CN112615241A - 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器 - Google Patents

高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器 Download PDF

Info

Publication number
CN112615241A
CN112615241A CN202011409412.2A CN202011409412A CN112615241A CN 112615241 A CN112615241 A CN 112615241A CN 202011409412 A CN202011409412 A CN 202011409412A CN 112615241 A CN112615241 A CN 112615241A
Authority
CN
China
Prior art keywords
laser
pulse
triangular
frequency
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011409412.2A
Other languages
English (en)
Other versions
CN112615241B (zh
Inventor
史伟
史朝督
�田�浩
盛泉
姚建铨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011409412.2A priority Critical patent/CN112615241B/zh
Publication of CN112615241A publication Critical patent/CN112615241A/zh
Priority to US17/367,264 priority patent/US11670904B2/en
Application granted granted Critical
Publication of CN112615241B publication Critical patent/CN112615241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094065Single-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/03Suppression of nonlinear conversion, e.g. specific design to suppress for example stimulated brillouin scattering [SBS], mainly in optical fibres in combination with multimode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于三角形脉冲的高功率单频窄线宽纳秒短脉冲光纤激光器,包括:脉冲激光种子源输出的光信号经第一隔离器注入到第一功率预放大级中,经第一功率预放大级放大的光信号随后注入第二功率预放大级再次放大后注入到主放大级中;脉冲激光种子源采用连续激光强度调制的方式获取或半导体蝶形激光器直接调制的方式获得拥有快速上升沿的三角形激光脉冲;根据三角形脉冲本征线宽窄以及对自相位调制有抑制作用的特点,采用三角形脉冲的单频脉冲激光作为种子源,通过主振荡功率放大结构对其峰值功率进行放大。

Description

高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器
技术领域
本发明涉及光纤激光器领域,尤其涉及一种基于三角形脉冲的高峰值功率单频窄线宽纳秒短脉冲光纤激光器。
背景技术
全光纤化的高功率窄线宽单频纳秒脉冲掺镱光纤激光器因其所具有的较好的耐久性、紧凑的结构以及免维护等特点,在雷达、遥感等领域有着广泛的应用。并且在这些领域中,窄线宽的激光光源能够极大提高系统的整体性能,因此针对窄线宽的纳秒量级脉冲光纤激光器进行研究具有非常重要的意义。限制纳秒脉冲光纤激光器的其中一个重要原因是自相位调制效应,在脉冲放大的过程中,随着峰值功率的提高,剧烈的自相位调制效应会对线宽造成严重展宽。
传统的方法是通过相位预补偿的方式来抵消自相位调制所产生的影响,但是受制于相位补偿器件的性能,使得这种方法无法在高峰值功率的激光器中达到理想的效果。而脉冲波形编辑为抑制自相位调制效应获取窄线宽的纳秒脉冲激光提供了另一种新的有效方法。
发明内容
本发明提供了一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,本发明根据三角形激光脉冲本征线宽窄以及对自相位调制有抑制作用的特点,采用三角形脉冲的单频脉冲激光作为种子源,通过主振荡功率放大结构对其峰值功率进行放大,详见下文描述:
一种基于三角形脉冲的高功率单频窄线宽纳秒短脉冲光纤激光器,所述激光器包括:
脉冲激光种子源输出的光信号经第一隔离器注入到第一功率预放大级中,经第一功率预放大级放大的光信号随后注入第二功率预放大级再次放大后注入到主放大级中;
脉冲激光种子源采用连续激光强度调制的方式获取或半导体蝶形激光器直接调制的方式获得拥有快速上升沿的三角形激光脉冲;
根据三角形脉冲本征线宽窄以及对自相位调制有抑制作用的特点,采用三角形脉冲的单频脉冲激光作为种子源,通过主振荡功率放大结构对其峰值功率进行放大。
其中,所述第一功率预放大级包括:依次顺序连接的第一泵浦源、第一合束器、第一双包层有源光纤、第一包层光剥离器、第一带通滤波器、第二隔离器。
进一步地,所述第二功率预放大级包括:依次顺序连接的第二泵浦源、第二合束器、第二双包层有源光纤、第二包层光隔离器、第二带通滤波器、第三隔离器。
进一步地,所述主放大级包括:第三泵浦源、第三合束器、第三双包层有源光纤、第三包层光剥离器、准直输出器。
具体实现时,所述脉冲激光种子源采用连续激光强度调制的方式具体为:
单频连续光纤激光器经第四隔离器直接注入电光强度调制器中,任意波形发生器产生射频信号控制电光强度调制器和声光强度调制器;
电光强度调制器用于将连续激光光源调制成预设频率、上升沿、下降沿、激光脉冲半高宽的三角波脉冲序列;
三角波脉冲序列经第一纤芯预防大级后注入声光强度调制器;第一纤芯预防大级用于提高脉冲序列的峰值功率,抵消电光强度调制器和声光强度调制器引入的差损;
声光强度调制器与电光强度调制器时域同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源。
具体实现时,所述脉冲激光种子源采用半导体蝶形激光器直接调制的方式具体为:
半导体蝶形激光器在直接调制下输出预设峰值功率、重复频率、上升沿、下降沿、相应激光脉冲半高宽的三角波脉冲序列,经第五隔离器直接注入第二纤芯预放大级中,经第二纤芯预防大级后注入第二声光强度调制器中;
第二纤芯预防大级用于提高脉冲序列的峰值功率,抵消声光强度调制器引入的差损;声光强度调制器与半导体蝶形芯片的驱动电信号同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源。
本发明提供的技术方案的有益效果是:
1、本发明采用脉冲波形的编辑实现对自相位调制效应的抑制,避免了相位补偿方法复杂的系统,降低了系统中的插入损耗,便于对激光功率进行放大;并且基于三角形脉冲得到的激光线宽相比于相位补偿方式更窄;
2、本发明采用三角形脉冲进行放大可以在有效抑制自相位调制的情况下实现20kW以上的功率输出;
3、本发明采用的三角形脉冲,在放大过程中脉冲形状不会产生较严重的畸形,保证了激光线宽在放大过程中的稳定;
4、本发明采用的全光纤化的主振荡功率放大结构有利于激光系统的集成,便于工业化批量生产;本发明采用的自相位调制抑制方法适用于各个波长的光纤激光器;
5、本发明所用三角波脉冲与常用的方波脉冲以及高斯波脉冲相比,不仅在高峰值功率的条件下有着较窄的线宽,并且其脉冲波形不会产生较为明显的畸变;相比于相位预补偿方法,本发明提供的高功率窄线宽单频脉冲激光获取具有结构简单,光路损耗小,易于实现高功率窄线宽激光的稳定运转。
6、本发明采用的两个功率预防大级和一个功率放大级,在实际运用中可根据功率需求自由配置,放大级的级数没有限制。
附图说明
图1为高峰值功率单频窄线宽三角形纳秒短脉冲光纤激光器结构示意图;
其中,(a)为单频纳秒光纤激光器MOPA结构示意图;(b)为外调制脉冲种子源结构示意图;(c)为半导体蝶形激光器直接调制脉冲种子源结构示意图。
图2为高峰值功率单频窄线宽三角形纳秒短脉冲光纤激光器输出特性
其中,(a)为输出功率增长曲线示意图;(b)为最大输出功率下的脉冲波形示意图;(c)为最大输出功率下的线宽特性示意图;(d)为最大输出功率下的光谱示意图。
附图中,各标号所代表的部件列表如下:
1:脉冲激光种子源; 2:第一隔离器;
3:第一泵浦源; 4:第一合束器;
5:第一双包层有源光纤; 6:第一包层光剥离器;
7:第一带通滤波器; 8:第二隔离器;
9:第二泵浦源; 10:第二合束器;
11:第二双包层有源光纤; 12:第二包层光隔离器;
13:第二带通滤波器; 14:第三隔离器;
15:第三泵浦源; 16:第三合束器;
17:第三双包层有源光纤; 18:第三包层光剥离器;
19:准直输出器; 20:单频连续光纤激光器;
21:第四隔离器; 22:任意波形发生器;
23:电光强度调制器; 24:第一纤芯预放大级;
25:声光强度调制器; 26:半导体蝶形激光器;
27:第五隔离器; 28:第二纤芯预放大级;
29:第二声光强度调制器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
不同脉冲形状的激光线宽因自相位调制而产生不同程度的展宽在之前的研究中已被证明。其中三角形线宽不仅有着较小的本征线宽,并且几乎不会受自相位调制效应的影响而产生线宽展宽,这为高功率窄线宽脉冲激光器的实现提供了可能。在该工作中,验证了一个高功率窄线宽单频纳秒脉冲光纤激光器。
实施例1
一种高峰值功率单频窄线宽三角形纳秒短脉冲光纤激光器,采用了两级功率预放大、一级功率主放大级的MOPA结构,其实施方案参见图1(a),包括:脉冲激光种子源1、第一隔离器2、第一泵浦源3、第一合束器4、第一双包层有源光纤5、第一包层光剥离器6、第一带通滤波器7、第二隔离器8、第二泵浦源9、第二合束器10、第二双包层有源光纤11、第二包层光隔离器12、第二带通滤波器13、第三隔离器14、第三泵浦源15、第三合束器16、第三双包层有源光纤17、第三包层光剥离器18、准直输出器19。
其中,第一泵浦源3、第一合束器4、第一双包层有源光纤5、第一包层光剥离器6、第一带通滤波器7、第二隔离器8构成了一级预防大;第二泵浦源9、第二合束器10、第二双包层有源光纤11、第二包层光隔离器12、第二带通滤波器13、第三隔离器14构成了二级预防大;第三泵浦源15、第三合束器16、第三双包层有源光纤17、第三包层光剥离器18、准直输出器19构成了主放大级。
其中,脉冲激光种子源1采用连续激光经强度调制的方式获取,参见图1(b)所示,包括:单频连续光纤激光器20、第四隔离器21、任意波形发生器22、电光强度调制器23、第一纤芯预放大级24、声光强度调制器25。
其中,单频连续光纤激光器20为中心波长1064nm、输出功率70mW、线宽1kHz的连续激光器,经第四隔离器21直接注入电光强度调制器23中,电光强度调制器23差损约4dB。
其中,任意波形发生器22产生射频信号控制电光强度调制器23和声光强度调制器25。
其中,电光强度调制器23用于将连续激光光源调制成重复频率20kHz、上升沿1ns、下降沿15ns、相应激光脉冲半高宽为8ns的三角波脉冲序列,如图2(b)所示。
其中,上述调制得到的三角波脉冲序列经第一纤芯预防大级24后注入声光强度调制器25。
其中,第一纤芯预防大级24用于提高脉冲序列的峰值功率,抵消电光强度调制器23和声光强度调制器25引入的差损,便于后续的功率放大。
其中,声光强度调制器25与电光强度调制器23时域同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源,得到的单频脉冲种子源峰值功率为1.8W。
其中,上述脉冲激光种子经第一隔离器2注入功率预放大级中。预放大级中的第一泵浦源3、第二泵浦源9采用976nm半导体多模泵浦源;第一双包层有源光纤5、第二双包层有源光纤11分别为2米10/130掺镱双包层光纤和2米20/130掺镱双包层光纤。
第一带通滤波器7、第二带通滤波器13的中心波长1064nm、带宽2nm,承受最高功率2W,差损0.7dB;第一隔离器2的中心波长1064nm,反向隔离度50dB,最大承受功率2W,差损1dB;第二隔离器8、第三隔离器14的中心波长1064nm,反向隔离度50dB,最大承受功率10W,差损为0.5dB。
经两级预放大后,脉冲激光的峰值功率放大至1.86kW。后注入主放大级中,主放大级第三合束器16规格为(6+1)×1,输入、输出光纤尺寸分别为20/125和30/250;第三泵浦源15为976nm多模半导体激光器;第三双包层有源光纤17为1米30/250掺镱双包层光纤;准直输出器19的尾纤尺寸为30/250,输出光斑直径为1cm。
在上述装置下,在泵浦功率10.3W时,脉冲激光的峰值功率放大至24.3kW,参见图2(a);在最大输出功率时,脉冲宽度为6.5ns,脉冲形状仍为三角形脉冲,参见图2(b);激光线宽为77MHz,未观察到明显的自相位调制效应,参见图2(c);激光信噪比大于40dB,参见图2(d)。
综上所述,本发明的优势在于,不需要借助相位补偿机制也可以实现对自相位调制效应较好的抑制,并且在放大过程中脉冲波形不会产生较大的畸变,使得激光线宽在放大过程中保持稳定。
实施例2
一种高峰值功率单频窄线宽三角形纳秒短脉冲光纤激光器,采用了两级功率预放大和一级功率主放大的MOPA结构,参见图1(a),包括:脉冲激光种子源1、第一隔离器2、第一泵浦源3、第一合束器4、第一双包层有源光纤5、第一包层光剥离器6、第一带通滤波器7、第二隔离器8、第二泵浦源9、第二合束器10、第二双包层有源光纤11、第二包层光隔离器12、第二带通滤波器13、第三隔离器14、第三泵浦源15、第三合束器16、第三双包层有源光纤17、第三包层光剥离器18、准直输出器19。
其中,第一泵浦源3、第一合束器4、第一双包层有源光纤5、第一包层光剥离器6、第一带通滤波器7、第二隔离器8构成了一级预防大;第二泵浦源9、第二合束器10、第二双包层有源光纤11、第二包层光隔离器12、第二带通滤波器13、第三隔离器14构成了二级预防大;第三泵浦源15、第三合束器16、第三双包层有源光纤17、第三包层光剥离器18、准直输出器19构成了主放大级。
其中,脉冲激光种子采用半导体蝶形激光器直接调制的方式,参见图1(c)所示,包括:半导体蝶形芯片26、第五隔离器27、第二纤芯预放大级28、第二声光强度调制器29。
其中,半导体蝶形激光器中心波长1064nm,在直接调制下输出峰值功率50mW、重复频率20kHz、上升沿1ns、下降沿15ns、相应激光脉冲半高宽为8ns的三角波脉冲序列,参见图2(b),经第五隔离器27直接注入第二纤芯预放大级28中,经第二纤芯预防大级28后注入第二声光强度调制器29中;
第二纤芯预防大级28用于提高脉冲序列的峰值功率,抵消声光强度调制器29引入的差损,便于后续的功率放大;声光强度调制器29与半导体蝶形芯片26的驱动电信号同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源,得到的单频脉冲种子源峰值功率为3.1W,由于半导体蝶形激光器输出功率较高,因此和实施例1相比,该实施例2中得到的脉冲激光种子源峰值功率较高。
本发明实施例得到的脉冲激光种子经第一隔离器2注入功率预放大级中。预放大级第一泵浦源3、第二泵浦源9采用976nm半导体多模泵浦源;第一双包层有源光纤5、第二双包层有源光纤11分别为2米10/130掺镱双包层光纤和2米20/130掺镱双包层光纤;
第一带通滤波器7、第二带通滤波器13的中心波长1064nm、带宽2nm,承受最高功率2W,差损0.7dB;第一隔离器2的中心波长1064nm,反向隔离度50dB,最大承受功率2W,差损1dB;第二隔离器8、第三隔离器14的中心波长1064nm,反向隔离度50dB,最大承受功率10W,差损为0.5dB。
经两级预放大后,脉冲激光的峰值功率放大至1.86kW。后注入主放大级中,主放大级第三合束器16规格为(6+1)×1,输入、输出光纤尺寸分别为20/125和30/250;第三泵浦源15为976nm多模半导体激光器;第三双包层有源光纤17为1米30/250掺镱双包层光纤;准直输出器19的尾纤尺寸为30/250,输出光斑直径为1cm。
在上述装置下,在泵浦功率10.3W时,脉冲激光的峰值功率放大至24.3kW,参见图2(a);在最大输出功率时,脉冲宽度为6.5ns,脉冲形状仍为三角形脉冲,参见图2(b);激光线宽为77MHz,未观察到明显的自相位调制效应,参见图2(c);激光信噪比大于40dB,参见图2(d)。
综上所述,本发明的优势在于,不需要借助相位补偿机制也可以实现对自相位调制效应较好的抑制,并且在放大过程中脉冲波形不会产生较大的畸变,使得激光线宽在放大过程中保持稳定。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述激光器包括:
脉冲激光种子源输出的光信号经第一隔离器注入到第一功率预放大级中,经第一功率预放大级放大的光信号随后注入第二功率预放大级再次放大后注入到主放大级中;
脉冲激光种子源采用连续激光强度调制的方式获取或半导体蝶形激光器直接调制的方式获得三角形激光脉冲;
根据三角形脉冲本征线宽窄以及对自相位调制有抑制作用的特点,采用三角形脉冲的单频脉冲激光作为种子源,通过主振荡功率放大结构对其峰值功率进行放大。
2.根据权利要求1所述的一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述第一功率预放大级包括:依次顺序连接的第一泵浦源、第一合束器、第一双包层有源光纤、第一包层光剥离器、第一带通滤波器、第二隔离器。
3.根据权利要求1所述的一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述第二功率预放大级包括:依次顺序连接的第二泵浦源、第二合束器、第二双包层有源光纤、第二包层光隔离器、第二带通滤波器、第三隔离器。
4.根据权利要求1所述的一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述主放大级包括:第三泵浦源、第三合束器、第三双包层有源光纤、第三包层光剥离器、准直输出器。
5.根据权利要求1所述的一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述脉冲激光种子源采用连续激光强度调制的方式具体为:
单频连续光纤激光器经第四隔离器直接注入电光强度调制器中,任意波形发生器产生射频信号控制电光强度调制器和声光强度调制器;
电光强度调制器用于将连续激光光源调制成预设重复频率、上升沿、下降沿、激光脉冲半高宽的三角波脉冲序列;
三角波脉冲序列经第一纤芯预防大级后注入声光强度调制器;第一纤芯预防大级用于提高脉冲序列的峰值功率,抵消电光强度调制器和声光强度调制器引入的差损;
声光强度调制器与电光强度调制器时域同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源。
6.根据权利要求1所述的一种高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器,其特征在于,所述脉冲激光种子源采用半导体蝶形激光器直接调制的方式具体为:
半导体蝶形激光器在直接调制下输出预设峰值功率、重复频率、上升沿、下降沿、相应激光脉冲半高宽的三角波脉冲序列,经第五隔离器直接注入第二纤芯预放大级中,经第二纤芯预防大级后注入第二声光强度调制器中;
第二纤芯预防大级用于提高脉冲序列的峰值功率,抵消声光强度调制器引入的差损;声光强度调制器与半导体蝶形芯片的驱动电信号同步,用于进一步滤除掉脉冲序列中的连续光成分和带内放大自发辐射以得到单频脉冲种子源。
CN202011409412.2A 2020-12-03 2020-12-03 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器 Active CN112615241B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011409412.2A CN112615241B (zh) 2020-12-03 2020-12-03 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器
US17/367,264 US11670904B2 (en) 2020-12-03 2021-07-02 High-peak-power single-frequency narrow-linewidth nanosecond fiber laser based on a triangular pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011409412.2A CN112615241B (zh) 2020-12-03 2020-12-03 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器

Publications (2)

Publication Number Publication Date
CN112615241A true CN112615241A (zh) 2021-04-06
CN112615241B CN112615241B (zh) 2022-10-14

Family

ID=75229889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011409412.2A Active CN112615241B (zh) 2020-12-03 2020-12-03 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器

Country Status (2)

Country Link
US (1) US11670904B2 (zh)
CN (1) CN112615241B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659413A (zh) * 2021-08-06 2021-11-16 江苏亮点光电科技有限公司 高峰值功率单频窄线宽纳秒级脉冲可编形光纤激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937116A (en) * 1996-11-26 1999-08-10 Kabushiki Kaisha Toshiba Optical transmission system and method using wavelength division multiplex
US20060285561A1 (en) * 2004-12-20 2006-12-21 Lawrence Shah Pulsed laser source with adjustable grating compressor
CN109818238A (zh) * 2019-04-04 2019-05-28 中国科学院合肥物质科学研究院 一种基于光谱整形效应的窄带皮秒脉冲光纤放大器
CN110600978A (zh) * 2019-10-21 2019-12-20 北京工业大学 一种基于全光纤结构的掺镱纳秒脉冲线激光源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0520853D0 (en) * 2005-10-14 2005-11-23 Gsi Lumonics Ltd Optical fibre laser
WO2017095817A1 (en) * 2015-11-30 2017-06-08 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads and pulsed laser for lidar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937116A (en) * 1996-11-26 1999-08-10 Kabushiki Kaisha Toshiba Optical transmission system and method using wavelength division multiplex
US20060285561A1 (en) * 2004-12-20 2006-12-21 Lawrence Shah Pulsed laser source with adjustable grating compressor
CN109818238A (zh) * 2019-04-04 2019-05-28 中国科学院合肥物质科学研究院 一种基于光谱整形效应的窄带皮秒脉冲光纤放大器
CN110600978A (zh) * 2019-10-21 2019-12-20 北京工业大学 一种基于全光纤结构的掺镱纳秒脉冲线激光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RONGTAO SU等: "High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening", 《HIGH POWER LASER SCIENCE AND ENGINEERING》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659413A (zh) * 2021-08-06 2021-11-16 江苏亮点光电科技有限公司 高峰值功率单频窄线宽纳秒级脉冲可编形光纤激光器

Also Published As

Publication number Publication date
CN112615241B (zh) 2022-10-14
US20220181839A1 (en) 2022-06-09
US11670904B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP5611584B2 (ja) チューナブルパルスレーザ源用の方法およびシステム
EP1706920A2 (en) Very high power pulsed fiber laser
CN105186270B (zh) 一种皮秒脉冲光纤激光器
CN110600978A (zh) 一种基于全光纤结构的掺镱纳秒脉冲线激光源
CN108963736B (zh) 一种高峰值功率皮秒和纳秒短波长光纤激光器
CN212908503U (zh) 一种光纤式窄线宽光纤激光器
CN104409954A (zh) 1.5微米纳秒脉冲双程双包层光纤放大器
CN103001118A (zh) 一种增益窄化控制的全光纤高功率皮秒脉冲激光放大器
EP4293841A1 (en) Optical path system of pulsed fiber laser, and laser
CN103151684A (zh) 一种脉冲泵浦型驻波谐振腔纳秒脉冲激光器
CN103022862A (zh) 一种任意波形纳秒脉冲高保真放大装置
CN112615241B (zh) 高峰值功率单频窄线宽纳秒三角形短脉冲光纤激光器
CN203014155U (zh) 一种任意波形纳秒脉冲高保真放大装置
CN203607667U (zh) 超短脉冲全光纤激光器
CN202977957U (zh) 一种前向反馈式放大系统
CN109586148B (zh) 一种基于主振荡功率放大器结构的脉冲光纤激光器
CN109510057B (zh) 1μm波段高峰值功率纳秒脉冲激光的产生方法
CN112615236A (zh) 一种基于三角波脉冲的单脉冲激光器线宽调谐方法
CN110459939A (zh) 一种窄线宽窄脉宽高重复频率的主动调q光纤激光器
CN105140762A (zh) 一种半导体激光器种子源的脉冲光纤激光器
CN217281617U (zh) 一种脉宽可调光纤激光器
CN102957084A (zh) 一种相位噪声补偿式放大系统
CN203150894U (zh) 一种脉冲泵浦型环形谐振腔纳秒脉冲激光器装置
CN203056358U (zh) 一种脉冲泵浦型驻波谐振腔纳秒脉冲激光器装置
CN203014158U (zh) 一种增益窄化控制的全光纤高功率皮秒脉冲激光放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant