WO2023206453A1 - 水力模块及具有其的制冷系统、热力系统 - Google Patents

水力模块及具有其的制冷系统、热力系统 Download PDF

Info

Publication number
WO2023206453A1
WO2023206453A1 PCT/CN2022/090525 CN2022090525W WO2023206453A1 WO 2023206453 A1 WO2023206453 A1 WO 2023206453A1 CN 2022090525 W CN2022090525 W CN 2022090525W WO 2023206453 A1 WO2023206453 A1 WO 2023206453A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
quick connector
connector
outlet
heat exchange
Prior art date
Application number
PCT/CN2022/090525
Other languages
English (en)
French (fr)
Inventor
王凱建
Original Assignee
浙江雪波蓝科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江雪波蓝科技有限公司 filed Critical 浙江雪波蓝科技有限公司
Priority to PCT/CN2022/090525 priority Critical patent/WO2023206453A1/zh
Publication of WO2023206453A1 publication Critical patent/WO2023206453A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the invention relates to the technical field of heat exchange equipment, and in particular to a hydraulic module with compact structure and small volume and a thermal system having the same.
  • hydraulic modules can be used in central heating, heating, refrigeration, cooling and other fields.
  • the layout of the liquid tank, liquid pump, expansion tank, heat exchanger and other components in the heat exchange system of the hydraulic module requires pipe connections, which increases the difficulty of configuring the various components in the heat exchange system and easily makes each component The connecting pipes between components are disorganized.
  • the overall volume of the hydraulic module is large, taking up space, and does not meet the market demand for energy conservation and emission reduction.
  • the object of the present invention is to provide a hydraulic module with compact structure and small volume and a thermal system having the same.
  • the present invention adopts the following technical solutions:
  • a hydraulic module characterized in that it includes a first working fluid inlet joint, a first working fluid outlet joint, a liquid pump and a heat exchanger connected between the first working fluid inlet joint and the first working fluid outlet joint;
  • the liquid pump includes a first working fluid inlet and a first working fluid outlet;
  • the heat exchanger includes a first working fluid heat exchange inlet, a first working fluid heat exchange outlet, and the first working fluid heat exchange inlet and the first working fluid heat exchange inlet.
  • the first working fluid internal passage connected to the first working fluid heat exchange outlet;
  • the first working fluid inlet joint is connected to the first working fluid inlet of the liquid pump through at least one quick connector, and the first working fluid heat exchange inlet is connected to the first working fluid of the liquid pump through at least one quick connector.
  • Outlet connection; the first working fluid outlet connector is connected to the first working fluid heat exchange outlet of the heat exchanger through at least one quick connector;
  • the first working fluid heat exchange inlet is connected to the first working fluid inlet joint through at least one quick connector; the first working fluid inlet exchanges heat with the first working fluid of the heat exchanger through at least one quick connector Outlet connection; the first working fluid outlet connector is connected to the first working fluid outlet of the liquid pump through at least one quick connector.
  • a refrigeration system includes a compressor, a condenser connected to the compressor outlet, an expansion valve connected to the condenser outlet, and an evaporator connected between the expansion valve outlet and the compressor inlet, said At least one of the condenser or the evaporator is a hydraulic module, and the hydraulic module includes:
  • a liquid pump including a first working fluid inlet and a first working fluid outlet;
  • a first working fluid inlet connector communicates with the first working fluid inlet through at least one quick connector
  • a first working fluid outlet connector connected to the first working fluid outlet through at least one quick connector
  • the heat exchanger includes a first working fluid heat exchange inlet, a first working fluid heat exchange outlet, and a first working fluid internal passage connecting the first working fluid heat exchange inlet and the first working fluid heat exchange outlet, a second working fluid inlet, a second working fluid outlet, and a second working fluid passage connecting the second working fluid inlet and the second working fluid outlet;
  • the first working fluid passage of the heat exchanger is connected between the liquid pump and the first working fluid inlet joint through at least one quick connector, or the heat exchanger is connected to the first working fluid inlet joint through at least one quick connector. between the liquid pump and the first working fluid outlet joint; the second working fluid passage is connected to the refrigeration system.
  • a thermal system including the above-mentioned hydraulic module and a heat releasing module or a cooling module, the heat releasing module and the cooling module have a connection with the first working fluid inlet joint and the first working fluid outlet joint.
  • the hydraulic module of the present invention adopts a direct connection without piping, and quick joints are used to connect each component, so that the connection path between the components is short, the reliability is high, and the overall structure is small in size and weight. It is light and can be easily connected to other parts.
  • Figure 1 is a schematic cross-sectional view of a hydraulic module proposed in an embodiment of the present invention
  • Figure 2 is a partial schematic diagram of position A in Figure 1;
  • Figure 3 is a schematic cross-sectional view two of a hydraulic module proposed in an embodiment of the present utility model
  • Figure 4 is a partial schematic diagram of B in Figure 3;
  • Figure 5 is a schematic diagram of a hydraulic module according to another preferred embodiment of the present invention.
  • Figure 6 is a schematic diagram of a hydraulic module according to another preferred embodiment of the present invention.
  • Figure 7 is a schematic diagram of the refrigeration system of the present invention.
  • connection For convenience of description, according to the orientation of the hydraulic module of the present invention in the actual application process, upper and lower are defined.
  • the "connection” described in this article can be a direct connection or an indirect connection through another quick connector/adapter; and “direct connection” means that there is no other structure or quick connector between the two.
  • the hydraulic module of the present invention includes a first working fluid inlet connector 2, a liquid pump 1, a heat exchanger 3, a first working fluid outlet connector 4 and a quick connector connecting two adjacent components;
  • the heat exchanger 3 is connected between the liquid pump 1 and the first working fluid outlet joint 4, or the heat exchanger 3 is connected between the first working fluid inlet joint 2 and the liquid pump 1 between.
  • the first working fluid inlet connector 2 and the first working fluid outlet connector 4 are used to connect the heat releasing components.
  • the first working fluid circulates between the heat releasing components and the hydraulic module driven by the liquid pump 1 ;
  • the first working fluid flows through the heat exchanger 3, and there is a temperature difference between the first working fluid and the second working fluid flowing through the heat exchanger 3, the relationship between the first working fluid and the second working fluid Heat exchange is performed, so that the first working fluid obtains energy until its temperature rises to a desired temperature, and then flows to the heat-radiating component to release heat to the outside, thereby providing heat.
  • first working fluid inlet connector 2 and the first working fluid outlet connector 4 can also be connected to cooling components, and heat exchange is performed between the first working fluid and the second working fluid until the temperature drops to a desired temperature. Then it flows to the cooling component to release the cold energy to the outside, playing the role of cooling.
  • the first working fluid is preferably water, which has a large specific heat capacity, low cost, and is environmentally friendly.
  • the first working fluid can also be oil or other liquids.
  • oil or other liquids can be selected.
  • Other liquids include but are not limited to; mixtures of alcohol and water, salt water, and organic refrigerants.
  • the first working fluid inlet connector 2 and the first working fluid outlet connector 4 are located on the same side to facilitate quick and detachable connection with the heat dissipation component or cooling component.
  • the heat exchanger 3 includes a first working fluid heat exchange inlet 31, a first working fluid heat exchange outlet 32, and a first working fluid heat exchange inlet connected to the first working fluid heat exchange outlet. Internal passage of fluid.
  • the heat exchanger 3 used in the present invention is a compact heat exchanger 3 with small volume and low thermal resistance. For its structure, reference can be made to CN102706189A and CN202599167U, which will not be described again here.
  • the liquid pump 1 selects an appropriate power according to the pressure, lift and other factors of the heat releasing component or the cooling component.
  • a fixed frame 13 is provided below the liquid pump 1 , and a plurality of rubber feet 131 are provided at the bottom of the fixed frame 13 .
  • the setting of the fixing bracket 13 facilitates the installation and fixation of the liquid pump 1, and the rubber feet 131 play a certain role in anti-shock buffering, which reduces noise/vibration of liquid pumps such as water pumps and oil pumps during operation, making the operation state more stable and avoiding resonance. Phenomenon.
  • the hydraulic module of the present invention adopts a direct connection without piping, and quick joints are used to connect each component, so that the connection path between the components is short and the reliability is high.
  • the assembled hydraulic module has a small overall structure and a high space occupation rate. Greatly reduced; light weight, easy to transport; can be easily connected to other parts.
  • the heat exchanger 3 is connected between the liquid pump 1 and the first working fluid outlet joint 4, and the first working fluid inlet joint 2 is connected to the first working fluid inlet joint 2 through at least one quick connector.
  • the working fluid inlet 11 is connected
  • the first working fluid outlet 12 is connected to the first working fluid heat exchange inlet 31 through at least one quick connector
  • the first working fluid heat exchange outlet 32 is connected to the first working fluid heat exchange outlet 32 through at least one quick connector.
  • the first working fluid outlet joint 4 is connected.
  • the first working fluid passes through the first working fluid inlet joint 2, the liquid pump 1, the heat exchanger 3 and the first working fluid outlet joint 4 in sequence and then flows back to the cooling component or the heat releasing component.
  • the liquid pump 1 has the largest volume and weight.
  • the present invention optimizes the arrangement according to the size and connection sequence of each component, aiming to design a hydraulic module with a lower center of gravity.
  • the two components are connected by one quick connector or multiple quick connectors.
  • connection methods between several basic structural elements include but are not limited to the following:
  • Embodiment 1 The first working fluid inlet joint 2 is connected to the first working fluid inlet 11 through a first quick connector 21, and the first working fluid outlet 12 is connected to the first working fluid outlet through a second quick connector 33.
  • the fluid heat exchange inlet 31 is connected, and the first working fluid heat exchange outlet 32 is connected to the outlet joint through a third quick connector 41 .
  • the "connections" in this embodiment are all "direct connections”.
  • Embodiment 2 The first working fluid inlet joint 2 is connected to the first working fluid inlet 11 through a first quick connector 21, and the first working fluid outlet 12 is connected to the first working fluid outlet through a second quick connector 33.
  • the fluid heat exchange inlet 31 is connected, the first working fluid heat exchange outlet 32 is connected to the third quick connector 41, and the third quick connector 41 is connected to the first working fluid outlet connector 4 through the second tee joint 6 .
  • the "connections" in this embodiment are all "direct connections”.
  • Embodiment 3 The first working fluid inlet joint 2 is connected to the first working fluid inlet 11 through a first quick connector 21, and the first working fluid outlet 12 is connected to the first working fluid outlet through a second quick connector 33.
  • the fluid heat exchange inlet 31 is connected, the first working fluid heat exchange outlet 32 is connected to the third quick connector 41, the third quick connector 41 is connected to the fourth quick connector 42, and the fourth quick connector 42 passes through the second
  • the tee joint 6 is connected to the first working fluid outlet joint 4 .
  • the "connections" in this embodiment are all "direct connections”.
  • the heat exchanger 3 is connected between the first working fluid inlet joint 2 and the liquid pump 1 , and the first working fluid inlet joint 2 is connected to the first working fluid inlet joint 2 through at least one quick connector.
  • the working fluid heat exchange inlet 31 is connected
  • the first working fluid heat exchange outlet 32 is connected to the first working fluid inlet 11 through at least one quick connector
  • the first working fluid outlet 12 is connected to the first working fluid outlet 12 through at least one quick connector.
  • the first working fluid outlet joint 4 is connected.
  • the first working fluid passes through the first working fluid inlet joint 2, the heat exchanger 3, the liquid pump 1 and the first working fluid outlet joint 4 in sequence and then flows back to the cooling component or the heat releasing component.
  • connection methods between several basic structural elements include but are not limited to the following:
  • the first working fluid inlet connector 2 is connected to the first working fluid heat exchange inlet 31 through a first quick connector 21, and the first working fluid heat exchange outlet 32 is connected to the first working fluid heat exchange outlet 32 through a second quick connector 33.
  • the first working fluid inlet 11 is connected, and the first working fluid outlet 12 is connected to the first working fluid outlet connector 4 through a third quick connector 41 .
  • the "connections" in this embodiment are all "direct connections”.
  • the first working fluid inlet connector 2 is connected to the first working fluid heat exchange inlet 31 through a first quick connector 21, and the first working fluid heat exchange outlet 32 is connected to the first working fluid heat exchange outlet 32 through a second quick connector 33.
  • the first working fluid inlet 11 is connected, the first working fluid outlet 12 is connected to a third quick connector 41 , and the third quick connector 41 is connected to the first working fluid outlet connector 4 through a fourth quick connector 42 .
  • the "connections" in this embodiment are all "direct connections”.
  • the first working fluid inlet connector 2 is connected to the first working fluid heat exchange inlet 31 through a first quick connector 21, and the first working fluid heat exchange outlet 32 is connected to the first working fluid heat exchange outlet 32 through a second quick connector 33.
  • the first working fluid inlet 11 is connected, the first working fluid outlet 12 is connected to a third quick connector 41, the third quick connector 41 is connected to a fourth quick connector 42, and the fourth quick connector 42 is connected through a second
  • the three-way quick connector is connected to the first working fluid outlet connector 4.
  • the "connections" in this embodiment are all "direct connections”.
  • the first working fluid inlet connector 2 is connected to the first working fluid heat exchange inlet 31 through a first quick connector 21, and the first working fluid heat exchange outlet 32 is connected to the first working fluid heat exchange outlet 32 through a second quick connector 33.
  • the first working fluid inlet 11 is connected, the first working fluid outlet 12 is connected to a third quick connector 41, the third quick connector 41 is connected to a fourth quick connector 42, and the fourth quick connector 42 is connected through a second
  • the three-way quick connector and the third three-way quick connector are connected to the first working fluid outlet connector 4 .
  • the "connections" in this embodiment are all "direct connections".
  • the hydraulic module further includes a first temperature measuring component 311 disposed on the first working fluid heat exchange inlet 31 side, and/or a second temperature measuring assembly 311 disposed on the first working fluid heat exchange outlet 32 side.
  • Temperature component 312; the first temperature measurement component 311 and the second temperature measurement component 312 are both communicatively connected with the controller.
  • the first temperature measurement component 311 detects the temperature of the first working fluid entering the heat exchanger 3 in real time
  • the second temperature measurement component 312 detects the temperature of the first working fluid after it flows out of the heat exchanger 3 in real time. ;
  • the operator can check the corresponding value through the controller.
  • the controller can remotely alarm to remind the operator in time. Check whether heat exchanger 3 is working properly.
  • the first temperature measurement component 311 includes a first temperature sensor 3112 and a first installation structure 3111 for installing the first temperature sensor 3112.
  • the first installation structure 3111 connects the first temperature sensor 3112 to Installed on any quick connector between the first working fluid heat exchange inlet 31 and the first working fluid inlet joint 2 .
  • the first installation structure 3111 installs the first temperature sensor 3112 on a quick connector directly connected to the first working fluid heat exchange inlet 31, and the measured temperature is where the first working fluid enters.
  • the instantaneous temperature in front of the heat exchanger 3 eliminates the influence on the temperature of the first working fluid when it passes through other components.
  • the first installation structure 3111 installs the first temperature sensor 3112 on the second quick connector 33 .
  • the first installation structure 3111 installs the first temperature sensor 3112 on the first quick connector 21 .
  • the shape and installation method of the first installation structure 3111 are not limited, as long as the first temperature sensor 3112 can be installed and fixed without affecting its measurement of the temperature of the first working fluid.
  • the first installation structure 3111 is a first installation bracket, which is fixed on a quick connector through screws, and the first temperature sensor 3112 is installed on the first installation bracket. On the bracket, the temperature measuring end of the first temperature sensor 3112 extends into the quick connector installed thereon to detect the temperature of the first working fluid.
  • the first installation structure 3111 can also be a thermally conductive tape, etc., and the first temperature sensor 3112 is attached to the quick connector to detect the temperature of the first working fluid.
  • the second temperature measurement component 312 includes a second temperature sensor 3122 and a second installation structure 3121 for installing the second temperature sensor 3122; the second installation structure 3121 installs the second temperature sensor 3122 on the on any quick connector between the first working fluid heat exchange outlet 32 and the first working fluid outlet joint 4 .
  • the second installation structure 3121 can install the second temperature sensor 3122 on the third quick connector 41 to obtain the outlet of the heat exchanger 3
  • the temperature of the first working fluid can directly reflect the heat exchange efficiency of the heat exchanger 3.
  • the second installation structure 3121 can also install the second temperature sensor 3122 on the second tee joint 6 .
  • the second installation structure 3121 can also install the second temperature sensor 3122 on the fourth quick connector 42 .
  • the second installation structure 3121 installs the second temperature sensor 3122 on the third quick connector 41; based on Embodiments 5 to 7, the second installation structure 3121 installs the second temperature sensor 3122 on the third quick connector 41.
  • the second temperature sensor 3122 is installed on the fourth quick connector 42; based on Embodiments 6 to 7, the second installation structure 3121 installs the second temperature sensor 3122 on the second three-way quick connector; Based on Embodiment 7, the second installation structure 3121 installs the second temperature sensor 3122 on the third three-way quick connector.
  • the shape and installation method of the second installation structure 3121 are not limited, as long as the second temperature sensor 3122 can be installed and fixed without affecting its measurement of the temperature of the first working fluid.
  • the second installation structure 3121 is a second installation bracket, which is fixed on a quick connector through screws, and the second temperature sensor 3122 is installed on the second installation bracket. On the bracket, the temperature measuring end of the second temperature sensor 3122 extends into the quick connector installed thereon to detect the temperature of the first working fluid.
  • the second installation structure 3121 can also be thermally conductive tape, etc., and the second temperature sensor 3122 is attached to the quick connector to detect the temperature of the first working fluid.
  • the hydraulic module further includes a bypass pipe 7 connecting the first working fluid heat exchange inlet 31 side and the first working fluid heat exchange outlet 32 side.
  • a protection loop can be formed to protect the system.
  • the second temperature sensor 3122 detects that the temperature of the first working fluid after passing through the heat exchanger 3 does not reach the desired temperature value, the first working fluid flows back to the first working fluid through the bypass pipe 7
  • the working fluid heat exchange inlet 31 side then undergoes secondary heat exchange through the heat exchanger 3 to ensure that the temperature of the first working fluid discharged from the first working fluid outlet joint 4 meets the requirements.
  • one end of the bypass pipe 7 is connected to the side of the first temperature measurement component 311 away from the heat exchanger 3 , so that the returned first working fluid passes through the first temperature measurement component 311 after being measured. Then enter the heat exchanger 3; the other end of the bypass pipe 7 is connected to the side of the second temperature measurement component 312 away from the heat exchanger 3. After being measured by the second temperature measurement component 312, it is found that When the temperature of the first working fluid is unqualified, the bypass pipe 7 is triggered to cause the first working fluid to flow back; if the temperature reaches the expected temperature, there is no need to flow back.
  • At least one quick connector between the first working fluid heat exchange inlet 31 and the first working fluid inlet joint 2 is a three-way quick connector; the first working fluid heat exchange outlet 32 and the first working fluid inlet joint 2 At least one quick connector between a working fluid outlet connector 4 is a three-way quick connector, and the bypass pipe 7 is connected to the two aforementioned three-way quick connectors.
  • the first quick connector 21 and the third quick connector 41 are both three-way quick connectors, and the bypass pipe 7 is connected to the first quick connector 21 and the third quick connector 41 between.
  • the first quick connector 21 and the third quick connector 41 are both three-way quick connectors, and the hydraulic module further includes a first three-way connector 5 connected to the first quick connector 21 , the bypass pipe 7 is connected between the first tee joint 5 and the third quick joint 41 , and the other interface of the first tee joint 5 is connected to a functional component.
  • the first quick connector 21 is a three-way quick connector
  • the bypass pipe 7 is connected between the first quick connector 21 and the second three-way connector 6 .
  • the first quick connector 21 is a three-way quick connector
  • the hydraulic module further includes a first three-way connector 5 connected to the first quick connector 21, and the bypass pipe 7 is connected to Between the first tee joint 5 and the second tee joint 6 , another interface of the first tee joint 5 is connected to a functional component.
  • the first quick connector 21 is a three-way quick connector
  • the bypass pipe 7 is connected between the first quick connector 21 and the second three-way connector 6; or, based on Embodiment 3, the first quick connector 21 is a three-way quick connector, the hydraulic module further includes a first three-way connector 5 connected to the first quick connector 21, and the bypass pipe 7 is connected to the Between the first tee joint 5 and the second tee joint 6 , another interface of the first tee joint 5 connects functional components.
  • the first quick connector 21 and the third quick connector 41 are both three-way quick connectors, and the bypass pipe 7 is connected to the first quick connector 21 and the third quick connector 41 between.
  • the first quick connector 21 is a three-way quick connector
  • one of the third quick connector 41 and the fourth quick connector 42 is a three-way quick connector
  • the bypass pipe 7 is connected to the third quick connector 41 and one of the fourth quick connectors 42 and the first quick connector 21 .
  • the first quick connector 21 is a three-way quick connector, and the bypass pipe 7 is connected between the first quick connector 21 and the second three-way quick connector;
  • the first quick connector 21 is a three-way quick connector
  • the bypass pipe 7 is connected between the first quick connector 21 and the second three-way quick connector
  • the third three-way quick connector Another joint of the quick joint connects the functional component; or the bypass pipe 7 is connected between the first quick joint 21 and the third three-way quick joint, and the other joint of the second three-way quick joint Joints connect functional components.
  • the functional component is the exhaust valve 211 or the pressure relief valve 8 .
  • the hydraulic module further includes an exhaust valve 211 and/or a pressure relief valve 8 connected to the flow path of the hydraulic module.
  • the pressure relief valve 8 is used to release the pressure in the system, prevent safety accidents caused by excessive pressure, and help improve the explosion-proof performance of the hydraulic module. It can be installed at any position of the hydraulic module.
  • the exhaust valve 211 can be connected to the highest point of the flow path.
  • the gas enters the exhaust valve 211 and gathers in the upper part of the valve cavity.
  • the pressure rises.
  • the gas will cause the water surface in the valve cavity to drop, and the float will drop with the water level.
  • the heat exchanger 3 is located at the upper end of the liquid pump 1, and the first working fluid heat exchange inlet 31 and the first working fluid heat exchange outlet 32 are distributed along the up and down direction of the heat exchanger.
  • the at least one quick connector is approximately at the same level, so If any quick interface between the first working fluid heat exchange outlet 32 and the first working fluid outlet connector 4 is at the highest point of the system flow path, the exhaust valve 211 can be installed.
  • the exhaust valve 211 can also be connected to the first working fluid for heat exchange.
  • At least one quick connector between the first working fluid inlet connector 2 and the first working fluid heat exchange inlet 31 is a three-way quick connector; the exhaust valve 211 is installed on the three-way quick connector.
  • the exhaust valve 211 is connected to an upwardly open joint of the three-way quick joint to facilitate gas discharge.
  • the first quick connector 21 is a three-way quick connector, and any one of the quick connectors between the first quick connector 21 and the first working fluid outlet connector 4 is a three-way quick connector.
  • Quick connector, the exhaust valve 211 is connected to the first quick connector 21, and the pressure relief valve 8 is connected to the aforementioned three-way quick connector;
  • At least one quick connector between the first working fluid heat exchange inlet 31 and the first working fluid inlet connector 2 and at least one quick connector located at the highest point of the flow path are three-way quick connectors, One of the exhaust valve 211 and the pressure relief valve 8 is provided on one of the quick connectors, and the other is provided on the other three-way quick connector.
  • the hydraulic module may include the first temperature measurement component 311, the second temperature measurement component 312, the bypass pipe 7, the exhaust valve 211 and the pressure relief valve 8 on the basis of Embodiments 1 to 7. at least one.
  • the first working fluid inlet connector 2 is connected to the first working fluid inlet 11 through a first quick connector 21, and the first working fluid outlet 12
  • the second quick connector 33 is connected to the first working fluid heat exchange inlet 31
  • the first working fluid heat exchange outlet 32 is connected to the third quick connector 41
  • the third quick connector 41 is connected to the fourth quick connector 42 connection
  • the fourth quick connector 42 is connected to the first working fluid outlet connector 4 through the second three-way connector 6
  • the first quick connector 21 is a three-way quick connector
  • the hydraulic module also includes a The first tee joint 5 connected to the first quick connector 21
  • the first temperature sensor 3112 is connected to the second quick connector 33
  • the second temperature sensor 3122 is connected to the fourth quick connector 42.
  • Both of these two quick connectors are It is a two-way quick connector to facilitate modular customization and installation; the bypass pipe 7 connects the first three-way joint 5 and the second three-way joint 6; one of the exhaust valve 211 and the pressure relief valve 8 is connected to The other one on the first tee joint 5 is connected to the third quick joint 41 directly or through a 90° quick joint.
  • the 90° quick connector is set up to install the pressure valve downward.
  • the installation position of the pressure valve is close to the heat exchanger 3, thereby reducing the greater impact on the overall volume after the pressure valve is installed, and improving the The utilization rate of space is improved, and the overall structure is more compact.
  • the 90° quick connector is set up so that the port according to the exhaust valve 211 is opened upward, and the exhaust valve 211 is installed upward to facilitate the discharge of gas.
  • the first working fluid inlet joint 2 is connected to the first working fluid heat exchange inlet 31 through a first quick connector 21.
  • the first working fluid heat exchange inlet 31 The outlet 32 is connected to the first working fluid inlet 11 through the second quick connector 33, the first working fluid outlet 12 is connected to the third quick connector 41, and the third quick connector 41 is connected to the fourth quick connector 42,
  • the fourth quick connector 42 is connected to the first working fluid outlet connector 4 through the second tee connector 6 and the third tee head 61;
  • the first temperature sensor 3112 is connected to the first quick connector 21, and the second temperature sensor 3112 is connected to the first quick connector 21.
  • the sensor 3122 is connected to the fourth quick connector 42.
  • Both of these two quick connectors are two-way quick connectors to facilitate modular customization and installation; the first quick connector 21 and the third quick connector 41 are three-way quick connectors.
  • Quick connector, two of the third quick connector 41, the second three-way quick connector, and the third three-way quick connector are connected to the exhaust valve 211 and the pressure relief valve 8 respectively, and the other one is connected to the first quick connector through the bypass pipe 7 on connector 21.
  • O-rings and hose clamps are used to achieve sealed connections between joints and components, and between joints.
  • the hydraulic module further includes a housing 10, which is provided with a first opening 101 for the first working fluid inlet connector 2 to extend and a second opening 101 for the first working fluid outlet connector 44 to extend. Opening 102.
  • the arrangement of the housing 10 can better protect the various components in the hydraulic module. Only the first working fluid inlet joint 2 and the first working fluid outlet joint 44 are exposed to the outside for the operator to contact with the corresponding parts.
  • the heat-releasing parts or cooling parts are connected to facilitate transportation and improve the overall aesthetics.
  • the hydraulic module further includes a filter 22, which is connected to the first working fluid inlet joint 2, for example, the filter is connected to the first quick connector 21 and the first Between the working fluid inlet joints 2, the liquid entering the hydraulic module is filtered to protect other components. Or, the first working fluid flows into the hydraulic module through the filter, that is, the filter is connected to the outside of the first working fluid inlet joint to protect the entire hydraulic module.
  • the filter 22 can also be integrated with a unit for preventing water scaling and removing scale.
  • the present invention also provides a thermal system, including any of the above hydraulic modules, heat release modules or cooling modules (not shown); the heat release module and the cooling module have an inlet connected to the first working fluid.
  • a set of butt joints connected to the joint and the first working fluid outlet joint can be quickly connected to the hydraulic module.
  • the form of the heat releasing module and the cooling module is not limited, and can be applied to central air conditioning, floor heating, etc.
  • the present invention also provides a refrigeration system, including a compressor 04, a condenser 01 connected to the outlet of the compressor 04, an expansion valve 02 connected to the outlet of the condenser 01, and an expansion valve 02 connected to the outlet of the condenser 01.
  • the refrigerant used in the refrigeration system is natural refrigerant, which can be hydrocarbons such as ethane, propane, propylene, butane, isobutane, and pentane.
  • Compressor 04 compresses the refrigerant from low-temperature and low-pressure gas into high-temperature and high-pressure gas, and then condenses it into a medium-temperature and high-pressure liquid through the condenser 01. After being throttled by the expansion valve 02, it becomes a low-temperature and low-pressure liquid.
  • the liquid working fluid is sent to the evaporator 03, where it absorbs heat and evaporates to become low-temperature and low-pressure steam, which is then sent to the compressor again, thereby completing the refrigeration cycle.
  • the heat exchanger 3 in the above hydraulic module also includes a second working fluid inlet 34, a second working fluid outlet 35, and a second working fluid connecting the second working fluid inlet 34 and the second working fluid outlet 35.
  • Fluid internal passage; the hydraulic module can be used as the condenser, and its second working fluid internal passage is connected in series between the outlet of the compressor 04 and the inlet of the expansion valve 02; or the hydraulic module can be used as an evaporator,
  • the second working fluid internal passage is connected in series between the outlet of the expansion valve 02 and the inlet of the compressor 04 .
  • the overall structure of the refrigeration system is compact, the volume is small, and the space occupation rate is greatly reduced. Moreover, the flow path of the refrigerant in the energy refrigeration system is greatly shortened, greatly reducing the use of refrigerant; at the same time, the condenser is quickly cooled down through the external heat release module, and the evaporator is quickly heated up through the external cooling module, achieving The purpose of efficient heat exchange improves the refrigeration effect of the refrigeration system.
  • the existing 5kW air source heat pump is composed of copper tube aluminum fins and plate heat exchanger 3, and the refrigerant filling amount is 1050g. Since 70% of the refrigerant filling amount belongs to heat exchanger 3, the copper tube aluminum fins of heat exchanger 3 and plate heat exchanger 3 contain 735g of refrigerant.
  • the refrigerant filling amount is 800g, and the heat exchanger 3 of the hydraulic module contains 560g of refrigerant.
  • the use of refrigerant in the system is reduced by 250g, a reduction of 24%.
  • the performance coefficient COP of the system is increased by 8 to 10% compared with the original system.
  • the second working fluid inlet 34 is connected to the compressor outlet, and the second working fluid outlet 35 is connected to the expansion valve inlet; the refrigerant releases heat as the above-mentioned second working fluid, The heat absorption temperature of the first working fluid increases, and heat is provided to the outside through the heat dissipation component.
  • the second working fluid outlet is connected to the expansion valve outlet, and the second working fluid inlet is connected to the compressor inlet; the refrigerant acts as the second working fluid to absorb heat from the first working fluid. , the heat release temperature of the first working fluid decreases, and cooling energy is provided to the outside through the cooling component.
  • the inlet and outlet of the refrigerant are exactly opposite to when it is used as a condenser.
  • the second working fluid port 34 in Figure 1 should be used as the second working fluid outlet of the evaporator.
  • the second working fluid port 35 should serve as the second working fluid inlet of the evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

一种水力模块及具有其的制冷系统、热力系统。所述水力模块包括:第一工作流体进口接头;液体泵,包括第一工作流体进口和第一工作流体出口,所述第一工作流体进口通过至少一个快速接头与所述第一工作流体进口接头连接;换热器,包括第一工作流体换热进口、第一工作流体换热出口,所述第一工作流体换热进口通过至少一个快速接头与所述液体泵的第一工作流体出口连接;第一工作流体出口接头,通过至少一个快速接头与换热器的第一工作流体换热出口连接。该水力模块采用无配管直接连接的方式,各零部件之间采用快速接头连接,使得零部件之间连接路径短、可靠性高;整体结构体积小、重量轻;可以方便与其它零部件连接。

Description

水力模块及具有其的制冷系统、热力系统 技术领域
本发明涉及换热设备技术领域,具体涉及一种结构紧凑、体积小的水力模块及具有其的热力系统。
背景技术
现有技术中,水力模块可以用于集中采暖,加温,制冷,冷却等领域。然而,水力模块的换热系统中的液箱、液泵、膨胀罐、换热器等零部件的布局需要使用管道连接,增加了换热系统中各零部件之间的配置难度,容易使得各零部件之间的连接管路杂乱无序。此外,还使得水力模块的整体体积大,占用空间,不适应节能减排的市场需求。
有鉴于此,有必要提供一种改进的水力模块及具有其的热力系统,以解决上述技术问题。
发明内容
本发明的目的在于提供一种结构紧凑、体积小的水力模块及具有其的热力系统。
为解决上述技术问题之一,本发明采用如下技术方案:
一种水力模块,其特征在于,包括第一工作流体进口接头、第一工作流体出口接头、连接于第一工作流体进口接头和第一工作流体出口接头之间的液体泵和换热器;所述液体泵包括第一工作流体进口和第一工作流体出口;所述换热器包括第一工作流体换热进口、第一工作流体换热出口、和所述第一工作流体换热进口与所述第一工作流体换热出口连接的第一工作流体内部通路;其中,
所述第一工作流体进口接头通过至少一个快速接头与所述液体泵的第一工作流体进口连接,所述第一工作流体换热进口通过至少一个快速接头与所述液体泵的第一工作流体出口连接;第一工作流体出口接头通过至少一个快速接头与换热器的第一工作流体换热出口连接;或
所述第一工作流体换热进口通过至少一个快速接头与所述第一工作流体进口接头连接;所述第一工作流体进口通过至少一个快速接头与所述换热器的第一工作流体换热出口连接;第一工作流体出口接头通过至少一个快速接头与液体泵的第一工 作流体出口连接。
一种制冷系统,包括压缩机、与所述压缩机出口连接的冷凝器、与所述冷凝器出口连接的膨胀阀、连接于所述膨胀阀出口与压缩机入口之间的蒸发器,所述冷凝器或所述蒸发器中的至少一个为水力模块,所述水力模块包括:
液体泵,包括第一工作流体进口和第一工作流体出口;
第一工作流体进口接头,通过至少一个快速接头与所述第一工作流体进口连通;
第一工作流体出口接头,通过至少一个快速接头与所述第一工作流体出口连通;
换热器,包括第一工作流体换热进口、第一工作流体换热出口、和所述第一工作流体换热进口与所述第一工作流体换热出口连接的第一工作流体内部通路、第二工作流体进口、第二工作流体出口、连接所述第二工作流体进口与所述第二工作流体出口的第二工作流体通路;
其中,所述换热器的第一工作流体通路通过至少一个快速接头连接于所述液体泵与所述第一工作流体进口接头之间,或所述换热器通过至少一个快速接头连接于所述液体泵与所述第一工作流体出口接头之间;所述第二工作流体通路连接于所述制冷系统中。
一种热力系统,包括上述水力模块和放热模块或放冷模块,所述放热模块、所述放冷模块具有与所述第一工作流体进口接头、所述第一工作流体出口接头相连接的一组对接接头。
本发明的有益效果是:本发明的水力模块,采用无配管直接连接的方式,各零部件之间采用快速接头连接,使得零部件之间连接路径短、可靠性高,整体结构体积小、重量轻,可以方便与其它零部件连接。
附图说明
图1为本实用新型实施例提出的一种水力模块的剖面示意图一;
图2为图1中A处的局部示意图;
图3为本实用新型实施例提出的一种水力模块的剖面示意图二;
图4为图3中B处的局部示意图;
图5为本发明另一较佳实施例的水力模块的示意图;
图6为本发明另一较佳实施例的水力模块的示意图;
图7为本发明的制冷系统示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
在本发明的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本发明的主题的基本结构。
为方便描述,按照本发明的水力模块在实际应用过程的方位,定义上方和下方。文中描述的“连接”,可以为直接连接,也可以为通过另一快速接头/转接头间接连接;而“直接连接”指的是两者之间无其他结构或快速接头。
如图1~图6所示,本发明的水力模块包括第一工作流体进口接头2、液体泵1、换热器3、第一工作流体出口接头4以及连接相邻两个部件的快速接头;所述换热器3连接于所述液体泵1与所述第一工作流体出口接头4之间,或所述换热器3连接于所述第一工作流体进口接头2与所述液体泵1之间。
所述第一工作流体进口接头2、所述第一工作流体出口接头4用以连接放热部件,第一工作流体在液体泵1的驱动下在放热部件与所述水力模块之间循环流动;当第一工作流体流经所述换热器3,且第一工作流体与流经所述换热器3的第二工作流体具有温度差时,第一工作流体与第二工作流体之间进行热交换,使得第一工作流体获取能量至温度上升到达期望的温度,然后流动至所述放热部件对外释放热量,起到供热的作用。当然,所述第一工作流体进口接头2、所述第一工作流体出口接头4也可以连接放冷部件,第一工作流体与第二工作流体之间进行热交换至温度降低到期望的温度,然后流动至所述放冷部件对外释放冷量,起到供冷的作用。
另,所述第一工作流体优选为水,水的比热容大,成本低且环保。
当然,所述第一工作流体也可以选用油或其他液体。尤其是在特殊的温度需求下,例如,第一工作流体的工作温度低于0℃或高于100℃时,可以选用油或其他液体。其他液体包括但不限于;酒精和水的混合液,盐水,有机载冷剂。
优选地,所述第一工作流体进口接头2、所述第一工作流体出口接头4位于同一侧,便于与所述放热部件或放冷部件快速地可拆卸地连接。
所述换热器3包括第一工作流体换热进口31、第一工作流体换热出口32、和所 述第一工作流体换热进口与所述第一工作流体换热出口连接的第一工作流体内部通路。本发明采用的换热器3为紧凑型换热器3,体积小,且热阻小,其结构可参考CN102706189A、CN202599167U,于此不再赘述。
所述液体泵1,根据放热部件或放冷部件的压力大小、扬程等因素选择合适的功率。具体地,所述液体泵1下方设有固定架13,所述固定架13底部设有多个橡胶垫脚131。固定架13的设置便于液体泵1的安装固定,橡胶垫脚131则起到了一定的防震缓冲的作用,使得水泵、油泵等液体泵运转时降噪/降振动,运行时的状态更加稳定,避免共振现象。
本发明的水力模块,采用无配管直接连接的方式,各零部件之间采用快速接头连接,使得零部件之间连接路径短、可靠性高,组装成型的水力模块整体结构体积小,空间占用率大大降低;重量轻,搬运方便;可以方便与其它零部件连接。
以下将对各个部件之间的连接方式及其他附加部件做详细说明。
第一类实施例中,换热器3连接于所述液体泵1与所述第一工作流体出口接头4之间,所述第一工作流体进口接头2通过至少一个快速接头与所述第一工作流体进口11连接,所述第一工作流体出口12通过至少一个快速接头与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过至少一个快速接头与所述第一工作流体出口接头4连接。第一工作流体依次经过第一工作流体进口接头2、液体泵1、换热器3和第一工作流体出口接头4后回流至放冷部件或放热部件。
水力模块的各部件中,所述液体泵1的体积最大、重量最大,本发明根据各部件的大小和连接顺序优化排布方式,旨在设计出重心较低的水力模块。根据排布方式及其他附加元件数量及其安装,两个部件之间通过一个快速接头或多个快速接头连接。
具体地,第一类实施例中,几个基础结构元件之间的连接方式包括但不限于以下几种:
实施例1:所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体进口11连接,所述第一工作流体出口12通过第二快速接头33与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过第三快速接头41与所述出口接头连接。此实施例中的“连接”均为“直接连接”。
实施例2:所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体进口11连接,所述第一工作流体出口12通过第二快速接头33与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32与第三快速接头41连接,所述第三快速接头41通过第二三通接头6与所述第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
实施例3:所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体进口11连接,所述第一工作流体出口12通过第二快速接头33与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32与第三快速接头41连接,所述第三快速接头41与第四快速接头42连接,所述第四快速接头42通过第二三通接头6与所述第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
第二类实施例中,换热器3连接于所述第一工作流体进口接头2与所述液体泵1之间,所述第一工作流体进口接头2通过至少一个快速接头与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过至少一个快速接头与所述第一工作流体进口11连接,所述第一工作流体出口12通过至少一个快速接头与所述第一工作流体出口接头4连接。第一工作流体依次经过第一工作流体进口接头2、换热器3、液体泵1和第一工作流体出口接头4后回流至放冷部件或放热部件。
类似于第一类实施例的连接方式,第二类实施例中,几个基础结构元件之间的连接方式包括但不限于以下几种:
实施例4,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过第二快速接头33与所述第一工作流体进口11连接,所述第一工作流体出口12通过第三快速接头41与所述第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
实施例5,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过第二快速接头33与所述第一工作流体进口11连接,所述第一工作流体出口12与第三快速接头41连接,所述第三快速接头41通过第四快速接头42与所述第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
实施例6,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作 流体换热进口31连接,所述第一工作流体换热出口32通过第二快速接头33与所述第一工作流体进口11连接,所述第一工作流体出口12与第三快速接头41连接,所述第三快速接头41与第四快速接头42连接,所述第四快速接头42通过第二三通快速接头与第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
实施例7,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过第二快速接头33与所述第一工作流体进口11连接,所述第一工作流体出口12与第三快速接头41连接,所述第三快速接头41与第四快速接头42连接,所述第四快速接头42通过第二三通快速接头、第三三通快速接头与第一工作流体出口接头4连接。此实施例中的“连接”均为“直接连接”。
进一步地,所述水力模块还包括设置于所述第一工作流体换热进口31侧的第一测温组件311,和/或设置于所述第一工作流体换热出口32侧的第二测温组件312;所述第一测温组件311和所述第二测温组件312均与控制器通讯连接。通过所述第一测温组件311实时检测第一工作流体进入所述换热器3的温度,通过所述第二测温组件312实时检测第一工作流体流出所述换热器3后的温度;操作人员可通过所述控制器查看对应的数值,在第一测温组件311和第二测温组件312测得温度差值低于预设值时,控制器可远程报警以提醒操作人员及时检查换热器3是否正常工作。
具体地,所述第一测温组件311包括第一温度传感器3112、用以安装所述第一温度传感器3112的第一安装结构3111,所述第一安装结构3111将所述第一温度传感器3112安装于所述第一工作流体换热进口31与所述第一工作流体进口接头2之间的任意一个快速接头上。
优选的方案中,所述第一安装结构3111将所述第一温度传感器3112安装于与所述第一工作流体换热进口31直接连接的快速接头上,测量的温度为第一工作流体进入所述换热器3前的瞬间温度,排除了第一工作流体经过其他部件时对其温度造成的影响。例如,基于上述实施例1、实施例2和如图1~图5所示的实施例3,所述第一安装结构3111将所述第一温度传感器3112安装于所述第二快速接头33上。或,基于图4~图7实施例,所述第一安装结构3111将所述第一温度传感器3112安装于所述第一快速接头21上。
另外,所述第一安装结构3111的形状、安装方式不限,只要能将所述第一温度传感器3112进行安装固定且不影响其测量第一工作流体的温度即可。一具体实施例中,请参阅图1~图5所示,所述第一安装结构3111为第一安装支架,通过螺钉固定于一个快速接头上,第一温度传感器3112安装于所述第一安装支架上,且所述第一温度传感器3112的测温端伸入安装其的快速接头内对第一工作流体进行温度检测。于其他实施例中,所述第一安装结构3111也可以为导热胶带等,将第一温度传感器3112贴设置于所述快速接头上,对第一工作流体进行温度检测。
所述第二测温组件312包括第二温度传感器3122、用以安装所述第二温度传感器3122的第二安装结构3121;所述第二安装结构3121将所述第二温度传感器3122安装于所述第一工作流体换热出口32与所述第一工作流体出口接头4之间的任意一个快速接头上。
基于实施例1、实施例2和实施例3,所述第二安装结构3121均可以将所述第二温度传感器3122安装于所述第三快速接头41上,获取所述换热器3的出口处的第一工作流体的温度,可以直接反应换热器3的换热效率。基于实施例2和实施例3,所述第二安装结构3121还可以将所述第二温度传感器3122安装于所述第二三通接头6上。基于实施例3,所述第二安装结构3121还可以将所述第二温度传感器3122安装于所述第四快速接头42上。
基于实施例4~7,所述第二安装结构3121将所述第二温度传感器3122安装于所述第三快速接头41上;基于实施例5~7,所述第二安装结构3121将所述第二温度传感器3122安装于所述第四快速接头42上;基于实施例6~7,所述第二安装结构3121将所述第二温度传感器3122安装于所述第二三通快速接头上;基于实施例7,所述第二安装结构3121将所述第二温度传感器3122安装于所述第三三通快速接头上。
所述第二安装结构3121的形状、安装方式不限,只要能将所述第二温度传感器3122进行安装固定且不影响其测量第一工作流体的温度即可。一具体实施例中,请参阅图1~图5所示,所述第二安装结构3121为第二安装支架,通过螺钉固定于一个快速接头上,第二温度传感器3122安装于所述第二安装支架上,且所述第二温度传感器3122的测温端伸入安装其的快速接头内对第一工作流体进行温度检测。于其他实施例中,所述第二安装结构3121也可以为导热胶带等,将第二温度传感器3122 贴设置于所述快速接头上,对第一工作流体进行温度检测。
进一步地,所述水力模块还包括连接所述第一工作流体换热进口31侧与所述第一工作流体换热出口32侧的旁通管7。一方面,可以在系统堵塞时,构成保护回路,对系统进行保护。另一方面,当第二温度传感器3122检测到经过换热器3后的第一工作流体的温度未到达期望的温度值时,第一工作流体通过所述旁通管7回流到所述第一工作流体换热进口31侧,然后经过所述换热器3进行二次换热,以确保从第一工作流体出口接头4排出的第一工作流体的温度符合要求。
优选地,所述旁通管7的一端连接于所述第一测温组件311背离所述换热器3的一侧,使得回流回来的第一工作流体经过第一测温组件311的测量后再进入到换热器3中;所述旁通管7的另一端连接于所述第二测温组件312背离所述换热器3的一侧,在经过第二测温组件312测量后发现温度不合格的第一工作流体时,触发旁通管7使第一工作流体进行回流;如果温度达到预期温度,则无需回流。
具体地,所述第一工作流体换热进口31与所述第一工作流体进口接头2之间的至少一个快速接头为三通快速接头;所述第一工作流体换热出口32与所述第一工作流体出口接头4之间的至少一个快速接头为三通快速接头,所述旁通管7连接于前述两个三通快速接头上。
基于实施例1,所述第一快速接头21、所述第三快速接头41均为三通快速接头,所述旁通管7连接于所述第一快速接头21与所述第三快速接头41之间。或基于实施例1,所述第一快速接头21、所述第三快速接头41均为三通快速接头,所述水力模块还包括与所述第一快速接头21连接的第一三通接头5,所述旁通管7连接于所述第一三通接头5与所述第三快速接头41之间,所述第一三通接头5的另一接口连接功能元件。
或,基于实施例2,所述第一快速接头21为三通快速接头,所述旁通管7连接于所述第一快速接头21与所述第二三通接头6之间。或,基于实施例2,所述第一快速接头21为三通快速接头,所述水力模块还包括与所述第一快速接头21连接的第一三通接头5,所述旁通管7连接于所述第一三通接头5与所述第二三通接头6之间,所述第一三通接头5的另一接口连接功能元件。
或,基于实施例3,所述第一快速接头21为三通快速接头,所述旁通管7连接 于所述第一快速接头21与所述第二三通接头6之间;或,基于实施例3,所述第一快速接头21为三通快速接头,所述水力模块还包括与所述第一快速接头21连接的第一三通接头5,所述旁通管7连接于所述第一三通接头5与所述第二三通接头6之间,所述第一三通接头5的另一接口连接功能元件。
基于实施例4,所述第一快速接头21、所述第三快速接头41均为三通快速接头,所述旁通管7连接于所述第一快速接头21与所述第三快速接头41之间。
基于实施例5,所述第一快速接头21为三通快速接头,第三快速接头41与第四快速接头42中的一个为三通快速接头,所述旁通管7连接于第三快速接头41与第四快速接头42中的一个与所述第一快速接头21之间。
基于实施例6,所述第一快速接头21为三通快速接头,所述旁通管7连接于所述第一快速接头21与所述第二三通快速接头之间;
基于实施例7,所述第一快速接头21为三通快速接头,所述旁通管7连接于所述第一快速接头21与所述第二三通快速接头之间,所述第三三通快速接头的另一接头连接功能元件;或所述旁通管7连接于所述第一快速接头21与所述第三三通快速接头之间,所述第二三通快速接头的另一接头连接功能元件。
上述实施例中,所述功能元件为排气阀211或泄压阀8。
进一步地,所述水力模块还包括连接于所述水力模块的流通路的排气阀211和/或泄压阀8。
所述泄压阀8用以释放系统内的压力,防止压力过大引发安全事故,有助于提高所述水力模块的防爆性能,其可以安装于水力模块的任意位置处。
当水力模块中有气体逸出时,气体会顺着流通路向上爬,最终聚集在流通路的最高处;因此可以将所述排气阀211连接于所述流通路的最高点处。气体进入到排气阀211,并聚集在阀腔的上部,随着阀内气体的增多,压力上升,当气体压力大于系统压力时,气体会使阀腔内水面下降,浮筒随水位一起下降,打开排气口;气体排尽后,水位上升,浮筒也随之上升,关闭排气口;采用上述结构设计,可将系统中多余的气体排除,以提高所述水力模块的使用安全性。
本发明中,所述换热器3位于所述液体泵1的上端,且所述第一工作流体换热进口31、所述第一工作流体换热出口32沿上下方向分布于所述换热器3的两侧,所 述第一工作流体换热出口32与所述第一工作流体出口接头4之间根据需要设置至少一个快速接头,所述至少一个快速接头大致在同一水平位上,所述第一工作流体换热出口32与所述第一工作流体出口接头4之间的任意一个快速接口均处于系统流通路的最高点,均可以安装所述排气阀211。
另,如果系统有气体,气体进入换热器3后,会影响第一工作流体与第二工作流体的热交换,因此还可以将所述排气阀211连接于所述第一工作流体换热进口31侧。所述第一工作流体进口接头2与所述第一工作流体换热进口31之间的至少一个快速接头为三通快速接头;所述排气阀211安装于该三通快速接头上。
优选地,所述排气阀211连接于三通快速接头的向上开放的一个接头上,利于气体排出。
具体地,基于实施例1~实施例7,所述第一快速接头21为三通快速接头,所述第一快速接头21与第一工作流体出口接头4之间的任意一个快速接头为三通快速接头,所述排气阀211连接于所述第一快速接头21上,所述泄压阀8连接于前述三通快速接头上;
或,所述第一工作流体换热进口31与所述第一工作流体进口接头2之间的至少一个快速接头、位于所述流通路的最高点处的至少一个快速接头为三通快速接头,所述排气阀211和所述泄压阀8中的一个设置于其中一个快速接头上、另一个设置于另一三通快速接头上。
基于上述描述,所述水力模块中在实施例1~7的基础上可以包括第一测温组件311、第二测温组件312、旁通管7、排气阀211和泄压阀8中的至少一个。
一优选的实施例中,如图1~图5所示,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体进口11连接,所述第一工作流体出口12通过第二快速接头33与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32与第三快速接头41连接,所述第三快速接头41与第四快速接头42连接,所述第四快速接头42通过第二三通接头6与所述第一工作流体出口接头4连接;所述第一快速接头21为三通快速接头,所述水力模块还包括与所述第一快速接头21连接的第一三通接头5;第一温度传感器3112连接于第二快速接头33上,第二温度传感器3122连接于所述第四快速接头42上,这两个快速接头均为二通快速接头,便于模块 化定制和安装;旁通管7连接所述第一三通接头5与所述第二三通接头6;排气阀211和泄压阀8中的一个连接于所述第一三通接头5上,另一个直接地或通过90°快速接头连接于所述第三快速接头41上。
请参阅图1,90°快速接头的设置,是为了将压力阀朝下安装,压力阀的安装位置靠近换热器3,从而减少压力阀安装后对整体体积产生的较大的影响,提高了空间的利用率,整体结构更加紧凑。请参阅图5,90°快速接头的设置,是为了将按照排气阀211的端口向上开放,朝上安装排气阀211,便于气体的排出。
另一优选的实施例中,如图6所示,所述第一工作流体进口接头2通过第一快速接头21与所述第一工作流体换热进口31连接,所述第一工作流体换热出口32通过第二快速接头33与所述第一工作流体进口11连接,所述第一工作流体出口12与第三快速接头41连接,所述第三快速接头41与第四快速接头42连接,所述第四快速接头42通过第二三通接头6、第三三通头61与所述第一工作流体出口接头4连接;第一温度传感器3112连接于第一快速接头21上,第二温度传感器3122连接于所述第四快速接头42上,这两个快速接头均为二通快速接头,便于模块化定制和安装;所述第一快速接头21、所述第三快速接头41为三通快速接头,第三快速接头41、第二三通快速接头、第三三通快速接头中的两个分别连接排气阀211、泄压阀8,另一个通过旁通管7连接于第一快速接头21上。
于本发明中,接头和零部件之间,以及接头和接头之间均采用O型密封圈和喉箍的方式实现密封连接。
进一步地,所述水力模块还包括壳体10,所述壳体10上设有供第一工作流体进口接头2伸出的第一开口101和供第一工作流体出口接头44伸出的第二开口102。壳体10的设置可对所述水力模块中的各零部件起到较好的保护做用,仅仅只有第一工作流体进口接头2和第一工作流体出口接头44暴露在外侧供操作人员与对应的放热部件或放冷部件连接,便于运输的同时,提高了整体的美观度。
进一步地,所述水力模块还包括过滤器22,所述过滤器22连接于所述第一工作流体进口接头2上,例如所述过滤器连接于所述第一快速接头21与所述第一工作流体进口接头2之间,对进入水力模块的液体进行过滤,保护其他部件。或,第一工作流体经过过滤器流入所述水力模块内,也即,所述过滤器连接于所述第一工作流 体进口接头的外侧,对整个水力模块起到保护作用。
进一步地,所述过滤器22还可以集成防止水结垢、除垢的单元。
本发明还提供一种热力系统,包括上述任意一种水力模块,放热模块或放冷模块(未图示);所述放热模块、所述放冷模块具有与所述第一工作流体进口接头、所述第一工作流体出口接头相连接的一组对接接头,能够与所述水力模块快速对接。所述放热模块、放冷模块的形式不限,可以应用于中央空调、地暖等。
请参阅图7所示,本发明还提供一种制冷系统,包括压缩机04、与所述压缩机04出口连接的冷凝器01、与所述冷凝器01出口连接的膨胀阀02、连接于所述膨胀阀02出口与压缩机04入口之间的蒸发器03。制冷系统使用的冷媒为自然冷媒,可以是乙烷、丙烷、丙烯、丁烷、异丁烷与戊烷等的碳氢化合物。
制冷系统的工作原理:压缩机04把冷媒由低温低压气体压缩成高温高压气体,再经过冷凝器01冷凝成中温高压的液体,经膨胀阀02节流后,则成为低温低压的液体,低温低压的液态工质送入蒸发器03,在蒸发器03中吸热蒸发而成为低温低压的蒸汽,再次输送进压缩机,从而完成制冷循环。
上述水力模块中的所述换热器3还包括第二工作流体进口34、第二工作流体出口35、和连接所述第二工作流体进口34与所述第二工作流体出口35的第二工作流体内部通路;该水力模块可以作为所述冷凝器,将其第二工作流体内部通路串联于所述压缩机04的出口与膨胀阀02的入口之间;或该水力模块可以作为蒸发器,将其第二工作流体内部通路串联于所述膨胀阀02的出口与的压缩机04入口之间。
采用上述水力模块后,所述制冷系统的整体结构紧凑、体积小巧、空间占用率大大降低。并且,冷媒在所述能制冷系统中的流动路程大大缩短,极大地减少了冷媒的使用;同时通过外接的放热模块给冷凝器快速降温,通过外接的放冷模块给蒸发器快速升温,达到高效换热的目的,提高了了制冷系统的制冷效果。
根据实际应用可知,现有5kW空气能热泵,由铜管铝翅片和板式换热器3构成,冷媒填充量为1050g。因冷媒填充量中70%为换热器3所有,所以换热器3铜管铝翅片和板式换热器3中含有735g冷媒。用上述水力模块替换板式换热器3及附属连接配管替换冷凝器或蒸发器中的一个时,冷媒填充量为800g,水力模块的换热器3中含有560g冷媒。这时系统中减少使用冷媒250g,减少24%,同时系统的成绩系数 COP和原来的系统相比提高8~10%。
当所述水力模块作为冷凝器接入制冷系统时,第二工作流体进口34与压缩机出口连接,第二工作流体出口35与膨胀阀进口连接;冷媒作为上述第二工作流体向外释放热量,所述第一工作流体吸热温度升高,通过放热部件向外提供热量。
当所述水力模块作为蒸发器接入制冷系统时,第二工作流体出口与膨胀阀出口连接,第二工作流体进口与压缩机进口连接;冷媒作为上述第二工作流体从第一工作流体吸收热量,所述第一工作流体放热温度降低,通过放冷部件向外提供冷量。需要说明的是,水力模块作为蒸发器时,冷媒的入口与出口恰与其作为冷凝器时相反,例如图1中的第二工作流体端口34应该作为蒸发器的第二工作流体出口,图1中的第二工作流体端口35应该作为蒸发器的第二工作流体进口。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种水力模块,其特征在于,包括第一工作流体进口接头、第一工作流体出口接头、连接于第一工作流体进口接头和第一工作流体出口接头之间的液体泵和换热器;所述液体泵包括第一工作流体进口和第一工作流体出口;所述换热器包括第一工作流体换热进口、第一工作流体换热出口、和所述第一工作流体换热进口与所述第一工作流体换热出口连接的第一工作流体内部通路;其中,
    所述第一工作流体进口接头通过至少一个快速接头与所述液体泵的第一工作流体进口连接,所述第一工作流体换热进口通过至少一个快速接头与所述液体泵的第一工作流体出口连接;第一工作流体出口接头通过至少一个快速接头与换热器的第一工作流体换热出口连接;或
    所述第一工作流体换热进口通过至少一个快速接头与所述第一工作流体进口接头连接;所述第一工作流体进口通过至少一个快速接头与所述换热器的第一工作流体换热出口连接;第一工作流体出口接头通过至少一个快速接头与液体泵的第一工作流体出口连接。
  2. 根据权利要求1所述的水力模块,其特征在于,所述水力模块还包括:
    第一测温组件,设置于所述换热器的第一工作流体换热进口侧;
    和/或第二测温组件,设置于所述换热器的第一工作流体换热出口侧;
    所述第一测温组件和所述第二测温组件均与控制器通讯连接。
  3. 根据权利要求2所述的水力模块,其特征在于:所述第一测温组件包括第一温度传感器、用以安装所述第一温度传感器的第一安装结构,所述第一安装结构将所述第一温度传感器安装于所述换热器的第一工作流体换热进口与所述第一工作流体进口接头之间的任意一个快速接头上;
    和/或,所述第二测温组件包括第二温度传感器、用以安装所述第二温度传感器的第二安装结构;所述第二安装结构将所述第二温度传感器安装于所述换热器的第一工作流体换热出口与所述第一工作流体出口接头之间的任意一个快速接头上。
  4. 根据权利要求3所述的水力模块,其特征在于:所述第一温度传感器的第一安装结构将所述第一温度传感器安装于与所述换热器的第一工作流体换热进口直接连接的快速接头上。
  5. 根据权利要求3所述的水力模块,其特征在于:
    所述第一工作流体进口接头通过第一快速接头与所述水泵的第一工作流体进口 连接,所述水泵的第一工作流体出口通过第二快速接头与所述换热器的第一工作流体换热进口连接,所述换热器的第一工作流体换热出口通过第三快速接头与所述出口接头连接,所述第二安装结构将所述第二温度传感器安装于所述第三快速接头上;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体进口连接,所述第一工作流体出口通过第二快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口与第三快速接头连接,所述第三快速接头通过第四快速接头与所述第一工作流体出口接头连接,所述第二安装结构将所述第二温度传感器安装于所述第四快速接头上;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口通过第二快速接头与所述第一工作流体进口连接,所述第一工作流体出口通过第三快速接头与所述第一工作流体出口接头连接,所述第二安装结构将所述第二温度传感器安装于所述第三快速接头上;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口通过第二快速接头与所述第一工作流体进口连接,所述第一工作流体出口与第三快速接头连接,所述第三快速接头通过第四快速接头与所述第一工作流体出口接头连接,所述第二安装结构将所述第二温度传感器安装于所述第四快速接头上。
  6. 根据权利要求1所述的水力模块,其特征在于,所述水力模块还包括连接所述第一工作流体换热进口侧与所述第一工作流体换热出口侧的旁通管。
  7. 根据权利要求6所述的水力模块,其特征在于,所述水力模块还包括设置于所述第一工作流体换热进口侧的第一测温组件、和/或设置于所述第一工作流体换热出口侧的第二测温组件,所述第一测温组件和所述第二测温组件均与控制器通讯连接;所述旁通管的两端分别连接于所述第一测温组件背离所述换热器的一侧、所述第二测温组件背离所述换热器的一侧。
  8. 根据权利要求6所述的水力模块,其特征在于,所述第一工作流体换热进口与所述第一工作流体进口接头之间的至少一个快速接头为三通快速接头;所述第一工作流体换热出口与所述第一工作流体出口接头之间的至少一个快速接头为三通快速接头,所述旁通管连接于前述两个三通快速接头上;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体进口连接,所述第一工作流体出口通过第二快速接头与所述第一工作流体换热进口连接, 所述第一工作流体换热出口与第三快速接头连接,所述第三快速接头与第四快速接头连接,所述第四快速接头通过第二三通接头与所述第一工作流体出口接头连接;所述第一快速接头为三通快速接头,所述水力模块还包括与所述第一快速接头连接的第一三通接头,所述旁通管连接于所述第一三通接头与所述第二三通接头之间,所述第一三通接头的另一接口连接功能元件;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口通过第二快速接头与所述第一工作流体进口连接,所述第一工作流体出口与第三快速接头连接,所述第三快速接头与第四快速接头连接,所述第四快速接头通过第二三通快速接头、第三三通快速接头与第一工作流体出口接头连接;所述旁通管连接于所述第一快速接头与所述第二三通快速接头之间,所述第三三通快速接头的另一接头连接功能元件;或所述旁通管连接于所述第一快速接头与所述第三三通快速接头之间,所述第二三通快速接头的另一接头连接功能元件;
    其中,所述功能元件为排气阀或泄压阀。
  9. 根据权利要求1所述的水力模块,其特征在于,所述水力模块还包括:
    连接于所述水力模块的流通路的排气阀,所述排气阀连接于所述第一工作流体换热进口侧,或所述排气阀连接于所述流通路的最高点处;
    和/或泄压阀,所述泄压阀连接于所述水力模块的任意位置处;
    和/或过滤器,所述过滤器连接于所述第一工作流体进口接头上,或第一工作流体经过过滤器流入所述水力模块内。
  10. 根据权利要求9所述的水力模块,其特征在于,所述第一工作流体进口接头与所述第一工作流体换热进口之间的至少一个快速接头为三通快速接头;所述排气阀安装于该三通快速接头上;
    或,所述第一工作流体换热进口与所述第一工作流体进口接头之间的至少一个快速接头、位于所述流通路的最高点处的至少一个快速接头为三通快速接头,所述排气阀和所述泄压阀中的一个设置于其中一个快速接头上、另一个设置于另一三通快速接头上。
  11. 根据权利要求1所述的水力模块,其特征在于,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体进口连接,所述第一工作流体出口通过第二快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口与第三 快速接头连接,所述第三快速接头与第四快速接头连接,所述第四快速接头通过第二三通接头与所述第一工作流体出口接头连接;所述第一快速接头为三通快速接头,所述水力模块还包括与所述第一快速接头连接的第一三通接头;第一温度传感器连接于第二快速接头上,第二温度传感器连接于所述第四快速接头上;旁通管连接所述第一三通接头与所述第二三通接头;排气阀和泄压阀中的一个连接于所述第一三通接头上,另一个直接地或通过90°快速接头连接于所述第三快速接头上;
    或,所述第一工作流体进口接头通过第一快速接头与所述第一工作流体换热进口连接,所述第一工作流体换热出口通过第二快速接头与所述第一工作流体进口连接,所述第一工作流体出口与第三快速接头连接,所述第三快速接头与第四快速接头连接,所述第四快速接头通过第二三通接头、第三三通头与所述第一工作流体出口接头连接;第一温度传感器连接于第一快速接头上,第二温度传感器连接于所述第四快速接头上;所述第一快速接头、所述第三快速接头为三通快速接头,第三快速接头、第二三通快速接头、第三三通快速接头中的两个分别连接排气阀、泄压阀,另一个通过旁通管连接于第一快速接头上。
  12. 一种制冷系统,包括压缩机、与所述压缩机出口连接的冷凝器、与所述冷凝器出口连接的膨胀阀、连接于所述膨胀阀出口与压缩机入口之间的蒸发器,其特征在于,所述冷凝器或所述蒸发器中的至少一个为水力模块,所述水力模块包括:
    液体泵,包括第一工作流体进口和第一工作流体出口;
    第一工作流体进口接头,通过至少一个快速接头与所述第一工作流体进口连通;
    第一工作流体出口接头,通过至少一个快速接头与所述第一工作流体出口连通;
    换热器,包括第一工作流体换热进口、第一工作流体换热出口、和所述第一工作流体换热进口与所述第一工作流体换热出口连接的第一工作流体内部通路、第二工作流体进口、第二工作流体出口、连接所述第二工作流体进口与所述第二工作流体出口的第二工作流体通路;
    其中,所述换热器的第一工作流体通路通过至少一个快速接头连接于所述液体泵与所述第一工作流体进口接头之间,或所述换热器通过至少一个快速接头连接于所述液体泵与所述第一工作流体出口接头之间;所述第二工作流体通路连接于所述制冷系统中。
  13. 根据权利要求12所述的制冷系统,其特征在于,所述水力模块还包括:
    第一测温组件,设置于所述换热器的第一工作流体换热进口侧;所述第一测温 组件包括第一温度传感器、用以安装所述第一温度传感器的第一安装结构,所述第一安装结构将所述第一温度传感器安装于所述换热器的第一工作流体换热进口与所述第一工作流体进口接头之间的任意一个快速接头上;
    和/或第二测温组件,设置于所述换热器的第一工作流体换热出口侧;所述第二测温组件包括第二温度传感器、用以安装所述第二温度传感器的第二安装结构;所述第二安装结构将所述第二温度传感器安装于所述换热器的第一工作流体换热出口与所述第一工作流体出口接头之间的任意一个快速接头上;
    所述第一测温组件和所述第二测温组件均与控制器通讯连接。
  14. 根据权利要求12所述的制冷系统,其特征在于,所述水力模块还包括:
    连接于所述水力模块的流通路的排气阀,所述排气阀连接于所述第一工作流体换热进口侧,或所述排气阀连接于所述流通路的最高点处;
    和/或泄压阀,所述泄压阀连接于所述水力模块的任意位置处;
    和/或过滤器,所述过滤器连接于所述第一工作流体进口接头上,或第一工作流体经过过滤器流入所述水力模块内。
  15. 一种热力系统,其特征在于,包括:
    权利要求1所述的水力模块;
    放热模块或放冷模块,所述放热模块、所述放冷模块具有与所述第一工作流体进口接头、所述第一工作流体出口接头相连接的一组对接接头。
PCT/CN2022/090525 2022-04-29 2022-04-29 水力模块及具有其的制冷系统、热力系统 WO2023206453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090525 WO2023206453A1 (zh) 2022-04-29 2022-04-29 水力模块及具有其的制冷系统、热力系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090525 WO2023206453A1 (zh) 2022-04-29 2022-04-29 水力模块及具有其的制冷系统、热力系统

Publications (1)

Publication Number Publication Date
WO2023206453A1 true WO2023206453A1 (zh) 2023-11-02

Family

ID=88516781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090525 WO2023206453A1 (zh) 2022-04-29 2022-04-29 水力模块及具有其的制冷系统、热力系统

Country Status (1)

Country Link
WO (1) WO2023206453A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243866A (ja) * 2008-04-01 2009-10-22 Mitsubishi Electric Corp ヒートポンプ給湯装置
CN204594314U (zh) * 2015-04-10 2015-08-26 广东美的暖通设备有限公司 一种高能效水力模块
CN205747132U (zh) * 2016-05-17 2016-11-30 广东美的暖通设备有限公司 水力模块
CN110567201A (zh) * 2019-09-06 2019-12-13 天津大学 可移动式间接制冷系统用水力模块装置
CN111365901A (zh) * 2020-04-14 2020-07-03 广东美的制冷设备有限公司 换热装置及空调系统
CN212078096U (zh) * 2020-04-23 2020-12-04 广州三人行节能科技有限公司 一种单泵水力模块
CN214841173U (zh) * 2021-03-12 2021-11-23 广东积微科技有限公司 一种双四通阀多联机的水力模块
CN215216434U (zh) * 2021-05-21 2021-12-17 广东芬尼克兹节能设备有限公司 集成水路模块
CN113847728A (zh) * 2021-10-29 2021-12-28 美的集团武汉暖通设备有限公司 水力模块及热泵系统
CN114688915A (zh) * 2020-12-31 2022-07-01 浙江雪波蓝科技有限公司 水力模块及具有其的热力系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243866A (ja) * 2008-04-01 2009-10-22 Mitsubishi Electric Corp ヒートポンプ給湯装置
CN204594314U (zh) * 2015-04-10 2015-08-26 广东美的暖通设备有限公司 一种高能效水力模块
CN205747132U (zh) * 2016-05-17 2016-11-30 广东美的暖通设备有限公司 水力模块
CN110567201A (zh) * 2019-09-06 2019-12-13 天津大学 可移动式间接制冷系统用水力模块装置
CN111365901A (zh) * 2020-04-14 2020-07-03 广东美的制冷设备有限公司 换热装置及空调系统
CN212078096U (zh) * 2020-04-23 2020-12-04 广州三人行节能科技有限公司 一种单泵水力模块
CN114688915A (zh) * 2020-12-31 2022-07-01 浙江雪波蓝科技有限公司 水力模块及具有其的热力系统
CN214841173U (zh) * 2021-03-12 2021-11-23 广东积微科技有限公司 一种双四通阀多联机的水力模块
CN215216434U (zh) * 2021-05-21 2021-12-17 广东芬尼克兹节能设备有限公司 集成水路模块
CN113847728A (zh) * 2021-10-29 2021-12-28 美的集团武汉暖通设备有限公司 水力模块及热泵系统

Similar Documents

Publication Publication Date Title
CN104748442A (zh) 一种空气源热泵装置
CN103913316B (zh) 一种水-乙二醇型水源热泵机组性能测试装置
CN206094374U (zh) 一种分体低温变频三联供热泵系统
CN210128528U (zh) 一种热交换装置
WO2023206453A1 (zh) 水力模块及具有其的制冷系统、热力系统
US20070169481A1 (en) Energy picking-up system by using water of river, lake, and sea as low-grade energy source
CN114688915A (zh) 水力模块及具有其的热力系统
CN201850545U (zh) 利用压缩机排气加热不冻液作为热源的冷库地坪防冻系统
CN103925695A (zh) 热泵热水器
CN107388532A (zh) 一种适用于空调系统的可变体积的热水箱
CN209484760U (zh) 一种双冷源热管空调多联机组
CN105509336A (zh) 真空管式太阳能热泵热水系统
CN203478742U (zh) 一种风冷热泵机组双向节流系统
CN110469896A (zh) 一种太阳能空气源双热源热泵系统
CN2816694Y (zh) 即热式空气源热泵热水器
CN216557763U (zh) 空气源热泵两联供机组
CN109028410A (zh) 一种热管空调装置
CN206410359U (zh) 一种太阳能空气能换热系统
CN206222768U (zh) 一种用于三联供热泵系统的除霜设备
CN114688753A (zh) 制冷系统及具有其的热力系统
CN210198163U (zh) 可蓄放热的蓄热器及空调
CN210425678U (zh) 一种储能逐级除霜的空气源热泵
CN210220280U (zh) 一种具有补气增焓功能的单管储液罐制冷及制热系统
CN209325982U (zh) 一种热管空调装置
CN208970705U (zh) 电池热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939301

Country of ref document: EP

Kind code of ref document: A1