WO2023206663A1 - 一种气体传感器 - Google Patents

一种气体传感器 Download PDF

Info

Publication number
WO2023206663A1
WO2023206663A1 PCT/CN2022/093812 CN2022093812W WO2023206663A1 WO 2023206663 A1 WO2023206663 A1 WO 2023206663A1 CN 2022093812 W CN2022093812 W CN 2022093812W WO 2023206663 A1 WO2023206663 A1 WO 2023206663A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
acoustic sensor
housing
substrate
signal
Prior art date
Application number
PCT/CN2022/093812
Other languages
English (en)
French (fr)
Inventor
张金宇
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to JP2022579062A priority Critical patent/JP2024518205A/ja
Priority to US18/095,003 priority patent/US20230349816A1/en
Publication of WO2023206663A1 publication Critical patent/WO2023206663A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids

Definitions

  • the utility model belongs to the field of sensor technology, and particularly relates to a gas sensor.
  • a gas sensor is a converter that converts a certain gas volume fraction into a corresponding electrical signal.
  • Existing gas sensors usually include a housing, a damping net, a substrate, an infrared emitter and an acoustic sensor. The external gas passes through the damping net through diffusion and balances with the internal gas concentration. When the sensor is working, the infrared emitter emits infrared light of a specific wavelength at a certain acoustic frequency (for example, 30Hz).
  • the infrared light of this wavelength is strongly absorbed by the gas to be measured, converted into heat, and generates an alternating pressure signal in the internal cavity, which is
  • the acoustic sensor receives and converts it into an electrical signal; the higher the concentration of the gas to be measured in the gas, the stronger the low-frequency signal generated, and the signal strength output by the microphone can be used to calculate the concentration of the gas to be measured. Since the signals generated by the gas sensors in the related art are based on sound wave detection, they are susceptible to strong interference from sound signals and vibration signals in the external environment, resulting in inaccurate detection results of the gas sensors.
  • This utility model is to provide a gas sensor that can solve the technical problem in related technologies that gas sensors are easily affected by strong interference from sound signals and vibration signals in the external environment, resulting in inaccurate detection results.
  • a gas sensor including a substrate, a first shell fixed on the substrate and enclosed with the substrate to form a first chamber, and a first infrared emitter connected to the substrate and a first acoustic sensor.
  • the first acoustic sensor and the first infrared emitter are both housed in the first chamber.
  • the first housing has a first ventilation hole.
  • the first acoustic sensor is used to The pressure in the first chamber is converted into a first detection signal.
  • the first detection signal includes an environmental sound signal and a vibration signal.
  • the gas sensor also includes an environment sensor connected to the substrate and located outside the first housing.
  • a detection component and a differential processor connected to the substrate.
  • the second detection signal generated by the environment detection component includes an environmental sound signal and a vibration signal.
  • the differential processor is electrically connected to the first acoustic sensor and the environment. Detection component, the differential processor is used to cancel the environmental sound signal and vibration signal in the first detection signal according to the second detection signal.
  • the environment detection component includes a second housing fixed on the base plate and enclosed with the base plate to form a second chamber, and a second infrared emitter and a second acoustic sensor connected to the base plate, so
  • the second housing is provided with a second ventilation hole
  • the differential processor is electrically connected to the second acoustic sensor
  • the first infrared emitter and the second infrared emitter emit infrared signals with the same wavelength and a phase difference of 180°. Infrared light.
  • the first housing and the second housing are integrated to form a housing, or the first housing and the second housing are spaced apart.
  • both the inner wall of the first chamber near the second chamber and the inner wall of the second chamber near the first chamber are coated with a sound insulation layer.
  • the inner walls of the first chamber and the second chamber are both coated with reflective films, and the reflective films are used to reflect infrared light.
  • the structure of the first chamber and the second chamber are the same, the size of the first vent hole and the size of the second vent hole are the same, and the first acoustic sensor and the The arrangement of the first infrared emitter in the first chamber is the same as the arrangement of the second acoustic sensor and the second infrared emitter in the second chamber.
  • the first vent hole is opened on a side of the first housing away from the substrate, and the first vent hole and the first acoustic sensor are arranged oppositely;
  • the second vent hole is opened on the side of the first housing away from the substrate.
  • the second housing is on a side away from the base plate, and the second ventilation hole and the second acoustic sensor are arranged oppositely.
  • the first housing is fixed with a first damping net covering the first ventilation hole
  • the second housing is fixed with a second damping net covering the second ventilation hole
  • the first damping net and The second damping net is the same kind of damping net.
  • the environment detection component further includes a second acoustic sensor connected to the substrate, the differential processor is electrically connected to the second acoustic sensor, and the second acoustic sensor is exposed to the environment.
  • the first acoustic sensor and the second acoustic sensor are arranged in parallel on the substrate, and the first acoustic sensor and the second acoustic sensor are the same acoustic sensor.
  • the beneficial effect of the present invention is that by arranging the environment detection component on the substrate, the environment detection component can detect the sound and vibration in the environment and convert it into a second detection signal, so that the differential processor can convert the first detection signal to the first detection signal according to the second detection signal.
  • the environmental sound signal and vibration signal in the detection signal are offset, which can eliminate the strong interference of noise and vibration in the external environment, thereby obtaining accurate gas concentration data to be measured, and improving the accuracy of the gas sensor in detecting gas concentration.
  • Figure 1 is a schematic diagram of the overall structure of a gas sensor in the first embodiment of the present invention
  • Figure 2 is a top view of a gas sensor in the first embodiment of the present invention
  • Figure 3 is a cross-sectional view along the A-A direction in Figure 2;
  • Figure 4 is a left view of a gas sensor in the first embodiment of the present invention.
  • Figure 5 is a cross-sectional view along the B-B direction in Figure 4.
  • Figure 6 is a cross-sectional view of a gas sensor in a certain direction in the second embodiment of the present invention.
  • Figure 7 is a schematic signal flow diagram of a gas sensor in an embodiment of the present invention.
  • a gas sensor includes a substrate 1 , a first housing 21 fixed to the substrate 1 and enclosed with the substrate 1 to form a first chamber 32 , and a first housing 21 connected to the substrate 1 .
  • the first infrared emitter 35 and the first acoustic sensor 31 are housed in the first chamber 32.
  • the first housing 21 has a first ventilation hole 33.
  • the sensor 31 is used to convert the pressure in the first chamber 32 into a first detection signal.
  • the first detection signal includes environmental sound signals and vibration signals.
  • the gas sensor also includes an environmental detection device connected to the substrate 1 and located outside the first housing 21 Component 4 and a differential processor connected to the substrate 1.
  • the second detection signal generated by the environment detection component 4 includes an environmental sound signal and a vibration signal.
  • the differential processor is electrically connected to the first acoustic sensor 31 and the environment detection component 4.
  • the differential processor is used for Yu cancels the environmental sound signal and the vibration signal in the first detection signal according to the second detection signal.
  • the gas sensor in this implementation is a differential PAS (PhotoAcoustic Spectroscopy photoacoustic spectroscopy) gas sensor, it can be understood that by setting the environment detection component 4 on the substrate 1, the environment detection component 4 can detect the sound and vibration in the environment and convert it into a second detection signal, so that the differential processor can The environmental sound signal and vibration signal in the first detection signal are offset according to the second detection signal, which can eliminate the strong interference of noise and vibration in the external environment, thereby obtaining accurate gas concentration data to be measured and improving the detection gas concentration of the gas sensor. accuracy.
  • PAS PhotoAcoustic Spectroscopy photoacoustic spectroscopy
  • the environment detection component 4 includes a second housing 22 fixed to the base plate 1 and enclosed with the base plate 1 to form a second chamber 43, and a second housing 22 connected to the base plate 1.
  • the first acoustic sensor 31 and the second acoustic sensor 42 are parallel to each other, and the first acoustic sensor 31 and the second acoustic sensor 42 are the same acoustic sensor.
  • both the first shell 21 and the second shell 22 can be rectangular shells
  • the corresponding first chamber 32 and the second chamber 43 can be rectangular chambers
  • the first vent 33 and the second vent 44 can be rectangular.
  • the differential processor can be a differential amplifier
  • both the first acoustic sensor 31 and the second acoustic sensor 42 can be microphones, so that the structure of the gas sensor is simple and easy to form.
  • the first infrared emitter 35 and the second infrared emitter 41 emit infrared light with the same wavelength and a phase difference of 180°, so that a wave with a phase difference of 180° is generated in the first chamber 32 and the second chamber 43;
  • the first acoustic sensor 31 and the second acoustic sensor 42 are placed in parallel.
  • the first acoustic sensor 31 and the second acoustic sensor 42 are the same kind of acoustic sensor, so that the first acoustic sensor 31 and the second acoustic sensor 42 are interfered by external vibrations.
  • the phases of the vibration signals are the same; the gas to be measured enters the first chamber 32 from the first vent hole 33 and enters the second chamber 43 from the second vent hole 44, and generates signals in the same direction.
  • the infrared emitter emits infrared light of a specific wavelength at a certain frequency (for example, 30Hz).
  • the infrared light of this wavelength is strongly absorbed by the gas to be measured, converted into heat, and generates an alternating pressure signal in the chamber, which can be detected by sound.
  • the sensor receives and the acoustic sensor converts the alternating pressure signal into an electrical signal and transmits it to the differential processor.
  • the differential processor processes the received second detection signal and the first detection signal so that the in-phase ambient sound and vibration are offset, thereby It can eliminate the defect that gas sensors based on photoacoustic spectroscopy are susceptible to external noise and vibration interference.
  • the concentration of the gas to be measured in the gas the stronger the low-frequency signal generated. According to the signal strength output by the acoustic sensor, the concentration of the gas to be measured can be calculated.
  • first housing 21 and the second housing 22 are integrated to form the housing 2.
  • the inner wall of the first chamber 32 close to the second chamber 43 and the second housing 22 are integrated into the housing 2.
  • the inner wall of the side of the chamber 43 close to the first chamber 32 is coated with a sound insulation layer.
  • the first shell 21 and the second shell 22 can be an integrated shell 2.
  • the shell 2 is provided with a cavity, and a bottom portion of the cavity is fixed to divide the cavity into a non-connected first chamber 32 and a third chamber.
  • the partition board of the two chambers 43 is coated with a sound insulation layer corresponding to the board surface of the first chamber 32 and the second chamber 43 to prevent one of the first chamber 32 and the second chamber 43 from being damaged.
  • the sound generated in the chamber passes through the partition plate and interferes with the other chamber, further improving the accuracy of gas concentration measurement.
  • the first housing 21 and the second housing 22 are spaced apart, and the gap between the first housing 21 and the second housing 22 is used to avoid sound generated between the first chamber 32 and the second chamber 43 interfere with each other.
  • the inner walls of the first chamber 32 and the second chamber 43 are coated with reflective films.
  • the infrared emitted by the first infrared emitter 35 and the second infrared emitter 41 The light is transmitted to and reflected by the reflective film.
  • the reflective film can make the infrared light emitted by the infrared emitter reflect multiple times in the chamber, so that the infrared light fully contacts the gas to be measured, which is conducive to the absorption of infrared light by the gas to be measured.
  • the structure of the first chamber 32 is the same as that of the second chamber 43, and the size of the first vent 33 and the size of the second vent 44 are the same, which can ensure that the speed of the gas to be measured flowing into the chamber is consistent with that of the gas to be measured.
  • the concentration of the gas is the same, which improves the measurement accuracy of the gas sensor.
  • the first ventilation hole 33 is opened on the side of the first housing 21 away from the substrate 1 , and the first ventilation hole 33 and the first acoustic sensor 31 are arranged oppositely;
  • the air hole 44 is opened on the side of the second housing 22 away from the substrate 1 , and the second air hole 44 and the second acoustic sensor 42 are arranged oppositely.
  • the second acoustic sensor 42 is disposed on one side of the second chamber 43, and the second infrared emitter 41 is disposed on the other side of the second chamber 43, so that the infrared light emitted by the second infrared emitter 41 is not easily emitted.
  • Illuminating the outside of the second chamber 43 through the second vent hole 44 can also ensure that after the gas to be measured fills the second chamber 43, the gas to be measured will absorb the infrared light emitted by the second infrared emitter 41, which is beneficial to ensure Gas sensor detection capabilities.
  • first housing 21 is fixed with a first damping net 34 covering the first ventilation hole 33
  • second housing 22 is fixed with a second damping net covering the second ventilation hole 44. 45.
  • the first damping net 34 and the second damping net 45 are the same kind of damping net.
  • both the first damping net 34 and the second damping net 45 can be water-blocking and breathable filter membranes, which can prevent other debris (such as water and solid particles) from entering the chamber and ensure that only the gas to be measured enters and thereby interferes with the gas sensor.
  • the detection effect; the first damping net 34 and the second damping net 45 are the same kind of damping net, ensuring that the gas to be measured entering the first chamber 32 and the second chamber 43 remains consistent, reducing the first damping net 34 and possible differences between the second damping nets 45, thereby maintaining the consistency of the differential measurements.
  • the environment detection component 4 also includes a second acoustic sensor 42 connected to the substrate 1.
  • the differential processor is electrically connected to the second acoustic sensor 42.
  • the second acoustic sensor 42 Exposure to the environment.
  • both the first sound sensor 31 and the second sound sensor 42 can be microphones.
  • the first sound sensor 31 and the second sound sensor 42 are parallel to each other.
  • the first sound sensor 31 and the second sound sensor 42 are the same sound sensor.
  • the first detection signal transmitted by the first acoustic sensor 31 to the differential processor includes an environmental sound signal, a vibration signal and a gas concentration signal to be measured
  • the second detection signal transmitted by the second acoustic sensor 42 to the differential processor includes an environmental sound signal and vibration. signal
  • the differential processor processes the first detection signal and the second detection signal, so that the environmental sound signal and vibration signal are eliminated, and the interference of noise and vibration in the external environment is eliminated, so that the gas sensor can measure accurate Measure gas concentration.
  • the second acoustic sensor 42 of the second embodiment can also be used as an ordinary microphone to provide the gas The desired sound signal from the sensor.
  • the first detection signal and the second detection signal both include environmental sound signals, vibration signals and gas concentration signals to be measured, and the infrared light emitted by the two infrared emitters has the same wavelength and a phase difference of 180°.
  • the calculation of the differential processor will output a signal whose intensity is doubled, so that the gas concentration to be measured obtained through the first embodiment is twice the actual gas concentration to be measured.
  • the first detection signal in the second embodiment includes the environmental sound signal, the vibration signal and the gas concentration signal to be measured, and the second detection signal only includes the environmental sound signal and the vibration signal, so that the concentration of the gas to be measured obtained through the second embodiment is equal to The actual gas concentration to be measured is the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种气体传感器,包括基板(1)、固定于基板(1)并与基板(1)围合形成第一腔室(32)的第一外壳(21)、以及连接于基板(1)的第一红外发射器(35)和第一声传感器(31),第一声传感器(31)和第一红外发射器(35)均收容于第一腔室(32)内,第一外壳(21)开设第一通气孔(33),气体传感器还包括连接于基板(1)且位于第一外壳(21)外的环境检测组件(4)和连接于基板(1)的差分处理器,环境检测组件(4)产生的第二检测信号包含环境声音信号和振动信号,差分处理器电连接于第一声传感器(31)和环境检测组件(4)。差分处理器可以根据第二检测信号将第一检测信号中的环境声音信号和振动信号抵消,消除外界环境中的噪声和振动的强烈干扰,提升气体传感器的检测气体浓度的精准性。

Description

一种气体传感器 技术领域
本实用新型属于传感器技术领域,尤其涉及一种气体传感器。
背景技术
气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。现有的气体传感器通常包括外壳、阻尼网、基板、红外发射器以及声传感器,外界气体通过扩散作用穿过阻尼网,与内部气体浓度平衡。传感器工作时,红外发射器以某个声波频率(例如30Hz)发出特定波长的红外光,该波长红外光被待测气体强烈吸收,转化成热量,在内部腔体中产生交变压强信号,被声传感器接收,转化为电信号;气体中待测气体浓度越高,产生的低频信号越强,由麦克风输出的信号强度,由此可计算出待测气体浓度。由于相关技术中的气体传感器产生的信号基于声波检测,容易受到外部环境中的声音信号和振动信号的强烈干扰,导致气体传感器的检测结果不精准。
因此,有必要提供一种气体传感器,用于解决上述问题。
技术问题
本实用新型的目的在于提供一种气体传感器,能够解决相关技术中的气体传感器容易受到外部环境中的声音信号和振动信号的强烈干扰,导致检测结果不精准的技术问题。
技术解决方案
本实用新型的技术方案如下:一种气体传感器,包括基板、固定于所述基板并与所述基板围合形成第一腔室的第一外壳、以及连接于所述基板的第一红外发射器和第一声传感器,所述第一声传感器和所述第一红外发射器均收容于所述第一腔室内,所述第一外壳开设第一通气孔,所述第一声传感器用于将所述第一腔室内的压强转化为第一检测信号,所述第一检测信号包含环境声音信号和振动信号,所述气体传感器还包括连接于所述基板且位于所述第一外壳外的环境检测组件和连接于所述基板的差分处理器,所述环境检测组件产生的第二检测信号包含环境声音信号和振动信号,所述差分处理器电连接于所述第一声传感器和所述环境检测组件,所述差分处理器用于根据所述第二检测信号将所述第一检测信号中的环境声音信号和振动信号抵消。
优选地,所述环境检测组件包括固定于所述基板并与所述基板围合形成第二腔室的第二外壳、以及连接于所述基板的第二红外发射器和第二声传感器,所述第二外壳开设第二通气孔,所述差分处理器电连接于所述第二声传感器,所述第一红外发射器和所述第二红外发射器发射波长相同、相位差为180°的红外光。
优选地,所述第一外壳和所述第二外壳一体化设置形成壳体,或者所述第一外壳和所述第二外壳间隔设置。
优选地,所述第一腔室靠近所述第二腔室的一侧的内壁和所述第二腔室靠近所述第一腔室的一侧的内壁均涂敷有隔音层。
优选地,所述第一腔室的内壁和所述第二腔室的内壁均涂敷有反射膜,所述反射膜用于反射红外光。
优选地,所述第一腔室的结构和所述第二腔室的结构相同,所述第一通气孔的大小和所述第二通气孔的大小相同,所述第一声传感器和所述第一红外发射器在所述第一腔室内的排布与所述第二声传感器和所述第二红外发射器在所述第二腔室内的排布相同。
优选地,所述第一通气孔开设于所述第一外壳远离所述基板的一侧,且所述第一通气孔和所述第一声传感器相对设置;所述第二通气孔开设于所述第二外壳远离所述基板的一侧,且所述第二通气孔和所述第二声传感器相对设置。
优选地,所述第一外壳固定有覆盖所述第一通气孔的第一阻尼网,所述第二外壳固定有覆盖所述第二通气孔的第二阻尼网,所述第一阻尼网和所述第二阻尼网为同一种阻尼网。
优选地,所述环境检测组件还包括连接于所述基板的第二声传感器,所述差分处理器电连接于所述第二声传感器,所述第二声传感器暴露于环境中。
优选地,所述第一声传感器和所述第二声传感器在所述基板上平行设置,所述第一声传感器和所述第二声传感器为同一种声传感器。
有益效果
本实用新型的有益效果在于:通过在基板上设置环境检测组件,而环境检测组件可以检测环境中的声音和振动并转换成第二检测信号,使得差分处理器可以根据第二检测信号将第一检测信号中的环境声音信号和振动信号抵消,可以消除外界环境中的噪声和振动的强烈干扰,从而得到准确的待测气体浓度数据,提升气体传感器的检测气体浓度的精准性。
附图说明
图1为本实用新型实施例第一实施方式中一种气体传感器的整体结构示意图;
图2为本实用新型实施例第一实施方式中一种气体传感器的俯视图;
图3为图2中A-A向的剖视图;
图4为本实用新型实施例第一实施方式中一种气体传感器的左视图;
图5为图4中B-B向的剖视图;
图6为本实用新型实施例第二实施方式中一种气体传感器的某一方向的剖视图;
图7为本实用新型实施例中一种气体传感器的信号流程示意图。
本发明的实施方式
下面结合附图和实施方式对本实用新型作进一步说明。
请参阅图1至图7,在本实施例中,一种气体传感器,包括基板1、固定于基板1并与基板1围合形成第一腔室32的第一外壳21、以及连接于基板1的第一红外发射器35和第一声传感器31,第一声传感器31和第一红外发射器35均收容于第一腔室32内,第一外壳21开设第一通气孔33,第一声传感器31用于将第一腔室32内的压强转化为第一检测信号,第一检测信号包含环境声音信号和振动信号,气体传感器还包括连接于基板1且位于第一外壳21外的环境检测组件4和连接于基板1的差分处理器,环境检测组件4产生的第二检测信号包含环境声音信号和振动信号,差分处理器电连接于第一声传感器31和环境检测组件4,差分处理器用于根据第二检测信号将第一检测信号中的环境声音信号和振动信号抵消。
本实施中的气体传感器为差分式PAS(PhotoAcoustic Spectroscopy光声光谱法)气体传感器,可以理解的,通过在基板1上设置环境检测组件4,而环境检测组件4可以检测环境中的声音和振动并转换成第二检测信号,使得差分处理器可以根据第二检测信号将第一检测信号中的环境声音信号和振动信号抵消,可以消除外界环境中的噪声和振动的强烈干扰,从而得到准确的待测气体浓度数据,提升气体传感器的检测气体浓度的精准性。
请参阅图3和图5,在本实施例的第一实施方式中,环境检测组件4包括固定于基板1并与基板1围合形成第二腔室43的第二外壳22、以及连接于基板1的第二红外发射器 41和第二声传感器42,第二外壳22开设第二通气孔44,差分处理器电连接于第二声传感器42,第一红外发射器35和第二红外发射器 41发射波长相同、相位差为180°的红外光;第一声传感器31和第二声传感器42相互平行,第一声传感器31和第二声传感器42为同一种声传感器。具体的,第一外壳21和第二外壳22均可以为矩形壳,对应的第一腔室32和第二腔室43为矩形腔室,第一通气孔33和第二通气孔44可以为矩形孔,差分处理器可以为差分放大器,第一声传感器31和第二声传感器42均可以为麦克风,使得气体传感器的结构简单,方便成型。第一红外发射器35和第二红外发射器 41发射波长相同、相位差为180°的红外光,使得在第一腔室32内和第二腔室43内产生相位差为180°的波;第一声传感器31和第二声传感器42平行放置,第一声传感器31和第二声传感器42为同一种声传感器,使得第一声传感器31和第二声传感器42受外界振动干扰所产生的振动信号的相位相同;待测气体从第一通气孔33进入第一腔室32内,从第二通气孔44进入第二腔室43内,并产生同向信号。
可以理解的,红外发射器以一定的频率(例如30Hz)发出特定波长的红外光,该波长红外光被待测气体强烈吸收,转化成热量,在腔室内产生交变压强信号,从而可以被声传感器接收,声传感器将交变压强信号转化为电信号并传输至差分处理器,差分处理器对接收的第二检测信号和第一检测信号进行处理,使得同相的环境声和振动被抵消,从而可以消除基于光声光谱法的气体传感器容易受到外界噪声和振动干扰的缺陷。而且,气体中的待测气体浓度越高,则产生的低频信号越强,根据声传感器输出的信号强度,可计算出待测气体浓度。
请参阅图3和图5,在本实施方式中,第一外壳21和第二外壳22一体化设置形成壳体2,第一腔室32靠近第二腔室43的一侧的内壁和第二腔室43靠近第一腔室32的一侧的内壁均涂敷有隔音层。具体的,第一外壳21和第二外壳22可以为一体式壳体2,壳体2设有空腔,空腔的底部固定有可以将空腔分割成不连通的第一腔室32和第二腔室43的隔板,分隔板对应于第一腔室32和第二腔室43的板面涂敷有隔音层,避免第一腔室32和第二腔室43中的其中一个腔室产生的声音穿过分隔板对另一个腔室产生干扰,进一步提升气体浓度测量的精准性。在其他实施例中,第一外壳21和第二外壳22间隔设置,利用第一外壳21和第二外壳22之间的间隙,避免第一腔室32和第二腔室43之间产生的声音相互干扰。
请参阅图3和图5,较佳地,第一腔室32的内壁和第二腔室43的内壁均涂敷有反射膜,第一红外发射器35和第二红外发射器 41发射的红外光传输至反射膜并被反射膜反射,利用反射膜可以使红外发射器发射的红外光在腔室内进行多次反射,从而使得红外光与待测气体充分接触,有利于待测气体吸收红外光;第一腔室32的结构和第二腔室43的结构相同,第一通气孔33的大小和第二通气孔44的大小相同,可以保证待测气体流入腔室内的速度较为一致和待测气体的浓度相同,提升该气体传感器的测量精准性。
请参阅图3和图5,在本实施方式中,第一通气孔33开设于第一外壳21远离基板1的一侧,且第一通气孔33和第一声传感器31相对设置;第二通气孔44开设于第二外壳22远离基板1的一侧,且第二通气孔44和第二声传感器42相对设置。具体的,第二声传感器42设于第二腔室43的一侧,第二红外发射器 41设于第二腔室43的另一侧,既使得第二红外发射器 41发射的红外光不易通过第二通气孔44照射至第二腔室43外,也能保证在待测气体填充部分第二腔室43后,待测气体再吸收第二红外发射器 41发射的红外光,有利于保证气体传感器的检测能力。
请参阅图3和图5,在本实施方式中,第一外壳21固定有覆盖第一通气孔33的第一阻尼网34,第二外壳22固定有覆盖第二通气孔44的第二阻尼网45,第一阻尼网34和第二阻尼网45为同一种阻尼网。具体的,第一阻尼网34和第二阻尼网45均可以为阻水透气滤膜,可以防止其他杂物(例如水和固态颗粒物)进入腔室,确保只有待测气体进入,从而干扰气体传感器的检测效果;第一阻尼网34和第二阻尼网45为同一种阻尼网,保证进入第一腔室32和第二腔室43内的待测气体保持一致性,降低第一阻尼网34和第二阻尼网45之间可能存在的差异,从而保持差分测量的一致性。
请参阅图6,在本实施例的第二实施方式中,环境检测组件4还包括连接于基板1的第二声传感器42,差分处理器电连接于第二声传感器42,第二声传感器42暴露于环境中。具体的,第一声传感器31和第二声传感器42均可以为麦克风,第一声传感器31和第二声传感器42相互平行,第一声传感器31和第二声传感器42为同一种声传感器,第一声传感器31传输至差分处理器的第一检测信号包括环境声音信号、振动信号和待测气体浓度信号,第二声传感器42传输至差分处理器的第二检测信号包括环境声音信号和振动信号,差分处理器通过对第一检测信号和第二检测信号进行处理,使得环境声音信号和振动信号被消除,消除外界环境中噪声和振动的干扰,从而使得该气体传感器可以测量出精准的待测气体浓度。
应当理解,相比于第一实施方式中设置两个腔室,第二实施方式的尺寸和成本更低;同时,第二实施方式的第二声传感器42也可以作为普通麦克风使用,提供该气体传感器的所需的声音信号。第一实施方式中的第一检测信号和第二检测信号均包括环境声音信号、振动信号以及待测气体浓度信号,且两个红外发射器发射的红外光波长相同、相位差为180°,经过差分处理器的计算会输出强度增加一倍的信号,使得通过第一实施方式得到的待测气体浓度是实际待测气体浓度的一倍。第二实施方式中的第一检测信号包括环境声音信号、振动信号以及待测气体浓度信号,第二检测信号仅包括环境声音信号和振动信号,使得通过第二实施方式得到的待测气体浓度与实际待测气体浓度相同。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。

Claims (10)

  1. 一种气体传感器,包括基板、固定于所述基板并与所述基板围合形成第一腔室的第一外壳、以及连接于所述基板的第一红外发射器和第一声传感器,所述第一声传感器和所述第一红外发射器均收容于所述第一腔室内,所述第一外壳开设第一通气孔,所述第一声传感器用于将所述第一腔室内的压强转化为第一检测信号,第一检测信号包含环境声音信号和振动信号,其特征在于,所述气体传感器还包括连接于所述基板且位于所述第一外壳外的环境检测组件和连接于所述基板的差分处理器,所述环境检测组件产生的第二检测信号包含环境声音信号和振动信号,所述差分处理器电连接于所述第一声传感器和所述环境检测组件,所述差分处理器用于根据所述第二检测信号将所述第一检测信号中的环境声音信号和振动信号抵消。
  2. 根据权利要求1所述的气体传感器,其特征在于,所述环境检测组件包括固定于所述基板并与所述基板围合形成第二腔室的第二外壳、以及连接于所述基板的第二红外发射器和第二声传感器,所述第二外壳开设第二通气孔,所述差分处理器电连接于所述第二声传感器,所述第一红外发射器和所述第二红外发射器发射波长相同、相位差为180°的红外光。
  3. 根据权利要求2所述的气体传感器,其特征在于,所述第一外壳和所述第二外壳一体化设置形成壳体,或者所述第一外壳和所述第二外壳间隔设置。
  4. 根据权利要求3所述的气体传感器,其特征在于,所述第一腔室靠近所述第二腔室的一侧的内壁和所述第二腔室靠近所述第一腔室的一侧的内壁均涂敷有隔音层。
  5. 根据权利要求2所述的气体传感器,其特征在于,所述第一腔室的内壁和所述第二腔室的内壁均涂敷有反射膜,所述反射膜用于反射红外光。
  6. 根据权利要求2所述的气体传感器,其特征在于,所述第一腔室的结构和所述第二腔室的结构相同,所述第一通气孔的大小和所述第二通气孔的大小相同,所述第一声传感器和所述第一红外发射器在所述第一腔室内的排布与所述第二声传感器和所述第二红外发射器在所述第二腔室内的排布相同。
  7. 根据权利要求6所述的气体传感器,其特征在于,所述第一通气孔开设于所述第一外壳远离所述基板的一侧,且所述第一通气孔和所述第一声传感器相对设置;所述第二通气孔开设于所述第二外壳远离所述基板的一侧,且所述第二通气孔和所述第二声传感器相对设置。
  8. 根据权利要求2所述的气体传感器,其特征在于,所述第一外壳固定有覆盖所述第一通气孔的第一阻尼网,所述第二外壳固定有覆盖所述第二通气孔的第二阻尼网,所述第一阻尼网和所述第二阻尼网为同一种阻尼网。
  9. 根据权利要求1所述的气体传感器,其特征在于,所述环境检测组件还包括连接于所述基板的第二声传感器,所述差分处理器电连接于所述第二声传感器,所述第二声传感器暴露于环境中。
  10. 根据权利要求2-9中任意一项所述的气体传感器,其特征在于,所述第一声传感器和所述第二声传感器在所述基板上平行设置,所述第一声传感器和所述第二声传感器为同一种声传感器。
PCT/CN2022/093812 2022-04-28 2022-05-19 一种气体传感器 WO2023206663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579062A JP2024518205A (ja) 2022-04-28 2022-05-19 ガスセンサ
US18/095,003 US20230349816A1 (en) 2022-04-28 2023-01-10 Gas Sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221018274.XU CN217688711U (zh) 2022-04-28 2022-04-28 一种气体传感器
CN202221018274.X 2022-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/095,003 Continuation US20230349816A1 (en) 2022-04-28 2023-01-10 Gas Sensor

Publications (1)

Publication Number Publication Date
WO2023206663A1 true WO2023206663A1 (zh) 2023-11-02

Family

ID=83736067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093812 WO2023206663A1 (zh) 2022-04-28 2022-05-19 一种气体传感器

Country Status (2)

Country Link
CN (1) CN217688711U (zh)
WO (1) WO2023206663A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933245A (en) * 1996-12-31 1999-08-03 Honeywell Inc. Photoacoustic device and process for multi-gas sensing
CN101013085A (zh) * 2007-02-01 2007-08-08 方剑德 智能型红外气体传感器
CN102353645A (zh) * 2011-07-16 2012-02-15 太原理工大学 一种基于ndir的智能红外气体传感器
CN102735618A (zh) * 2012-07-03 2012-10-17 北京航空航天大学 一种基于椭圆光声池的光声气体传感装置
CN206649008U (zh) * 2017-01-20 2017-11-17 中国工程物理研究院总体工程研究所 基于差分式采集的气体浓度测量装置
CN112730264A (zh) * 2020-12-24 2021-04-30 天津同阳科技发展有限公司 差分式mems气体传感器
CN112730303A (zh) * 2020-12-18 2021-04-30 Oppo广东移动通信有限公司 气体检测方法及装置、终端设备、存储介质
CN113075130A (zh) * 2021-02-26 2021-07-06 深圳市美思先端电子有限公司 光声学气体浓度检测装置及其控制方法
CN114286935A (zh) * 2019-08-29 2022-04-05 哈恩-席卡德应用研究学会 基于mems的光声单元

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933245A (en) * 1996-12-31 1999-08-03 Honeywell Inc. Photoacoustic device and process for multi-gas sensing
CN101013085A (zh) * 2007-02-01 2007-08-08 方剑德 智能型红外气体传感器
CN102353645A (zh) * 2011-07-16 2012-02-15 太原理工大学 一种基于ndir的智能红外气体传感器
CN102735618A (zh) * 2012-07-03 2012-10-17 北京航空航天大学 一种基于椭圆光声池的光声气体传感装置
CN206649008U (zh) * 2017-01-20 2017-11-17 中国工程物理研究院总体工程研究所 基于差分式采集的气体浓度测量装置
CN114286935A (zh) * 2019-08-29 2022-04-05 哈恩-席卡德应用研究学会 基于mems的光声单元
CN112730303A (zh) * 2020-12-18 2021-04-30 Oppo广东移动通信有限公司 气体检测方法及装置、终端设备、存储介质
CN112730264A (zh) * 2020-12-24 2021-04-30 天津同阳科技发展有限公司 差分式mems气体传感器
CN113075130A (zh) * 2021-02-26 2021-07-06 深圳市美思先端电子有限公司 光声学气体浓度检测装置及其控制方法

Also Published As

Publication number Publication date
CN217688711U (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CA2667993C (en) Photoacoustic gas sensor
JPH0441297B2 (zh)
KR20020071885A (ko) 광음파 측정 장치 및 그 응용
CN110260968B (zh) 基于声质点振动速度测量的空气超声声压复现系统
JPH1123358A (ja) 流体が流れるパイプ内のノイズを測定するための装置
US11754492B2 (en) Photoacoustic gas sensor device
CN108713133A (zh) 声波共振压力与温度传感器
JPH11509695A (ja) 音響強度較正装置
JP5712409B2 (ja) 音響係数と音響パワーを決定する方法および装置
WO2023206663A1 (zh) 一种气体传感器
Jacobsen et al. Measurement of sound intensity: pu probes versus pp probes
JP2024518205A (ja) ガスセンサ
Ebbing Experimental evaluation of moving sound diffusers for reverberant rooms
JPH08271336A (ja) 光音響分光測定装置
CN112254799B (zh) 一种抗振动差分式干涉声敏检测装置
CN110426460B (zh) 一种水声材料去耦特性参数的行波管测量装置与方法
Jacobsen Intensity techniques
CN217846054U (zh) 气体检测装置
Jacobsen On the uncertainty in measurement of sound power using sound intensity
Allam et al. Over-determination in acoustic two-port data measurement
JP3357499B2 (ja) 渦笛式流速計および渦笛式流量計
Knutsson et al. Experimental investigation of the acoustic effect of non-rigid walls in IC-Engine intake systems
CN117582212A (zh) 一种基于声音衍射原理的肺通气功能测量装置和方法
CN117288806A (zh) 一种高灵敏抗振动压电mems声敏探测元件阵列及制备方法
JPH03264826A (ja) 騒音解析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022579062

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939497

Country of ref document: EP

Kind code of ref document: A1