WO2023206883A1 - 电池数据动态存储方法、装置及相关设备 - Google Patents

电池数据动态存储方法、装置及相关设备 Download PDF

Info

Publication number
WO2023206883A1
WO2023206883A1 PCT/CN2022/115168 CN2022115168W WO2023206883A1 WO 2023206883 A1 WO2023206883 A1 WO 2023206883A1 CN 2022115168 W CN2022115168 W CN 2022115168W WO 2023206883 A1 WO2023206883 A1 WO 2023206883A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
capacity data
battery capacity
data
status
Prior art date
Application number
PCT/CN2022/115168
Other languages
English (en)
French (fr)
Inventor
黄伟
Original Assignee
合众新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合众新能源汽车股份有限公司 filed Critical 合众新能源汽车股份有限公司
Publication of WO2023206883A1 publication Critical patent/WO2023206883A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/073Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a memory management context, e.g. virtual memory or cache management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery data dynamic storage method, device, electronic equipment, computer storage media and computer program products.
  • the purpose of this application is to solve one of the above technical problems at least to a certain extent.
  • the first purpose of this application is to propose a method for dynamic storage of battery data.
  • This method can realize storage of battery capacity data through the first memory and the second memory based on different situations, thereby avoiding random memory failures. Or inaccurate battery capacity records caused by abnormal storage operation behavior may pose threats to property safety or personal safety.
  • the second purpose of this application is to provide a battery data dynamic storage device.
  • the third object of this application is to provide an electronic device.
  • the fourth object of this application is to provide a computer-readable storage medium.
  • the fifth object of this application is to propose a computer program product.
  • the battery data dynamic storage method proposed by the first embodiment of the present application includes: obtaining battery capacity data; determining the status of the battery capacity data in the first memory and the second memory; Based on the data status in one memory and the second memory and the operating status of the vehicle, detect whether the vehicle meets the conditions for storing the battery capacity data; based on whether the vehicle meets the conditions for storing the battery capacity data and the The battery capacity data status in the first memory and the second memory, the battery capacity data is stored in the first memory or the second memory or an alarm is issued.
  • the battery capacity data status in the first memory and the second memory is determined based on the data status in the first memory and the second memory and the operating status of the vehicle. , detect whether the vehicle meets the conditions for storing battery capacity data, and based on whether the vehicle meets the conditions for storing battery capacity data and the battery capacity data status in the first memory and the second memory, store the battery capacity data in the first memory or the second memory or alarm.
  • This method realizes the storage of battery capacity data in the first memory and the second memory based on different situations, avoiding inaccurate battery capacity recording caused by random memory failure or abnormal storage operation behavior, and thus possible property safety problems. or threats to personal safety.
  • the battery capacity data is stored based on whether the vehicle meets the conditions for storing the battery capacity data and the status of the battery capacity data in the first memory and the second memory.
  • alarming in the first memory or the second memory includes: when it is determined that the conditions for storing the battery capacity data are not met, returning and continuing to obtain the battery capacity data.
  • it further includes: when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data status of the first memory is a normal state, storing the battery capacity data in the first memory. Memory; when it is determined that the battery capacity data status of the first memory is an abnormal state and the battery capacity data status of the second memory is a normal state, store the battery capacity data into the second memory.
  • it further includes: when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data status of the first memory and the second memory are both abnormal, issuing an alarm that cannot be stored and Report the abnormal status.
  • detecting whether the vehicle meets the conditions for storing the battery capacity data based on the data status in the first memory and the second memory and the operating status of the vehicle includes: When the data status in the first memory and/or the second memory is normal and the vehicle is in a normal operating state, it is detected whether the vehicle meets the conditions for storing the battery capacity data; wherein the conditions for storing the battery capacity data are met.
  • the conditions for the battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • the first memory includes multiple memory pools, wherein the storing the battery capacity data into the first memory includes: storing the battery capacity data into the multiple memory pools. One or more of the memory pools.
  • it further includes: when it is determined that one or more memory pools among the plurality of memory pools are abnormal memory pools, storing the battery capacity data in other memory pools other than the abnormal memory pools. .
  • determining that one or more memory pools among the plurality of memory pools are abnormal memory pools includes: obtaining multiple first capacity data of one memory pool; Perform verification on each of the first capacity data, and obtain a plurality of check codes corresponding to the plurality of first capacity data; based on one of the check codes among the plurality of check codes and the corresponding third Whether the capacity data are equal and determining whether the one memory pool is an abnormal memory pool includes: when the plurality of check codes are equal to the corresponding first capacity data, determining that the one memory pool is a normal memory pool; when When one of the multiple check codes is not equal to the corresponding first capacity data, the one memory pool is an abnormal memory pool; repeat the above steps to determine whether the other multiple memory pools are Exception memory pool.
  • it further includes: when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data status of the first memory is a normal state, detecting that the battery capacity data status of the second memory is In an abnormal state, the battery capacity data in the first memory is stored in the second memory.
  • it further includes: when it is determined that the battery capacity data status of the first memory is an abnormal state and the battery capacity data status of the second memory is a normal state, converting all the data in the second memory The battery capacity data is stored in the first memory.
  • the battery data dynamic storage device proposed in the second embodiment of the present application includes: an acquisition module for acquiring battery capacity data; a first judgment module for judging the first memory and the second The battery capacity data status in the memory; a second judgment module for detecting whether the vehicle meets the requirements for storing the battery capacity data based on the data status in the first memory and the second memory and the operating status of the vehicle. Condition; a storage module configured to store the battery capacity data in the battery capacity data based on whether the vehicle meets the conditions for storing the battery capacity data and the status of the battery capacity data in the first memory and the second memory. or alarm in the first memory or the second memory.
  • the battery capacity data status in the first memory and the second memory is determined based on the data status in the first memory and the second memory and the operating status of the vehicle. , detect whether the vehicle meets the conditions for storing battery capacity data, and based on whether the vehicle meets the conditions for storing battery capacity data and the battery capacity data status in the first memory and the second memory, store the battery capacity data in the first memory or the second memory or alarm. Therefore, by realizing the storage of battery capacity data in the first memory and the second memory based on different situations, it avoids inaccurate battery capacity recording due to random memory failure or abnormal storage operation behavior, and thus may cause property safety or damage. Threats to personal safety.
  • the electronic device proposed in the third embodiment of the present application includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the When using a computer program, the battery data dynamic storage method described in the embodiment of the first aspect of the present application is implemented.
  • the fourth embodiment of the present application provides a computer-readable storage medium.
  • the computer program is executed by the processor, the battery data dynamic storage method described in the first embodiment of the present application is implemented.
  • a computer program product is proposed in the fifth embodiment of the present application.
  • the computer program is executed by a processor, the battery data dynamic storage method described in the first embodiment of the present application is implemented.
  • Figure 1 is a flow chart of a battery data dynamic storage method according to an embodiment of the present application
  • Figure 2 is a flow chart of a battery data dynamic storage method according to another embodiment of the present application.
  • Figure 3 is a flow chart of a battery data dynamic storage method according to another embodiment of the present application.
  • Figure 4 is a flow chart of a battery data dynamic storage method according to yet another embodiment of the present application.
  • Figure 5 is a flow chart of a battery data dynamic storage method according to another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a battery data dynamic storage device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • this application proposes a battery data dynamic storage method, device, electronic equipment, computer storage medium and computer program product.
  • FIG. 1 is a flow chart of a battery data dynamic storage method according to an embodiment of the present application. It should be noted that the battery data dynamic storage method in the embodiment of the present application can be applied to the battery data dynamic storage device in the embodiment of the present application.
  • the device can be configured on an electronic device or in a server.
  • the electronic device may be a device with a data storage function, such as a PC or a mobile terminal. The embodiments of the present application do not limit this.
  • the dynamic storage method of battery data includes:
  • the battery capacity data can be understood as battery SOC (State of Charge, state of charge) data.
  • S120 Determine the battery capacity data status in the first memory and the second memory.
  • the specific implementation method of determining the battery capacity data status in the first memory can be as follows: the first memory includes multiple memory pools, and the battery capacity data status of the multiple memory pools can be determined to determine the first memory battery capacity data status.
  • the implementation method of judging the battery capacity data status of one of the memory pools is: obtaining multiple first capacity data of a memory pool; verifying the multiple first capacity data based on the verification algorithm, and obtaining the data with the multiple first capacity data. Multiple check codes corresponding to one capacity data; based on whether one of the multiple check codes is equal to the corresponding first capacity data, the battery capacity data status of a memory pool can be determined.
  • a memory pool is a normal memory pool, that is, the battery capacity data status of a memory pool is normal; when one of the multiple check codes is correct
  • a memory pool is an abnormal memory pool, that is, the battery capacity data status of a memory pool is abnormal.
  • the battery capacity data status of multiple other memory pools can be determined, that is, the status of multiple memory pools.
  • the implementation method of determining the battery capacity data status in the second memory is the same as the implementation method of determining the battery capacity status in the first memory. Both use a verification algorithm to make the determination. For example, determine the second memory
  • the specific implementation method of the battery capacity data status in can be as follows: obtain multiple second capacity data; verify the multiple second capacity data based on the verification algorithm, and obtain multiple verification data corresponding to the multiple second capacity data. Verification code; based on whether one of the plurality of verification codes is equal to the corresponding second capacity data, the status of the battery capacity data in the second memory can be determined.
  • the data status in the first memory and/or the second memory when the data status in the first memory and/or the second memory is normal and the vehicle is in a normal operating state, it can be detected whether the vehicle meets the conditions for storing battery capacity data.
  • the conditions for storing the battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • the battery capacity data when it is determined that the vehicle meets the conditions for storing battery capacity data, can be stored in the first memory or the second memory or alarm based on the battery capacity data status in the first memory and the second memory.
  • the specific implementation process please refer to subsequent embodiments.
  • the battery capacity data is returned and continuously obtained until it is determined that the conditions for storing battery capacity data are met.
  • the battery capacity data status in the first memory and the second memory is determined based on the data status in the first memory and the second memory and the operating status of the vehicle. , detect whether the vehicle meets the conditions for storing battery capacity data, and based on whether the vehicle meets the conditions for storing battery capacity data and the battery capacity data status in the first memory and the second memory, store the battery capacity data in the first memory or the second memory or alarm.
  • This method realizes the storage of battery capacity data in the first memory and the second memory based on different situations, avoiding inaccurate battery capacity recording caused by random memory failure or abnormal storage operation behavior, and thus possible property safety problems. or threats to personal safety.
  • FIG 2 is a flow chart of a battery data dynamic storage method according to an embodiment of the present application.
  • the battery data dynamic storage method Can include:
  • S220 Determine that the battery capacity data of the first memory and the second memory are in a normal state.
  • the first memory may be a main memory
  • the second memory may be a backup memory
  • the first memory is an off-chip EEPROM memory
  • the second memory is an on-chip analog EEPROM memory.
  • the specific implementation method of determining that the battery capacity data of the first memory is normal is as follows: the first memory includes multiple memory pools, and the battery capacity data status of the multiple memory pools can be determined to determine the status of the first memory. Battery capacity data status.
  • the implementation method of judging the battery capacity data status of one of the memory pools is: obtaining multiple first capacity data of a memory pool; verifying the multiple first capacity data based on the verification algorithm, and obtaining the data with the multiple first capacity data. Multiple check codes corresponding to one capacity data; based on whether one of the multiple check codes is equal to the corresponding first capacity data, the battery capacity data status of a memory pool can be determined.
  • a memory pool is a normal memory pool, that is, the battery capacity data status of a memory pool is normal; when one of the multiple check codes is correct
  • a memory pool is an abnormal memory pool, that is, the battery capacity data status of a memory pool is abnormal.
  • the battery capacity data status of multiple other memory pools can be determined, that is, the status of multiple memory pools.
  • the specific implementation method of determining that the battery capacity data of the second memory is in a normal state may refer to the above embodiment, which will not be described again in this application.
  • the conditions for the vehicle to store battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • S240 Store the battery capacity data in the first memory.
  • the battery capacity data of the first memory and the second memory are both in a normal state, and it is determined that the vehicle meets the conditions for storing battery capacity data, the battery capacity data can be stored in the first memory, that is, the main memory in advance.
  • the first memory includes multiple memory pools.
  • the battery capacity data is stored in other memory pools other than the abnormal memory pools.
  • battery capacity quantities can be stored in multiple memory pools.
  • the battery capacity data is stored in the second storage, that is, the backup storage.
  • the battery capacity data is obtained, the battery capacity data status of the first memory and the second memory is determined to be normal, and it is determined that the vehicle meets the conditions for storing battery capacity data, and the battery capacity data is stored in first memory.
  • This method realizes the use of multiple memory pools to store battery capacity data, realizes rolling storage of main memory, achieves effective even sharing of storage space, indirectly increases the number of storage times, thereby extending the service life, and avoiding abnormal working conditions or software abnormalities. Data storage anomalies caused by behavior.
  • FIG. 3 is a flow chart of a method for dynamically storing battery data according to an embodiment of the present application, as shown in Figure 3 , the battery data dynamic storage method may include:
  • S320 Determine that the battery capacity data of the first memory is in a normal state, and that the battery capacity data of the second memory is in an abnormal state.
  • the first memory may be a main memory
  • the second memory may be a backup memory
  • the first memory is an off-chip EEPROM memory
  • the second memory is an on-chip analog EEPROM memory.
  • the specific implementation method of determining that the battery capacity data of the first memory is normal is as follows: the first memory includes multiple memory pools, and the battery capacity data status of the multiple memory pools can be determined to determine the status of the first memory. Battery capacity data status.
  • the implementation method of judging the battery capacity data status of one of the memory pools is: obtaining multiple first capacity data of a memory pool; verifying the multiple first capacity data based on the verification algorithm, and obtaining the data with the multiple first capacity data. Multiple check codes corresponding to one capacity data; based on whether one of the multiple check codes is equal to the corresponding first capacity data, the battery capacity data status of a memory pool can be determined.
  • the check algorithm can use the conventional CRC16 algorithm or the CRC32 algorithm.
  • a memory pool is a normal memory pool, that is, the battery capacity data status of a memory pool is normal; when one of the multiple check codes is correct
  • a memory pool is an abnormal memory pool, that is, the battery capacity data status of a memory pool is abnormal.
  • the battery capacity data status of multiple other memory pools can be determined, that is, the status of multiple memory pools.
  • the specific implementation method of determining that the battery capacity data of the second memory is in an abnormal state may refer to the above-mentioned embodiment, which will not be described again in this application.
  • S330 Determine that the vehicle meets the conditions for storing battery capacity data.
  • the conditions for the vehicle to store battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • S340 Store the battery capacity data in the first memory.
  • the battery capacity data in the first memory is in a normal state and the battery capacity data in the second memory is in an abnormal state
  • the battery capacity data needs to be stored in the first memory, that is, the main memory.
  • the first memory includes multiple memory pools, and the battery capacity data can be stored in one or more of the multiple memory pools.
  • the battery capacity data is stored in other memory pools other than the abnormal memory pools.
  • the first memory when it is determined that the conditions for storing battery capacity data are met and the battery capacity data status of the first memory is a normal state, and it is detected that the battery capacity data status of the second memory is an abnormal state, the first memory can be The battery capacity data in the memory is stored in the second memory to save two copies of the data as much as possible to prevent the first memory from malfunctioning the next time the battery capacity data is stored, causing the battery capacity data in the first memory to be stored. lost.
  • the battery capacity data is obtained, the battery capacity data of the first memory is determined to be in a normal state, the battery capacity data of the second memory is in an abnormal state, and it is determined that the vehicle meets the conditions for storing battery capacity data. , storing the battery capacity data into the first memory.
  • This method realizes the use of multiple memory pools to store battery capacity data, realizes rolling storage of main memory, achieves effective even sharing of storage space, indirectly increases the number of storage times, thereby extending the service life, and avoiding abnormal working conditions or software abnormalities. Data storage anomalies caused by behavior.
  • FIG. 4 is a flow chart of a method for dynamically storing battery data according to an embodiment of the present application, as shown in Figure 4 , the battery data dynamic storage method may include:
  • S420 Determine that the battery capacity data of the first memory is in an abnormal state, and that the battery capacity data of the second memory is in a normal state.
  • the first memory may be a main memory
  • the second memory may be a backup memory
  • the first memory is an off-chip EEPROM memory
  • the second memory is an on-chip analog EEPROM memory.
  • the specific implementation method of determining that the battery capacity data of the first memory is abnormal is as follows: the first memory includes multiple memory pools, and the battery capacity data status of the multiple memory pools can be determined to determine the status of the first memory. Battery capacity data status.
  • the implementation method of judging the battery capacity data status of one of the memory pools is: obtaining multiple first capacity data of a memory pool; verifying the multiple first capacity data based on the verification algorithm, and obtaining the data with the multiple first capacity data. Multiple check codes corresponding to one capacity data; based on whether one of the multiple check codes is equal to the corresponding first capacity data, the battery capacity data status of a memory pool can be determined.
  • a memory pool is a normal memory pool, that is, the battery capacity data status of a memory pool is normal; when one of the multiple check codes is correct
  • a memory pool is an abnormal memory pool, that is, the battery capacity data status of a memory pool is abnormal.
  • the battery capacity data status of multiple other memory pools can be determined, that is, the status of multiple memory pools.
  • the specific implementation method of determining that the battery capacity data of the second memory is in a normal state may refer to the above embodiment, which will not be described again in this application.
  • S430 Determine that the vehicle meets the conditions for storing battery capacity data.
  • the conditions for the vehicle to store battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • the battery capacity data in the first memory is in an abnormal state and the battery capacity data in the second memory is in a normal state
  • the battery capacity data needs to be stored in the second memory, that is, the backup memory.
  • the second memory when it is determined that the conditions for storing battery capacity data are met, and the battery capacity data status of the first memory is an abnormal state, and the battery capacity data status of the second memory is a normal state, the second memory can be The battery capacity data is stored in the first memory to save two copies of the data as much as possible to prevent the second memory from malfunctioning the next time the battery capacity data is stored, resulting in the loss of the battery capacity data in the second memory.
  • the battery capacity data is obtained, the battery capacity data of the first memory is determined to be in an abnormal state, the battery capacity data of the second memory is in a normal state, and it is determined that the vehicle meets the conditions for storing battery capacity data. , store the battery capacity data to the second memory.
  • This method implements backup storage through the backup storage area and avoids data storage abnormalities caused by random memory failures in the main storage area.
  • FIG 5 is a flow chart of a battery data dynamic storage method provided according to an embodiment of the present application.
  • the battery data dynamic storage method Can include:
  • S520 Determine that both the battery capacity data of the first memory and the second memory are in an abnormal state.
  • the first memory is an off-chip EEPROM memory
  • the second memory is an on-chip analog EEPROM memory.
  • the specific implementation method of determining that the battery capacity data of the first memory and the second memory is in an abnormal state may refer to the above embodiments, which will not be described again in this application.
  • the conditions for the vehicle to store battery capacity data include at least one of: the battery power is lower than the preset power, the vehicle is in a power-off state, the vehicle is in a fault state, and the vehicle receives a battery capacity data storage instruction.
  • the first memory and the second memory may issue a storage failure alarm at the same time, or the second memory may issue a storage failure alarm within a preset time after the first memory issues a storage failure alarm. This application does not limit this.
  • the implementation methods for issuing an alarm that cannot be stored include but are not limited to the continuous flashing of the alarm prompt light, the continuous flashing of the alarm prompt light, and the voice alarm light.
  • the battery capacity data is obtained, and it is determined that the battery capacity data status of the first memory and the second memory is abnormal. Although it is determined that the vehicle meets the conditions for storing battery capacity data, the battery capacity data is not processed. Storage to avoid battery capacity data loss due to memory abnormalities.
  • one embodiment of the present application also provides a battery data dynamic storage device. Since the battery data dynamic storage device provided by the embodiment of the present application is consistent with the above mentioned embodiments, The battery data dynamic storage method provided in this embodiment corresponds to the battery data dynamic storage method provided in this embodiment. Therefore, the implementation of the battery data dynamic storage method is also applicable to the battery data dynamic storage device provided in this embodiment, and will not be described in detail in this embodiment.
  • Figure 6 is a schematic structural diagram of a battery data dynamic storage device according to an embodiment of the present application.
  • the battery data dynamic storage device 600 includes: an acquisition module 610, a first judgment module 620, a second judgment module 630 and a storage module 640, wherein:
  • Obtain module 610 used to obtain battery capacity data
  • the first judgment module 620 is used to judge the battery capacity data status in the first memory and the second memory;
  • the second determination module 630 is configured to detect whether the vehicle meets the conditions for storing the battery capacity data based on the data status in the first memory and the second memory and the operating status of the vehicle;
  • the storage module 640 is configured to store the battery capacity data in the first memory based on whether the vehicle meets the conditions for storing the battery capacity data and the status of the battery capacity data in the first memory and the second memory. A memory or the second memory or an alarm.
  • the battery capacity data status in the first memory and the second memory is determined based on the data status in the first memory and the second memory and the operating status of the vehicle. , detect whether the vehicle meets the conditions for storing battery capacity data, and based on whether the vehicle meets the conditions for storing battery capacity data and the battery capacity data status in the first memory and the second memory, store the battery capacity data in the first memory or the second memory or alarm. Therefore, by realizing the storage of battery capacity data through the first memory and the second memory based on different situations, potential risks to property safety or personal safety caused by inaccurate battery capacity records caused by random memory failures or abnormal storage operation behavior are avoided. Security threat issues.
  • the storage module 640 is specifically configured to return and continue to obtain battery capacity data when it is determined that the conditions for storing the battery capacity data are not met.
  • the storage module 640 is also configured to store the battery capacity data when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data status of the first memory is a normal state. Store the battery capacity data in the first memory; when it is determined that the battery capacity data status of the first memory is an abnormal state and the battery capacity data status of the second memory is a normal state, store the battery capacity data in the second memory. memory.
  • the storage module 640 is also used when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data states of the first memory and the second memory are both abnormal states. , issue an alarm that cannot be stored and report the abnormal status.
  • the second judgment module 630 is specifically configured to detect when the data status in the first memory and/or the second memory is normal and the vehicle is in a normal operating state. Whether the vehicle meets the conditions for storing the battery capacity data; wherein the conditions for storing the battery capacity data include: the battery power is lower than the preset power, the vehicle is powered off, the vehicle is in At least one of a fault condition and the vehicle receiving a battery capacity data storage instruction.
  • the first memory includes multiple memory pools, wherein the storage module 640 is specifically configured to store the battery capacity data into one or more of the multiple memory pools. .
  • the storage module 640 is also used to store the battery capacity data into the abnormal memory when it is determined that one or more memory pools among the plurality of memory pools are abnormal memory pools. Other memory pools outside the pool.
  • the storage module 640 is also used to: obtain multiple first capacity data of a memory pool; verify multiple first capacity data based on a verification algorithm, and obtain and Multiple check codes corresponding to the multiple first capacity data; based on whether one of the multiple check codes is equal to the corresponding first capacity data, determine whether the one memory pool is
  • the abnormal memory pool includes: when the plurality of check codes are equal to the corresponding first capacity data, determining the one memory pool as a normal memory pool; when one of the check codes among the plurality of check codes is equal to the corresponding first capacity data When the corresponding first capacity data are not equal, the one memory pool is an abnormal memory pool; repeat the above steps to determine whether the other multiple memory pools are abnormal memory pools.
  • the storage module 640 is also configured to detect the second memory when it is determined that the conditions for storing the battery capacity data are met and the battery capacity data status of the first memory is a normal state. When the battery capacity data state is an abnormal state, the battery capacity data in the first memory is stored in the second memory.
  • the storage module 640 is also configured to store the battery capacity data state of the first memory in an abnormal state and the battery capacity data state of the second memory in a normal state.
  • the battery capacity data in the second memory is stored in the first memory.
  • FIG. 7 shows a schematic structural diagram of an electronic device (such as the terminal device or server in FIG. 1 ) 700 suitable for implementing the embodiment of the present application.
  • Terminal devices in the embodiments of the present application may include, but are not limited to, mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMP (portable multimedia players), vehicle-mounted terminals (such as Mobile terminals such as car navigation terminals) and fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG. 7 is only an example and should not impose any restrictions on the functions and scope of use of the embodiments of the present application.
  • the electronic device 700 may include a processing device (eg, central processing unit, graphics processor, etc.) 701 that may be loaded into a random access device according to a program stored in a read-only memory (ROM) 702 or from a storage device 708 .
  • the program in the memory (RAM) 703 executes various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 700 are also stored.
  • the processing device 701, ROM 702 and RAM 703 are connected to each other via a bus 704.
  • An input/output (I/O) interface 705 is also connected to bus 704.
  • I/O interface 705 input devices 706 including, for example, a touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration
  • An output device 707 such as a computer
  • Communication device 709 may allow computer device 700 to communicate wirelessly or wiredly with other devices to exchange data.
  • FIG. 7 illustrates a computer device 700 having various means, it should be understood that implementation or availability of all illustrated means is not required. More or fewer means may alternatively be implemented or provided.
  • the process described above with reference to the flowchart may be implemented as a computer software program.
  • embodiments of the present application include a computer program product comprising a computer program carried on a non-transitory computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communication device 709, or from storage device 708, or from ROM 702.
  • the processing device 701 the above functions defined in the method of the embodiment of the present application are performed.
  • the computer-readable medium mentioned above in this application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, in which computer-readable program code is carried. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wire, optical cable, RF (radio frequency), etc., or any suitable combination of the above.
  • the client and server can communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and can communicate with digital data in any form or medium.
  • Communications e.g., communications network
  • communications networks include local area networks (“LAN”), wide area networks (“WAN”), the Internet (e.g., the Internet), and end-to-end networks (e.g., ad hoc end-to-end networks), as well as any currently known or developed in the future network of.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; it may also exist independently without being assembled into the computer device.
  • the computer-readable medium carries one or more programs.
  • the electronic device obtains battery capacity data; determines the battery capacity data in the first memory and the second memory. status; based on the data status in the first memory and the second memory and the operating status of the vehicle, detect whether the vehicle meets the conditions for storing battery capacity data; based on whether the vehicle meets the conditions for storing battery capacity data and the conditions in the first memory and the second memory
  • the battery capacity data status is stored in the first memory or the second memory or alarmed.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including, but not limited to, object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages—such as "C” or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through Internet connection
  • each block in the flowchart or block diagram may represent a module, segment, or portion of code that contains one or more logic functions that implement the specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units involved in the embodiments of this application can be implemented in software or hardware.
  • the name of the unit does not constitute a limitation on the unit itself under certain circumstances.
  • the first acquisition unit can also be described as "the unit that acquires at least two Internet Protocol addresses.”
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Power Sources (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池数据动态存储方法、装置及相关设备。电池数据动态存储于车辆的第一存储器或第二存储器,该方法包括:获取电池容量数据;判断第一存储器和第二存储器中的电池容量数据状态;基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件;基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。该方法基于不同情况,可通过第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为导致的电池容量记录不准而可能引发的财产安全或人身安全的威胁问题。

Description

电池数据动态存储方法、装置及相关设备
相关申请的交叉引用
本申请要求于2022年04月29日提交中国专利局、申请号为202210473664.4、发明名称为“电池数据动态存储方法、装置及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池数据动态存储方法、装置、电子设备、计算机存储介质及计算机程序产品。
背景技术
相关技术中,车载BMS控制器大多采用单块内存储存区域对电池容量数据进行存储,但是在内存随机失效或异常存储操作行为情况下,会导致车载BMS控制器未及时存储电池容量,导致显示仪表上的电池容量和当前实际电池容量产生较大误差,进而会对用户的驾驶行为和路线规划产生干扰,有可能产生财产安全或人身安全的威胁。因此,如何更好地实现电池容量数据的存储成为亟待解决的问题。
发明内容
本申请的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本申请的第一个目的在于提出一种电池数据动态存储方法,该方法通过基于不同情况,可通过第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为导致的电池容量记录不准而可能引发的财产安全或人身安全的威胁问题。
本申请的第二个目的在于提出一种电池数据动态存储装置。
本申请的第三个目的在于提出一种电子设备。
本申请的第四个目的在于提出一种计算机可读存储介质。
本申请的第五个目的在于提出一种计算机程序产品。
为达到上述目的,本申请第一方面实施例提出的电池数据动态存储方法,包括:获取电池容量数据;判断所述第一存储器和所述第二存储器中的电池容量数据状态;基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件;基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警。
根据本申请实施例的电池数据动态存储方法,通过获取电池容量数据,判断第一存储器和第二存储器中的电池容量数据状态,基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件,基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。该方法通过基于不同情况,由第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为情况导致的电池容量记录不准,以及进而可能引发的财产安全或人身安全的威胁问题。
根据本申请的一个实施例,所述基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警,包括:当确定不满足存储所述电池容量数据条件时,返回并持续获取电池容量数据。
根据本申请的一个实施例,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第一存储器;当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第二存储器。
根据本申请的一个实施例,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器和所述第二存储器的电池容量数据状态均为异常状态时,发出无法存储报警并将所述异常状态上报。
根据本申请的一个实施例,所述基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件,包括:在所述第一存储器和/或所述第二存储器中的数据状态正常且所述车辆处于正常运行状态下,检测所述车辆是否满足存储所述电池容量数据的条件;其中,所述满足存储所述电池容量数据的条件,包括:电池电量低于预设电量、所述车辆处于下电状态、所述车辆处于故障状态以及所 述车辆接收电池容量数据存储指令的至少一种。
根据本申请的一个实施例,所述第一存储器包括多个内存池,其中,所述将所述电池容量数据存储至所述第一存储器,包括:将所述电池容量数据存储至所述多个内存池中的一个或多个。
根据本申请的一个实施例,还包括:判断所述多个内存池中的一个或多个内存池为异常内存池时,将所述电池容量数据存储至所述异常内存池外的其他内存池。
根据本申请的一个实施例,所述判断所述多个内存池中的一个或多个内存池为异常内存池,包括:获取一个内存池的多个第一容量数据;基于校验算法对多个所述第一容量数据进行校验,并获取与所述多个第一容量数据对应的多个校验码;基于所述多个校验码中其中一个校验码与对应的所述第一容量数据是否相等,判断所述一个内存池是否为异常内存池,包括:当所述多个校验码均等于对应的第一容量数据时,确定所述一个内存池为正常内存池;当所述多个校验码中其中一个校验码与对应的所述第一容量数据不相等时,所述一个内存池为异常内存池;重复以上步骤,判断其他所述多个内存池是否为异常内存池。
根据本申请的一个实施例,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,检测所述第二存储器的电池容量数据状态为异常状态时,将所述第一存储器中的所述电池容量数据存储至所述第二存储器。
根据本申请的一个实施例,还包括:当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述第二存储器中的所述电池容量数据存储至所述第一存储器。
为达到上述目的,本申请第二方面实施例提出的电池数据动态存储装置,包括:获取模块,用于获取电池容量数据;第一判断模块,用于判断所述第一存储器和所述第二存储器中的电池容量数据状态;第二判断模块,用于基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件;存储模块,用于基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警。
根据本申请实施例的电池数据动态存储装置,通过获取电池容量数据,判断第一存储器和第二存储器中的电池容量数据状态,基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件,基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第 一存储器或第二存储器中或报警。由此通过基于不同情况,由第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为情况导致电池容量记录不准,以及进而可能引发的财产安全或人身安全的威胁问题。
为达到上述目的,本申请第三方面实施例提出的电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本申请第一方面实施例所述的电池数据动态存储方法。
为达到上述目的,本申请第四方面实施例提出的计算机可读存储介质,所述计算机程序被处理器执行时实现本申请第一方面实施例所述的电池数据动态存储方法。
为达到上述目的,本申请第五方面实施例提出的计算机程序产品,所述计算机程序在被处理器执行时实现本申请第一方面实施例所述的电池数据动态存储方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的电池数据动态存储方法的流程图;
图2是根据本申请另一个实施例的电池数据动态存储方法的流程图;
图3是根据本申请又一个实施例的电池数据动态存储方法的流程图;
图4是根据本申请再一个实施例的电池数据动态存储方法的流程图;
图5是根据本申请另一个实施例的电池数据动态存储方法的流程图;
图6是根据本申请一个实施例的电池数据动态存储装置的结构示意图;
图7是根据本申请一个实施例的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
相关技术中,车载BMS控制器大多采用单块内存储存区域对电池容量数据进行存储,但是在内存随机失效或异常存储操作行为情况下,会导致车载BMS控制器未及时存储电池容量,导致显示仪表上的电池容量和当前实际电池容量产生较大误差,进而会对用户的驾驶行 为和路线规划产生干扰,有可能产生财产安全或人身安全的威胁。因此,如何更好地实现电池容量数据的存储成为亟待解决的问题。
为此,本申请提出了一种电池数据动态存储方法、装置、电子设备、计算机存储介质及计算机程序产品。
具体地,下面参考附图描述本申请实施例的电池数据动态存储方法、装置、电子设备、计算机存储介质及计算机程序产品。
图1是根据本申请一个实施例的电池数据动态存储方法的流程图。需要说明的是,本申请实施例的电池数据动态存储方法可应用于本申请实施例的电池数据动态存储装置,该装置可被配置于电子设备上,也可以被配置在服务器中。其中,电子设备可以是具有数据存储的功能的设备,例如PC机或移动终端。本申请实施例对此不作限定。
如图1所示,电池数据动态存储方法,包括:
S110,获取电池容量数据。
在本申请的实施例中,电池容量数据可理解为电池SOC(State of Charge,荷电状态)数据。
S120,判断第一存储器和第二存储器中的电池容量数据状态。
在本申请的实施例中,判断第一存储器中的电池容量数据状态的具体实现方式可如下:第一存储器包括多个内存池,可判断多个内存池的电池容量数据状态以判断第一存储器的电池容量数据状态。
其中,判断其中一个内存池的电池容量数据状态的实现方式为:获取一个内存池的多个第一容量数据;基于校验算法对多个第一容量数据进行校验,并获取与多个第一容量数据对应的多个校验码;基于多个校验码中其中一个校验码与对应的第一容量数据是否相等,进而可判断一个内存池的电池容量数据状态。
其中,当多个校验码均等于对应的第一容量数据时,可确定一个内存池为正常内存池,即一个内存池的电池容量数据状态为正常;当多个校验码中其中一个校验码与对应的第一容量数据不相等时,可确定一个内存池为异常内存池,即一个内存池的电池容量数据状态为异常。
其中,重复以上步骤,可判断其他多个内存池的电池容量数据状态,即多个内存池的状态。
在本申请的实施例中,判断第二存储器中的电池容量数据状态的实现方式与判断第一存储器中的电池容量状态的实现方式相同,均采用校验算法进行判断,例如,判断第二存储器 中的电池容量数据状态的具体实现方式可如下:获取多个第二容量数据;基于校验算法对多个第二容量数据进行校验,并获取与多个第二容量数据对应的多个校验码;基于多个校验码中其中一个校验码与对应的第二容量数据是否相等,进而可判断第二存储器中的电池容量数据状态。
其中,当多个校验码均等于对应的第二容量数据时,可确定第二存储器中的电池容量数据状态为正常;当多个校验码中其中一个校验码与对应的第二容量数据不相等时,可确定第二存储器中的电池容量数据状态为异常。
S130,基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件。
在本申请的实施例中,在第一存储器和/或第二存储器中的数据状态正常且车辆处于正常运行状态下,可检测车辆是否满足存储电池容量数据的条件。
其中,满足存储电池容量数据的条件,包括:电池电量低于预设电量、车辆处于下电状态、车辆处于故障状态以及车辆接收电池容量数据存储指令的至少一种。
S140,基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。
在本申请的实施例中,判断车辆满足存储电池容量数据的条件时,可基于第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储至第一存储器或第二存储器或报警。具体地实现过程可参考后续实施例。
在本申请的实施例中,当确定不满足存储电池容量数据条件时,返回并持续获取电池容量数据,直至确定满足存储电池容量数据条件。
根据本申请实施例的电池数据动态存储方法,通过获取电池容量数据,判断第一存储器和第二存储器中的电池容量数据状态,基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件,基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。该方法通过基于不同情况,由第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为情况导致的电池容量记录不准,以及进而可能引发的财产安全或人身安全的威胁问题。
确定第一存储器和第二存储器的电池容量数据状态均正常时,图2是根据本申请一个实施例所提供的电池数据动态存储方法的流程图,如图2所示,该电池数据动态存储方法可以包括:
S210,获取电池容量数据。
S220,确定第一存储器和第二存储器的电池容量数据为正常状态。
其中,第一存储器可为主存储器,第二存储器为备存储器。
例如,第一存储器为片外EEPROM存储器,第二存储器为片上模拟EEPROM存储器。
在本申请的实施例中,确定第一存储器的电池容量数据为正常的具体实现方式如下:第一存储器包括多个内存池,可判断多个内存池的电池容量数据状态以判断第一存储器的电池容量数据状态。
其中,判断其中一个内存池的电池容量数据状态的实现方式为:获取一个内存池的多个第一容量数据;基于校验算法对多个第一容量数据进行校验,并获取与多个第一容量数据对应的多个校验码;基于多个校验码中其中一个校验码与对应的第一容量数据是否相等,进而可判断一个内存池的电池容量数据状态。
其中,当多个校验码均等于对应的第一容量数据时,可确定一个内存池为正常内存池,即一个内存池的电池容量数据状态为正常;当多个校验码中其中一个校验码与对应的第一容量数据不相等时,可确定一个内存池为异常内存池,即一个内存池的电池容量数据状态为异常。
其中,重复以上步骤,可判断其他多个内存池的电池容量数据状态,即多个内存池的状态。
在本申请的实施例中,确定第二存储器的电池容量数据为正常状态的具体实现方式可参考上述实施例,本申请对此不再赘述。
S230,确定车辆满足存储电池容量数据的条件。
在本申请的实施例中,车辆满足存储电池容量数据的条件包括:电池电量低于预设电量、车辆处于下电状态、车辆处于故障状态、车辆接收电池容量数据存储指令的至少一种。
S240,将电池容量数据存储至第一存储器。
也就是说,在确定第一存储器和第二存储器的电池容量数据均为正常状态下,且确定车辆满足存储电池容量数据的条件时,可将电池容量数据预先存储至第一存储器,即主存储器。
其中,第一存储器包括多个内存池,判断多个内存池中的一个或多个内存池为异常内存池时,将电池容量数据存储至异常内存池外的其他内存池。例如,电池容量数量可存储至多个内存池中。
其中,判断第一存储中所有内存池的电池容量数据均异常时,则将电池容量数据存储至第二存储器,即备存储器。
根据本申请实施例的电池数据动态存储方法,获取电池容量数据,确定第一存储器和第二存储器的电池容量数据状态均正常,且确定车辆满足存储电池容量数据的条件,将电池容量数据存储至第一存储器。该方法实现了采用多个内存池对电池容量数据进行存储,实现了主存储器的滚动存储,达到存储空间有效均摊,间接提高了存储次数,进而延长了使用寿命,避免了异常工况或软件异常行为导致的数据存储异常。
确定第一存储器的电池容量数据为正常状态,第二存储器的电池容量数据为异常状态时,图3是根据本申请一个实施例所提供的电池数据动态存储方法的流程图,如图3所示,该电池数据动态存储方法可以包括:
S310,获取电池容量数据。
S320,确定第一存储器的电池容量数据为正常状态,第二存储器的电池容量数据为异常状态。
其中,第一存储器可为主存储器,第二存储器为备存储器。
例如,第一存储器为片外EEPROM存储器,第二存储器为片上模拟EEPROM存储器。
在本申请的实施例中,确定第一存储器的电池容量数据为正常的具体实现方式如下:第一存储器包括多个内存池,可判断多个内存池的电池容量数据状态以判断第一存储器的电池容量数据状态。
其中,判断其中一个内存池的电池容量数据状态的实现方式为:获取一个内存池的多个第一容量数据;基于校验算法对多个第一容量数据进行校验,并获取与多个第一容量数据对应的多个校验码;基于多个校验码中其中一个校验码与对应的第一容量数据是否相等,进而可判断一个内存池的电池容量数据状态。
例如,校验算法可采用常规的CRC16算法或CRC32算法。
其中,当多个校验码均等于对应的第一容量数据时,可确定一个内存池为正常内存池,即一个内存池的电池容量数据状态为正常;当多个校验码中其中一个校验码与对应的第一容量数据不相等时,可确定一个内存池为异常内存池,即一个内存池的电池容量数据状态为异常。
其中,重复以上步骤,可判断其他多个内存池的电池容量数据状态,即多个内存池的状态。
在本申请的实施例中,确定第二存储器的电池容量数据为异常状态的具体实现方式可参考上述实施例,本申请对此不再赘述。
S330,确定车辆满足存储电池容量数据的条件。
在本申请的实施例中,车辆满足存储电池容量数据的条件包括:电池电量低于预设电量、车辆处于下电状态、车辆处于故障状态、车辆接收电池容量数据存储指令的至少一种。
S340,将电池容量数据存储至第一存储器。
也就是说,在确定第一存储器的电池容量数据均为正常状态,且第二存储器的电池容量数据为异常状态下,需要将电池容量数据存储至第一存储器,即主存储器。
其中,第一存储器中包括多个内存池,可将电池容量数据存储至多个内存池中的一个或多个。
其中,判断多个内存池中的一个或多个内存池为异常内存池时,将电池容量数据存储至异常内存池外的其他内存池。
在本申请的一个实施例中,当确定满足存储电池容量数据条件,且第一存储器的电池容量数据状态为正常状态下,检测第二存储器的电池容量数据状态为异常状态时,可将第一存储器中的电池容量数据存储至第二存储器,以实现尽可能的情况下,保存两份数据,以防下次存储电池容量数据时,第一存储器发生故障,导致第一存储器中的电池容量数据丢失。
根据本申请实施例的电池数据动态存储方法,获取电池容量数据,确定第一存储器的电池容量数据为正常状态,第二存储器的电池容量数据为异常状态,且确定车辆满足存储电池容量数据的条件,将电池容量数据存储至第一存储器。该方法实现了采用多个内存池对电池容量数据进行存储,实现了主存储器的滚动存储,达到存储空间有效均摊,间接提高了存储次数,进而延长了使用寿命,避免了异常工况或软件异常行为导致的数据存储异常。
确定第一存储器的电池容量数据为异常状态,第二存储器的电池容量数据为正常状态时,图4是根据本申请一个实施例所提供的电池数据动态存储方法的流程图,如图4所示,该电池数据动态存储方法可以包括:
S410,获取电池容量数据。
S420,确定第一存储器的电池容量数据为异常状态,第二存储器的电池容量数据为正常状态。
其中,第一存储器可为主存储器,第二存储器为备存储器。
例如,第一存储器为片外EEPROM存储器,第二存储器为片上模拟EEPROM存储器。
在本申请的实施例中,确定第一存储器的电池容量数据为异常的具体实现方式如下:第一存储器包括多个内存池,可判断多个内存池的电池容量数据状态以判断第一存储器的电池容量数据状态。
其中,多个内存池的电池容量数据状态均异常时,可判断第一存储器的电池容量数据为 异常。
其中,判断其中一个内存池的电池容量数据状态的实现方式为:获取一个内存池的多个第一容量数据;基于校验算法对多个第一容量数据进行校验,并获取与多个第一容量数据对应的多个校验码;基于多个校验码中其中一个校验码与对应的第一容量数据是否相等,进而可判断一个内存池的电池容量数据状态。
其中,当多个校验码均等于对应的第一容量数据时,可确定一个内存池为正常内存池,即一个内存池的电池容量数据状态为正常;当多个校验码中其中一个校验码与对应的第一容量数据不相等时,可确定一个内存池为异常内存池,即一个内存池的电池容量数据状态为异常。
其中,重复以上步骤,可判断其他多个内存池的电池容量数据状态,即多个内存池的状态。
在本申请的实施例中,确定第二存储器的电池容量数据为正常状态的具体实现方式可参考上述实施例,本申请对此不再赘述。
S430,确定车辆满足存储电池容量数据的条件。
在本申请的实施例中,车辆满足存储电池容量数据的条件包括:电池电量低于预设电量、车辆处于下电状态、车辆处于故障状态、车辆接收电池容量数据存储指令的至少一种。
S440,将电池容量数据存储至第二存储器。
也就是说,在确定第一存储器的电池容量数据均为异常状态,且第二存储器的电池容量数据为正常状态下,需要将电池容量数据存储至第二存储器,即备存储器。
在本申请的一个实施例中,当确定满足存储电池容量数据条件,且第一存储器的电池容量数据状态为异常状态,第二存储器的电池容量数据状态为正常状态时,可将第二存储器中的电池容量数据存储至第一存储器,以实现尽可能的情况下,保存两份数据,以防下次存储电池容量数据时,第二存储器发生故障,导致第二存储器中的电池容量数据丢失。
根据本申请实施例的电池数据动态存储方法,获取电池容量数据,确定第一存储器的电池容量数据为异常状态,第二存储器的电池容量数据为正常状态,且确定车辆满足存储电池容量数据的条件,将电池容量数据存储至第二存储器。该方法实现了通过备份存储区的备份存储,避免了由于主存储区内存随机失效所导致的数据存储异常。
确定第一存储器和第二存储器的电池容量数据状态均异常时,图5是根据本申请一个实施例所提供的电池数据动态存储方法的流程图,如图5所示,该电池数据动态存储方法可以包括:
S510,获取电池容量数据。
S520,确定第一存储器和第二存储器的电池容量数据均为异常状态。
例如,第一存储器为片外EEPROM存储器,第二存储器为片上模拟EEPROM存储器。
其中,确定第一存储器和第二存储器的电池容量数据为异常状态的具体实现方式可参考上述实施例,本申请对此不再赘述。
S530,确定车辆满足存储电池容量数据的条件。
在本申请的实施例中,车辆满足存储电池容量数据的条件包括:电池电量低于预设电量、车辆处于下电状态、车辆处于故障状态、车辆接收电池容量数据存储指令的至少一种。
S540,发出无法存储报警并将异常状态上报。
也就是说,在确定第一存储器和第二存储器的电池容量数据均为异常状态时,即使确定车辆满足存储电池数据的条件,需要发出无法存储报警,并将该异常状态进行上报。
例如,第一存储器和第二存储器可同时发出无法存储报警,也可在第一存储器发出无法存储报警之后的预设时间内,第二存储器发出无法存储报警,本申请对此不作限制。
例如,发出无法存储报警的实现方式包括但不仅限于报警提示灯持续闪烁、报警提示灯持红色闪烁、语音报警灯。
根据本申请实施例的电池数据动态存储方法,获取电池容量数据,确定第一存储器和第二存储器的电池容量数据状态均异常,尽管确定车辆满足存储电池容量数据的条件,电池容量数据则不进行存储,避免因存储器异常导致电池容量数据丢失。
与上述几种实施例提供的电池数据动态存储方法相对应,本申请的一种实施例还提供一种电池数据动态存储装置,由于本申请实施例提供的电池数据动态存储装置与上述几种实施例提供的电池数据动态存储方法相对应,因此在电池数据动态存储方法的实施方式也适用于本实施例提供的电池数据动态存储装置,在本实施例中不再详细描述。图6是根据本申请一个实施例的电池数据动态存储装置的结构示意图。
如图6所示,该电池数据动态存储装置600包括:获取模块610、第一判断模块620、第二判断模块630和存储模块640,其中:
获取模块610,用于获取电池容量数据;
第一判断模块620,用于判断所述第一存储器和所述第二存储器中的电池容量数据状态;
第二判断模块630,用于基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件;
存储模块640,用于基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一 存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警。
根据本申请实施例的电池数据动态存储装置,通过获取电池容量数据,判断第一存储器和第二存储器中的电池容量数据状态,基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件,基于车辆是否满足存储电池容量数据的条件以及第一存储器和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。由此通过基于不同情况,通过第一存储器和第二存储器实现对电池容量数据的存储,避免了因内存随机失效或异常存储操作行为情况导致的电池容量记录不准而可能引发的财产安全或人身安全的威胁问题。
在本申请的一个实施例中,所述存储模块640具体用于当确定不满足存储所述电池容量数据条件时,返回并持续获取电池容量数据。
在本申请的一个实施例中,所述存储模块640还用于当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第一存储器;当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第二存储器。
在本申请的一个实施例中,所述存储模块640还用于当确定满足存储所述电池容量数据条件,且所述第一存储器和所述第二存储器的电池容量数据状态均为异常状态时,发出无法存储报警并将所述异常状态上报。
在本申请的一个实施例中,所述第二判断模块630,具体用于在所述第一存储器和/或所述第二存储器中的数据状态正常且所述车辆处于正常运行状态下,检测所述车辆是否满足存储所述电池容量数据的条件;其中,所述满足存储所述电池容量数据的条件,包括:电池电量低于预设电量、所述车辆处于下电状态、所述车辆处于故障状态以及所述车辆接收电池容量数据存储指令的至少一种。
在本申请的一个实施例中,所述第一存储器包括多个内存池,其中,所述存储模块640具体用于将所述电池容量数据存储至所述多个内存池中的一个或多个。
在本申请的一个实施例中,所述存储模块640还用于判断所述多个内存池中的一个或多个内存池为异常内存池时,将所述电池容量数据存储至所述异常内存池外的其他内存池。
在本申请的一个实施例中,所述存储模块640还用于:获取一个内存池的多个第一容量数据;基于校验算法对多个所述第一容量数据进行校验,并获取与所述多个第一容量数据对应的多个校验码;基于所述多个校验码中其中一个校验码与对应的所述第一容量数据是否相 等,判断所述一个内存池是否为异常内存池,包括:当所述多个校验码均等于对应的第一容量数据时,确定所述一个内存池为正常内存池;当所述多个校验码中其中一个校验码与对应的所述第一容量数据不相等时,所述一个内存池为异常内存池;重复以上步骤,判断其他所述多个内存池是否为异常内存池。
在本申请的一个实施例中,所述存储模块640还用于当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,检测所述第二存储器的电池容量数据状态为异常状态时,将所述第一存储器中的所述电池容量数据存储至所述第二存储器。
在本申请的一个实施例中,所述存储模块640还用于当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述第二存储器中的所述电池容量数据存储至所述第一存储器。
根据本申请实施例的装置,下面参考图7,其示出了适于用来实现本申请实施例的电子设备(例如图1中的终端设备或服务器)700的结构示意图。本申请实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图7示出的电子设备仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图7所示,电子设备700可以包括处理装置(例如中央处理器、图形处理器等)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储装置708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM 703中,还存储有电子设备700操作所需的各种程序和数据。处理装置701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
通常,以下装置可以连接至I/O接口705:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置706;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置707;包括例如磁带、硬盘等的存储装置708;以及通信装置709。通信装置709可以允许计算机设备700与其他设备进行无线或有线通信以交换数据。虽然图7示出了具有各种装置的计算机设备700,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质 上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置709从网络上被下载和安装,或者从存储装置708被安装,或者从ROM702被安装。在该计算机程序被处理装置701执行时,执行本申请实施例的方法中限定的上述功能。
需要说明的是,本申请上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该计算机设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取电池容量数据;判断第一存储器和第二存储器中的电池容量数据状态;基于第一存储器和第二存储器中的数据状态以及车辆的运行状态,检测车辆是否满足存储电池容量数据的条件;基于车辆是否满足存储电池容量数据的条件以及第一存储器 和第二存储器中的电池容量数据状态,将电池容量数据存储在第一存储器或第二存储器中或报警。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一获取单元还可以被描述为“获取至少两个网际协议地址的单元”。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、 硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本申请的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (14)

  1. 一种电池数据动态存储方法,所述电池数据动态存储于车辆的第一存储器或第二存储器,其特征在于,包括:
    获取电池容量数据;
    判断所述第一存储器和所述第二存储器中的电池容量数据状态;
    基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件;
    基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或所述第二存储器中或报警,包括:
    当确定不满足存储所述电池容量数据条件时,返回并持续获取电池容量数据。
  3. 根据权利要求2所述的方法,其特征在于,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第一存储器;
    当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述电池容量数据存储至所述第二存储器。
  4. 根据权利要求2所述的方法,其特征在于,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器和所述第二存储器的电池容量数据状态均为异常状态时,发出无法存储报警并将所述异常状态上报。
  5. 根据权利要求1所述的方法,其特征在于,所述基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件,包括:
    在所述第一存储器和/或所述第二存储器中的数据状态正常且所述车辆处于正常运行状态下,检测所述车辆是否满足存储所述电池容量数据的条件;其中,所述满足存储所述电池容量数据的条件,包括:电池电量低于预设电量、所述车辆处于下电状态、所述车辆处于故障状态以及所述车辆接收电池容量数据存储指令的至少一种。
  6. 根据权利要求1所述的方法,其特征在于,所述第一存储器包括多个内存池,其中,所述将所述电池容量数据存储至所述第一存储器,包括:将所述电池容量数据存储至所述多个内存池中的一个或多个。
  7. 根据权利要求6所述的方法,其特征在于,还包括:判断所述多个内存池中的一个或多个内存池为异常内存池时,将所述电池容量数据存储至所述异常内存池外的其他内存池。
  8. 根据权利要求7所述的方法,其特征在于,所述判断所述多个内存池中的一个或多个内存池为异常内存池,包括:
    获取一个内存池的多个第一容量数据;
    基于校验算法对多个所述第一容量数据进行校验,并获取与所述多个第一容量数据对应的多个校验码;
    基于所述多个校验码中其中一个校验码与对应的所述第一容量数据是否相等,判断所述一个内存池是否为异常内存池,包括:当所述多个校验码均等于对应的第一容量数据时,确定所述一个内存池为正常内存池;当所述多个校验码中其中一个校验码与对应的所述第一容量数据不相等时,所述一个内存池为异常内存池;
    重复以上步骤,判断其他所述多个内存池是否为异常内存池。
  9. 根据权利要求2所述的方法,其特征在于,还包括:当确定满足存储所述电池容量数据条件,且所述第一存储器的电池容量数据状态为正常状态下,检测所述第二存储器的电池容量数据状态为异常状态时,将所述第一存储器中的所述电池容量数据存储至所述第二存储器。
  10. 根据权利要求2所述的方法,其特征在于,还包括:当确定所述第一存储器的电池容量数据状态为异常状态,且第二存储器的电池容量数据状态为正常状态下,将所述第二存储器中的所述电池容量数据存储至所述第一存储器。
  11. 一种电池数据动态存储装置,其特征在于,包括:
    获取模块,用于获取电池容量数据;
    第一判断模块,用于判断所述第一存储器和所述第二存储器中的电池容量数据状态;
    第二判断模块,用于基于所述第一存储器和第二存储器中的数据状态以及所述车辆的运行状态,检测所述车辆是否满足存储所述电池容量数据的条件;
    存储模块,用于基于所述车辆是否满足存储所述电池容量数据的条件以及所述第一存储器和所述第二存储器中的电池容量数据状态,将所述电池容量数据存储在所述第一存储器或 所述第二存储器中或报警。
  12. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-10中任一项所述的电池数据动态存储方法。
  13. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-10中任一项所述的电池数据动态存储方法。
  14. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-10中任一项所述的电池数据动态存储方法。
PCT/CN2022/115168 2022-04-29 2022-08-26 电池数据动态存储方法、装置及相关设备 WO2023206883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210473664.4 2022-04-29
CN202210473664.4A CN114860492A (zh) 2022-04-29 2022-04-29 电池数据动态存储方法、装置及相关设备

Publications (1)

Publication Number Publication Date
WO2023206883A1 true WO2023206883A1 (zh) 2023-11-02

Family

ID=82636182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115168 WO2023206883A1 (zh) 2022-04-29 2022-08-26 电池数据动态存储方法、装置及相关设备

Country Status (2)

Country Link
CN (1) CN114860492A (zh)
WO (1) WO2023206883A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114860492A (zh) * 2022-04-29 2022-08-05 合众新能源汽车有限公司 电池数据动态存储方法、装置及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455499A (en) * 1993-04-26 1995-10-03 Motorola, Inc. Method and apparatus for indicating a battery status
CN103207372A (zh) * 2012-01-11 2013-07-17 拉碧斯半导体株式会社 电池余量测量系统、电池余量测量程序以及电池余量测量方法
CN107102269A (zh) * 2017-04-27 2017-08-29 北京新能源汽车股份有限公司 一种电池容量的测量方法、装置、服务器及系统
CN114860492A (zh) * 2022-04-29 2022-08-05 合众新能源汽车有限公司 电池数据动态存储方法、装置及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455499A (en) * 1993-04-26 1995-10-03 Motorola, Inc. Method and apparatus for indicating a battery status
CN103207372A (zh) * 2012-01-11 2013-07-17 拉碧斯半导体株式会社 电池余量测量系统、电池余量测量程序以及电池余量测量方法
CN107102269A (zh) * 2017-04-27 2017-08-29 北京新能源汽车股份有限公司 一种电池容量的测量方法、装置、服务器及系统
CN114860492A (zh) * 2022-04-29 2022-08-05 合众新能源汽车有限公司 电池数据动态存储方法、装置及相关设备

Also Published As

Publication number Publication date
CN114860492A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US20140336869A1 (en) Automating Predictive Maintenance for Automobiles
WO2022095848A1 (zh) 基线监控方法、装置、可读介质及电子设备
US10936386B2 (en) Method, device and computer program product for monitoring access request
WO2023206883A1 (zh) 电池数据动态存储方法、装置及相关设备
CN111290797A (zh) 页面切换方法、客户端、服务器、电子设备和系统
WO2021175187A1 (zh) 数据保护方法、装置、电子设备及计算机可读存储介质
CN117110916A (zh) 电池故障原因确定方法、装置、电子设备及可读存储介质
CN116729123A (zh) 一种故障处理方法、装置、设备、存储介质和车辆
CN115436825A (zh) 单体电芯异常状态检测方法、装置、设备及存储介质
CN114968644A (zh) 系统软件转储方法、装置、电子设备及可读存储介质
CN110602162B (zh) 终端取证方法、装置、设备和存储介质
CN110764995B (zh) 一种检测文件访问异常的方法、装置、介质和电子设备
CN113517737A (zh) 蓄电池的充电方法、装置、充电柜及程序产品
CN111092758A (zh) 降低告警及恢复误报的方法、装置及电子设备
CN114407651B (zh) 车辆里程数存储方法、装置、电子设备及存储介质
CN117155994B (zh) 服务注册管理方法、装置、设备、可读存储介质
CN116860490A (zh) 故障诊断方法、装置、存储介质及电子设备
CN114116238B (zh) 数据处理优化方法、装置、电子设备及可读存储介质
CN116719619A (zh) 电力终端请求处理方法、装置、电子设备和计算机介质
CN117520062A (zh) 测试文件系统的方法、装置、可读介质及电子设备
CN107480004B (zh) 故障恢复方法、装置和计算机设备
WO2023020141A1 (zh) 云服务器控制方法、装置、存储介质及电子设备
CN115826855A (zh) 车机系统存储空间处理方法、装置及相关设备
CN117093284A (zh) 插件调用方法、装置、介质和电子设备
CN111026571A (zh) 处理器降频处理方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939709

Country of ref document: EP

Kind code of ref document: A1