WO2023206913A1 - 脉冲光纤激光器的光路系统和激光器 - Google Patents

脉冲光纤激光器的光路系统和激光器 Download PDF

Info

Publication number
WO2023206913A1
WO2023206913A1 PCT/CN2022/118222 CN2022118222W WO2023206913A1 WO 2023206913 A1 WO2023206913 A1 WO 2023206913A1 CN 2022118222 W CN2022118222 W CN 2022118222W WO 2023206913 A1 WO2023206913 A1 WO 2023206913A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
amplifier
gain
sub
Prior art date
Application number
PCT/CN2022/118222
Other languages
English (en)
French (fr)
Inventor
陶斌凯
高帅
颜鹏晖
黄保
闫大鹏
Original Assignee
武汉锐科光纤激光技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉锐科光纤激光技术股份有限公司 filed Critical 武汉锐科光纤激光技术股份有限公司
Priority to EP22899619.5A priority Critical patent/EP4293841A1/en
Publication of WO2023206913A1 publication Critical patent/WO2023206913A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06787Bidirectional amplifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/101Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application belongs to the technical field of fiber lasers, and in particular relates to an optical path system and laser of a pulsed fiber laser.
  • fiber lasers Because fiber lasers have the advantages of good beam quality, high efficiency, good heat dissipation, high reliability, and easy maintenance, they are widely used in laser processing, fiber optic communications, military defense and security, medical machinery and equipment and other fields. Mid- and low-power nanosecond pulse fiber lasers are currently the first choice in laser processing and micro-processing fields such as engraving and marking due to their high efficiency, compactness, stability, and low cost.
  • nanosecond pulse fiber lasers are generated through one or more levels of unidirectional amplification and isolation of the seed source. Due to the need to consider suppressing the amplification of spontaneous emission and inelastically dispersed light, the amplification factor of each fiber amplifier cannot be increased. In addition, there is also the problem of poor pulse flatness, which leads to certain limitations in the practical application of lasers and cannot meet the requirements of more practical applications. Fine, faster processing and micro-machining requirements.
  • Embodiments of the present application provide an optical path system and a laser for a pulse fiber laser to solve the problems of low amplification and poor pulse flatness of existing pulse lasers.
  • embodiments of the present application provide an optical path system for a pulsed fiber laser, including a seed source, a first optical beam splitter, an optical modulator, and at least one optical fiber amplification component connected in sequence.
  • the optical fiber amplification component includes a first optical fiber amplification component.
  • Amplifier and reflector the first amplifier is connected to the optical modulator and the reflector, the optical signal generated by the seed source is sequentially passed through the first optical beam splitter, the optical modulator, the third An amplifier is injected into the reflector, and the optical signal reflected by the reflector passes through the first amplifier and the optical modulator in sequence, and then is emitted from the first optical beam splitter.
  • the optical fiber amplification component further includes a power-transmitting optical fiber located between the first amplifier and the reflector.
  • the energy-transmitting optical fiber connects the first amplifier and the reflector.
  • the seed source The generated optical signal is sequentially injected into the reflector through the first optical beam splitter, the optical modulator, the first amplifier, and the energy-transmitting optical fiber, and the optical signal reflected by the reflector is sequentially passed through the After the energy-transmitting optical fiber, the first amplifier and the optical modulator are emitted from the first optical beam splitter.
  • the energy-transmitting optical fiber is used to increase the propagation path of the optical signal, increase the time domain duration of a pulse, and extend the transmission time of the pulse.
  • the light modulator is used to adjust the waveform of the pulse and output a pulse train.
  • two fiber amplification components are provided, and a second optical beam splitter is provided between the optical modulator and the optical fiber amplification component.
  • the second optical beam splitter connects the optical modulator and the two optical fiber amplification components.
  • the optical fiber amplification component is provided.
  • a second amplifier and a first optical isolator are also included.
  • the second amplifier is connected to the first optical beam splitter and the first optical isolator.
  • the optical signal processed by the amplifier enters the second amplifier through the first optical beam splitter and is emitted from the first optical isolator.
  • the first amplifier includes a plurality of amplification sub-sections connected in series, adjacent amplification sub-sections are connected through a filter, and one end of the amplification sub-section located first in each of the amplification sub-sections is connected to The light modulator is connected, and one end of the last amplifier sub-section in each of the amplifier sub-sections is connected to the reflector;
  • the second amplifier includes a plurality of amplification sub-sections connected in series, adjacent amplification sub-sections are connected through a filter, and one end of the amplification sub-section located first in each of the amplification sub-sections is connected to In the first optical beam splitter, one end of the last amplifying sub-section among each of the amplifying sub-sections is connected to the first optical isolator.
  • the second amplifier includes a second gain fiber, a first optical beam combiner and a second pump source, one side of the second gain fiber is connected to the first optical beam splitter, and the first The optical beam combiner is respectively connected to the other side of the second gain fiber, the second pump source, and the first optical isolator;
  • the first amplifier includes a first gain fiber, a first fiber coupler and a first pump source, the first fiber coupler is respectively connected to the optical modulator, the first pump source, the first One side of the gain fiber, and the other side of the gain fiber is connected to the reflector.
  • the second amplifier includes a fourth gain fiber, a second optical beam combiner, a sixth pump source, a third optical beam combiner and a fifth pump source, and the third optical beam combiner is respectively connected to the The first optical beam splitter, the fifth pump source, and one side of the fourth gain fiber.
  • the second optical beam combiner is connected to the other side of the fourth gain fiber, the sixth pump source, and the first optical beam splitter.
  • the first amplifier includes a third gain fiber, a second fiber coupler, a third fiber coupler, a third pump source and a fourth pump source
  • the second fiber coupler is respectively connected to the The optical modulator, the third pump source, one side of the third gain fiber, and the third fiber coupler are respectively connected to the other side of the gain fiber, the fourth pump source, and the reflector.
  • the optical modulator is provided with a first channel and a second channel, the first channel is for the optical signal to enter the optical fiber amplification component, and the second channel is for the optical signal to pass through the optical fiber amplification component twice.
  • the amplified light signal passes through.
  • the first channel and the second channel are set to a normally open state.
  • the energy transmission optical fiber can be 6/125 type or 10/125 passive optical fiber.
  • the optical modulator can be a 120 MHz acousto-optic modulator.
  • embodiments of the present application further provide a laser, which includes the optical path system of the pulsed fiber laser described in any one of the above.
  • the optical path system and laser of a pulsed fiber laser provided by the embodiment of the present application are to inject the optical signal generated by the seed source into the reflector through the first optical beam splitter, the optical modulator and the first amplifier in sequence, and the reflector reflects the third optical signal.
  • the optical signal amplified by the first amplifier enters the first amplifier again.
  • the optical signal is amplified in two ways by the first amplifier, which increases the amplification factor of the optical signal.
  • the amplification factor increases exponentially, and both the pre-amplification and post-amplification optical signals pass through the optical signal.
  • Modulator, the optical modulator adjusts the optical signal twice to achieve fine control of the optical signal. It overcomes the problems of low amplification and poor pulse flatness of the existing pulse laser. It has high amplification, finely adjustable waveform, and smooth pulse. It has the advantages of good uniformity, simple optical path structure and control.
  • Figure 1 is a schematic diagram of an optical path system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an optical path system provided by an embodiment of the present application with two optical fiber amplification components.
  • Figure 3 is a schematic diagram of an optical path system provided with energy-transmitting optical fibers according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a second amplifier provided in the optical path system provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the optical path system provided by the embodiment of the present application with a second amplifier and energy-transmitting optical fiber.
  • Figure 6 is a schematic diagram of the first amplifier provided by the embodiment of the present application.
  • Figure 7 is a system diagram of the first optical path form provided by the embodiment of the present application.
  • Figure 8 is a system diagram of the second optical path form provided by the embodiment of the present application.
  • Figure 9 is a system diagram of the third optical path form provided by the embodiment of the present application.
  • Figure 10 is a system diagram of the fourth optical path form provided by the embodiment of the present application.
  • Embodiments of the present application provide an optical path system and a laser for a pulse fiber laser to solve the problems of low amplification and poor pulse flatness of existing pulse lasers. The following will be described with reference to the accompanying drawings.
  • the optical path system of the pulse fiber laser provided in the embodiment of the present application can be applied to a nanosecond laser, a picosecond laser or a femtosecond laser.
  • the embodiment of the present application uses a nanosecond laser for illustration.
  • the nanosecond laser can be a low-power nanosecond pulse fiber laser. , medium power nanosecond pulse fiber laser or high power nanosecond pulse fiber laser.
  • the laser can include an optical path system and an electronic control system.
  • the electronic control system is electrically connected to the optical path system. The operation of the optical path system is controlled through the electronic control system, and the control is simple.
  • the embodiment of the present application provides an optical path system for a pulsed fiber laser, including a seed source 1, a first optical beam splitter 2, an optical modulator 3, and at least one optical fiber amplification component 4 connected in sequence.
  • the optical fiber amplification component 4 includes a first amplifier 40 and a reflector 41.
  • the first amplifier 40 is connected to the optical modulator and the reflector 41.
  • the optical signal generated by the seed source 1 passes through the first optical beam splitter 2, the optical modulator 3, and
  • the first amplifier 40 is incident on the reflector 41 , and the optical signal reflected by the reflector 41 passes through the first amplifier 40 and the optical modulator 3 in sequence, and then is emitted from the first optical beam splitter 2 .
  • the optical path system includes a seed source 1, a first optical beam splitter 2, an optical modulator 3 and at least one optical fiber amplification component 4, wherein the first end of the first optical beam splitter 2 is connected to the seed source 1, The common end of the first optical beam splitter 2 is connected to the first end of the optical modulator 3, and the second end of the optical modulator 3 is connected to the optical fiber amplification assembly 4.
  • the optical fiber amplification assembly 4 includes a first amplifier 40 and a reflector 41.
  • the first end of the amplifier 40 is connected to the second end of the optical modulator 3, the second end of the first amplifier 40 is connected to the reflector 41, the seed source 1 is used to generate the first optical signal, and the first optical beam splitter 2 converts the first The optical signal is introduced into the optical modulator 3.
  • the optical modulator 3 is used to regulate the parameters of the first optical signal, such as regulating the pulse width and pulse waveform of the first optical signal.
  • the optical fiber amplification component 4 is used to perform two-way processing of the first optical signal.
  • the third optical signal is obtained after amplification by the optical fiber amplification component 4, that is, the first optical signal is amplified by the first amplifier 40 to obtain the second optical signal, the second optical signal is injected into the reflector 41, and the reflector 41 completely reflects the second optical signal.
  • the second optical signal enters the first amplifier 40 again and is amplified to obtain a third optical signal.
  • the third optical signal is injected into the optical modulator 3.
  • the optical modulator 3 is also used to regulate the parameters of the third optical signal.
  • the optical signal is emitted through the second end of the first optical beam splitter 2 .
  • the first optical signal generated by the seed source 1 may be a continuous optical signal or a pulsed optical signal. When the first optical signal is a continuous optical signal, the optical modulator 3 is also used to regulate the continuous optical signal into a pulsed optical signal.
  • the parameters for controlling the first optical signal and the parameters for controlling the second optical signal by the optical modulator 3 may be the same or different, as long as the final required optical signal can be obtained.
  • the optical modulator 3 controls the first optical signal to obtain the required pulse width and pulse waveform, and can be used to reduce the repetition frequency of the pulsed optical signal.
  • the optical modulator 3 finely controls the third optical signal to generate the required pulse shape. , pulse width, and repetition frequency of pulsed light signals to achieve the effects of wide frequency range, good pulse flatness, and adjustable waveform.
  • the optical modulator 3 performs a preliminary spectrum narrowing on the first optical signal, and the optical modulator 3 performs a preliminary spectrum narrowing on the third optical signal to achieve a second narrowing of the spectrum of the optical signal generated by the seed source 1 .
  • the reflector 41 is provided in the optical fiber amplification component 4 so that the processed first optical signal, that is, the second optical signal, returns to the original path to achieve two-way amplification of the first optical signal.
  • the amplification factor of the optical fiber amplification component 4 is increased exponentially, simplifying
  • the optical path structure is eliminated, the control is convenient, the design is flexible, simple, compact, and low cost.
  • the all-fiber design reduces the size of the laser and facilitates industrialization.
  • the second optical signal forms a competitive relationship with the ASE and nonlinear scattered light generated by the first optical signal of the subsequent pulse in the first amplifier 40 , and the second optical signal can suppress the generation of the first optical signal of the subsequent pulse in the first amplifier 40 ASE, nonlinear scattered light is stimulated amplification, and the optical signal-to-noise ratio is good.
  • the optical fiber amplification component 4 also includes a power-transmitting optical fiber 42 located between the first amplifier 40 and the reflector 41 .
  • the energy-transmitting optical fiber 42 connects the first amplifier 40 and the reflector 41 .
  • the second end of the first amplifier 40 is connected to the first end of the energy-transmitting optical fiber 42, and the second end of the energy-transmitting optical fiber 42 is connected to the reflector 41.
  • the second optical signal is transmitted through the energy-transmitting optical fiber 42 and is incident on the reflected light.
  • the second optical signal is reflected by the reflector 41, causing the second optical signal to return to the original path, and then enter the first amplifier 40 through the energy transmission optical fiber 42 again, and the first amplifier 40 amplifies the second optical signal.
  • the transmission path of the second optical signal is increased, the time domain duration of a pulse is increased, and the transmission time of the pulse is extended.
  • the pulse waveform can be precisely adjusted through the energy-transmitting optical fiber 42 and the optical modulator 3. Output pulse train.
  • the optical modulator 3 is provided with a first channel and a second channel.
  • the first channel allows the optical signal to enter the optical fiber amplification component
  • the second channel allows the optical signal to pass through after being twice amplified by the optical fiber amplification component.
  • the optical modulator 3 has a first channel for the first optical signal to pass and a second channel for the third optical signal to pass.
  • two optical modulators 3 can also be provided. Each optical modulator 3 has one channel.
  • One optical modulator 3 allows the first optical signal to pass through and regulates the first optical signal.
  • the other optical modulator 3 Provides a third optical signal channel, controls the third optical signal, controls and transmits the first optical signal and the third optical signal respectively, avoids interference between the first optical signal and the third optical signal, and achieves precise control.
  • the first channel and the second channel are set to a normally open state, and the first channel and the second channel control whether the optical signal passes through, thereby reducing the time to control the switching of the first channel and the second channel, and achieving pulse establishment. Fast time effect.
  • the optical path system is provided with two optical fiber amplification components 4.
  • a second optical beam splitter 5 is provided between the optical modulator 3 and the optical fiber amplification component.
  • the second optical beam splitter 5 connects the optical fiber Modulator 3 and two fiber amplification components 4. It can also be understood that two optical fiber amplification components 4 are provided, a second optical beam splitter 5 is provided between the optical modulator 3 and the optical fiber amplification component, and the first end of the second optical beam splitter 5 is connected to the second end of the optical modulator 3.
  • the first optical signal is divided into two bundles and enters two optical fiber amplification components 4 respectively.
  • the optical fiber amplification component 4 performs double-pass amplification and then returns to the second optical beam splitter 5 and the optical modulator 3, and is emitted from the first optical beam splitter 2.
  • Providing two optical fiber amplifying components 4 increases the amplification factor of the optical signal, and has the advantages of high amplification factor, simple structure, and convenient control.
  • a multi-fiber amplifier assembly 4 can also be provided.
  • the two optical fiber amplifying components 4 may not be provided with energy-transmitting optical fibers, one of the optical fiber amplifying components 4 may be provided with energy-transmitting optical fibers, or both may be provided with energy-transmitting optical fibers 42. When both are provided with energy-transmitting optical fibers 42, the lengths of the energy-transmitting optical fibers may be the same. Or different. As a variant, a multi-fiber amplifier assembly 4 can also be provided.
  • the optical path system of the pulsed fiber laser includes a seed source 1, a second optical isolator 100, a first optical beam splitter 2, an optical modulator 3, a second optical beam splitter 5, and a second optical isolator 100.
  • the first end of the second optical isolator 100 is connected to the seed source 1, and the second end of the second optical isolator 100 is connected to the second optical isolator 100.
  • the first end of an optical beam splitter 2, the second end of the first optical beam splitter 2 is connected to the first optical isolator 7, the common end of the first optical beam splitter 2 is connected to the first end of the optical modulator 3,
  • the second end of the optical modulator 3 is connected to the first end of the second optical beam splitter 5, and the second end of the second optical beam splitter 5 and the tenth pump source 101 are simultaneously connected to the first end of the sixth optical fiber coupler 102.
  • the second end of the sixth optical fiber coupler 102 is connected to the first end of the eighth gain optical fiber 103, the second end of the eighth gain optical fiber 103 is connected to the first end of the first energy transmission optical fiber 104, and the first energy transmission optical fiber 104
  • the second end of is connected to the first reflection grating 105, the third end of the second optical beam splitter 5 and the eleventh pump source 106 are simultaneously connected to the first end of the fifth optical beam combiner 107, the fifth optical beam combiner 107
  • the second end is connected to the first end of the ninth gain optical fiber 108, the second end of the ninth gain optical fiber 108 is connected to the first end of the second energy transmission optical fiber 109, and the second end of the second energy transmission optical fiber 109 is connected to the second reflection optical fiber.
  • the first optical signal generated by the seed source 1 passes through the second optical isolator 100, the first optical beam splitter 2 and the optical modulator 3, enters the second optical beam splitter 5, and is divided into two beams by the second optical beam splitter 5 , enter the eighth gain fiber 103 and the ninth gain fiber 108 respectively, and are amplified by stimulated radiation in the eighth gain fiber 103 and the ninth gain fiber 108, and then from the second end of the eighth gain fiber 103 and the ninth gain fiber 108 The second end of the output, at this time, the first optical signal is amplified to generate a higher power second optical signal.
  • the second optical signal passes through the first energy transmission optical fiber 104 and the second energy transmission optical fiber 109, it is reflected by the first The grating 105 and the second reflection grating 110 reflect, and the second optical signal returns along the original optical path, passes through the eighth gain fiber 103 and the ninth gain fiber 108, and is stimulated to radiate in the eighth gain fiber 103 and the ninth gain fiber 108.
  • the optical signal is output from the first end of the eighth gain fiber 103 and the ninth gain fiber 108 to generate a third optical signal with higher power.
  • the third optical signal passes through the second optical beam splitter 5 and the optical modulator 3 , after the first optical beam splitter 2, it is output from the first optical isolator 7.
  • the optical path system of the pulsed fiber laser also includes a second amplifier 6 and a first optical isolator 7.
  • the second amplifier 6 is connected to the first optical beam splitter 2 and the first optical isolator 7.
  • the optical signal processed by the optical fiber amplifying component 4 and the optical modulator 3 enters the second amplifier 6 through the first optical beam splitter 2 and is emitted from the first optical isolator 7 .
  • the optical path system also includes a second amplifier 6 and a first optical isolator 7.
  • the second end of the first optical beam splitter 2 is connected to the first end of the second amplifier 6.
  • the second end of the second amplifier 6 The terminal is connected to the first optical isolator 7.
  • the third optical signal output by the optical modulator 3 enters the second amplifier 6. After being amplified by the second amplifier 6, the fourth optical signal is output.
  • the fourth optical signal is output from the first optical isolator 7. , the fourth optical signal has the maximum power. While increasing the power, damage to the reflector 41 is avoided, thereby improving the reliability of the laser.
  • the structure of the second amplifier 6 in this embodiment can be the same as the composition of the first amplifier 40.
  • the second amplifier 6 is provided with a plurality of amplification sub-sections connected in sequence, and the amplification sub-section located first in each amplification sub-section is One end is connected to the second end of the first optical beam splitter 2, adjacent amplifier sub-sections are connected through a filter, and the last amplifier sub-section of each amplifier sub-section is connected to the first optical isolator 7.
  • the first amplifier 40 includes a plurality of amplification sub-sections connected in series. Adjacent amplification sub-sections are connected by a filter 204 .
  • the first amplification sub-section among each amplification sub-section has a One end is connected to the optical modulator 3, and one end of the last amplifier sub-section in each amplifier sub-section is connected to the reflector 41; and/or the second amplifier 6 includes a plurality of amplifier sub-sections connected in series, and adjacent amplifier sub-sections They are connected through filters, one end of the first amplifier sub-section among each amplifier sub-section is connected to the first optical beam splitter 2, and one end of the last amplifier sub-section among each amplifier sub-section is connected to the first optical isolator 7 connect.
  • the first amplifier 40 includes a plurality of amplifying sub-sections.
  • the plurality of amplifying sub-sections are arranged in sequence from the light modulator 3 side to the reflector 41 side. Between adjacent amplifying sub-sections, There are filters 204 in between, which are respectively the first amplifier part 43,..., and the N-th amplifier part 43.
  • the first amplifier part 43 is connected to the second end of the light modulator 3, and the N-th amplifier part 43 is connected to the reflection 41, the first optical signal undergoes N-level amplification through the first amplifying sub-section 43,..., and the N-th amplifying sub-section 43 to form a second optical signal, which is injected into the reflector 41, and the second optical signal reflected by the reflector is
  • the Nth amplifying sub-section 43,..., and the first amplifying sub-section 43 realize N-level amplification to form the third optical signal.
  • the specific number of the amplifying sub-sections 43 can be set according to the required amplification factor, thereby increasing the amplification factor.
  • the second amplifier 6 includes a plurality of amplifying sub-sections.
  • the plurality of amplifying sub-sections are arranged sequentially from the first optical beam splitter 2 side to the first optical isolator 7 side. Filters are provided between adjacent amplifying sub-sections. 204, respectively the first amplifying sub-section 43,..., and the N-th amplifying sub-section 43.
  • the first amplifying sub-section 43 is connected to the second end of the first optical beam splitter 2, and the N-th amplifying sub-section 43 is connected to the first light beam splitter 2.
  • Isolator 7, the third optical signal achieves N-level amplification through the first amplifying sub-section 43,..., and the N-th amplifying sub-section 43 to form a fourth optical signal.
  • the specific number of amplifying sub-sections 43 can be set according to the required amplification factor. Increased magnification.
  • the structures of the above-mentioned first amplifier 40 and the second amplifier 6 may be the same.
  • the first amplifier 40 and the second amplifier 6 may be provided with the same number of amplification sub-sections, or may be provided with different structures.
  • the first amplifier 40 may be provided with the above-mentioned structure.
  • Multiple amplifying sub-sections perform two-pass, one-way, multi-stage amplification, and the second amplifier 6 is set to one-stage amplification, or the first amplifier 40 is set to one-stage two-pass amplification, and the second amplifier 6 is set to one-way multi-stage amplification, specifically according to Adaptation of required magnification.
  • each of the above-mentioned amplifier sub-sections includes a gain fiber, a fiber coupler and a pump source.
  • the fiber coupler of the first amplifier sub-section 43 of the first amplifier 40 is respectively connected to the optical modulator 3, the pump source, and the gain source.
  • One side of the optical fiber and the other side of the gain fiber are connected to the filter.
  • the fiber coupler of the N-th amplifier section 43 of the first amplifier 40 is respectively connected to the reflector, pump source, and one side of the gain fiber.
  • the other side of the gain fiber is connected to the fiber coupler. Connect the filter to the side.
  • the optical path system of the pulsed fiber laser includes a seed source 1, a third optical isolator 200, a first optical beam splitter 2, an optical modulator 3, a seventh pump source 201, a fourth Optical fiber coupler 202, fifth gain optical fiber 203, filter 204, sixth gain optical fiber 205, fifth optical fiber coupler 206, eighth pump source 207, third energy transmission optical fiber 208, third reflection grating 209, fourth Optical isolator 210, first mode stripper 211, seventh gain fiber 212, fourth optical fiber combiner 213, ninth pump source 214 and first optical isolator 7, the first end of the third optical isolator 200 Connect the seed source 1, the second end of the third optical isolator 200 is connected to the first end of the first optical beam splitter 2, the common end of the first optical beam splitter 2 is connected to the first end of the optical modulator 3, and the optical modulator
  • the device 3 and the seventh pump source 201 are jointly connected to the first end of the fourth optical fiber coupler
  • the two ends are connected to the first end of the filter plate 204, the second end of the filter plate 204 is connected to the first end of the sixth gain optical fiber 205, and the second end of the sixth gain optical fiber 205 is connected to the first end of the fifth optical fiber coupler 206.
  • the second end of the fifth optical fiber coupler 206 is connected to the eighth pump source 207 and the first end of the third energy-transmitting optical fiber 208 at the same time, and the second end of the third energy-transmitting optical fiber 208 is connected to the third reflection grating 209; the first light
  • the second end of the beam splitter 2 is connected to the first end of the fourth optical isolator 210 , the second end of the fourth optical isolator 210 is connected to the first end of the first mold stripper 211 , and the first end of the first mold stripper 211
  • the two ends are connected to the first end of the seventh gain optical fiber 212, the second end of the seventh gain optical fiber 212 is connected to the first end of the fourth optical fiber combiner 213, and the second end of the fourth optical fiber combiner 213 is connected to the ninth end at the same time.
  • the first optical signal generated by the pump source 214 and the first optical isolator 7 and the seed source 1 passes through the third optical isolator 200 and the first optical beam splitter 2, enters the optical modulator 3, and passes through the fifth gain fiber 203 in turn. and the sixth gain fiber 205. After two stages of stimulated emission amplification in the fifth gain fiber 203 and the sixth gain fiber 205, it is output from the second end of the sixth gain fiber 205. At this time, the first optical signal is amplified by two stages. , generating a second optical signal with higher power. After passing through the third energy-transmitting fiber 208, the second optical signal is reflected by the third reflection grating 209.
  • the second optical signal returns along the original optical path and passes through the sixth gain fiber 205 and After two-stage amplification by the fifth gain fiber 203, it is output from the first end of the fifth gain fiber 203 to generate a third optical signal with higher power.
  • the third optical signal enters the optical modulator 3 and the first optical beam splitter 2.
  • the beam enters the seventh gain fiber 212 through the fourth optical isolator 210 and the first mode stripper 211, and is amplified by stimulated radiation in the seventh gain fiber 212 to form a fourth optical signal with higher power.
  • the fourth optical signal is The first optical isolator 7 outputs.
  • the first amplifier 40 and the second amplifier 6 can also use the following one-stage amplification.
  • the second amplifier 6 includes a second gain fiber 308, a first
  • the optical beam combiner 309 and the second pump source 310 have one side of the second gain fiber 308 connected to the first optical beam splitter 2, and the first optical beam combiner 309 connected to the other side of the second gain fiber 308 and the second pump source 310 respectively.
  • the pump source 310, the first optical isolator 7; and/or the first amplifier 40 includes a first gain fiber 303, a first fiber coupler 302 and a first pump source 301.
  • the first fiber coupler 302 is connected to the optical modulator respectively.
  • One side of the device 3, the first pump source 301, and the first gain fiber 303 is connected to the reflector 41 on the other side of the gain fiber.
  • the optical path system of the pulsed fiber laser includes a seed source 1, a fifth optical isolator 300, a first optical beam splitter 2, an optical modulator 3, a first pump source 301, a first Optical fiber coupler 302, first gain fiber 303, fourth energy transmission fiber 304, fourth reflection grating 305, sixth optical isolator 306, second mode stripper 307, second gain fiber 308, first optical beam combiner 309 , the second pump source 310 and the first optical isolator 7, the first end of the fifth optical isolator 300 is connected to the seed source 1, and the second end of the fifth optical isolator 300 is connected to the first optical beam splitter 2 On one end, the common end of the first optical beam splitter 2 is connected to the first end of the optical modulator 3, and the second end of the optical modulator 3 and the first pump source 301 are simultaneously connected to the first end of the first optical fiber coupler 302.
  • the second end of the first optical fiber coupler 302 is connected to the first end of the first gain optical fiber 303, the second end of the first gain optical fiber 303 is connected to the first end of the fourth energy transmission optical fiber 304, and the fourth energy transmission optical fiber 304
  • the second end is connected to the fourth reflective grating 305;
  • the second end of the first optical beam splitter 2 is connected to the first end of the sixth optical isolator 306, and the second end of the sixth optical isolator 306 is connected to the second stripper 307
  • the first end of the second mode stripper 307 is connected to the first end of the second gain optical fiber 308, and the second end of the second gain optical fiber 308 is connected to the first end of the first optical beam combiner 309.
  • the second end of the beam device 309 is connected to the second pump source 310 and the first optical isolator 7 at the same time.
  • the first optical signal generated by the seed source 1 passes through the fifth optical isolator 300, the first optical beam splitter 2 and the optical modulator. 3 enters the second gain fiber 308, the first optical signal is amplified by stimulated radiation in the second gain fiber 308, and is output from the second end of the second gain fiber 308 to generate a second optical signal with higher power.
  • the fourth energy-transmitting optical fiber 304 it is reflected by the fourth reflection grating 305, enters the second gain optical fiber 308 from the second end of the second gain optical fiber 308, and is amplified by stimulated radiation in the second gain optical fiber 308, generating a higher power third energy source.
  • the third optical signal enters the optical modulator 3
  • the third optical signal is amplified by stimulated radiation in the second gain fiber 308 , generate a fourth optical signal with higher power
  • the fourth optical signal is output from the first optical isolator 7 .
  • the first amplifier 40 and the second amplifier 6 may also use the following one-stage amplification.
  • the second amplifier 6 includes a fourth gain fiber 411, a second The optical beam combiner 412, the sixth pump source 413, the third optical beam combiner 410 and the fifth pump source 409.
  • the third optical beam combiner 410 is respectively connected to the first optical beam splitter 2, the fifth pump source 409, and the fifth pump source 409.
  • One side of the four-gain optical fiber 411 and the second optical beam combiner 412 are respectively connected to the other side of the fourth gain optical fiber 411, the sixth pump source 413, and the first optical isolator 7; and/or the first amplifier 40 includes a Three-gain optical fiber 403, second optical fiber coupler 402, third optical fiber coupler 404, third pump source 401 and fourth pump source 405.
  • the second optical fiber coupler 402 is connected to the optical modulator 3 and the third pump respectively.
  • the source 401, one side of the third gain fiber 403, and the third fiber coupler 404 are respectively connected to the other side of the third gain fiber 403, the fourth pump source 405, and the reflector 41.
  • the optical path system of the pulsed fiber laser includes a seed source 1, a seventh optical isolator 400, a first optical beam splitter 2, an optical modulator 3, a third pump source 401, a second Optical fiber coupler 402, third gain optical fiber 403, third optical fiber coupler 404, fourth pump source 405, fifth energy transfer optical fiber 406, fifth reflection grating 407, eighth optical isolator 408, fifth pump source 409.
  • the first end of the seventh optical isolator 400 is connected to the seed source 1
  • the second end of the optical isolator 400 is connected to the first end of the first optical beam splitter 2
  • the common end of the first optical beam splitter 2 is connected to the first end of the optical modulator 3
  • the second end of the optical modulator 3 The first end of the second optical fiber coupler 402 is connected to the third pump source 401.
  • the second end of the second optical fiber coupler 402 is connected to the first end of the third gain optical fiber 403.
  • the second end of the third gain optical fiber 403 is connected to the third pump source 401.
  • the first end of the third optical fiber coupler 404 is connected, and the second end of the third optical fiber coupler 404 is jointly connected to the fourth pump source 405 and the first end of the fifth energy transmission optical fiber 406, and the second end of the fifth energy transmission optical fiber 406 is connected together.
  • Connect the fifth reflection grating 407; the second end of the first optical beam splitter 2 is connected to the first end of the eighth optical isolator 408, and the first end of the eighth optical isolator 408 and the fifth pump source 409 are jointly connected to the The first end of the three optical beam combiner 410 and the second end of the third optical beam combiner 410 are connected to the first end of the fourth gain optical fiber 411.
  • the second end of the fourth gain optical fiber 411 is connected to the first end of the second optical beam combiner 412.
  • the second end of the second optical beam combiner 412 is commonly connected to the sixth pump source 413 and the first optical isolator 7.
  • the first optical signal generated in the seed source 1 passes through the seventh optical isolator 400 and the first optical splitter.
  • the beamer 2 and the optical modulator 3 enter the third gain fiber 403.
  • the first optical signal is amplified by stimulated radiation in the third gain fiber 403 and is output from the second end of the third gain fiber 403 to generate a second light with higher power.
  • the second optical signal enters the fifth energy transmission optical fiber 406 and is reflected by the fifth reflection grating 407, and enters the third gain optical fiber 403 from the second end of the third gain optical fiber 403.
  • the second optical signal is received in the third gain optical fiber 403.
  • the excitation radiation is amplified to generate a third optical signal with higher power.
  • the third optical signal enters the optical modulator 3 and enters the fourth gain optical fiber 411 through the eighth optical isolator 408.
  • the third optical signal is received in the fourth gain optical fiber 411.
  • the excitation radiation is amplified to generate a fourth optical signal with higher power, and the fourth optical signal is output from the first optical isolator 7 .
  • the seed source 1 can be a continuous laser or a pulse laser;
  • the isolators other than the first optical isolator 7 can be optical fiber isolators of type 6/125 or 10/125, or Optional polarization-independent, non-bandpass online isolator, or passive optical fiber; the above-mentioned optical beam splitter, you can choose 2 1.
  • Optical beam splitter such as 6/125 type or 10/125 type
  • the above-mentioned optical modulator can be a 120 MHz acousto-optic modulator, such as 6/125 type, 10/125 type
  • the above-mentioned pump source You can choose a semiconductor laser diode with a central wavelength of 915nm or 976nm, and the fiber model is such as 105/125 type
  • for the above-mentioned fiber combiner you can choose a 1 fiber combiner, such as 6/125 type, 10/125 type, 20 type /125 type
  • the above-mentioned gain fiber can use ytterbium-doped fiber with a core diameter of 6 microns, 10 microns or 20 microns
  • the above-mentioned energy transmission fiber can use 6/125 type, 10/125 passive fiber
  • the above-mentioned reflection Reflective fiber Bragg grating can be used as the detector and reflection grating, and high-reflection fiber Bra
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more features.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种脉冲光纤激光器的光路系统和激光器,脉冲光纤激光器的光路系统包括依次连接的种子源(1)、第一光分束器(2)、光调制器(3)、至少一光纤放大组件(4),光纤放大组件(4)包括第一放大器(40)和反射器(41),第一放大器(40)连接光调制器(3)和反射器(41),种子源(1)产生的光信号依次经第一光分束器(2)、光调制器(3)、第一放大器(40)射入反射器(41),反射器(41)反射的光信号原路返回,从第一光分束器(2)射出。

Description

脉冲光纤激光器的光路系统和激光器 技术领域
本申请属于光纤激光器技术领域,尤其涉及一种脉冲光纤激光器的光路系统和激光器。
背景技术
由于光纤激光器具有光束质量好、效率高、散热性好、可靠性高、易维护等优点,被广泛应用于激光加工、光纤通信、军事国防安全、医疗机械仪器等领域。而中低功率纳秒脉冲光纤激光器以其高效、紧凑、稳定、成本低等特点,是目前雕刻、打标等激光加工、微加工领域的首选。
随着各行业对加工品质、加工效率要求的不断提升,人们对纳秒脉冲光纤激光器提出了更高的要求。一般的纳秒脉冲光纤激光器,通过种子源一级或多级单向放大、隔离产生。因需要考虑抑制放大自发辐射和非弹性散色光,每一光纤放大器的放大倍数不能调高,此外,还存在脉冲平齐度差的问题,导致激光器在实际应用中存在一定的限制,不能满足更精细、更快速的加工、微加工需求。
技术问题
本申请实施例提供一种脉冲光纤激光器的光路系统和激光器,以解决现有的脉冲激光器放大倍数低、脉冲平齐度差的问题。
技术解决方案
第一方面,本申请实施例提供一种脉冲光纤激光器的光路系统,包括依次连接的种子源、第一光分束器、光调制器、至少一光纤放大组件,所述光纤放大组件包括第一放大器和反射器,所述第一放大器连接所述光调制器和所述反射器,所述种子源产生的光信号依次经所述第一光分束器、所述光调制器、所述第一放大器射入所述反射器,所述反射器反射的光信号依次经所述第一放大器和所述光调制器后,从所述第一光分束器射出。
可选的,所述光纤放大组件还包括传能光纤,位于所述第一放大器和所述反射器之间,所述传能光纤连接所述第一放大器和所述反射器,所述种子源产生的光信号依次经所述第一光分束器、所述光调制器、所述第一放大器、所述传能光纤射入所述反射器,所述反射器反射的光信号依次经所述传能光纤、所述第一放大器和所述光调制器后,从所述第一光分束器射出。
可选的,所述传能光纤用于增加所述光信号的传播路径,增加一个脉冲的时域时长,延长所述脉冲的传输时间。
可选的,所述光调制器用于调整所述脉冲的波形,输出脉冲串。
可选的,设置两所述光纤放大组件,所述光调制器与所述光纤放大组件之间设有第二光分束器,所述第二光分束器连接所述光调制器和两所述光纤放大组件。
可选的,还包括第二放大器和第一光隔离器,所述第二放大器连接所述第一光分束器和所述第一光隔离器,经所述光纤放大组件和所述光调制器处理后的光信号经所述第一光分束器进入所述第二放大器,从所述第一光隔离器射出。
可选的,所述第一放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述光调制器连接,各个所述放大子部中位于末位的放大子部的一端与所述反射器连接;
和/或,所述第二放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述第一光分束器,各个所述放大子部中位于末位的所述放大子部的一端与所述第一光隔离器连接。
可选的,所述第二放大器包括第二增益光纤、第一光合束器和第二泵浦源,所述第二增益光纤的一侧连接所述第一光分束器,所述第一光合束器分别连接所述第二增益光纤的另一侧、所述第二泵浦源、所述第一光隔离器;
和/或,所述第一放大器包括第一增益光纤、第一光纤耦合器和第一泵浦源,所述第一光纤耦合器分别连接所述光调制器、第一泵浦源、第一增益光纤的一侧,所述增益光纤的另一侧连接所述反射器。
可选的,所述第二放大器包括第四增益光纤、第二光合束器、第六泵浦源、第三光合束器和第五泵浦源,所述第三光合束器分别连接所述第一光分束器、第五泵浦源、第四增益光纤的一侧,所述第二光合束器分别连接所述第四增益光纤的另一侧、所述第六泵浦源、所述第一光隔离器;
和/或,所述第一放大器包括第三增益光纤、第二光纤耦合器、第三光纤耦合器、第三泵浦源和第四泵浦源,所述第二光纤耦合器分别连接所述光调制器、第三泵浦源、第三增益光纤的一侧,第三光纤耦合器分别连接所述增益光纤的另一侧、所述第四泵浦源、所述反射器。
可选的,所述光调制器设有第一通道和第二通道,所述第一通道供所述光信号进入所述光纤放大组件,所述第二通道供经所述光纤放大组件两次放大后的光信号通过。
可选的,设置所述第一通道和所述第二通道为常开状态。
可选的,所述传能光纤可以选用6/125型、10/125无源光纤。
可选的,所述光调制器可以选用120兆赫兹声光调制器。
第二方面,本申请实施例还提供激光器,所述激光器包括上述任一项所述的脉冲光纤激光器的光路系统。
有益效果
本申请实施例提供的一种脉冲光纤激光器的光路系统和激光器,通过将种子源产生的光信号依次经第一光分束器、光调制器和第一放大器射入反射器,反射器反射第一放大器放大后的光信号再次进入第一放大器,光信号经第一放大器实现双程放大,提高了光信号的放大倍数,放大倍数呈指数增加,且放大前和放大后的光信号均经过光调制器,光调制器两次调节光信号,实现光信号的精细调控,克服了现有的脉冲激光器放大倍数低、脉冲平齐度差的问题,具有放大倍数高、波形精细可调、脉冲平齐度好、光路结构和控制简单的优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对本领域技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行说明。其中,在下面的描述中相同的附图标号表示相同部分。
图1为本申请实施例提供的光路系统的原理图。
图2为本申请实施例提供的光路系统设置两光纤放大组件的原理图。
图3为本申请实施例提供的光路系统设置传能光纤的原理图。
图4为本申请实施例提供的光路系统设置第二放大器的原理图。
图5为本申请实施例提供的光路系统设置第二放大器和传能光纤的原理图。
图6为本申请实施例提供的第一放大器的原理图。
图7为本申请实施例提供的第一种光路形式的系统图。
图8为本申请实施例提供的第二种光路形式的系统图。
图9为本申请实施例提供的第三种光路形式的系统图。
图10为本申请实施例提供的第四种光路形式的系统图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种脉冲光纤激光器的光路系统和激光器,以解决现有的脉冲激光器放大倍数低、脉冲平齐度差的问题。以下将结合附图对进行说明。
本申请实施例提供的脉冲光纤激光器的光路系统可应用于纳秒激光器、皮秒激光器或者飞秒激光器,本申请实施例以纳秒激光器为了说明,纳秒激光器可以为低功率纳秒脉冲光纤激光器、中功率纳秒脉冲光纤激光或者高功率纳秒脉冲光纤激光器。激光器可以包括光路系统和电控系统,电控系统与光路系统电连接,通过电控系统控制光路系统工作,控制简单。
为了更清楚的说明光路系统的结构,以下将结合附图对光路系统进行介绍。
参见图1和图2所示,本申请实施例提供一种脉冲光纤激光器的光路系统,包括依次连接的种子源1、第一光分束器2、光调制器3、至少一光纤放大组件4,光纤放大组件4包括第一放大器40和反射器41,第一放大器40连接光调制器和反射器41,种子源1产生的光信号依次经第一光分束器2、光调制器3、第一放大器40射入反射器41,反射器41反射的光信号依次经第一放大器40和光调制器3后,从第一光分束器2射出。也可以理解为,光路系统包括种子源1、第一光分束器2、光调制器3和至少一光纤放大组件4,其中,第一光分束器2的第一端连接种子源1,第一光分束器2的公共端连接光调制器3的第一端,光调制器3的第二端连接光纤放大组件4,光纤放大组件4包括第一放大器40和反射器41,第一放大器40的第一端连接光调制器3的第二端,第一放大器40的第二端连接反射器41,种子源1用于产生第一光信号,第一光分束器2将第一光信号传入光调制器3,光调制器3用于调控第一光信号的参数,如调控第一光信号的脉冲宽度和脉冲波形,光纤放大组件4用于对第一光信号进行双程放大,经光纤放大组件4放大后得到第三光信号,即第一光信号经第一放大器40放大后得到第二光信号,第二光信号射入反射器41,反射器41全反射第二光信号,第二光信号再次进入第一放大器40被放大,获得第三光信号,第三光信号射入光调制器3,光调制器3还用于调控第三光信号的参数,第三光信号经第一光分束器2的第二端射出。此外,种子源1产生的第一光信号可以为连续光信号或脉冲光信号,当第一光信号为连续光信号时,光调制器3还用于将连续光信号调控成脉冲光信号。
可以理解的,光调制器3调控第一光信号的参数与调控第二光信号的参数可以相同,也可以不同,以能够获得最终所需的光信号即可。光调制器3对第一光信号进行调控获得所需的脉冲宽度和脉冲波形,以及可用于降低脉冲光信号的重复频率,光调制器3对第三光信号进行精细调控,产生所需脉冲形状、脉冲宽度、重复频率的脉冲光信号,实现频率范围广、脉冲平齐度好、波形可调的效果。光调制器3对第一光信号进行一次初步的光谱窄化,光调制器3对第三光信号进行一次光谱窄化,实现种子源1产生的光光信号谱的二次窄化。
光纤放大组件4中设置反射器41使得被处理后的第一光信号即第二光信号原路返回,实现第一光信号的双程放大,光纤放大组件4的放大倍数呈指数被增加,简化了光路结构,控制方便,设计灵活、简单、结构紧凑、成本较低,全光纤化的设计减少了激光器体积,便于实现产业化。此外,第二光信号与后续脉冲的第一光信号在第一放大器40产生的ASE、非线性散射光形成竞争关系,第二光信号能够抑制后续脉冲的第一光信号在第一放大器40产生的ASE、非线性散射光受激放大,光信噪比好。
在上述实施方式的基础上,参见图3所示,光纤放大组件4还包括传能光纤42,位于第一放大器40和反射器41之间,传能光纤42连接第一放大器40和反射器41。也可以理解为,第一放大器40的第二端连接传能光纤42的第一端,传能光纤42的第二端连接反射器41,第二光信号经传能光纤42传能,射入反射器41,反射器41反射,使得第二光信号原路返回,再次经传能光纤42进入第一放大器40,第一放大器40放大第二光信号。通过设置传能光纤42,增加了第二光信号的传输路径,增加了一个脉冲的时域时长,延长了脉冲的传输时间,通过传能光纤42与光调制器3可以精密调整脉冲的波形,输出脉冲串。
在一些实施方式中,光调制器3设有第一通道和第二通道,第一通道供光信号进入光纤放大组件,第二通道供经光纤放大组件两次放大后的光信号通过。也可以理解为,光调制器3具有供第一光信号通过的第一通道和供第三光信号通过的第二通道。作为变形的,也可以设置两台光调制器3,每台光调制器3具有一通道,一台光调制器3供第一光信号通过,调控第一光信号,另一台光调制器3供第三光信号通道,调控第三光信号,分别调控和传输第一光信号和第三光信号,避免第一光信号和第三光信号发生干扰,实现精准调控。
在上述实施方式的基础上,设置第一通道和第二通道为常开状态,第一通道和第二通道控制光信号是否通过,减少控制第一通道和第二通道开关的时间,实现脉冲建立时间快的效果。
在一些实施方式中,参见图2所示,光路系统设置两光纤放大组件4,光调制器3与光纤放大组件之间设有第二光分束器5,第二光分束器5连接光调制器3和两光纤放大组件4。也可以理解为,设置两光纤放大组件4,光调制器3与光纤放大组件之间设有第二光分束器5,第二光分束器5的第一端连接光调制器3的第二端,第二光分束器5的第二端连接一光纤放大组件4,第二光分束器5的第三段连接另一光纤放大组件4,第二光分束器5用于将第一光信号分呈两束,分别进入两光纤放大组件4,光纤放大组件4进行双程放大后返回至第二光分束器5和光调制器3,从第一光分束器2射出,设置两光纤放大组件4,提高了光信号的放大倍数,具有放大倍数高、结构简单,控制方便的优点。作为变形的,也可以设置多光纤放大组件4。
可以理解的,两光纤放大组件4可以不设置传能光纤、其中一光纤放大组件4设置传能光纤或者均设置传能光纤42,当均设置传能光纤42时,传能光纤的长度可以相同或不同。作为变形的,也可以设置多光纤放大组件4。
示例性的,参见图7所示,脉冲光纤激光器的光路系统包括种子源1、第二光隔离器100、第一光分束器2、光调制器3、第二光分束器5、第十泵浦源101、第六光纤耦合器102、第八增益光纤103、第一传能光纤104、第一反射光栅105、第十一泵浦源106、第五光合束器107、第九增益光纤108、第二传能光纤109、第二反射光栅110和第一光隔离器7,第二光隔离器100的第一端连接种子源1,第二光隔离器100的第二端连接第一光分束器2的第一端,第一光分束器2的第二端连接第一光隔离器7,第一光分束器2的公共端连接光调制器3的第一端,光调制器3的第二端连接第二光分束器5的第一端,第二光分束器5的第二端和第十泵浦源101同时连接第六光纤耦合器102的第一端,第六光纤耦合器102的第二端连接第八增益光纤103的第一端,第八增益光纤103的第二端连接第一传能光纤104的第一端,第一传能光纤104的第二端连接第一反射光栅105,第二光分束器5的第三端和第十一泵浦源106同时连接第五光合束器107的第一端,第五光合束器107的第二端连接第九增益光纤108的第一端,第九增益光纤108的第二端连接第二传能光纤109的第一端,第二传能光纤109的第二端连接第二反射光纤,种子源1产生的第一光信号经第二光隔离器100、第一光分束器2和光调制器3,进入第二光分束器5,由第二光分束器5分成两束,分别进入第八增益光纤103和第九增益光纤108,在第八增益光纤103和第九增益光纤108中受激辐射放大,之后从第八增益光纤103的第二端和第九增益光纤108的第二端输出,此时,第一光信号被放大,产生较高功率的第二光信号,第二光信号经过第一传能光纤104和第二传能光纤109后,被第一反射光栅105和第二反射光栅110反射,第二光信号沿光路原路返回,并经过第八增益光纤103和第九增益光纤108,在第八增益光纤103和第九增益光纤108中受激辐射放大,之后光信号从第八增益光纤103和第九增益光纤108的第一端输出,产生功率更高的第三光信号,第三光信号经第二光分束器5、光调制器3、第一光分束器2后,从第一光隔离器7输出。
在一些实施方式中,参见图4和图5所示,脉冲光纤激光器的光路系统还包括第二放大器6和第一光隔离器7,第二放大器6连接第一光分束器2和第一光隔离器7,经光纤放大组件4和光调制器3处理后的光信号经第一光分束器2进入第二放大器6,从第一光隔离器7射出。也可以理解为,该光路系统还包括第二放大器6和第一光隔离器7,第一光分束器2的第二端连接第二放大器6的第一端,第二放大器6的第二端连接第一光隔离器7,光调制器3输出的第三光信号进入第二放大器6,经第二放大器6放大后输出第四光信号,第四光信号从第一光隔离器7输出,第四光信号为功率最大,再增加功率的同时,避免损毁反射器41,提高了激光器的可靠性。
可以理解的,本实施例中的第二放大器6结构可与第一放大器40的组成相同,第二放大器6设置多个顺次连接的放大子部,各个放大子部中位于首位的放大子部的一端连接第一光分束器2的第二端,相邻放大子部之间通过滤波片连接,各个放大子部中位于末位的放大子部的连接第一光隔离器7。
在一些实施方式中,参见图6所示,第一放大器40包括串联的多个放大子部,相邻放大子部之间通过滤波片204连接,各个放大子部中位于首位的放大子部的一端与光调制器3连接,各个放大子部中位于末位的放大子部的一端与反射器41连接;和/或,第二放大器6包括串联的多个放大子部,相邻放大子部之间通过滤波片连接,各个放大子部中位于首位的放大子部的一端与第一光分束器2,各个放大子部中位于末位的放大子部的一端与第一光隔离器7连接。
也可以理解为,参见图6所示,第一放大器40包括多个放大子部,多个放大子部从光调制器3一侧向反射器41一侧顺次布置,相邻放大子部之间设有滤波片204,分别为第一放大子部43、……、第N放大子部43,第一放大子部43连接光调制器3的第二端,第N放大子部43连接反射器41,第一光信号经第一放大子部43、……、第N放大子部43实现N级放大形成第二光信号,射入反射器41,经反射器反射后的第二光信经第N放大子部43、……、第一放大子部43实现N级放大形成第三光信号,具体放大子部43的数量可以根据需要的放大倍数设置,提高了放大倍数。
第二放大器6包括多个放大子部,多个放大子部从第一光分束器2一侧向第一光隔离器7一侧顺次布置,相邻放大子部之间设有滤波片204,分别为第一放大子部43、……、第N放大子部43,第一放大子部43连接第一光分束器2的第二端,第N放大子部43连接第一光隔离器7,第三光信号经第一放大子部43、……、第N放大子部43实现N级放大形成第四光信号,具体放大子部43的数量可以根据需要的放大倍数设置,提高了放大倍数。
上述第一放大器40和第二放大器6的结构可以相同,可以将第一放大器40和第二放大器6设置相同数量的放大子部,也可以设置成不同结构,如第一放大器40设置成上述的多个放大子部进行双程单方向多级放大,第二放大器6设置一级放大,或者将第一放大器40设置成一级双程放大,第二放大器6设置成单向多级放大,具体根据所需要的放大倍数适应性调整。
可以理解的,上述的各个放大子部均包括增益光纤、光纤耦合器和泵浦源,第一放大器40的第一放大子部43的光纤耦合器分别连接光调制器3、泵浦源、增益光纤的一侧,增益光纤的另一侧连接滤波片,第一放大器40的第N放大子部43的光纤耦合器分别连接反射器、泵浦源、增益光纤的一侧,增益光纤的另一侧连接滤波片。
示例性的,参见图8所示,脉冲光纤激光器的光路系统包括种子源1、第三光隔离器200、第一光分束器2、光调制器3、第七泵浦源201、第四光纤耦合器202、第五增益光纤203、滤波片204、第六增益光纤205、第五光纤耦合器206、第八泵浦源207、第三传能光纤208、第三反射光栅209、第四光隔离器210、第一剥模器211、第七增益光纤212、第四光纤合束器213、第九泵浦源214和第一光隔离器7,第三光隔离器200的第一端连接种子源1,第三光隔离器200的第二端连接第一光分束器2的第一端,第一光分束器2的公共端连接光调制器3的第一端,光调制器3和第七泵浦源201共同连接第四光纤耦合器202的第一端,第四光纤耦合器202的第二端连接第五增益光纤203的第一端,第五增益光纤203的第二端连接滤波片204的第一端,滤波片204的第二端连接第六增益光纤205的第一端,第六增益光纤205的第二端连接第五光纤耦合器206的第一端,第五光纤耦合器206的第二端同时连接第八泵浦源207和第三传能光纤208的第一端,第三传能光纤208的第二端连接第三反射光栅209;第一光分束器2的第二端连接第四光隔离器210的第一端,第四光隔离器210的第二端连接第一剥模器211的第一端,第一剥模器211的第二端连接第七增益光纤212的第一端,第七增益光纤212的第二端连接第四光纤合束器213的第一端,第四光纤合束器213的第二端同时连接第九泵浦源214和第一光隔离器7,种子源1产生的第一光信号经第三光隔离器200、第一光分束器2,进入光调制器3,依次经过第五增益光纤203和第六增益光纤205,在第五增益光纤203和第六增益光纤205中受激辐射两级放大后,从第六增益光纤205的第二端输出,此时第一光信号被两级放大,产生较高功率的第二光信号,第二光信号经第三传能光纤208后,被第三反射光栅209反射,第二光信号沿光路原路返回,并经过第六增益光纤205和第五增益光纤203两级放大后,从第五增益光纤203的第一端输出,产生功率更高的第三光信号,第三光信号进入光调制器3、第一光分束器2分束,经第四光隔离器210和第一剥模器211进入第七增益光纤212,在第七增益光纤212中受激辐射放大,形成功率更高的第四光信号,第四光信号从第一光隔离器7输出。
在一些实施方式中,参见图9所示,第一放大器40和第二放大器6除采用多级放大外,也可以采用如下的一级放大,第二放大器6包括第二增益光纤308、第一光合束器309和第二泵浦源310,第二增益光纤308的一侧连接第一光分束器2,第一光合束器309分别连接第二增益光纤308的另一侧、第二泵浦源310、第一光隔离器7;和/或,第一放大器40包括第一增益光纤303、第一光纤耦合器302和第一泵浦源301,第一光纤耦合器302分别连接光调制器3、第一泵浦源301、第一增益光纤303的一侧,增益光纤的另一侧连接反射器41。
示例性的,参见图9所示,脉冲光纤激光器的光路系统包括种子源1、第五光隔离器300、第一光分束器2、光调制器3、第一泵浦源301、第一光纤耦合器302、第一增益光纤303、第四传能光纤304、第四反射光栅305、第六光隔离器306、第二剥模器307、第二增益光纤308、第一光合束器309、第二泵浦源310和第一光隔离器7,第五光隔离器300的第一端连接种子源1,第五光隔离器300的第二端连接第一光分束器2的第一端,第一光分束器2的公共端连接光调制器3的第一端,光调制器3的第二端和第一泵浦源301同时连接第一光纤耦合器302的第一端,第一光纤耦合器302的第二端连接第一增益光纤303的第一端,第一增益光纤303的第二端连接第四传能光纤304的第一端,第四传能光纤304的第而端连接第四反射光栅305;第一光分束器2的第二端连接第六光隔离器306的第一端,第六光隔离器306的第二端连接第二剥模器307的第一端,第二剥模器307的第二端连接第二增益光纤308的第一端,第二增益光纤308的第二端连接第一光合束器309的第一端,第一光合束器309的第二端同时连接第二泵浦源310和第一光隔离器7,种子源1产生的第一光信号经第五光隔离器300、第一光分束器2和光调制器3进入第二增益光纤308,第一光信号在第二增益光纤308内受激辐射放大,从第二增益光纤308的第二端输出,产生功率更高的第二光信号,第二光信号进入第四传能光纤304经第四反射光栅305反射,从第二增益光纤308的第二端进入第二增益光纤308,在第二增益光纤308内受激辐射放大,产生功率更高的第三光信号,第三光信号进入光调制器3,经第六光隔离器306和第二剥模器307进入第二增益光纤308,第三光信号在第二增益光纤308内受激辐射放大,产生功率更高的第四光信号,第四光信号从第一光隔离器7输出。
在一些实施方式中,参见图10所示,第一放大器40和第二放大器6除采用多级放大外,也可以采用如下的一级放大,第二放大器6包括第四增益光纤411、第二光合束器412、第六泵浦源413、第三光合束器410和第五泵浦源409,第三光合束器410分别连接第一光分束器2、第五泵浦源409、第四增益光纤411的一侧,第二光合束器412分别连接第四增益光纤411的另一侧、第六泵浦源413、第一光隔离器7;和/或,第一放大器40包括第三增益光纤403、第二光纤耦合器402、第三光纤耦合器404、第三泵浦源401和第四泵浦源405,第二光纤耦合器402分别连接光调制器3、第三泵浦源401、第三增益光纤403的一侧,第三光纤耦合器404分别连接第三增益光纤403的另一侧、第四泵浦源405、反射器41。
示例性的,参见图10所示,脉冲光纤激光器的光路系统包括种子源1、第七光隔离器400、第一光分束器2、光调制器3、第三泵浦源401、第二光纤耦合器402、第三增益光纤403、第三光纤耦合器404、第四泵浦源405、第五传能光纤406、第五反射光栅407、第八光隔离器408、第五泵浦源409、第三光合束器410、第四增益光纤411、第二光合束器412、第六泵浦源413和第一光隔离器7,第七光隔离器400的第一端连接种子源1,光隔离器400的第二端连接第一光分束器2的第一端,第一光分束器2的公共端连接光调制器3的第一端,光调制器3的第二端和第三泵浦源401共同连接第二光纤耦合器402的第一端,第二光纤耦合器402的第二端连接第三增益光纤403的第一端,第三增益光纤403的第二端连接第三光纤耦合器404的第一端,第三光纤耦合器404的第二端共同连接第四泵浦源405和第五传能光纤406第一端,第五传能光纤406第二端连接第五反射光栅407;第一光分束器2的第二端连接第八光隔离器408的第一端,第八光隔离器408的第一端和第五泵浦源409共同连接第三光合束器410的第一端,第三光合束器410的第二端连接第四增益光纤411的第一端,第四增益光纤411的第二端连接第二光合束器412的第一端,第二光合束器412的第二端共同连接第六泵浦源413和第一光隔离器7,种子源1内产生的第一光信号经第七光隔离器400、第一光分束器2和光调制器3进入第三增益光纤403,第一光信号在第三增益光纤403内受激辐射放大,从第三增益光纤403的第二端输出,产生功率更高的第二光信号,第二光信号进入第五传能光纤406经第五反射光栅407反射,从第三增益光纤403的第二端进入第三增益光纤403,第二光信号在第三增益光纤403内受激辐射放大,产生功率更高的第三光信号,第三光信号进入光调制器3,经第八光隔离器408进入第四增益光纤411,第三光信号在第四增益光纤411内受激辐射放大,产生更高功率的第四光信号,第四光信号从第一光隔离器7输出。
示例性的,种子源1可为连续激光,可为脉冲激光;上述的除第一光隔离器7以外的隔离器,可选用光纤型号为6/125型或10/125型的隔离器,也可选偏振无关、无带通在线隔离器,亦可选无源光纤;上述的光分束器,可以选用2 1光分束器,如6/125型或10/125型;上述的光调制器,可以选用120兆赫兹声光调制器,如6/125型、10/125型;上述的泵浦源,可选用中心波长为915nm或976nm的半导体激光二级管,光纤型号如105/125型;上述的光纤合束器,可以选用1光纤合束器,如6/125型、10/125型、20/125型;上述的增益光纤可采用纤芯直径为6微米、10微米或20微米的掺镱光纤;上述的传能光纤,可以选用6/125型、10/125无源光纤;上述的反射器和反射光栅可以选用反射型光纤布拉格光栅,可选用高反型光纤布拉格光栅,反射率大于99%;上述的光剥模器,如6/125型、10/125型、20/125型;第一光隔离器,可选20/125型输出光隔离器。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
以上对本申请实施例所提供的脉冲光纤激光器的光路系统和激光器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种脉冲光纤激光器的光路系统,其中,包括依次连接的种子源、第一光分束器、光调制器、至少一光纤放大组件,所述光纤放大组件包括第一放大器和反射器,所述第一放大器连接所述光调制器和所述反射器,所述种子源产生的光信号依次经所述第一光分束器、所述光调制器、所述第一放大器射入所述反射器,所述反射器反射的光信号依次经所述第一放大器和所述光调制器后,从所述第一光分束器射出。
  2. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,所述光纤放大组件还包括传能光纤,位于所述第一放大器和所述反射器之间,所述传能光纤连接所述第一放大器和所述反射器,所述种子源产生的光信号依次经所述第一光分束器、所述光调制器、所述第一放大器、所述传能光纤射入所述反射器,所述反射器反射的光信号依次经所述传能光纤、所述第一放大器和所述光调制器后,从所述第一光分束器射出。
  3. 根据权利要求2所述的脉冲光纤激光器的光路系统,其中,所述传能光纤用于增加所述光信号的传播路径,增加一个脉冲的时域时长,延长所述脉冲的传输时间。
  4. 根据权利要求3所述的脉冲光纤激光器的光路系统,其中,所述光调制器用于调整所述脉冲的波形,输出脉冲串。
  5. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,设置两所述光纤放大组件,所述光调制器与所述光纤放大组件之间设有第二光分束器,所述第二光分束器连接所述光调制器和两所述光纤放大组件。
  6. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,还包括第二放大器和第一光隔离器,所述第二放大器连接所述第一光分束器和所述第一光隔离器,经所述光纤放大组件和所述光调制器处理后的光信号经所述第一光分束器进入所述第二放大器,从所述第一光隔离器射出。
  7. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,所述第一放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述光调制器连接,各个所述放大子部中位于末位的放大子部的一端与所述反射器连接。
  8. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,所述第二放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述第一光分束器,各个所述放大子部中位于末位的所述放大子部的一端与所述第一光隔离器连接。
  9. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,所述第一放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述光调制器连接,各个所述放大子部中位于末位的放大子部的一端与所述反射器连接;
    所述第二放大器包括串联的多个放大子部,相邻所述放大子部之间通过滤波片连接,各个所述放大子部中位于首位的所述放大子部的一端与所述第一光分束器,各个所述放大子部中位于末位的所述放大子部的一端与所述第一光隔离器连接。
  10. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第二放大器包括第二增益光纤、第一光合束器和第二泵浦源,所述第二增益光纤的一侧连接所述第一光分束器,所述第一光合束器分别连接所述第二增益光纤的另一侧、所述第二泵浦源、所述第一光隔离器。
  11. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第一放大器包括第一增益光纤、第一光纤耦合器和第一泵浦源,所述第一光纤耦合器分别连接所述光调制器、第一泵浦源、第一增益光纤的一侧,所述增益光纤的另一侧连接所述反射器。
  12. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第二放大器包括第二增益光纤、第一光合束器和第二泵浦源,所述第二增益光纤的一侧连接所述第一光分束器,所述第一光合束器分别连接所述第二增益光纤的另一侧、所述第二泵浦源、所述第一光隔离器;
    所述第一放大器包括第一增益光纤、第一光纤耦合器和第一泵浦源,所述第一光纤耦合器分别连接所述光调制器、第一泵浦源、第一增益光纤的一侧,所述增益光纤的另一侧连接所述反射器。
  13. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第二放大器包括第四增益光纤、第二光合束器、第六泵浦源、第三光合束器和第五泵浦源,所述第三光合束器分别连接所述第一光分束器、第五泵浦源、第四增益光纤的一侧,所述第二光合束器分别连接所述第四增益光纤的另一侧、所述第六泵浦源、所述第一光隔离器。
  14. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第一放大器包括第三增益光纤、第二光纤耦合器、第三光纤耦合器、第三泵浦源和第四泵浦源,所述第二光纤耦合器分别连接所述光调制器、第三泵浦源、第三增益光纤的一侧,第三光纤耦合器分别连接所述增益光纤的另一侧、所述第四泵浦源、所述反射器。
  15. 根据权利要求6所述的脉冲光纤激光器的光路系统,其中,所述第二放大器包括第四增益光纤、第二光合束器、第六泵浦源、第三光合束器和第五泵浦源,所述第三光合束器分别连接所述第一光分束器、第五泵浦源、第四增益光纤的一侧,所述第二光合束器分别连接所述第四增益光纤的另一侧、所述第六泵浦源、所述第一光隔离器;
    所述第一放大器包括第三增益光纤、第二光纤耦合器、第三光纤耦合器、第三泵浦源和第四泵浦源,所述第二光纤耦合器分别连接所述光调制器、第三泵浦源、第三增益光纤的一侧,第三光纤耦合器分别连接所述增益光纤的另一侧、所述第四泵浦源、所述反射器。
  16. 根据权利要求1所述的脉冲光纤激光器的光路系统,其中,所述光调制器设有第一通道和第二通道,所述第一通道供所述光信号进入所述光纤放大组件,所述第二通道供经所述光纤放大组件两次放大后的光信号通过。
  17. 根据权利要求16所述的脉冲光纤激光器的光路系统,其中:设置所述第一通道和所述第二通道为常开状态。
  18. 根据权利要求2所述的脉冲光纤激光器的光路系统,其中,所述传能光纤可以选用6/125型、10/125无源光纤。
  19. 根据权利要求3所述的脉冲光纤激光器的光路系统,其中,所述光调制器可以选用120兆赫兹声光调制器。
  20. 激光器,其中,包括如权利要求1所述的脉冲光纤激光器的光路系统。
PCT/CN2022/118222 2022-04-26 2022-09-09 脉冲光纤激光器的光路系统和激光器 WO2023206913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22899619.5A EP4293841A1 (en) 2022-04-26 2022-09-09 Optical path system of pulsed fiber laser, and laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210441426.5A CN114552345B (zh) 2022-04-26 2022-04-26 脉冲光纤激光器的光路系统和激光器
CN202210441426.5 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023206913A1 true WO2023206913A1 (zh) 2023-11-02

Family

ID=81667668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118222 WO2023206913A1 (zh) 2022-04-26 2022-09-09 脉冲光纤激光器的光路系统和激光器

Country Status (3)

Country Link
EP (1) EP4293841A1 (zh)
CN (1) CN114552345B (zh)
WO (1) WO2023206913A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552345B (zh) * 2022-04-26 2022-08-02 武汉锐科光纤激光技术股份有限公司 脉冲光纤激光器的光路系统和激光器
CN115084979A (zh) * 2022-07-25 2022-09-20 青岛镭测创芯科技有限公司 一种激光光源装置及激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248138A1 (en) * 2006-04-19 2007-10-25 Pryophotonics Lasers Inc. Method and system for a high power low-coherence pulsed light source
US20080030846A1 (en) * 2006-08-02 2008-02-07 Andrei Starodoumov Double-pass fiber amplifier
US20090080477A1 (en) * 2007-01-18 2009-03-26 Pyrophotonics Lascrs Inc. Seed source for high power optical fiber amplifier
CN101523673A (zh) * 2006-09-29 2009-09-02 热光子学镭射公司 用于脉冲激光源发射成形光波形的方法和系统
US20100110535A1 (en) * 2008-10-31 2010-05-06 Pyrophotonics Lasers Inc. Laser systems with doped fiber components
CN215418952U (zh) * 2021-08-16 2022-01-04 上海瀚宇光纤通信技术有限公司 一种单频光纤激光器
CN114552345A (zh) * 2022-04-26 2022-05-27 武汉锐科光纤激光技术股份有限公司 脉冲光纤激光器的光路系统和激光器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0205361B1 (pt) * 2002-12-20 2017-05-02 FUNDAÇÃO CPQD - Centro de Pesquisa e Desenvolvimento em Telecomunicações amplificador óptico de dupla passagem com compensação unidirecional da dispersão cromática e bloqueio dos retroespalhamentos

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248138A1 (en) * 2006-04-19 2007-10-25 Pryophotonics Lasers Inc. Method and system for a high power low-coherence pulsed light source
US20080030846A1 (en) * 2006-08-02 2008-02-07 Andrei Starodoumov Double-pass fiber amplifier
CN101523673A (zh) * 2006-09-29 2009-09-02 热光子学镭射公司 用于脉冲激光源发射成形光波形的方法和系统
US20090080477A1 (en) * 2007-01-18 2009-03-26 Pyrophotonics Lascrs Inc. Seed source for high power optical fiber amplifier
US20100110535A1 (en) * 2008-10-31 2010-05-06 Pyrophotonics Lasers Inc. Laser systems with doped fiber components
CN215418952U (zh) * 2021-08-16 2022-01-04 上海瀚宇光纤通信技术有限公司 一种单频光纤激光器
CN114552345A (zh) * 2022-04-26 2022-05-27 武汉锐科光纤激光技术股份有限公司 脉冲光纤激光器的光路系统和激光器

Also Published As

Publication number Publication date
CN114552345A (zh) 2022-05-27
CN114552345B (zh) 2022-08-02
EP4293841A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2023206913A1 (zh) 脉冲光纤激光器的光路系统和激光器
CN202513435U (zh) 一种mopa结构的高能量低重频全光纤激光器
CN105428975B (zh) 高功率飞秒光纤激光器
CN108767637A (zh) 基于色散波的THz高重复频率高功率飞秒光纤激光器
JP2013225710A (ja) パルス光源およびパルス圧縮方法
US8369004B2 (en) MOPA light source
CN103001118A (zh) 一种增益窄化控制的全光纤高功率皮秒脉冲激光放大器
CN100492148C (zh) 全光纤窄线宽百纳秒脉冲信号系统
CN105337146B (zh) 一种高峰值功率脉冲掺铥激光器
CN111969400B (zh) 高功率光纤激光系统
CN212033420U (zh) 一种可调谐脉冲光纤激光器
CN101771236A (zh) 无展宽器的啁啾脉冲放大光纤激光系统
Chen et al. High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core
CN211981125U (zh) 一种宽重频可调高功率超短脉冲光纤激光器
CN108923234B (zh) 一种超连续谱产生装置
DE102022132736A1 (de) Faserlaser mit doppelpass-pumparchitektur
CN215579525U (zh) 一种基于大模场光纤的全光纤飞秒种子激光器
CN209200363U (zh) 基于MOPA结构的亚THz高功率皮秒光纤激光器
CN201166768Y (zh) 全光纤窄线宽脉冲信号装置
CN209358055U (zh) 光纤激光器
CN102570257A (zh) 全光纤环形放大器
CN203014158U (zh) 一种增益窄化控制的全光纤高功率皮秒脉冲激光放大器
CN112615241A (zh) 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器
CN109687270A (zh) 光纤激光器
CN216015994U (zh) 一种激光器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022899619

Country of ref document: EP

Effective date: 20230607

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899619

Country of ref document: EP

Kind code of ref document: A1