发送单元,用于向所述基站发送初始性能探测包,所述初始性能探测包为连续的数据包;第三接收单元,用于接收终端反馈的第一确认ACK,所述第一ACK为所述终端通过所述基站接收到所述初始性能探测包时发出的ACK;第二确定单元,用于根据所述第一ACK的接收间隔确定所述初始带宽。本实现方式中,具体介绍了初始带宽的确定方式,使得本申请实施例的步骤更加完善。
在一种可能的设计中,在本申请实施例第三方面的第四种实现方式中,所述服务器还包括:第三确定单元,用于根据所述初始带宽、初始时延和所述目标缓存量确定所述目标数据的初始数据发送量,所述初始时延由所述服务器根据所述第一ACK的接收间隔确定得到;第三发送单元,用于在初始周期向所述基站发送所述初始数据发送量。本实现方式中,说明了在初始周期发送的数据量的确定方式,使得本申请实施例更加具有可行性。
在一种可能的设计中,在本申请实施例第三方面的第五种实现方式中,所述第一接收单元具体用于:在第一周期接收所述基站发送空口带宽表征信息。本实现方式中,说明了服务器可以在第一周期接收空口表征信息,增加了实施例的可操作性。
在一种可能的设计中,在本申请实施例第三方面的第六种实现方式中,所述服务器还包括:第四接收单元,用于接收所述基站发送的业务类型,所述业务类型包括目标数据的数据流类型;第一调整单元,用于根据所述可用缓存空间、所述并发数据流数、所述初始带宽和所述业务类型调整所述目标缓存量。本实现方式中,服务器还会根据业务类型调整目标缓存量,使得基站缓存的数据量处于更加合理的水平,提高带宽利用率。
在一种可能的设计中,在本申请实施例第三方面的第七种实现方式中,所述服务器还包括:第五接收单元,用于在所述第一周期接收终端反馈的第二ACK,所述第二ACK为所述终端接收到的所述第一周期的前一个周期所述服务器发送的数据时发出的ACK;第四确定单元,用于根据所述第一周期的数据发送量以及所述第二ACK确定修正值。本实现方式中,具体说明了修正值的确定方式,使得实施例更具可行性。
在一种可能的设计中,在本申请实施例第三方面的第八种实现方式中,所述第一发送单元具体还用于:在第二周期根据所述空口带宽表征信息以及所述修正值发送所述目标数据,所述第二周期为所述第一周期的后一个周期,所述第一周期和所述第二周期为相邻周期。本实现方式中,服务器还会根据修正值修正目标数据的发送,使得数据发送更加准确。
本申请实施例的第四方面提供了一种基站,其特征在于,所述基站包括:第一发送单元,用于向服务器发送空口带宽表征信息,以使得所述服务器根据所述空口带宽表征信息发送目标数据,所述空口带宽表征信息指示基站空口的数据传输速率,所述目标缓存量为所述基站需要缓存的数据量,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI。本实现方式中的基站向服务器发送空口表征信息,然后服务器可以根据该空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
在一种可能的设计中,在本申请实施例第四方面的第一种实现方式中,所述基站还包括:第二发送单元,用于发送可用缓存消息至所述服务器,所述可用缓存消息包括可用缓存空间和并发数据流数,以使得所述服务器根据所述可用缓存消息及初始带宽确定目标缓存量,所述可用缓存空间为所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数为同时占用所述可用缓存空间的业务个数。本实现方式中,基站还会发送可用缓存信 息至服务器,使得实施例更具完整性。
在一种可能的设计中,在本申请实施例第四方面的第二种实现方式中,所述基站还包括:识别单元,用于根据所述终端发送的所述目标数据的数据流特征识别所述目标数据的业务类型;第三发送单元,用于发送所述业务类型至所述服务器,以使得所述服务器根据所述业务类型、所述可用缓存空间、所述并发数据流数和所述初始带宽调整所述目标缓存量。本实现方式中,基站还会发送业务类型至服务器,使得服务器可以更准确地判断目标缓存量的大小。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:服务器接收基站发送的空口带宽表征信息,其中,该空口带宽表征信息用于指示基站空口的数据传输速率,且该空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;然后服务器根据所述空口带宽表征信息发送目标数据。本实现方式中的服务器可以根据空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
附图说明
图1为本申请实施例提供的一种数据的传输方法所应用的一个系统架构示意图;
图2为本申请实施例提供的一种数据的传输方法所应用的另一个系统架构示意图;
图3为本申请实施例提供的一种数据的传输方法的一个流程示意图;
图4为本申请实施例提供的一种数据的传输方法的另一个流程示意图;
图5为本申请实施例提供的一种数据的传输方法的一个报文选项结构示意图;
图6a为本申请实施例提供的一种数据的传输方法的另一个报文选项结构示意图;
图6b为本申请实施例提供的一种数据的传输方法的另一个报文选项结构示意图;
图7为本申请实施例提供的一种数据的传输方法的另一个报文选项结构示意图;
图8为本申请实施例提供的一种数据的传输方法的另一个报文选项结构示意图;
图9为本申请实施例提供的一种数据的传输方法的另一个报文选项结构示意图;
图10为本申请实施例提供的一种服务器的一个结构示意图;
图11为本申请实施例提供的一种服务器的另一个结构示意图;
图12为本申请实施例提供的一种基站的一个结构示意图;
图13为本申请实施例提供的一种服务器的另一个结构示意图;
图14为本申请实施例提供的一种基站的另一个结构示意图。
具体实施方式
本申请实施例提供了一种数据的传输方法及其相关设备,用于感知网络的传输状态,提高网络带宽利用率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中的数据的传输方法可应用于服务器和基站中,其中,本申请中的服务器和基站可以建立通信连接,本申请中的服务器可以是无线接入网(radio access network,RAN)传输代理传输控制实体(代理服务器)或服务器传输控制实体。
本申请实施例可应用于如图1所示的网络架构,该网络架构中,服务器通过核心网发送数据至基站,基站将接收到的数据发送至终端,其中,如图2所示,本申请实施例中的基站可以接收并缓存服务器发送的数据。
请参阅图3,本申请实施例中数据的传输方法的一个实施例包括:
301、基站向服务器发送通信请求。
本实施例中,基站在数据流启动传输前发起通信协商,向服务器发送通信请求,其中,该通信请求包括跨层通信能力指示及通信请求信息,该跨层通信能力指示用于指示该基站具备跨层通信能力,该通信请求信息用于请求与服务器建立通信连接。
302、服务器向基站发送通信确认信息。
本实施例中,当服务器接收到基站发送的通信请求之后,将根据该通信请求生成通信确认信息,并将该通信确认信息发送至基站,建立通信连接,其中,该通信确认信息包括跨层通信能力指示及通信确认信息,该跨层通信能力指示用于指示该服务器具备跨层通信能力,该通信确认信息用于确认与该基站建立通信连接。
需要说明的是,通信请求请求还可以有服务器侧发出,由基站侧响应通信确认,建立通信连接,具体发送方以及响应方此处不做限定。
303、基站向服务器发送可用缓存空间和并发数据流数。
本实施例中,当基站和服务器建立了通信连接之后,在启动数据传输之前,基站会向服务器发送可用缓存空间和并发数据流数,其中,该可用缓存空间为目标数据所在无线承载(radio bearer,RB)的可用缓存空间,该并发数据流数为同时占用可用缓存空间的业务个数,例如终端同时下载视频和浏览网页的话,则并发数据流数为2;服务器可以根据该缓存空间和并发数据流数确定该基站中目标数据的缓存占用数据量,和确定发送速率。
304、服务器向基站发送初始性能探测包。
本实施例中,为了确定基站的数据传输能力,服务器会向基站发送初始性能探测包,其中,初始性能探测包中包含少量数据。
305、基站发送初始性能探测包至终端。
本实施例中,当基站接收到服务器发送的初始性能探测包之后,会发送初始性能探测包至终端,其中,初始性能探测包为连续发送的数据包。
306、终端根据接收到的初始性能探测包生成ACK。
本实施例中,当终端接收到初始性能探测包之后,会生成与该初始性能探测包对应的ACK,该ACK表示终端接收到了初始性能探测包。
307、终端发送ACK至服务器。
本实施例中,当终端生成ACK之后,会即刻发送该ACK至服务器。
308、服务器根据该ACK确定初始带宽和初始时延。
本实施例中,服务器接收到ACK之后,会根据接收到的ACK的时间以及每个ACK的时间间隔确定初始带宽和初始时延,其中,初始带宽可以反映基站的数据通行能力。
309、服务器根据可用缓存空间、并发数据流数和初始带宽确定目标缓存量。
本实施例中,当服务器接收到可用缓存空间、并发数据流数和初始带宽确定目标缓存量之后,将根据可用缓存空间、并发数据流数和初始带宽确定目标缓存量,具体可为,服务器根据可用缓存空间、并发数据流数确定目标数据的可用缓存量,目标数据的可用缓存量可以为可用缓存空间和并发数据流数的商,然后根据目标数据的可用缓存量以及初始带宽确定目标缓存量。
310、服务器根据初始带宽、初始时延和目标缓存量确定目标数据的初始数据发送量。
本实施例中,当服务器确定了目标缓存量之后,将根据初始带宽、初始时延和目标缓存量确定目标数据的初始数据发送量。
初始数据发送量具体为:初始带宽与初始时延的乘积再加上目标缓存量。
311、服务器在初始周期向基站发送初始数据发送量。
本实施例中,当服务器确定了初始数据发送量之后,将在初始周期向基站发送初始数据发送量,初始周期为服务器发送目标数据的初始周期。
其中,初始周期可以为1个RTT,经过初始周期之后,数据发送速率即基本达到空口可用带宽。经过初始周期之后,即可进入持续的短周期(可为0.5个RTT),如第一周期,第二周期等等。
312、基站在第一周期发送空口带宽表征信息至服务器。
本实施例中,当基站进入持续短周期的数据传输控制阶段时,例如进入第一周期时,将会发送第一周期的空口带宽表征信息至服务器,其中,空口带宽表征信息可以指示基站空口的数据传输速率(空口带宽)。
需要说明的是,第一周期为初始周期之后的一个周期,不一定是初始周期的相邻周期。
需要说明的是,空口带宽表征信息包括如下中的一种或多种:基站媒体接入控制(media access control,MAC)层对无线链路控制层(radio link control,RLC)协议数据单元(protocol data unit,PDU)的调度速率、MAC层对RLC层PDU的调度数据量、终端上报到基站的信道质量标识(channel quality indicator,CQI)、或终端上报到基站的信道状态指标(channel state information,CSI),其中CSI包括CQI、秩指示(rank indication, RI)和预编码矩阵(pre-coding matrix index,PMI)。
需要说明的是,如果此时并发数据流数有变化,基站还需同时发送并发数据流数至服务器。
313、服务器根据空口带宽表征信息发送目标数据。
本实施例中,当服务器接收到基站发送的空口带宽表征信息之后,将会根据空口带宽表征信息快速测算数据的网络传输速率,并根据测算出来的网络传输速率进行目标数据的发送。
需要说明的是,当空口带宽表征信息为CQI时,服务器会根据预置的CQI-空口带宽模型测算得出空口带宽,该CQI-空口带宽模型可实现在线学习和修正。
需要说明的是,基站还会根据服务器发送的目标数据的数据流特征识别得到目标数据的业务类型,并且将该业务类型发送至服务器,使得服务器根据可用缓存空间、并发数据流数、初始带宽和业务类型更新目标缓存量,使得基站空口传输的缓存数据量保持在必要的,合理的,与业务类型相适应的水平,提高空口可用带宽的利用率。
需要说明的是,本申请实施例若检测到服务器数据传输完成,则结束数据传输控制。
本申请实施例中,服务器与基站建立通信连接;在数据传输过程中,基站会发送空口带宽表征信息至基站,其中,空口带宽表征信息指示基站空口的数据传输速率,然后服务器根据接收到的空口带宽表征信息发送目标数据。本申请中的服务器可以根据空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高了网络带宽利用率。
请参阅图4,本申请实施例中数据的传输方法的一个实施例包括:
401、基站向服务器发送通信请求。
402、服务器向基站发送通信确认信息。
403、基站向服务器发送可用缓存空间和并发数据流数。
404、服务器向基站发送初始性能探测包。
405、基站发送初始性能探测包至终端。
406、终端根据接收到的初始性能探测包生成ACK。
407、终端发送ACK至服务器。
408、服务器根据该ACK确定初始带宽和初始时延。
409、服务器根据可用缓存空间、并发数据流数和初始带宽确定目标缓存量。
410、服务器根据初始带宽、初始时延和目标缓存量确定目标数据的初始数据发送量。
411、服务器在初始周期向基站发送初始数据发送量,初始周期为服务器发送目标数据的初始周期。
412、基站在第一周期发送空口带宽表征信息至服务器。
本实施例中,步骤401至412与图3对应实施例中的301至312类似,具体此处不做赘述。
413、终端在第一周期反馈ACK至服务器。
本实施例中,终端会在第一周期反馈ACK至服务器,其中,该ACK为终端通过基站接 收到的第一周期前一个周期服务器发送的数据时发出的ACK。
414、服务器根据第一周期空口带宽表征信息以及ACK确定修正值。
本实施例中,当服务器接收到ACK之后,会结合之前收到的第一周期的数据发送量确定修正值,其中,确定修正值的步骤为:根据第一周期空口带宽表征信息确定第一周期基站空口的数据传输速率,并根据该数据传输速率确定第一数据发送量,根据第一周期ACK确定实际空口发送速率,并根据该实际空口发送速率确定第二发送量,最后根据前述的第一发送量以及第二发送量的差值确定第一周期修正值。
415、服务器在第二周期根据空口带宽表征信息以及修正值发送目标数据。
本实施例中,服务器根据接收到的空口带宽表征信息以及在第一周期获取得到的修正值对第二周期的数据发送量(或数据发送速率)进行修正,达到基站缓存数据量基本达到均衡的目的,例如,若计算出修正量是5,根据接收到的空口带宽表征信息计算出来的数据发送量是100,则修正后需在第二周期内发送数据量95。
本申请实施例中,服务器与基站建立通信连接;在数据传输过程中,基站会发送空口带宽表征信息至基站,其中,空口带宽表征信息指示基站空口的数据传输速率,然后服务器根据接收到的空口带宽表征信息发送目标数据。本申请中的服务器可以根据空口带宽表征信息获取基站空口的数据传输速率,感知网络的传输状态,并根据该基站空口的数据传输速率快速调整数据的发送速率,提高网络带宽利用率,并且本实施例可以根据修正量对后续传输周期的传输数据量进行修正,使得传输更加精确。
特别地,图3对应实施例以及图4对应实施例中的基站和服务器之间的的信息传递可以通过在TCP报文首部的选项域中插入自定义选项实现,对于上行,基站发送跨层协同信息到服务器,选项结构可以如下图5所示:
1)选项第1个字节,说明选项类型,自定义类型编号10,用于本申请方案跨层协同信息承载;
2)选项第2个字节,说明选项内容长度,4字节;
3)选项第3-5字节,承载具体的跨层协同交互信息。
选项第3-5字节跨层协同信息字段,可以定义如图6a或6b所示;
如图7所示,由于MAC层调度速率字段的表征范围大,可通过独立的选项,例如自定义类型编号11,进行信息反馈;
对于下行,服务器传输控制实体或RAN传输大力传输控制实体发送跨层协同信息到基站,选项结构可以如图8所示:
不同于上行,下行跨层协同字段信息长度仅为1字节,可以定义如图9所示;
具体字段可以定义如下:
1)跨层通信能力指示,2比特,00:不承载信息,字段无效;11:具备本申请方案特指的跨层通信能力;01:不具备本申请方案特指的跨城通信能力;
2)请求或响应,2比特,00:不承载信息,字段无效;11:请求实施通信连接或响应确认可进行通行连接;01:请求通信连接或拒绝进行通信连接;
3)业务类型,4比特,0000:不承载信息,字段无效;非0000:基站根据SC业务识 别模块识别结果填写业务类型编号,例如,1111-VR虚拟现实业务,1110-视频业务,1101-网页浏览业务等等;
4)CQI,4比特,0000:不承载信息,字段无效;0001:对应CQI等级0;0010:对应CQI等级1;以此类推,1111对应CQI等级15;
5)MAC层对RLC层PDU的调度速率,16比特,字段单位100kbps,例如,0000000011110000,表征MAC层对RLC层PDU的调度速率为24Mbps;
6)RB无线承载的可用缓存空间,8比特,00000000:不承载信息,字段无效;非00000000:通告具体RB无线承载的可用缓存空间,单位100KByte,例如00001111,可用缓存空间为1500KByte,11111111,可用缓存空间为25500KByte。
若选项域总长度超过40字节,可将选择性ACK(selective acknowledgement,SACK)SACK的最后一段已接收不连续数据包的序列信息删除,减少SACK选项占用的字节空间,这在本申请方案中不影响传输性能。
上面对本申请实施例中数据的传输方法进行了描述,下面对本申请实施例中的服务器进行描述,请参阅图10,本申请实施例中服务器的一个实施例包括:
第一接收单元1001,用于接收基站发送的空口带宽表征信息,空口带宽表征信息用于指示基站空口的数据传输速率,空口带宽表征信息包括如下中的一种或多种:基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、MAC层对RLC层PDU的调度数据量、终端上报到基站的信道质量标识CQI、或终端上报到基站的信道状态指标CSI,CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;
第一发送单元1002,用于根据空口带宽表征信息发送目标数据。
本申请实施例中,服务器根据基站发送的空口表征信息发送目标数据,本申请中的服务器可以感知网络的传输状态,提高了网络带宽利用率。
为便于理解,下面对本申请实施例中的服务器进行详细描述,在上述图10所示的基础上,请参阅图11,图11为本申请实施例中服务器的另一个实施例示意图,服务器包括:第一接收单元1101和第一发送单元1102。
可选的,第一接收单元1101具体用于:
在第一周期接收基站发送空口带宽表征信息。
可选的,第一发送单元1102具体用于:
在第一周期接收基站发送空口带宽表征信息。
和,
在第二周期根据空口带宽表征信息以及修正值发送目标数据,第二周期为第一周期的后一个周期,第一周期和第二周期为相邻周期。
可选的,服务器还包括:
第二接收单元1103,用于接收基站发送的可用缓存消息,可用缓存消息包括可用缓存空间和并发数据流数,可用缓存空间用于指示目标数据所在无线承载RB的可用缓存空间,并发数据流数用于指示同时占用可用缓存空间的业务个数;
第一确定单元1104,用于根据可用缓存空间、并发数据流数和初始带宽确定目标缓存 量。
第二发送单元1105,用于向基站发送初始性能探测包,初始性能探测包为连续的数据包;
第三接收单元1106,用于接收终端反馈的第一确认ACK,第一ACK为终端通过基站接收到初始性能探测包时发出的ACK;
第二确定单元1107,用于根据第一ACK的接收间隔确定初始带宽。
第三确定单元1108,用于根据初始带宽、初始时延和目标缓存量确定目标数据的初始数据发送量,初始时延由服务器根据第一ACK的接收间隔确定得到;
第三发送单元1109,用于在初始周期向基站发送初始数据发送量。
第四接收单元1110,用于接收基站发送的业务类型,业务类型包括目标数据的数据流类型;
第一调整单元1111,用于根据可用缓存空间、并发数据流数、初始带宽和业务类型调整目标缓存量。
第五接收单元1112,用于在第一周期接收终端反馈的第二ACK,第二ACK为终端接收到的第一周期的前一个周期服务器发送的数据时发出的ACK;
第四确定单元1113,用于根据第一周期的数据发送量以及第二ACK确定修正值。
请参阅图12,图12为本申请实施例中基站的一个实施例示意图:
第一发送单元1201,用于向服务器发送空口带宽表征信息,以使得服务器根据空口带宽表征信息发送目标数据,空口带宽表征信息指示基站空口的数据传输速率,目标缓存量为基站需要缓存的数据量,空口带宽表征信息包括如下中的一种或多种:基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、MAC层对RLC层PDU的调度数据量、终端上报到基站的信道质量标识CQI、或终端上报到基站的信道状态指标CSI,CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI。
第二发送单元1202,用于发送可用缓存消息至服务器,可用缓存消息包括可用缓存空间和并发数据流数,以使得服务器根据可用缓存消息及初始带宽确定目标缓存量,可用缓存空间为目标数据所在无线承载RB的可用缓存空间,并发数据流数为同时占用可用缓存空间的业务个数。
识别单元1203,用于根据终端发送的目标数据的数据流特征识别目标数据的业务类型;
第三发送单元1204,用于发送业务类型至服务器,以使得服务器根据业务类型、可用缓存空间、并发数据流数和初始带宽调整目标缓存量。
上面图10至图12从模块化功能实体的角度分别对本申请实施例中服务器和基站进行详细描述,下面从硬件的角度对本申请实施例中服务器和基站进行详细描述。
图13是本发明实施例提供的一种服务器结构示意图,该服务器1300可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)1322(例如,一个或一个以上处理器)和存储器1332,一个或一个以上存储应用程序1342或数据1344的存储介质1330(例如一个或一个以上海量存储设备)。其中,存储器1332和存储介质1330可以是短暂存储或持久存储。存储在存储介质1330的程序可 以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器1322可以设置为与存储介质1330通信,在服务器1300上执行存储介质1330中的一系列指令操作。
服务器1300还可以包括一个或一个以上电源1326,一个或一个以上有线或无线网络接口1350,一个或一个以上输入输出接口1358,和/或,一个或一个以上操作系统1341,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由服务器所执行的步骤可以基于该图13所示的服务器结构。
图14是本发明实施例提供的一种基站结构示意图,该基站1400可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)1422(例如,一个或一个以上处理器)和存储器1432,一个或一个以上存储应用程序1442或数据1444的存储介质1430(例如一个或一个以上海量存储设备)。其中,存储器1432和存储介质1430可以是短暂存储或持久存储。存储在存储介质1430的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对基站中的一系列指令操作。更进一步地,中央处理器1422可以设置为与存储介质1430通信,在基站1400上执行存储介质1430中的一系列指令操作。
基站1400还可以包括一个或一个以上电源1426,一个或一个以上有线或无线网络接口1450,一个或一个以上输入输出接口1458,和/或,一个或一个以上操作系统1441,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由基站所执行的步骤可以基于该图14所示的基站结构。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种数据的传输方法,其特征在于,所述方法包括:
    服务器接收基站发送的空口带宽表征信息,所述空口带宽表征信息用于指示基站空口的数据传输速率,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;
    所述服务器根据所述空口带宽表征信息发送目标数据。
  2. 根据权利要求1所述的方法,其特征在于,所述服务器根据所述空口带宽表征信息发送目标数据包括:
    所述服务器根据所述空口带宽表征信息以及目标缓存量发送所述目标数据,所述目标缓存量为所述基站需要缓存所述目标数据的数据量。
  3. 根据权利要求2所述的方法,其特征在于,所述服务器接收基站发送的空口带宽表征信息之前,所述方法还包括:
    所述服务器接收所述基站发送的可用缓存消息,所述可用缓存消息包括可用缓存空间和并发数据流数,所述可用缓存空间用于指示所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数用于指示同时占用所述可用缓存空间的业务个数;
    所述服务器根据所述可用缓存空间、所述并发数据流数和初始带宽确定所述目标缓存量。
  4. 根据权利要求3所述的方法,其特征在于,所述服务器根据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量之前,所述方法还包括:
    所述服务器向所述基站发送初始性能探测包,所述初始性能探测包为连续的数据包;
    所述服务器接收终端反馈的第一确认ACK,所述第一ACK为所述终端通过所述基站接收到所述初始性能探测包时发出的ACK;
    所述服务器根据所述第一ACK的接收间隔确定所述初始带宽。
  5. 根据权利要求4所述的方法,其特征在于,所述服务器根据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量之后,所述方法还包括:
    所述服务器根据所述初始带宽、初始时延和所述目标缓存量确定所述目标数据的初始数据发送量,所述初始时延由所述服务器根据所述第一ACK的接收间隔确定得到;
    所述服务器在初始周期向所述基站发送所述初始数据发送量。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述服务器接收所述基站发送的空口带宽表征信息包括:
    所述服务器在第一周期接收所述基站发送空口带宽表征信息。
  7. 根据权利要求6所述的方法,其特征在于,所述服务器在初始周期向所述基站发送所述初始数据发送量之后,所述方法还包括:
    所述服务器接收所述基站发送的业务类型,所述业务类型包括目标数据的数据流类型;
    所述服务器根据所述可用缓存空间、所述并发数据流数、所述初始带宽和所述业务类 型调整所述目标缓存量。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述服务器在所述第一周期接收终端反馈的第二ACK,所述第二ACK为所述终端接收到的所述第一周期的前一个周期所述服务器发送的数据时发出的ACK;
    所述服务器根据所述第一周期的数据发送量以及所述第二ACK确定修正值。
  9. 根据权利要求8所述的方法,其特征在于,所述服务器根据所述空口带宽表征信息发送目标数据包括:
    所述服务器在第二周期根据所述空口带宽表征信息以及所述修正值发送所述目标数据,所述第二周期为所述第一周期的后一个周期,所述第一周期和所述第二周期为相邻周期。
  10. 一种数据的传输方法,其特征在于,所述方法包括:
    基站向服务器发送空口带宽表征信息,以使得所述服务器根据所述空口带宽表征信息发送目标数据,所述空口带宽表征信息指示基站空口的数据传输速率,所述目标缓存量为所述基站需要缓存的数据量,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI。
  11. 根据权利要求10所述的方法,其特征在于,所述基站向所述服务器发送空口带宽表征信息之前,所述方法还包括:
    所述基站发送可用缓存消息至所述服务器,所述可用缓存消息包括可用缓存空间和并发数据流数,以使得所述服务器根据所述可用缓存消息及初始带宽确定目标缓存量,所述可用缓存空间为所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数为同时占用所述可用缓存空间的业务个数。
  12. 根据权利要求10或11中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站根据所述终端发送的所述目标数据的数据流特征识别所述目标数据的业务类型;
    所述基站发送所述业务类型至所述服务器,以使得所述服务器根据所述业务类型、所述可用缓存空间、所述并发数据流数和所述初始带宽调整所述目标缓存量。
  13. 一种服务器,其特征在于,所述服务器包括:
    第一接收单元,用于接收基站发送的空口带宽表征信息,所述空口带宽表征信息用于指示基站空口的数据传输速率,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI;
    第一发送单元,用于根据所述空口带宽表征信息发送目标数据。
  14. 根据权利要求13所述的服务器,其特征在于,所述第一发送单元具体用于:
    根据所述空口带宽表征信息以及目标缓存量发送所述目标数据,所述目标缓存量为所 述基站需要缓存所述目标数据的数据量。
  15. 根据权利要求14所述的服务器,其特征在于,所述服务器还包括:
    第二接收单元,用于接收所述基站发送的可用缓存消息,所述可用缓存消息包括可用缓存空间和并发数据流数,所述可用缓存空间用于指示所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数用于指示同时占用所述可用缓存空间的业务个数;
    第一确定单元,用于根据所述可用缓存空间、所述并发数据流数和初始带宽确定目标缓存量。
  16. 根据权利要求15所述的服务器,其特征在于,所述服务器还包括:
    第二发送单元,用于向所述基站发送初始性能探测包,所述初始性能探测包为连续的数据包;
    第三接收单元,用于接收终端反馈的第一确认ACK,所述第一ACK为所述终端通过所述基站接收到所述初始性能探测包时发出的ACK;
    第二确定单元,用于根据所述第一ACK的接收间隔确定所述初始带宽。
  17. 根据权利要求16所述的服务器,其特征在于,所述服务器还包括:
    第三确定单元,用于根据所述初始带宽、初始时延和所述目标缓存量确定所述目标数据的初始数据发送量,所述初始时延由所述服务器根据所述第一ACK的接收间隔确定得到;
    第三发送单元,用于在初始周期向所述基站发送所述初始数据发送量。
  18. 根据权利要求13至17中任一项所述的服务器,其特征在于,所述第一接收单元具体用于:
    在第一周期接收所述基站发送空口带宽表征信息。
  19. 根据权利要求18所述的服务器,其特征在于,所述服务器还包括:
    第四接收单元,用于接收所述基站发送的业务类型,所述业务类型包括目标数据的数据流类型;
    第一调整单元,用于根据所述可用缓存空间、所述并发数据流数、所述初始带宽和所述业务类型调整所述目标缓存量。
  20. 根据权利要求19所述的服务器,其特征在于,所述服务器还包括:
    第五接收单元,用于在所述第一周期接收终端反馈的第二ACK,所述第二ACK为所述终端接收到的所述第一周期的前一个周期所述服务器发送的数据时发出的ACK;
    第四确定单元,用于根据所述第一周期的数据发送量以及所述第二ACK确定修正值。
  21. 根据权利要求20所述的服务器,其特征在于,所述第一发送单元具体还用于:
    在第二周期根据所述空口带宽表征信息以及所述修正值发送所述目标数据,所述第二周期为所述第一周期的后一个周期,所述第一周期和所述第二周期为相邻周期。
  22. 一种基站,其特征在于,所述基站包括:
    第一发送单元,用于向服务器发送空口带宽表征信息,以使得所述服务器根据所述空口带宽表征信息发送目标数据,所述空口带宽表征信息指示基站空口的数据传输速率,所述目标缓存量为所述基站需要缓存的数据量,所述空口带宽表征信息包括如下中的一种或多种:所述基站媒体接入控制MAC层对无线链路控制RLC层协议数据单元PDU的调度速率、 所述MAC层对RLC层PDU的调度数据量、终端上报到所述基站的信道质量标识CQI、或终端上报到所述基站的信道状态指标CSI,所述CSI包括信道质量标识CQI、秩指示RI和预编码矩阵PMI。
  23. 根据权利要求22所述的基站,其特征在于,所述基站还包括:
    第二发送单元,用于发送可用缓存消息至所述服务器,所述可用缓存消息包括可用缓存空间和并发数据流数,以使得所述服务器根据所述可用缓存消息及初始带宽确定目标缓存量,所述可用缓存空间为所述目标数据所在无线承载RB的可用缓存空间,所述并发数据流数为同时占用所述可用缓存空间的业务个数。
  24. 根据权利要求22或23中任一项所述的基站,其特征在于,所述基站还包括:
    识别单元,用于根据所述终端发送的所述目标数据的数据流特征识别所述目标数据的业务类型;
    第三发送单元,用于发送所述业务类型至所述服务器,以使得所述服务器根据所述业务类型、所述可用缓存空间、所述并发数据流数和所述初始带宽调整所述目标缓存量。
  25. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9任意一项所述的方法。
  26. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-9任意一项所述的方法。
  27. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求10-12任意一项所述的方法。
  28. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求10-12任意一项所述的方法。
PCT/CN2019/070905 2018-01-24 2019-01-08 一种数据的传输方法及其相关设备 WO2019144802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810072502.3A CN110072254B (zh) 2018-01-24 2018-01-24 一种数据的传输方法及其相关设备
CN201810072502.3 2018-01-24

Publications (1)

Publication Number Publication Date
WO2019144802A1 true WO2019144802A1 (zh) 2019-08-01

Family

ID=67365569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070905 WO2019144802A1 (zh) 2018-01-24 2019-01-08 一种数据的传输方法及其相关设备

Country Status (2)

Country Link
CN (1) CN110072254B (zh)
WO (1) WO2019144802A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839308B (zh) * 2019-11-25 2022-06-03 成都鼎桥通信技术有限公司 数据处理方法、装置及存储介质
CN114762274B (zh) * 2019-12-31 2024-04-09 华为技术有限公司 速率调节装置和方法
CN111565090B (zh) * 2020-04-13 2021-06-11 西北工业大学 一种物理层信息互易性的增强方法
CN113556779B (zh) * 2021-07-15 2024-02-20 深圳职业技术学院 工业物联网中的数据传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853385A (zh) * 2003-10-03 2006-10-25 富士通株式会社 通过基站确定服务质量指标来调度来自用户设备的上行链路传输的方法,以及相应的基站、用户设备和通信系统
CN102131241A (zh) * 2011-03-15 2011-07-20 上海华为技术有限公司 一种控制流媒体速率的方法、基站及系统
CN102256314A (zh) * 2011-07-20 2011-11-23 上海华为技术有限公司 业务编码速率调整方法及通信节点
CN104579603A (zh) * 2014-12-25 2015-04-29 京信通信系统(中国)有限公司 一种基于harq的下行调度方法及装置
US20150146556A1 (en) * 2012-05-11 2015-05-28 Hitachi, Ltd. Base station apparatus, wireless communication method and central control server

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419967B2 (en) * 2015-10-29 2019-09-17 Altiostar Networks, Inc. Video pacing based on radio conditions
CN107124769B (zh) * 2017-04-24 2019-09-17 京信通信系统(中国)有限公司 一种资源配置方法和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853385A (zh) * 2003-10-03 2006-10-25 富士通株式会社 通过基站确定服务质量指标来调度来自用户设备的上行链路传输的方法,以及相应的基站、用户设备和通信系统
CN102131241A (zh) * 2011-03-15 2011-07-20 上海华为技术有限公司 一种控制流媒体速率的方法、基站及系统
CN102256314A (zh) * 2011-07-20 2011-11-23 上海华为技术有限公司 业务编码速率调整方法及通信节点
US20150146556A1 (en) * 2012-05-11 2015-05-28 Hitachi, Ltd. Base station apparatus, wireless communication method and central control server
CN104579603A (zh) * 2014-12-25 2015-04-29 京信通信系统(中国)有限公司 一种基于harq的下行调度方法及装置

Also Published As

Publication number Publication date
CN110072254B (zh) 2021-01-05
CN110072254A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2019144802A1 (zh) 一种数据的传输方法及其相关设备
Zhang et al. Novel quick start (QS) method for optimization of TCP
WO2016192478A1 (zh) 数据传输方法及装置
US9596281B2 (en) Transport accelerator implementing request manager and connection manager functionality
JP4016387B2 (ja) データフロー制御方法
WO2019144836A1 (zh) 数据传输方法、装置和系统
EP3075110B1 (en) Controlling a transmission control protocol window size
JP4878391B2 (ja) 適応的なキュー待ち時間を伴うスケジューリング及びキューマネージメント
US11558302B2 (en) Data transmission method and apparatus
US20080101290A1 (en) Apparatus for Arq Controlling in Wireless Portable Internet System and Method Thereof
WO2011144141A1 (zh) 拥塞控制方法和系统以及网络设备
WO2013053304A1 (zh) 一种实现tcp传输的方法及装置
WO2012163305A1 (zh) 数据传输控制方法和设备
WO2009059545A1 (fr) Procédé, dispositif et système de transmission de données
US20160006805A1 (en) Transport accelerator systems and methods
WO2010006557A1 (zh) 数据传输方法和装置
TWI358922B (en) Method and apparatus of default timer configuratio
WO2012129922A1 (zh) 一种报文处理方法、转发设备及系统
WO2017097201A1 (zh) 一种数据传输方法、发送装置及接收装置
WO2020147453A1 (zh) 数据传输方法及相关装置
JP2018196053A (ja) 通信装置、通信方法、およびプログラム
CN113300817B (zh) 数据传输方法以及装置
CN104580171B (zh) Tcp协议的传输方法、装置和系统
US20220368765A1 (en) Universal Transport Framework For Heterogeneous Data Streams
JP4627290B2 (ja) Tcpを用いたレート制御方法、サーバ及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743558

Country of ref document: EP

Kind code of ref document: A1