WO2023206633A1 - Measurement image detection method, apparatus, semiconductor device, and storage medium - Google Patents

Measurement image detection method, apparatus, semiconductor device, and storage medium Download PDF

Info

Publication number
WO2023206633A1
WO2023206633A1 PCT/CN2022/092945 CN2022092945W WO2023206633A1 WO 2023206633 A1 WO2023206633 A1 WO 2023206633A1 CN 2022092945 W CN2022092945 W CN 2022092945W WO 2023206633 A1 WO2023206633 A1 WO 2023206633A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
scanning electron
electron microscope
microscope image
device layer
Prior art date
Application number
PCT/CN2022/092945
Other languages
French (fr)
Chinese (zh)
Inventor
刘文奇
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023206633A1 publication Critical patent/WO2023206633A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A measurement image detection method, an apparatus, a semiconductor device, and a storage medium, relating to the technical field of semiconductors. The detection method is used in a semiconductor device, the detection method comprising: acquiring a first scanning electron microscope image of a mask layer located on the top of a semiconductor structure (S110); acquiring a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer (S120); respectively projecting at least one image of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of a wafer so as to form an alignment pattern (S130).

Description

量测图像的检测方法、装置、半导体设备及存储介质Detection methods, devices, semiconductor equipment and storage media for measurement images
本公开基于申请号为202210435336.5,申请日为2022年04月24日,申请名称为“量测图像的检测方法、装置、半导体设备及存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。This disclosure is based on a Chinese patent application with application number 202210435336.5, the filing date is April 24, 2022, and the application name is "Detection method, device, semiconductor equipment and storage medium for measuring images", and requires that the Chinese patent application Priority, the entire content of this Chinese patent application is hereby incorporated by reference into this disclosure.
技术领域Technical field
本公开涉及但不限于一种量测图像的检测方法、装置、半导体设备及存储介质。The present disclosure relates to, but is not limited to, a detection method, device, semiconductor equipment and storage medium for measuring a measurement image.
背景技术Background technique
半导体结构通常包含多个图案化材料层,其中每一当前层必须在公差范围内与先前层对准。半导体结构的当前层与先前层之间的叠加配准误差即为套刻误差(overlay),又叫叠加误差。其中,套刻误差描述了当前层的图形相对于先前层的图形沿晶圆表面的偏差以及这种偏差在晶圆表面的分布情况。套刻误差是检验光刻工艺好坏的一个关键指标。Semiconductor structures often contain multiple layers of patterned material, where each current layer must be aligned with the previous layer within tolerances. The overlay registration error between the current layer and the previous layer of the semiconductor structure is the overlay error, also called the overlay error. Among them, the overlay error describes the deviation of the current layer's pattern from the previous layer's pattern along the wafer surface and the distribution of this deviation on the wafer surface. Overlay error is a key indicator for testing the quality of the photolithography process.
发明内容Contents of the invention
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the subject matter described in detail in this disclosure. This summary is not intended to limit the scope of the claims.
本公开提供一种量测图像的检测方法、装置、半导体设备及存储介质。The present disclosure provides a detection method, device, semiconductor equipment and storage medium for measuring images.
本公开的第一方面提供了一种量测图像的检测方法,应用于半导体设备,所述量测图像的检测方法包括:A first aspect of the present disclosure provides a method for detecting measurement images, which is applied to semiconductor equipment. The method for detecting measurement images includes:
获取位于半导体结构顶层的掩膜层的第一扫描电镜图像;Obtaining a first scanning electron microscope image of a mask layer located on top of the semiconductor structure;
获取半导体结构的除所述掩膜层外的至少一层半导体器件层的第二扫描电镜图像;Obtaining a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer;
将所述第一扫描电镜图像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。Project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
根据本公开的一些实施例,所述获取位于半导体结构顶层的掩膜层的第一扫描电镜图像,包括:According to some embodiments of the present disclosure, obtaining a first scanning electron microscope image of a mask layer located on the top layer of the semiconductor structure includes:
向所述掩膜层发射第一初级电子;Emitting first primary electrons toward the mask layer;
获取所述掩膜层反射回的次级电子;Obtain the secondary electrons reflected back by the mask layer;
根据所述次级电子,确定所述第一扫描电镜图像。The first SEM image is determined based on the secondary electrons.
根据本公开的一些实施例,所述第一初级电子的发射能量大于或等于预设能量值。According to some embodiments of the present disclosure, the emission energy of the first primary electron is greater than or equal to a preset energy value.
根据本公开的一些实施例,所述获取半导体结构的除所述掩膜层外的至少一层半导体 器件层的第二扫描电镜图像,包括:According to some embodiments of the present disclosure, obtaining a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer includes:
获取所述半导体器件层的深度;Obtain the depth of the semiconductor device layer;
根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子;According to the depth of the semiconductor device layer, emitting second primary electrons matching the depth of the semiconductor device layer to the semiconductor device layer;
接收由所述半导体器件层表面逸出的背散射电子;receiving backscattered electrons escaping from the surface of the semiconductor device layer;
根据所述背散射电子,确定所述半导体器件层的第二扫描电镜图像。Based on the backscattered electrons, a second scanning electron microscope image of the semiconductor device layer is determined.
根据本公开的一些实施例,所述根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子,包括:According to some embodiments of the present disclosure, emitting second primary electrons to the semiconductor device layer that matches the depth of the semiconductor device layer according to the depth of the semiconductor device layer includes:
获取配置信息,所述配置信息用于表征所述半导体器件层的深度与所述第二初级电子的发射能量的对应关系;Obtain configuration information, the configuration information being used to characterize the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron;
根据所述半导体器件层的深度和所述配置信息,确定所述第二初级电子的发射能量;determining the emission energy of the second primary electron according to the depth of the semiconductor device layer and the configuration information;
向所述半导体器件层发射所述第二初级电子。The second primary electrons are emitted toward the semiconductor device layer.
根据本公开的一些实施例,所述将所述第一扫描电镜图像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案,包括:According to some embodiments of the present disclosure, projecting at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern includes:
建立所述第二扫描电镜图像的多个标记图像与多个所述半导体器件层之间的一一对应关系;Establishing a one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers;
将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像分别错开;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images are respectively staggered;
将所述第一扫描电镜图像投影至多个所述标记图像中的一个所述标记图像上,使所述第一扫描电镜图像与一个所述标记图像重合,形成所述对准图案;Project the first scanning electron microscope image onto one of the plurality of mark images so that the first scanning electron microscope image overlaps with one of the mark images to form the alignment pattern;
或者,or,
将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像重合,形成重合标记;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images overlap to form an overlapping mark;
将所述第一扫描电镜图像投影至所述重合标记,形成所述对准图案。The first scanning electron microscope image is projected onto the coincidence mark to form the alignment pattern.
根据本公开的一些实施例,所述量测图像的检测方法还包括:According to some embodiments of the present disclosure, the detection method of the measurement image further includes:
获取权重信息;Get weight information;
根据所述权重信息,调整所述第一扫描电镜图像与所述标记图像或者重合标记的位置。According to the weight information, the positions of the first scanning electron microscope image and the mark image or the overlapping mark are adjusted.
本公开的第二方面提供了一种量测图像的检测装置,应用于半导体设备,所述检测装置包括:A second aspect of the present disclosure provides a detection device for measuring images, which is applied to semiconductor equipment. The detection device includes:
获取模块,用于获取位于半导体结构顶层的掩膜层的第一扫描电镜图像;An acquisition module, configured to acquire a first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure;
所述获取模块,还用于获取半导体结构的除所述掩膜层外的至少一层半导体器件层的第二扫描电镜图像;The acquisition module is also used to acquire a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer;
投影模块,用于将所述第一扫描电镜图像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。A projection module, configured to project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
根据本公开的一些实施例,所述获取模块包括:According to some embodiments of the present disclosure, the acquisition module includes:
第一发射单元,用于向所述掩膜层发射第一初级电子;A first emission unit configured to emit first primary electrons to the mask layer;
第一获取单元,用于获取所述掩膜层反射回的次级电子;A first acquisition unit configured to acquire secondary electrons reflected back by the mask layer;
第一确定单元,用于根据所述次级电子,确定所述第一扫描电镜图像。A first determining unit configured to determine the first scanning electron microscope image according to the secondary electrons.
根据本公开的一些实施例,所述获取模块包括:According to some embodiments of the present disclosure, the acquisition module includes:
第二确定单元,用于获取所述半导体器件层的深度;a second determination unit configured to obtain the depth of the semiconductor device layer;
第二发射单元,用于根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子;a second emission unit configured to emit second primary electrons matching the depth of the semiconductor device layer to the semiconductor device layer according to the depth of the semiconductor device layer;
第二获取单元,用于接收由所述半导体器件层表面逸出的背散射电子;a second acquisition unit configured to receive backscattered electrons escaping from the surface of the semiconductor device layer;
所述第二确定单元,还用于根据所述背散射电子,确定所述半导体器件层的第二扫描电镜图像。The second determination unit is further configured to determine a second scanning electron microscope image of the semiconductor device layer based on the backscattered electrons.
根据本公开的一些实施例,所述第二确定单元用于:According to some embodiments of the present disclosure, the second determining unit is used for:
获取配置信息,所述配置信息用于表征所述半导体器件层的深度与所述第二初级电子的发射能量的对应关系;Obtain configuration information, the configuration information being used to characterize the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron;
根据所述半导体器件层的深度和所述配置信息,确定所述第二初级电子的发射能量;determining the emission energy of the second primary electron according to the depth of the semiconductor device layer and the configuration information;
向所述半导体器件层发射所述第二初级电子。The second primary electrons are emitted toward the semiconductor device layer.
根据本公开的一些实施例,所述投影模块用于:According to some embodiments of the present disclosure, the projection module is used for:
建立所述第二扫描电镜图像的多个标记图像与多个所述半导体器件层之间的一一对应关系;Establishing a one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers;
将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像分别错开;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images are respectively staggered;
将所述第一扫描电镜图像投影至多个所述标记图像中的一个所述标记图像上,使所述第一扫描电镜图像与一个所述标记图像重合,形成所述对准图案;Project the first scanning electron microscope image onto one of the plurality of mark images so that the first scanning electron microscope image overlaps with one of the mark images to form the alignment pattern;
或者,or,
将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像重合,形成重合标记;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images overlap to form an overlapping mark;
将所述第一扫描电镜图像投影至所述重合标记,形成所述对准图案。The first scanning electron microscope image is projected onto the coincidence mark to form the alignment pattern.
根据本公开的一些实施例,所述获取模块还用于:According to some embodiments of the present disclosure, the acquisition module is also used to:
获取权重信息;Get weight information;
所述投影模块还用于:The projection module is also used to:
根据所述权重信息,调整所述第一扫描电镜图像与所述标记图像或者重合标记的位置。According to the weight information, the positions of the first scanning electron microscope image and the mark image or the overlapping mark are adjusted.
本公开的第三方面提供了一种半导体设备,所述半导体设备包括:A third aspect of the present disclosure provides a semiconductor device, the semiconductor device including:
处理器;processor;
用于存储处理器可执行指令的存储器;Memory used to store instructions executable by the processor;
其中,所述处理器被配置为执行如第一方面所述的量测图像的检测方法。Wherein, the processor is configured to execute the detection method of the measurement image as described in the first aspect.
本公开的第四方面提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由半导体设备的处理器执行时,使得半导体设备能够执行如第一方面所述的量测图像的检测方法。A fourth aspect of the present disclosure provides a non-transitory computer-readable storage medium that, when instructions in the storage medium are executed by a processor of a semiconductor device, enables the semiconductor device to perform the measurement image as described in the first aspect detection method.
在阅读并理解了附图和详细描述后,可以明白其他方面。Other aspects will be apparent after reading and understanding the drawings and detailed description.
附图说明Description of the drawings
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the description, serve to explain principles of the embodiments of the disclosure. In the drawings, similar reference numbers are used to identify similar elements. The drawings in the following description are of some, but not all, embodiments of the disclosure. For those skilled in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1是根据一示例性实施例示出的一种量测图像的检测方法的流程图。FIG. 1 is a flow chart of a method for detecting measurement images according to an exemplary embodiment.
图2是根据一示例性实施例示出的量测图像的检测方法中获取第一扫描电镜图像的流程图。FIG. 2 is a flow chart for acquiring a first scanning electron microscope image in a method for detecting measurement images according to an exemplary embodiment.
图3是根据一示例性实施例示出的量测图像的检测方法中获取第二扫描电镜图像的流程图。FIG. 3 is a flow chart for acquiring a second scanning electron microscope image in a method for detecting measurement images according to an exemplary embodiment.
图4是根据一示例性实施例示出的量测图像的检测方法中形成对准图案的流程图。FIG. 4 is a flowchart of forming an alignment pattern in a method for detecting measurement images according to an exemplary embodiment.
图5是根据一示例性实施例示出的半导体结构所在的晶圆的结构示意图。FIG. 5 is a schematic structural diagram of a wafer on which a semiconductor structure is located according to an exemplary embodiment.
图6是根据一示例性实施例示出的半导体结构的结构示意图。FIG. 6 is a schematic structural diagram of a semiconductor structure according to an exemplary embodiment.
图7是根据一示例性实施例示出的第一扫描电镜图像的俯视图。7 is a top view of a first scanning electron microscope image according to an exemplary embodiment.
图8是根据一示例性实施例示出的第二扫描电镜图像的俯视图。8 is a top view of a second scanning electron microscope image according to an exemplary embodiment.
图9是根据一示例性实施例示出的将第一扫描电镜图像和第二扫描电镜图像分别投影至晶圆的预设区域的示意图。FIG. 9 is a schematic diagram showing respectively projecting the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer according to an exemplary embodiment.
图10是根据一示例性实施例示出的第一扫描电镜图像和第二扫描电镜图像形成的对准图案的示意图。FIG. 10 is a schematic diagram of an alignment pattern formed by a first scanning electron microscope image and a second scanning electron microscope image according to an exemplary embodiment.
图11是根据一示例性实施例示出的对准图案在半导体结构上形成的俯视图。FIG. 11 is a top view of an alignment pattern formed on a semiconductor structure according to an exemplary embodiment.
图12是根据一示例性实施例示出的半导体结构的结构示意图。FIG. 12 is a schematic structural diagram of a semiconductor structure according to an exemplary embodiment.
图13是根据一示例性实施例示出的第二扫描电镜图像的俯视图。Figure 13 is a top view of a second scanning electron microscope image according to an exemplary embodiment.
图14是根据一示例性实施例示出的标记图像的俯视图。Figure 14 is a top view of a marker image according to an exemplary embodiment.
图15是根据一示例性实施例示出的对准图案的俯视图。Figure 15 is a top view of an alignment pattern according to an exemplary embodiment.
图16是根据一示例性实施例示出的多个标记图像形成重合图像的示意图。FIG. 16 is a schematic diagram illustrating multiple mark images forming a superimposed image according to an exemplary embodiment.
图17是根据一示例性实施例示出的第一扫描电镜图像投影到重合标记的示意图。FIG. 17 is a schematic diagram of a first scanning electron microscope image projected onto a coincident mark according to an exemplary embodiment.
图18是根据一示例性实施例示出的对准图案的俯视图。Figure 18 is a top view of an alignment pattern according to an exemplary embodiment.
图19是根据一示例示出的一种量测图像的检测装置的框图。FIG. 19 is a block diagram of a detection device for measuring images according to an example.
图20是根据一示例示出的一种量测图像的半导体设备的框图。FIG. 20 is a block diagram of a semiconductor device for measuring images according to an example.
附图标记:Reference signs:
1、晶圆;11、中心区域;12、边缘区域;2、半导体结构;20、半导体器件层;20a、第一半导体器件层;20b、第二半导体器件层;20c、第三半导体器件层;3、切割道区;4、掩膜层;100、第一扫描电镜图像;200、第二扫描电镜图像;200a、第一半导体器件层的第二扫描电镜图像;200b、第二半导体器件层的第二扫描电镜图像;200c、第三半导体器件层的第二扫描电镜图像;300、对准图案;400、标记图像;410、第一标记图像;420、第二标记图像;430、第三标记图像;500、重合标记;601、获取模块;602、投影模块;700、半导体设备;701、处理器;702、存储器。1. Wafer; 11. Central area; 12. Edge area; 2. Semiconductor structure; 20. Semiconductor device layer; 20a, first semiconductor device layer; 20b, second semiconductor device layer; 20c, third semiconductor device layer; 3. Cutting area; 4. Mask layer; 100, first scanning electron microscope image; 200, second scanning electron microscope image; 200a, second scanning electron microscope image of the first semiconductor device layer; 200b, second scanning electron microscope image of the second semiconductor device layer Second scanning electron microscope image; 200c, second scanning electron microscope image of the third semiconductor device layer; 300, alignment pattern; 400, marking image; 410, first marking image; 420, second marking image; 430, third marking Image; 500, coincidence mark; 601, acquisition module; 602, projection module; 700, semiconductor device; 701, processor; 702, memory.
具体实施方式Detailed ways
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。In order to make the purpose, technical solutions and advantages of the disclosed embodiments more clear, the technical solutions in the disclosed embodiments will be clearly and completely described below in conjunction with the drawings in the disclosed embodiments. Obviously, the described embodiments These are some embodiments of the present disclosure, but not all embodiments. Based on the embodiments in this disclosure, all other embodiments obtained by those skilled in the art without making creative efforts fall within the scope of protection of this disclosure. It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments can be arbitrarily combined with each other.
本公开提供了一种量测图像的检测方法,应用于半导体设备,在半导体制程中,本公开提供的量测图像的检测方法应用于形成目标半导体器件层之前对掩膜层的检测,将掩膜层的第一扫描电镜图像与半导体结构的半导体器件层的第二扫描电镜图像对准,进而得到掩膜层与先前层的对准图案,对掩膜层的精度进行准确量测。The present disclosure provides a measurement image detection method, which is applied to semiconductor equipment. In the semiconductor manufacturing process, the measurement image detection method provided by the present disclosure is applied to the detection of the mask layer before forming the target semiconductor device layer, and the mask layer is The first scanning electron microscope image of the film layer is aligned with the second scanning electron microscope image of the semiconductor device layer of the semiconductor structure, thereby obtaining an alignment pattern of the mask layer and the previous layer, and accurately measuring the accuracy of the mask layer.
在一个示例性实施例中,本公开示例性的实施例中提供了一种量测图像的检测方法,应用于半导体设备,如图1所示,检测方法包括以下步骤:In an exemplary embodiment, the exemplary embodiment of the present disclosure provides a detection method for measuring images, which is applied to semiconductor equipment. As shown in Figure 1, the detection method includes the following steps:
S110:获取位于半导体结构顶层的掩膜层的第一扫描电镜图像。S110: Obtain a first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure.
如图5所示,半导体结构2位于晶圆1中,半导体结构2比如可以是芯片等。晶圆1包括中心区域11和围绕中心区域11的边缘区域12,晶圆1包括多个半导体结构2,多个半导体结构2阵列分布在晶圆1的中心区域11,相邻的半导体结构2被切割道区3隔开。As shown in FIG. 5 , the semiconductor structure 2 is located in the wafer 1 , and the semiconductor structure 2 may be a chip, for example. The wafer 1 includes a central area 11 and an edge area 12 surrounding the central area 11. The wafer 1 includes a plurality of semiconductor structures 2. The plurality of semiconductor structures 2 are arrayed in the central area 11 of the wafer 1. The adjacent semiconductor structures 2 are Separated by cutting lane area 3.
如图6所示,半导体结构2包括至少一层半导体器件层20,半导体结构2包括多层半导体器件层20时,多层半导体器件层20层叠设置。提供掩膜层4,将掩膜层4设置于待量测的半导体结构2的顶面(以图6中示出的方位中的上方为顶),掩膜层4在半导体结构2的后续制程中,用于辅助形成下一层半导体器件层20。As shown in FIG. 6 , the semiconductor structure 2 includes at least one semiconductor device layer 20 . When the semiconductor structure 2 includes multiple semiconductor device layers 20 , the multiple semiconductor device layers 20 are stacked. A mask layer 4 is provided, and the mask layer 4 is disposed on the top surface of the semiconductor structure 2 to be measured (with the top in the orientation shown in FIG. 6 as the top). The mask layer 4 is used in the subsequent process of the semiconductor structure 2 , used to assist in forming the next semiconductor device layer 20.
参照图7所示,通过扫描电镜扫描掩膜层4获取掩膜层4的第一扫描电镜图像100,第一扫描电镜图像100示出掩膜层4的掩膜图案。Referring to FIG. 7 , a first scanning electron microscope image 100 of the mask layer 4 is obtained by scanning the mask layer 4 with a scanning electron microscope. The first scanning electron microscope image 100 shows the mask pattern of the mask layer 4 .
S120:获取半导体结构的除掩膜层外的至少一层半导体器件层的第二扫描电镜图像。S120: Obtain a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer.
如图8所示,通过扫描电镜扫描半导体结构2获取第二扫描电镜图像200,第二扫描电镜图像200为半导体器件层的扫描电镜图像,半导体结构2包括多层半导体器件层时,通过调整扫描电镜的射频功率调整扫描电镜发射的电子的能量,进而改变扫描的扫描深度,以获取不同层的半导体器件层的第二扫描电镜图像200。As shown in FIG. 8 , a second scanning electron microscope image 200 is obtained by scanning the semiconductor structure 2 with a scanning electron microscope. The second scanning electron microscope image 200 is a scanning electron microscope image of the semiconductor device layer. When the semiconductor structure 2 includes multiple semiconductor device layers, by adjusting the scanning The radio frequency power of the electron microscope adjusts the energy of the electrons emitted by the scanning electron microscope, thereby changing the scanning depth of the scan to obtain a second scanning electron microscope image 200 of different layers of semiconductor device layers.
S130:将第一扫描电镜图像和第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。S130: Project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
如图9以及图10所示,将一个或多个第二扫描电镜图像200投影到晶圆1的预设区域,再将第一扫描电镜图像100投影到晶圆1的预设区域,第一扫描电镜图像100叠加在一个或多个第二扫描电镜图像200上形成对准图案300,第一扫描电镜图像100和第二扫描电镜图像200在晶圆1的预设区域形成一个或多个对准图案300。其中,在一个示例中,如图5所示,晶圆1的预设区域可以位于晶圆1的边缘区域12或切割道区3。As shown in FIGS. 9 and 10 , one or more second SEM images 200 are projected onto the preset area of the wafer 1 , and then the first SEM images 100 are projected onto the preset area of the wafer 1 . The SEM image 100 is superimposed on one or more second SEM images 200 to form an alignment pattern 300 . The first SEM image 100 and the second SEM image 200 form one or more pairs in a preset area of the wafer 1 Quasi pattern 300. In one example, as shown in FIG. 5 , the preset area of the wafer 1 may be located at the edge area 12 or the dicing lane area 3 of the wafer 1 .
在一个示例中,半导体结构2包括自半导体结构2的顶面向下依次设置的n层半导体器件层20,n≥2,且n为正整数。通过扫描电镜扫描半导体结构2获取n个第二扫描电镜图像200,将n个第二扫描电镜图像200分别投影到晶圆1的预设区域,然后将第一扫描电镜图像100分别投影n次,将第一扫描电镜图像100分别投影到n个第二扫描电镜图像200在晶圆1的投影区域中,形成n个对准图案300,以将掩膜层4的掩膜图案分别与n层半导体器件层20的对准精度进行检测。In one example, the semiconductor structure 2 includes n layers of semiconductor device layers 20 arranged sequentially from the top surface of the semiconductor structure 2 downward, n≥2, and n is a positive integer. Scan the semiconductor structure 2 with a scanning electron microscope to obtain n second scanning electron microscopy images 200, project the n second scanning electron microscopy images 200 to preset areas of the wafer 1, and then project the first scanning electron microscopy images 100 n times respectively. Project the first SEM image 100 to n second SEM images 200 in the projection area of the wafer 1 to form n alignment patterns 300 to align the mask patterns of the mask layer 4 with n layers of semiconductors respectively. The alignment accuracy of the device layer 20 is tested.
在另一个示例中,通过扫描电镜扫描半导体结构2获取n个第二扫描电镜图像200,将n个第二扫描电镜图像200投影到晶圆1的同一预设区域,形成n个第二扫描电镜图像200的叠加图像,然后再将第一扫描电镜图像100投影到n个第二扫描电镜图像200的叠加图像上,形成对准图案300,将掩膜层4的掩膜图案与半导体器件层20进行对准,同时还对n层半导体器件层20之间的对准精度进行检测。In another example, n second SEM images 200 are obtained by scanning the semiconductor structure 2 with a SEM, and the n second SEM images 200 are projected to the same preset area of the wafer 1 to form n second SEM images. The first scanning electron microscope image 100 is then projected onto the superimposed image of n second scanning electron microscope images 200 to form an alignment pattern 300, and the mask pattern of the mask layer 4 is aligned with the semiconductor device layer 20 Alignment is performed, and at the same time, the alignment accuracy between the n-layer semiconductor device layers 20 is also detected.
本实施例的量测图像的检测方法,通过扫描电镜技术分别获取掩膜层和至少一层半导体器件层的扫描电镜图像,扫描电镜图像具有高清晰度,掩膜层和至少一层半导体器件层的扫描电镜图像形成的对准图案的清晰度更高,实现对掩膜层和至少一层半导体器件层的图案的套刻误差的测量,提高了量测的准确性,提升了产品良率。The measurement image detection method of this embodiment uses scanning electron microscopy technology to obtain scanning electron microscope images of the mask layer and at least one semiconductor device layer. The scanning electron microscope images have high definition, and the mask layer and at least one semiconductor device layer are The alignment pattern formed by the scanning electron microscope image has higher definition, enabling the measurement of the overlay error of the mask layer and the pattern of at least one semiconductor device layer, improving the measurement accuracy and improving the product yield.
根据一个示例性实施例,本实施例是对上述步骤S110的实现方式的说明,如图2所示,在实施过程中,获取位于半导体结构顶层的掩膜层的第一扫描电镜图像的方法,包括以下步骤:According to an exemplary embodiment, this embodiment is an illustration of the implementation of the above step S110. As shown in Figure 2, during the implementation process, a method of obtaining a first scanning electron microscope image of a mask layer located on the top layer of a semiconductor structure is provided. Includes the following steps:
步骤S111:向掩膜层发射第一初级电子。Step S111: Emit first primary electrons to the mask layer.
通过扫描电镜装置向掩膜层4表面发射第一初级电子的电子束,第一初级电子与掩膜层4表面的电子碰撞,掩膜层4表面的电子被激发并释放次级电子。The scanning electron microscope device emits an electron beam of first primary electrons to the surface of the mask layer 4. The first primary electrons collide with the electrons on the surface of the mask layer 4, and the electrons on the surface of the mask layer 4 are excited and release secondary electrons.
在本实施例中,第一初级电子的发射能量大于或等于预设能量值。其中,预设能量值为能够激发掩膜层4,以使掩膜层4表面被激发释放出次级电子的临界能量值。In this embodiment, the emission energy of the first primary electron is greater than or equal to the preset energy value. The preset energy value is a critical energy value that can excite the mask layer 4 so that the surface of the mask layer 4 is excited to release secondary electrons.
步骤S112:获取掩膜层反射回的次级电子。Step S112: Obtain the secondary electrons reflected back by the mask layer.
在掩膜层4的表面的收集掩膜层4释放出的次级电子,并检测每束第一初级电子的电子束的对应位置的次级电子的数量。掩膜层4上具有掩膜图案,掩膜图案的边缘释放出的次级电子的数量更多,检测每束第一初级电子的电子束的对应位置的次级电子的数量,以便后续根据不同位置的次级电子的数量形成第一扫描电镜图像100。The secondary electrons released by the mask layer 4 are collected on the surface of the mask layer 4, and the number of secondary electrons at the corresponding position of the electron beam of each beam of first primary electrons is detected. There is a mask pattern on the mask layer 4. The edge of the mask pattern releases a larger number of secondary electrons. The number of secondary electrons at the corresponding position of the electron beam of each first primary electron is detected so that the subsequent steps can be based on different The number of secondary electrons in the position forms the first SEM image 100 .
步骤S113:根据次级电子,确定第一扫描电镜图像。Step S113: Determine the first scanning electron microscope image based on the secondary electrons.
在本实施例中,可以通过SE(Secondary electrons,次级电子)检测器确定第一扫描电镜图像100,SE检测器根据不同位置的次级电子的数量以确定第一扫描电镜图像100中每个像素的亮度,掩膜图案的边缘释放出的次级电子的数量更多,因此掩膜图案的边缘在第一扫描电镜图像中会显示得更亮。如图7所示,形成的第一扫描电镜图像100提供掩膜层4的表面形貌,示出掩膜图案的形貌信息和特征尺寸。In this embodiment, the first scanning electron microscope image 100 can be determined by a SE (Secondary electrons, secondary electrons) detector. The SE detector determines each of the first scanning electron microscope images 100 according to the number of secondary electrons at different positions. With the brightness of the pixel, the number of secondary electrons released from the edge of the mask pattern is greater, so the edge of the mask pattern will appear brighter in the first SEM image. As shown in FIG. 7 , the formed first scanning electron microscope image 100 provides the surface topography of the mask layer 4 , showing the topography information and feature size of the mask pattern.
本实施例的量测图像的检测方法,通过向掩膜层发射第一初级电子,掩膜层的不同位置被第一初级电子激发释放出不同数量的次级电子数量,获取掩膜层释放出的次级电子, 根据获取到的次级电子形成掩膜层的表面形貌图,掩膜层的表面形貌包括掩膜图案以及特征尺寸。本实施例的量测图像的检测方法获取到的第一扫描电镜图像的清晰度更高,以提高后续掩膜层和至少一层半导体器件层的扫描电镜图像形成的对准图案的清晰度。The measurement image detection method of this embodiment emits first primary electrons to the mask layer, and different positions of the mask layer are excited by the first primary electrons to release different numbers of secondary electrons, thereby obtaining the amount of secondary electrons released by the mask layer. secondary electrons, and form a surface topography of the mask layer based on the acquired secondary electrons. The surface topography of the mask layer includes a mask pattern and feature sizes. The first scanning electron microscopy image obtained by the measurement image detection method of this embodiment has higher clarity, so as to improve the clarity of the alignment pattern formed by the subsequent scanning electron microscopy images of the mask layer and at least one semiconductor device layer.
根据一个示例性实施例,本实施例是对上述步骤S120的实现方式的说明,如图3所示,在实施过程中,获取半导体结构的除掩膜层外的至少一层半导体器件层的第二扫描电镜图像,包括以下步骤:According to an exemplary embodiment, this embodiment is an explanation of the implementation of the above step S120. As shown in FIG. 3, during the implementation process, the third layer of at least one semiconductor device layer of the semiconductor structure except the mask layer is obtained. 2. Scanning electron microscopy images, including the following steps:
S121:获取半导体器件层的深度。S121: Obtain the depth of the semiconductor device layer.
参照图6所示,获取待检测的半导体器件层20距离半导体结构2的顶面的距离作为半导体器件层20的深度。Referring to FIG. 6 , the distance between the semiconductor device layer 20 to be detected and the top surface of the semiconductor structure 2 is obtained as the depth of the semiconductor device layer 20 .
S122:根据半导体器件层的深度,向半导体器件层发射与半导体器件层的深度相匹配的第二初级电子。S122: According to the depth of the semiconductor device layer, second primary electrons matching the depth of the semiconductor device layer are emitted to the semiconductor device layer.
通过扫描电镜装置向半导体结构2的预设深度发射第二初级电子的电子束,以使第二初级电子的电子束入射到目标半导体器件层20中。The electron beam of the second primary electron is emitted to a preset depth of the semiconductor structure 2 through the scanning electron microscope device, so that the electron beam of the second primary electron is incident into the target semiconductor device layer 20 .
在本实施例中,根据半导体器件层20的深度,向半导体器件层20发射与半导体器件层20的深度相匹配的第二初级电子时,首先获取配置信息,配置信息用于表征半导体器件层20的深度与第二初级电子的发射能量的对应关系,而后根据半导体器件层20的深度和配置信息,查询配置信息中与半导体器件层20的深度相对应的第二初级电子的发射能量,进而确定出当前半导体器件层深度对应的第二初级电子的发射能量,并以该第二初级电子的发射能量向半导体器件层20发射第二初级电子。In this embodiment, according to the depth of the semiconductor device layer 20 , when second primary electrons matching the depth of the semiconductor device layer 20 are emitted to the semiconductor device layer 20 , configuration information is first obtained, and the configuration information is used to characterize the semiconductor device layer 20 The corresponding relationship between the depth and the emission energy of the second primary electron, and then according to the depth and configuration information of the semiconductor device layer 20, query the emission energy of the second primary electron corresponding to the depth of the semiconductor device layer 20 in the configuration information, and then determine The emission energy of the second primary electron corresponding to the depth of the current semiconductor device layer is obtained, and the second primary electron is emitted to the semiconductor device layer 20 with the emission energy of the second primary electron.
S123:接收由半导体器件层表面逸出的背散射电子。S123: Receive backscattered electrons escaping from the surface of the semiconductor device layer.
半导体器件层20中材料内部电子在吸收第二初级电子的能量后从半导体结构2的表面反射或散射出来背散射电子。半导体器件层20包括多种不同材料时,不同材料吸收第二初级电子的能力不同,逸出的背散射电子的能量的不同,在半导体器件层20的表面接收不同材料逸出的不同能量的背散射电子。The electrons inside the material in the semiconductor device layer 20 reflect or scatter out the backscattered electrons from the surface of the semiconductor structure 2 after absorbing the energy of the second primary electron. When the semiconductor device layer 20 includes a variety of different materials, different materials have different abilities to absorb second primary electrons, and the energy of the escaped backscattered electrons is different. The surface of the semiconductor device layer 20 receives back energy of different materials escaped from different materials. Scattered electrons.
S124:根据背散射电子,确定半导体器件层的第二扫描电镜图像。S124: Determine the second scanning electron microscope image of the semiconductor device layer based on the backscattered electrons.
在本实施例中,根据背散射电子,确定半导体器件层20的第二扫描电镜图像200的过程中,可以采用以下方法:In this embodiment, in the process of determining the second scanning electron microscope image 200 of the semiconductor device layer 20 based on backscattered electrons, the following method may be used:
将接收到的不同能量的背散射电子经过例如闪烁体(Scintillator)等荧光物质材料,将不同能量的背散射电子转换为不同亮度的光电子,向光电子施加驱动电压调整光电子的明暗对比,再对光电子进行增幅处理即可获取第二扫描电镜图像200。如图8所示,第二 扫描电镜图像200为根据不同能量的背散射电子形成半导体器件层20的材料成分图。The received backscattered electrons of different energies pass through fluorescent materials such as scintillators to convert the backscattered electrons of different energies into photoelectrons of different brightness. A driving voltage is applied to the photoelectrons to adjust the light and dark contrast of the photoelectrons, and then the photoelectrons are The second scanning electron microscope image 200 can be obtained by performing amplification processing. As shown in Figure 8, the second scanning electron microscope image 200 is a material composition diagram of the semiconductor device layer 20 formed according to backscattered electrons of different energies.
其中,闪烁体是一类吸收高能粒子或射线后能够发光的材料。Among them, scintillator is a type of material that can emit light after absorbing high-energy particles or rays.
在一实施例中,如图12所示,自半导体结构2的顶面(以图中示出的方位中的上方为顶)向下包括依次设置的第一半导体器件层20a、第二半导体器件层20b和第三半导体器件层20c,则在步骤S121中依次获取第一半导体器件层20a距离半导体结构2的顶面的距离作为第一半导体器件层20a的深度,获取第二半导体器件层20b距离半导体结构2的顶面的距离作为第二半导体器件层20b的深度,获取第三半导体器件层20c距离半导体结构2的顶面的距离作为第三半导体器件层20c的深度。In one embodiment, as shown in FIG. 12 , from the top surface of the semiconductor structure 2 (taking the top in the orientation shown in the figure as the top) downward, the first semiconductor device layer 20 a and the second semiconductor device layer are sequentially arranged. layer 20b and the third semiconductor device layer 20c, then in step S121, the distance between the first semiconductor device layer 20a and the top surface of the semiconductor structure 2 is sequentially obtained as the depth of the first semiconductor device layer 20a, and the distance of the second semiconductor device layer 20b is obtained. The distance from the top surface of the semiconductor structure 2 is taken as the depth of the second semiconductor device layer 20b, and the distance between the third semiconductor device layer 20c and the top surface of the semiconductor structure 2 is taken as the depth of the third semiconductor device layer 20c.
然后重复步骤S122-步骤S124,如图12以及图13所示,向半导体结构2发射与第一半导体器件层20a相匹配的具有第一能量的第二初级电子,获取第一半导体器件层20a的第二扫描电镜图像200a;向半导体结构2发射与第二半导体器件层20b相匹配的具有第二能量的第二初级电子,获取第二半导体器件层20b的第二扫描电镜图像200b;向半导体结构2发射与第三半导体器件层20c相匹配的具有第三能量的第二初级电子,获取第三半导体器件层20c的第二扫描电镜图像200c。Then, steps S122 to S124 are repeated. As shown in FIGS. 12 and 13 , second primary electrons with a first energy matching the first semiconductor device layer 20a are emitted to the semiconductor structure 2 to obtain the first semiconductor device layer 20a. The second scanning electron microscope image 200a; emit second primary electrons with the second energy that match the second semiconductor device layer 20b to the semiconductor structure 2, and obtain the second scanning electron microscope image 200b of the second semiconductor device layer 20b; to the semiconductor structure 2 2. Emit second primary electrons with a third energy that match the third semiconductor device layer 20c, and obtain a second scanning electron microscope image 200c of the third semiconductor device layer 20c.
本实施例的量测图像的检测方法,通过半导体器件层的深度与第二初级电子的发射能量的对应关系,向半导体结构发射具有与半导体器件层的深度相匹配的能量的第二初级电子,不同材料被第二初级电子吸收后逸出的背散射电子的能量不同,根据获取的不同能量的背散射电子形成半导体器件层的第二扫描电镜图;本实施例中可以一次获取多层半导体器件层的深度,向半导体结构多次发射与不同层的半导体器件层的深度相匹配的能量的第二初级电子,获得多层半导体器件层的第二扫描电镜图,减少扫描次数,节约扫描时间。The measurement image detection method of this embodiment emits second primary electrons with energy matching the depth of the semiconductor device layer to the semiconductor structure through the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron, Different materials have different energies of backscattered electrons that escape after being absorbed by the second primary electrons. According to the acquired backscattered electrons of different energies, a second scanning electron microscope image of the semiconductor device layer is formed; in this embodiment, multi-layer semiconductor devices can be acquired at one time According to the depth of the layer, second primary electrons with energies matching the depths of the semiconductor device layers of different layers are emitted multiple times to the semiconductor structure to obtain the second scanning electron microscope image of the multi-layer semiconductor device layer, thereby reducing the number of scans and saving scanning time.
根据一个示例性实施例,本实施例是对上述步骤S130的实现方式的说明,如图4所示,在实施过程中,将第一扫描电镜图像和第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案,包括以下步骤:According to an exemplary embodiment, this embodiment is an illustration of the implementation of the above step S130. As shown in Figure 4, during the implementation process, at least one of the first scanning electron microscope image and the second scanning electron microscope image is separately Projecting onto a preset area of the wafer to form an alignment pattern includes the following steps:
步骤S131:建立第二扫描电镜图像的多个标记图像与多个半导体器件层之间的一一对应关系。Step S131: Establish a one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers.
如图12、图13以及图14所示,半导体结构2包括多层半导体器件层20时,分别获取多层半导体器件层20的第二扫描电镜图像200,将多层半导体器件层20与多个第二扫描电镜图像200建立一一对应关系,以便后续对形成的标记图像400的量测观察。As shown in FIG. 12 , FIG. 13 and FIG. 14 , when the semiconductor structure 2 includes a multi-layer semiconductor device layer 20 , a second scanning electron microscope image 200 of the multi-layer semiconductor device layer 20 is obtained respectively, and the multi-layer semiconductor device layer 20 and a plurality of The second scanning electron microscope image 200 establishes a one-to-one correspondence to facilitate subsequent measurement and observation of the formed mark image 400 .
在一实施例中,如图12所示,半导体结构包括第一半导体器件层20a、第二半导体器件层20b和第三半导体器件层20c,如图13以及图14所示,则将第一半导体器件层20a、 第二半导体器件层20b和第三半导体器件层20c的第二扫描电镜图像200投影形成的标记图像400对应为第一标记图像410、第二标记图像420和第三标记图像430。In one embodiment, as shown in Figure 12, the semiconductor structure includes a first semiconductor device layer 20a, a second semiconductor device layer 20b and a third semiconductor device layer 20c. As shown in Figures 13 and 14, the first semiconductor device layer 20a, the second semiconductor device layer 20b and the third semiconductor device layer 20c. The marking image 400 formed by the projection of the second scanning electron microscope image 200 of the device layer 20a, the second semiconductor device layer 20b and the third semiconductor device layer 20c corresponds to the first marking image 410, the second marking image 420 and the third marking image 430.
步骤S132:将多个标记图像分别投影至预设区域,其中,多个标记图像分别错开。Step S132: Project multiple mark images to preset areas respectively, wherein the multiple mark images are respectively staggered.
在一个示例中,如图11以及图14所示,预设区域可位于晶圆1的切割道区3。即,本实施例的检测方法应用于相邻的半导体结构2之间的切割道区3,标记图像400设置于晶圆1的切割道区3,既能避免后续在标记图像400上形成的对准图案300与晶圆1的中心区域11的半导体结构2产生影响,同时充分利用晶圆1的空间,提高晶圆1的利用率。In one example, as shown in FIG. 11 and FIG. 14 , the preset area may be located in the scribe lane area 3 of the wafer 1 . That is, the detection method of this embodiment is applied to the scribe line area 3 between adjacent semiconductor structures 2, and the mark image 400 is disposed in the scribe line area 3 of the wafer 1, which can avoid subsequent alignment on the mark image 400. The quasi-pattern 300 affects the semiconductor structure 2 in the central area 11 of the wafer 1 and at the same time makes full use of the space of the wafer 1 to improve the utilization rate of the wafer 1 .
步骤S133:将第一扫描电镜图像投影至多个标记图像中的一个标记图像上,使第一扫描电镜图像与一个标记图像重合,形成对准图案。Step S133: Project the first scanning electron microscope image onto one of the plurality of mark images, so that the first scanning electron microscope image and the one mark image overlap to form an alignment pattern.
如图15所示,参照图14,将第一扫描电镜图像100投影到标记图像400上,使第一扫描电镜图像100与一个标记图像400重合,形成掩膜层4与此标记图像400对应的半导体器件层20的对准图案300。As shown in Figure 15, referring to Figure 14, the first scanning electron microscope image 100 is projected onto the mark image 400, so that the first scanning electron microscope image 100 overlaps a mark image 400, and a mask layer 4 corresponding to the mark image 400 is formed. Alignment pattern 300 of semiconductor device layer 20 .
根据一个示例性实施例,本实施例是对上述步骤S130的实现方式的说明,在实施过程中,将第一扫描电镜图像和第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案,还包括以下步骤:According to an exemplary embodiment, this embodiment is an illustration of the implementation of the above step S130. During the implementation, at least one of the first scanning electron microscope image and the second scanning electron microscope image is respectively projected onto the predetermined area of the wafer. Setting the area to form the alignment pattern also includes the following steps:
步骤S134:将多个标记图像分别投影至预设区域,其中,多个标记图像重合,形成重合标记。Step S134: Project multiple mark images to preset areas respectively, where the multiple mark images overlap to form overlapping marks.
如图16以及图17所示,参照图14,可以将第一标记图像410、第二标记图像420、第三标记图像430中的两个或三个投影在同一位置,形成重合标记500,重合标记500为第一半导体器件层20a、第二半导体器件层20b和第三半导体器件层20c中的两个或三个共同形成的标记,可通过重合标记500量测多层半导体器件层20的套准精度。As shown in FIGS. 16 and 17 , referring to FIG. 14 , two or three of the first mark image 410 , the second mark image 420 , and the third mark image 430 can be projected at the same position to form an overlapping mark 500 . The mark 500 is a mark formed by two or three of the first semiconductor device layer 20a, the second semiconductor device layer 20b and the third semiconductor device layer 20c. The stacking of the multi-layer semiconductor device layer 20 can be measured by overlapping the mark 500. Accuracy.
步骤S135:将第一扫描电镜图像投影至重合标记,形成对准图案。Step S135: Project the first scanning electron microscope image onto the overlay mark to form an alignment pattern.
如图18所示,参照图17,将第一扫描电镜图像100投影到重合标记500上,使第一扫描电镜图像100与重合标记500重合,形成掩膜层4与多层半导体器件层20的对准图案300。As shown in FIG. 18 , referring to FIG. 17 , the first SEM image 100 is projected onto the overlay mark 500 , so that the first SEM image 100 and the overlay mark 500 are overlaid to form the mask layer 4 and the multilayer semiconductor device layer 20 . Align pattern 300.
在本实施例中,如图14-17所示,为了提高对准精度,保证对准图案300的量测准确性,第一扫描电镜图像100投影到标记图像400上,还要考虑权重信息,在获取到权重信息后,根据权重信息,调整第一扫描电镜图像100与标记图像400或者重合标记500的位置。In this embodiment, as shown in Figures 14-17, in order to improve the alignment accuracy and ensure the measurement accuracy of the alignment pattern 300, the first scanning electron microscope image 100 is projected onto the mark image 400, and the weight information is also considered, After the weight information is obtained, the positions of the first scanning electron microscope image 100 and the mark image 400 or the overlapping mark 500 are adjusted according to the weight information.
将第一扫描电镜图像100投影到标记图像400上时,投影位置可能会偏离标记图像 400,获取第一扫描电镜图像100每次投影到标记图像400上偏离出标记图像400的偏离方向和偏离距离,将每次投影的偏离方向和偏离距离进行叠加,得到权重信息。再将第一扫描电镜图像100投影到标记图像400上时,根据权重信息调整第一扫描电镜图像100的投影位置,以使第一扫描电镜图像100投影到标记图像400并与标记图像400重合,提高对准图案300的对准精度。本实施例在每次将第一扫描电镜图像100投影到标记图像400上时,获取权重信息,在后续投影时,根据先前的权重信息投影第一扫描电镜图像100,以使第一扫描电镜图像100能够精确投影到标记图像400所在位置,提高对准精度,减少投影次数。When the first SEM image 100 is projected onto the mark image 400, the projection position may deviate from the mark image 400. Obtain the deviation direction and deviation distance of the first SEM image 100 from the mark image 400 each time it is projected onto the mark image 400. , superimpose the deviation direction and deviation distance of each projection to obtain the weight information. When the first SEM image 100 is projected onto the mark image 400, the projection position of the first SEM image 100 is adjusted according to the weight information, so that the first SEM image 100 is projected onto the mark image 400 and coincides with the mark image 400, The alignment accuracy of the alignment pattern 300 is improved. In this embodiment, weight information is obtained each time the first scanning electron microscope image 100 is projected onto the mark image 400, and in subsequent projections, the first scanning electron microscope image 100 is projected according to the previous weight information, so that the first scanning electron microscope image 100 can accurately project to the location of the marked image 400, improving alignment accuracy and reducing the number of projections.
本实施例的量测图像的检测方法,可以将第一扫描电镜图像投影至一个标记图像上形成对准图案,也可以将第一扫描电镜图像投影至多个标记图像的重合标记上形成对准图案,也即可以将掩膜层的掩膜图案与一层半导体器件层的图案进行套准量测,也可以将掩膜层的掩膜图案与多层半导体器件层的图案进行套准量测,还可以对多层半导体器件层的图案进行套准量测,多种对准量测方式,提高了量测精度和量测的灵活性。The measurement image detection method of this embodiment can project the first scanning electron microscope image onto a mark image to form an alignment pattern, or can project the first scanning electron microscope image onto overlapping marks of multiple mark images to form an alignment pattern. , that is, the mask pattern of the mask layer and the pattern of a semiconductor device layer can be aligned and measured, or the mask pattern of the mask layer and the pattern of a multi-layer semiconductor device layer can be aligned and measured, It can also perform registration measurement on the patterns of multi-layer semiconductor device layers. Various alignment measurement methods improve the measurement accuracy and measurement flexibility.
在一个示例性实施例中,如图19所示,提供了一种量测图像的检测装置,应用于半导体设备,量测图像的检测装置包括:In an exemplary embodiment, as shown in Figure 19, a detection device for measuring images is provided, which is applied to semiconductor equipment. The detection device for measuring images includes:
获取模块601,获取模块601用于获取位于半导体结构的顶层的掩膜层的第一扫描电镜图像。The acquisition module 601 is used to acquire a first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure.
获取模块601还用于获取半导体结构的除掩膜层外的至少一层半导体器件层的第二扫描电镜图像。The acquisition module 601 is also used to acquire a second scanning electron microscope image of at least one semiconductor device layer except the mask layer of the semiconductor structure.
投影模块602,用于将第一扫描电镜图像和第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。The projection module 602 is configured to project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
在一个示例性实施例中,获取模块包括:In an exemplary embodiment, the acquisition module includes:
第一发射单元,用于向掩膜层发射第一初级电子。The first emission unit is used to emit first primary electrons to the mask layer.
第一获取单元,用于获取掩膜层反射回的次级电子。The first acquisition unit is used to acquire the secondary electrons reflected back by the mask layer.
第一确定单元,用于根据次级电子,确定第一扫描电镜图像。The first determination unit is used to determine the first scanning electron microscope image according to the secondary electrons.
在一个示例性实施例中,获取模块包括:In an exemplary embodiment, the acquisition module includes:
第二确定单元,用于获取半导体器件层的深度。The second determination unit is used to obtain the depth of the semiconductor device layer.
第二发射单元,用于根据半导体器件层的深度,向半导体器件层发射与半导体器件层的深度相匹配的第二初级电子。The second emission unit is configured to emit second primary electrons matching the depth of the semiconductor device layer to the semiconductor device layer according to the depth of the semiconductor device layer.
第二获取单元,用于接收由半导体器件层表面逸出的背散射电子。The second acquisition unit is used to receive backscattered electrons escaping from the surface of the semiconductor device layer.
第二确定单元,还用于根据背散射电子,确定半导体器件层的第二扫描电镜图像。The second determination unit is also used to determine the second scanning electron microscope image of the semiconductor device layer based on the backscattered electrons.
根据本公开的一些实施例,第二确定单元用于:According to some embodiments of the present disclosure, the second determining unit is used for:
获取配置信息,配置信息用于表征半导体器件层的深度与第二初级电子的发射能量的对应关系。Obtain configuration information, which is used to characterize the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron.
根据半导体器件层的深度和配置信息,确定第二初级电子的发射能量。Based on the depth and configuration information of the semiconductor device layer, the emission energy of the second primary electron is determined.
向半导体器件层发射第二初级电子。Second primary electrons are emitted toward the semiconductor device layer.
在一个示例性实施例中,投影模块用于:In an exemplary embodiment, the projection module is used to:
建立第二扫描电镜图像的多个标记图像与多个半导体器件层之间的一一对应关系。A one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers is established.
将多个标记图像分别投影至预设区域,其中,多个标记图像分别错开。Project multiple mark images to preset areas respectively, where the multiple mark images are respectively staggered.
将第一扫描电镜图像投影至多个标记图像中的一个标记图像上,使第一扫描电镜图像与一个标记图像重合,形成对准图案。The first scanning electron microscope image is projected onto a mark image among the plurality of mark images, so that the first scanning electron microscope image and the one mark image are overlapped to form an alignment pattern.
或者,or,
将多个标记图像分别投影至预设区域,其中,多个标记图像重合,形成重合标记。Project multiple mark images to preset areas respectively, where the multiple mark images overlap to form overlapping marks.
将第一扫描电镜图像投影至重合标记,形成对准图案。Project the first SEM image onto the coincident mark to form an alignment pattern.
在一个示例性实施例中,获取模块还用于:In an exemplary embodiment, the acquisition module is also used to:
获取权重信息。Get weight information.
投影模块还用于:The projection module is also used for:
根据权重信息,调整第一扫描电镜图像与标记图像或者重合标记的位置。According to the weight information, the positions of the first scanning electron microscope image and the mark image or the overlapping mark are adjusted.
图20是根据一示例性实施例示出的一种半导体设备,即半导体设备700的框图。例如,半导体设备700可以被提供为终端设备。参照图20,半导体设备700包括处理器701,处理器的个数可以根据需要设置为一个或者多个。半导体设备700还包括存储器702,用于存储可由处理器701的执行的指令,例如应用程序。存储器的个数可以根据需要设置一个或者多个。其存储的应用程序可以为一个或者多个。处理器701被配置为执行指令,以执行上述执行量测图像的检测方法。FIG. 20 is a block diagram of a semiconductor device, that is, a semiconductor device 700 according to an exemplary embodiment. For example, the semiconductor device 700 may be provided as a terminal device. Referring to FIG. 20 , a semiconductor device 700 includes a processor 701 , and the number of processors can be set to one or more as needed. Semiconductor device 700 also includes memory 702 for storing instructions, such as application programs, executable by processor 701 . The number of memories can be set to one or more as needed. The stored applications can be one or more. The processor 701 is configured to execute instructions to execute the above-mentioned method of detecting measurement images.
本领域技术人员应明白,本公开的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质,包括但不限于RAM、ROM、EEPROM、闪存 或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质等。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。It should be understood by those skilled in the art that embodiments of the present disclosure may be provided as methods, apparatuses (devices), or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data , including but not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may be used Any other medium that stores the desired information and can be accessed by the computer, etc. Furthermore, it is known to those of skill in the art that communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and may include any information delivery media.
在示例性实施例中,提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器702,上述指令可由半导体设备700的处理器701执行以完成上述实施例中示出的量测图像的检测方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, a non-transitory computer-readable storage medium including instructions, such as a memory 702 including instructions, executable by the processor 701 of the semiconductor device 700 to complete the steps illustrated in the above embodiments is provided. Detection method for measuring images. For example, the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
一种非临时性计算机可读存储介质,当所述存储介质中的指令由半导体设备的处理器执行时,使得半导体设备能够执行:A non-transitory computer-readable storage medium that, when instructions in the storage medium are executed by a processor of a semiconductor device, enables the semiconductor device to perform:
S110:获取位于半导体结构的顶层的掩膜层的第一扫描电镜图像。S110: Obtain a first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure.
S120:获取半导体结构的除掩膜层外的至少一层半导体器件层的第二扫描电镜图像。S120: Obtain a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer.
S130:将第一扫描电镜图像和第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。S130: Project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。Each embodiment or implementation mode in this specification is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between various embodiments can be referred to each other.
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。In the description of this specification, reference to the description of the terms "embodiments," "exemplary embodiments," "some embodiments," "illustrative embodiments," "examples," etc. is intended to be described in connection with the embodiments or examples. A specific feature, structure, material, or characteristic is included in at least one embodiment or example of the present disclosure.
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。In the description of the present disclosure, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings. It is only for the convenience of describing the present disclosure and simplifying the description. It does not indicate or imply that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limitations on the present disclosure.
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。It will be understood that the terms "first", "second", etc. used in this disclosure may be used to describe various structures in this disclosure, but these structures are not limited by these terms. These terms are used only to distinguish one structure from another.
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图 中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。In one or more of the figures, identical elements are designated with similar reference numbers. For the sake of clarity, various parts of the figures are not to scale. Additionally, some well-known parts may not be shown. For the sake of simplicity, the structure obtained after several steps can be described in one figure. Many specific details of the present disclosure are described below, such as device structures, materials, dimensions, processing processes and techniques, to provide a clearer understanding of the present disclosure. However, as one skilled in the art will appreciate, the present disclosure may be practiced without these specific details.
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present disclosure, but not to limit it; although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that it can still be used Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent substitutions are made to some or all of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to depart from the scope of the technical solutions of the embodiments of the present disclosure.
工业实用性Industrial applicability
本公开实施例所提供的量测图像的检测方法、装置、半导体设备及存储介质中,检测方法通过扫描电镜获取掩膜层和至少一层半导体器件层的扫描电镜图像,扫描电镜图像具有高清晰度,掩膜层和至少一层半导体器件层的扫描电镜图像形成的对准图案更加清晰,提高了量测图像的清晰度和量测精度;并且,在提高量测精度的同时,通过一次扫描即可得到多层先前层的扫描图像,还能提高量测计算的效率,减少花费,降低成本。In the measurement image detection method, device, semiconductor equipment and storage medium provided by the embodiments of the present disclosure, the detection method obtains the scanning electron microscope image of the mask layer and at least one semiconductor device layer through a scanning electron microscope, and the scanning electron microscope image has high definition Therefore, the alignment pattern formed by the scanning electron microscope image of the mask layer and at least one semiconductor device layer is clearer, which improves the clarity of the measurement image and the measurement accuracy; and, while improving the measurement accuracy, through one scan Scanned images of multiple previous layers can be obtained, which can also improve the efficiency of measurement calculations, reduce expenses, and reduce costs.

Claims (15)

  1. 一种量测图像的检测方法,应用于半导体设备,所述量测图像的检测方法包括:A method for detecting measurement images, applied to semiconductor equipment, the method for detecting measurement images includes:
    获取位于半导体结构顶层的掩膜层的第一扫描电镜图像;Obtaining a first scanning electron microscope image of a mask layer located on top of the semiconductor structure;
    获取半导体结构的除所述掩膜层外的至少一层半导体器件层的第二扫描电镜图像;Obtaining a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer;
    将所述第一扫描电镜图像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。Project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
  2. 根据权利要求1所述的量测图像的检测方法,其中,所述获取位于半导体结构顶层的掩膜层的第一扫描电镜图像,包括:The method for detecting measurement images according to claim 1, wherein said obtaining the first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure includes:
    向所述掩膜层发射第一初级电子;Emitting first primary electrons toward the mask layer;
    获取所述掩膜层反射回的次级电子;Obtain the secondary electrons reflected back by the mask layer;
    根据所述次级电子,确定所述第一扫描电镜图像。The first SEM image is determined based on the secondary electrons.
  3. 根据权利要求2所述的量测图像的检测方法,其中,所述第一初级电子的发射能量大于或等于预设能量值。The method for detecting a measurement image according to claim 2, wherein the emission energy of the first primary electron is greater than or equal to a preset energy value.
  4. 根据权利要求1所述的量测图像的检测方法,其中,所述获取半导体结构的除所述掩膜层外的至少一层半导体器件层的第二扫描电镜图像,包括:The method for detecting measurement images according to claim 1, wherein said obtaining a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer includes:
    获取所述半导体器件层的深度;Obtain the depth of the semiconductor device layer;
    根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子;According to the depth of the semiconductor device layer, emitting second primary electrons matching the depth of the semiconductor device layer to the semiconductor device layer;
    接收由所述半导体器件层表面逸出的背散射电子;receiving backscattered electrons escaping from the surface of the semiconductor device layer;
    根据所述背散射电子,确定所述半导体器件层的第二扫描电镜图像。Based on the backscattered electrons, a second scanning electron microscope image of the semiconductor device layer is determined.
  5. 根据权利要求4所述的量测图像的检测方法,其中,所述根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子,包括:The method for detecting measurement images according to claim 4, wherein the second primary electrons matching the depth of the semiconductor device layer are emitted to the semiconductor device layer according to the depth of the semiconductor device layer, include:
    获取配置信息,所述配置信息用于表征所述半导体器件层的深度与所述第二初级电子的发射能量的对应关系;Obtain configuration information, the configuration information being used to characterize the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron;
    根据所述半导体器件层的深度和所述配置信息,确定所述第二初级电子的发射能量;determining the emission energy of the second primary electron according to the depth of the semiconductor device layer and the configuration information;
    向所述半导体器件层发射所述第二初级电子。The second primary electrons are emitted toward the semiconductor device layer.
  6. 根据权利要求1所述的量测图像的检测方法,其中,所述将所述第一扫描电镜图 像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案,包括:The method for detecting measurement images according to claim 1, wherein the projecting at least one image of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer forms a Alignment patterns, including:
    建立所述第二扫描电镜图像的多个标记图像与多个所述半导体器件层之间的一一对应关系;Establishing a one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers;
    将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像分别错开;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images are respectively staggered;
    将所述第一扫描电镜图像投影至多个所述标记图像中的一个所述标记图像上,使所述第一扫描电镜图像与一个所述标记图像重合,形成所述对准图案;Project the first scanning electron microscope image onto one of the plurality of mark images so that the first scanning electron microscope image overlaps with one of the mark images to form the alignment pattern;
    或者,or,
    将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像重合,形成重合标记;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images overlap to form an overlapping mark;
    将所述第一扫描电镜图像投影至所述重合标记,形成所述对准图案。The first scanning electron microscope image is projected onto the coincidence mark to form the alignment pattern.
  7. 根据权利要求6所述的量测图像的检测方法,其中,所述量测图像的检测方法还包括:The method for detecting measurement images according to claim 6, wherein the method for detecting measurement images further includes:
    获取权重信息;Get weight information;
    根据所述权重信息,调整所述第一扫描电镜图像与所述标记图像或者重合标记的位置。According to the weight information, the positions of the first scanning electron microscope image and the mark image or the overlapping mark are adjusted.
  8. 一种量测图像的检测装置,应用于半导体设备,所述量测图像的检测装置包括:A detection device for measuring images, applied to semiconductor equipment, the device for detecting measurement images includes:
    获取模块,用于获取位于半导体结构顶层的掩膜层的第一扫描电镜图像;An acquisition module, configured to acquire a first scanning electron microscope image of the mask layer located on the top layer of the semiconductor structure;
    所述获取模块,还用于获取半导体结构的除所述掩膜层外的至少一层半导体器件层的第二扫描电镜图像;The acquisition module is also used to acquire a second scanning electron microscope image of at least one semiconductor device layer of the semiconductor structure except the mask layer;
    投影模块,用于将所述第一扫描电镜图像和所述第二扫描电镜图像中的至少一个图像分别投影至晶圆的预设区域,形成对准图案。A projection module, configured to project at least one of the first scanning electron microscope image and the second scanning electron microscope image to a preset area of the wafer to form an alignment pattern.
  9. 根据权利要求8所述的量测图像的检测装置,其中,所述获取模块包括:The detection device for measuring images according to claim 8, wherein the acquisition module includes:
    第一发射单元,用于向所述掩膜层发射第一初级电子;A first emission unit configured to emit first primary electrons to the mask layer;
    第一获取单元,用于获取所述掩膜层反射回的次级电子;A first acquisition unit configured to acquire secondary electrons reflected back by the mask layer;
    第一确定单元,用于根据所述次级电子,确定所述第一扫描电镜图像。A first determining unit configured to determine the first scanning electron microscope image according to the secondary electrons.
  10. 根据权利要求8所述的量测图像的检测装置,其中,所述获取模块包括:The detection device for measuring images according to claim 8, wherein the acquisition module includes:
    第二确定单元,用于获取所述半导体器件层的深度;a second determination unit configured to obtain the depth of the semiconductor device layer;
    第二发射单元,用于根据所述半导体器件层的深度,向所述半导体器件层发射与所述半导体器件层的深度相匹配的第二初级电子;a second emission unit configured to emit second primary electrons matching the depth of the semiconductor device layer to the semiconductor device layer according to the depth of the semiconductor device layer;
    第二获取单元,用于接收由所述半导体器件层表面逸出的背散射电子;a second acquisition unit configured to receive backscattered electrons escaping from the surface of the semiconductor device layer;
    所述第二确定单元,还用于根据所述背散射电子,确定所述半导体器件层的第二扫描电镜图像。The second determination unit is further configured to determine a second scanning electron microscope image of the semiconductor device layer based on the backscattered electrons.
  11. 根据权利要求10所述的量测图像的检测装置,其中,所述第二确定单元用于:The detection device for measuring images according to claim 10, wherein the second determination unit is used for:
    获取配置信息,所述配置信息用于表征所述半导体器件层的深度与所述第二初级电子的发射能量的对应关系;Obtain configuration information, the configuration information being used to characterize the corresponding relationship between the depth of the semiconductor device layer and the emission energy of the second primary electron;
    根据所述半导体器件层的深度和所述配置信息,确定所述第二初级电子的发射能量;determining the emission energy of the second primary electron according to the depth of the semiconductor device layer and the configuration information;
    向所述半导体器件层发射所述第二初级电子。The second primary electrons are emitted toward the semiconductor device layer.
  12. 根据权利要求8所述的量测图像的检测装置,其中,所述投影模块用于:The detection device for measuring images according to claim 8, wherein the projection module is used for:
    建立所述第二扫描电镜图像的多个标记图像与多个所述半导体器件层之间的一一对应关系;Establishing a one-to-one correspondence between the plurality of mark images of the second scanning electron microscope image and the plurality of semiconductor device layers;
    将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像分别错开;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images are respectively staggered;
    将所述第一扫描电镜图像投影至多个所述标记图像中的一个所述标记图像上,使所述第一扫描电镜图像与一个所述标记图像重合,形成所述对准图案;Project the first scanning electron microscope image onto one of the plurality of mark images so that the first scanning electron microscope image overlaps with one of the mark images to form the alignment pattern;
    或者,or,
    将多个所述标记图像分别投影至所述预设区域,其中,多个所述标记图像重合,形成重合标记;Project a plurality of the mark images to the preset area respectively, wherein the plurality of mark images overlap to form an overlapping mark;
    将所述第一扫描电镜图像投影至所述重合标记,形成所述对准图案。The first scanning electron microscope image is projected onto the coincidence mark to form the alignment pattern.
  13. 根据权利要求12所述的量测图像的检测装置,其中,所述获取模块还用于:The detection device for measuring images according to claim 12, wherein the acquisition module is also used for:
    获取权重信息;Get weight information;
    所述投影模块还用于:The projection module is also used to:
    根据所述权重信息,调整所述第一扫描电镜图像与所述标记图像或者重合标记的位置。According to the weight information, the positions of the first scanning electron microscope image and the mark image or the overlapping mark are adjusted.
  14. 一种半导体设备,所述半导体设备包括:A semiconductor device, the semiconductor device includes:
    处理器;processor;
    用于存储处理器可执行指令的存储器;Memory used to store instructions executable by the processor;
    其中,所述处理器被配置为执行如权利要求1至7任一项所述的量测图像的检测方法。Wherein, the processor is configured to execute the measurement image detection method according to any one of claims 1 to 7.
  15. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由半导体设备的处理器执行时,使得半导体设备能够执行如权利要求1至7中任一项所述的量测图像的检测方法。A non-transitory computer-readable storage medium that, when instructions in the storage medium are executed by a processor of a semiconductor device, enables the semiconductor device to perform the measurement of the image as claimed in any one of claims 1 to 7 Detection method.
PCT/CN2022/092945 2022-04-24 2022-05-16 Measurement image detection method, apparatus, semiconductor device, and storage medium WO2023206633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210435336.5 2022-04-24
CN202210435336.5A CN116977244A (en) 2022-04-24 2022-04-24 Method and device for detecting measurement image, semiconductor device and storage medium

Publications (1)

Publication Number Publication Date
WO2023206633A1 true WO2023206633A1 (en) 2023-11-02

Family

ID=88483701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092945 WO2023206633A1 (en) 2022-04-24 2022-05-16 Measurement image detection method, apparatus, semiconductor device, and storage medium

Country Status (2)

Country Link
CN (1) CN116977244A (en)
WO (1) WO2023206633A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456654A (en) * 2012-05-30 2013-12-18 中芯国际集成电路制造(上海)有限公司 Measurement method
CN105206547A (en) * 2015-09-28 2015-12-30 上海集成电路研发中心有限公司 Method for measuring double image alignment precision
CN108227390A (en) * 2016-12-22 2018-06-29 中芯国际集成电路制造(上海)有限公司 A kind of image quality detection method of litho machine
CN111524181A (en) * 2020-04-28 2020-08-11 陕西科技大学 Automatic measurement method for porous material holes based on scanning electron microscope image segmentation
CN112053967A (en) * 2020-08-21 2020-12-08 华虹半导体(无锡)有限公司 Method for evaluating influence degree of mask defect on device manufacturing
CN114322865A (en) * 2021-12-30 2022-04-12 长江存储科技有限责任公司 Method and apparatus for measuring semiconductor device, and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456654A (en) * 2012-05-30 2013-12-18 中芯国际集成电路制造(上海)有限公司 Measurement method
CN105206547A (en) * 2015-09-28 2015-12-30 上海集成电路研发中心有限公司 Method for measuring double image alignment precision
CN108227390A (en) * 2016-12-22 2018-06-29 中芯国际集成电路制造(上海)有限公司 A kind of image quality detection method of litho machine
CN111524181A (en) * 2020-04-28 2020-08-11 陕西科技大学 Automatic measurement method for porous material holes based on scanning electron microscope image segmentation
CN112053967A (en) * 2020-08-21 2020-12-08 华虹半导体(无锡)有限公司 Method for evaluating influence degree of mask defect on device manufacturing
CN114322865A (en) * 2021-12-30 2022-04-12 长江存储科技有限责任公司 Method and apparatus for measuring semiconductor device, and storage medium

Also Published As

Publication number Publication date
CN116977244A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
US10446367B2 (en) Scan strategies to minimize charging effects and radiation damage of charged particle beam metrology system
US9852881B2 (en) Scanning electron microscope system, pattern measurement method using same, and scanning electron microscope
US7351968B1 (en) Multi-pixel electron emission die-to-die inspection
US6853204B2 (en) Wafer inspection method of charging wafer with a charged particle beam then measuring electric properties thereof, and inspection device based thereon
US8019161B2 (en) Method, device and computer program of length measurement
US10417756B2 (en) Pattern measurement apparatus and defect inspection apparatus
KR101730918B1 (en) Overlay error measuring device and computer program for causing computer to measure pattern
US8766183B2 (en) Charged particle beam device
JP7380560B2 (en) Battery inspection device and battery inspection method
US9934939B2 (en) Scanning electron microscope system capable of measuring in-cell overlay offset using high-energy electron beam and method thereof
US10352879B2 (en) X-ray inspection method and device
JP2008041890A (en) Measuring method for multi-charge-particle beam, exposure apparatus, and device manufacturing method
TW202115763A (en) Multi-scanning electron microscopy for wafer alignment
US10192716B2 (en) Multi-beam dark field imaging
WO2023206633A1 (en) Measurement image detection method, apparatus, semiconductor device, and storage medium
JP3836735B2 (en) Circuit pattern inspection device
US7952071B2 (en) Apparatus and method for inspecting sample surface
JP2005181347A (en) Inspection device, inspection system and inspection method for circuit pattern
TW202208837A (en) Scanning electron microscope image anchoring to design for array
JPWO2014076831A1 (en) Semiconductor inspection apparatus and inspection method using charged particle beam
JP2007281500A (en) Inspection device, inspection system and inspection method for circuit pattern
JP2019012766A (en) Inspection equipment
US20220392737A1 (en) Scanning Electron Microscope and Image Generation Method Using Scanning Electron Microscope
US7398178B2 (en) Method of determining the irregularities of a hole
KR100356757B1 (en) Method for inspection of scaling & overlay pattern on semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939470

Country of ref document: EP

Kind code of ref document: A1