WO2023206524A1 - 一种资源分配方法、装置、基站、用户设备及存储介质 - Google Patents

一种资源分配方法、装置、基站、用户设备及存储介质 Download PDF

Info

Publication number
WO2023206524A1
WO2023206524A1 PCT/CN2022/090643 CN2022090643W WO2023206524A1 WO 2023206524 A1 WO2023206524 A1 WO 2023206524A1 CN 2022090643 W CN2022090643 W CN 2022090643W WO 2023206524 A1 WO2023206524 A1 WO 2023206524A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupied
frequency domain
information
time slot
full
Prior art date
Application number
PCT/CN2022/090643
Other languages
English (en)
French (fr)
Inventor
孔磊
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Priority to CN202280001147.5A priority Critical patent/CN117322092A/zh
Priority to PCT/CN2022/090643 priority patent/WO2023206524A1/zh
Publication of WO2023206524A1 publication Critical patent/WO2023206524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a resource allocation method, device, base station, user equipment and storage medium.
  • the current Time-Division Duplex (TDD) communication system uses Half-Duplex (HD) mode for communication.
  • HD mode TDD communication systems usually configure more downlink (DL) time slots, which results in fewer uplink (UL) time slots and limits the uplink transmission rate, resulting in uplink transmission
  • DL downlink
  • UL uplink
  • URLLC Ultra-Reliability Low Latency Communication
  • FD mode In full-duplex (FD) mode, the base station or user equipment in the TDD communication system can send and receive data simultaneously on the same time slot/same OFDM symbol. Therefore, the TDD communication system uses FD Pattern communication is an effective way to solve the above problems.
  • FD mode communication will introduce self-interference (SI), inter-cell crosstalk, inter-user interference and other factors that affect communication quality.
  • the purpose of the embodiments of this application is to provide a resource allocation method, device, base station, user equipment and storage medium to implement FD mode communication.
  • the specific technical solutions are as follows:
  • embodiments of the present application provide a resource allocation method, which is applied to a base station.
  • the method includes:
  • the base station is configured with configuration information of full-duplex time slots in the same frequency domain bandwidth of the first cell, then the first signaling is sent to the user equipment in the first cell, where the first signaling includes
  • the configuration information includes first information indicating the resources occupied by the downlink channel in the full-duplex time slot, and second information indicating the resources occupied by the uplink channel in the full-duplex time slot.
  • embodiments of the present application provide a resource allocation method, which is applied to user equipment.
  • the method includes:
  • the base station receiving first signaling sent by the base station, the first signaling including configuration information, the configuration information including first information indicating resources occupied by downlink channels in a full-duplex time slot under the same frequency domain bandwidth of the first cell, and second information indicating the resources occupied by the uplink channel in the full-duplex time slot;
  • resources are allocated to the full-duplex time slot.
  • inventions of the present application provide a resource allocation device, which is applied to a base station.
  • the device includes:
  • a sending module configured to send the first signaling to the user equipment in the first cell if the configuration information of the full-duplex time slot in the same frequency domain bandwidth of the first cell is set in the base station, the The first signaling includes the configuration information.
  • the configuration information includes first information indicating the resources occupied by the downlink channel in the full-duplex time slot, and second information indicating the resources occupied by the uplink channel in the full-duplex time slot. information.
  • inventions of the present application provide a resource allocation device, which is applied to user equipment.
  • the device includes:
  • a receiving module configured to receive first signaling sent by the base station, where the first signaling includes configuration information, and the configuration information includes indicating resources occupied by downlink channels in a full-duplex time slot under the same frequency domain bandwidth of the first cell.
  • the first information, and the second information indicating the resources occupied by the uplink channel in the full-duplex time slot;
  • An allocation module configured to allocate resources to the full-duplex time slot according to the first information and the second information.
  • embodiments of the present application provide a base station, including a processor and a machine-readable storage medium.
  • the machine-readable storage medium stores machine-executable instructions that can be executed by the processor.
  • the processor Prompted by the machine-executable instructions: implement any method step provided in the first aspect.
  • embodiments of the present application provide a user equipment, including a processor and a machine-readable storage medium.
  • the machine-readable storage medium stores machine-executable instructions that can be executed by the processor.
  • the processing The processor is caused by the machine-executable instructions to: implement any method step provided in the second aspect.
  • embodiments of the present application provide a machine-readable storage medium that stores machine-executable instructions that can be executed by a processor.
  • the machine-executable instructions cause the processor to: Implement any method step provided by the first aspect.
  • embodiments of the present application provide a machine-readable storage medium.
  • the machine-readable storage medium stores machine-executable instructions that can be executed by a processor.
  • the machine-executable instructions cause the processor to: Implement any method step provided in the second aspect.
  • embodiments of the present application provide a computer program product, which causes the processor to: implement any method step provided in the first aspect.
  • embodiments of the present application provide a computer program product, which causes the processor to: implement any method step provided in the second aspect.
  • the base station configures the first information about the resources occupied by the downlink channel in the full-duplex time slot, and the second information about the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • Figure 1(a) is a communication schematic diagram of HD mode.
  • Figure 1(b) is a communication schematic diagram of FD mode.
  • Figure 2 is a schematic structural diagram of a resource allocation system provided by an embodiment of the present application.
  • Figure 3 is a schematic flowchart of a first resource allocation method provided by an embodiment of the present application.
  • Figure 4(a) is a first schematic diagram of the frame structure of a full-duplex time slot provided by an embodiment of the present application.
  • Figure 4(b) is a second schematic diagram of the frame structure of a full-duplex time slot provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the mapping relationship between frequency domain subbands, RBs and OFDM subcarriers provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of frequency domain resource allocation of a full-duplex time slot provided by an embodiment of the present application.
  • Figure 7 is a first schematic diagram of time domain resource allocation of a full-duplex time slot provided by an embodiment of the present application.
  • Figure 8(a) is a second schematic diagram of time domain resource allocation provided by an embodiment of the present application.
  • Figure 8(b) is a third schematic diagram of time domain resource allocation provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the starting point, cycle period and duration period for the configuration information to take effect according to the embodiment of the present application.
  • Figure 10 is a schematic diagram showing that there is no overlap in occupied uplink and downlink channel resources between UEs provided by an embodiment of the present application.
  • Figure 11(a) is a first schematic diagram in which the uplink and downlink channel resources occupied by UEs overlap according to the embodiment of the present application.
  • Figure 11(b) is a second schematic diagram in which uplink and downlink channel resources occupied by UEs overlap according to an embodiment of the present application.
  • Figure 12 is a schematic flowchart of the second resource allocation method provided by an embodiment of the present application.
  • Figure 13 is a first structural schematic diagram of a resource allocation device provided by an embodiment of the present application.
  • Figure 14 is a second structural schematic diagram of a resource allocation device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a UE provided by an embodiment of the present application.
  • the FD time slot means that the base station or UE transmits data and receives data at the same time on the same Orthogonal Frequency Division Multiplexing (OFDM) symbol in the same time slot/the same time slot.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the frame structure of TDD can be completed through semi-static configuration and dynamic indication.
  • high-level signaling defines the slot structure combination (Slot Format Combination, SFC) through the slot structure indicator (Slot Format Indicator, SFI).
  • SFC Slot Format Combination
  • SFI Slot Format Indicator
  • the base station determines the slot structure that meets the business requirements based on the services to be supported, and combines all the time slot structures. The determined time slot structure is added to the SFC, as shown in Table 1.
  • D indicates DL compliance
  • U indicates UL compliance
  • F indicates flexible compliance
  • compliance indicates OFDM compliance.
  • OFDM symbols in the time slot are 0-13 are used as an example for explanation. In practice, the OFDM symbols in the time slot can also be 0-7 or 0-8, etc.
  • resource allocation can also be called channel resource allocation, and resource allocation is divided into time domain resource allocation and frequency domain resource allocation.
  • resource allocation is divided into time domain resource allocation and frequency domain resource allocation. The following explains the allocation of downlink channel resources as an example.
  • the time domain resource assignment (Time domain resource assignment) field in the Downlink Control Information (DCI) is used to indicate the time domain location of the downlink channel. This field has a total of 4 bits, and its value range is 0-15. If the value of the time domain resource allocation field is m, then m+1 indicates the row index of a time domain resource allocation table, and the information in the row will specifically indicate the time domain resources of the downlink shared channel (Physical Downlink Sharel Channel, PDSCH) . There are two ways of indicating:
  • the symbol length L is to directly indicate three pieces of information: the time slot offset K0 between PDSCH and the downlink control channel (Physical Downlink Control Channel, PDCCH) that schedules the PDSCH, the starting symbol S of PDSCH in the time slot, and the PDSCH duration.
  • the symbol length L The symbol length L.
  • the other is to indicate the time slot offset K0 between the PDSCH and the PDCCH that schedules the PDSCH and a start and length indicator value (Start Length Indication Value, SLIV).
  • SLIV Start Length Indication Value
  • the user equipment User Equipment, UE
  • UE can calculate the starting symbol S of the PDSCH in the time slot and the continuous symbol length L of the PDSCH.
  • the frequency domain resource assignment (Frequency domain resource assignment) field in DCI is used to indicate the frequency domain resource allocation of the downlink channel.
  • PDSCH frequency domain resource allocation is divided into two types: Type 0 and Type 1.
  • Type 0 supports non-continuous resource allocation, so as to obtain frequency diversity gain.
  • Type 1 supports continuous resource allocation, which can reduce the number of bits required in this field.
  • a resource block group (Resource Block Group, RBG) is a virtual resource block group (Virtual Resource Block Group, VRBG), consisting of P consecutive VRBs.
  • the specific number is determined by the resource block group size (RBG-Size) and partial bandwidth (Band Width Part, BWP) of the high-level parameters.
  • the frequency domain resource allocation field is used as a bitmap to indicate which RBGs are allocated to the downlink channel. For example: each bit in a bitmap represents an RBG, and the highest bit corresponds to the RBG. 0, and so on.
  • bitmap a bit of 1 indicates that the corresponding RBG is allocated to the downlink channel, and a bit of 0 indicates that the corresponding RBG is not allocated to the downlink channel. This allows flexible scheduling of frequency domain resources. Generally, RBGs can be directly mapped to physical resources with the same number.
  • the frequency domain resource allocation field will not be used as a bitmap, but will indicate a resource indicator value (Resource Indicator Value, RIV). Based on the RIV, the UE can calculate the starting resource block (RB) of the downlink channel and the number of occupied RBs.
  • RIV Resource Indicator Value
  • a TDD communication system includes a base station and a UE.
  • the current TDD communication system uses Half-Duplex (HD) mode for communication.
  • HD mode the frame structure is strictly divided into DL time slots, UL time slots and special (Special, S) time slots. Among them, S time slots can be used for DL time slots, UL time slots, and Can be used for Guard Period (GP).
  • FD mode communication the TDD communication system can only receive data or send data in a time slot.
  • device A sends data in the T time slot.
  • Device B receives data; device A can receive data and device B can send data in T+1 time slot.
  • TDD communication systems in HD mode usually configure more DL time slots, which results in fewer UL time slots, limited uplink transmission rate, increased uplink transmission delay, and reduced cell coverage, which is not conducive to URLLC. Execution of business.
  • the base station or UE When communicating in FD mode, in the same time slot in the same frequency domain bandwidth/on the same OFDM symbol in the same time slot, the base station or UE can both send and receive data, that is, the base station can send and receive the same UE or different data at the same time.
  • the UE data is a communication diagram of FD mode as shown in Figure 1(b).
  • device A In the T time slot, device A can send data or receive data, and device B can receive data or send data. Therefore, TDD communication system uses FD mode communication, which is an effective way to solve the above problems.
  • using FD mode communication will introduce factors that affect communication quality such as SI, inter-cell crosstalk, and inter-user interference.
  • a resource allocation system including a base station 21 and a UE 22, where the base station can be a gNB base station (i.e. 5G base station) or an NB base station (i.e. 5G base station). 4G base station), it can also be a base station of other standards, and there is no limitation on this.
  • Figure 2 takes a UE as an example for illustration, and does not serve a limiting purpose.
  • the base station 21 may cover one cell or multiple cells.
  • the resource allocation system may include UEs in one cell or UEs in multiple cells.
  • the base station 21 When allocating resources, the base station 21 obtains the configuration information of the full-duplex time slot under the same frequency domain bandwidth of the first cell.
  • the configuration information includes first information indicating the resources occupied by the downlink channel in the full-duplex time slot, and indicating that the downlink channel occupies resources.
  • the second information of the resources occupied by the uplink channel in the full-duplex time slot is sent to the UE 22 in the first cell, and the first signaling includes the above configuration information.
  • the UE 22 receives the above-mentioned first signaling sent by the base station, and allocates resources to the full-duplex time slot under the same frequency domain bandwidth according to the first information and the second information.
  • the base station configures the first information of the resources occupied by the downlink channel in the full-duplex time slot, and the second information of the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • a resource allocation method is provided.
  • the method is applied to a base station.
  • the base station can be preset with configuration information of full-duplex time slots under the same frequency domain bandwidth of the first cell.
  • the configuration information includes instructions.
  • the first information indicating the resources occupied by the downlink channel in the full-duplex time slot, and the second information indicating the resources occupied by the uplink channel in the full-duplex time slot.
  • the first cell is any cell covered by the base station, and all time slots of the first cell can use full-duplex time slots, as shown in Figure 4(a).
  • Time slots 0-9 all have DL channels and UL channels, so time slots 0-9 are all full-duplex time slots; the first cell can also use a mixture of half-duplex time slots and full-duplex time slots, as shown in Figure 4 ( As shown in b), in the time slots 0-9 shown in Figure 4(b), in the time slots 0-9 shown in Figure 4(b), time slots 0-1 and 5-6 are configured as DL channels, time slots 2 and 7 are configured as UL channels, and time slots 3-4, 8-9 has DL channels and UL channels. Therefore, time slots 0-2 and 5-7 are half-duplex time slots, and time slots 3-4 and 8-9 are full-duplex time slots.
  • the cell may include one or more full-duplex time slots. If the cell includes multiple full-duplex time slots, the frame structures of the multiple full-duplex time slots may be the same. As shown in Figure 4(b), full-duplex time slots The configurations of time slots 3-4 and 8-9 are the same; the frame structures of these multiple full-duplex time slots can also be different. As shown in Figure 4(a), the configuration of full-duplex time slots is divided into two types. 0, 2, 4, 6 and 8 are one time slot configuration, and time slots 1, 3, 5, 7 and 9 are another time slot configuration.
  • Both downlink channel occupied resources and uplink channel occupied resources include time domain resources and frequency domain resources.
  • the base station may obtain the configuration information of the full-duplex time slot of the first cell. If the first cell has multiple full-duplex time slot configuration modes, as shown in Figure 4(a), the base station can set multiple sets of configuration information, and one set of configuration information corresponds to one configuration mode.
  • the base station can provide a configuration interface, and the user inputs key information that needs to be configured on the configuration interface, such as SLIV, the number of RBs included in the frequency domain subband, etc.
  • the base station generates configuration information based on the key information input by the user through the configuration interface. This method of obtaining configuration information has low learning cost and high configuration efficiency.
  • the user can also directly input the configuration file to the base station, and the base station extracts the aforementioned configuration information from the configuration file; the configuration information can also be stored in the base station in advance.
  • the base station obtains the pre-stored information. in configuration information. There is no limit to this.
  • the above resource allocation method includes the following steps:
  • Step S31 If the base station is set with configuration information of a full-duplex time slot under the same frequency domain bandwidth of the first cell, then the first signaling is sent to the user equipment in the first cell.
  • the first signaling includes the above configuration information. .
  • the first signaling carrying the above configuration information may be broadcast signaling, such as system information broadcast signaling (SIB), unicast signaling, or user-specific signaling. , media access control control unit (Media Access Control-Control Element,, MAC-CE) or DCI, etc.
  • SIB system information broadcast signaling
  • unicast signaling unicast signaling
  • user-specific signaling such as user-specific signaling.
  • media access control control unit Media Access Control-Control Element,, MAC-CE
  • DCI etc.
  • the base station After obtaining the configuration information, the base station carries the configuration information in the first signaling, and sends the first signaling to the UE in the first cell.
  • the base station configures the first information of the resources occupied by the downlink channel in the full-duplex time slot, and the second information of the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • resources may include frequency domain resources and time domain resources, that is, resource allocation may be divided into frequency domain resource allocation and time domain resource allocation.
  • the above-mentioned first information may be used to indicate the frequency domain subband occupied by the downlink channel
  • the second information may be used to indicate the frequency domain subband occupied by the uplink channel.
  • the working bandwidth of a cell is divided into multiple frequency domain subbands (subbands).
  • One frequency domain subband is composed of several RBs/several RBGs, and one RB is composed of several OFDM subcarriers.
  • the mapping relationship between frequency domain subbands, RBs and OFDM subcarriers is shown in Figure 5.
  • one frequency domain subband consists of 4 RBs, RB 0-4, and each RB consists of 12 OFDM subcarriers, OFDM subcarriers 0-11.
  • the uplink channel and the downlink channel are allocated different frequency domain subbands. Using different frequency domain subbands to send and receive data can effectively reduce the interference between the uplink channel and the downlink channel in the full-duplex time slot. interference.
  • the base station can indicate the frequency domain resource allocation of the uplink channel and downlink channel through a bitmap. That is, the aforementioned configuration information can use a bitmap to represent the first information and the second information.
  • the bits in the bitmap One-to-one correspondence with frequency domain subbands.
  • the aforementioned configuration information uses a first bit map to represent the first information and the second information; the value of the bit is a first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel, and the value of the bit is is the second preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the uplink channel.
  • the first preset value may be 0 or 1
  • the second preset value may be 0 or 1. There is no limitation on this, as long as the first preset value and the second preset value are different.
  • the first preset value is 0 and the second preset value is 1.
  • Figure 6 is a schematic diagram of frequency domain resource allocation of a full-duplex time slot, where each row represents a frequency domain subband, Each column represents an OFDM symbol.
  • frequency domain subbands 0-3 are allocated to downlink channels
  • frequency domain subbands 4-8 are allocated to uplink channels.
  • the first bit of the image generated by the base station is [0,0,0,0,1,1,1,1,1]; in this bitmap, the leftmost bit is the 0th bit, and the Xth bit is the same as Corresponding to the frequency domain subband
  • the aforementioned configuration information uses a second bitmap to represent the first information, and a third bitmap to represent the second information; in the second bitmap, the value of the bit is the first preset value, indicating that the bit corresponding The frequency domain subband is occupied by the downlink channel; in the third bitmap, the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the uplink channel.
  • the first preset value is 1.
  • Figure 6 is still used as an example for explanation.
  • frequency domain subbands 0-3 are allocated to downlink channels
  • frequency domain subbands 4-8 are allocated to uplink channels.
  • the second bitmap generated by the base station is [1,1,1,1,0,0,0,0]
  • the third bitmap generated by the base station is [0,0,0,0,1, 1,1,1,1]
  • a value of 1 indicates that the corresponding frequency domain subband is occupied by the corresponding channel.
  • the base station uses a bitmap to transmit the resource configuration information to the UE.
  • the bitmap is concise and clear, which enables the base station to accurately transmit the resource configuration information to the UE and improves resource allocation efficiency.
  • the base station when allocating frequency domain resources, can also carry the number of RBs contained in the frequency domain subband in the above-mentioned first signaling and send it to the UE to assist in completing the configuration of frequency domain resources.
  • the first information can be used to indicate the RB occupied by the downlink channel and the first starting point.
  • the first starting point represents the starting RB occupied by the downlink channel; the first information can also be used to indicate the RBG occupied by the downlink channel. and a first starting point, where the first starting point represents the starting RBG occupied by the downlink channel.
  • the second information may be used to indicate the number of RBs occupied by the uplink channel and the second starting point.
  • the second starting point represents the starting RB occupied by the uplink channel; the second information can also be used to indicate the number of RBGs occupied by the uplink channel and the second starting point.
  • the second starting point represents the starting point occupied by the uplink channel. RBG.
  • the base station can allocate resources to full-duplex time slots under the same frequency domain bandwidth.
  • the first cell has adjacent cells, and the base station itself and the base station can negotiate with each other so that the frame structures of the first cell and the adjacent cells are the same.
  • both the first cell and the adjacent cells adopt the frame structure shown in Figure 4(b), which can effectively reduce uplink and downlink interference between cells.
  • the frame structures of the first cell and adjacent cells may be different.
  • the first cell adopts the frame structure shown in Figure 4(a) Frame structure
  • the adjacent cell adopts the frame structure shown in Figure 4(b).
  • the base station can use beam forming or inter-frequency networking to communicate with the UE.
  • both the first cell and the adjacent cells are areas covered by the base station.
  • the base station can adjust the frame structure of the first cell and the adjacent cell according to actual needs. For example, in order to reduce uplink and downlink interference between cells, the base station adjusts the frame structure of the first cell to the frame structure of the adjacent cell, or adjusts the frame structure of the adjacent cell to the frame structure of the first cell. For another example, in order to improve the flexibility of resource allocation and realize flexible allocation of resources according to business needs, the base station arbitrarily adjusts the frame structure of the first cell and the frame structure of adjacent cells.
  • the first cell is an area covered by a base station
  • the adjacent cell is an area covered by other base stations.
  • other base stations can send messages to the base station, and the messages indicate the frame structure of adjacent cells; the base station receives the messages sent by other base stations, and then adjusts the frame structure of the first cell according to the messages according to actual needs.
  • the base station adjusts the frame structure of the first cell to the frame structure of the adjacent cell.
  • the base station arbitrarily adjusts the frame structure of the first cell.
  • the base station can send a message to other base stations, and the message indicates the frame structure of the first cell; other base stations receive the message sent by the base station, and then adjust the frame structure of the adjacent cell according to the message according to actual needs.
  • the first information and the second information can be expressed in various forms.
  • the first information and the second information may be expressed in a default manner.
  • the above-mentioned first information may include the first starting OFDM symbol occupied by the downlink channel and the first OFDM symbol length corresponding to the downlink channel
  • the second information includes the second starting OFDM symbol occupied by the uplink channel and the second OFDM symbol corresponding to the uplink channel. Symbol length.
  • the first information and the second information may use SLIV.
  • the first information includes the first SLIV corresponding to the downlink channel
  • the second information includes the second SLIV corresponding to the uplink channel.
  • the first SLIV is determined based on the first starting OFDM symbol occupied by the downlink channel and the length of the first OFDM symbol corresponding to the downlink channel
  • the second SLIV is determined based on the second starting OFDM symbol occupied by the uplink channel and the second OFDM symbol corresponding to the uplink channel. The length is determined.
  • the base station can use the following formula to determine the SLIV.
  • Figure 7 shows a schematic diagram of time domain resource allocation of a full-duplex time slot.
  • each column represents an OFDM symbol. From the left, the values of OFDM symbols are 0, 1, and 2 respectively. ,3...13.
  • the starting OFDM symbol of the time domain resource of the downlink channel is 0, and the OFDM symbol length is 8.
  • the base station when the base station allocates time domain resources, it can detect whether the first starting OFDM symbol and the first OFDM symbol length are configured in the base station. If it is detected that the first starting OFDM symbol and the first OFDM symbol length are configured in the base station, the base station determines the first information according to the configured first starting OFDM symbol and the first OFDM symbol length; if it is detected that the base station is not configured with the first OFDM symbol. a starting OFDM symbol and the first OFDM symbol length, then the base station can allocate the starting OFDM symbol of the full-duplex time slot as the first starting OFDM symbol, and allocate the length of the OFDM symbol of the full-duplex time slot as the first OFDM symbol length. , determine the first information according to the allocated first starting OFDM symbol and the first OFDM symbol length.
  • the base station when the base station allocates time domain resources, it can detect whether the second starting OFDM symbol and the second OFDM symbol length are configured in the base station. If it is detected that the second starting OFDM symbol and the second OFDM symbol length are configured in the base station, the base station determines the second information according to the configured second starting OFDM symbol and the second OFDM symbol length; if it is detected that there is no second starting OFDM symbol and the second OFDM symbol length in the base station. Configuring the second starting OFDM symbol and the second OFDM symbol length, the base station can allocate the starting OFDM symbol of the full-duplex time slot as the second starting OFDM symbol, and allocate the length of the OFDM symbol of the full-duplex time slot as the second starting OFDM symbol.
  • the OFDM symbol length determines the second information according to the allocated second starting OFDM symbol and the second OFDM symbol length.
  • the expression forms of the first information and the second information may refer to the previous description.
  • Figure 8(a) and Figure 8(b) are schematic diagrams of time domain resource allocation respectively.
  • Each column represents an OFDM symbol. From the left, the values of OFDM symbols are 0, 1, and 2 respectively. , 3..., in Figure 8(a), a full-duplex time slot includes 14 OFDM symbols, in Figure 8(b), a full-duplex time slot includes 7 OFDM symbols, when the starting OFDM symbol is not configured ( In the case of (including the first starting OFDM symbol and the second starting OFDM symbol) and the OFDM symbol length (including the first OFDM symbol length and the second OFDM symbol length), the base station allocates all OFDM symbols of a full-duplex time slot to Uplink channel and downlink channel, as shown in Figure 8(a), all 14 OFDM symbols included in the full-duplex time slot are allocated to the uplink channel, and all 14 OFDM symbols included in the full-duplex time slot are also allocated to the uplink channel.
  • the downlink channel is allocated to the downlink channel; as shown in Figure 8(b), all 7 OFDM symbols included in the full-duplex time slot are allocated to the uplink channel, and all 7 OFDM symbols included in the full-duplex time slot are allocated to the downlink channel. channel.
  • the OFDM symbol length occupied by the downlink channel and the uplink channel is the same as the OFDM symbol length of the full-duplex time slot.
  • the downlink channel and the uplink channel occupy all OFDM symbols included in the full-duplex time slot, that is, the length of the OFDM symbol occupied by the downlink channel and the uplink channel is equal to The OFDM symbol lengths of full-duplex time slots are the same.
  • the flexible symbol can be allocated to the downlink channel or the uplink channel, which makes the flexible symbol have Uncertainty, which is likely to lead to the opposite direction of data transmission from the adjacent cell.
  • the first cell is allocated to the downlink channel as a flexible compliant OFDM symbol
  • the OFDM symbol of the adjacent cell is allocated to the uplink channel. This means It brings interference between cells.
  • the OFDM symbol length occupied by the downlink channel and the uplink channel is the same as the OFDM symbol length of the full-duplex time slot, which can effectively avoid the above problems and reduce inter-cell interference.
  • the configuration information carried by the first signaling may also include the number of full-duplex time slots included in at least one system frame.
  • a system frame includes 10 time slots
  • the configuration information indicates that system frame 1 includes 2 full-duplex time slots, that is, among the 10 time slots of system frame 1, 2 time slots are full-duplex time slots;
  • the configuration information may also indicate 2 full-duplex time slots included in system frame 1, and 3 full-duplex time slots included in system frame 2. That is, among the 10 time slots included in system frame 1, 2 The time slots are full-duplex time slots.
  • 3 time slots are full-duplex time slots.
  • the configuration information may also include a fourth bitmap of at least one system frame, where bits in the fourth bitmap correspond to time slots one-to-one.
  • the bit bit is a third preset value, indicating that the time slot corresponding to the bit bit is a full-duplex time slot; in the fourth bitmap, the bit bit is a fourth preset value, indicating that the time slot corresponding to the bit bit is a full-duplex time slot. Slots are half-duplex time slots.
  • the third preset value can be 0 or 1
  • the fourth preset value can be 0 or 1. The details can be set according to implementation requirements, as long as the third preset value and the fourth preset value are different.
  • the third preset value is 1, a system frame includes 10 time slots, the fourth bitmap includes 10 bits, in the fourth bitmap, from the left, the time slot corresponding to each bit is 0, 1, 2....9. If the configuration information includes the fourth bitmap 1 of system frame 1 as [0,0,0,0,1,1,0,0,0,0], it means that timeslot 4 and timeslot 5 are full-duplex. slots, other time slots are half-duplex time slots.
  • the full-duplex time slot in a system frame can be accurately determined.
  • multiple sets of configuration information can be set in the base station, and each set of configuration information has an allocation sequence number (which can be represented by a pattern sequence number).
  • the base station numbers the full-duplex time slots in the system frame and obtains the index number of each full-duplex time slot.
  • the index number of the full-duplex time slot is the number of the full-duplex time slot within the cycle period of the configuration information.
  • the cycle period of the configuration information is 2 system frames, such as the configuration information in system frame 0 and system frame 1.
  • Valid, time slot 4 and time slot 5 in system frame 0 are full-duplex time slots, time slot 5 and time slot 6 in system frame 1 are full-duplex time slots, then time slot 4 in system frame 0
  • the index number is 0, the index number of time slot 5 in system frame 0 is 1, the index number of time slot 5 in system frame 1 is 3, and the index number of time slot 6 in system frame 1 is 4.
  • the cycle period of configuration information will be explained in detail later and will not be described again here.
  • the base station can carry the above multiple sets of configuration information in one first signaling and send it to the UE, or it can carry it in multiple first signalings and send it to the UE, and there is no limitation on this. .
  • the configuration information used in each full-duplex time slot can be the configuration information corresponding to the target allocation sequence number.
  • the target allocation sequence number is the index number of the full-duplex time slot and the number of multiple sets of configuration information.
  • the module is obtained.
  • the pattern number corresponding to each full-duplex time slot can be determined based on the output of the formula mod (index number of the full-duplex time slot, total number of patterns), where mod (x, y) represents the remainder of x divided by y.
  • the configuration information used for each full-duplex time slot may also be the configuration information of the full-duplex time slot specified in the first signaling.
  • time slot 4 and time slot 5 in system frame 0 are full-duplex time slots.
  • the first signaling sent by the base station specifies: time slot 4 in system frame 0 corresponds to configuration information 1, and time slot 4 in system frame 0 corresponds to configuration information 1.
  • Slot 5 corresponds to configuration information 3.
  • the configuration information used in each full-duplex time slot can also be determined based on the fifth bitmap, and the fifth bitmap can be carried in the first signaling.
  • the bits in the fifth bitmap correspond to the full-duplex time slots in the system frame one-to-one.
  • the full-duplex time slots corresponding to the bits use the configuration information corresponding to the value of the bits.
  • the bit values in the fifth bitmap include 0 and 1, the bit value 0 corresponds to configuration information 0, and the bit value 1 corresponds to configuration information 1.
  • the fifth bitmap starting from the left, the number of the full-duplex time slot corresponding to each bit increases in sequence. If time slot 4 and time slot 5 in system frame 0 are full-duplex time slots, the fifth bitmap is [0,1], indicating that time slot 4 uses configuration information 0 and time slot 5 uses configuration information 1.
  • the base station can also use other methods to achieve the matching relationship between the number of full-duplex time slots in a system frame and the number of configuration information types of the full-duplex time slots, as well as the matching relationship between the full-duplex time slots and the full-duplex time slots.
  • the matching relationship of the time slot configuration information is not limited.
  • the above configuration information is a semi-static configuration, and the base station can adjust the configuration information according to actual needs.
  • the configuration information included in the first signaling takes effect when the UE reaches the third starting point.
  • the third starting point may be pre-configured in the UE and the base station.
  • the system frame number corresponding to the third starting point is N, and N may be 0, 1 or 2, etc.
  • the system frame number corresponding to the third starting point The frame number is an odd or even frame.
  • the third starting point can also be calculated by the UE according to a certain algorithm.
  • the third starting point is obtained by taking the modulo of the frame number and the duration period of the full-duplex time slot.
  • the duration period of the full-duplex time slot after the configuration information takes effect is the validity period of the configuration information.
  • the aforementioned duration period of the full-duplex time slot may be pre-configured in the UE, or may be sent by the base station to the UE through the first signaling. That is, the first signaling may also include the duration period of the full-duplex time slot.
  • the duration period of the full-duplex time slot can be 50 system frames, 60 system frames or 80 system frames, etc.
  • the cycle period of the configuration information is 2 system frames. If time slot 4 and time slot 5 of system frame 0 are full-duplex time slots, time slot 4 of system frame 0 and system frame 2 are separated by one cycle period. Slot 4 is located at the same position, and time slot 5 of system frame 0 is located at the same position as time slot 5 of system frame 2 separated by one cycle. Therefore, time slot 4 and time slot 5 of system frame 2 are full-duplex time slots.
  • Time slot 4 of system frame 0 has the same time domain resources and frequency domain resources as time slot 4 of system frame 2.
  • Time slot 5 of system frame 0 has the same time domain resources and frequency domain resources as time slot 5 of system frame 2.
  • the aforementioned cycle period may be pre-configured in the UE, or may be sent by the base station to the UE through the first signaling, that is, the first signaling may also include a cycle period.
  • the cycle period can be set according to actual needs.
  • the cycle period can be 1 system frame, 2 system frames, or 3 system frames, etc.
  • the configuration information received by the UE before the third starting point takes effect, and the full-duplex time slot resources are allocated according to the configuration information received before the third starting point, and the full-duplex time slot resources are allocated according to the configuration information received before the third starting point.
  • the resources indicated by the configuration information accept the scheduling of the base station and receive and send data under the same frequency domain bandwidth.
  • Figure 9 shows a schematic diagram of the third starting point for the configuration information to take effect, the cycle period of the configuration information, and the duration period of the full-duplex time slot.
  • the frame number of the system frame (System Frame, SF) includes SF 0-SF 49
  • the cycle period N of the configuration information is 2 SF
  • the duration period M of the full-duplex time slot is 50 SF.
  • the information in the System Information Block (SIB) in SF 00 is the configuration information of the full-duplex time slot.
  • SIB System Information Block
  • the configuration information of the full-duplex time slot takes effect, as shown in Figure 9
  • the time slots 4 and 5 in the shaded part of SF 0 have the same resources as the time slots 4 and 5 of SF 2 in the cycle interval of SF 0.
  • all OFDM symbols in time slot 4 in SF 0 are all allocated to the downlink channel.
  • all OFDM symbols in time slot 4 in SF 2 are all allocated to the downlink channel.
  • all OFDM symbols in time slot 4 in SF 0 are allocated to the downlink channel.
  • All OFDM symbols in slot 4 are allocated to the uplink channel.
  • all OFDM symbols in slot 4 in SF 2 are allocated to the uplink channel.
  • OFDM symbols 0-7 in slot 5 in SF 0 are allocated to the downlink channel.
  • all OFDM symbols 0-7 in slot 5 in SF 2 are allocated to the downlink channel.
  • all OFDM symbols in slot 5 in SF 0 are allocated to the downlink channel.
  • 3-13 are allocated to the uplink channel.
  • all OFDM symbols 3-13 in slot 5 in SF 2 are allocated to the uplink channel.
  • the OFDM symbols included in different full-duplex time slots can be the same.
  • mode 1 as shown in Figure 9, all OFDM symbols in time slot 4 and time slot 5 in SF 0 are 0-13; different full-duplex time slots include The OFDM symbols included in the working time slots can also be different.
  • mode 2 as shown in Figure 9, all OFDM symbols in time slot 4 in SF 0 are 0-13, and all OFDM symbols in time slot 5 in SF 0 are 0-8.
  • the OFDM symbols occupied by the uplink and downlink channels in a full-duplex time slot can be the same, as shown in Figure 9 Mode 1, the resource allocation of the uplink and downlink channels in time slot 4 in SF 0; a full-duplex
  • the OFDM symbols occupied by the uplink and downlink channels in the time slot can also be different, as shown in Figure 9 in Mode 2, the resource allocation of the uplink and downlink channels in time slot 5 in SF 0.
  • the OFDM symbols occupied by the downlink channels in different full-duplex time slots can be the same or different, and the OFDM symbols occupied by the uplink channels in different full-duplex time slots can be the same or different.
  • the base station sends the second signaling to the UE.
  • the second signaling includes the full-duplex time of the user equipment in the same frequency domain bandwidth. slot scheduling information.
  • the second signaling can be implemented using DCI, and the second signaling can be multicast signaling or user-specific signaling.
  • the second signaling may include scheduling information of at least one user equipment, such as the uplink and downlink channel resource allocation as shown in Figure 10, scheduling information 1 of UE 1, scheduling information 2 of UE 2, scheduling information 3 of UE 3, and UE
  • the scheduling information 4 of 4 is carried in 4 second signalings and sent to the corresponding UE.
  • scheduling information 1 is carried in one second signaling and sent to UE 1, and scheduling information 2 is carried in another second signaling. Sent to UE 2, and so on; the scheduling information 1 of UE 1, the scheduling information 2 of UE 2, the scheduling information 3 of UE 3, and the scheduling information 4 of UE 4 are carried in the same second signaling and sent to each UE.
  • the base station can use the second signaling to dynamically schedule the UE to send and receive data within the full-duplex time slot, that is, dynamically schedule uplink and downlink channel resources.
  • the aforementioned scheduling information of a user equipment can be used to indicate the resources occupied by the user equipment for sending data, that is, the frequency domain subband occupied by the user equipment for sending data, and the OFDM symbols occupied by the user equipment for sending data.
  • the scheduling information of a user equipment can also be used to indicate the resources occupied by the user equipment for receiving data, that is, the frequency domain subband occupied by the user equipment for receiving data, and the OFDM symbols occupied by the user equipment for receiving data.
  • the scheduling information of a user equipment can also be used to indicate the resources occupied by the user equipment for sending data and the resources occupied by the user equipment for receiving data.
  • the frequency domain subbands occupied by different user equipments overlap and the occupied OFDM symbols do not overlap; or, the occupied OFDM symbols occupied by different user equipments do not overlap; or, the frequency domain subbands occupied by different user equipments overlap
  • the frequency domain subband occupied by the user equipment includes the frequency domain subband occupied by the user equipment when sending data and the frequency domain subband occupied by the user equipment when receiving data.
  • the OFDM symbols occupied by the user equipment include the frequency domain subband occupied by the user equipment when sending data. OFDM symbols occupied when receiving data and OFDM symbols occupied by user equipment when receiving data.
  • the base station can dynamically schedule uplink and downlink channel resources so that there is no overlap in the uplink and downlink channel resources occupied by UEs.
  • a full-duplex time slot under the same frequency domain bandwidth where each row represents a frequency domain sub-slot. Band, each column represents an OFDM symbol. From the left, the values of OFDM symbols are 0, 1, 2, 3...13 respectively.
  • the frequency domain subband occupied by the downlink channel of UE 1 (the frequency domain subband occupied by receiving data) and the frequency domain subband occupied by the uplink channel of UE 2 (the frequency domain subband occupied by sending data) Bands) are the same, both are frequency domain subbands 0-2, that is, the frequency domain subbands occupied by UE 1 and UE 2 overlap; the OFDM symbols occupied by the downlink channel of UE 1 are 1-5, and the uplink channel of UE 2
  • the occupied OFDM symbols are 6-9, that is, the OFDM symbols occupied by the downlink channel of UE 1 are different from the OFDM symbols occupied by the uplink channel of UE 2. There is no overlap in the OFDM symbols occupied by UE 1 and UE 2.
  • the frequency domain subband occupied by the uplink channel of UE 3 is 3-6
  • the frequency domain subband occupied by the downlink channel of UE 4 is 3-5
  • the frequency domain subband occupied by the downlink channel of UE 3 is 3-5.
  • the frequency domain subband occupied by the uplink channel of UE 4 has the same frequency domain subband, such as frequency domain subband 3-5.
  • the frequency domain subband occupied by UE 3 and UE 4 overlaps; UE 3
  • the OFDM symbols occupied by the downlink channel of UE are 1-3, the OFDM symbols occupied by the uplink channel of UE 4 are 4-9, and the OFDM symbols occupied by the downlink channel of UE 3 are different from the OFDM symbols occupied by the uplink channel of UE 4. , that is, there is no overlap in the OFDM symbols occupied by UE 1 and UE 2.
  • the frequency domain subband occupied by the downlink channel of UE 1 is 0-2, and the frequency domain subband occupied by the uplink channel of UE 3 is 3-6, that is, the frequency domain occupied by UE 1 and UE 3
  • the OFDM symbols occupied by the downlink channel of UE 1 are 1-5
  • the OFDM symbols occupied by the uplink channel of UE 3 are 1-3, that is, the OFDM symbols occupied by the downlink channel of UE 1 are the same as those of UE 3
  • the OFDM symbols occupied by the uplink channels have the same symbols, such as OFDM symbols 1-3. Therefore, the OFDM symbols occupied by UE 1 and UE 3 overlap.
  • the frequency domain subband occupied by the downlink channel of UE 1 is 0-2, and the frequency domain subband occupied by the downlink channel of UE 4 is 3-5, that is, the frequency domain occupied by UE 1 and UE 4
  • the OFDM symbols occupied by the downlink channel of UE 1 are 1-5
  • the OFDM symbols occupied by the downlink channel of UE 4 are 4-9, that is, the OFDM symbols occupied by the downlink channel of UE 1 are the same as those of UE 4
  • the OFDM symbols occupied by the downlink channels have the same symbols, such as OFDM symbols 4-5. Therefore, the OFDM symbols occupied by UE 1 and UE 4 overlap.
  • dynamic scheduling of the user equipment can also be achieved: the frequency domain subbands occupied by different user equipments overlap and the occupied OFDM symbols overlap.
  • the base station can dynamically schedule uplink and downlink channel resources to reuse uplink and downlink channel resources between UEs, as long as the interference of the uplink and downlink channels between UEs with the same time and frequency domain resources is within the interference tolerance range.
  • the frequency domain subband occupied by the downlink channel of UE 1 is 0-2, and the frequency domain subband occupied by the uplink channel of UE 2 is 0-3, that is, UE 1
  • the OFDM symbols occupied by the downlink channel of UE 1 are 1-4
  • the OFDM symbols occupied by the uplink channel of UE 2 are 1-4
  • the downlink channel of UE 1 is The occupied OFDM symbols are the same as the OFDM symbols occupied by the uplink channel of UE 2, which are OFDM symbols 1-4. Therefore, the OFDM symbols occupied by UE 1 and UE 2 overlap.
  • dynamic scheduling of user equipment can also be achieved: there is no overlap between the frequency domain subband occupied by the same user equipment for sending data and the frequency domain subband occupied by receiving data, and the frequency domain subband occupied by sending data does not overlap. There is overlap between OFDM symbols and OFDM symbols occupied by received data; or, there is an overlap between the frequency domain subband occupied by the same user equipment for sending data and the frequency domain subband occupied by received data, or the OFDM symbols occupied by sending data and received data. There is no overlap in the occupied OFDM symbols.
  • the frequency domain subband occupied by the downlink channel of UE 1 is 0-2, and the frequency domain subband occupied by the uplink channel of UE 1 is 4-6, that is, the time required for UE 1 to send data and receive data.
  • the OFDM symbols occupied by the downlink channel of UE 1 are 1-4
  • the OFDM symbols occupied by the uplink channel of UE 1 are 1-5, that is, the OFDM symbols occupied by the downlink channel of UE 1
  • the symbols are the same as the OFDM symbols occupied by the uplink channel of UE 1, such as OFDM symbols 1-4. Therefore, the OFDM symbols occupied by UE 1 for sending data and receiving data overlap.
  • the frequency domain subband occupied by the same user equipment for sending data does not overlap with the frequency domain subband occupied by receiving data
  • the OFDM symbols occupied by sending data do not overlap with the frequency domain subband occupied by receiving data.
  • the frequency domain subband occupied by the downlink channel of UE 1 is 0-2
  • the frequency domain subband occupied by the uplink channel of UE 1 is 4-6
  • the OFDM symbols occupied by the downlink channel of UE 1 are 1-4.
  • the OFDM symbols occupied by the uplink channel of UE 1 are 5-9, etc.
  • dynamic scheduling of user equipment can also be achieved: the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the frequency domain subband occupied by sending data overlaps. OFDM symbols overlap with the OFDM symbols occupied by the received data.
  • the base station can flexibly schedule UEs to send and receive data, as long as the interference between the uplink and downlink channels between UEs is within the interference tolerance range.
  • the base station when the base station dynamically schedules the user equipment, it can also set the validity period of the configuration information and the cycle period of the configuration information.
  • the validity period of the configuration information includes at least one cycle period, In each cycle, full-duplex time slots at the same location occupy the same resources.
  • the validity period and cycle period of the configuration information please refer to the description of the duration period of the full-duplex time slot and the cycle period of the configuration information in the semi-static configuration section above, which will not be described again here.
  • the base station in order to realize the allocation of time domain resources and frequency domain resources to full-duplex time slots, can carry the load through the broadcast signaling of the cell.
  • the broadcast signaling can include information elements as shown in Table 2 ( Information Element, IE).
  • a semi-static or dynamic resource allocation method is used to allocate the DL&UL time and frequency domain resources of TDD FD, so that the base station can allocate resources at the same time.
  • Slots schedule the same/different frequency domain resources and transmit and receive data at the same time. That is, the base station can schedule DL & UL data to transmit and receive simultaneously in both directions on the same time domain resources, and the same/different UEs can transmit and receive data simultaneously on the same time domain resources in the same time slot.
  • Transceiver thereby increasing cell coverage, reducing transmission delay, and increasing uplink capacity.
  • embodiments of the present application also provide a resource allocation method, as shown in Figure 12, applied to UE, the method includes the following steps:
  • Step S121 Receive the first signaling sent by the base station.
  • the first signaling includes configuration information.
  • the configuration information includes first information indicating the resource occupation of the downlink channel in the full-duplex time slot, and indicating the occupation of the uplink channel in the full-duplex time slot. Secondary information about the resource.
  • Step S122 Allocate resources to the full-duplex time slot according to the first information and the second information.
  • the resources may include frequency domain resources.
  • the first information is used to indicate the frequency domain subband occupied by the downlink channel.
  • the second information is used to indicate the frequency domain subband occupied by the uplink channel.
  • the frequency domain subband includes at least one Resource block or at least one resource block group; or
  • the first information is used to indicate the number of resource blocks or resource block groups occupied by the downlink channel and the first starting point
  • the second information is used to indicate the number of resource blocks or resource block groups occupied by the uplink channel. number and the second starting point.
  • the configuration information uses a first-bit map to represent the first information and the second information, and the bits in the first-bit map correspond to frequency domain subbands one-to-one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel, and the value of the bit is the second preset value, indicating that the frequency domain subband corresponding to the bit is occupied.
  • the band is occupied by the upstream channel.
  • the configuration information uses a second bitmap to represent the first information, and a third bitmap to represent the second information, and the bits in the second bitmap and the third bitmap correspond to the frequency domain subbands one by one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the uplink channel.
  • the configuration information also includes the number of resource blocks included in each frequency domain subband.
  • the frame structure of the first cell and the adjacent cell are the same.
  • the frame structures of the first cell and the adjacent cells are different; the above method may also include: using a beamforming method or an inter-frequency networking method to communicate with the base station.
  • the resources include time domain resources
  • the first information includes the first starting OFDM symbol occupied by the downlink channel and the first OFDM symbol length corresponding to the downlink channel
  • the second information includes the second starting OFDM symbol occupied by the uplink channel. The length of the second OFDM symbol corresponding to the uplink channel.
  • the resources may include time domain resources, the first information includes the first SLIV corresponding to the downlink channel, and the second information includes the second SLIV corresponding to the uplink channel;
  • the first SLIV is determined based on the first starting OFDM symbol occupied by the downlink channel and the length of the first OFDM symbol corresponding to the downlink channel.
  • the second SLIV is determined based on the second starting OFDM symbol occupied by the uplink channel and the length of the second OFDM symbol corresponding to the uplink channel. .
  • the configuration information further includes the number of full-duplex time slots included in at least one system frame.
  • the configuration information also includes a fourth bitmap of at least one system frame, where bits in the fourth bitmap correspond to time slots one-to-one;
  • the bit is a third preset value, indicating that the time slot corresponding to the bit is a full-duplex time slot;
  • the bit is a fourth preset value, indicating that the time slot corresponding to the bit is a half-duplex time slot.
  • the first signaling includes multiple sets of configuration information, each set of configuration information has an allocation sequence number; in a system frame, the configuration information used in each full-duplex time slot is the configuration corresponding to the target allocation sequence number. Information, the target allocation sequence number is obtained modulo the index number of the full-duplex time slot and the number of multiple sets of configuration information; or
  • the configuration information used for each full-duplex time slot is the configuration information of the full-duplex time slot specified in the first signaling;
  • the first signaling also includes a fifth bitmap.
  • the configuration information used in each full-duplex time slot is determined based on the fifth bitmap.
  • the bits in the fifth bitmap are the same as those in the fifth bitmap.
  • the time slots in the system frame have a one-to-one correspondence.
  • the time slot corresponding to the bit bit uses the configuration information corresponding to the value of the bit bit.
  • the effective time of the configuration information is the third starting point.
  • the third starting point is obtained by the user equipment modulo the system frame number and the duration period of the full-duplex time slot, or the third starting point is preset in the user equipment and the base station.
  • the first signaling includes a duration of a full-duplex time slot.
  • the above resource allocation method may also include:
  • the base station When reaching the third starting point, the base station accepts scheduling according to the resources indicated by the configuration information to receive and send data under the same frequency domain bandwidth.
  • the first signaling is broadcast signaling or user-specific signaling.
  • the above resource allocation method may also include:
  • the second signaling includes scheduling information of at least one user equipment.
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to send data and the OFDM symbols occupied by the user equipment to send data; and/or,
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to receive data and the OFDM symbols occupied by the user equipment to receive data.
  • the frequency domain subbands occupied by different user equipments overlap and the occupied OFDM symbols do not overlap;
  • the frequency domain subbands occupied by different user equipments overlap, and the occupied OFDM symbols overlap;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data does not overlap with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data. There is no overlap between the OFDM symbols occupied by sending data and the OFDM symbols occupied by receiving data.
  • the second signaling is a downlink control indication.
  • the validity period of the configuration information includes at least one cycle period, and in each cycle period, the full-duplex time slots at the same location occupy the same resources.
  • the base station configures the first information of the resources occupied by the downlink channel in the full-duplex time slot, and the second information of the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • embodiments of the present application also provide a resource allocation device, as shown in Figure 13, applied to the base station, the device includes:
  • the sending module 131 is configured to send the first signaling to the user equipment in the first cell if the configuration information of the full-duplex time slot in the same frequency domain bandwidth of the first cell is set in the base station.
  • the first signaling includes Configuration information
  • the configuration information includes first information indicating the resources occupied by the downlink channel in the full-duplex time slot
  • second information indicating the resources occupied by the uplink channel in the full-duplex time slot.
  • the resources include frequency domain resources.
  • the first information is used to indicate the frequency domain subband occupied by the downlink channel.
  • the second information is used to indicate the frequency domain subband occupied by the uplink channel.
  • the frequency domain subband includes at least one resource. block or at least one resource block group; or
  • the first information is used to indicate the number of resource blocks or resource block groups occupied by the downlink channel and the first starting point
  • the second information is used to indicate the number of resource blocks or resource block groups occupied by the uplink channel. number and the second starting point.
  • the configuration information uses a first-bit map to represent the first information and the second information, and the bits in the first-bit map correspond to frequency domain subbands one-to-one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel, and the value of the bit is the second preset value, indicating that the frequency domain subband corresponding to the bit is occupied.
  • the band is occupied by the upstream channel.
  • the configuration information uses a second bitmap to represent the first information, and a third bitmap to represent the second information, and the bits in the second bitmap and the third bitmap correspond to the frequency domain subbands one by one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the uplink channel.
  • the configuration information also includes the number of resource blocks included in each frequency domain subband.
  • the frame structure of the first cell and the adjacent cell are the same.
  • the frame structures of the first cell and adjacent cells are different; the above resource allocation device may also include:
  • the communication module is used to communicate with user equipment using beam forming or inter-frequency networking.
  • the adjacent cells are areas covered by the base station, and the above resource allocation device may further include:
  • the first adjustment module is used to adjust the frame structures of the first cell and the adjacent cells so that the frame structures of the first cell and the adjacent cells are the same or different.
  • the adjacent cells are areas covered by other base stations, and the above resource allocation device may also include:
  • the second adjustment module is used to receive messages sent by other base stations, the messages indicating the frame structure of adjacent cells; and adjust the frame structure of the first cell according to the message, so that the frame structures of the first cell and the adjacent cells are the same or different.
  • the resources include time domain resources
  • the first information includes the first starting OFDM symbol occupied by the downlink channel and the first OFDM symbol length corresponding to the downlink channel
  • the second information includes the second starting OFDM symbol occupied by the uplink channel. The length of the second OFDM symbol corresponding to the uplink channel.
  • the resources include time domain resources, the first information includes the first SLIV corresponding to the downlink channel, and the second information includes the second SLIV corresponding to the uplink channel;
  • the first SLIV is determined based on the first starting OFDM symbol occupied by the downlink channel and the length of the first OFDM symbol corresponding to the downlink channel.
  • the second SLIV is determined based on the second starting OFDM symbol occupied by the uplink channel and the length of the second OFDM symbol corresponding to the uplink channel. .
  • the above resource allocation device may further include a determining unit for:
  • the first information is determined according to the configured first OFDM symbol and the first OFDM symbol length; if the first starting OFDM symbol and the first OFDM symbol length are not configured in the base station, The length of the first OFDM symbol, then the starting OFDM symbol of the full-duplex time slot is allocated as the first starting OFDM symbol, and the length of the OFDM symbol of the full-duplex time slot is allocated as the first OFDM symbol length. According to the allocated first starting OFDM symbol OFDM symbols and the first OFDM symbol length determine the first information; and/or
  • the second information is determined according to the configured second starting OFDM symbol and the second OFDM symbol length; if the second starting OFDM symbol is not configured in the base station OFDM symbol and the second OFDM symbol length, then the starting OFDM symbol of the full-duplex time slot is allocated as the second starting OFDM symbol, and the OFDM symbol length of the full-duplex time slot is allocated as the second OFDM symbol length. According to the Allocate a second starting OFDM symbol and a second OFDM symbol length to determine the second information.
  • the OFDM symbol length occupied by the downlink channel and the uplink channel is the same as the OFDM symbol length of the full-duplex time slot.
  • the configuration information also includes the number of full-duplex time slots included in at least one system frame.
  • the configuration information also includes a fourth bitmap of at least one system frame, where bits in the fourth bitmap correspond to time slots one-to-one;
  • the bit is a third preset value, indicating that the time slot corresponding to the bit is a full-duplex time slot;
  • the bit is a fourth preset value, indicating that the time slot corresponding to the bit is a half-duplex time slot.
  • each set of configuration information has an allocation sequence number; in a system frame, the configuration information used in each full-duplex time slot is the configuration information corresponding to the target allocation sequence number. , the target allocation sequence number is obtained modulo the index number of the full-duplex time slot and the number of multiple sets of configuration information; or
  • the configuration information used for each full-duplex time slot is the configuration information of the full-duplex time slot specified in the first signaling;
  • the first signaling also includes a fifth bitmap.
  • the configuration information used in each full-duplex time slot is determined based on the fifth bitmap.
  • the bits in the fifth bitmap are the same as those in the fifth bitmap.
  • the time slots in the system frame have a one-to-one correspondence.
  • the time slot corresponding to the bit bit uses the configuration information corresponding to the value of the bit bit.
  • the effective time of the configuration information is the third starting point.
  • the third starting point is obtained by the base station modulo the system frame number and the duration period of the full-duplex time slot, or the third starting point is preset in the user equipment and the base station.
  • the first signaling includes a duration of a full-duplex time slot.
  • the above resource allocation device may also include:
  • the scheduling module is configured to schedule the user equipment to receive and send data in the same frequency domain bandwidth according to the resources indicated by the configuration information when the third starting point is reached.
  • the first signaling is broadcast signaling or user-specific signaling.
  • the sending module can also be used to:
  • second signaling is sent to the user equipment, and the second signaling includes scheduling information of the full-duplex time slot of the user equipment in the same frequency domain bandwidth.
  • the second signaling includes scheduling information of at least one user equipment.
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to send data and the OFDM symbols occupied by the user equipment to send data; and/or,
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to receive data and the OFDM symbols occupied by the user equipment to receive data.
  • the frequency domain subbands occupied by different user equipments overlap and the occupied OFDM symbols do not overlap;
  • the frequency domain subbands occupied by different user equipments overlap, and the occupied OFDM symbols overlap;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data does not overlap with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data do not overlap with the OFDM symbols occupied by receiving data.
  • the second signaling is a downlink control indication.
  • the validity period of the configuration information includes at least one cycle period, and in each cycle period, the full-duplex time slots at the same location occupy the same resources.
  • the base station configures the first information of the resources occupied by the downlink channel in the full-duplex time slot, and the second information of the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • embodiments of the present application also provide a resource allocation device, as shown in Figure 14, applied to UE, the device includes:
  • the receiving module 141 is configured to receive the first signaling sent by the base station.
  • the first signaling includes configuration information.
  • the configuration information includes a first indication of resources occupied by downlink channels in a full-duplex time slot under the same frequency domain bandwidth of the first cell. information, and second information indicating the resources occupied by the uplink channel in the full-duplex time slot;
  • the allocation module 142 is configured to allocate resources to full-duplex time slots according to the first information and the second information.
  • the resources include frequency domain resources.
  • the first information is used to indicate the frequency domain subband occupied by the downlink channel.
  • the second information is used to indicate the frequency domain subband occupied by the uplink channel.
  • the frequency domain subband includes at least one resource. block or at least one resource block group; or
  • the first information is used to indicate the number of resource blocks or resource block groups occupied by the downlink channel and the first starting point
  • the second information is used to indicate the number of resource blocks or resource block groups occupied by the uplink channel. number and the second starting point.
  • the configuration information uses a first-bit map to represent the first information and the second information, and the bits in the first-bit map correspond to frequency domain subbands one-to-one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel, and the value of the bit is the second preset value, indicating that the frequency domain subband corresponding to the bit is occupied.
  • the band is occupied by the upstream channel.
  • the configuration information uses a second bitmap to represent the first information, and a third bitmap to represent the second information, and the bits in the second bitmap and the third bitmap correspond to the frequency domain subbands one by one;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the downlink channel;
  • the value of the bit is the first preset value, indicating that the frequency domain subband corresponding to the bit is occupied by the uplink channel.
  • the configuration information also includes the number of resource blocks included in each frequency domain subband.
  • the frame structure of the first cell and the adjacent cell are the same.
  • the frame structures of the first cell and adjacent cells are different; the above resource allocation device may also include:
  • the communication module is used to communicate with the base station using beam forming or inter-frequency networking.
  • the resources include time domain resources
  • the first information includes the first starting OFDM symbol occupied by the downlink channel and the first OFDM symbol length corresponding to the downlink channel
  • the second information includes the second starting OFDM symbol occupied by the uplink channel. The length of the second OFDM symbol corresponding to the uplink channel.
  • the resources include time domain resources, the first information includes the first SLIV corresponding to the downlink channel, and the second information includes the second SLIV corresponding to the uplink channel;
  • the first SLIV is determined based on the first starting OFDM symbol occupied by the downlink channel and the length of the first OFDM symbol corresponding to the downlink channel.
  • the second SLIV is determined based on the second starting OFDM symbol occupied by the uplink channel and the length of the second OFDM symbol corresponding to the uplink channel. .
  • the configuration information also includes the number of full-duplex time slots included in at least one system frame.
  • the configuration information also includes a fourth bitmap of at least one system frame, where bits in the fourth bitmap correspond to time slots one-to-one;
  • the bit is a third preset value, indicating that the time slot corresponding to the bit is a full-duplex time slot;
  • the bit is a fourth preset value, indicating that the time slot corresponding to the bit is a half-duplex time slot.
  • the first signaling includes multiple sets of configuration information, each set of configuration information has an allocation sequence number; in a system frame, the configuration information used in each full-duplex time slot is the configuration corresponding to the target allocation sequence number. Information, the target allocation sequence number is obtained modulo the index number of the full-duplex time slot and the number of multiple sets of configuration information; or
  • the configuration information used for each full-duplex time slot is the configuration information of the full-duplex time slot specified in the first signaling;
  • the first signaling also includes a fifth bitmap.
  • the configuration information used in each full-duplex time slot is determined based on the fifth bitmap.
  • the bits in the fifth bitmap are the same as those in the fifth bitmap.
  • the time slots in the system frame have a one-to-one correspondence.
  • the time slot corresponding to the bit bit uses the configuration information corresponding to the value of the bit bit.
  • the effective time of the configuration information is the third starting point.
  • the third starting point is obtained by the user equipment modulo the system frame number and the duration period of the full-duplex time slot, or the third starting point is preset in the user equipment and the base station.
  • the first signaling includes a duration of a full-duplex time slot.
  • the above resource allocation device may also include:
  • the scheduling module is configured to accept the scheduling of the base station according to the resources indicated by the configuration information when reaching the third starting point, so as to receive and send data under the same frequency domain bandwidth.
  • the first signaling is broadcast signaling or user-specific signaling.
  • the receiving module is also used to:
  • the second signaling includes scheduling information of at least one user equipment.
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to send data and the OFDM symbols occupied by the user equipment to send data; and/or,
  • the scheduling information of the user equipment respectively indicates the frequency domain subband occupied by the user equipment to receive data and the OFDM symbols occupied by the user equipment to receive data.
  • the frequency domain subbands occupied by different user equipments overlap and the occupied OFDM symbols do not overlap;
  • the frequency domain subbands occupied by different user equipments overlap, and the occupied OFDM symbols overlap;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data does not overlap with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data overlap with the OFDM symbols occupied by receiving data;
  • the frequency domain subband occupied by the same user equipment for sending data overlaps with the frequency domain subband occupied by receiving data, and the OFDM symbols occupied by sending data do not overlap with the OFDM symbols occupied by receiving data.
  • the second signaling is a downlink control indication.
  • the validity period of the configuration information includes at least one cycle period, and in each cycle period, the full-duplex time slots at the same location occupy the same resources.
  • the base station configures the first information of the resources occupied by the downlink channel in the full-duplex time slot, and the second information of the resources occupied by the uplink channel in the full-duplex time slot.
  • the base station configures the first information and the second information, it can minimize interference in the full-duplex time slot and ensure communication quality.
  • full-duplex time slots are used for communication between the base station and the UE, which is no longer limited by the less deployment of uplink time slots in half-duplex mode. This increases cell coverage, improves the uplink transmission rate, and reduces the uplink transmission time. time delay.
  • an embodiment of the present application also provides a base station, as shown in Figure 15, including a processor 151 and a machine-readable storage medium 152.
  • the machine-readable storage medium 152 stores information that can be
  • the processor 151 executes machine-executable instructions.
  • the processor 151 is prompted by machine-executable instructions to implement any of the above-described resource allocation method steps applied to a base station.
  • the embodiment of the present application also provides a UE, as shown in Figure 16, including a processor 161 and a machine-readable storage medium 162.
  • the machine-readable storage medium 162 stores information that can be Processor 161 executes machine-executable instructions.
  • the processor 161 is prompted by machine-executable instructions to implement any of the above-described resource allocation method steps applied to the UE.
  • embodiments of the present application also provide a machine-readable storage medium that stores machine-executable instructions that can be executed by a processor, and the machine-readable storage medium stores machine-executable instructions that can be executed by a processor. Executing instructions causes the processor to: implement any of the above resource allocation method steps applied to a base station.
  • a machine-readable storage medium stores machine-executable instructions that can be executed by a processor, and the machine-executable instructions cause the processor to : Implement any of the above resource allocation method steps applied to the UE.
  • embodiments of the present application also provide a computer program product.
  • the computer program product prompts the processor to: implement any of the above steps of the resource allocation method applied to the base station. .
  • a computer program product is provided.
  • the computer program product prompts the processor to: implement any one of the above resource allocation method steps applied to UE.
  • the above-mentioned machine-readable storage medium may include random access memory (Random Access Memory, RAM) or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the machine-readable storage medium may also be at least one storage device located remotely from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源分配方法、装置、基站、用户设备及存储介质,该方法中,若基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,配置信息包括指示全双工时隙中下行信道占用资源的第一信息,以及指示全双工时隙中上行信道占用资源的第二信息;则基站向第一小区内的用户设备发送第一信令,第一信令包括配置信息;用户设备按照第一信息和第二信息,为全双工时隙分配资源。应用本申请实施例提供的技术方案,实现同一频域带宽下的全双工模式通信。

Description

一种资源分配方法、装置、基站、用户设备及存储介质 技术领域
本申请涉及通信技术领域,特别是涉及一种资源分配方法、装置、基站、用户设备及存储介质。
背景技术
目前的时分双工(Time-Division Duplex,TDD)通信系统,采用半双工(Half-Duplex,HD)模式进行通信。为了提升网络吞吐量,HD模式的TDD通信系统通常配置较多下行(Down Link,DL)时隙,这就造成上行(Up Link,UL)时隙变少,上行传输速率受限,导致上行传输时延变大,不利于低时延高可靠性通信(Ultra-Reliability Low Latency Communication,URLLC)业务的执行。
在全双工(Full-Duplex,FD)模式下,TDD通信系统中的基站或者用户设备可以在同一个时隙/同一个OFDM符号上,同时发送数据和接收数据,因此,TDD通信系统采用FD模式通信,是解决上述问题的有效方式。但是,采用FD模式通信,会引入自干扰(Self-Interference,SI)、小区间串扰、用户间干扰等影响通信质量的因素。
发明内容
本申请实施例的目的在于提供一种资源分配方法、装置、基站、用户设备及存储介质,以实现FD模式通信。具体技术方案如下:
第一方面,本申请实施例提供了一种资源分配方法,应用于基站,所述方法包括:
若所述基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向所述第一小区内的用户设备发送第一信令,所述第一信令包括所述配置信息,所述配置信息包括指示所述全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息。
第二方面,本申请实施例提供了一种资源分配方法,应用于用户设备,所述方法包括:
接收基站发送的第一信令,所述第一信令包括配置信息,所述配置信息包括指示第一小区的同一频域带宽下的全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息;
按照所述第一信息和所述第二信息,为所述全双工时隙分配资源。
第三方面,本申请实施例提供了一种资源分配装置,应用于基站,所述装置包括:
发送模块,用于若所述基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向所述第一小区内的用户设备发送第一信令,所述第一信令包括所述配置信息,所述配置信息包括指示所述全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息。
第四方面,本申请实施例提供了一种资源分配装置,应用于用户设备,所述装置包括:
接收模块,用于接收基站发送的第一信令,所述第一信令包括配置信息,所述配置信息包括指示第一小区的同一频域带宽下的全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息;
分配模块,用于按照所述第一信息和所述第二信息,为所述全双工时隙分配资源。
第五方面,本申请实施例提供了一种基站,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现第一 方面提供的任一方法步骤。
第六方面,本申请实施例提供了一种用户设备,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现第二方面提供的任一方法步骤。
第七方面,本申请实施例提供了一种机器可读存储介质,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现第一方面提供的任一方法步骤。
第八方面,本申请实施例提供了一种机器可读存储介质,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现第二方面提供的任一方法步骤。
第九方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品促使所述处理器:实现第一方面提供的任一方法步骤。
第十方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品促使所述处理器:实现第二方面提供的任一方法步骤。
本申请实施例中,针对一个全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输时延。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1(a)为HD模式的一种通信示意图。
图1(b)为FD模式的一种通信示意图。
图2为本申请实施例提供的资源分配系统的一种结构示意图。
图3为本申请实施例提供的资源分配方法的第一种流程示意图。
图4(a)为本申请实施例提供的全双工时隙的帧结构的第一种示意图。
图4(b)为本申请实施例提供的全双工时隙的帧结构的第二种示意图。
图5为本申请实施例提供的频域子带、RB和OFDM子载波映射关系的一种示意图。
图6为本申请实施例提供的一个全双工时隙的频域资源分配的一种示意图。
图7为本申请实施例提供的一个全双工时隙的时域资源分配的第一种示意图。
图8(a)为本申请实施例提供的时域资源分配的第二种示意图。
图8(b)为本申请实施例提供的时域资源分配的第三种示意图。
图9为本申请实施例提供的配置信息生效的起始点、循环周期和持续周期的一种示意图。
图10为本申请实施例提供的UE间占用上下行信道资源没有重叠的一种示意图。
图11(a)为本申请实施例提供的UE间占用上下行信道资源存在重叠的第一种示意图。
图11(b)为本申请实施例提供的UE间占用上下行信道资源存在重叠的第二种示意图。
图12为本申请实施例提供的资源分配方法的第二种流程示意图。
图13为本申请实施例提供的资源分配装置的第一种结构示意图。
图14为本申请实施例提供的资源分配装置的第二种结构示意图。
图15为本申请实施例提供的基站的一种结构示意图。
图16为本申请实施例提供的UE的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
FD时隙表示在同一个时隙中/同一个时隙的同一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上,基站或UE同时发送数据和接收数据。
目前,TDD的帧结构可以通过半静态配置加动态指示的方式来完成。具体为,高层信令通过时隙结构指示(Slot Format Indicator,SFI)定义时隙结构组合(Slot Format Combination,SFC),基站根据所要支持的业务,确定满足业务需求的时隙结构,并将所确定的时隙结构添加至SFC中,如表1所示的一种时隙结构。
表1
Figure PCTCN2022090643-appb-000001
表1中,D表示DL符合,U表示UL符合,F表示灵活符合,符合表示OFDM符合。表1中,仅以时隙中的OFDM符号为0-13为例进行说明,实际中,时隙中的OFDM符号还可以为0-7或0-8等。
本申请实施例中,资源分配又可以称为信道资源分配,资源分配分为时域资源分配和频域资源分配。下面以下行信道资源分配为例进行说明。
1.时域资源分配:
下行控制指示(Downlink Control Information,DCI)中的时域资源分配(Time domain resource assignment)字段用于指示下行信道的时域位置。该字段共4个bit(比特),其值的范围为0-15。若时域资源分配字段的值为m,则m+1指示一个时域资源分配表格的行索引,该行中的信息就会具体指示下行共享信道(Physical Downlink Sharel Channel,PDSCH)的时域资源。指示的方式有两种:
1)一种是直接指示三个信息:PDSCH和调度该PDSCH的下行控制信道(Physical Downlink Control Channel,PDCCH)之间的时隙偏移K0、PDSCH在时隙中的起始符号S以及PDSCH持续的符号长度L。
2)另一种是指示PDSCH和调度该PDSCH的PDCCH之间的时隙偏移K0和一个起始和长度指示符值(Start Length Indication Value,SLIV)。用户设备(User Equipment,UE)根据SLIV,可以计算得到PDSCH在时隙中的起始符号S和PDSCH持续的符号长度L。
2.频域资源分配:
DCI中的频域资源分配(Frequency domain resource assignment)字段用于指示下行信道的频域资源分配。PDSCH频域资源分配分为Type 0和Type 1两种类型,Type 0支持非连续的资源分配,从而可以获得频率分集增益,Type 1支持连续的资源分配,可减少该字段所需bit数。
1)Type 0资源分配类型:
对于非连续的资源分配类型(即Type 0资源分配类型),一个资源块组(Resource Block Group,RBG)是一个虚拟资源块组(Virtual Resource Block Group,VRBG),由P个连续的VRB组成,具体个数由高层参数的资源块组尺寸(RBG-Size)和部分带宽(Band Width Part,BWP)决定。在Type 0资源分配类型下,频域资源分配字段作为一个位图(bitmap),用于指示哪些RBG是分配给下行信道的,例如:一个bitmap中的每个bit代表一个RBG,最高bit对应RBG 0,以此类推。bitmap中,bit为1表示对应的RBG分配给下行信道,bit为0表示对应的RBG未分配给下行信道,这样可以灵活的调度频域资源。一般情况下,RBG可以直接映射到相同编号的物理资源上。
2)Type 1资源分配类型:
对于连续的资源分配类型(即Type 1资源分配类型),频域资源分配字段不会作为bitmap,而是会指示一个资源指示符值(Resource Indicator Value,RIV)。UE根据RIV,可以计算得到下行信道的起始资源块(Resource Block,RB)和所占RB数量。
TDD通信系统包括基站和UE。目前的TDD通信系统,采用半双工(Half-Duplex,HD)模式进行通信。在HD模式下,帧结构被严格的分为DL时隙、UL时隙和特殊(Special,S)时隙,其中,S时隙可以用于DL时隙,也可以用于UL时隙,还可以用于保护周期(Guard Period,GP)。采用FD模式通信时,TDD通信系统在一个时隙中只能接收数据,或只能发送数据,如图1(a)所示的HD模式的通信示意图,在T时隙,设备A发送数据,设备B接收数据;在T+1时隙设备A才能接收数据,设备B才能发送数据。
当前网络(尤其是5G网络)的吞吐量逐渐增大。为了提升网络吞吐量,HD模式的TDD通信系统通常配置较多DL时隙,这就造成UL时隙变少,上行传输速率受限,上行传输时延变大,小区覆盖范围减少,不利于URLLC业务的执行。
采用FD模式通信时,在同一频域带宽的同一个时隙中/同一个时隙的同一个OFDM符号上,基站或UE可以既发送数据,也接收数据,即基站可以同时收发同一UE或不同UE的数据,如图1(b)所示的FD模式的通信示意图,在T时隙,设备A可以发送数据,也可以接收数据,设备B可以接收数据,也可以发送数据。因此,TDD通信系统采用FD模式通信,是解决上述问题的一种有效方式。但是,采用FD模式通信,会引入SI、小区间串扰、用户间干扰等影响通信质量的因素。
为解决上述问题,本申请实施例提供了一种资源分配系统,如图2所示,包括基站21和UE 22,其中,基站可以为gNB基站(即5G基站),也可以为NB基站(即4G基站),还可以为其他制式的基站,对此不进行限定。图2中以一个UE为例进行说明,并不起限定作用。基站21可以覆盖一个小区,也可以覆盖多个小区,相应的,资源分配系统可以包括一个小区的UE,也可以包括多个小区的UE。
在进行资源分配时,基站21获取第一小区的同一频域带宽下的全双工时隙的配置信息,配置信息包括指示全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息;向第一小区内的UE 22发送第一信令,该第一信令包括上述配置信息。UE 22接收基站发送的上述第一信令,并按照第一信息和第二信息,为同一频域带宽下的全双工时隙分配资源。
本申请实施例中,针对全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输时延。
下面结合具体实施例,对本申请实施例提供的资源分配方法进行详细说明。
如图3所示,提供了一种资源分配方法,该方法应用于基站,该基站中可以预先设置有第一小区的同一频域带宽下的全双工时隙的配置信息,配置信息包括指示全双工时隙中下行信道占用资源的第一信息,以及指示全双工时隙中上行信道占用资源的第二信息。
本申请实施例中,第一小区为基站覆盖的任一小区,第一小区的所有时隙可以均采用全双工时隙,如图4(a)所示,图4(a)示出的时隙0-9均具有DL信道,也具有UL信道,因此时隙0-9均为全双工时隙;第一小区也可以采用半双工时隙与全双工时隙混合,如图4(b)所示,图4(b)示出的时隙0-9中,时隙0-1、5-6配置给DL信道,时隙2、7配置为UL信道,时隙3-4、8-9具有DL信道,也具有UL信道,因此,时隙0-2、5-7为半双工时隙,时隙3-4、8-9为全双工时隙。
小区可以包括一个或多个全双工时隙,若小区包括多个全双工时隙,则这多个全双工时隙的帧结构可以相同,如图4(b)中,全双工时隙3-4、8-9的配置相同;这多个全双工时隙的帧结构也可以不同,如图4(a)中,全双工时隙的配置分为两种,时隙0、2、4、6和8为一种时隙配置,时隙1、3、5、7和9为另一种时隙配置。
下行信道占用资源和上行信道占用资源均包括时域资源和频域资源。在对第一小区进行资源分配时,基站可以获取第一小区的全双工时隙的配置信息。若第一小区具有多种全双工时隙的配置方式,如图4(a)所示,基站可以设置多组配置信息,一组配置信息对应一种配置方式。
本申请实施例中,基站可以提供配置界面,用户在配置界面上输入需要配置的关键信息,如SLIV、频域子带包含的RB数量等。基站根据用户通过配置界面输入的关键信息,生成配置信息。这种配置信息获取方式的学习成本低,配置效率高。
本申请实施例中,用户也可以直接向基站输入配置文件,基站从配置文件中提取到前述配置信息;配置信息还可以预先存储在基站中,当需要分配资源,调度UE时,基站获取预先存储在配置信息。对此不进行限定。
上述资源分配方法包括如下步骤:
步骤S31,若基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向第一小区内的用户设备发送第一信令,第一信令包括上述配置信息。
本申请实施例中,携带上述配置信息的第一信令可以为广播信令,如系统广播信令(System Information Broadcast,SIB),也可以为单播信令,还可以为用户专有信令,媒体接入控制的控制单元(Media Access Control-Control Element,,MAC-CE)或者DCI等。
在获取的配置信息后,基站将配置信息携带在第一信令中,并将该第一信令发送至第一小区内的UE。
本申请实施例中,针对全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输时延。
如上所述,本申请实施例中,资源可以包括频域资源和时域资源,即资源分配可以分为频域资源分配和时域资源分配。
对于频域资源分配,上述第一信息可以用于指示下行信道占用的频域子带,第二信息可以用于指示上行信道占用的频域子带。
本申请实施例中,一个小区工作带宽划分为多个频域子带(subband),一个频域子带是由若干个RB/若干个RBG组成,一个RB由若干个个OFDM子载波组成。频域子带、RB和OFDM子载波映射关系如图5所示。图5中,1个频域子带由RB 0-4这4个RB组成,每个RB由OFDM子载波0-11这12个OFDM子载波组成。
本申请实施例中,上行信道和下行信道被分配了不同的频域子带,利用不同的频域子带发送和接收数据,可以有效降低全双工时隙中上行信道和下行信道之间的干扰。
在一些实施例中,基站可以通过位图指示上行信道和下行信道的频域资源分配情况,也就是,前述的配置信息可以采用位图表示第一信息和第二信息,位图中的比特位与频域子带一一对应。
一个示例中,前述配置信息采用第一位图表示第一信息和第二信息;比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用,比特位的值为第二预设值,表示比特位对应的频域子带被上行信道占用。第一预设值可以为0或1,第二预设值可以为0或1,对此不进行限定,只要保证第一预设值与第二预设值不同即可。
例如,第一预设值为0,第二预设值为1,图6所示的一个全双工时隙的频域资源分配的一种示意图,其中,每一行表示一个频域子带,每一列表示一个OFDM符号。图6中,频域子带0-3分配给下行信道,频域子带4-8分配给上行信道。此时,基站生成的第一位图为[0,0,0,0,1,1,1,1,1];该位图中,最左侧为第0比特位,第X比特位与频域子带X对应,值0表示为对应的频域子带用于被下行信道占用;值1表示为对应的频域子带用于被上行信道占用。
另一个示例中,前述配置信息采用第二位图表示第一信息,采用第三位图表示第二信息;第二位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用;第三位图中,比特位的值为第一预设值,表示比特位对应的频域子带被上行信道占用。
例如,第一预设值为1,仍以图6为例进行说明,图6中,频域子带0-3分配给下行信道,频域子带4-8分配给上行信道。此时,基站生成的第二位图为[1,1,1,1,0,0,0,0,0],基站生成的第三位图为[0,0,0,0,1,1,1,1,1],值1表示为对应的频域子带被相应的信道占用。
本申请实施例中,基站采用位图的方式将资源的配置信息传递给UE,位图的表现形式简洁清晰,这使得基站能够准确的将资源的配置信息传递给UE,提高资源分配效率。
本申请实施例中,在进行频域资源分配时,基站还可以将频域子带包含的RB数量携带在上述第一 信令中,发送给UE,以协助完成频域资源的配置。
在一些实施例中,第一信息可以用于指示下行信道占用的RB以及第一起始点,这里,第一起始点表示下行信道占用的起始RB;第一信息还可以用于指示下行信道占用的RBG以及第一起始点,这里,第一起始点表示下行信道占用的起始RBG。
相应的,第二信息可以用于指示上行信道占用的RB的个数以及第二起始点。里,第二起始点表示上行信道占用的起始RB;第二信息还可以用于指示上行信道占用的RBG的个数以及第二起始点,这里,第二起始点表示上行信道占用的起始RBG。
本申请实施例中,即使UE不支持频域子带的功能,基站也可以实现对同一频域带宽下的全双工时隙的资源分配。
本申请实施例中,第一小区具有相邻小区,基站自身和基站之间可以相互协商,使得第一小区与相邻小区的帧结构相同。例如第一小区和相邻小区均采用图4(b)所示的帧结构,这样可以有效减少小区间上下行干扰。
在一些实施例中,为提高资源分配的灵活性,实现灵活的根据业务需要分配资源,第一小区与相邻小区的帧结构可以不同,例如,第一小区采用图4(a)所示的帧结构,相邻小区采用图4(b)所示的帧结构。
在第一小区与相邻小区的帧结构不同的情况下,为降低小区间上下行干扰,提高通信质量,基站可以采用波束赋形方式或异频组网方式,与UE通信。
一个示例中,第一小区和相邻小区均为基站所覆盖的区域。这种情况下,基站可以根据实际需求,调整第一小区与相邻小区的帧结构。例如,为减少小区间上下行干扰,基站将第一小区的帧结构调整为相邻小区的帧结构,或者将相邻小区的帧结构调整为第一小区的帧结构。再例如,为提高资源分配的灵活性,实现灵活的根据业务需要分配资源,基站任意调整第一小区的帧结构,以及相邻小区的帧结构。
另一个示例中,第一小区为基站所覆盖的区域,相邻小区为其他基站所覆盖的区域。这种情况下,其他基站可以向该基站发送消息,该消息指示相邻小区的帧结构;该基站接收其他基站发送的消息,进而按照实际需求,根据消息,调整第一小区的帧结构。例如,为减少小区间上下行干扰,基站将第一小区的帧结构调整为相邻小区的帧结构。再例如,为提高资源分配的灵活性,灵活的根据业务需要分配资源,基站任意调整第一小区的帧结构。
同理,基站可以向其他基站发送消息,该消息指示第一小区的帧结构;其他基站接收该基站发送的消息,进而按照实际需求,根据消息,调整相邻小区的帧结构。
对于时域资源分配,第一信息和第二信息可以采用多种形式表示。
在一些实施例中,第一信息和第二信息可以采用默认的方式表示。例如,上述第一信息可以包括下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度,第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
在另一些实施例中,第一信息和第二信息可以采用SLIV,例如,第一信息包括下行信道对应的第一SLIV,第二信息包括上行信道对应的第二SLIV。其中,第一SLIV根据下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度确定,第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
一个示例中,基站可以利用如下公式,确定SLIV。
Figure PCTCN2022090643-appb-000002
上式中,仅以一个时隙包括14个OFDM符号为例进行说明,对此不进行限定。
例如,图7所示的一个全双工时隙的时域资源分配的一种示意图,图7中,每一列表示一个OFDM符号,从左侧起,OFDM符号的值分别为0、1、2、3…13。图7中,下行信道的时域资源的起始OFDM符号为0,OFDM符号长度为8,则根据上述公式,计算得到SLIV为14*(8-1)+0=98;图7中,上行信道的时域资源的起始OFDM符号为3,OFDM符号长度为11,则根据上述公式,计算得到SLIV为14*(14-11+1)+(14-1-3)=66。
本申请实施例中,基站在分配时域资源时,可以检测基站中是否配置有第一起始OFDM符号和第一OFDM符号长度。若检测到基站中配置有第一起始OFDM符号和第一OFDM符号长度,则基站根据所配置的第一起始OFDM符号和第一OFDM符号长度,确定第一信息;若检测到基站中未配置第一起始OFDM符号和第一OFDM符号长度,则基站可以将全双工时隙的起始OFDM符号分配为第一起始OFDM符号,将全双工时隙的OFDM符号长度分配为第一OFDM符号长度,根据所分配第一起始OFDM符号和第一OFDM符号长度,确定第一信息。
同理,基站在分配时域资源时,可以检测基站中是否配置有第二起始OFDM符号和第二OFDM符号长度。若检测到基站中配置有第二起始OFDM符号和第二OFDM符号长度,则基站根据所配置的第二起始OFDM符号和第二OFDM符号长度,确定第二信息;若检测到基站中未配置第二起始OFDM符号和第二OFDM符号长度,基站可以将全双工时隙的起始OFDM符号分配为第二起始OFDM符号,将全双工时隙的OFDM符号长度分配为第二OFDM符号长度,根据所分配第二起始OFDM符号和第二OFDM符号长度,确定第二信息。这里,第一信息和第二信息的表现形式可参见前面的描述。
例如,如图8(a)和图8(b)分别为时域资源分配的一种示意图,其中,每一列表示一个OFDM符号,从左侧起,OFDM符号的值分别为0、1、2、3…,图8(a)中,一个全双工时隙包括14个OFDM符号,图8(b)中,一个全双工时隙包括7个OFDM符号,在未配置起始OFDM符号(包括第一起始OFDM符号和第二起始OFDM符号)和OFDM符号长度(包括第一OFDM符号长度和第二OFDM符号长度)的情况下,基站将一个全双工时隙的所有OFDM符号分配给上行信道和下行信道,如图8(a)所示,全双工时隙包括的14个OFDM符号全部被分配给了上行信道,全双工时隙包括的14个OFDM符号也全部被分配给了下行信道;如图8(b)所示,全双工时隙包括的7个OFDM符号全部被分配给了上行信道,全双工时隙包括的7个OFDM符号也全部被分配给了下行信道。
在一些实施例中,为了降低小区间的干扰,全双工时隙中,下行信道和上行信道所占用的OFDM符号长度与全双工时隙的OFDM符号长度相同。如图7、图8(a)和图8(b)所示,下行信道和上行信道所占用了全双工时隙包括的所有OFDM符号,即下行信道和上行信道所占用的OFDM符号长度与全双工时隙的OFDM符号长度相同。
若一个小区的全双工时隙中存在未被占用的OFDM符号,也就是,存在灵活符合,那么该灵活符合可以被分配给下行信道,也可以被分配给上行信道,这使得该灵活符号具有不确定性,进而很可能导致与相邻小区的数据传输方向相反,如第一小区作为灵活符合的OFDM符号被分配给下行信道,而相邻小区的该OFDM符号被分配给上行信道,这就带来了小区间的干扰。本申请实施例中,全双工时隙中,下行信道和上行信道所占用的OFDM符号长度与全双工时隙的OFDM符号长度相同,可以有效规避上述问题,降低小区间的干扰。
在一些实施例中,第一信令携带的配置信息还可以包括至少一个系统帧包括的全双工时隙的数量。例如,一个系统帧包括的10个时隙,配置信息指示系统帧1包括的2个全双工时隙,即系统帧1的10个时隙中,2个时隙为全双工时隙;再例如,配置信息还可以指示系统帧1包括的2个全双工时隙,指示系统帧2包括的3个全双工时隙,即系统帧1包括的10个时隙中,2个时隙为全双工时隙,系统帧2包括的10个时隙中,3个时隙为全双工时隙。
在一些实施例中,配置信息还可以包括至少一个系统帧的第四位图,第四位图中比特位与时隙一一对应。第四位图中,比特位为第三预设值,表示比特位对应的时隙为全双工时隙;第四位图中,比特位为第四预设值,表示比特位对应的时隙为半双工时隙。第三预设值可以为0或1,第四预设值可以为0或1,具体可以根据实现需求进行设定,只要保证第三预设值和第四预设值不同即可。
例如,第三预设值为1,一个系统帧包括的10个时隙,第四位图包括10个比特位,第四位图中,从左侧起,每个比特位对应的时隙为0、1、2….9。若配置信息包括系统帧1的第四位图1为[0,0,0,0,1,1,0,0,0,0],表明:时隙4和时隙5为全双工时隙,其他时隙为半双工时隙。
通过上述第四位图,可以准确确定一个系统帧中的全双工时隙。
在一些实施例中,基站中可以设置多组配置信息,每组配置信息具有一个分配序号(可以采用pattern序号表示)。基站对系统帧中的全双工时隙进行编号,得到每个全双工时隙的索引号。这里,全双工时隙的索引号为配置信息的循环周期内全双工时隙的编号,例如,配置信息的循环周期为2个系统帧,如系统帧0和系统帧1内配置信息的有效,系统帧0中的时隙4和时隙5为全双工时隙,系统帧1中的时隙5和时隙6为全双工时隙,则系统帧0中的时隙4的索引号为0,系统帧0中的时隙5的索引号为1,系统帧1中的时隙5的索引号为3,系统帧1中的时隙6的索引号为4。对于配置信息的循环周期,后续会进行详细说明,此处不再赘述。对于上述多组配置信息,基站可以将上述多组配置信息携带在一个第一信令中,发送给UE,也可以携带在多个个第一信令中,发送给UE,对此不进行限定。
一系统帧中,每个全双工时隙所采用的配置信息可以为目标分配序号所对应的配置信息,目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到。
例如,每个全双工时隙对应的pattern序号可以根据公式mod(全双工时隙的索引号,pattern总数)的输出结果确定,mod(x,y)表示x除以y的余数。
一系统帧中,每个全双工时隙所采用的配置信息还可以为第一信令中指定的该全双工时隙的配置信息。例如,系统帧0中的时隙4和时隙5为全双工时隙,基站发送的第一信令中指定:系统帧0中的时隙4对应配置信息1,系统帧0中的时隙5对应配置信息3。
一系统帧中,每个全双工时隙所采用的配置信息也可以根据第五位图确定,该第五位图可以携带在第一信令中。第五位图中比特位与系统帧中的全双工时隙一一对应,第五位图中,比特位对应的全双工时隙采用比特位的值对应的配置信息。例如,第五位图中比特位的值包括0和1,比特位的值0对应配 置信息0,比特位的值1对应配置信息1。第五位图中,从左侧起,每个比特位对应的全双工时隙的编号依次增大。若系统帧0中的时隙4和时隙5为全双工时隙,第五位图为[0,1],表明:时隙4采用配置信息0,时隙5采用配置信息1。
本申请实施例中,基站还可以采用其他方式,实现一个系统帧内全双工时隙的数量与全双工时隙的配置信息种类数量的匹配关系,以及全双工时隙与全双工时隙的配置信息的匹配关系,对此不进行限定。
本申请实施例中,上述配置信息属于半静态配置,基站可以根据实际需求调整配置信息。这种情况下,UE在到达第三起始点时第一信令包括的配置信息生效。其中,第三起始点可以为预先配置在UE和基站中的,例如第三起始点对应的系统帧号为N,N可以为0、1或2等,再例如,第三起始点对应的系统帧号为奇数或者偶数帧。第三起始点还可以为UE按照一定算法计算得到的,如,第三起始点为对帧号和全双工时隙的持续周期取模得到,示例性的,UE可以将公式mod(系统帧号,全双工时隙的持续周期)=0为第三起始点。
本申请实施例中,配置信息生效后的全双工时隙的持续周期为该配置信息的有效期。
前述的全双工时隙的持续周期可以为预先配置在UE中的,也可以为基站通过第一信令发送给UE的,即第一信令还可以包括全双工时隙额持续周期。全双工时隙额持续周期可以为50个系统帧、60个系统帧或80个系统帧等。
本申请实施例中,在配置信息的有效期内,包括至少一个配置信息的循环周期,在每个循环周期内,相同位置处的全双工时隙的资源相同。例如,配置信息的循环周期为2个系统帧,若系统帧0的时隙4和时隙5为全双工时隙,系统帧0的时隙4与间隔一个循环周期的系统帧2的时隙4位于相同位置,系统帧0的时隙5与间隔一个循环周期的系统帧2的时隙5位于相同位置,因此,系统帧2的时隙4和时隙5为全双工时隙,系统帧0的时隙4与系统帧2的时隙4的时域资源和频域资源相同,系统帧0的时隙5与系统帧2的时隙5的时域资源和频域资源相同。
前述的循环周期可以为预先配置在UE中的,也可以为基站通过第一信令发送给UE的,即第一信令还可以包括循环周期。循环周期可以根据实际需求进行设定,例如,循环周期可以为1个系统帧、2个系统帧或3个系统帧等。
基于上述半静态配置,当到达第三起始点时,UE在第三起始点之前接收的配置信息生效,按照该第三起始点之前接收的配置信息,分配全双工时隙的资源,并按照配置信息所指示的资源,接受基站的调度,在同一频域带宽下接收和发送数据。
以时域资源为例,如图9所示的配置信息生效的第三起始点、配置信息的循环周期和全双工时隙的持续周期的一种示意图。图9中示出了,系统帧(System Frame,SF)的帧号包括SF 0-SF 49,配置信息的循环周期N为2个SF,全双工时隙的持续周期M为50个SF。mod(SF 0,50)=0,则在SF 0开始,SF 0之前接收的全双工时隙的配置信息生效。图9中,SF 00中的系统信息块(System Information Block,SIB)中的信息为全双工时隙的配置信息,在SF 0开始,该全双工时隙的配置信息生效,如图9中SF 0中阴影部分的时隙4和时隙5,与SF 0间隔循环周期的SF 2的时隙4和时隙5与SF 0中的时隙4和时隙5的资源相同。
如图9所示的方式1,SF 0中时隙4的所有OFDM符号全部分配给下行信道,相应的,SF 2中时隙4的所有OFDM符号全部分配给下行信道,另外,SF 0中时隙4的所有OFDM符号全部分配给上行信道,相应的,SF 2中时隙4的所有OFDM符号全部分配给上行信道。SF 0中时隙5的OFDM符号 0-7分配给下行信道,相应的,SF 2中时隙5的所有OFDM符号0-7分配给下行信道,另外,SF 0中时隙5的所有OFDM符号3-13分配给上行信道,相应的,SF 2中时隙5的所有OFDM符号3-13分配给上行信道。
一个系统帧中,不同全双工时隙包括的OFDM符号可以相同,如图9所示的方式1,SF 0中时隙4和时隙5的所有OFDM符号均为0-13;不同全双工时隙包括的OFDM符号也可以不同,如图9所示的方式2,SF 0中时隙4的所有OFDM符号为0-13,SF 0中时隙5的所有OFDM符号为0-8。
一个系统帧中,一个全双工时隙中上下行信道占用的OFDM符号可以相同,如图9所示的方式1,SF 0中时隙4的上下行信道的资源分配情况;一个全双工时隙中上下行信道占用的OFDM符号也可以不同,如图9所示的方式2,SF 0中时隙5的上下行信道的资源分配情况。
一个系统帧中,不同全双工时隙下行信道占用的OFDM符号可以相同,也可以不同,不同全双工时隙上行信道占用的OFDM符号可以相同,也可以不同。
在一些实施例中,若基站中未设置配置信息,如基站中未存储半静态配置,则基站向UE发送第二信令,第二信令包括用户设备在同一频域带宽的全双工时隙的调度信息。其中,第二信令可以利用DCI实现,该第二信令可以为组播信令,也可以为用户专有信令。第二信令可以包括至少一个用户设备的调度信息,如图10所示的上下行信道资源分配情况,UE 1的调度信息1、UE 2的调度信息2、UE 3的调度信息3、以及UE 4的调度信息4分别携带在4个第二信令中发送给相应的UE,如调度信息1携带在一个第二信令中发送给UE 1,调度信息2携带在另一个第二信令中发送给UE 2,等等;UE 1的调度信息1、UE 2的调度信息2、UE 3的调度信息3、以及UE 4的调度信息4携带在同一个第二信令中发送给各个UE。
如果基站不采用半静态配置的DL&UL资源,基站可以利用第二信令,在全双工时隙内动态调度UE发送和接收数据,即动态调度上下行信道资源。
前述的一个用户设备的调度信息可以用于指示该用户设备发送数据所占用的资源,即该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的OFDM符号。一个用户设备的调度信息也可以用于指示该用户设备接收数据所占用的资源,即该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
一个用户设备的调度信息还可以用于指示该用户设备发送数据所占用的资源,以及该用户设备接收数据所占用的资源。
基于上述用户设备的调度信息,对用户设备进行动态调度,可以实现:不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者,不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者,不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠。这里,用户设备所占用的频域子带包括用户设备发送数据时所占用的频域子带以及用户设备接收数据时所占用的频域子带,用户设备所占用的OFDM符号包括用户设备发送数据时所占用的OFDM符号以及用户设备接收数据时所占用的OFDM符号。
本申请实施例中,不同的UE所占用的频域子带全部或部分相同,则说明频域子带存在重叠;不同的UE所占用的OFDM符号全部或部分相同,则说明OFDM符号存在重叠。前述情况下,UE间占用上下行信道资源没有重叠。
例如,基站可以动态调度上下行信道资源,使得UE间占用上下行信道资源没有重叠,如图10所 示的同一频域带宽下的一个全双工时隙,其中,每一行表示一个频域子带,每一列表示一个OFDM符号,从左侧起,OFDM符号的值分别为0、1、2、3…13。
如图10中,UE 1的下行信道所占用的频域子带(接收数据所占用的频域子带)与UE 2的上行信道所占用的频域子带(发送数据所占用的频域子带)相同,均为频域子带0-2,即UE 1和UE 2所占用的频域子带存在重叠;UE 1的下行信道所占用的OFDM符号为1-5,UE 2的上行信道所占用的OFDM符号为6-9,即UE 1的下行信道所占用的OFDM符号与UE 2的上行信道所占用的OFDM符号不同,UE 1和UE 2所占用的OFDM符号不存在重叠。
如图10中,UE 3的上行信道所占用的频域子带为3-6,UE 4的下行信道所占用的频域子带为3-5,UE 3的下行信道所占用的频域子带与UE 4的上行信道所占用的频域子带存在相同的频域子带,如频域子带3-5,因此,UE 3和UE 4所占用的频域子带存在重叠;UE 3的下行信道所占用的OFDM符号为1-3,UE 4的上行信道所占用的OFDM符号为4-9,UE 3的下行信道所占用的OFDM符号与UE 4的上行信道所占用的OFDM符号不同,即UE 1和UE 2所占用的OFDM符号不存在重叠。
如图10中,UE 1的下行信道所占用的频域子带为0-2,UE 3的上行信道所占用的频域子带为3-6,即UE 1和UE 3所占用的频域子带不存在重叠;UE 1的下行信道所占用的OFDM符号为1-5,UE 3的上行信道所占用的OFDM符号为1-3,即UE 1的下行信道所占用的OFDM符号与UE 3的上行信道所占用的OFDM符号存在相同的符号,如OFDM符号1-3,因此,UE 1和UE 3所占用的OFDM符号存在重叠。
如图10中,UE 1的下行信道所占用的频域子带为0-2,UE 4的下行信道所占用的频域子带为3-5,即UE 1和UE 4所占用的频域子带不存在重叠;UE 1的下行信道所占用的OFDM符号为1-5,UE 4的下行信道所占用的OFDM符号为4-9,即UE 1的下行信道所占用的OFDM符号与UE 4的下行信道所占用的OFDM符号存在相同的符号,如OFDM符号4-5,因此,UE 1和UE 4所占用的OFDM符号存在重叠。
可见,图10中每两个UE间的上下行信道资源没有重叠,不同UE所占用的资源没有重叠,这样可以将UE间的干扰。
基于上述用户设备的调度信息,对用户设备进行动态调度,还可以实现:不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠。这种情况下,UE间占用上下行信道资源存在重叠,UE间复用上下行信道资源。基站可以动态调度上下行信道资源,使得UE间复用上下行信道资源,只要保证相同时频域资源的UE间的上下行信道的干扰在干扰容忍范围内即可。
如图11(a)和图11(b)所示的同一频域带宽下的一个全双工时隙,其中,每一行表示一个频域子带,每一列表示一个OFDM符号,从左侧起,OFDM符号的值分别为0、1、2、3…13。
图11(a)和图11(b)中,UE 1的下行信道所占用的频域子带为0-2,UE 2的上行信道所占用的频域子带为0-3,即UE 1和UE 2所占用的频域子带存在重叠;UE 1的下行信道所占用的OFDM符号为1-4,UE 2的上行信道所占用的OFDM符号为1-4,即UE 1的下行信道所占用的OFDM符号与UE 2的上行信道所占用的OFDM符号相同,均OFDM符号1-4,因此,UE 1和UE 2所占用的OFDM符号存在重叠。
可见,图11(a)和图11(b)中,UE 1和UE 2在频域子带0-2、OFDM符号1-4上上所占用的资源重叠。这样,可以UE间复用上下行信道资源,最大限度的提高信道资源的利用率。
基于上述用户设备的调度信息,对用户设备进行动态调度,还可以实现:同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者,同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
图11(a)中,UE 1的下行信道所占用的频域子带为0-2,UE 1的上行信道所占用的频域子带为4-6,即UE 1发送数据和接收数据所占用的频域子带不存在重叠;UE 1的下行信道所占用的OFDM符号为1-4,UE 1的上行信道所占用的OFDM符号为1-5,即UE 1的下行信道所占用的OFDM符号与UE 1的上行信道所占用的OFDM符号存在相同的符号,如OFDM符号1-4,因此,UE 1发送数据和接收数据所占用的OFDM符号存在重叠。
为了进一步降低UE自身发送数据和接收数据的干扰,同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。例如,UE 1的下行信道所占用的频域子带为0-2,UE 1的上行信道所占用的频域子带为4-6,UE 1的下行信道所占用的OFDM符号为1-4,UE 1的上行信道所占用的OFDM符号为5-9等。
此外,基于上述用户设备的调度信息,对用户设备进行动态调度,还可以实现:同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠。
在本申请实施例中,如果UE需要在相同的时域资源内同时进行收发,这就要求UE具有全双工的功能,如图11(a)所示,UE1在同一时隙内同时进行收发,这要求UE1具有全双工的功能。通过上述方式,基站可以灵活调度UE收发数据,只要UE间的上下行信道的干扰在干扰容忍范围内即可。
在一些实施例中,基于上述用户设备的调度信息,基站对用户设备进行动态调度时,也可以设置配置信息的有效期和配置信息的循环周期,在配置信息的有效期内,包括至少一个循环周期,每个循环周期内,相同位置处的全双工时隙占用的资源相同。对于配置信息的有效期和循环周期的说明,可参见上述半静态配置部分关于全双工时隙的持续周期和配置信息的循环周期的说明,此处不再赘述。
本申请实施例中,为实现对全双工时隙的时域资源和频域资源分配,基站可以通过小区的广播信令进行承载,该广播信令可以包括如表2所示的信元(Information Element,IE)。
表2
Figure PCTCN2022090643-appb-000003
本申请实施例提供的技术方案中,在不影响当前5G HD系统的情况下,使用半静态或者动态的资源分配方式,对TDD FD的DL&UL时频域资源进行分配,这样基站就可以在相同时隙调度相同/不同频域资源,同时进行数据的收发,即基站在相同时域资源上可以调度DL&UL数据同时双向收发,相同/不同UE可以在相同时隙的相同时域资源上同时进行数据的收发,从而可以增加小区覆盖范围,减少传输延迟增加,以及增加上行容量。
与上述应用于基站的资源分配方法对应,本申请实施例还提供了一种资源分配方法,如图12所示,应用于UE,该方法包括如下步骤:
步骤S121,接收基站发送的第一信令,第一信令包括配置信息,配置信息包括指示全双工时隙中下行信道占用资源的第一信息,以及指示全双工时隙中上行信道占用资源的第二信息。
步骤S122,按照第一信息和第二信息,为全双工时隙分配资源。
在一些实施例中,资源可以包括频域资源,第一信息用于指示下行信道占用的频域子带,第二信息用于指示上行信道占用的频域子带,频域子带包括至少一个资源块或者至少一个资源块组;或者
所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
在一些实施例中,配置信息采用第一位图表示第一信息和第二信息,第一位图中比特位与频域子带一一对应;
第一位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用,比特位的值为第二预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息采用第二位图表示第一信息,采用第三位图表示第二信息,第二位图和第三位图中比特位与频域子带一一对应;
第二位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用;
第三位图中,比特位的值为第一预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息还包括每个频域子带包括的资源块数量。
在一些实施例中,第一小区与相邻小区的帧结构相同。
在一些实施例中,第一小区与相邻小区的帧结构不同;上述方法还可以包括:采用波束赋形方式或异频组网方式,与基站通信。
在一些实施例中,资源包括时域资源,第一信息包括下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度,第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
在一些实施例中,资源可以包括时域资源,第一信息包括下行信道对应的第一SLIV,第二信息包括上行信道对应的第二SLIV;
第一SLIV根据下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度确定,第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
在一些实施例中,所述配置信息还包括至少一个系统帧包括的全双工时隙的数量。
在一些实施例中,所述配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
在一些实施例中,第一信令包括多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
在一些实施例中,配置信息的生效时刻为第三起始点。
在一些实施例中,第三起始点为用户设备对系统帧号和全双工时隙的持续周期取模得到,或者,第三起始点为预先设置在用户设备和基站中的。
在一些实施例中,第一信令包括全双工时隙的持续周期。
在一些实施例中,上述资源分配方法还可以包括:
在到达第三起始点时,按照配置信息所指示的资源,接受基站的调度,以在同一频域带宽下接收和发送数据。
在一些实施例中,第一信令为广播信令或用户专有信令。
在一些实施例中,上述资源分配方法还可以包括:
接收基站发送的第二信令,第二信令包括用户设备在同一频域带宽的全双工时隙的调度信息。
在一些实施例中,第二信令包括至少一个用户设备的调度信息。
在一些实施例中,针对上述至少一个用户设备中的每个用户设备:
该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的OFDM符号;和/或,
该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
在一些实施例中,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用 的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
在一些实施例中,第二信令为下行控制指示。
在一些实施例中,在配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
本申请实施例中,针对全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输时延。
与上述应用于基站的资源分配方法对应,本申请实施例还提供了一种资源分配装置,如图13所示,应用于基站,该装置包括:
发送模块131,用于若基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向第一小区内的用户设备发送第一信令,第一信令包括配置信息,配置信息包括指示所述全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息。
在一些实施例中,资源包括频域资源,第一信息用于指示下行信道占用的频域子带,第二信息用于指示上行信道占用的频域子带,频域子带包括至少一个资源块或者至少一个资源块组;或者
所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
在一些实施例中,配置信息采用第一位图表示第一信息和第二信息,第一位图中比特位与频域子带一一对应;
第一位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用,比特位的值为第二预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息采用第二位图表示第一信息,采用第三位图表示第二信息,第二位图和第三位图中比特位与频域子带一一对应;
第二位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用;
第三位图中,比特位的值为第一预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息还包括每个频域子带包括的资源块数量。
在一些实施例中,第一小区与相邻小区的帧结构相同。
在一些实施例中,第一小区与相邻小区的帧结构不同;上述资源分配装置还可以包括:
通信模块,用于采用波束赋形方式或异频组网方式,与用户设备通信。
在一些实施例中,相邻小区为基站所覆盖的区域,上述资源分配装置还可以包括:
第一调整模块,用于调整第一小区与相邻小区的帧结构,使得第一小区与相邻小区的帧结构相同或不同。
在一些实施例中,相邻小区为其他基站所覆盖的区域,上述资源分配装置还可以包括:
第二调整模块,用于接收其他基站发送的消息,消息指示相邻小区的帧结构;根据消息,调整第一小区的帧结构,使得第一小区与相邻小区的帧结构相同或不同。
在一些实施例中,资源包括时域资源,第一信息包括下行信道占用的第一起始OFDM符号和下行 信道对应的第一OFDM符号长度,第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
在一些实施例中,资源包括时域资源,第一信息包括下行信道对应的第一SLIV,第二信息包括上行信道对应的第二SLIV;
第一SLIV根据下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度确定,第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
在一些实施例中,上述资源分配装置还可以包括确定单元,用于:
若基站中配置有第一起始OFDM符号和第一OFDM符号长度,则根据所配置的第一起始OFDM符号和第一OFDM符号长度,确定第一信息;若基站中未配置第一起始OFDM符号和第一OFDM符号长度,则将全双工时隙的起始OFDM符号分配为第一起始OFDM符号,将全双工时隙的OFDM符号长度分配为第一OFDM符号长度,根据所分配第一起始OFDM符号和第一OFDM符号长度,确定第一信息;和/或
若基站中配置有第二起始OFDM符号和第二OFDM符号长度,则根据所配置的第二起始OFDM符号和第二OFDM符号长度,确定第二信息;若基站中未配置第二起始OFDM符号和第二OFDM符号长度,则将全双工时隙的起始OFDM符号分配为第二起始OFDM符号,将全双工时隙的OFDM符号长度分配为第二OFDM符号长度,根据所分配第二起始OFDM符号和第二OFDM符号长度,确定第二信息。
在一些实施例中,全双工时隙中,下行信道和上行信道所占用的OFDM符号长度与全双工时隙的OFDM符号长度相同。
在一些实施例中,配置信息还包括至少一个系统帧包括的全双工时隙的数量。
在一些实施例中,配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
在一些实施例中,基站中设置有多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
在一些实施例中,配置信息的生效时刻为第三起始点。
在一些实施例中,第三起始点为基站对系统帧号和全双工时隙的持续周期取模得到,或者,第三起始点为预先设置在所述用户设备和基站中的。
在一些实施例中,第一信令包括全双工时隙的持续周期。
在一些实施例中,上述资源分配装置还可以包括:
调度模块,用于在到达第三起始点时,按照配置信息所指示的资源,调度用户设备在同一频域带宽下接收和发送数据。
在一些实施例中,第一信令为广播信令或用户专有信令。
在一些实施例中,发送模块,还可以用于:
若基站中未设置配置信息,则向用户设备发送第二信令,第二信令包括用户设备在同一频域带宽的全双工时隙的调度信息。
在一些实施例中,第二信令包括至少一个用户设备的调度信息。
在一些实施例中,针对上述至少一个用户设备中的每个用户设备:
该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的OFDM符号;和/或,
该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
在一些实施例中,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
在一些实施例中,第二信令为下行控制指示。
在一些实施例中,在所述配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
本申请实施例中,针对全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输时延。
与上述应用于UE的资源分配方法对应,本申请实施例还提供了一种资源分配装置,如图14所示,应用于UE,该装置包括:
接收模块141,用于接收基站发送的第一信令,第一信令包括配置信息,配置信息包括指示第一小区的同一频域带宽下的全双工时隙中下行信道占用资源的第一信息,以及指示全双工时隙中上行信道占 用资源的第二信息;
分配模块142,用于按照第一信息和第二信息,为全双工时隙分配资源。
在一些实施例中,资源包括频域资源,第一信息用于指示下行信道占用的频域子带,第二信息用于指示上行信道占用的频域子带,频域子带包括至少一个资源块或者至少一个资源块组;或者
所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
在一些实施例中,配置信息采用第一位图表示第一信息和第二信息,第一位图中比特位与频域子带一一对应;
第一位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用,比特位的值为第二预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息采用第二位图表示第一信息,采用第三位图表示第二信息,第二位图和第三位图中比特位与频域子带一一对应;
第二位图中,比特位的值为第一预设值,表示比特位对应的频域子带被下行信道占用;
第三位图中,比特位的值为第一预设值,表示比特位对应的频域子带被上行信道占用。
在一些实施例中,配置信息还包括每个频域子带包括的资源块数量。
在一些实施例中,第一小区与相邻小区的帧结构相同。
在一些实施例中,第一小区与相邻小区的帧结构不同;上述资源分配装置还可以包括:
通信模块,用于采用波束赋形方式或异频组网方式,与基站通信。
在一些实施例中,资源包括时域资源,第一信息包括下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度,第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
在一些实施例中,资源包括时域资源,第一信息包括下行信道对应的第一SLIV,第二信息包括上行信道对应的第二SLIV;
第一SLIV根据下行信道占用的第一起始OFDM符号和下行信道对应的第一OFDM符号长度确定,第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
在一些实施例中,配置信息还包括至少一个系统帧包括的全双工时隙的数量。
在一些实施例中,配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
在一些实施例中,第一信令包括多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的 时隙采用所述比特位的值对应的配置信息。
在一些实施例中,配置信息的生效时刻为第三起始点。
在一些实施例中,第三起始点为用户设备对系统帧号和全双工时隙的持续周期取模得到,或者,第三起始点为预先设置在用户设备和基站中的。
在一些实施例中,第一信令包括全双工时隙的持续周期。
在一些实施例中,上述资源分配装置还可以包括:
调度模块,用于在到达第三起始点时,按照配置信息所指示的资源,接受基站的调度,以在同一频域带宽下接收和发送数据。
在一些实施例中,第一信令为广播信令或用户专有信令。
在一些实施例中,接收模块,还用于:
接收基站发送的第二信令,第二信令包括用户设备在同一频域带宽的全双工时隙的调度信息。
在一些实施例中,所述第二信令包括至少一个用户设备的调度信息。
在一些实施例中,针对上述至少一个用户设备中的每个用户设备:
该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的OFDM符号;和/或,
该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
在一些实施例中,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
在一些实施例中,第二信令为下行控制指示。
在一些实施例中,在所述配置信息的有效期内,包括至少一个循环周期,每个循环周期内,相同位置处的全双工时隙占用的资源相同。
本申请实施例中,针对全双工时隙,基站配置了该全双工时隙中下行信道占用资源的第一信息,以及该全双工时隙中上行信道占用资源的第二信息。基站在配置第一信息和第二信息时,可以最大限度的降低全双工时隙中的干扰,保证通信质量。另外,基站和UE间采用全双工时隙进行通信,不再受限于半双工模式下上行时隙部署较少的限制,增加了小区覆盖范围,提高了上行传输速率,降低了上行传输 时延。
与上述应用于基站的资源分配方法对应,本申请实施例还提供了一种基站,如图15所示,包括处理器151和机器可读存储介质152,机器可读存储介质152存储有能够被处理器151执行的机器可执行指令。处理器151被机器可执行指令促使实现上述任一所述的应用于基站的资源分配方法步骤。
与上述应用于UE的资源分配方法对应,本申请实施例还提供了一种UE,如图16所示,包括处理器161和机器可读存储介质162,机器可读存储介质162存储有能够被处理器161执行的机器可执行指令。处理器161被机器可执行指令促使实现上述任一所述的应用于UE的资源分配方法步骤。
与上述应用于基站的资源分配方法对应,本申请实施例还提供了一种机器可读存储介质,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现上述任一所述的应用于基站的资源分配方法步骤。
与上述应用于UE的资源分配方法对应,一种机器可读存储介质,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现上述任一所述的应用于UE的资源分配方法步骤。
与上述应用于基站的资源分配方法对应,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品促使所述处理器:实现上述任一所述的应用于基站的资源分配方法步骤。
与上述应用于UE的资源分配方法对应,一种计算机程序产品,所述计算机程序产品促使所述处理器:实现上述任一所述的应用于UE的资源分配方法步骤。
上述机器可读存储介质可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。另外,机器可读存储介质还可以是至少一个位于远离前述处理器的存储装置。
上述处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、基站、UE、机器可读存储介质、计算机程序产品实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的 任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (102)

  1. 一种资源分配方法,其特征在于,应用于基站,所述方法包括:
    若所述基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向所述第一小区内的用户设备发送第一信令,所述第一信令包括所述配置信息,所述配置信息包括指示所述全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述资源包括频域资源,所述第一信息用于指示所述下行信道占用的频域子带,所述第二信息用于指示所述上行信道占用的频域子带,所述频域子带包括至少一个资源块或者至少一个资源块组;或者
    所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
  3. 根据权利要求2所述的方法,其特征在于,所述配置信息采用第一位图表示所述第一信息和所述第二信息,所述第一位图中比特位与频域子带一一对应;
    所述第一位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用,所述比特位的值为第二预设值,表示所述比特位对应的频域子带被上行信道占用。
  4. 根据权利要求2所述的方法,其特征在于,所述配置信息采用第二位图表示所述第一信息,采用第三位图表示所述第二信息,所述第二位图和所述第三位图中比特位与频域子带一一对应;
    所述第二位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用;
    所述第三位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被上行信道占用。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述配置信息还包括每个频域子带包括的资源块数量。
  6. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一小区与相邻小区的帧结构相同;或者
    所述第一小区与相邻小区的帧结构不同;所述方法还包括:采用波束赋形方式或异频组网方式,与所述用户设备通信。
  7. 根据权利要求6所述的方法,其特征在于,所述相邻小区为所述基站所覆盖的区域,所述方法还包括:
    调整所述第一小区与相邻小区的帧结构,使得所述第一小区与相邻小区的帧结构相同或不同。
  8. 根据权利要求6所述的方法,其特征在于,所述相邻小区为其他基站所覆盖的区域,所述方法还包括:
    接收所述其他基站发送的消息,所述消息指示所述相邻小区的帧结构;
    根据所述消息,调整所述第一小区的帧结构,使得所述第一小区与相邻小区的帧结构相同或不同。
  9. 根据权利要求1所述的方法,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度,所述第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
  10. 根据权利要求1所述的方法,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道对应的第一起始和长度指示符值SLIV,所述第二信息包括上行信道对应的第二SLIV;
    所述第一SLIV根据下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一 OFDM符号长度确定,所述第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    若所述基站中配置有所述第一起始OFDM符号和所述第一OFDM符号长度,则根据所配置的第一起始OFDM符号和第一OFDM符号长度,确定第一信息;若所述基站中未配置所述第一起始OFDM符号和所述第一OFDM符号长度,则将所述全双工时隙的起始OFDM符号分配为第一起始OFDM符号,将所述全双工时隙的OFDM符号长度分配为第一OFDM符号长度,根据所分配第一起始OFDM符号和第一OFDM符号长度,确定第一信息;和/或
    若所述基站中配置有所述第二起始OFDM符号和所述第二OFDM符号长度,则根据所配置的第二起始OFDM符号和第二OFDM符号长度,确定第二信息;若所述基站中未配置所述第二起始OFDM符号和所述第二OFDM符号长度,则将所述全双工时隙的起始OFDM符号分配为第二起始OFDM符号,将所述全双工时隙的OFDM符号长度分配为第二OFDM符号长度,根据所分配第二起始OFDM符号和第二OFDM符号长度,确定第二信息。
  12. 根据权利要求9或10所述的方法,其特征在于,所述全双工时隙中,所述下行信道和上行信道所占用的OFDM符号长度与所述全双工时隙的OFDM符号长度相同。
  13. 根据权利要求1所述的方法,其特征在于,所述配置信息还包括至少一个系统帧包括的全双工时隙的数量。
  14. 根据权利要求1所述的方法,其特征在于,所述配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
    所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
    所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
  15. 根据权利要求14所述的方法,其特征在于,所述基站中设置有多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,所述目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
    一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
    所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
  16. 根据权利要求1所述的方法,其特征在于,所述配置信息的生效时刻为第三起始点。
  17. 根据权利要求16所述的方法,其特征在于,所述第三起始点为所述基站对系统帧号和全双工时隙的持续周期取模得到,或者,所述第三起始点为预先设置在所述用户设备和基站中的。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信令包括所述持续周期。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述方法还包括:
    在到达所述第三起始点时,按照所述配置信息所指示的资源,调度所述用户设备在所述同一频域带宽下接收和发送数据。
  20. 根据权利要求1-4、9-10和13-18任一项所述的方法,其特征在于,所述第一信令为广播信令 或用户专有信令。
  21. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述基站中未设置所述配置信息,则向所述用户设备发送第二信令,所述第二信令包括所述用户设备在所述同一频域带宽的全双工时隙的调度信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第二信令包括至少一个用户设备的调度信息。
  23. 根据权利要求22所述的方法,其特征在于,针对所述至少一个用户设备中的每个用户设备:
    该用户设备的调度信息指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的正交频分复用OFDM符号;和/或,
    该用户设备的调度信息指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
  24. 根据权利要求23所述的方法,其特征在于,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述第二信令为下行控制指示。
  26. 根据权利要求1-4、9-10、13-18和21-24任一项所述的方法,其特征在于,在所述配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
  27. 一种资源分配方法,其特征在于,应用于用户设备,所述方法包括:
    接收基站发送的第一信令,所述第一信令包括配置信息,所述配置信息包括指示第一小区的同一频域带宽下的全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息;
    按照所述第一信息和所述第二信息,为所述全双工时隙分配资源。
  28. 根据权利要求27所述的方法,其特征在于,所述资源包括频域资源,所述第一信息用于指示所述下行信道占用的频域子带,所述第二信息用于指示所述上行信道占用的频域子带,所述频域子带包括至少一个资源块或者至少一个资源块组;或者
    所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
  29. 根据权利要求28所述的方法,其特征在于,所述配置信息采用第一位图表示所述第一信息和 所述第二信息,所述第一位图中比特位与频域子带一一对应;
    所述第一位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用,所述比特位的值为第二预设值,表示所述比特位对应的频域子带被上行信道占用。
  30. 根据权利要求28所述的方法,其特征在于,所述配置信息采用第二位图表示所述第一信息,采用第三位图表示所述第二信息,所述第二位图和所述第三位图中比特位与频域子带一一对应;
    所述第二位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用;
    所述第三位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被上行信道占用。
  31. 根据权利要求28-30任一项所述的方法,其特征在于,所述配置信息还包括每个频域子带包括的资源块数量。
  32. 根据权利要求28-30任一项所述的方法,其特征在于,所述第一小区与相邻小区的帧结构相同;或者
    所述第一小区与相邻小区的帧结构不同;所述方法还包括:采用波束赋形方式或异频组网方式,与所述基站通信。
  33. 根据权利要求27所述的方法,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度,所述第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
  34. 根据权利要求27所述的方法,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道对应的第一起始和长度指示符值SLIV,所述第二信息包括上行信道对应的第二SLIV;
    所述第一SLIV根据下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度确定,所述第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
  35. 根据权利要求27所述的方法,其特征在于,所述配置信息还包括至少一个系统帧包括的全双工时隙的数量。
  36. 根据权利要求27所述的方法,其特征在于,所述配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
    所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
    所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
  37. 根据权利要求36所述的方法,其特征在于,所述第一信令包括多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,所述目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
    一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
    所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
  38. 根据权利要求27所述的方法,其特征在于,所述配置信息的生效时刻为第三起始点。
  39. 根据权利要求38所述的方法,其特征在于,所述第三起始点为所述用户设备对系统帧号和全 双工时隙的持续周期取模得到,或者,所述第三起始点为预先设置在所述用户设备和基站中的。
  40. 根据权利要求39所述的方法,其特征在于,所述第一信令包括所述持续周期。
  41. 根据权利要求38-40任一项所述的方法,其特征在于,所述方法还包括:
    在到达所述第三起始点时,按照所述配置信息所指示的资源,接受所述基站的调度,以在所述同一频域带宽下接收和发送数据。
  42. 根据权利要求27-30和33-40任一项所述的方法,其特征在于,所述第一信令为广播信令或用户专有信令。
  43. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第二信令,所述第二信令包括所述用户设备在所述同一频域带宽的全双工时隙的调度信息。
  44. 根据权利要求43所述的方法,其特征在于,所述第二信令包括至少一个用户设备的调度信息。
  45. 根据权利要求44所述的方法,其特征在于,针对所述至少一个用户设备中的每个用户设备:
    该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的正交频分复用OFDM符号;和/或,
    该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
  46. 根据权利要求45所述的方法,其特征在于,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
  47. 根据权利要求43-46任一项所述的方法,其特征在于,所述第二信令为下行控制指示。
  48. 根据权利要求27-30、33-40和43-46任一项所述的方法,其特征在于,在所述配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
  49. 一种资源分配装置,其特征在于,应用于基站,所述装置包括:
    发送模块,用于若所述基站中设置有第一小区的同一频域带宽下的全双工时隙的配置信息,则向所述第一小区内的用户设备发送第一信令,所述第一信令包括所述配置信息,所述配置信息包括指示所述全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息。
  50. 根据权利要求49所述的装置,其特征在于,所述资源包括频域资源,所述第一信息用于指示 所述下行信道占用的频域子带,所述第二信息用于指示所述上行信道占用的频域子带,所述频域子带包括至少一个资源块或者至少一个资源块组;或者
    所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
  51. 根据权利要求50所述的装置,其特征在于,所述配置信息采用第一位图表示所述第一信息和所述第二信息,所述第一位图中比特位与频域子带一一对应;
    所述第一位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用,所述比特位的值为第二预设值,表示所述比特位对应的频域子带被上行信道占用。
  52. 根据权利要求50所述的装置,其特征在于,所述配置信息采用第二位图表示所述第一信息,采用第三位图表示所述第二信息,所述第二位图和所述第三位图中比特位与频域子带一一对应;
    所述第二位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用;
    所述第三位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被上行信道占用。
  53. 根据权利要求50-52任一项所述的装置,其特征在于,所述配置信息还包括每个频域子带包括的资源块数量。
  54. 根据权利要求50-52任一项所述的装置,其特征在于,所述第一小区与相邻小区的帧结构相同;或者
    所述第一小区与相邻小区的帧结构不同;所述装置还包括:
    通信模块,用于采用波束赋形方式或异频组网方式,与所述用户设备通信。
  55. 根据权利要求54所述的装置,其特征在于,所述相邻小区为所述基站所覆盖的区域,所述装置还包括:
    第一调整模块,用于调整所述第一小区与相邻小区的帧结构,使得所述第一小区与相邻小区的帧结构相同或不同。
  56. 根据权利要求54所述的装置,其特征在于,所述相邻小区为其他基站所覆盖的区域,所述装置还包括:
    第二调整模块,用于接收所述其他基站发送的消息,所述消息指示所述相邻小区的帧结构;根据所述消息,调整所述第一小区的帧结构,使得所述第一小区与相邻小区的帧结构相同或不同。
  57. 根据权利要求49所述的装置,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度,所述第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
  58. 根据权利要求49所述的装置,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道对应的第一起始和长度指示符值SLIV,所述第二信息包括上行信道对应的第二SLIV;
    所述第一SLIV根据下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度确定,所述第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
  59. 根据权利要求57或58所述的装置,其特征在于,所述装置还包括确定单元,用于:
    若所述基站中配置有所述第一起始OFDM符号和所述第一OFDM符号长度,则根据所配置的第一起始OFDM符号和第一OFDM符号长度,确定第一信息;若所述基站中未配置所述第一起始OFDM 符号和所述第一OFDM符号长度,则将所述全双工时隙的起始OFDM符号分配为第一起始OFDM符号,将所述全双工时隙的OFDM符号长度分配为第一OFDM符号长度,根据所分配第一起始OFDM符号和第一OFDM符号长度,确定第一信息;和/或
    若所述基站中配置有所述第二起始OFDM符号和所述第二OFDM符号长度,则根据所配置的第二起始OFDM符号和第二OFDM符号长度,确定第二信息;若所述基站中未配置所述第二起始OFDM符号和所述第二OFDM符号长度,则将所述全双工时隙的起始OFDM符号分配为第二起始OFDM符号,将所述全双工时隙的OFDM符号长度分配为第二OFDM符号长度,根据所分配第二起始OFDM符号和第二OFDM符号长度,确定第二信息。
  60. 根据权利要求57或58所述的装置,其特征在于,所述全双工时隙中,所述下行信道和上行信道所占用的OFDM符号长度与所述全双工时隙的OFDM符号长度相同。
  61. 根据权利要求49所述的装置,其特征在于,所述配置信息还包括至少一个系统帧包括的全双工时隙的数量。
  62. 根据权利要求49所述的装置,其特征在于,所述配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
    所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
    所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
  63. 根据权利要求62所述的装置,其特征在于,所述基站中设置有多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,所述目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
    一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
    所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
  64. 根据权利要求49所述的装置,其特征在于,所述配置信息的生效时刻为第三起始点。
  65. 根据权利要求64所述的装置,其特征在于,所述第三起始点为所述基站对系统帧号和全双工时隙的持续周期取模得到,或者,所述第三起始点为预先设置在所述用户设备和基站中的。
  66. 根据权利要求65所述的装置,其特征在于,所述第一信令包括所述持续周期。
  67. 根据权利要求64-66任一项所述的装置,其特征在于,所述装置还包括:
    调度模块,用于在到达所述第三起始点时,按照所述配置信息所指示的资源,调度所述用户设备在所述同一频域带宽下接收和发送数据。
  68. 根据权利要求49-52、57-58和61-66任一项所述的装置,其特征在于,所述第一信令为广播信令或用户专有信令。
  69. 根据权利要求49所述的装置,其特征在于,所述发送模块,还用于:
    若所述基站中未设置所述配置信息,则向所述用户设备发送第二信令,所述第二信令包括所述用户设备在所述同一频域带宽的全双工时隙的调度信息。
  70. 根据权利要求69所述的装置,其特征在于,所述第二信令包括至少一个用户设备的调度信息。
  71. 根据权利要求70所述的装置,其特征在于,针对所述至少一个用户设备中的每个用户设备:
    该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的正交频分复用OFDM符号;和/或,
    该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
  72. 根据权利要求71所述的装置,其特征在于,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
  73. 根据权利要求69-72任一项所述的装置,其特征在于,所述第二信令为下行控制指示。
  74. 根据权利要求49-52、57-58、61-66和69-72任一项所述的装置,其特征在于,在所述配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
  75. 一种资源分配装置,其特征在于,应用于用户设备,所述装置包括:
    接收模块,用于接收基站发送的第一信令,所述第一信令包括配置信息,所述配置信息包括指示第一小区的同一频域带宽下的全双工时隙中下行信道占用资源的第一信息,以及指示所述全双工时隙中上行信道占用资源的第二信息;
    分配模块,用于按照所述第一信息和所述第二信息,为所述全双工时隙分配资源。
  76. 根据权利要求75所述的装置,其特征在于,所述资源包括频域资源,所述第一信息用于指示所述下行信道占用的频域子带,所述第二信息用于指示所述上行信道占用的频域子带,所述频域子带包括至少一个资源块或者至少一个资源块组;或者
    所述第一信息用于指示所述下行信道占用的资源块或者资源块组的个数以及第一起始点,所述第二信息用于指示所述上行信道占用的资源块或者资源块组的个数以及第二起始点。
  77. 根据权利要求76所述的装置,其特征在于,所述配置信息采用第一位图表示所述第一信息和所述第二信息,所述第一位图中比特位与频域子带一一对应;
    所述第一位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用,所述比特位的值为第二预设值,表示所述比特位对应的频域子带被上行信道占用。
  78. 根据权利要求76所述的装置,其特征在于,所述配置信息采用第二位图表示所述第一信息,采用第三位图表示所述第二信息,所述第二位图和所述第三位图中比特位与频域子带一一对应;
    所述第二位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被下行信道占用;
    所述第三位图中,所述比特位的值为第一预设值,表示所述比特位对应的频域子带被上行信道占用。
  79. 根据权利要求76-78任一项所述的装置,其特征在于,所述配置信息还包括每个频域子带包括的资源块数量。
  80. 根据权利要求76-78任一项所述的装置,其特征在于,所述第一小区与相邻小区的帧结构相同;或者
    所述第一小区与相邻小区的帧结构不同;所述装置还包括:
    通信模块,用于采用波束赋形方式或异频组网方式,与所述基站通信。
  81. 根据权利要求75所述的装置,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度,所述第二信息包括上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度。
  82. 根据权利要求75所述的装置,其特征在于,所述资源包括时域资源,所述第一信息包括下行信道对应的第一起始和长度指示符值SLIV,所述第二信息包括上行信道对应的第二SLIV;
    所述第一SLIV根据下行信道占用的第一起始正交频分复用OFDM符号和下行信道对应的第一OFDM符号长度确定,所述第二SLIV根据上行信道占用的第二起始OFDM符号和上行信道对应的第二OFDM符号长度确定。
  83. 根据权利要求75所述的装置,其特征在于,所述配置信息还包括至少一个系统帧包括的全双工时隙的数量。
  84. 根据权利要求75所述的装置,其特征在于,所述配置信息还包括至少一个系统帧的第四位图,所述第四位图中比特位与时隙一一对应;
    所述第四位图中,所述比特位为第三预设值,表示所述比特位对应的时隙为全双工时隙;
    所述第四位图中,所述比特位为第四预设值,表示所述比特位对应的时隙为半双工时隙。
  85. 根据权利要求84所述的装置,其特征在于,所述第一信令包括多组配置信息,每组配置信息具有一个分配序号;一个系统帧中,每个全双工时隙所采用的配置信息为目标分配序号所对应的配置信息,所述目标分配序号为对该全双工时隙的索引号和多组配置信息的数量取模得到;或者
    一个系统帧中,每个全双工时隙所采用的配置信息为所述第一信令中指定的该全双工时隙的配置信息;或者
    所述第一信令还包括第五位图,一个系统帧中,每个全双工时隙所采用的配置信息根据所述第五位图确定,所述第五位图中比特位与所述系统帧中的时隙一一对应,所述第五位图中,所述比特位对应的时隙采用所述比特位的值对应的配置信息。
  86. 根据权利要求75所述的装置,其特征在于,所述配置信息的生效时刻为第三起始点。
  87. 根据权利要求86所述的装置,其特征在于,所述第三起始点为所述用户设备对系统帧号和全双工时隙的持续周期取模得到,或者,所述第三起始点为预先设置在所述用户设备和基站中的。
  88. 根据权利要求87所述的装置,其特征在于,所述第一信令包括所述持续周期。
  89. 根据权利要求86-88任一项所述的装置,其特征在于,所述装置还包括:
    调度模块,用于在到达所述第三起始点时,按照所述配置信息所指示的资源,接受所述基站的调度,以在所述同一频域带宽下接收和发送数据。
  90. 根据权利要求75-78和81-88任一项所述的装置,其特征在于,所述第一信令为广播信令或用户专有信令。
  91. 根据权利要求75所述的装置,其特征在于,所述接收模块,还用于:
    接收所述基站发送的第二信令,所述第二信令包括所述用户设备在所述同一频域带宽的全双工时隙的调度信息。
  92. 根据权利要求91所述的装置,其特征在于,所述第二信令包括至少一个用户设备的调度信息。
  93. 根据权利要求92所述的装置,其特征在于,针对所述至少一个用户设备中的每个用户设备:
    该用户设备的调度信息分别指示该用户设备发送数据所占用的频域子带,以及该用户设备发送数据所占用的正交频分复用OFDM符号;和/或,
    该用户设备的调度信息分别指示该用户设备接收数据所占用的频域子带,以及该用户设备接收数据所占用的OFDM符号。
  94. 根据权利要求93所述的装置,其特征在于,不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号不存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带存在重叠、所占用的OFDM符号存在重叠;或者
    不同的用户设备所占用的频域子带不存在重叠、所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带不存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠;或者
    同一用户设备发送数据所占用的频域子带与接收数据所占用的频域子带存在重叠、发送数据所占用的OFDM符号与接收数据所占用的OFDM符号不存在重叠。
  95. 根据权利要求91-94任一项所述的装置,其特征在于,所述第二信令为下行控制指示。
  96. 根据权利要求75-78、81-88和91-94任一项所述的装置,其特征在于,在所述配置信息的有效期内,包括至少一个循环周期,在每个循环周期内,相同位置处的全双工时隙占用的资源相同。
  97. 一种基站,其特征在于,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现权利要求1-26任一所述的方法步骤。
  98. 一种用户设备,其特征在于,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现权利要求27-48任一所述的方法步骤。
  99. 一种机器可读存储介质,其特征在于,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现权利要求1-26任一所述的方法步骤。
  100. 一种机器可读存储介质,其特征在于,所述机器可读存储介质存储有能够被处理器执行的机器可执行指令,所述机器可执行指令促使所述处理器:实现权利要求27-48任一所述的方法步骤。
  101. 一种计算机程序产品,其特征在于,所述计算机程序产品促使所述处理器:实现权利要求1-26任一所述的方法步骤。
  102. 一种计算机程序产品,其特征在于,所述计算机程序产品促使所述处理器:实现权利要求27-48任一所述的方法步骤。
PCT/CN2022/090643 2022-04-29 2022-04-29 一种资源分配方法、装置、基站、用户设备及存储介质 WO2023206524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001147.5A CN117322092A (zh) 2022-04-29 2022-04-29 一种资源分配方法、装置、基站、用户设备及存储介质
PCT/CN2022/090643 WO2023206524A1 (zh) 2022-04-29 2022-04-29 一种资源分配方法、装置、基站、用户设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090643 WO2023206524A1 (zh) 2022-04-29 2022-04-29 一种资源分配方法、装置、基站、用户设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023206524A1 true WO2023206524A1 (zh) 2023-11-02

Family

ID=88517063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090643 WO2023206524A1 (zh) 2022-04-29 2022-04-29 一种资源分配方法、装置、基站、用户设备及存储介质

Country Status (2)

Country Link
CN (1) CN117322092A (zh)
WO (1) WO2023206524A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664688A (zh) * 2014-08-26 2017-05-10 华为技术有限公司 一种无线通信方法、设备及系统
US20180097607A1 (en) * 2015-03-31 2018-04-05 Samsung Electronics Co., Ltd. Method and device for transmitting uplink control signal in wireless communication system
CN113261368A (zh) * 2019-01-10 2021-08-13 高通股份有限公司 用于全双工通信的时隙配置
US20210297226A1 (en) * 2020-03-18 2021-09-23 Qualcomm Incorporated Full duplex communication techniques
CN114390584A (zh) * 2020-10-19 2022-04-22 北京三星通信技术研究有限公司 一种iab节点的上报、配置与传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664688A (zh) * 2014-08-26 2017-05-10 华为技术有限公司 一种无线通信方法、设备及系统
US20180097607A1 (en) * 2015-03-31 2018-04-05 Samsung Electronics Co., Ltd. Method and device for transmitting uplink control signal in wireless communication system
CN113261368A (zh) * 2019-01-10 2021-08-13 高通股份有限公司 用于全双工通信的时隙配置
US20210297226A1 (en) * 2020-03-18 2021-09-23 Qualcomm Incorporated Full duplex communication techniques
CN114390584A (zh) * 2020-10-19 2022-04-22 北京三星通信技术研究有限公司 一种iab节点的上报、配置与传输方法

Also Published As

Publication number Publication date
CN117322092A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US20220295534A1 (en) Method and apparatus for transmitting downlink control information
US20240008048A1 (en) Method and device for transmitting or receiving data in next generation wireless access network
US10382969B2 (en) Resource allocation design for low cost machine-type communication UE
JP7401604B2 (ja) 高性能ワイヤレスバックホールのためのharq設計
US10582493B2 (en) Methods for transmitting uplink data of a narrowband IoT user equipment and apparatuses thereof
US11765735B2 (en) Method and device for transmitting or receiving data in next generation wireless access network
JP7463330B2 (ja) ユーザ機器、基地局および無線通信システム
US20210351874A1 (en) Method and device for scheduling uplink control channel in next generation wireless network
US10616889B2 (en) Methods for transmitting and receiving uplink data and apparatuses thereof
CN109586883B (zh) 用于新无线电的上行链路控制信道资源分配的装置和方法
JP2018078635A (ja) 通信システムにおいて干渉制御のためのサブフレーム運用及びチャネル情報伝送方法及び装置
CN108737010B (zh) 一种信息交互的方法及装置
KR20180108038A (ko) 무선 통신 시스템에서 타이밍 조정 방법 및 장치
US10531442B2 (en) Method and apparatus for transmitting and receiving uplink data channel on basis of sub-physical resource block for MTC terminal
US20120106473A1 (en) Demodulation Reference Signals in a Communication System
KR101368417B1 (ko) 상향 링크 제어 채널 자원 할당 방법, 설비 및 시스템
KR20140121324A (ko) 무선 통신 시스템에서 채널 정보 전송 방법 및 장치
JP7339972B2 (ja) ポイント・ツー・マルチポイントnlosワイヤレスバックホールのための低オーバーヘッドシグナリング
CN107046719B (zh) 用于减少时分双工的传输时延的方法、装置和系统
EP3537823B1 (en) Method and device for executing multi-beam-based scheduling request in wireless communication
JP2008079269A (ja) Ofdma方式の通信システム及び通信方法
KR20170088287A (ko) 데이터 송수신 방법 및 장치
WO2023206524A1 (zh) 一种资源分配方法、装置、基站、用户设备及存储介质
KR20200018011A (ko) 비면허 대역의 차세대 무선망을 위한 단말의 상향 링크 전송 자원 할당 방법 및 장치
JP2010022057A (ja) Ofdma方式の通信システム及び通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001147.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939371

Country of ref document: EP

Kind code of ref document: A1