WO2023206585A1 - Ultrasonic welding system and method - Google Patents

Ultrasonic welding system and method Download PDF

Info

Publication number
WO2023206585A1
WO2023206585A1 PCT/CN2022/090824 CN2022090824W WO2023206585A1 WO 2023206585 A1 WO2023206585 A1 WO 2023206585A1 CN 2022090824 W CN2022090824 W CN 2022090824W WO 2023206585 A1 WO2023206585 A1 WO 2023206585A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
side pieces
fixture
moveable side
moveable
Prior art date
Application number
PCT/CN2022/090824
Other languages
French (fr)
Inventor
Jiehua DAI
Yun YAN
Minxia XIA
Original Assignee
Meta Platforms Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meta Platforms Technologies, Llc filed Critical Meta Platforms Technologies, Llc
Priority to PCT/CN2022/090824 priority Critical patent/WO2023206585A1/en
Publication of WO2023206585A1 publication Critical patent/WO2023206585A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0426Fixtures for other work
    • B23K37/0435Clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges

Definitions

  • Ultrasonic welding is a process that uses ultrasonic acoustic vibration locally applied to workpieces to weld the workpieces together. Such a process is often used for joining dissimilar or similar materials.
  • dissimilar materials include polymers and metals.
  • Traditional ultrasonic welding fixtures include tight tolerances. As such, workpieces placed in ultrasonic welding fixtures must be formed to correspond with the tight tolerances of the ultrasonic welding fixtures.
  • FIG. 1 illustrates a perspective view of an example welding system in a first position in accordance with an example of the present disclosure.
  • FIG. 2 illustrates a perspective view of the example welding system in a second position in accordance with an example of the present disclosure.
  • FIG. 3 illustrates a perspective view of the example welding system in a third position in accordance with an example of the present disclosure.
  • FIG. 5 illustrates a schematic cross-sectional view of the example welding system in accordance with an example of the present disclosure.
  • FIG. 6 illustrates a method for an example process of welding workpieces in accordance with an example of the present disclosure.
  • Ultrasonic welding is a process that is used to weld workpieces together.
  • ultrasonic vibration is locally applied to workpieces to weld the workpieces together.
  • Ultrasonic welding may be used to join dissimilar, similar, or the same materials.
  • dissimilar materials may include a first workpiece of a first type (e.g., polymer) with a second workpiece of a second type of material (e.g., metal) .
  • ultrasonic welding may be used to join different types of polymers (e.g., a first workpiece of a first polymer with a second workpiece of a second, different, polymer) or different types of metals (e.g., a first workpiece of a first metal or alloy with a second workpiece of a second, different, metal or alloy) .
  • ultrasonic welding may be used to join multiple work pieces made of a same material (e.g., a first workpiece of a first material and a second workpiece of the first material) .
  • the system and method may be implemented to join workpieces, thereby forming a part, component, or other portion of an electronic device.
  • the part may form a portion of an electronic device including a head-mounted device (e.g., an electronic headset device, glasses, etc. ) or other wearable device.
  • head-mounted devices may include extended reality devices that allow users to view, create, consume, and share media content.
  • extended reality devices may include a display structure having a display which is placed over eyes of a user and allows the user to “see” the extended reality.
  • extended reality includes virtual reality, mixed reality, and/or augmented reality.
  • the system includes a first fixture configured to hold a first workpiece and/or a second workpiece.
  • the first fixture may be shaped to receive at least one of the first workpiece or the second workpiece to secure the first workpiece or the second workpiece therein.
  • the first fixture may include a fixed shaped nest in which the first workpiece and/or the second workpiece may be placed.
  • a position of the first fixture may be fixed such that the first fixture is substantially stationary during the ultrasonic welding process.
  • the first fixture may be movable in order to impart movement of the first workpiece during the ultrasonic welding process.
  • the system further includes a second fixture.
  • the second fixture is moveable along a first axis towards and away from the first fixture.
  • the first axis is shown as being the vertical axis (or y-axis) , though in other examples, the upper and first fixtures may be positioned differently so that the first axis extends in a different direction (e.g., a horizontal direction, x-direction, z-direction, or any other direction) .
  • the second fixture may also clamp the first workpiece and the second workpiece between the second fixture and the first fixture to bring the first workpiece into contact with the second workpiece.
  • the second fixture may apply a vertical pressure on the first workpiece and/or the second workpiece.
  • the system includes a sonotrode coupled to the second fixture.
  • the second fixture moves the sonotrode toward and away from the first fixture, the first workpiece, and the second workpiece.
  • the second fixture may move the sonotrode into contact with the first workpiece or the second workpiece and the sonotrode may apply vibrational energy to the first workpiece and the second workpiece.
  • the vibrational energy may cause local melting of the first workpiece and/or the second workpiece as the first workpiece and the second workpiece absorb the vibrational energy.
  • the vibrational energy is applied along one or more contact points where the first workpiece and the second workpiece are to be joined together.
  • the system further includes one or more moveable side pieces that are moveable in a substantially horizontal direction.
  • the one or more moveable side pieces may be moveable toward and away from the first workpiece and the second workpiece in a substantially horizontal plane.
  • the one or more moveable side pieces may be positioned to press against at least one of the first workpiece or the second workpiece.
  • the one or more side pieces may be part of the first fixture or the second fixture.
  • the one or more side pieces may be separate from the first fixture or the second fixture.
  • the one or more side pieces may be shaped to at least partially correspond with a shape of the first workpiece and/or the second workpiece. Additionally, or alternatively, in some examples, the one or more side pieces may be shaped to at least partially correspond with a shape of the welded part that is formed by joining the first workpiece and the second workpiece.
  • the system further includes one or more actuators coupled to the one or more moveable side pieces.
  • the one or more actuators are configured to move the one or more moveable side pieces in order to position the one or more moveable side pieces in a desired position.
  • the one or more actuators may position the one or more moveable side pieces in a position such that the one or more moveable side pieces press against the first workpiece and/or the second workpiece.
  • the one or more actuators may include electric actuator (s) , hydraulic actuator (s) , pneumatic actuator (s) , or other type of actuator (s) .
  • the system further includes one or more sensors configured to generate sensor data associated with the system.
  • the one or more sensors may sense and generate pressure data associated with a horizontal pressure applied to the first workpiece and/or the second workpiece by the one or more moveable side pieces.
  • the one or more sensors may sense and generate pressure data associated with a vertical pressure applied to the first workpiece and/or the second workpiece by the second fixture and/or the sonotrode.
  • the pressure data may be used (e.g., by a controller described further herein below) to position the second fixture and/or the one or more moveable side pieces to apply a predetermined vertical pressure and/or a predetermined horizontal pressure on the first workpiece and/or the second workpiece.
  • the one or more sensors may sense and generate position data associated with the one or moveable side pieces.
  • the position data may be used (e.g., by a controller described further herein below) to position the one or more moveable side pieces in a location to position the first workpiece and/or the second workpiece relative to each other.
  • the one or more actuators and the one or more sensors may form at least a portion of a servomotor system.
  • the servomotor system may control and/or alter a position of the one or more moveable side pieces based at least in part on the position data and/or the pressure data.
  • the servomotor system may reposition the one or more moveable side pieces during an ultrasonic welding process in order to adjust a gap between the first workpiece and the second workpiece and/or to adjust a relative position of the first workpiece and the second workpiece.
  • the system includes a controller communicatively coupled to the one or more sensors and/or the one or more actuators.
  • the controller receives data from the system and is configured to control at least a portion of the operations of the system automatically and/or with user input, as will be described further herein. While the description herein may describe a single controller, it is to be understood that multiple controllers may be used to perform portion (s) of the ultrasonic welding process described herein. As such, the multiple controllers may be communicatively coupled to each other to coordinate operation of the system.
  • the servomotor system may include a dedicated controller to receive the sensor data and to control the one or more actuators to position the one or more moveable side pieces based at least in part on the sensor data.
  • FIG. 1 illustrates a perspective view of an example welding system 100 (referred to herein as “the system 100” ) .
  • the system 100 is shown in a first position.
  • the system 100 includes a first fixture 102 configured to hold a first workpiece 104 and/or a second workpiece 106 (shown further herein with respect to FIG. 5) .
  • the first fixture 102 may be shaped to receive at least one of the first workpiece 104 and/or the second workpiece 106 therein.
  • the first fixture 102 may include a fixed shape nest (or groove) in which the first workpiece 104 may be placed and the second workpiece 106 may be placed on the first workpiece 104.
  • a position of the first fixture 102 may be substantially fixed such that the first fixture is substantially stationary during the ultrasonic welding process.
  • the system 100 further includes a second fixture 108.
  • the second fixture 108 may be moveable in a first axis such that the second fixture 108 is moveable towards and away from the first fixture 102.
  • the first axis is shown as being the vertical axis (or y-axis) , though in other examples, the first fixture 102 and the second fixture 108 may be positioned differently so that the first axis extends in a different direction (e.g., a horizontal direction, x-direction, z-direction, or any other direction) .
  • the second fixture 108 may be positioned so as to clamp the first workpiece 104 and the second workpiece 106 between the second fixture 108 and the first fixture 102 to secure the first workpiece 104 and the second workpiece 106 therebetween.
  • the second fixture 108 may apply a vertical pressure on the first workpiece 104 and/or the second workpiece 106.
  • the system 100 also includes a sonotrode 110 (sometimes referred to as a “horn” ) coupled to the second fixture 108.
  • the second fixture 110 moves the sonotrode 110 toward and away from the first fixture 102, the first workpiece 104, and the second workpiece 106.
  • the second fixture 108 may move the sonotrode 110 into contact with the first workpiece 104 or the second workpiece 106 and the sonotrode may apply vibrational energy to the first workpiece 104 and the second workpiece 106.
  • the sonotrode 108 may vibrate at a frequency between approximately 5 kHz and approximately 90 kHz, between approximately 10 kHz and approximately 80 kHz, or between approximately 15 kHz and approximately 75 kHz.
  • the first workpiece 104 and the second workpiece 106 may be joined together.
  • the vibrational energy may cause local melting of the first workpiece 104 and the second workpiece 106 as the first workpiece 104 and the second workpiece 106 absorb the vibrational energy.
  • the vibrational energy is applied along one or more contact points where the first workpiece 104 and the second workpiece 106 are to be joined together.
  • the first workpiece 104 and the second workpiece 106 may include similar materials.
  • the first workpiece 104 may be a first type of polymer and the second material 106 may be a second type of polymer.
  • the first type of polymer and the second type of polymer may be a same type of polymer or the first type of polymer and the second type of polymer may be different types of polymers.
  • the first workpiece 104 and the second workpiece 106 may be include dissimilar materials.
  • the first workpiece 104 may be a polymer and the second workpiece 106 may be a metal (or vice versa) .
  • welding at least a portion of the first workpiece 104 to at least a portion of the second workpiece 106 forms a welded part.
  • the system 100 further includes one or more moveable side pieces 112.
  • the one or more moveable side pieces 112 are moveable in a second axis.
  • the second axis is shown as being the horizontal (or x-axis) , though in other examples, the one or more moveable side pieces 112 may be positioned differently so that the second axis extends in a different direction (e.g., a vertical direction, x-direction, z-direction, or any other direction) .
  • the one or more moveable side pieces 112 may be moveable toward and away from the first fixture 102 along the X-axis.
  • the one or more moveable side pieces 112 may be positioned to press against at least one of the first workpiece 104 or the second workpiece 106. While the figures may depict both moveable side pieces as moving toward and away from the first fixture 102, it is to be understood that one side piece may remain stationary while another side piece moves to compress the first workpiece 104 or the second workpiece 106 therebetween. In either configuration, the one or more moveable side pieces 112 may press against the first workpiece 104 and/or the second workpiece 106 during an ultrasonic welding process.
  • the system 100 further includes one or more actuators 114 coupled to the one or more moveable side pieces 112.
  • the one or more actuators 114 are configured to move the one or more moveable side pieces 112 in order to position the one or more moveable side pieces 112 in a desired position.
  • the one or more actuators 114 may position the one or more moveable side pieces 112 in a position such that the one or more moveable side pieces 112 press against the first workpiece 104 and/or the second workpiece 106.
  • the one or more actuators 114 may include electric actuator (s) , hydraulic actuator (s) , pneumatic actuator (s) , or other type of actuator (s) .
  • the system 100 further includes one or more sensors 116 configured to generate sensor data associated with the system 100.
  • the one or more sensors 116 may sense and generate pressure data associated with a horizontal pressure applied to the first workpiece 104 and/or the second workpiece 106 by the one or more moveable side pieces 112. Additionally, or alternatively, the one or more sensors 116 may sense and generate pressure data associated with a vertical pressure applied to the first workpiece 104 and/or the second workpiece 106 by the second fixture 108 and/or the sonotrode 110.
  • the pressure data may be used (e.g., by a controller 120 described further herein below) to position the second fixture 108 and/or the one or more moveable side pieces 112 to apply a predetermined vertical pressure and/or a predetermined horizontal pressure on the first workpiece 104 and/or the second workpiece 106.
  • the pressure applied on the first workpiece 104 and/or the second workpiece 106 may be determined dynamically during a manufacturing process based on monitoring the first workpiece 104 and/or the second workpiece 106. For instance, the pressure may be increased or decreased dynamically. Such dynamic adjustments may ensure a quality bond between the first workpiece 104 and the second workpiece 106.
  • the one or more sensors 116 may sense and generate position data associated with the one or moveable side pieces 112.
  • the position data may be used (e.g., by a controller 118 described further herein below) to position the one or more moveable side pieces 112 in a location to position the first workpiece 104 and/or the second workpiece 106 relative to each other.
  • the one or more actuators 114 and the one or more sensors 116 may form at least a portion of a servomotor system 120.
  • the servomotor system 120 may control and/or alter a position of the one or more moveable side pieces 112 based at least in part on the position data and/or the pressure data.
  • the servomotor system 120 may reposition the one or more moveable side pieces 112 during an ultrasonic welding process in order to adjust a gap between the first workpiece 104 and the second workpiece 106 and/or to adjust a relative position of the first workpiece 104 and the second workpiece 106.
  • the system includes a controller 120 communicatively coupled to the one or more sensors 116 and/or the one or more actuators 114.
  • the controller 120 receives data from the system 100 and is configured to control at least a portion of the operations of the system 100 automatically and/or with user input, as will be described further herein. While the description herein may describe a single controller, it is to be understood that multiple controllers may be used to perform portion (s) of the ultrasonic welding process described herein. As such, the multiple controllers may be communicatively coupled to each other to coordinate operation of the system 100.
  • the servomotor system 120 may include a dedicated controller to receive the sensor data and to control the one or more actuators to position the one or more moveable side pieces based at least in part on the sensor data.
  • the controller 120 may be a hardware electronic control unit, or other electronic controller.
  • the controller 120 includes, for example, a microcontroller, one or more processors, memory (e.g., RAM) , storage (e.g., EEPROM or Flash) configured to perform the described functions of the controller 120.
  • the controller 120 controls at least a portion of the operations of the system 100 automatically and/or with user input.
  • the controller 120 may include a general computer microprocessor configured to execute computer program instructions (e.g., an application) stored in memory to perform the disclosed functions of the controller 120.
  • the controller 120 includes a memory, a secondary storage device, processor (s) , and/or any other computing components for running an application.
  • controller 120 may be associated with controller 120 such as power supply circuitry, signal conditioning circuitry, solenoid driver circuitry, actuator driver circuitry, or other circuitry.
  • controller 120 and/or a portion of components of the controller 120 may be located remotely from the system 100 and/or the servomotor system 120 and may be communicatively coupled to the system 100 and/or the servomotor system 120.
  • the controller 120 may receive pressure data and/or position data associated with the one or more moveable side pieces 112 from the one or more sensors 116. The controller 120 may use such sensor data to position the one or more moveable side pieces 112 to press against the first workpiece 104 and/or the second workpiece 106. In some examples, positioning the one or more moveable side pieces 112 positions the first workpiece 104 and/or the second workpiece 106 relative to each other in order to position the respective workpieces in a desired position. As such, the system 100 described herein may increase a tolerance of workpieces that are used in the system 100 since the system 100 is able to reposition and/or reshape the workpieces within the system 100.
  • FIG. 2 illustrates a perspective view of the system 100 in a second position 200.
  • the second fixture 108 may be lowered such that the sonotrode 110 is in contact with the first workpiece 104 and/or the second workpiece 106.
  • the second fixture 108 may clamp the first workpiece 104 and the second workpiece 106 between the second fixture 108 and the first fixture 102 to secure the first workpiece 104 and the second workpiece 106 therebetween.
  • vibrational energy may not be applied when the system is in the second position 200.
  • FIG. 3 illustrates a perspective view of the system 100 in a third position 300.
  • the one or more moveable side pieces 112 are positioned to press against the first workpiece 104 and/or the second workpiece 106.
  • the one or more moveable side pieces 112 may at least partially compress the first workpiece 104 and/or the second workpiece 106 in such the third position 300.
  • vibrational energy may be applied to the first workpiece 104 and the second workpiece 106 via the sonotrode 110 in order to weld at least a portion of the first workpiece 104 and at least a portion of the second workpiece 106.
  • FIG. 4 illustrates a perspective view of the system 100 in a fourth position 400.
  • the second fixture 108 may be withdrawn and the sonotrode may be moved away from the first workpiece 104 and the second workpiece 106 that are joined to form a welded part 402.
  • the second fixture 108 may be moved away from the first fixture 102 and the one or more moveable side pieces 112 may remain in contact with the welded part 402.
  • the system 100 may move between the various positions (e.g., the first position 101, the second position 200, the third position 300, and the fourth position 400) multiple times during an ultrasonic welding process. Once the welded part 402 has been formed, the system 100 may return to the first position 101 and the welded part 402 may be removed from the system 100.
  • FIG. 6 is a flowchart of an example process 600 for ultrasonic welding the first workpiece 104 and the second workpiece 106 via the system shown and described with respect to FIGS. 1-5.
  • the process 600 may be performed at least in part by the system. However, at least a portion of the process 600 may be performed by a human user. Still further, some steps of the process 600 may be conducted by a robot such as a robotic arm, or other device. In some examples, the process 600 may be performed by one or more computing devices included in the system. Furthermore, the process 600 may include different and/or additional steps, or perform the steps in a different order than described herein.
  • the process 600 includes placing workpiece (s) in a first fixture of the system.
  • a first workpiece is placed in the first fixture and a second workpiece is placed thereon.
  • the first workpiece and the second workpiece may be at least partially welded together to form a welded part as a result of the process 600 described herein.
  • a human user may place the workpiece (s) in the first fixture.
  • a robotic arm or other automated system may place the workpiece (s) in the first fixture.
  • the process 600 includes positioning an second fixture of the system. Positioning the second fixture of the system may include causing the second fixture to be positioned (such as in the second position 200 shown in FIG. 2) such that a sonotrode coupled to the second fixture is disposed in contact with the workpieces (s) .
  • the process 600 includes positioned one or more moveable side pieces.
  • Positioning the one or more moveable side pieces may include causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are disposed in contact with the workpiece (s) .
  • the one or more moveable side pieces may press against the workpiece (s) to apply a pressure against at least one of the workpiece (s) .
  • Causing the one or more moveable side pieces to be positioned may include sending, via a controller, one or more signals to one or more actuators coupled to the one or more moveable side pieces. The one or more signals may cause the one or more actuators to position the one or more moveable side pieces.
  • the process 600 includes receiving sensor data.
  • the controller receives sensor data from one or more sensors.
  • the one or more sensors may sense and generate sensor data associated with one or more parameters of the system. For example, the one or more sensors may sense and generate pressure data associated with a horizontal pressure applied to the workpiece (s) by the one or more moveable side pieces. Additionally, or alternatively, the one or more sensors may sense and generate pressure data associated with a vertical pressure applied to the workpiece (s) by the second fixture and/or the sonotrode. Furthermore, in some examples, the one or more sensors may sense and generate position data associated with the one or moveable side pieces.
  • the controller may determine whether the one or more parameters meet one or more requirements of the ultrasonic welding process.
  • the controller may make such a determination based at least in part on the sensor data received at 608.
  • the controller may determine whether a pressure applied to the workpiece (s) by the moveable side pieces is substantially equal to a predetermined pressure (or target pressure) .
  • substantially equal may include greater than or less than approximately 100 psi, greater than or less than: approximately 50 psi, approximately 25 psi, approximately 10 psi, or approximately 5 psi.
  • the controller may determine whether the pressure is within a range greater than or less than the provided ranges.
  • the controller may determine whether the pressure applied to the workpiece (s) by the one or more moveable side pieces is greater than or less than the predetermined pressure.
  • the pressure applied on the first workpiece and/or the second workpiece may be determined dynamically (e.g., the target pressure) during a manufacturing process based on monitoring the first workpiece and/or the second workpiece. For instance, the pressure may be increased or decreased dynamically. Such dynamic adjustments may ensure a quality bond between the first workpiece and the second workpiece.
  • the controller may determine a position of the one or more moveable side pieces and may determine whether the position of the one or more moveable side pieces is substantially equal to a predetermined position (or target position) of the one or more moveable side pieces.
  • the controller may determine the position of the one or more moveable side pieces relative to the first fixture based on a distance along an X-axis (as shown in FIGS. 1-5) .
  • substantially equal to may include greater than or less than: approximately 5 mm, approximately 2 mm, approximately 1 mm, approximately 0.5 mm, approximately 0.25 mm, or approximately 0.1 mm.
  • the controller may determine whether the position of the one or more moveable side pieces is too close or too far from the predetermined position (or target position) .
  • the location of the one or more moveable sides pieces may be determined dynamically (e.g., the target position) during a manufacturing process based on monitoring the first workpiece and/or the second workpiece. For instance, the position of the one or more moveable sides pieces may adjusted dynamically which may, in turn, adjust a position of the first workpiece and/or the second workpiece. Such dynamic adjustments may ensure a quality bond between the first workpiece and the second workpiece.
  • the process 600 returns to 606 and the controller may reposition the one or more moveable side pieces.
  • the controller may continue through steps 608-610 to determine whether the adjustment causes the one or more parameters to meet the one or more requirements.
  • the controller may determine that the pressure exerted on the workpieces (s) by the one or more moveable side pieces is less than the predetermined pressure. As such, at 606 the controller may adjust the position of the one or more moveable side pieces to increase the pressure applied to the workpiece (s) . Conversely, if the controller determines that the pressure exerted on the workpiece (s) by the one or more moveable side pieces is greater than the predetermined pressure, at 606 the controller may adjust the position of the one or more moveable side pieces to decrease the pressure exerted on the workpiece (s) .
  • the controller may move the one or more moveable side pieces away from the predetermined location. Conversely, if the controller determines that the one or more moveable side pieces are too far from the predetermined location, the controller may move the one or more moveable side pieces towards the predetermined location. In some examples, the controller may optionally follow a similar process for positioning and/or repositioning the second fixture.
  • the process continues to 612 where the sonotrode applies vibrational energy to the workpiece (s) .
  • the sonotrode applies the vibrational energy to the workpiece (s) for a predetermined amount of time necessary to weld the workpiece (s) together.
  • the process 600 returns to 608 where the controller receives sensor data and may determine whether the one or more parameters meet the one or more requirements. It is to be understood that steps 604-610 may be performed while the sonotrode applies vibrational energy to the workpiece (s) .
  • the process 600 includes removing the welded part from the system.
  • removing the welded part from the system may include causing the second fixture to be positioned such that the sonotrode is removed from contacting the welded part, and causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are removed from contacting the welded part prior to removing the welded part.
  • the welded part may be removed manually by a human user or automatically via a robotic arm or other automated component.
  • a method comprising: placing at least one of a first workpiece or a second workpiece in a first fixture configured to hold the at least one of the first workpiece or the second workpiece; causing an second fixture to be positioned such that a sonotrode coupled to the second fixture contacts the first workpiece or the second workpiece; causing one or more moveable side pieces to be positioned such that the one or more moveable side pieces apply a predetermined pressure to the at least one of the first workpiece or the second workpiece; applying vibrational energy to the first workpiece and the second workpiece via the sonotrode, the vibrational energy welding at least a portion of the first workpiece to at least a portion of the second workpiece forming a welded part; and removing the welded part from the first fixture.
  • J The method according to paragraph I, further comprising: receiving, from one or more sensors, sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces; determining that the pressure is less than a target pressure; and adjusting the position of the one or more moveable side pieces to increase the pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
  • causing one or more moveable side pieces to be positioned includes sending, via a controller, one or more signals to one or more actuators coupled to the one or more moveable side pieces, the one or more signals causing the actuators to position the one or more moveable side pieces.
  • M The method according to any one of paragraphs I-L, further comprising adjusting the position of the one or more moveable side pieces while the vibrational energy is applied to the first workpiece and the second workpiece such that a position of the first workpiece or the second workpiece is altered or the pressure applied to the first workpiece or the second workpiece is increased or decreased.
  • N The method according to any one of paragraphs I-M, wherein the vibrational energy is applied to the first workpiece and the second workpiece for a predetermined amount of time.
  • removing the welded part from the first fixture includes: causing the second fixture to be positioned such that the sonotrode is removed from contacting the welded part; and causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are removed from contacting the welded part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

An ultrasonic welding system(100) includes a first fixture(102) to hold at least a first workpiece(104) and an second fixture(108) moveable in a vertical direction. The welding system also includes a sonotrode(110) coupled to the second fixture and configured to apply vibrational energy to the first workpiece and a second workpiece(106) to weld at least a portion of the first workpiece to at least a portion of the second workpiece, the second fixture being configured to move the sonotrode into contact with the first workpiece or the second workpiece. The welding system further includes one or more moveable side pieces(112) moveable in a horizontal direction to press against at least one of the first workpiece or the second workpiece. Also refers to an ultrasonic welding method.

Description

ULTRASONIC WELDING SYSTEM AND METHOD BACKGROUND
Ultrasonic welding is a process that uses ultrasonic acoustic vibration locally applied to workpieces to weld the workpieces together. Such a process is often used for joining dissimilar or similar materials. For example, dissimilar materials include polymers and metals. Traditional ultrasonic welding fixtures include tight tolerances. As such, workpieces placed in ultrasonic welding fixtures must be formed to correspond with the tight tolerances of the ultrasonic welding fixtures.
BRIEF DESCRIPTION OF THE DRAWINGS
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit (s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical components or features.
FIG. 1 illustrates a perspective view of an example welding system in a first position in accordance with an example of the present disclosure.
FIG. 2 illustrates a perspective view of the example welding system in a second position in accordance with an example of the present disclosure.
FIG. 3 illustrates a perspective view of the example welding system in a third position in accordance with an example of the present disclosure.
FIG. 4 illustrates a perspective view of the example welding system in a fourth position in accordance with an example of the present disclosure.
FIG. 5 illustrates a schematic cross-sectional view of the example welding system in accordance with an example of the present disclosure.
FIG. 6 illustrates a method for an example process of welding workpieces in accordance with an example of the present disclosure.
DETAILED DESCRIPTION
Ultrasonic welding is a process that is used to weld workpieces together. In an ultrasonic welding process, ultrasonic vibration is locally applied to workpieces to weld the workpieces together. Ultrasonic welding may be used to join dissimilar, similar, or the same materials. For example, dissimilar materials may include a first workpiece of a first type (e.g., polymer) with a second workpiece of a second type of material (e.g., metal) . In some examples, ultrasonic welding may be used to join different types of polymers (e.g., a first workpiece of a first polymer with a second workpiece of a second, different, polymer) or different types of metals (e.g., a first workpiece of a first metal or alloy with a second workpiece of a second, different, metal or alloy) . In some examples, ultrasonic welding may be used to join multiple work pieces made of a same  material (e.g., a first workpiece of a first material and a second workpiece of the first material) .
This application describes an ultrasonic welding system (referred to herein as “the system” ) and method for joining workpieces. In some examples, the system and method may be implemented to join workpieces, thereby forming a part, component, or other portion of an electronic device. In some examples, the part may form a portion of an electronic device including a head-mounted device (e.g., an electronic headset device, glasses, etc. ) or other wearable device. Such head-mounted devices may include extended reality devices that allow users to view, create, consume, and share media content. In some examples, such extended reality devices may include a display structure having a display which is placed over eyes of a user and allows the user to “see” the extended reality. As discussed further below, the term “extended reality” includes virtual reality, mixed reality, and/or augmented reality.
While examples of electronic devices are provided above, it is to be understood that the system described herein may form parts for any type of electronic device including, but not limited to, mobile phones (e.g., cell phones, smart phones, etc. ) , tablet computing devices, electronic book reader devices, laptop or all-in-one computers, media players, portable gaming devices, televisions, monitors, cameras, wearable computing devices, electronic picture frames, audio virtual assistant devices, radios, speakers, personal computers,  external hard drives, input/output devices (e.g., remote controls, game controllers, keyboards, mice, touch pads, microphones, speakers, etc. ) , and/or the like.
In some examples, the system includes a first fixture configured to hold a first workpiece and/or a second workpiece. For example, the first fixture may be shaped to receive at least one of the first workpiece or the second workpiece to secure the first workpiece or the second workpiece therein. In some examples, the first fixture may include a fixed shaped nest in which the first workpiece and/or the second workpiece may be placed. Furthermore, in some examples, a position of the first fixture may be fixed such that the first fixture is substantially stationary during the ultrasonic welding process. However, in other examples, the first fixture may be movable in order to impart movement of the first workpiece during the ultrasonic welding process.
The system further includes a second fixture. In some examples, the second fixture is moveable along a first axis towards and away from the first fixture. In the illustrated example, the first axis is shown as being the vertical axis (or y-axis) , though in other examples, the upper and first fixtures may be positioned differently so that the first axis extends in a different direction (e.g., a horizontal direction, x-direction, z-direction, or any other direction) . Furthermore, the second fixture may also clamp the first workpiece and the second workpiece between the second fixture and the first fixture to bring the first workpiece into contact with the second workpiece. For example, the second fixture may apply a vertical pressure on the first workpiece and/or the second workpiece.
In some examples, the system includes a sonotrode coupled to the second fixture. The second fixture moves the sonotrode toward and away from the first fixture, the first workpiece, and the second workpiece. For example, the second fixture may move the sonotrode into contact with the first workpiece or the second workpiece and the sonotrode may apply vibrational energy to the first workpiece and the second workpiece. By applying vibrational energy to the first workpiece and the second workpiece, the first workpiece and the second workpiece may be joined together. For example, the vibrational energy may cause local melting of the first workpiece and/or the second workpiece as the first workpiece and the second workpiece absorb the vibrational energy. In some examples, the vibrational energy is applied along one or more contact points where the first workpiece and the second workpiece are to be joined together.
The system further includes one or more moveable side pieces that are moveable in a substantially horizontal direction. For example, the one or more moveable side pieces may be moveable toward and away from the first workpiece and the second workpiece in a substantially horizontal plane. In some examples, the one or more moveable side pieces may be positioned to press against at least one of the first workpiece or the second workpiece. In some examples, the one or more side pieces may be part of the first fixture or the second fixture. However, in some examples, the one or more side pieces may be separate from the first fixture or the second fixture. Furthermore, the one or more side pieces may be shaped to at least partially correspond with a shape of the first workpiece and/or the second  workpiece. Additionally, or alternatively, in some examples, the one or more side pieces may be shaped to at least partially correspond with a shape of the welded part that is formed by joining the first workpiece and the second workpiece.
The system further includes one or more actuators coupled to the one or more moveable side pieces. The one or more actuators are configured to move the one or more moveable side pieces in order to position the one or more moveable side pieces in a desired position. For example, the one or more actuators may position the one or more moveable side pieces in a position such that the one or more moveable side pieces press against the first workpiece and/or the second workpiece. In some examples, the one or more actuators may include electric actuator (s) , hydraulic actuator (s) , pneumatic actuator (s) , or other type of actuator (s) .
The system further includes one or more sensors configured to generate sensor data associated with the system. For example, the one or more sensors may sense and generate pressure data associated with a horizontal pressure applied to the first workpiece and/or the second workpiece by the one or more moveable side pieces. Additionally, or alternatively, the one or more sensors may sense and generate pressure data associated with a vertical pressure applied to the first workpiece and/or the second workpiece by the second fixture and/or the sonotrode. The pressure data may be used (e.g., by a controller described further herein below) to position the second fixture and/or the one or more moveable side pieces to  apply a predetermined vertical pressure and/or a predetermined horizontal pressure on the first workpiece and/or the second workpiece.
In some examples, the one or more sensors may sense and generate position data associated with the one or moveable side pieces. The position data may be used (e.g., by a controller described further herein below) to position the one or more moveable side pieces in a location to position the first workpiece and/or the second workpiece relative to each other.
In some examples, the one or more actuators and the one or more sensors may form at least a portion of a servomotor system. The servomotor system may control and/or alter a position of the one or more moveable side pieces based at least in part on the position data and/or the pressure data. In some examples, the servomotor system may reposition the one or more moveable side pieces during an ultrasonic welding process in order to adjust a gap between the first workpiece and the second workpiece and/or to adjust a relative position of the first workpiece and the second workpiece.
In some examples, the system includes a controller communicatively coupled to the one or more sensors and/or the one or more actuators. In some examples, the controller receives data from the system and is configured to control at least a portion of the operations of the system automatically and/or with user input, as will be described further herein. While the description herein may describe a single controller, it is to be understood that multiple controllers may be used to perform portion (s) of the ultrasonic welding process described herein. As  such, the multiple controllers may be communicatively coupled to each other to coordinate operation of the system. For example, the servomotor system may include a dedicated controller to receive the sensor data and to control the one or more actuators to position the one or more moveable side pieces based at least in part on the sensor data.
FIG. 1 illustrates a perspective view of an example welding system 100 (referred to herein as “the system 100” ) . As shown in FIG. 1, the system 100 is shown in a first position. In some examples, the system 100 includes a first fixture 102 configured to hold a first workpiece 104 and/or a second workpiece 106 (shown further herein with respect to FIG. 5) . For example, the first fixture 102 may be shaped to receive at least one of the first workpiece 104 and/or the second workpiece 106 therein. In some examples, the first fixture 102 may include a fixed shape nest (or groove) in which the first workpiece 104 may be placed and the second workpiece 106 may be placed on the first workpiece 104. Furthermore, in some examples, a position of the first fixture 102 may be substantially fixed such that the first fixture is substantially stationary during the ultrasonic welding process.
The system 100 further includes a second fixture 108. The second fixture 108 may be moveable in a first axis such that the second fixture 108 is moveable towards and away from the first fixture 102. In the illustrated example, the first axis is shown as being the vertical axis (or y-axis) , though in other examples, the first fixture 102 and the second fixture 108 may be positioned  differently so that the first axis extends in a different direction (e.g., a horizontal direction, x-direction, z-direction, or any other direction) . In some examples, the second fixture 108 may be positioned so as to clamp the first workpiece 104 and the second workpiece 106 between the second fixture 108 and the first fixture 102 to secure the first workpiece 104 and the second workpiece 106 therebetween. For example, the second fixture 108 may apply a vertical pressure on the first workpiece 104 and/or the second workpiece 106.
The system 100 also includes a sonotrode 110 (sometimes referred to as a “horn” ) coupled to the second fixture 108. The second fixture 110 moves the sonotrode 110 toward and away from the first fixture 102, the first workpiece 104, and the second workpiece 106. For example, the second fixture 108 may move the sonotrode 110 into contact with the first workpiece 104 or the second workpiece 106 and the sonotrode may apply vibrational energy to the first workpiece 104 and the second workpiece 106. In some examples, the sonotrode 108 may vibrate at a frequency between approximately 5 kHz and approximately 90 kHz, between approximately 10 kHz and approximately 80 kHz, or between approximately 15 kHz and approximately 75 kHz.
By applying vibrational energy to the first workpiece 104 and the second workpiece 106, the first workpiece 104 and the second workpiece 106 may be joined together. For example, the vibrational energy may cause local melting of the first workpiece 104 and the second workpiece 106 as the first workpiece 104 and the second workpiece 106 absorb the vibrational energy. In some  examples, the vibrational energy is applied along one or more contact points where the first workpiece 104 and the second workpiece 106 are to be joined together.
In some examples, the first workpiece 104 and the second workpiece 106 may include similar materials. For example, the first workpiece 104 may be a first type of polymer and the second material 106 may be a second type of polymer. In some examples, the first type of polymer and the second type of polymer may be a same type of polymer or the first type of polymer and the second type of polymer may be different types of polymers. Additionally, or alternatively, the first workpiece 104 and the second workpiece 106 may be include dissimilar materials. For example, the first workpiece 104 may be a polymer and the second workpiece 106 may be a metal (or vice versa) . In some examples, welding at least a portion of the first workpiece 104 to at least a portion of the second workpiece 106 forms a welded part.
The system 100 further includes one or more moveable side pieces 112. The one or more moveable side pieces 112 are moveable in a second axis. In the illustrated example, the second axis is shown as being the horizontal (or x-axis) , though in other examples, the one or more moveable side pieces 112 may be positioned differently so that the second axis extends in a different direction (e.g., a vertical direction, x-direction, z-direction, or any other direction) . As shown in FIG. 1, the one or more moveable side pieces 112 may be moveable toward and away from the first fixture 102 along the X-axis. In some examples, the one or  more moveable side pieces 112 may be positioned to press against at least one of the first workpiece 104 or the second workpiece 106. While the figures may depict both moveable side pieces as moving toward and away from the first fixture 102, it is to be understood that one side piece may remain stationary while another side piece moves to compress the first workpiece 104 or the second workpiece 106 therebetween. In either configuration, the one or more moveable side pieces 112 may press against the first workpiece 104 and/or the second workpiece 106 during an ultrasonic welding process.
The system 100 further includes one or more actuators 114 coupled to the one or more moveable side pieces 112. The one or more actuators 114 are configured to move the one or more moveable side pieces 112 in order to position the one or more moveable side pieces 112 in a desired position. For example, the one or more actuators 114 may position the one or more moveable side pieces 112 in a position such that the one or more moveable side pieces 112 press against the first workpiece 104 and/or the second workpiece 106. In some examples, the one or more actuators 114 may include electric actuator (s) , hydraulic actuator (s) , pneumatic actuator (s) , or other type of actuator (s) .
The system 100 further includes one or more sensors 116 configured to generate sensor data associated with the system 100. For example, the one or more sensors 116 may sense and generate pressure data associated with a horizontal pressure applied to the first workpiece 104 and/or the second workpiece 106 by the one or more moveable side pieces 112. Additionally, or alternatively,  the one or more sensors 116 may sense and generate pressure data associated with a vertical pressure applied to the first workpiece 104 and/or the second workpiece 106 by the second fixture 108 and/or the sonotrode 110. The pressure data may be used (e.g., by a controller 120 described further herein below) to position the second fixture 108 and/or the one or more moveable side pieces 112 to apply a predetermined vertical pressure and/or a predetermined horizontal pressure on the first workpiece 104 and/or the second workpiece 106. Additionally, or alternatively, the pressure applied on the first workpiece 104 and/or the second workpiece 106 may be determined dynamically during a manufacturing process based on monitoring the first workpiece 104 and/or the second workpiece 106. For instance, the pressure may be increased or decreased dynamically. Such dynamic adjustments may ensure a quality bond between the first workpiece 104 and the second workpiece 106.
In some examples, the one or more sensors 116 may sense and generate position data associated with the one or moveable side pieces 112. The position data may be used (e.g., by a controller 118 described further herein below) to position the one or more moveable side pieces 112 in a location to position the first workpiece 104 and/or the second workpiece 106 relative to each other.
In some examples, the one or more actuators 114 and the one or more sensors 116 may form at least a portion of a servomotor system 120. The servomotor system 120 may control and/or alter a position of the one or more moveable side pieces 112 based at least in part on the position data and/or the  pressure data. In some examples, the servomotor system 120 may reposition the one or more moveable side pieces 112 during an ultrasonic welding process in order to adjust a gap between the first workpiece 104 and the second workpiece 106 and/or to adjust a relative position of the first workpiece 104 and the second workpiece 106.
In some examples, the system includes a controller 120 communicatively coupled to the one or more sensors 116 and/or the one or more actuators 114. In some examples, the controller 120 receives data from the system 100 and is configured to control at least a portion of the operations of the system 100 automatically and/or with user input, as will be described further herein. While the description herein may describe a single controller, it is to be understood that multiple controllers may be used to perform portion (s) of the ultrasonic welding process described herein. As such, the multiple controllers may be communicatively coupled to each other to coordinate operation of the system 100. For example, the servomotor system 120 may include a dedicated controller to receive the sensor data and to control the one or more actuators to position the one or more moveable side pieces based at least in part on the sensor data.
In some examples, the controller 120 may be a hardware electronic control unit, or other electronic controller. The controller 120 includes, for example, a microcontroller, one or more processors, memory (e.g., RAM) , storage (e.g., EEPROM or Flash) configured to perform the described functions of the  controller 120. The controller 120 controls at least a portion of the operations of the system 100 automatically and/or with user input. Instead of, or in addition to, an ECM/ECU the controller 120 may include a general computer microprocessor configured to execute computer program instructions (e.g., an application) stored in memory to perform the disclosed functions of the controller 120. As mentioned, the controller 120 includes a memory, a secondary storage device, processor (s) , and/or any other computing components for running an application. Various other circuits may be associated with controller 120 such as power supply circuitry, signal conditioning circuitry, solenoid driver circuitry, actuator driver circuitry, or other circuitry. In some examples, the controller 120 and/or a portion of components of the controller 120 may be located remotely from the system 100 and/or the servomotor system 120 and may be communicatively coupled to the system 100 and/or the servomotor system 120.
As mentioned previously, the controller 120 may receive pressure data and/or position data associated with the one or more moveable side pieces 112 from the one or more sensors 116. The controller 120 may use such sensor data to position the one or more moveable side pieces 112 to press against the first workpiece 104 and/or the second workpiece 106. In some examples, positioning the one or more moveable side pieces 112 positions the first workpiece 104 and/or the second workpiece 106 relative to each other in order to position the respective workpieces in a desired position. As such, the system 100 described herein may  increase a tolerance of workpieces that are used in the system 100 since the system 100 is able to reposition and/or reshape the workpieces within the system 100.
FIG. 2 illustrates a perspective view of the system 100 in a second position 200. As shown in FIG. 2, the second fixture 108 may be lowered such that the sonotrode 110 is in contact with the first workpiece 104 and/or the second workpiece 106. As such, the second fixture 108 may clamp the first workpiece 104 and the second workpiece 106 between the second fixture 108 and the first fixture 102 to secure the first workpiece 104 and the second workpiece 106 therebetween. In some examples, vibrational energy may not be applied when the system is in the second position 200.
FIG. 3 illustrates a perspective view of the system 100 in a third position 300. As shown in FIG. 3, the one or more moveable side pieces 112 are positioned to press against the first workpiece 104 and/or the second workpiece 106. In some examples, the one or more moveable side pieces 112 may at least partially compress the first workpiece 104 and/or the second workpiece 106 in such the third position 300. Once the system 100 is positioned in the third position 300, vibrational energy may be applied to the first workpiece 104 and the second workpiece 106 via the sonotrode 110 in order to weld at least a portion of the first workpiece 104 and at least a portion of the second workpiece 106.
FIG. 4 illustrates a perspective view of the system 100 in a fourth position 400. As shown in FIG. 4, the second fixture 108 may be withdrawn and the sonotrode may be moved away from the first workpiece 104 and the second  workpiece 106 that are joined to form a welded part 402. In some examples, the second fixture 108 may be moved away from the first fixture 102 and the one or more moveable side pieces 112 may remain in contact with the welded part 402. In some examples, the system 100 may move between the various positions (e.g., the first position 101, the second position 200, the third position 300, and the fourth position 400) multiple times during an ultrasonic welding process. Once the welded part 402 has been formed, the system 100 may return to the first position 101 and the welded part 402 may be removed from the system 100.
FIG. 5 illustrates a schematic view of a portion of the system 100 in the third position 300. In the third position 300, the second fixture 108 may be positioned such that the sonotrode 110 is disposed in contact with the second workpiece 106. Furthermore, in the third position 300, the one or more moveable side pieces 112 may be positioned to press against the first workpiece 104 and/or the second workpiece 106. In some examples, the one or more moveable side pieces 112 may be positioned such that the one or more side pieces 112 exert a predetermined pressure (or target pressure) on the first workpiece 104 and/or the second workpiece 106. Additionally, or alternatively, the one or more moveable side pieces 112 may be positioned in order to position the first workpiece 104 and/or the second workpiece 106 relative to each other, the sonotrode 110, or other component (s) of the system 100.
FIG. 6 is a flowchart of an example process 600 for ultrasonic welding the first workpiece 104 and the second workpiece 106 via the system shown and  described with respect to FIGS. 1-5. The process 600 may be performed at least in part by the system. However, at least a portion of the process 600 may be performed by a human user. Still further, some steps of the process 600 may be conducted by a robot such as a robotic arm, or other device. In some examples, the process 600 may be performed by one or more computing devices included in the system. Furthermore, the process 600 may include different and/or additional steps, or perform the steps in a different order than described herein.
At 602, the process 600 includes placing workpiece (s) in a first fixture of the system. In some examples, a first workpiece is placed in the first fixture and a second workpiece is placed thereon. The first workpiece and the second workpiece may be at least partially welded together to form a welded part as a result of the process 600 described herein. In some examples, a human user may place the workpiece (s) in the first fixture. However, in some examples, a robotic arm or other automated system may place the workpiece (s) in the first fixture.
At 604, the process 600 includes positioning an second fixture of the system. Positioning the second fixture of the system may include causing the second fixture to be positioned (such as in the second position 200 shown in FIG. 2) such that a sonotrode coupled to the second fixture is disposed in contact with the workpieces (s) .
At 606, the process 600 includes positioned one or more moveable side pieces. Positioning the one or more moveable side pieces may include causing the one or more moveable side pieces to be positioned such that the one or more  moveable side pieces are disposed in contact with the workpiece (s) . Furthermore, in some examples, when positioned (such as in the third position 300 shown in FIG. 3) , the one or more moveable side pieces may press against the workpiece (s) to apply a pressure against at least one of the workpiece (s) . Causing the one or more moveable side pieces to be positioned may include sending, via a controller, one or more signals to one or more actuators coupled to the one or more moveable side pieces. The one or more signals may cause the one or more actuators to position the one or more moveable side pieces.
At 608, the process 600 includes receiving sensor data. In some examples, the controller receives sensor data from one or more sensors. The one or more sensors may sense and generate sensor data associated with one or more parameters of the system. For example, the one or more sensors may sense and generate pressure data associated with a horizontal pressure applied to the workpiece (s) by the one or more moveable side pieces. Additionally, or alternatively, the one or more sensors may sense and generate pressure data associated with a vertical pressure applied to the workpiece (s) by the second fixture and/or the sonotrode. Furthermore, in some examples, the one or more sensors may sense and generate position data associated with the one or moveable side pieces.
At 610, the process 600 the controller may determine whether the one or more parameters meet one or more requirements of the ultrasonic welding process. The controller may make such a determination based at least in part on the sensor  data received at 608. For example, the controller may determine whether a pressure applied to the workpiece (s) by the moveable side pieces is substantially equal to a predetermined pressure (or target pressure) . As used herein, substantially equal may include greater than or less than approximately 100 psi, greater than or less than: approximately 50 psi, approximately 25 psi, approximately 10 psi, or approximately 5 psi. However, in some examples, the controller may determine whether the pressure is within a range greater than or less than the provided ranges. Furthermore, the controller may determine whether the pressure applied to the workpiece (s) by the one or more moveable side pieces is greater than or less than the predetermined pressure.
Additionally, or alternatively, the pressure applied on the first workpiece and/or the second workpiece may be determined dynamically (e.g., the target pressure) during a manufacturing process based on monitoring the first workpiece and/or the second workpiece. For instance, the pressure may be increased or decreased dynamically. Such dynamic adjustments may ensure a quality bond between the first workpiece and the second workpiece.
Furthermore, in some examples, the controller may determine a position of the one or more moveable side pieces and may determine whether the position of the one or more moveable side pieces is substantially equal to a predetermined position (or target position) of the one or more moveable side pieces. The controller may determine the position of the one or more moveable side pieces relative to the first fixture based on a distance along an X-axis (as shown in FIGS.  1-5) . As used herein, substantially equal to may include greater than or less than: approximately 5 mm, approximately 2 mm, approximately 1 mm, approximately 0.5 mm, approximately 0.25 mm, or approximately 0.1 mm. Furthermore, the controller may determine whether the position of the one or more moveable side pieces is too close or too far from the predetermined position (or target position) .
Additionally, or alternatively, the location of the one or more moveable sides pieces may be determined dynamically (e.g., the target position) during a manufacturing process based on monitoring the first workpiece and/or the second workpiece. For instance, the position of the one or more moveable sides pieces may adjusted dynamically which may, in turn, adjust a position of the first workpiece and/or the second workpiece. Such dynamic adjustments may ensure a quality bond between the first workpiece and the second workpiece.
If, at 610, the controller determines that the one or more parameters do not meet the one or more requirements, the process 600 returns to 606 and the controller may reposition the one or more moveable side pieces. The controller may continue through steps 608-610 to determine whether the adjustment causes the one or more parameters to meet the one or more requirements.
For example, the controller may determine that the pressure exerted on the workpieces (s) by the one or more moveable side pieces is less than the predetermined pressure. As such, at 606 the controller may adjust the position of the one or more moveable side pieces to increase the pressure applied to the workpiece (s) . Conversely, if the controller determines that the pressure exerted on  the workpiece (s) by the one or more moveable side pieces is greater than the predetermined pressure, at 606 the controller may adjust the position of the one or more moveable side pieces to decrease the pressure exerted on the workpiece (s) .
Similarly, if the controller determines that the one or more moveable side pieces are too close to the predetermined location, the controller may move the one or more moveable side pieces away from the predetermined location. Conversely, if the controller determines that the one or more moveable side pieces are too far from the predetermined location, the controller may move the one or more moveable side pieces towards the predetermined location. In some examples, the controller may optionally follow a similar process for positioning and/or repositioning the second fixture.
If, however, at 610, the controller determines that the one or more parameters meet the one or more requirements, the process continues to 612 where the sonotrode applies vibrational energy to the workpiece (s) . In some example, the sonotrode applies the vibrational energy to the workpiece (s) for a predetermined amount of time necessary to weld the workpiece (s) together.
In some examples, while the sonotrode applies the vibrational energy to the workpiece (s) , the process 600 returns to 608 where the controller receives sensor data and may determine whether the one or more parameters meet the one or more requirements. It is to be understood that steps 604-610 may be performed while the sonotrode applies vibrational energy to the workpiece (s) .
At 614, the process 600 includes removing the welded part from the system. In some examples, removing the welded part from the system may include causing the second fixture to be positioned such that the sonotrode is removed from contacting the welded part, and causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are removed from contacting the welded part prior to removing the welded part. In some examples, the welded part may be removed manually by a human user or automatically via a robotic arm or other automated component.
EXAMPLE CLAUSES
A: A welding system comprising: a first fixture to hold at least a first workpiece; an second fixture moveable in a vertical direction; a sonotrode coupled to the second fixture and configured to apply vibrational energy to the first workpiece and/or a second workpiece to weld at least a portion of the first workpiece to at least a portion of the second workpiece, the second fixture being configured to move the sonotrode into contact with the first workpiece and/or the second workpiece; and one or more moveable side pieces moveable in a horizontal direction to press against at least one of the first workpiece or the second workpiece.
B: The welding system according to paragraph B, further comprising one or more actuators coupled to the one or more moveable side pieces, wherein  the one or more actuators position the one or more moveable side pieces to press against at least one of the first workpiece or the second workpiece.
C: The welding system according to any one of paragraphs A or B, further comprising one or more sensors configured to generate sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
D: The welding system according to any one of paragraphs A-C, further comprising a controller communicatively coupled to the one or more actuators and the one or more sensors, the controller configured to: receive the pressure data; and cause the one or more actuators to position the one or more side pieces such that the one or more side pieces apply a pressure on the at least one of the first component or the second component, wherein the pressure is applied to the at least one of the first workpiece or the second workpiece while the sonotrode applies vibrational energy to the first workpiece and the second workpiece.
E: The welding system according to any one of paragraphs A-D, wherein the first workpiece includes a first type of polymer and the second workpiece includes a second type of polymer.
F: The welding system according to any one of paragraphs A-E, wherein the first type of polymer and the second type of polymer are different.
G: The welding system according to any one of paragraphs A-F, wherein the first type of polymer and the second type of polymer as a same type of polymer.
H: The welding system according to any one of paragraphs A-G, wherein the sonotrode applies vibrational energy to the first workpiece and the second workpiece for a predetermined amount of time to form a welded workpiece including the first workpiece and the second workpiece.
I: A method comprising: placing at least one of a first workpiece or a second workpiece in a first fixture configured to hold the at least one of the first workpiece or the second workpiece; causing an second fixture to be positioned such that a sonotrode coupled to the second fixture contacts the first workpiece or the second workpiece; causing one or more moveable side pieces to be positioned such that the one or more moveable side pieces apply a predetermined pressure to the at least one of the first workpiece or the second workpiece; applying vibrational energy to the first workpiece and the second workpiece via the sonotrode, the vibrational energy welding at least a portion of the first workpiece to at least a portion of the second workpiece forming a welded part; and removing the welded part from the first fixture.
J: The method according to paragraph I, further comprising: receiving, from one or more sensors, sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces; determining that the pressure is less than a target pressure; and adjusting the position of the one or more moveable side pieces to increase the pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
K: The method according to any one of paragraphs I or J, further comprising: receiving, from one or more sensors, sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces; determining that the pressure is greater than a target pressure; and adjusting the position of the one or more moveable side pieces to decrease the pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
L: The method according to any one of paragraphs I-K, wherein causing one or more moveable side pieces to be positioned includes sending, via a controller, one or more signals to one or more actuators coupled to the one or more moveable side pieces, the one or more signals causing the actuators to position the one or more moveable side pieces.
M: The method according to any one of paragraphs I-L, further comprising adjusting the position of the one or more moveable side pieces while the vibrational energy is applied to the first workpiece and the second workpiece such that a position of the first workpiece or the second workpiece is altered or the pressure applied to the first workpiece or the second workpiece is increased or decreased.
N: The method according to any one of paragraphs I-M, wherein the vibrational energy is applied to the first workpiece and the second workpiece for a predetermined amount of time.
O: The method according to any one of paragraphs I-N, wherein removing the welded part from the first fixture includes: causing the second fixture to be positioned such that the sonotrode is removed from contacting the welded part; and causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are removed from contacting the welded part.
Conclusion
Although the discussion above sets forth example implementations of the described techniques and structural features, other architectures may be used to implement the described functionality and are intended to be within the scope of this disclosure. Furthermore, although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claims. For example, the structural features and/or methodological acts may be rearranged and/or combined with each other and/or other structural features and/or methodological acts. In various examples, one or more of the structural features and/or methodological acts may be omitted.

Claims (15)

  1. A welding system comprising:
    a first fixture to hold at least a first workpiece;
    an upper fixture moveable in a vertical direction;
    a sonotrode coupled to the second fixture and configured to apply vibrational energy to the first workpiece and/or a second workpiece to weld at least a portion of the first workpiece to at least a portion of the second workpiece, the second fixture being configured to move the sonotrode into contact with the first workpiece and/or the second workpiece; and
    one or more moveable side pieces moveable in a horizontal direction to press against at least one of the first workpiece or the second workpiece.
  2. The welding system of claim 1, further comprising one or more actuators coupled to the one or more moveable side pieces, wherein the one or more actuators position the one or more moveable side pieces to press against at least one of the first workpiece or the second workpiece.
  3. The welding system of claim 2, further comprising one or more sensors configured to generate sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
  4. The welding system of claim 3, further comprising a controller communicatively coupled to the one or more actuators and the one or more sensors, the controller configured to:
    receive the pressure data; and
    cause the one or more actuators to position the one or more side pieces such that the one or more side pieces apply a pressure on the at least one of the first workpiece or the second workpiece, wherein the pressure is applied to the at least one of the first workpiece or the second workpiece while the sonotrode applies vibrational energy to the first workpiece and the second workpiece.
  5. The welding system of claim 1, wherein the first workpiece includes a first type of polymer and the second workpiece includes a second type of polymer.
  6. The welding system of claim 5, wherein the first type of polymer and the second type of polymer are different.
  7. The welding system of claim 5, wherein the first type of polymer and the second type of polymer as a same type of polymer.
  8. The welding system of claim 1, wherein the sonotrode applies vibrational energy to the first workpiece and the second workpiece for a predetermined amount of time to form a welded workpiece including the first workpiece and the second workpiece.
  9. A method comprising:
    placing at least one of a first workpiece or a second workpiece in a first fixture configured to hold the at least one of the first workpiece or the second workpiece;
    causing a second fixture to be positioned such that a sonotrode coupled to the second fixture contacts the first workpiece or the second workpiece;
    causing one or more moveable side pieces to be positioned such that the one or more moveable side pieces apply a pressure on the at least one of the first workpiece or the second workpiece;
    applying vibrational energy to the first workpiece and the second workpiece via the sonotrode, the vibrational energy welding at least a portion of the first workpiece to at least a portion of the second workpiece forming a welded part; and
    removing the welded part from the first fixture.
  10. The method of claim 9, further comprising:
    receiving, from one or more sensors, sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces;
    determining that the pressure is less than a target pressure; and
    adjusting the position of the one or more moveable side pieces to increase the pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
  11. The method of claim 9, further comprising:
    receiving, from one or more sensors, sensor data associated with a pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces;
    determining that the pressure is greater than a target pressure; and
    adjusting the position of the one or more moveable side pieces to decrease the pressure applied to the at least one of the first workpiece or the second workpiece by the one or more moveable side pieces.
  12. The method of claim 9, wherein causing one or more moveable side pieces to be positioned includes sending, via a controller, one or more signals to one or more actuators coupled to the one or more moveable side pieces, the one or more signals causing the actuators to position the one or more moveable side pieces.
  13. The method of claim 9, further comprising adjusting the position of the one or more moveable side pieces while the vibrational energy is applied to the first workpiece and the second workpiece such that a position of the first workpiece or the second workpiece is altered or the pressure applied to the first workpiece or the second workpiece is increased or decreased.
  14. The method of claim 9, wherein the vibrational energy is applied to the first workpiece and the second workpiece for a predetermined amount of time.
  15. The method of claim 9, wherein removing the welded part from the first fixture includes:
    causing the second fixture to be positioned such that the sonotrode is removed from contacting the welded part; and
    causing the one or more moveable side pieces to be positioned such that the one or more moveable side pieces are removed from contacting the welded part.
PCT/CN2022/090824 2022-04-30 2022-04-30 Ultrasonic welding system and method WO2023206585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090824 WO2023206585A1 (en) 2022-04-30 2022-04-30 Ultrasonic welding system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090824 WO2023206585A1 (en) 2022-04-30 2022-04-30 Ultrasonic welding system and method

Publications (1)

Publication Number Publication Date
WO2023206585A1 true WO2023206585A1 (en) 2023-11-02

Family

ID=88517081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090824 WO2023206585A1 (en) 2022-04-30 2022-04-30 Ultrasonic welding system and method

Country Status (1)

Country Link
WO (1) WO2023206585A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201453A (en) * 1991-09-30 1993-04-13 Texas Instruments Incorporated Linear, direct-drive microelectronic bonding apparatus and method
CN204773576U (en) * 2015-07-15 2015-11-18 惠州市壹品科技有限公司 Automatic ultrasonic bonding machine of band wire product
CN110560878A (en) * 2019-08-28 2019-12-13 深圳市深发源精密科技有限公司 Ultrasonic welding fixture
CN209813101U (en) * 2019-03-22 2019-12-20 谢猛 Three-dimensional quick ultrasonic plastic welding machine
CN112477145A (en) * 2020-12-07 2021-03-12 李金丰 Movable ultrasonic welding machine
CN212795966U (en) * 2020-06-29 2021-03-26 英泰特科技无锡有限公司 Ultrasonic welding device for injection molding products
CN214489217U (en) * 2021-04-09 2021-10-26 威海建宏智控科技有限公司 Ultrasonic welding machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201453A (en) * 1991-09-30 1993-04-13 Texas Instruments Incorporated Linear, direct-drive microelectronic bonding apparatus and method
CN204773576U (en) * 2015-07-15 2015-11-18 惠州市壹品科技有限公司 Automatic ultrasonic bonding machine of band wire product
CN209813101U (en) * 2019-03-22 2019-12-20 谢猛 Three-dimensional quick ultrasonic plastic welding machine
CN110560878A (en) * 2019-08-28 2019-12-13 深圳市深发源精密科技有限公司 Ultrasonic welding fixture
CN212795966U (en) * 2020-06-29 2021-03-26 英泰特科技无锡有限公司 Ultrasonic welding device for injection molding products
CN112477145A (en) * 2020-12-07 2021-03-12 李金丰 Movable ultrasonic welding machine
CN214489217U (en) * 2021-04-09 2021-10-26 威海建宏智控科技有限公司 Ultrasonic welding machine

Similar Documents

Publication Publication Date Title
EP1660268B1 (en) A method for positioning a welding robot tool
US9937585B2 (en) Multi-functional manufacturing tool
JP3864888B2 (en) Joining method using friction stir
CN109029453B (en) Cladding head posture path planning method, device, terminal, storage medium and system
JP2008307595A (en) Method for positioning spot welding robot
US20130092671A1 (en) Pressure control method for spot welding apparatus
JP3261433B2 (en) Joining apparatus and joining method
WO2023206585A1 (en) Ultrasonic welding system and method
JP3864240B2 (en) Welding method
JP2009090353A (en) Stud welding apparatus
JP3534735B2 (en) Spot joining system and fixing device
JP3894544B2 (en) Spot welding method
JP6138450B2 (en) Peening apparatus and peening method
JP4090933B2 (en) Automatic welding control method
CN203471140U (en) System controlling friction-stir welding and system for same
JP6104013B2 (en) Spot welding method and spot welding apparatus
KR101668625B1 (en) Hemming device of plate member and memming method using the same
TW201420242A (en) Friction stir welding parts including one or more expendable portions
JP2020196024A (en) Spot welding system
JP2003230996A (en) Control method for multi-shaft servo drive press
JP2015085496A (en) Robot, robot system and control device
JP5782720B2 (en) Ultrasonic bonding equipment
JP2013034963A (en) Booster for ultrasonic vibration, ultrasonic vibration joining apparatus using the booster and ultrasonic vibration welding apparatus using the booster
JP6064010B1 (en) Work bending method and bender
JP5922926B2 (en) Pressure control method for spot welding equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939428

Country of ref document: EP

Kind code of ref document: A1