WO2023206045A1 - 通信方法和设备 - Google Patents

通信方法和设备 Download PDF

Info

Publication number
WO2023206045A1
WO2023206045A1 PCT/CN2022/089124 CN2022089124W WO2023206045A1 WO 2023206045 A1 WO2023206045 A1 WO 2023206045A1 CN 2022089124 W CN2022089124 W CN 2022089124W WO 2023206045 A1 WO2023206045 A1 WO 2023206045A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
emlsr
link
sta
mode
Prior art date
Application number
PCT/CN2022/089124
Other languages
English (en)
French (fr)
Inventor
全映桥
黄磊
卢刘明
侯蓉晖
罗朝明
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/089124 priority Critical patent/WO2023206045A1/zh
Publication of WO2023206045A1 publication Critical patent/WO2023206045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and device.
  • Enhanced multi-link operation allows the device to have the ability to switch spatial streams on different links.
  • the link communication capacity can be increased through spatial multiplexing by using the available space on other links. This is achieved by switching streams to designated links to achieve multi-spatial stream transmission on designated links, thereby increasing the communication capacity of a single link.
  • this enhanced multi-link operation is not currently effectively used for direct connections. Transmitting.
  • Embodiments of the present application provide a communication method and device that can effectively use enhanced multi-link operation in direct connection transmission.
  • An embodiment of the present application provides a communication method, applied to a first device, the method includes:
  • enhanced multi-link operation is used to perform frame transmission between the first device and the second device;
  • At least one of the first device and the second device is: a device that supports the enhanced multi-link operation or a device that works in the enhanced multi-link operation.
  • An embodiment of the present application provides a communication method applied to a second device.
  • the method includes:
  • the second device and the first device for performing any of the above methods perform mode switching for enhanced multi-link operation after the first capability information is exchanged.
  • An embodiment of the present application provides a communication method, applied to a first device, the method includes:
  • enhanced multi-link operation is used for frame transmission between the first STA affiliated with the first device and the second STA affiliated with the second device;
  • the first STA attached to the first device sends the sixth frame to the second STA attached to the second device in the form of a single link single spatial stream.
  • An embodiment of the present application provides a communication method applied to a second device.
  • the method includes:
  • enhanced multi-link operation is used for frame transmission between the first STA affiliated with the first device and the second STA affiliated with the second device;
  • the second STA attached to the second device receives the sixth frame, and the sixth frame is sent by the first STA attached to the first device in the form of a single link single spatial stream.
  • An embodiment of the present application provides a first device, which includes:
  • the first transmission unit is configured to use enhanced multi-link operation to perform frame transmission between the first device and the second device when establishing direct communication with a second device operating on the same link;
  • At least one of the first device and the second device is: a device that supports the enhanced multi-link operation or a device that works in the enhanced multi-link operation.
  • This embodiment of the present application provides a second device, which includes:
  • the first switching unit is configured to perform mode switching of enhanced multi-link operation after interacting with the first capability information with the first device for performing any of the above devices.
  • An embodiment of the present application provides a first device, which includes:
  • a first communication unit configured to establish a direct communication relationship between the first STA affiliated with the first device and the second STA affiliated with the second device;
  • a sixth transmission unit configured to use enhanced multi-link operation to perform frame transmission between the first STA affiliated with the first device and the second STA affiliated with the second device according to the direct communication relationship;
  • the first STA attached to the first device sends the sixth frame to the second STA attached to the second device in the form of a single link single spatial stream.
  • This embodiment of the present application provides a second device, which includes:
  • the second communication unit is used to establish a direct communication relationship between the first STA affiliated with the first device and the second STA affiliated with the second device;
  • a seventh transmission unit configured to use enhanced multi-link operation to perform frame transmission between the first STA affiliated with the first device and the second STA affiliated with the second device according to the direct communication relationship;
  • the second STA attached to the second device receives the sixth frame, and the sixth frame is sent by the first STA attached to the first device in the form of a single link single spatial stream.
  • An embodiment of the present application provides a chip for implementing the above communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned communication method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above communication method.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions, and the computer program instructions cause the computer to execute the above communication method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above communication method.
  • enhanced multi-link operation is used to perform frame transmission between the first device and the second device, so that Effectively utilize enhanced multi-link operation for direct-connect transmission.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the interaction flow of the triggered TXOP sharing mechanism according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of data transmission between concurrent dual-radio STA and AP according to an embodiment of the present application.
  • Figure 4 is another schematic diagram of data transmission between concurrent dual-radio STA and AP according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of data transmission under enhanced multi-link single radio operation according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a basic multi-link element structure according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the EML capability subfield structure according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the EML Control field structure according to an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a communication method 900 according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of a communication method 1000 according to an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a communication method 1100 according to an embodiment of the present application.
  • Figure 12 is a schematic flowchart of a communication method 1200 according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of an interaction scenario using two links as an example according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of another interaction scenario using two links as an example according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of a P2P variant multi-link element of the enhanced multi-link capability subfield structure according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of enhanced multi-link capability information exchange according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of another enhanced multi-link capability information exchange according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of yet another enhanced multi-link capability information exchange according to an embodiment of the present application.
  • Figure 19 is a schematic diagram of yet another enhanced multi-link capability information exchange according to an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a control field of a multi-link element according to an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a P2P variant multi-link element according to an embodiment of the present application.
  • Figure 22 is an interactive schematic diagram of an EML operation mode announcement according to an embodiment of the present application.
  • Figure 23 is an interactive schematic diagram of another EML operation mode announcement according to an embodiment of the present application.
  • Figure 24 is a schematic structural diagram of the MLD EML OM Info list according to an embodiment of the present application.
  • FIGS 25-27 are schematic structural diagrams of MLD Info according to an embodiment of the present application.
  • Figure 28 is an interactive schematic diagram of yet another EML operation mode announcement according to an embodiment of the present application.
  • Figure 29 is an interactive schematic diagram of yet another EML operation mode announcement according to an embodiment of the present application.
  • Figure 30 is a schematic structural diagram of PeerMLD EML OM Info list according to an embodiment of the present application.
  • Figure 31 is an interactive schematic diagram of yet another EML operation mode announcement according to an embodiment of the present application.
  • Figure 32 is an interactive schematic diagram of yet another EML operation mode announcement according to an embodiment of the present application.
  • Figure 33 is an interactive schematic diagram of EML link switching according to an embodiment of the present application.
  • Figure 34 is a schematic structural diagram of a trigger frame according to an embodiment of the present application.
  • Figure 35 is a schematic structural diagram of the EHT variant-trigger frame public information field according to an embodiment of the present application.
  • Figure 36 is a schematic structural diagram of the HE MU-RTS TXS user information field according to an embodiment of the present application.
  • Figure 37 is a schematic structural diagram of the EHT MU-RTS TXS user information field according to an embodiment of the present application.
  • Figure 38 is a schematic diagram of using Allocation Duration in User Info to identify the P2P receiver according to an embodiment of the present application.
  • Figure 39 is a schematic diagram of the Common Info field of the trigger frame of the newly defined EHT variant according to an embodiment of the present application.
  • Figure 40 is a schematic diagram of using a newly defined field in User Info to identify a P2P receiver according to an embodiment of the present application.
  • Figure 41 is a schematic diagram of allocating multiple TXOPs at one time based on the OPT1 method according to an embodiment of the present application.
  • Figure 42 is a schematic diagram of allocating multiple TXOPs at one time based on the OPT2 method according to an embodiment of the present application.
  • Figure 43 is an interactive schematic diagram of another EML link switching according to an embodiment of the present application.
  • Figure 44 is a schematic structural diagram of the MU-RTS frame Common Info of the EML variant according to an embodiment of the present application.
  • Figure 45 is an interactive schematic diagram of yet another EML link switching according to an embodiment of the present application.
  • Figure 46 is a schematic structural diagram of a first device 4600 according to an embodiment of the present application.
  • Figure 47 is a schematic structural diagram of a second device 4700 according to an embodiment of the present application.
  • Figure 48 is a schematic structural diagram of the first device 4800 according to an embodiment of the present application.
  • Figure 49 is a schematic structural diagram of a second device 4900 according to an embodiment of the present application.
  • Figure 50 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 51 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 52 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • WLAN wireless local area network
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in Figure 1 .
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 that accesses the network through the access point 110.
  • Access Point Access Point
  • STA station
  • AP is also called AP STA, that is, in a certain sense, AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • Communication in the communication system 100 may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA It can refer to the device that communicates with the STA peer.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router).
  • the terminal device or network device has a chip that implements communication functions, such as a WLAN or WiFi chip.
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes. and sensors in smart cities, etc.
  • IoT Internet of Things
  • non-AP STAs may support the 802.11be standard.
  • Non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other current and future 802.11 family wireless LAN (wireless local area networks, WLAN) standards.
  • the AP may be a device supporting the 802.11be standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA can be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device that supports WLAN/WiFi technology, Wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, and wireless equipment in smart grid , wireless equipment in transportation safety, wireless equipment in smart city (smart city) or wireless equipment in smart home (smart home), wireless communication chips/ASIC/SOC/, etc.
  • the frequency bands that WLAN technology can support may include but are not limited to: low frequency bands (such as 2.4GHz, 5GHz, 6GHz) and high frequency bands (such as 45GHz, 60GHz).
  • Figure 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This is not the case in the embodiment of the present application. Make limitations.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Wireless LAN is widely used in enterprises, homes and other scenarios because of its low cost, flexibility and easy expansion.
  • Wireless LAN-related standardization organizations and manufacturers have designed and promoted various peer-to-peer (P2P) communication technologies used in Wi-Fi networks, such as wireless direct (Wi-Fi) Direct and tunnel direct links.
  • P2P peer-to-peer
  • Wi-Fi wireless direct
  • TDLS tunnel direct links
  • Wi-Fi devices can bypass the access point (Access Point, AP) and directly communicate point-to-point, thereby reducing the occupation of wireless resources and reducing channel overhead during the communication process.
  • AP device Compared with station (Station, STA) devices directly competing for transmission opportunities and performing P2P transmission, if the AP device is required to assist the STA to compete for the channel for P2P transmission, since the AP device has a higher probability of succeeding and obtaining channel access rights, it may It can make P2P transmission more timely, and it is also more conducive for AP equipment to manage the wireless media (WM) within its Basic Service Set (BSS). Therefore, a triggered transmission is designed using MU-RTS TXS trigger frame.
  • Opportunity (transmission opportunity, TXOP) sharing mechanism to support P2P transmission assisted by AP.
  • multi-link device For multi-link operation characteristics, multi-link device (Multi-Link Device, MLD) is also defined accordingly.
  • MLD can support multi-band communication and can use different channel resources of the same or different frequency bands for communication at the same time. These different The channel resource is called a link or a wireless medium link.
  • MLD simultaneously uses the 20MHz channel on the 2.4GHz frequency band, the 80MHz channel on the 5GHz frequency band, and the 160MHz channel on the 6GHz frequency band. It can be called this MLD owns (or operates) 3 links.
  • non-AP MLD is allowed to be a single radio multi-link device (Single Radio MLD). Specifically, although Single Radio MLD can work on multiple links, the MLD can only send or receive frames on one link at the same time. Single Radio MLD is allowed to work in the Multi-Link Single Radio (MLSR) operating mode. From the AP MLD's perspective, this non-AP MLD is only active on one link at the same time and is not active on other links at the same time. The road is dormant.
  • devices using enhanced multi-link operation do not need to have the ability to transmit multiple spatial streams on each link they operate. Instead, they can transmit multiple spatial streams through switching operations. After listening to a specific frame, the available space streams on other links are transferred to the designated link through a "switching" operation to realize multi-space stream transmission on the designated link.
  • Enhanced multi-link operation is further divided into Enhanced Multi-Link Single Radio (EMLSR) and Enhanced Multi-Link Multiple Radio (EMLMR).
  • EMLSR operations can be applied to Single Radio MLDs with multiple available spatial streams (including transmit and/or receive chains).
  • Single Radio MLD with EMLSR mode enabled listens on multiple links at the same time. When there is data that needs to be received or sent, the spatial streams used for listening on other links are switched to the designated link. on, receive or send in the form of multiple spatial streams.
  • EMLSR can enable Single Radio MLD to obtain more channel access opportunities, thereby improving its throughput and delay performance.
  • STA1 as the P2P initiator, first notifies the AP that it has P2P transmission requirements. Then, when the AP successfully accesses and obtains TXOP, it can share part of the TXOP with STA1 by sending MU-RTS TXS frames. After STA1 receives the MU-RTS TXS frame, if its own conditions permit, it will feed back CTS to it, and then it can use the allocated time for P2P or uplink transmission.
  • Figure 3 shows the data transmission situation between concurrent dual-radio STA and AP under ideal conditions. Both channel 1 and channel 2 can be used for data transmission. At this time, channel 1 and channel 2 are idle and there is no overlap in data transmission. . As the network becomes busy, as shown in Figure 4, channel 1 and channel 2 are busy, and the data transmission of channel 1 and channel 2 overlaps. This is actually equivalent to single-link operation, that is: STA at the same time Data can only be transmitted on one link.
  • Enhanced Multi-Link Single-Radio (EMLSR) operation is proposed for single radio equipment (which can only send or receive data on one link at the same time).
  • EMLSR Enhanced Multi-Link Single-Radio
  • a single-radio non-AP MLD, or STA configures its 2x2 transmission module as 1x1 on channel 1 and 1x1 on channel 2 to listen on both channels simultaneously.
  • AP MLD Before AP MLD transmits downlink data on the idle channel, it first sends a control frame (such as RTS frame, MU-RTS frame). After receiving it, non-AP MLD replies with a CTS frame and switches on the link where the initial control frame is received. to 2x2 for data reception.
  • a control frame such as RTS frame, MU-RTS frame
  • the non-AP MLD switches from the 1x1 listening mode on each link to the 2x2 transmission mode on a certain link for spatial multiplexing.
  • the antenna of a certain device has the NxN capability.
  • the device has N spatial streams, and switching the 1x1 listening mode of each link to the 2x2 transmission mode on a certain link means switching a spatial stream on one link to another link, so that the other You can use two spatial streams for data reception.
  • non-AP MLD For listening operations of EMLSR operation, non-AP MLD can operate in EMLSR mode on a specific subset of the enabled link set. The links in this subset are called EMLSR links. Non-AP MLD can listen to the EMLSR link by keeping the attached STA working on the EMLSR link awake.
  • the AP attached to the AP MLD initializes frame exchange with the non-AP MLD on one of the EMLSR links and must transmit an initial control frame to the non-AP MLD to enable frame exchange.
  • the initial control frame must be a MU-RTS trigger frame or a BSRP trigger frame.
  • MU-RTS and BSRP trigger frames must be received.
  • the non-AP MLD After receiving the initial control frame of the frame exchange sequence and transmitting an immediate response to that initial control frame, the non-AP MLD MUST be able to send or receive frames on the link on which the initial control frame was received, and MUST not send or receive frames on other EMLSR links.
  • the non-AP MLD shall be able to receive one SIFS interval after the end of the transmission of the response frame to the initial control frame request Physical Layer Protocol Data Unit (PPDU) sent using multiple spatial streams.
  • PPDU Physical Layer Protocol Data Unit
  • the AP MLD should not send frames to the non-AP MLD on other EMLSR links. After the frame exchange sequence ends, the non-AP MLD switches back to listening operation on the enabled link according to certain rules.
  • EML capabilities information is carried in the common information (Common Info) of the Basic Multi-Link Element (Basic Multi-Link Element), as shown in Figure 6.
  • Communication Info the basic Multi-Link Element
  • Basic Multi-Link Element The design of the enhanced multi-link capability subfield is shown in Figure 7 .
  • Frames carrying basic ML elements can be used for EML capability information exchange, such as Beacon frames, Probe Response frames, Association Request frames and Association Response frames. This capability information is generally considered The interaction is performed during association (multi-link Setup).
  • the EMLSR mode is turned off by default. Some mechanism is needed to inform the other party to turn on the EMLSR mode, and the other party needs to confirm the notification.
  • the operating mode is implemented through the EML operating mode notification (OMN) frame. Announcement function.
  • the EML OMN frame includes the structure of the EML Control field, as shown in Figure 8.
  • the AP MLD can choose to use the EML OMN frame with the same field settings to feedback the EML OMN frame sent by the non-AP MLD.
  • the non-AP MLD can immediately perform and complete the switch of the EML operating mode. Otherwise, the EML OMN frame that has not received the feedback from the AP MLD must wait for the transmission timeout (Transition Timeout) negotiated during the capability information exchange. ) time before EML operation mode switching can be performed.
  • Transmission Timeout Transition Timeout
  • enhanced multi-link operation can temporarily switch available spatial streams (including transmit chains and/or receive chains) for frame transmission or reception through spatial multiplexing, thereby increasing the communication of a single link. capacity.
  • this mechanism cannot currently be effectively used in direct connection transmission, such as P2P transmission.
  • the standard lacks a detailed description of the application of this mechanism to P2P transmission.
  • This application combines a triggered transmission opportunity sharing mechanism with enhanced multi-link operation, and proposes a method for effectively applying enhanced multi-link operation to P2P communications.
  • Figure 9 is a schematic flow chart of a communication method 900 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • At least one of the first device and the second device is: a device that supports the enhanced multi-link operation or a device that works in the enhanced multi-link operation.
  • direct communication includes: P2P communication, end-to-end communication, etc.
  • the first device can be non-AP Device1.
  • non-AP Device1 can provide services for non-AP MLD (such as non-AP MLD2) working in EMLSR mode; non-AP Device1 itself can also Use EMLSR mode, that is: non-AP Device1 acts as non-AP MLD1 to conduct P2P interaction with the peer P2P device (such as non-AP MLD2).
  • the second device may be: a peer P2P device that communicates P2P with the first device (such as non-AP MLD2).
  • enhanced multi-link operation is used to perform frame transmission between the first device and the second device, so that Effectively use the enhanced multi-link operation in direct connection transmission (such as P2P transmission).
  • the method further includes: the first device applies for a TXOP to a third device; the third device is configured to share the TXOP to the first device and the second device for the direct communication. During the TXOP sharing Frame transmission between the first device and the second device is uniformly scheduled within time.
  • the third device can be an AP MLD.
  • the first device applies to the AP MLD for TXOP.
  • the AP MLD can share the TXOP, use the TXOP shared time for P2P transmission, and schedule them uniformly. P2P transmission within BSS.
  • the use of enhanced multi-link operation to perform frame transmission between the first device and the second device includes: when the enhanced multi-link operation is an EMLSR operation, the first device performs frame transmission on the first device.
  • Single-link multi-spatial stream frames are exchanged with the second device on one of the multiple links provided by the second device.
  • the multiple links include: multiple EMLSR links.
  • the multiple links when applied to the EMLMR scenario, may also include: multiple EMLMR links.
  • the first device is used to provide services for the second device working in the EMLSR mode; the second device is used to support the EMLSR operation and work in the EMLSR mode.
  • At least one of the first device and the second device can use the EMLSR mode.
  • the first device can only provide service capabilities for the peer end, and the second device can only use the EMLSR mode.
  • the first device can be non-AP Device1, and non-AP Device1 can only provide services for non-AP MLD (such as non-AP MLD2) working in EMLSR mode;
  • the second device can be: P2P with the first device The peer P2P device for communication (such as non-AP MLD2), only non-AP MLD2 works in EMLSR mode.
  • the first device is used to provide services for the second device working in the EMLSR mode, and/or support the EMLSR operation and work in the EMLSR mode; the second device is used to provide services for the second device working in the EMLSR mode.
  • the first device in the EMLSR mode provides services and/or supports the EMLSR operation and works in the EMLSR mode.
  • either of the first device and the second device can use the EMLSR mode, and both can provide service capabilities for the peer device.
  • the first device can be non-AP Device1.
  • the non-AP Device1 can provide services for non-AP MLD (such as non-AP MLD2) working in EMLSR mode.
  • Non-AP Device1 itself can also use EMLSR mode, that is : non-AP Device1, as non-AP MLD1, conducts P2P interaction with the peer P2P device (such as non-AP MLD2).
  • the second device can be: a peer P2P device (such as non-AP MLD2) that communicates with the first device.
  • the non-AP MLD2 itself can use the EMLSR mode, or it can be a peer P2P device (such as non-AP MLD2).
  • -AP MLD1) provides services.
  • the method further includes: interacting with first capability information when the first device and the second device establish the direct communication, wherein the first capability is: supporting EMLSR operations and being able to work on The ability of EMLSR mode equipment to provide services or the ability to work in EMLSR mode.
  • the EMLSR mode such as switching from the default off state of the EMLSR mode to the on state, or switching from the on state to the off state
  • switching of the EMLSR mode can be performed only after the first capability information is exchanged, and the EMLSR Switching of the link (switching from the listening operation state to the single-link multi-space stream frame exchange operation state).
  • the first capability information is carried in a multi-link element.
  • the first capability information may be EML capability information, and the EML capability information may be carried in a multi-link element when establishing a P2P relationship. In other words, when establishing a P2P relationship, the interaction of the EML capability information may be included.
  • the multi-link element includes at least one of the following methods:
  • Method 1 When the multi-link element is a basic multi-link element, the first capability information is carried through the common information field in the basic multi-link element; wherein the subfields of the first capability information include: The first subfield used to indicate EMLSR mode, and the second subfield used to indicate support for EMLSR operation in the direct communication; for example, in the subfield of the first capability information (such as EML capability information), the first The subfield is the "EMLSR Support” subfield, and the reserved second subfield is the "P2P Support” subfield.
  • Method 2 When the multi-link element is a P2P variant multi-link element, the first capability information is carried through the public information field in the P2P variant multi-link element; wherein, the P2P variant multi-link element
  • the link element also includes: a multi-link control field carrying a third subfield, the third subfield is used to indicate the type of the multi-link element, for example, the subfield of the first capability information (such as EML capability information) , the third subfield is the "Type" subfield.
  • the first capability information is EML capability information as an example.
  • the interaction of the EML capability information at least includes between non-AP MLD and AP MLD, between non-AP MLD and non-AP MLD, and between non-AP MLD and Various hardware entity interaction scenarios such as EHT non-AP STAs.
  • the first device (such as non-AP MLD1) sends the first frame (such as association request frame) to the third device (such as AP MLD); the first frame carries the first capability information (such as EML capability information) subfield, so that the third device knows that the first device supports EMLSR operation and can provide services for the second device operating in EMLSR mode.
  • the first frame such as association request frame
  • the third device such as AP MLD
  • the first frame carries the first capability information (such as EML capability information) subfield, so that the third device knows that the first device supports EMLSR operation and can provide services for the second device operating in EMLSR mode.
  • the first device (such as non-AP MLD1) sends a first frame (such as an association request frame) to the second device (such as non-AP MLD2), carrying the first capability information in the first frame (such as EML capability information) subfield, so that the second device knows that the first device supports EMLSR operation and can provide services for the second device operating in EMLSR mode.
  • a first frame such as an association request frame
  • the second device such as non-AP MLD2
  • the first capability information in the first frame such as EML capability information subfield
  • the first device receives the first response frame (such as association response frame) fed back by the second device (such as non-AP MLD2), and carries the first response frame in the first response frame.
  • a subfield of capability information (such as EML capability information).
  • the first device provides services for at least one device operating in the EMLSR mode, and/or operates in the EMLSR mode after announcing that the EMLSR mode is enabled.
  • the first device can be non-AP Device1.
  • non-AP Device1 can provide services for non-AP MLD (such as non-AP MLD2) working in EMLSR mode; non-AP Device1 itself can also Use EMLSR mode, that is: non-AP Device1 acts as non-AP MLD1, and performs P2P interaction with the peer P2P device (such as non-AP MLD2). After turning on EMLSR mode, non-AP Device1 can also work in EMLSR mode.
  • Figure 10 is a schematic flow chart of a communication method 1000 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device and the first device used to perform any of the above embodiments perform mode switching of enhanced multi-link operation after the first capability information is exchanged.
  • the second device is configured to support mode switching of the enhanced multi-link operation, where the enhanced multi-link operation is an EMLSR operation.
  • the second device may perform the mode switching of the enhanced multi-link operation through an operation mode announcement after interacting with the first device with first capability information (such as EML capability information).
  • first capability information such as EML capability information
  • the multiple devices for P2P transmission as long as they can work in the EMLSR mode after turning on the EMLSR mode, they can be used as the second device.
  • the first device is non-AP MLD1
  • the second device is non-AP MLD2.
  • non-AP MLD2 implements EMLSR mode switching through operation mode announcement.
  • non-AP MLD1 when non-AP MLD1 also supports EMLSR mode switching, non-AP MLD1 can also implement EMLSR mode switching through operation mode announcement.
  • the mode switching of enhanced multi-link operation includes: when the second device (such as non-AP MLD2) needs to switch to the EMLSR mode, switching to the first device (non-AP MLD1) Send a second frame (such as an EML OMN frame), carrying a control field in the second frame to announce the switch of the EMLSR mode; wherein the control field includes the EMLSR mode subfield (such as operation mode information).
  • the second device receives the second response frame fed back by the first device, it completes the switching of the EMLSR mode, thereby directly using the existing mechanism to declare EMLSR between the peer devices (non-AP MLD2 and non-AP MLD1). Pattern changes.
  • the mode switching of enhanced multi-link operation includes: when the second device (such as non-AP MLD2) needs to switch the EMLSR mode, sending a message to the third device (such as AP MLD)
  • a second frame (such as an EML OMN frame) carries a control field (such as operation mode information) to announce the switching of the EMLSR mode; wherein the control field includes the EMLSR mode subfield.
  • the second device receives the second response frame fed back by the third device, it completes the switching of the EMLSR mode, so that the AP MLD can actively send messages to the peer device (non-AP MLD2 peer) after receiving the second frame.
  • the device is a non-AP MLD1) announcing a change in EMLSR mode.
  • the third device (such as AP MLD) is configured to use a third frame (such as peer MLD EML operation mode notification frame) to associate with the third device at the first time and support the communication with the second device.
  • a third frame such as peer MLD EML operation mode notification frame
  • Other devices in direct communication announce handover information.
  • the first time is: any time after completing the EMLSR mode switching and before triggering the shared TXOP for the direct communication.
  • the method further includes: when the second device (such as non-AP MLD2) needs to switch the EMLSR mode, sending a fourth frame (such as peer MLD) to the third device (such as AP MLD) EML operation mode request frame), requesting the third device to announce the EML operation mode of other devices that perform direct communication with the second device.
  • the third device is used to use a third frame (such as a peer MLD EML operation mode notification frame) in response to the request to announce to other devices associated with the third device and supporting the direct communication with the second device.
  • Switch information so that AP MLD can passively announce the change of EMLSR mode to the peer device (the peer device of non-AP MLD2 is non-AP MLD1) after receiving the fourth frame.
  • the third frame carries first information; wherein the first information includes: a fourth subfield used to indicate the identity information corresponding to the device with peer-to-peer EML capabilities, and a fourth subfield used to indicate that the device has peer-to-peer EML capabilities.
  • EML-capable devices correspond to the fifth subfield of the EMLSR mode.
  • the third frame may be a Peer MLD EML operation mode notification frame;
  • the first information may be Peer MLD EML OM Info list;
  • the fourth subfield may be an MLD Info subfield (specifically used to indicate a certain MLD identity information);
  • the fifth subfield may be the EML Control field (specifically used to indicate the EML operation mode of the corresponding non-AP MLD in the Peer MLD EML OM Info list).
  • the identity information corresponding to the peer-to-peer EML capable device includes: a MAC address, and/or an AID assigned when associated with the third device.
  • the fourth frame is a frame of a different type than the third frame.
  • the fourth frame is a peer-to-peer MLD EML operation mode request frame
  • the third frame is a peer-to-peer MLD EML operation mode.
  • Announcement frame wherein, the fourth frame carries a field used to indicate that the current frame belongs to a request frame of a device with peer EML capabilities. At this time, the fourth frame is only a peer MLD EML operation mode request frame.
  • the fourth frame may also be a frame of the same type as the third frame.
  • the fourth frame may be used as a peer MLD EML operation mode request frame or as a peer MLD EML operation mode request frame through the indication field.
  • Peer MLD EML operation mode announcement frame Among them, the fourth frame carries a field used to indicate that the current frame belongs to a request frame or a notification frame of a device with peer EML capabilities. At this time, the fourth frame can be used as a peer MLD EML operation mode depending on the indication field.
  • Request frames can also be used as peer MLD EML operating mode advertisement frames.
  • the fourth frame includes: a first value and first information.
  • the first value is used to identify this interaction of EML capability information.
  • the first value can be the value of the Dialog Token field.
  • the value of the Dialog Token field selects "a non-zero value" to Identifies this interaction.
  • the first information includes: a fourth subfield used to indicate the identity information corresponding to the peer-to-peer EML capable device, and a fifth subfield used to indicate the corresponding EMLSR mode of the peer-to-peer EML capable device.
  • the first information may be Peer MLD EML OM Info list; the fourth subfield may be MLD Info subfield (specifically used to indicate the identity information of a certain MLD); the fifth subfield may be the EML Control field (Specifically used to indicate the EML operation mode of the corresponding non-AP MLD in the Peer MLD EML OM Info list).
  • the identity information corresponding to the peer-to-peer EML capable device includes: a MAC address, and/or an AID assigned when associated with the third device.
  • Figure 11 is a schematic flowchart of a communication method 1100 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • S1120 Use enhanced multi-link operation to perform frame transmission between the first STA attached to the first device and the second STA attached to the second device according to the direct communication relationship.
  • the first STA (STA11) attached to the first device (such as non-AP MLD1) transmits data to the second STA (STA11) attached to the second device (such as non-AP MLD2) in the form of a single link single spatial stream.
  • STA21 sends the sixth frame.
  • the first STA attached to the first device (such as non-AP MLD1) and the second STA attached to the second device (such as non-AP MLD2) work on the same link.
  • the first STA attached to the first device may be STA11, and the second STA attached to the second device may be STA21.
  • the STA11 sends the sixth frame (such as MU-RTS) to STA21 in the form of a single link single spatial stream.
  • the first device such as non-AP MLD1
  • the second device such as non-AP MLD2
  • the first STA attached to the first device such as STA11
  • the second device attached to the second device are used.
  • Second STA such as STA21
  • third device such as AP MLD
  • the fifth frame can be a trigger frame such as MU-RTS TXS frame
  • the sixth frame can be an initial control frame such as MU-RTS
  • the feedback frame can be CTS as an example Description without going into details.
  • the fifth and sixth frames are both control frames, and the fifth frame, as a trigger frame, is actually a type of control frame.
  • the CTS may be used as the feedback frame of the fifth frame or the feedback frame of the sixth frame.
  • the feedback frame in this application is exemplified by CTS.
  • interactive information such as frame sending and parsing, specifically, is performed by the STA attached to the device (such as STA11 or STA21), while the processing or actions to complete the operation (such as link switching) are performed by the device itself , if at least one of non-AP MLD1 and non-AP MLD2 works in EMLSR mode, non-AP MLD1 or non-AP MLD2 performs link switching.
  • the P2P initiator is the first device and the EMLSR operation scenario for sending the initial control frame is as follows:
  • the method further includes: the first STA affiliated with the first device requests the required TXOP time from the third device; the first STA affiliated with the first device receives the first STA sent by the third device.
  • the triggered TXOXP sharing (Triggered TXOP Sharing) mechanism has two working modes.
  • TXOP sharing mode 1 only allows the non-AP STA that has obtained the TXOP to use the TXOP for uplink transmission, while the TXOP sharing mode 2 Based on Mode 1, non-AP STA is also allowed to use this TXOP to conduct P2P transmission with other non-AP STA peers.
  • the method further includes: both the first STA attached to the first device and the second STA attached to the second device can receive and parse the fifth frame on their respective working EMLSR link sets.
  • the method further includes: while the first STA attached to the first device sends the sixth frame to the second STA attached to the second device, the first device performs EMLSR link switching.
  • the method further includes: within a time period corresponding to the first STA affiliated to the first device receiving and feedbacking the fifth frame, and/or sending a message to the second STA affiliated to the second device.
  • the first device performs EMLSR link switching.
  • the sixth frame carries padding information, and the padding information satisfies at least one of the following conditions:
  • the P2P initiator is the first device and the EMLSR operation scenario of sending an initial control frame for EMLSR link switching is as follows:
  • the method further includes: the first STA attached to the first device requests the required TXOP time and indicates the first identity information from the third device; wherein the first identity information is the second Identity information of a second STA attached to the device.
  • the second STA attached to the second device is associated with the third device and has exchanged each other's EML capability information.
  • the P2P initiator is the first device, and the EMLSR operation scenario using MU-RTS TXS or a variant of MU-RTS to indicate EMLSR link switching is as follows:
  • the method further includes: the first STA affiliated with the first device receives the fifth frame or a variant of the fifth frame sent by the third device, wherein the third device is used to share with TXOP Mode 2 shares the TXOP time with at least one of the first STA attached to the first device and the second STA attached to the second device.
  • the fifth frame or a variation of the fifth frame is used to allocate a TXOP to at least one of the first STA attached to the first device and the second STA attached to the second device.
  • the fifth frame or a variation of the fifth frame includes a User Information List field; the User Information List field is used to request the required TXOP time from the third device.
  • the user information list field includes: a first indication subfield used to indicate the device, a second indication subfield used to indicate the roles of the direct communication parties, and a third indication subfield used to indicate the TXOP time.
  • the first indication subfield may be the AID12 subfield to indicate the AID information of the device that needs to process the frame; the roles of the direct communication parties refer to: whether the current device is a P2P initiator or a P2P responder; the third indication subfield Can be an Allocation Duration subfield to indicate the allocated TXOP duration.
  • the method further includes: determining the variant of the fifth frame based on the values of the first reserved field and the first reserved field subfield in the public information (Common Info).
  • the reserved fields in public information can be: GI and HE/EHT-LTF type/Triggered TXOP Sharing Mode.
  • Triggered TXOP Sharing Mode is set to 2
  • its subfield EML Triggered TXOP The sharing mode subfield is set to 1.
  • the current frame is a variant of the fifth frame, that is, a variant of MU-RTS TXS, such as MU-RTS ETXS.
  • the method further includes: both the first STA attached to the first device and the second STA attached to the second device can receive and parse the fifth frame on their respective working EMLSR link sets.
  • the method further includes: when at least one of the first STA affiliated to the first device and the second STA affiliated to the second device receives the fifth frame or the fifth frame In a variant, at least one of the first device and the second device performs EMLSR link switching.
  • the second device can perform EMLSR link switching; or, the first STA affiliated to the first device also supports EMLSR, that is, when working in EMLSR at the same time, when the first STA attached to the first device receives the fifth frame or a variant of the fifth frame, the first device can also perform EMLSR link switching, and Both the first device and the second device can perform EMLSR link switching.
  • the P2P initiator is the first device, and the AP MLD step-by-step instructions EMLSR link switching and triggered TXOP sharing EMLSR operation scenarios are as follows:
  • the method further includes: the first STA attached to the first device requests the required TXOP time and indicates the first identity information from the third device; wherein the first identity information is the second Identity information of a second STA attached to the device.
  • the second STA attached to the second device is associated with the third device and has exchanged each other's EML capability information.
  • the method further includes: the first STA attached to the first device receives the fifth frame sent by the third device, and the third device is configured to share the TXOP time with the third device in TXOP sharing mode 2. At least one of the first STA attached to the first device and the second STA attached to the second device.
  • the method further includes: when the second STA attached to the second device that receives the sixth frame completes link switching, continue to maintain the single link before the second time is reached.
  • the second time may also be a time specified by a peer device of the second device (such as the first device).
  • the second time is obtained based on the fifth frame time, the fifth frame feedback time, and the short inter-frame interval SIFS sent at the lowest rate.
  • the method further includes: triggering feedback of the fifth frame when the fifth frame is sent to the second STA attached to the second device.
  • the method further includes: performing frame exchange of single-link multiple spatial streams when at least one of the first device and the second device completes EMLSR link switching.
  • Figure 12 is a schematic flowchart of a communication method 1200 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • S1220 Use enhanced multi-link operation to perform frame transmission between the first STA attached to the first device and the second STA attached to the second device according to the direct communication relationship.
  • the second STA attached to the second device receives the sixth frame, and the sixth frame is sent by the first STA attached to the first device in the form of a single link single spatial stream.
  • a direct communication relationship is established between the first STA (STA11) attached to the first device (such as non-AP MLD1) and the second STA (STA21) attached to the second device (such as non-AP MLD2). Then, enhanced multi-link operation can be used for frame transmission between the first STA attached to the first device and the second STA attached to the second device.
  • the first STA attached to the first device (such as non-AP MLD1) and the second STA attached to the second device (such as non-AP MLD2) work on the same link.
  • the first STA attached to the first device may be STA11, and the second STA attached to the second device may be STA21.
  • the first device such as non-AP MLD1
  • the second device such as non-AP MLD2
  • the first STA attached to the first device such as STA11
  • the second device attached to the second device are used.
  • Second STA such as STA21
  • third device such as AP MLD
  • the fifth frame can be a trigger frame such as MU-RTS TXS frame
  • the sixth frame can be an initial control frame such as MU-RTS
  • the feedback frame can be CTS as an example Description without going into details.
  • the fifth and sixth frames are both control frames, and the fifth frame, as a trigger frame, is actually a type of control frame.
  • the CTS may be used as the feedback frame of the fifth frame or the feedback frame of the sixth frame.
  • the feedback frame in this application is exemplified by CTS.
  • interactive information such as frame sending and parsing, specifically, is performed by the STA attached to the device (such as STA11 or STA21), while the processing or actions to complete the operation (such as link switching) are performed by the device itself , if at least one of non-AP MLD1 and non-AP MLD2 works in EMLSR mode, non-AP MLD1 or non-AP MLD2 performs link switching.
  • the method further includes: the second device performs EMLSR link switching.
  • the method further includes: performing frame exchange of single-link multiple spatial streams when the second device completes the EMLSR link switching.
  • the operating mode parameter may be the number of spatial streams, bandwidth, decoding capability, maximum media access control protocol data unit length, maximum aggregate media access control service data unit length, or at least one of the maximum aggregate media access control protocol data unit length index.
  • non-AP MLD (or its affiliated STA) can exchange traffic information instructions with the AP MLD (or its affiliated AP) through the SCS negotiation mechanism to apply for the AP MLD (or its affiliated AP) to share a TXOP
  • TXOP Request transmission opportunity request
  • non-AP Device1 is a device with the ability to provide services for non-AP MLD working in EMLSR mode.
  • non-AP MLD2 is a non-AP MLD that has two working links and can use EMLSR mode to switch available spatial streams to a certain link to achieve single-link multi-spatial stream frame exchange.
  • Non-AP Device1 can exchange single-link multi-space stream frames with non-AP MLD2 working in EMLSR mode on one of the links of non-AP MLD2.
  • non-AP Device1 can also be a non-AP MLD1 that has two working links and can use EMLSR mode to switch the available spatial streams to a certain link to achieve single-link multi-space stream frame exchange.
  • non-AP MLD2 also has the ability to provide services for non-AP MLD working in EMLSR mode.
  • both non-AP MLD1 and non-AP MLD2 have two attached STAs, among which STA11 and STA12 are attached to non-AP MLD1, STA21 and STA22 are attached to non-AP MLD2, and STA11 and STA21 work on the same link. Note It is link 1. STA12 and STA22 work on the same link, which is recorded as link 2.
  • the first aspect provides a method for exchanging information to enhance multi-link operation capabilities between devices that can use Multi-Link Operation (MLO), specifically including the following:
  • At least one device supports EMLSR operation, and the other supports providing services for devices working in EMLSR mode.
  • the device that supports EMLSR operation is a P2P responder device
  • the device that supports providing services for devices in EMLSR mode is a P2P initiator device.
  • the P2P initiator device can also support EMLSR operation and work in EMLSR mode
  • the P2P responder device can also support providing services for devices in EMLSR mode. It should be pointed out here that if the P2P initiator device supports EMLSR operation and works in EMLSR mode, the P2P responder device must also support providing services to devices in EMLSR mode.
  • different operating mode parameters can be used at different stages of communication, such as switching available space streams distributed on different links (including transmitting chain and/or receiving chain) to the same chain channel to send or receive frames.
  • the device working in EMLSR mode can be instructed in some way to switch available space streams and reserve corresponding switching time.
  • the new enhanced multi-link capability subfield is used.
  • One reserved bit in the existing enhanced multi-link capability subfield is used to indicate whether to support the use of EMLSR in P2P transmission, called "P2P Support” " subfield, as shown in bold underline in Figure 15.
  • the P2P Support bit in the enhanced multi-link capability subfield sent by AP MLD is still reserved and has no meaning.
  • setting P2P Support to 1 means that it has the ability to provide services for devices working in EMLSR mode.
  • Setting P2P Support to 0 means that it does not It has the ability to provide services for devices working in EMLSR mode.
  • the description of each subfield is shown in Table 1. The bold underline in Table 1 shows the corresponding description of P2P Support.
  • the Non-AP MLD contains the enhanced multi-link capability (EML Capabilities) subfield in the association request frame (Association Request) sent to its associated AP MLD.
  • EMLSR Support is set to 1
  • P2P Support is set to 1.
  • the AP MLD learns that the non-AP MLD supports EMLSR operations and supports providing services for devices working in EMLSR mode. Then the AP MLD sends an Association Response frame (Association Response) to the non-AP MLD, which contains the EML Capabilities subfield and sets the EMLSR Support subfield to 1.
  • Association Response Association Response
  • non-AP MLD2 can declare to enable and use EMLSR mode.
  • the non-AP MLD can use the EML operation mode notification (OMN) frame to announce the opening of the EMLSR mode to the AP MLD, and then use the EMLSR operation for frame interaction.
  • OMM EML operation mode notification
  • Non-AP MLD1 when Non-AP MLD1 establishes a P2P relationship with non-AP MLD2, it includes the interaction of enhanced multi-link capability information, such as , when established through TDLS, non-AP MLD1 attaches some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element) in the sent TDLS Setup Request frame, which contains the EML Capabilities sub- field and set P2P Support to 1.
  • multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • Non-AP MLD2 uses TDLS Setup Response to respond, it is accompanied by some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element), with an EML Capabilities subfield, and EMLSR Support is set to 1.
  • multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • non-AP MLD2 can declare to enable and use EMLSR mode.
  • Non-AP MLD1 when Establishes a P2P relationship with non-AP MLD2, it includes the interaction of enhanced multi-link capability information, such as , when established through TDLS, non-AP MLD1 attaches some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element) in the sent TDLS Setup Request frame, which contains the EML Capabilities sub- fields, and set EMLSR Support and P2P Support to 1.
  • multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • Non-AP MLD2 uses TDLS Setup Response to respond, it is accompanied by some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element), with an EML Capabilities subfield, and EMLSR Support is set to 1 and P2P Support is set to 1.
  • multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • both devices can declare themselves open and enter EMLSR mode.
  • non-AP MLD1 attaches some kind of multi-link element (such as basic multi-link element, or P2P variant multi-link element) in the sent TDLS Setup Request frame. , with the EML Capabilities subfield and EMLSR Support set to 1.
  • an EHT non-AP STA responds using a TDLS Setup Response, it is accompanied by some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element) with an EML Capabilities subfield and the P2P Support is set to 1.
  • some kind of multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • the non-AP MLD can be declared enabled and use EMLSR mode.
  • non-AP MLD when non-AP MLD establishes a P2P relationship with EHT non-AP STA on a certain link, it includes enhanced multi-link Interaction of link capability information.
  • non-AP MLD1 attaches some kind of multi-link element (such as basic multi-link element, or P2P variant multi-link element) in the sent TDLS Setup Request frame. , with the EML Capabilities subfield and EMLSR Support set to 1.
  • an EHT non-AP STA responds using a TDLS Setup Response, it is accompanied by some kind of multi-link element (such as a basic multi-link element, or a P2P variant multi-link element) with an EML Capabilities subfield and the P2P Support is set to 0 or does not come with a multi-link element.
  • some kind of multi-link element such as a basic multi-link element, or a P2P variant multi-link element
  • Non-AP MLD must not use EMLSR mode.
  • the public information field of the multi-link element of the P2P variant should include the EML capability subfield.
  • the structure of the P2P variant multi-link element is shown in Figure 21.
  • the Type subfield is shown in bold and underlined in Figure 21.
  • the second aspect provides an EML operation mode declaration method, which specifically includes the following:
  • Announcement method 1 Peer devices directly use the existing mechanism (sending EML OMN frames and receiving the same EML OMN frames) to announce EMLSR mode changes.
  • a certain device When a certain device intends to switch the EML operating mode (such as turning off the EMLSR mode), it directly sends an EML OMN frame to all peer devices in a P2P manner, and sets the frame accordingly.
  • the peer device receives the EML OMN After the frame, EML OMN is sent to the peer device for feedback in a P2P manner.
  • Announcement method 2 The AP actively announces the EMLSR mode change to the peer device.
  • the peer MLD EML operation mode notification frame can be a newly designed EHT Action frame, which is only sent in unicast mode.
  • the structure of the peer MLD EML operation mode notification frame is shown in Table 3.
  • Peer MLD EML OM The Info list field is shown in bold and underlined in Table 3.
  • the Category and EHT Action fields are used to indicate that it belongs to the EHT Action frame and is the designed peer MLD EML operation mode notification frame.
  • the Peer MLD EML OM Info list structure is shown in Figure 24, where Count is the number of EML operation mode information carried, represented by the MLD EML OM Info subfield.
  • the MLD EML OM Info field contains the MLD Info subfield and the EML Control subfield.
  • the MLD Info subfield is used to indicate the identity information of a certain MLD, such as the MAC address of the MLD and/or the AID assigned when associated with the AP MLD, and the possible structures are shown in Figure 25, Figure 26, and Figure 27.
  • the EML Control field is used to indicate the EML operation mode of the corresponding non-AP MLD in the Peer MLD EML OM Info list.
  • the structure is shown in Figure 8.
  • the necessary conditions for a certain MLD's EML operation mode information to be attached to this frame include: 1. There is a P2P service requirement between the MLD and the receiving MLD of the frame, and the AP MLD understands this situation; 2. The MLD MLD has performed EMLSR operating mode switching.
  • the MLD can be used as an expected receiver in the shared TXOP.
  • the operation mode information may be carried as described below. interaction process.
  • non-AP MLD2 and non-AP MLD3 send EML OMN frames to AP MLD (such as link 1 in multiple links) respectively, setting the EMLSR Mode subfield to 1 to announce that EMLSR has been entered. mode, the AP MLD immediately feeds back the same EML OMN frame. After receiving the feedback frame, non-AP MLD 2 and 3 can complete the switch of the corresponding operating mode, turn on the EMLSR mode and exit the energy-saving mode to enter the active state. Afterwards, the AP uses the designed Peer MLD EML OMN frame to notify non-AP MLD1 of switching the EML operating mode of the peer device at a certain time.
  • non-AP MLD2 and non-AP MLD3 send EML OMN frames to AP MLD (such as link 1 in multiple links) respectively, and set the EMLSR Mode subfield to 1 to declare that EMLSR has been entered. mode, set the EMLSR Mode subfield to 0 to declare that it has entered the EMLSR mode.
  • the AP MLD will then feedback the same EML OMN frame.
  • non-AP MLD 2 and 3 can complete the switching of the corresponding operation mode and enter and Exit EMLSR mode.
  • the AP uses the designed Peer MLD EML OMN frame to notify non-AP MLD1 of switching the EML operating mode of the peer device at a certain time.
  • Announcement method 3 The AP passively announces the EMLSR mode change to the peer device.
  • any device can use the peer MLD EML operation mode request frame to apply to the AP MLD to inform the EML operation mode of other devices.
  • the AP MLD uses the newly designed peer MLD EML operation mode notification frame to notify other devices Announce the handover information.
  • the peer MLD EML operation mode request frame and the peer MLD EML operation mode notification frame are newly designed frames, and there are two implementation methods:
  • the peer MLD EML operation mode request frame is a newly designed EHT Action frame, which is only sent in unicast mode.
  • the structure of the peer MLD EML operation mode request frame is shown in Table 4. Dialog Token and Peer MLD EML OM Info list field, as shown in bold underline in Table 4.
  • the Category and EHT Action fields are used to indicate that it belongs to the EHT Action frame and is the designed peer MLD EML operation mode request frame.
  • the Dialog Token field is a non-zero value selected by the non-AP MLD that sends the request to identify this interaction.
  • Peer MLD EML OM Info list structure is shown in Figure 30, where Count is the number of MLD Info subfields carried, and the MLD corresponding to the carried MLD Info subfield represents a request to the AP MLD to declare EML Operational mode of the peer non-AP MLD.
  • Each MLD Info subfield is used to indicate the identity information of a certain MLD, such as the MAC address of the MLD and/or the AID assigned when associated with the AP MLD, and the possible structures are shown in Figure 25, Figure 26, and Figure 27.
  • the peer MLD EML operation mode notification frame is a newly designed EHT Action frame, which is only sent in unicast mode.
  • the structure of the peer MLD EML operation mode notification frame is shown in Table 5.
  • Dialog Token and Peer MLD EML OM Info list field as shown in bold underline in Table 5.
  • the Category and EHT Action fields are used to indicate that it belongs to the EHT Action frame and is the designed peer MLD EML operation mode notification frame.
  • the value of the Dialog Token field is the same as the value of the Dialog Token field in the peer MLD EML operation mode request frame corresponding to the peer MLD EML operation mode announcement. It should be pointed out that when the value of Dialog Token is 0, it means that the peer MLD EML operation mode announcement is sent independently by the AP MLD without a request from the non-AP MLD.
  • Peer MLD EML OM Info list structure is shown in Figure 24, where Count is the number of MLD EML OM Info subfields carried.
  • Each EML OM Info contains an MLD Info subfield and an EML Control subfield.
  • the MLD Info subfield is used to indicate the identity information of a certain MLD, such as the MAC address of the MLD and/or the AID assigned when associated with the AP MLD, and Possible structures are shown in Figure 25, Figure 26, and Figure 27.
  • the EML Control field can be used to indicate the EML operation mode of the corresponding non-AP MLD in the Peer MLD EML OM Info list.
  • the peer MLD EML operation mode request frame and the peer MLD EML operation mode notification frame are a newly designed EHT Action frame, which is only sent in unicast mode.
  • the structure of the peer MLD EML operation mode notification frame is shown in Table 6. Dialog Token and Peer MLD EML OM Info list fields, as shown in bold underline in Table 6.
  • the Category and EHT Action fields are used to indicate that it belongs to the EHT Action frame and is the designed peer MLD EML operation mode request/announcement frame.
  • the frame is a peer MLD EML operation mode request frame, which is used to request the AP MLD for the EML operation mode of one or more non-AP MLDs contained in the frame.
  • the Dialog Token field is a non-zero value selected by the non-AP MLD that sends the frame to identify the request; when the frame is sent from the AP MLD to the non-AP MLD, the frame is a peer MLD
  • the EML operation mode announcement frame is used to announce the EML operation mode of one or more non-AP MLDs to non-AP MLD.
  • the value of the Dialog Token field is the peer MLD EML operation mode request corresponding to the peer MLD EML operation mode announcement.
  • the value of the Dialog Token field in the frame is the same. It should be pointed out that when the value of Dialog Token is 0, it means that the peer MLD EML operation mode announcement is sent independently by the AP MLD without a request from the non-AP MLD.
  • Each EML OM Info contains an MLD Info subfield and an EML Control subfield.
  • the MLD Info subfield is used to indicate the identity information of a certain MLD, such as the MAC address of the MLD and/or the AID assigned when associated with the AP MLD, and Possible structures are shown in Figure 25, Figure 26, and Figure 27.
  • the EML Control field When the frame is a peer MLD EML operation mode request frame sent by a non-AP device, the EML Control field has no actual meaning and can be absent or set to a reserved value.
  • the frame When the frame is a peer MLD sent by the AP device
  • the EML Control field is used to indicate the EML operation mode of the corresponding non-AP MLD in the Peer MLD EML OM Info list. The following describes the possible interaction process of requesting frames using this operating mode.
  • non-AP MLD2 and non-AP MLD3 send EML OMN frames to AP MLD (such as link 1 in multiple links) respectively, and set the EMLSR Mode subfield to 1 to announce that EMLSR has been entered. mode, set the EMLSR Mode subfield to 0 to declare that it has entered the EMLSR mode.
  • the AP MLD will then feedback the same EML OMN frame. After receiving the feedback frame, non-AP MLD 2 and 3 can complete the switching of the corresponding operation mode, turn on and Turn off EMLSR mode, and exit and enter energy-saving mode accordingly.
  • Non-AP MLD1 uses the designed Peer MLD EML OM Request frame to request the EML operation mode of non-AP MLD2 and 3 from AP MLD at a certain time. After receiving the request, AP MLD uses the designed Peer MLD EML OMN frame to -AP MLD1 announces the EML operation mode switch of the peer device.
  • non-AP MLD2 and non-AP MLD3 send EML OMN frames to AP MLD (such as link 1 in multiple links) respectively, setting the EMLSR Mode subfield to 1 to announce that EMLSR has been entered. mode, set the EMLSR Mode subfield to 0 to declare that it has entered the EMLSR mode.
  • the AP MLD will then feedback the same EML OMN frame.
  • non-AP MLD 2 and 3 can complete the switching of the corresponding operation mode, turn on and Turn off EMLSR mode, and exit and enter energy-saving mode accordingly.
  • AP MLD directly uses the designed Peer MLD EML OMN frame at a certain time to declare the EML operating mode switch of the peer device to non-AP MLD1.
  • the Dialog Token field is set to 0.
  • the interactive process used by EMLSR operations in P2P transmission is designed, specifically including the following:
  • TXOP Request the P2P initiating non-AP device has already conducted the above-mentioned interaction process called "TXOP Request" with the AP.
  • the AP has learned from the non-AP device that it has a need for P2P transmission, and has obtained the responder (or receiver) information of its P2P transmission, which will not be described in detail here.
  • Step 1 Exchange EML capability information and EML operation mode announcement between peer non-AP MLDs;
  • devices using this solution can interact with EML capability information and declare EML operation modes through various examples including but not limited to the above-mentioned first and second aspects of the embodiments of this application.
  • TDLS Discovery Response frame TDLS Setup Request Action frame
  • TDLS Setup Response The Action frame carries a multi-link element containing an EML capability information field (such as a basic multi-link element and the above-mentioned P2P variant multi-link element).
  • Step 2 AP MLD shares the TXOP on a certain link (such as link 1) through the triggered TXOP sharing mechanism of Mode 2 to the affiliated STA (such as STA11) of the P2P initiator non-AP MLD;
  • non-AP MLD that needs to work in EMLSR mode can receive and parse MU-RTS TXS frames on the set of EMLSR links it works on. Otherwise, if the P2P initiator non-AP MLD also works in EMLSR mode, the EMLSR switching of the P2P initiator non-AP MLD needs to be triggered through the existing mechanism before the MU-RTS TXS frame is sent.
  • Step 3 EMLSR link switching interaction
  • the affiliated STA (such as STA11) of the P2P initiator non-AP MLD uses a single spatial stream on the link after obtaining the TXOP from the AP through the triggered TXOP sharing mechanism (after responding to the CTS to the AP).
  • EMLSR initial control frame such as MU-RTS
  • the P2P initiator non-AP MLD when sending the initial control frame, the P2P initiator non-AP MLD (non-AP MLD1) performs EMLSR link switching at the same time, and the P2P responder non-AP MLD (non-AP MLD2) switches according to the existing mechanism.
  • the filling time length of the initial control frame needs to ensure that the EMLSR link switching of both parties can be completed.
  • a natural method is to select the filling time to a larger value of the capability information announced by the two parties, but considering that in actual implementation, the P2P initiator EMLSR link switching can be enabled earlier, and taking into account the universality of the mechanism, only meeting the switching delay requirements of the P2P responder non-AP MLD can be considered here.
  • the P2P initiator non-AP MLD can receive and feedback the MU-RTS TXS sent by the AP MLD within the time period corresponding to and/or within the time period of sending the initial control frame to the P2P responder device and receiving feedback. Perform EMLSR link switching.
  • the P2P initiator non-AP MLD needs to ensure that the affiliated STA of the P2P responder non-AP MLD has the ability to immediately start multi-space stream transmission after the P2P responder non-AP MLD responds to the initial control frame, that is, it is in the EMLSR single-link multi-space stream frame exchange operation mode. .
  • Step 4 Frame exchange.
  • the two parties can exchange single-link multi-space stream frames. .
  • the P2P initiator non-AP MLD shall not proceed. Subsequent data transfer.
  • the timing of the Non-AP MLD ending the link merge state and switching back to the listening operation state follows the existing mechanism specified.
  • the AP MLD considers the corresponding time after the end of the assigned TXOP and the time indicated by the corresponding EMLSR Transition Delay
  • the non-AP MLD ends the link merge state and returns to listening operating mode.
  • Implementation method 2 In the scenario where MU-RTS TXS or a variant of MU-RTS is used to indicate handover, it should be pointed out that in the TXOP Request process, the P2P initiator non-AP MLD not only indicates its required TXOP time , also indicates the address information of the target receiver for P2P communication, and the target receiver is associated with the AP MLD and has exchanged EML capability information. EML capability information exchange and EML operation mode declaration between devices are not required.
  • Step 1 AP triggered TXOP sharing mechanism
  • the AP MLD performs channel access on a certain link (such as link 1). After obtaining the TXOP, it sends a MU-RTS TXS frame or a variant frame of MU-RTS with a TXOP sharing mode subfield of 2.
  • the TXOP is shared with the affiliated STA (such as STA11) of the P2P initiator non-AP MLD, and the MU-RTS TXS frame is also sent to the P2P responder non-AP MLD indicated by the P2P initiator non-AP MLD on the link.
  • the attached STA (such as STA21) that works on it.
  • MU-RTS TXS is implemented by setting the GI and HE/EHT-LTF type/Triggered TXOP Sharing Mode subfield of the public information field in the MU-RTS frame, as shown in Figure 34 and Figure 35.
  • the previous MU- This field of the RTS frame is a reserved value. When the reserved value is set to 0, it means that it is not a MU-RTS TXS frame.
  • the AID12 subfield is used to indicate the AID information of the device that needs to process the frame
  • the RU allocation and the PS160 subfield in the EHT structure are used to indicate the allocated resource block information
  • the Allocation Duration field is used to indicate the allocated TXOP duration. In units of 16 microseconds.
  • RA can be set as a broadcast address, and the user information of both the P2P initiator and the P2P responder can be carried in the user information list.
  • the P2P initiator still uses the existing mechanism. The difference is that the Allocation Duration of the P2P responder Field is set to 0 to indicate that it is a P2P responder (it has no available TXOP assigned to it). And specify that the devices on both sides respond to CTS in different RUs (different 20MHz sub-channels).
  • the frame is filled according to the EML capability information exchanged during association, so that the non-AP MLD (non-AP MLD1 and non-AP MLD2) that receives the frame has enough time to switch.
  • An example of Opt1 is shown in Figure 38:
  • Option 2 (Opt2) can also be used, which is implemented through the new MU-RTS variant.
  • the public information field in the MU-RTS frame is used as a reserved LDPC extra symbol segment field.
  • a 1-bit reservation is used, starting from B27 of the public information field and ending with B27)
  • the EML Triggered TXOP sharing mode subfield is shown in bold underline in Figure 39.
  • this field is still interpreted as LDPC extra symbol segment. Only in MU-RTS type Trigger frames, this field is interpreted as EML Triggered TXOP sharing mode. You only need to set the Triggered TXOP sharing mode to 2 and the EML Triggered TXOP sharing mode subfield to 1 when using it, which means that the MU-RTS is a special MU-RTS TXS used in this implementation method, called MU-RTS ETXS .
  • MU-RTS ETXS also has the following functions: triggering the receiving device of this frame to perform EMLSR link switching, and sharing TXOP for P2P initiator for P2P transmission.
  • the User Info field of MU-RTS ETXS has the same format as the proposed User Info field of MU-RTS TXS, as shown in Figure 36 and Figure 37. The difference is that the User Info field of MU-RTS ETXS can indicate in some way that the device corresponding to the User Info is the recipient device of the allocated TXOP.
  • the Allocation Duration For example, using the above-mentioned Opt1 method, you can set the Allocation Duration to 0 to implement the above function; for another example, using the above-mentioned Opt2 method, you can use a certain bit in the reserved field to identify that the device corresponding to the User Info field is allocated
  • the owner (Holder) or responder (Responder) of the TXOP where the owner of the TXOP is the P2P initiator of the P2P transmission, and the responder of the TXOP is the expected recipient of the TXOP transmission, which is used in User Info
  • Allocation Duration 0.
  • a device that is indicated as a TXOP Responder should not return to listening mode immediately after completing the EMLSR switch, but must remain in this state for a period of time to receive P2P data transmitted in multi-space streams.
  • a device that is indicated as a TXOP Responder should not return to listening mode immediately after completing the EMLSR switch, but must remain in this state for a period of time to receive P2P data transmitted in multi-space streams.
  • a device that is indicated as a TXOP Responder should not return to listening mode immediately after completing the EMLSR switch, but must remain in this state for a period of time to receive P2P data transmitted in multi-space streams.
  • EMLSR mode EMLSR mode
  • AP MLD to perform single-link multi-space stream frame exchange, and determine when the frame exchange is completed and return to the listening mechanism to determine when to return to listening mode.
  • a newly defined field is used in User Info to identify the P2P receiver, as shown in Figure 40, for a reserved bit in the User Info field of the newly defined MU-RTS ETXS , taking the User Info field of the HE variant as an example, as shown in Table 7, the newly defined bit is named P2P Role Indication (P2P Role Indication).
  • P2P Role Indication P2P Role Indication
  • This field is equal to 0, which means that the device corresponding to the User Info is the assigned TXOP
  • the owner (holder); this field is equal to 1, which means that the device corresponding to the User Info is the responder of the allocated TXOP.
  • the User Info field of MU-RTS ETXS will not include devices that do not support this solution.
  • both the above-mentioned Opt1 method and the above-mentioned Opt2 method can support using one frame to allocate TXOP to multiple devices. TXOP allocation depends on the order of User Info.
  • the Opt1 method starts with a User Info whose Allocation Duration is not 0, and ends with the next User Info whose Allocation Duration is not 0. During this period, all User Info whose Allocation Duration is 0 are the potential of the first TXOP.
  • the opening time of the next TXOP is after the end time of the previous TXOP.
  • the Allocation Duration values of the User Info field are t1, 0, t2, 0, 0, t3, 0 respectively, which means that the first TXOP starts from time 0 and ends at time t1.
  • the holder is device 1 and the responder is device 2.
  • the second section of TXOP starts from time t1 and ends at time t1+t2.
  • the holder is device 3 and the responders are devices 4 and 5.
  • the third section of TXOP starts from time t1+t2 and ends at time t1+t2+t3.
  • the holder is device 6.
  • responder is device 7.
  • the corresponding equipment needs to switch the EMLSR mode as needed.
  • the possible expansion of allocating multiple TXOPs at one time based on this Opt1 method is shown in Figure 41.
  • the start and end times of TXOP are interpreted in pairs according to the value of Direction.
  • the possible expansion of allocating multiple TXOPs at one time based on this Opt2 method is shown in Figure 42.
  • Step 2 non-AP MLD performs EMLSR link switching
  • non-AP MLD that needs to work in EMLSR mode can receive and parse MU-RTS TXS frames.
  • the attached STA (STA21) of the P2P responder non-AP MLD receives the MU-RTS TXS or a variant frame of the designed MU-RTS TXS (MU-RTS ETXS) sent by the attached AP of the AP MLD
  • MU-RTS ETXS a variant frame of the designed MU-RTS TXS
  • both parties are non-AP MLDs working in EMLSR mode
  • the affiliated STA11 of the P2P initiator non-AP MLD1 and the affiliated STA21 of the P2P responder non-AP MLD both receive the affiliated STA of the AP MLD.
  • the EMLSR link switch is directly performed, and it is guaranteed to have the ability to perform a single operation on the link (link 1) after the CTS response is sent.
  • Step 3 The attached STA of the non-AP MLD uses the TXOP shared by the AP to perform single-link multi-space stream frame exchange.
  • the timing of the Non-AP MLD ending the link merging state and switching back to the listening operation state follows the existing mechanism specified, that is: the AP MLD after the end of the allocated TXOP and the time indicated by the corresponding EMLSR Transition Delay, The corresponding non-AP MLD is considered to have ended the link merge state and returned to the listening operation mode.
  • Implementation method 3 In the scenario where the AP MLD instructs EMLSR link switching and triggered TXOP sharing step by step, in the TXOP Request process, the P2P initiator non-AP MLD not only indicates its required TXOP time, but also indicates its The address information of the target P2P responder for P2P communication, and the target P2P responder is associated with the AP MLD and has exchanged EML capability information.
  • Step 1 AP MLD instructs both devices to perform EMLSR link switching
  • AP MLD after AP MLD competes on a certain link (such as link 1) and obtains a TXOP, it sends an initial control frame (such as MU-RTS) to the attached STA21 of the P2P responder non-AP MLD working on this link. ) to instruct two peering non-AP MLDs to perform EMLSR link switching.
  • an initial control frame such as MU-RTS
  • the AP jointly sends initial control frames (such as MU-RTS) to instruct two peering non-AP MLDs to perform EMLSR link switching.
  • the initial control frame is sent in the form of broadcast, and the resource information used for feedback is indicated in the corresponding user information, and the padding length can ensure that the P2P initiator and P2P responder non-AP MLD have enough time to complete the EMLSR link switch. (Achievable by existing mechanism)
  • the non-AP MLD that has performed EMLSR link switching and is in the link merging state can refer to the existing mechanism specified, that is: the non-AP MLD uses the EMLSR mode to perform single-link multi-space flow frames with the AP MLD. After the interaction, determine the end of the operation and return to the listening mechanism method to decide when to return to listening mode.
  • Step 2 AP MLD execution triggered TXOP sharing process
  • the existing Triggered TXOP Sharing process can be used
  • the P2P responder non-AP MLD since the MU-RTS TXS is sent to the affiliated STA (STA11) of the P2P initiator non-AP MLD, according to the existing rules, the P2P responder non-AP MLD does not receive it within a period of time after completion. After receiving frames of the specified type, reverse EMLSR link switching is performed, that is, switching from the single-link multi-space stream frame exchange operation mode back to the listening operation mode. Therefore, additional following rules need to be added to prevent this situation:
  • Rule 1 After the device that receives the initial control frame (such as MU-RTS) completes the switch (the timing starts after sending the feedback), it maintains the single-link multi-space flow frame exchange operation state for at least a period of time, and then non-AP MLD is used After the EMLSR mode interacts with the AP MLD for single-link multi-space stream frames, it determines when the operation is completed and returns to the listening mechanism to determine when to return to the listening mode and complete the corresponding switching operation.
  • the initial control frame such as MU-RTS
  • this period of time is the time reserved for the AP to perform the Triggered TXOP Sharing mechanism to the other party's device.
  • this period of time can be: the time of MU-RTS TXS sent at the lowest rate + 2 *SIFS + time of CTS sent at lowest rate.
  • Implementation method 1 Use this rule 1) as the predetermined rule of the EMLSR part, that is, all devices that have established a P2P relationship and are in EMLSR mode will wait for at least the above time after receiving the initial control frame;
  • the reserved Number of HE/EHT-LTF symbols subfield in the MU-RTS frame is used to indicate the minimum retention time required for the EMLSR link switching indicated by the frame. , in units of 32 microseconds.
  • this field is still interpreted as the Number of HE/EHT-LTF symbols subfield. Only when the Trigger frame is MU-RTS, this field is interpreted as the designed EMLSR hold duration subfield. field.
  • Step 3 The attached STA of the non-AP MLD uses the TXOP shared by the AP to perform single-link multi-space stream frame exchange.
  • the timing of the Non-AP MLD ending the link merge state and switching back to the listening operation state follows the existing mechanism specified.
  • the AP MLD considers the corresponding time after the end of the assigned TXOP and the time indicated by the corresponding EMLSR Transition Delay
  • the non-AP MLD ends the link merge state and returns to listening operating mode.
  • implementation method 1 there is no need to modify the existing EMLSR operation and Triggered TXOP Sharing mechanism. Only the exchange of EML capability information between devices and the declaration of EML operation mode are added. Method; In implementation method 2, it is required to indicate the recipient address information when applying, and the device working in EMLSR listening mode can receive and parse MU-RTS TXS frames, and implement EMLSR link switching and Triggered TXOP Sharing at the same time.
  • the signaling overhead is minimal, and there is no need to exchange EML capability information between devices or declare EML operating modes; in implementation method 3, it is also required to indicate the recipient address information when applying, and the mechanism needs to be modified to prevent a device from returning to EMLSR listening in advance. status, there is no need to exchange EML capability information between devices and declare EML operating modes.
  • EMLSR operation can be used for P2P transmission between non-AP MLDs, and the AP can schedule P2P transmission within its BSS.
  • Triggered TXOP sharing is used to realize the advantages of using EMLSR operations for P2P transmission between non-AP MLDs.
  • the introduction of the triggered TXOP sharing mechanism allows AP MLDs to manage and schedule all transmissions within their BSS to prevent invalid transmission. Transmission leads to a waste of channel resources.
  • Non-AP MLDs working in EMLSR mode can perform P2P transmission through the triggered TXOP sharing mechanism.
  • Figure 46 is a schematic structural diagram of a first device 4600 according to an embodiment of the present application.
  • the device can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the first transmission unit 4610 is configured to use enhanced multi-link operation to perform frame transmission between the first device 4600 and the second device when establishing direct communication with a second device working on the same link; wherein, At least one of the first device 4600 and the second device is: a device that supports the enhanced multi-link operation or a device that works in the enhanced multi-link operation.
  • the device further includes: a second transmission unit, configured to apply for a transmission opportunity TXOP to a third device; and the third device is configured to share the TXOP with the first device 4600 and the second device for the direct transmission. Connected communication, uniformly schedule frame transmission between the first device 4600 and the second device within the TXOP shared time.
  • the first transmission unit 4610 is also used for one of the multiple links of the second device when the enhanced multi-link operation is enhanced multi-link single radio EMLSR operation.
  • Single-link multi-spatial stream frames are exchanged with the second device on the link.
  • the multiple links include: multiple EMLSR links.
  • the multiple links may also include: multiple EMLMR links.
  • the first device 4600 is used to provide services for the second device working in the EMLSR mode; the second device is used to support the EMLSR operation and work in the EMLSR mode.
  • the first device 4600 is used to provide services for the second device working in the EMLSR mode, and/or support the EMLSR operation and work in the EMLSR mode; the second device is used to provide services for the second device working in the EMLSR mode.
  • the first device 4600 in the EMLSR mode provides services and/or supports the EMLSR operation and works in the EMLSR mode.
  • the device further includes: an interaction unit, configured to interact with first capability information when establishing the direct communication with the second device, wherein the first capability is: supporting EMLSR operations and being able to work The ability of equipment to provide services in EMLSR mode or the ability to work in EMLSR mode.
  • an interaction unit configured to interact with first capability information when establishing the direct communication with the second device, wherein the first capability is: supporting EMLSR operations and being able to work The ability of equipment to provide services in EMLSR mode or the ability to work in EMLSR mode.
  • the first capability information is carried in a multi-link element.
  • the multi-link element includes at least one of the following methods:
  • Method 1 When the multi-link element is a basic multi-link element, the first capability information is carried through the common information field in the basic multi-link element; wherein the subfields of the first capability information include: A first subfield indicating EMLSR mode, and a second subfield used to indicate support for EMLSR operation in the direct communication;
  • Method 2 When the multi-link element is a P2P variant multi-link element, the first capability information is carried through the public information field in the P2P variant multi-link element; wherein, the P2P variant multi-link element
  • the element also includes: a multi-link control field carrying a third subfield, where the third subfield is used to indicate the type of the multi-link element.
  • the device further includes: a third transmission unit, configured to send a first frame to the third device; carrying a subfield of the first capability information in the first frame, so that the third The device learns that the first device 600 supports EMLSR operation and can provide services for the second device operating in the EMLSR mode.
  • a third transmission unit configured to send a first frame to the third device; carrying a subfield of the first capability information in the first frame, so that the third The device learns that the first device 600 supports EMLSR operation and can provide services for the second device operating in the EMLSR mode.
  • the device further includes: a fourth transmission unit, configured to send a first frame to the second device, carrying a subfield of the first capability information in the first frame, so that the second The device learns that the first device 600 supports EMLSR operation and can provide services for the second device operating in the EMLSR mode.
  • a fourth transmission unit configured to send a first frame to the second device, carrying a subfield of the first capability information in the first frame, so that the second The device learns that the first device 600 supports EMLSR operation and can provide services for the second device operating in the EMLSR mode.
  • the device further includes: a first receiving unit configured to receive a first response frame fed back by the second device, where the first response frame carries a subfield of the first capability information.
  • the first device 4600 provides services for at least one device operating in the EMLSR mode, and/or operates in the EMLSR mode after announcing that the EMLSR mode is enabled.
  • the first device 4600 in the embodiment of the present application can implement the corresponding functions of the first device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the first device 4600 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the first device 4600 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 47 is a schematic structural diagram of a second device 4700 according to an embodiment of the present application.
  • the device can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the first switching unit 4710 is configured to perform mode switching of enhanced multi-link operation after interacting with the first capability information with the first device for performing any of the above devices.
  • the second device 4700 is configured to support mode switching of the enhanced multi-link operation; wherein the enhanced multi-link operation is an EMLSR operation.
  • the switching unit is further configured to: when it is necessary to switch the EMLSR mode, send a second frame to the first device, carrying a control field in the second frame to announce the switching of the EMLSR mode. ; Wherein, the control field includes the EMLSR mode subfield; upon receiving the second response frame fed back by the first device, the switching of the EMLSR mode is completed.
  • the first switching unit 4710 is also configured to: when it is necessary to switch the EMLSR mode, send a second frame to the third device, carrying a control field in the second frame to declare the EMLSR. Mode switching; wherein the control field includes the EMLSR mode subfield; upon receiving the second response frame fed back by the third device, the EMLSR mode switching is completed.
  • the third device is configured to use a third frame at the first time to announce switching information to other devices associated with the third device and supporting the direct communication with the second device 4700 .
  • the first time is: any time after completing the EMLSR mode switching and before triggering the shared TXOP to perform the direct communication.
  • the device further includes: a fifth transmission unit, configured to send a fourth frame to the third device to request the third device to announce a connection with the second device 4700 when the EMLSR mode needs to be switched.
  • the EML operating mode of other devices that perform the direct connection communication wherein the third device is configured to use a third frame in response to the request to the third device associated with the third device and supports the direct connection communication with the second device 4700 Other devices announce handover information.
  • the third frame carries first information; wherein the first information includes: a fourth subfield used to indicate the identity information corresponding to the device with peer-to-peer EML capabilities, and a fourth subfield used to indicate that the device has peer-to-peer EML capabilities.
  • EML-capable devices correspond to the fifth subfield of the EMLSR mode.
  • the identity information corresponding to the peer-to-peer EML capable device includes: a MAC address and/or an AID assigned when associated with the third device.
  • the fourth frame is a frame of a different type than the third frame, or a frame of the same type as the third frame.
  • the fourth frame carries a field used to indicate that the current frame belongs to a request frame of a device with peer EML capabilities.
  • the fourth frame carries a field used to indicate that the current frame belongs to a request frame or a notification frame of a peer-to-peer EML capable device.
  • the fourth frame includes: a first value and first information; wherein the first value is used to identify this interaction of EML capability information; wherein the first information includes: used to indicate that the The fourth subfield corresponding to the identity information of the peer EML capable device, and the fifth subfield used to indicate the corresponding EMLSR mode of the peer EML capable device.
  • the second device 4700 in the embodiment of the present application can implement the corresponding functions of the second device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the second device 4700 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the second device 4700 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 48 is a schematic structural diagram of the first device 4800 according to an embodiment of the present application.
  • the device can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the first communication unit 4810 is used to establish a direct communication relationship between the first STA affiliated with the first device 4800 and the second STA affiliated with the second device;
  • the sixth transmission unit 4820 is used to establish a direct communication relationship between the first STA affiliated with the first device 4800 and the second STA affiliated with the second device.
  • the first STA affiliated to the first device 4800 and the second STA affiliated to the second device adopt enhanced multi-link operation for frame transmission; wherein, the first STA affiliated to the first device 4800 uses single link single space.
  • the sixth frame is sent to the second STA attached to the second device in the form of a stream.
  • the first STA attached to the first device 4800 and the second STA attached to the second device work on the same link.
  • the device further includes: a first requesting unit, configured to request the required TXOP time from the third device; a second receiving unit, configured to receive the fifth frame sent by the third device, wherein , the third device is used to share the TXOP time with the first STA attached to the first device 800 in TXOP sharing mode 2.
  • the device further includes: a third receiving unit, configured to receive the first STA affiliated to the first device 4800 and the second STA affiliated to the second device on the respective working EMLSR link sets. Can receive and parse the fifth frame.
  • the device further includes: a second switching unit configured to send the sixth frame while the first STA affiliated to the first device 4800 sends the sixth frame to the second STA affiliated to the second device.
  • a second switching unit configured to send the sixth frame while the first STA affiliated to the first device 4800 sends the sixth frame to the second STA affiliated to the second device.
  • One device 800 performs EMLSR link switching.
  • the device further includes: a third switching unit, configured to send data to the first STA during the time period corresponding to the first STA attached to the first device 4800 receiving and feeding back the fifth frame.
  • a third switching unit configured to send data to the first STA during the time period corresponding to the first STA attached to the first device 4800 receiving and feeding back the fifth frame.
  • the first device 4800 performs EMLSR link switching.
  • the sixth frame carries padding information, and the padding information satisfies at least one of the following conditions:
  • the device further includes: a second requesting unit, configured to request the required TXOP time and indicate the first identity information from the third device; wherein the first identity information is attached to the second device.
  • the identity information of the second STA, the second STA affiliated to the second device is associated with the third device and exchanges each other's EML capability information.
  • the device further includes: a fourth receiving unit, configured to receive a fifth frame or a variant of the fifth frame sent by the third device, wherein the third device is configured to share mode 2 in TXOP
  • the TXOP time is shared with at least one of the first STA attached to the first device 4800 and the second STA attached to the second device.
  • the fifth frame or a variation of the fifth frame is used to allocate a TXOP to at least one of the first STA affiliated to the first device 4800 and the second STA affiliated to the second device. .
  • the fifth frame or a variation of the fifth frame includes a user information list field; the user information list field is used to request the required TXOP time from the third device.
  • the user information list field includes: a first indication subfield used to indicate the device, a second indication subfield used to indicate the roles of the direct communication parties, and a third indication subfield used to indicate the TXOP time. field.
  • the third indication subfield is a second value, and the second value is used to indicate that the current device is a responder for direct communication with the first STA to which the first device 4800 is affiliated.
  • the device further includes: determining the variant of the fifth frame according to the values of the first reserved field and the first reserved field subfield in the public information.
  • the device further includes: a fifth receiving unit, configured to receive the first STA affiliated to the first device 4800 and the second STA affiliated to the second device on the respective working EMLSR link sets. Can receive and parse the fifth frame.
  • a fifth receiving unit configured to receive the first STA affiliated to the first device 4800 and the second STA affiliated to the second device on the respective working EMLSR link sets. Can receive and parse the fifth frame.
  • the device further includes: a fourth switching unit, configured to switch when at least one of the first STA affiliated to the first device 4800 and the second STA affiliated to the second device receives the first STA.
  • a fourth switching unit configured to switch when at least one of the first STA affiliated to the first device 4800 and the second STA affiliated to the second device receives the first STA.
  • at least one of the first device 4800 and the second device performs EMLSR link switching.
  • the device further includes: a third requesting unit, configured to request the required TXOP time and indicate the first identity information from the third device; wherein the first identity information is attached to the second device.
  • the identity information of the second STA, the second STA affiliated to the second device is associated with the third device and exchanges each other's EML capability information.
  • the device further includes: a sixth receiving unit, configured to receive the fifth frame sent by the third device, and the third device is configured to share the TXOP time with the first device in TXOP sharing mode 2. At least one of the first STA attached to the device 4800 and the second STA attached to the second device.
  • the device further includes: a holding unit configured to continue before the second time is reached when the second STA affiliated to the second device completes link switching after receiving the sixth frame. Maintain the status of the single-link multi-spatial stream.
  • the second time is obtained based on the fifth frame time, the fifth frame feedback time, and the short inter-frame interval SIFS sent at the lowest rate.
  • the device further includes: a triggering unit configured to trigger feedback of the fifth frame when the fifth frame is sent to the second STA affiliated with the second device.
  • the device further includes: a first switching unit, configured to perform single-link multi-space streams when at least one of the first device 4800 and the second device completes EMLSR link switching. frame exchange.
  • the first device 4800 in this embodiment of the present application can implement the corresponding functions of the first device in the foregoing method embodiment.
  • functions, implementation methods and beneficial effects of each module (sub-module, unit or component, etc.) in the first device 4800 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the first device 4800 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 49 is a schematic structural diagram of a second device 4900 according to an embodiment of the present application.
  • the device can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the second communication unit 4910 is used to establish a direct communication relationship between the first STA affiliated with the first device and the second STA affiliated with the second device 4900; the seventh transmission unit 4920 is used to establish a direct communication relationship between the first STA affiliated with the first device and the second STA affiliated with the second device 4900.
  • the first STA attached to the first device and the second STA attached to the second device 4900 adopt enhanced multi-link operation for frame transmission; wherein, the second STA attached to the second device 4900 receives the sixth frame, and the second STA attached to the second device 4900 receives the sixth frame.
  • the sixth frame is sent by the first STA attached to the first device in the form of a single link single spatial stream.
  • the first STA attached to the first device and the second STA attached to the second device 4900 work on the same link.
  • the device further includes: a fifth switching unit, configured to perform EMLSR link switching.
  • the device further includes: a second switching unit, configured to perform frame switching of single-link multiple spatial streams when the second device 4900 completes the EMLSR link switching.
  • the second device 4900 in the embodiment of the present application can implement the corresponding functions of the second device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the second device 4900 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the second device 4900 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 50 is a schematic structural diagram of a communication device 5000 according to an embodiment of the present application.
  • the communication device 5000 includes a processor 5010, and the processor 5010 can call and run a computer program from the memory, so that the communication device 5000 implements the method in the embodiment of the present application.
  • the communication device 5000 may also include a memory 5020.
  • the processor 5010 can call and run the computer program from the memory 5020, so that the communication device 5000 implements the method in the embodiment of the present application.
  • the memory 5020 may be a separate device independent of the processor 5010, or may be integrated into the processor 5010.
  • the communication device 5000 may also include a transceiver 5030, and the processor 5010 may control the transceiver 5030 to communicate with other devices. Specifically, the communication device 5000 may send information or data to other devices, or receive information or data sent by other devices. .
  • the transceiver 5030 may include a transmitter and a receiver.
  • the transceiver 5030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 5000 can be the first device in the embodiment of the present application, and the communication device 5000 can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • the communication device 5000 can be the second device in the embodiment of the present application, and the communication device 5000 can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • Figure 51 is a schematic structural diagram of a chip 5100 according to an embodiment of the present application.
  • the chip 5100 includes a processor 5110, and the processor 5110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 5100 may also include memory 5126.
  • the processor 5110 can call and run the computer program from the memory 5126 to implement the method executed by the first device or the second device in the embodiment of the present application.
  • the memory 5126 may be a separate device independent of the processor 5110, or may be integrated into the processor 5110.
  • the chip 5100 may also include an input interface 5130.
  • the processor 5110 can control the input interface 5130 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 5100 may also include an output interface 5140.
  • the processor 5110 can control the output interface 5140 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the chips applied to the first device and the second device may be the same chip or different chips. It should be understood that the chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG 52 is a schematic block diagram of a communication system 5200 according to an embodiment of the present application.
  • the communication system 5200 includes a first device 5210 and a second device 5220, where the first device 5210 may include: a first transmission unit for establishing direct communication with a second device working on the same link. , using enhanced multi-link operation to perform frame transmission between the first device and the second device; wherein at least one of the first device and the second device is: a device or work that supports the enhanced multi-link operation Equipment for this enhanced multi-link operation.
  • the second device 5220 may include: a first switching unit configured to perform mode switching of enhanced multi-link operation after interacting with the first capability information with the first device for performing any of the above devices. For the sake of brevity, no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Abstract

本申请提供一种通信方法、第一设备和第二设备。其中,该通信方法包括:第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在第一设备与第二设备进行帧传输;其中,第一设备及第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。本申请实施例可以在多个设备间建立直连通信的情况下使用该增强多链路操作,从而通过该增强多链路操作提高链路通信容量,进而提高了帧的传输效率。

Description

通信方法和设备 技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法和设备。
背景技术
增强的多链路操作可以使设备具有在不同的链路切换空间流的能力,通过空间复用的方式可以提升链路通信容量,该空间复用的方式是通过将其他链路上的可用空间流切换到指定链路上来实现的,以实现指定链路上的多空间流传输,从而增加了单条链路的通信容量,然而,该增强的多链路操作目前并未有效的使用于直连传输中。
发明内容
本申请实施例提供一种通信方法和设备,可以将增强的多链路操作有效的使用于直连传输中。
本申请实施例提供一种通信方法,应用于第一设备,该方法包括:
该第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输;
其中,该第一设备及该第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。
本申请实施例提供一种通信方法,应用于第二设备,该方法包括:
该第二设备与用于执行上述任一方法的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
本申请实施例提供一种通信方法,应用于第一设备,该方法包括:
在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
其中,该第一设备附属的第一STA以单链路单空间流的形式向该第二设备附属的第二STA发送第六帧。
本申请实施例提供一种通信方法,应用于第二设备,该方法包括:
在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
其中,该第二设备附属的第二STA接收第六帧,该第六帧由该第一设备附属的第一STA以单链路单空间流的形式发送。
本申请实施例提供一种第一设备,该设备包括:
第一传输单元,用于与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输;
其中,该第一设备及该第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。
本申请实施例提供一种第二设备,该设备包括:
第一切换单元,用于与用于执行上述任一设备的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
本申请实施例提供一种第一设备,该设备包括:
第一通信单元,用于在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
第六传输单元,用于根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
其中,该第一设备附属的第一STA以单链路单空间流的形式向该第二设备附属的第二STA发送第六帧。
本申请实施例提供一种第二设备,该设备包括:
第二通信单元,用于在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关 系;
第七传输单元,用于根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
其中,该第二设备附属的第二STA接收第六帧,该第六帧由该第一设备附属的第一STA以单链路单空间流的形式发送。
本申请实施例提供一种芯片,用于实现上述的通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的通信方法。
本申请实施例中,第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输,从而可以将增强的多链路操作有效的使用于直连传输中。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据本申请实施例的触发式TXOP共享机制的交互流程示意图。
图3是根据本申请实施例的并发双无线电STA与AP之间的一数据传输示意图。
图4是根据本申请实施例的并发双无线电STA与AP之间的另一数据传输示意图。
图5是根据本申请实施例的增强的多链路单无线电操作下的一数据传输示意图。
图6是根据本申请实施例的基本多链路元素结构的示意图。
图7是根据本申请实施例的EML能力子字段结构的示意图。
图8是根据本申请实施例的EML Control字段结构的示意图。
图9是根据本申请一实施例的通信方法900的示意性流程图。
图10是根据本申请一实施例的通信方法1000的示意性流程图。
图11是根据本申请一实施例的通信方法1100的示意性流程图。
图12是根据本申请一实施例的通信方法1200的示意性流程图。
图13是根据本申请一实施例的以两条链路为例一交互场景的示意图。
图14是根据本申请一实施例的以两条链路为例另一交互场景的示意图。
图15是根据本申请一实施例的增强多链路能力子字段结构的一P2P变体多链路元素的示意图。
图16是根据本申请一实施例的一增强多链路能力信息交互的示意图。
图17是根据本申请一实施例的另一增强多链路能力信息交互的示意图。
图18是根据本申请一实施例的又一增强多链路能力信息交互的示意图。
图19是根据本申请一实施例的又一增强多链路能力信息交互的示意图。
图20是根据本申请一实施例的多链路元素的一控制字段结构示意图。
图21是根据本申请一实施例的一P2P变体多链路元素结构示意图。
图22是根据本申请一实施例的一EML操作模式宣告的交互示意图。
图23是根据本申请一实施例的另一EML操作模式宣告的交互示意图。
图24是根据本申请一实施例的MLD EML OM Info list结构示意图。
图25-图27是根据本申请一实施例的MLD Info结构示意图。
图28是根据本申请一实施例的又一EML操作模式宣告的交互示意图。
图29是根据本申请一实施例的又一EML操作模式宣告的交互示意图。
图30是根据本申请一实施例的PeerMLD EML OM Info list结构示意图。
图31是根据本申请一实施例的又一EML操作模式宣告的交互示意图。
图32是根据本申请一实施例的又一EML操作模式宣告的交互示意图。
图33是根据本申请一实施例的一EML链路切换的交互示意图。
图34是根据本申请一实施例的触发帧结构示意图。
图35是根据本申请一实施例的EHT变体-触发帧公共信息字段结构示意图。
图36是根据本申请一实施例的HE MU-RTS TXS用户信息字段结构示意图。
图37是根据本申请一实施例的EHT MU-RTS TXS用户信息字段结构示意图。
图38是根据本申请一实施例的在User Info中使用Allocation Duration标识P2P接收方的示意图。
图39是根据本申请一实施例的新定义的EHT变体的触发帧的Common Info字段的示意图。
图40是根据本申请一实施例的在User Info中使用新定义的字段标识P2P接收方的示意图。
图41是根据本申请一实施例的基于OPT1方式一次性分配多个TXOP的示意图。
图42是根据本申请一实施例的基于OPT2方式一次性分配多个TXOP的示意图。
图43是根据本申请一实施例的另一EML链路切换的交互示意图。
图44是根据本申请一实施例的EML变体的MU-RTS帧Common Info结构示意图。
图45是根据本申请一实施例的又一EML链路切换的交互示意图。
图46是根据本申请一实施例的第一设备4600的结构示意图。
图47是根据本申请一实施例的第二设备4700的结构示意图。
图48是根据本申请一实施例的第一设备4800的结构示意图。
图49是根据本申请一实施例的第二设备4900的结构示意图。
图50是根据本申请实施例的通信设备示意性框图。
图51是根据本申请实施例的芯片的示意性框图。
图52是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是终端设备(如手机)或者网络设备(如路由器)。该终端设备或者网络设备具有实现通信功能的芯片,例如WLAN或者WiFi芯片。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如45GHz、60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信系统100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A, 同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
无线局域网因其低成本、灵活性、易扩展等特点,广泛应用于企业、家庭等场景。无线局域网相关标准化组织以及厂商设计并推广了各类应用于Wi-Fi网络中的点对点(Peer-to-Peer,P2P)通信技术,如无线直连(Wi-Fi)Direct以及隧道直连链路建立(Tunneled direct-link setup,TDLS)等,使得Wi-Fi设备可以绕过接入点(Access Point,AP)直接进行点对点通信,从而减少通信过程中对无线资源的占用,减小信道开销。
相比于站点(Station,STA)设备直接通过竞争获取传输机会并进行P2P传输,如果要求AP设备协助STA竞争信道以进行P2P传输,由于AP设备成功并获取的信道访问权的概率更大,可能可以使P2P传输更及时,并且也更利于AP设备管理其基础服务集(Basic Service Set,BSS)内的无线媒介(WM),因此,设计了使用MU-RTS TXS触发帧来实现的触发式传输机会(transmission opportunity,TXOP)共享机制,来支持AP协助下的P2P传输。
对于多链路操作特性,也相应的定义了多链路设备(Multi-LinkDevice,MLD),MLD可以支持多频段通信,并且可以同时使用同一或不同频段的不同信道资源进行通信,将这不同的信道资源称为链路(Link)或称为无线媒介链路(Wireless Medium Link),例如MLD同时使用2.4GHz频段上的20MHz信道,5GHz频段的80MHz信道以及6GHz频段上的160MHz信道,可以称该MLD拥有(或操作)3条链路。
考虑到实现的复杂性和成本问题,允许non-AP MLD是一种单无线电多链路设备(Single Radio MLD)。具体来说,Single Radio MLD虽然可以工作在多条链路上,但同一时间,该MLD仅能够在一条链路上进行帧的发送或接收。允许Single Radio MLD使用多链路单无线电(Multi-Link Single Radio,MLSR)操作模式工作,在AP MLD看来,这种non-AP MLD同一时间仅在一条链路上处于活跃状态,在其他链路上处于休眠状态。
对于增强的多链路操作而言,使用增强的多链路操作的设备并不需要在其所操作的每条链路上均具备多条空间流传输的能力,而是可以通过切换操作,在侦听到特定的帧之后将其他链路上的可用空间流通过“切换”操作转移到指定链路上,实现指定链路上的多空间流传输。
增强多链路操作又分为增强多链路单无线电(Enhanced Multi-Link Single Radio,EMLSR)以及增强多链路多无线电(Enhanced Multi-Link Multiple Radio,EMLMR)。EMLSR操作可以应用于拥有多条可用空间流(包括发送链和/或接收链)的Single Radio MLD。具体来说,启用了EMLSR模式的Single Radio MLD同时在多条链路上进行侦听,当有数据需要接收或发送时,再将其他链路上用于侦听的空间流切换到指定链路上,以多空间流的形式进行接收或发送。EMLSR可以使得Single Radio MLD获得更多的信道接入机会,进而提升其吞吐量和时延性能。
如图2所示,STA1作为P2P发起方首先告知AP其有P2P传输需求,然后当AP成功接入并获得TXOP后,可以通过发送MU-RTS TXS帧来将部分TXOP共享给STA1。STA1收到该MU-RTS TXS帧后,如果自身条件允许,则向其反馈CTS,之后可以使用所分配的时间进行P2P或上行传输。
图3展示了在理想情况下,并发双无线电STA与AP之间的数据传输情况,信道1和信道2都能用于数据传输,此时,信道1和信道2空闲,数据传输无交叠情况。而随着网络变得繁忙,如图4所示,信道1和信道2繁忙,信道1和信道2的数据传输呈现交叠情况,这实际上相当于单链路的操作,即:同一时刻STA只能在一条链路上传输数据。
针对图4所示的场景,对单无线电设备(同一时刻只能在一条链路上发送或接受数据)提出了增强多链路单无线电(Enhanced Multi-Link Single-Radio,EMLSR)操作。如图5所示,单无线电non-AP MLD,即STA,将其2x2的传输模块配置成信道1和信道2上各1x1,以在两个信道上同时进行侦听。AP MLD在空闲信道上传输下行数据之前,先发送一个控制帧(如RTS帧、MU-RTS帧),non-AP MLD收到后回复CTS帧,同时在收到初始控制帧的链路上切换到2x2以进行数据接收。
需要指出的是,该non-AP MLD从每条链路1x1的侦听模式切换到某条链路上2x2的传输模式是进行了空间复用,某个设备的天线具备NxN的能力即为该设备拥有N条空间流,而每条链路1x1的侦 听模式切换到某条链路上2x2的传输模式即为将一条链路上的一条空间流切换到另一条链路时,这样另一条就能使用两条空间流进行数据接收。
针对EMLSR操作的侦听操作而言,non-AP MLD可以在启用链路集的一个特定子集上工作在EMLSR模式下,该子集中的链路称为EMLSR链路。non-AP MLD可以通过工作在EMLSR链路上的附属STA处于唤醒状态来侦听EMLSR链路。
需要执行EMLSR链路切换的情况下,从侦听操作状态切换至单链路多空间流帧交换操作状态。
针对单链路多空间流帧交换操作而言,附属于AP MLD的AP在EMLSR链路之一上初始化与non-AP MLD的帧交换,必须向non-AP MLD传输初始控制帧来开启帧交换。初始控制帧必须为MU-RTS触发帧或BSRP触发帧。对于处于EMLSR模式的non-AP MLD,必须接收MU-RTS和BSRP触发帧。在收到帧交换序列的初始控制帧并且传输了对该初始控制帧的立即响应后,non-AP MLD必须能够在接收初始控制帧的链路上发送或接收帧,并且不得在其他EMLSR链路上发送或接收,直到帧交换序列结束,并受其空间流能力、操作模式和链路切换延迟的影响,non-AP MLD应能够在初始控制帧请求的响应帧传输结束的一个SIFS间隔之后接收使用多个空间流发送的物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)。在帧交换序列期间,AP MLD不应在其他EMLSR链路上向non-AP MLD发送帧。在帧交换序列结束后,non-AP MLD根据一定的规则在已启用链路上切换回侦听操作。
EML能力信息(EML Capabilities)携带在基本多链路元素(Basic Multi-Link Element)的公共信息(Common Info)中,如图6所示,增强多链路能力子字段的设计如图7所示。携带基本ML元素的帧可用于EML能力信息交互,如信标(Beacon)帧,探测响应(Probe Response)帧,关联请求(Association Request)帧以及关联响应(Association Response)帧,一般认为该能力信息的交互在关联(多链路Setup)时进行。
能力信息的交互之后,EMLSR模式默认是处于关闭状态,需要某种机制告知对方开启EMLSR模式,并需要对方就该告知进行确认,通过EML操作模式宣告(Operating Mode Notification,OMN)帧实现操作模式的通告功能。EML OMN帧中包括EML Control字段的结构,如图8所示。
如果non-AP MLD更改了自身的EML操作模式,如开启EMLSR模式,则向AP MLD发送EML Control字段中EMLSR Mode=1的EML OMN帧。AP MLD收到该帧后可以选择使用相同字段设置的EML OMN帧对non-AP MLD所发送的EML OMN帧进行反馈。当收到该反馈之后,non-AP MLD可以立即进行并完成EML操作模式的切换,否则,一直未收到AP MLD反馈的EML OMN帧必须等待在能力信息交互时所协商的传输超时(Transition Timeout)时间之后才可以进行EML操作模式切换。
综上所述,增强的多链路操作可以通过空间复用的方式,将可用空间流(包括发送链和/或接收链)临时切换以进行帧的发送或接收,从而增加单条链路的通信容量。但该机制目前不能有效的使用于直连传输,如P2P传输中。一方面,标准中缺乏该机制应用于P2P传输的详细描述,仅规定了针对non-AP MLD和AP MLD所进行的上行或下行传输,并未针对P2P传输的情况进行描述;另一方面,由于进行了可用空间流(包括发送链和/或接收链)的切换,将导致该时间段内部分链路的不可用,而P2P的对端设备可能由于并不了解该情况而发起传输,将导致信道资源的浪费。
本申请将触发式传输机会共享机制与增强的多链路操作相结合,提出了一种将增强多链路操作有效地应用于P2P通信的方法。
图9是根据本申请一实施例的通信方法900的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S910、该第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输;
其中,该第一设备及该第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。
一些示例中,直连通信包括:P2P通信、端到端通信等。
一些示例中,第一设备可以为non-AP Device1,可选的,non-AP Device1可以为工作在EMLSR模式的non-AP MLD(如non-AP MLD2)提供服务;non-AP Device1自身也可以使用EMLSR模式,即:non-AP Device1作为non-AP MLD1,与对端P2P设备(如non-AP MLD2)进行P2P交互。
一些示例中,第二设备可以为:与第一设备进行P2P通信的对端P2P设备(如non-AP MLD2)。
采用本申请实施例,第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输,从而可以将增强的多链路操作有效的使用于直连传输(如P2P传输)中。
在一种实施方式中,该方法还包括:该第一设备向第三设备申请TXOP;该第三设备用于共享TXOP给该第一设备和该第二设备进行该直连通信,在TXOP共享时间内统一调度该第一设备与该第二设备 之间的帧传输。
一些示例中,该第三设备可以为AP MLD,第一设备作为P2P传输的发起方,向AP MLD申请TXOP,该AP MLD可以共享TXOP,并将TXOP共享时间用于P2P传输,且统一调度其BSS内的P2P传输。
在一种实施方式中,该采用增强多链路操作在该第一设备与该第二设备进行帧传输,包括:该增强多链路操作为EMLSR操作的情况下,该第一设备在该第二设备具有的多条链路中的一条链路上与该第二设备进行单链路多空间流的帧交换。
一些示例中,该多条链路包括:多条EMLSR链路,除此之外,应用于EMLMR场景中,该多条链路还可以包括:多条EMLMR链路。
在一种实施方式中,该第一设备用于为工作在EMLSR模式的该第二设备提供服务;该第二设备用于支持该EMLSR操作并工作在EMLSR模式下。
一些示例中,该第一设备及该第二设备中的至少之一,可以使用EMLSR模式,第一设备仅可以为对端提供服务能力,第二设备仅可以使用EMLSR模式。比如,第一设备可以为non-AP Device1,non-AP Device1仅可以为工作在EMLSR模式的non-AP MLD(如non-AP MLD2)提供服务;第二设备可以为:与第一设备进行P2P通信的对端P2P设备(如non-AP MLD2),只有non-AP MLD2工作在EMLSR模式下。
在一种实施方式中,该第一设备用于为工作在EMLSR模式的该第二设备提供服务、和/或支持该EMLSR操作并工作在EMLSR模式下;该第二设备用于为工作在EMLSR模式的该第一设备提供服务、和/或支持该EMLSR操作并工作在EMLSR模式下。
一些示例中,该第一设备及第二设备,任意一个设备可以使用EMLSR模式,也都可以为对端设备提供服务能力。比如,第一设备可以为non-AP Device1,该non-AP Device1可以为工作在EMLSR模式的non-AP MLD(如non-AP MLD2)提供服务,non-AP Device1自身也可以使用EMLSR模式,即:non-AP Device1作为non-AP MLD1,与对端P2P设备(如non-AP MLD2)进行P2P交互。第二设备可以为:与第一设备进行P2P通信的对端P2P设备(如non-AP MLD2),同样的,non-AP MLD2自身既可以使用EMLSR模式,也可以为对端P2P设备(如non-AP MLD1)提供服务。
在一种实施方式中,该方法还包括:该第一设备与该第二设备建立该直连通信时进行第一能力信息的交互,其中,第一能力为:支持EMLSR操作并能为工作于EMLSR模式的设备提供服务的能力或工作于EMLSR模式的能力。可选的,EMLSR场景中,在进行第一能力信息的交互才可以进行EMLSR模式的切换(如从EMLSR模式的默认关闭状态切换到开启状态,或者,从开启状态切换到关闭状态)、以及EMLSR链路的切换(从侦听操作状态切换至单链路多空间流帧交换操作状态)。
在一种实施方式中,该第一能力信息携带在多链路元素中。该第一能力信息可以为EML能力信息,在建立P2P关系时可以将该EML能力信息携带在多链路元素中,换言之,建立P2P关系时可以附带该EML能力信息的交互。
一些示例中,该多链路元素包括如下至少之一的方式:
1)方式1:该多链路元素为基本多链路元素的情况下,通过该基本多链路元素中的公共信息字段携带该第一能力信息;其中,第一能力信息的子字段包括:用于指示EMLSR模式的第一子字段、及用于指示在该直连通信中支持EMLSR操作的第二子字段;比如,该第一能力信息(如EML能力信息)的子字段中,第一子字段为“EMLSR Support”子字段、以及预留的第二子字段为“P2P Support”子字段。
2)方式2:该多链路元素为P2P变体多链路元素的情况下,通过该P2P变体多链路元素中的公共信息字段携带该第一能力信息;其中,该P2P变体多链路元素中还包括:携带第三子字段的多链路控制字段,该第三子字段用于指示多链路元素的类型,比如,该第一能力信息(如EML能力信息)的子字段中,第三子字段为“Type”子字段。
该第一能力信息为EML能力信息为例,在该EML能力信息的交互中,至少包括non-AP MLD与AP MLD之间、non-AP MLD与non-AP MLD之间、non-AP MLD与EHT non-AP STA之间等各种硬件实体交互场景。
一些示例中,该第一设备(如non-AP MLD1)向该第三设备(如AP MLD)发送第一帧(如关联请求帧);在该第一帧中携带该第一能力信息(如EML能力信息)的子字段,以使该第三设备获知该第一设备支持EMLSR操作并能为工作于EMLSR模式的该第二设备提供服务。
一些示例中,该第一设备(如non-AP MLD1)向该第二设备(如non-AP MLD2)发送第一帧(如关联请求帧),在该第一帧中携带该第一能力信息(如EML能力信息)的子字段,以使该第二设备获知该第一设备支持EMLSR操作并能为工作于EMLSR模式的该第二设备提供服务。
一些示例中,该第一设备(如non-AP MLD1)接收该第二设备(如non-AP MLD2)反馈的第一响 应帧(如关联响应帧),在该第一响应帧中携带该第一能力信息(如EML能力信息)的子字段。
在一种实施方式中,该第一设备,为工作在EMLSR模式的至少一个设备提供服务、和/或宣告开启EMLSR模式后工作在EMLSR模式下。
一些示例中,第一设备可以为non-AP Device1,可选的,non-AP Device1可以为工作在EMLSR模式的non-AP MLD(如non-AP MLD2)提供服务;non-AP Device1自身也可以使用EMLSR模式,即:non-AP Device1作为non-AP MLD1,与对端P2P设备(如non-AP MLD2)进行P2P交互,开启EMLSR模式后non-AP Device1也可以工作在EMLSR模式下。
图10是根据本申请一实施例的通信方法1000的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1010、该第二设备与用于执行上述任一实施方式的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
在一种实施方式中,该第二设备用于支持该增强多链路操作的模式切换,其中,该增强多链路操作为EMLSR操作。
一些示例中,该第二设备在与第一设备进行第一能力信息(如EML能力信息)交互后可以通过操作模式宣告来执行该增强多链路操作的模式切换。P2P传输的多个设备中,只要在开启EMLSR模式后可以工作在EMLSR模式下,都可以作为该第二设备。比如,该第一设备为non-AP MLD1,该第二设备为non-AP MLD2,进行EML能力信息交互后,non-AP MLD2通过操作模式宣告来实现EMLSR模式的切换。可选的,non-AP MLD1也支持EMLSR模式切换的情况下,non-AP MLD1也可以通过操作模式宣告来实现EMLSR模式的切换。
在一种实施方式中,该进行增强多链路操作的模式切换,包括:该第二设备(如non-AP MLD2)需要切换EMLSR模式的情况下,向该第一设备(non-AP MLD1)发送第二帧(如EML OMN帧),在该第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,该控制字段包括该EMLSR模式子字段(如操作模式信息)。该第二设备接收该第一设备反馈的第二响应帧的情况下,完成该EMLSR模式的切换,从而在对等设备(non-AP MLD2及non-AP MLD1)间直接使用现有机制宣告EMLSR模式的改变。
在一种实施方式中,该进行增强多链路操作的模式切换,包括:该第二设备(如non-AP MLD2)需要切换EMLSR模式的情况下,向该第三设备(如AP MLD)发送第二帧(如EML OMN帧),在该第二帧中携带控制字段(如操作模式信息),用以宣告EMLSR模式的切换;其中,该控制字段包括该EMLSR模式子字段。该第二设备接收该第三设备反馈的第二响应帧的情况下,完成该EMLSR模式的切换,从而AP MLD收到该第二帧后可以主动向对等设备(non-AP MLD2的对等设备为non-AP MLD1)宣告EMLSR模式的改变。
一些示例中,该第三设备(如AP MLD)用于在第一时间使用第三帧(如对等MLD EML操作模式通告帧)向与该第三设备关联且支持与该第二设备进行该直连通信的其他设备宣告切换信息。
一些示例中,该第一时间为:完成该EMLSR模式切换后,且触发共享TXOP进行该直连通信之前的任意时间。
在一种实施方式中,该方法还包括:该第二设备(如non-AP MLD2)需要切换EMLSR模式的情况下,向该第三设备(如AP MLD)发送第四帧(如对等MLD EML操作模式请求帧),请求该第三设备宣告与该第二设备进行该直连通信的其他设备的EML操作模式。其中,该第三设备用于响应该请求后使用第三帧(如对等MLD EML操作模式通告帧)向与该第三设备关联且支持与该第二设备进行该直连通信的其他设备宣告切换信息,从而AP MLD收到该第四帧后可以被动向对等设备(non-AP MLD2的对等设备为non-AP MLD1)宣告EMLSR模式的改变。
在一种实施方式中,该第三帧中携带第一信息;其中,该第一信息,包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
一些示例中,该第三帧可以为对等MLD EML操作模式通告帧;该第一信息可以为Peer MLD EML OM Info list;该第四子字段可以为MLD Info子字段(具体用于指示某MLD的身份信息);该第五子字段可以为EML Control字段(具体用于指示Peer MLD EML OM Info list中对应non-AP MLD的EML操作模式)。
一些示例中,该具备对等EML能力设备对应身份信息,包括:MAC地址、和/或与该第三设备关联时被分配的AID。
在一种实施方式中,该第四帧为:与该第三帧不同类型的帧,换言之,该第四帧为对等MLD EML操作模式请求帧,该第三帧为对等MLD EML操作模式通告帧;其中,在该第四帧中携带用以指示当 前帧属于具备对等EML能力设备的请求帧的字段,此时,该第四帧仅为对等MLD EML操作模式请求帧。
在一种实施方式中,该第四帧还可以为:与该第三帧相同类型的帧,换言之,通过指示字段使该第四帧既可以作为对等MLD EML操作模式请求帧,也可以作为对等MLD EML操作模式通告帧。其中,该第四帧携带用以指示当前帧属于具备对等EML能力设备的请求帧或通告帧的字段,此时,该第四帧根据指示字段的不同,既可以作为对等MLD EML操作模式请求帧,也可以作为对等MLD EML操作模式通告帧。
在一种实施方式中,该第四帧包括:第一值及第一信息。
一些示例中,该第一值用于标识本次EML能力信息的交互,比如,该第一值可以为Dialog Token字段的值,该Dialog Token字段的值选择“不为零的值”,用以标识本次交互。
一些示例中,该第一信息包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
一些示例中,该第一信息可以为Peer MLD EML OM Info list;该第四子字段可以为MLD Info子字段(具体用于指示某MLD的身份信息);该第五子字段可以为EML Control字段(具体用于指示Peer MLD EML OM Info list中对应non-AP MLD的EML操作模式)。
一些示例中,该具备对等EML能力设备对应身份信息,包括:MAC地址、和/或与该第三设备关联时被分配的AID。
图11是根据本申请一实施例的通信方法1100的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1110、在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
S1120、根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输。
一些示例中,该第一设备(如non-AP MLD1)附属的第一STA(STA11)以单链路单空间流的形式向该第二设备(如non-AP MLD2)附属的第二STA(STA21)发送第六帧。
一些示例中,该第一设备(如non-AP MLD1)附属的第一STA与该第二设备(如non-AP MLD2)附属的第二STA工作在同一链路上。
该第一设备附属的第一STA可以为STA11,该第二设备附属的第二STA可以为STA21,该STA11以单链路单空间流的形式向STA21发送第六帧(如MU-RTS)。
如下描述中,皆以第一设备(如non-AP MLD1)、第二设备(如如non-AP MLD2)、该第一设备附属的第一STA(如STA11)、该第二设备附属的第二STA(如STA21)、第三设备(如AP MLD)、第五帧可以为触发帧如MU-RTS TXS帧、第六帧可以为初始控制帧如MU-RTS、反馈帧可以为CTS进行示例描述,不做赘述。
需要指出的是,第五帧和第六帧皆为控制帧,第五帧作为触发帧实际也是控制帧的一种。CTS可以作为第五帧的反馈帧、也可以为第六帧的反馈帧,本申请中的反馈帧以CTS进行示例。
需要指出的是,交互信息如帧的发送、解析,具体来说,是设备附属STA来做(如STA11或STA21来执行),而完成操作的处理或动作(如链路切换)是设备自身执行的,如non-AP MLD1和non-AP MLD2中的至少之一工作在EMLSR模式下,则由non-AP MLD1或non-AP MLD2执行链路切换。
P2P发起方为第一设备,发送初始控制帧的EMLSR操作场景如下:
在一种实施方式中,该方法还包括:该第一设备附属的第一STA向该第三设备请求所需的TXOP时间;该第一设备附属的第一STA接收该第三设备发送的第五帧,其中,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备附属的第一STA。其中,针对TXOP分享模式2而言,触发式TXOXP共享(Triggered TXOP Sharing)机制有两种工作模式,TXOP分享模式1仅允许获得TXOP的non-AP STA利用该TXOP进行上行传输,而TXOP分享模式2在模式1的基础上还允许non-AP STA利用该TXOP与对等其他non-AP STA进行P2P传输。
在一种实施方式中,该方法还包括:该第一设备附属的第一STA和该第二设备附属的第二STA均能在各自工作的EMLSR链路集合上接收并解析该第五帧。
在一种实施方式中,该方法还包括:在该第一设备附属的第一STA向该第二设备附属的第二STA发送该第六帧的同时,该第一设备进行EMLSR链路切换。
在一种实施方式中,该方法还包括:在该第一设备附属的第一STA接收并反馈该第五帧所对应的时间段内、和/或向该第二设备附属的第二STA发送该第六帧及接收第六帧反馈的时间段内,该第一设备进行EMLSR链路切换。
在一种实施方式中,在该第六帧中携带填充信息,该填充信息满足如下条件的至少之一:
1)该第二设备的切换时延需求;
2)该第一设备的切换时延需求;
3)该第二设备和该第一设备的切换时延需求。
P2P发起方为第一设备,发送初始控制帧进行EMLSR链路切换的EMLSR操作场景如下:
在一种实施方式中,该方法还包括:该第一设备附属的第一STA向该第三设备请求所需的TXOP时间、及指示第一身份信息;其中,该第一身份信息为第二设备附属的第二STA的身份信息,该第二设备附属的第二STA与该第三设备相关联并交互了彼此的EML能力信息。
P2P发起方为第一设备,使用MU-RTS TXS或MU-RTS的变体指示EMLSR链路切换的EMLSR操作场景如下:
在一种实施方式中,该方法还包括:该第一设备附属的第一STA接收该第三设备发送的第五帧或第五帧的变体,其中,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备附属的第一STA及该第二设备附属的第二STA中的至少之一。
一些示例中,该第五帧或该第五帧的变体,用于为该第一设备附属的第一STA和该第二设备附属的第二STA中的至少之一分配TXOP。
一些示例中,该第五帧或第五帧的变体,包括用户信息列表(User Info List)字段;该用户信息列表字段用于向该第三设备请求所需的该TXOP时间。
一些示例中,该用户信息列表字段包括:用于指示设备的第一指示子字段、用于指示直连通信双方角色的第二指示子字段、用于指示TXOP时间的第三指示子字段。比如,第一指示子字段可以为AID12子字段,用以指示需要处理该帧的设备的AID信息;直连通信双方角色指:当前设备为P2P的发起方还是P2P响应方;第三指示子字段可以为Allocation Duration子字段,用以指示所分配的TXOP持续时间。
一些示例中,该第三指示子字段为第二值,该第二值用于指示当前设备为与该第一设备附属的第一STA进行直连通信的响应方。比如,Allocation Duration=0时,用于指示当前设备为与该第一设备附属的第一STA进行P2P通信的响应方。
在一种实施方式中,该方法还包括:根据公共信息(Common Info)中第一预留字段及第一预留字段子字段的取值来确定该第五帧的变体。比如公共信息中的预留字段可以为:GI and HE/EHT-LTF type/Triggered TXOP Sharing Mode,以Triggered TXOP Sharing Mode为例,预留字段Triggered TXOP Sharing Mode设为2,其子字段EML Triggered TXOP sharing mode子字段设为1,此时,当前帧为第五帧的变体,即MU-RTS TXS的变体,如MU-RTS ETXS。
在一种实施方式中,该方法还包括:该第一设备附属的第一STA和该第二设备附属的第二STA均能在各自工作的EMLSR链路集合上接收并解析该第五帧。
在一种实施方式中,该方法还包括:在该第一设备附属的第一STA及该第二设备附属的第二STA中的至少之一在收到该第五帧或该第五帧的变体的情况下,该第一设备及该第二设备中的至少之一进行EMLSR链路切换。换言之,第二设备附属的第二STA收到该第五帧或该第五帧的变体的情况下,第二设备可以进行EMLSR链路切换;或者,第一设备附属的第一STA也支持EMLSR,即同时工作在EMLSR下的情况下,第一设备附属的第一STA收到该第五帧或该第五帧的变体的情况下,第一设备也可以进行EMLSR链路切换,以及第一设备和第二设备都可以进行EMLSR链路切换的情况。
P2P发起方为第一设备,AP MLD分步指示EMLSR链路切换与触发式TXOP共享的EMLSR操作场景如下:
在一种实施方式中,该方法还包括:该第一设备附属的第一STA向该第三设备请求所需的TXOP时间、及指示第一身份信息;其中,该第一身份信息为第二设备附属的第二STA的身份信息,该第二设备附属的第二STA与该第三设备相关联并交互了彼此的EML能力信息。
在一种实施方式中,该方法还包括:该第一设备附属的第一STA接收该第三设备发送的第五帧,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备附属的第一STA及该第二设备附属的第二STA中的至少之一。
在一种实施方式中,该方法还包括:在收到该第六帧的该第二设备附属的第二STA完成链路切换的情况下,在第二时间未达到前继续保持该单链路多空间流的状态。可选的,该第二时间还可以是第二设备的对端设备(如第一设备)指定的时间。
在一种实施方式中,该第二时间,根据以最低速率发送的该第五帧时间、第五帧反馈时间、短帧间间隔SIFS得到。
在一种实施方式中,该方法还包括:该第五帧发送给该第二设备附属的第二STA的情况下,触发第五帧的反馈。
在一种实施方式中,该方法还包括:在该第一设备及该第二设备中的至少之一完成EMLSR链路切换的情况下进行单链路多空间流的帧交换。
图12是根据本申请一实施例的通信方法1200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1210、在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
S1220、根据该直连通信关系在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输。
其中,该第二设备附属的第二STA接收第六帧,该第六帧由该第一设备附属的第一STA以单链路单空间流的形式发送。
一些示例中,该第一设备(如non-AP MLD1)附属的第一STA(STA11)与该第二设备(如non-AP MLD2)附属的第二STA(STA21)之间建立直连通信关系后可以在该第一设备附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输。
一些示例中,该第一设备(如non-AP MLD1)附属的第一STA与该第二设备(如non-AP MLD2)附属的第二STA工作在同一链路上。
该第一设备附属的第一STA可以为STA11,该第二设备附属的第二STA可以为STA21。
如下描述中,皆以第一设备(如non-AP MLD1)、第二设备(如如non-AP MLD2)、该第一设备附属的第一STA(如STA11)、该第二设备附属的第二STA(如STA21)、第三设备(如AP MLD)、第五帧可以为触发帧如MU-RTS TXS帧、第六帧可以为初始控制帧如MU-RTS、反馈帧可以为CTS进行示例描述,不做赘述。
需要指出的是,第五帧和第六帧皆为控制帧,第五帧作为触发帧实际也是控制帧的一种。CTS可以作为第五帧的反馈帧、也可以为第六帧的反馈帧,本申请中的反馈帧以CTS进行示例。
需要指出的是,交互信息如帧的发送、解析,具体来说,是设备附属STA来做(如STA11或STA21来执行),而完成操作的处理或动作(如链路切换)是设备自身执行的,如non-AP MLD1和non-AP MLD2中的至少之一工作在EMLSR模式下,则由non-AP MLD1或non-AP MLD2执行链路切换。
在一种实施方式中,该方法还包括:该第二设备进行EMLSR链路切换。
在一种实施方式中,该方法还包括:在该第二设备完成该EMLSR链路切换的情况下进行单链路多空间流的帧交换。
下面对上述本申请实施例提供的通信方法进行详细说明。
存在两个工作在相同链路上的non-AP MLD,两者间通过某种方式建立了直连通信关系,可以进行不通过AP中继的P2P传输。这两个non-AP MLD中至少有一方支持EMLSR操作,即可以在通信进行的不同阶段使用不同的操作模式参数,例如将分布在不同链路上的可用空间流(包括发送链和/或接收链)切换至同一链路进行帧的发送或接收。其中,该操作模式参数可以是空间流的数量、带宽、解码能力、最大媒体访问控制协议数据单元长度、最大聚合媒体访问控制服务数据单元长度,或最大聚合媒体访问控制协议数据单元长度指数中至少一个。
需要指出的是,non-AP MLD(或其附属STA)可以通过如SCS协商机制与AP MLD(或其附属AP)进行流量信息指示交互,用以申请AP MLD(或其附属AP)共享一段TXOP给non-AP MLD(或其附属STA),以进行P2P传输,本申请实施例的如下各个实施方式不对上述信息交互流程加以限制,在后续描述中,使用传输机会申请(TXOP Request)来指代上述信息交互流程。
以non-AP MLD均包含两条链路为例进行实施方法说明,如图13所示,non-AP Device1为具有为工作在EMLSR模式的non-AP MLD提供服务的能力的设备,non-AP MLD2为拥有两条工作链路的可以使用EMLSR模式将可用空间流切换到某一条链路上,实现单链路多空间流帧交换的non-AP MLD。Non-AP Device1可以在non-AP MLD2的其中一条链路上与工作在EMLSR模式的non-AP MLD2进行单链路多空间流帧交换。
如图14所示,non-AP Device1也可以为拥有两条工作链路的可以使用EMLSR模式将可用空间流切换到某一条链路上,实现单链路多空间流帧交换的non-AP MLD1,并且non-AP MLD2同样具有为工作在EMLSR模式的non-AP MLD提供服务的能力。此时non-AP MLD1与non-AP MLD2均拥有两个附属STA,其中STA11与STA12附属于non-AP MLD1,STA21与STA22附属于non-AP MLD2,STA11和STA21工作在同一链路上,记为链路1,STA12和STA22工作在同一链路上,记为链路2。
本申请的各个实施方式及各示例主要包括如下三方面内容:
第一方面,提供了一种在可以使用多链路操作(Multi-Link Operation,MLO)的设备之间交互增强多链路操作能力信息的方法,具体包括如下内容:
存在两个工作在相同链路上的可以支持MLO的设备,两者间通过某种方式建立了直连通信关系, 可以进行不通过AP中继的P2P传输。
上述两个设备中,至少存在一个设备支持EMLSR操作,并且另外一个支持为工作于EMLSR模式的设备提供服务。一种情况下,支持EMLSR操作的设备为P2P响应方设备,支持为处于EMLSR模式的设备提供服务的设备为P2P发起方设备。另一种情况下,P2P发起方设备也可以支持EMLSR操作并工作于EMLSR模式,P2P响应方设备也可以支持为处于EMLSR模式的设备提供服务。这里需要指出的是,如果P2P发起方设备支持EMLSR操作并工作于EMLSR模式,则要求P2P响应方设备也必须支持为处于EMLSR模式的设备提供服务。
对于该支持EMLSR操作而言,指:可以在通信进行的不同阶段使用不同的操作模式参数,例如将分布在不同链路上的可用空间流(包括发送链和/或接收链)切换至同一链路进行帧的发送或接收。
对于支持为工作于EMLSR模式的设备提供服务而言,指:在发起传输时可以通过某种方式指示工作于EMLSR模式的设备进行可用空间流的切换以及预留相应的切换时间。
如图15所示为新的增强多链路能力子字段,将现有增强多链路能力子字段中的1个预留比特用以指示是否支持在P2P传输中使用EMLSR,称作“P2P Support”子字段,如图15中加粗下划线所示。
其中,AP MLD所发送的增强多链路能力子字段中的P2P Support位仍作保留,不具有意义。non-AP MLD所发送的增强多链路能力子字段中,将P2P Support置为1,则代表其具备为工作于EMLSR模式的设备提供服务的能力,将P2P Support置为0,则代表其不具备为工作于EMLSR模式的设备提供服务的能力,各子字段的描述如表1所示,表1中的加粗下划线所示为P2P Support对应的描述。
Figure PCTCN2022089124-appb-000001
表1
示例性的,如下描述增强多链路能力信息的交互流程。
1)增强多链路能力信息的交互示例1:
AP MLD与non-AP MLD能力信息交互的场景中,Non-AP MLD在向其关联的AP MLD发送的关联请求帧(Association Request)中,带有增强多链路能力(EML Capabilities)子字段,其中EMLSR Support置为1,P2P Support置为1,AP MLD收到该关联请求帧后,获知该non-AP MLD支持EMLSR操作,并且支持为工作于EMLSR模式的设备提供服务。然后AP MLD向该non-AP MLD发送关联响应帧(Association Response),其中带有EML Capabilities子字段,将EMLSR Support子字段置为1。
交互完成后,non-AP MLD2可以宣告开启并使用EMLSR模式。
通过上述交互流程,non-AP MLD可以使用EML操作模式宣告(Operation Mode Notification,OMN)帧向AP MLD宣告EMLSR模式的开启,之后可以使用EMLSR操作进行帧交互。可选的,如果AP MLD不支持EMLSR,则non-AP MLD不允许发送EMLSR Mode=1的EML OMN帧。
2)增强多链路能力信息交互示例2:
Non-AP MLD1和non-AP MLD2能力信息交互的场景中,如图16所示,Non-AP MLD1在与non-AP MLD2建立P2P关系时,在其中附带增强多链路能力信息的交互,例如,通过TDLS建立时,non-AP MLD1在所发送的TDLS Setup Request帧中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将P2P Support设置为1。Non-AP MLD2使用TDLS Setup Response进行响应时,在其中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将EMLSR Support置为1。
交互完成后,non-AP MLD2可以宣告开启并使用EMLSR模式。
3)增强多链路能力信息交互示例3:
Non-AP MLD1和non-AP MLD2能力信息交互的场景中,如图17所示,Non-AP MLD1在与non-AP MLD2建立P2P关系时,在其中附带增强多链路能力信息的交互,例如,通过TDLS建立时,non-AP MLD1在所发送的TDLS Setup Request帧中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将EMLSR Support和P2P Support置为1。Non-AP MLD2使用TDLS Setup Response进行响应时,在其中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将EMLSR Support置为1和P2P Support置为1。
交互完成后,双方设备均可宣告开启并进入EMLSR模式。
4)增强多链路能力信息交互示例4:
non-AP MLD和EHT non-AP STA能力信息交互的场景中,如图18所示,non-AP MLD在与EHT non-AP STA在某条链路建立P2P关系时,在其中附带增强多链路能力信息的交互,例如,通过TDLS建立时,non-AP MLD1在所发送的TDLS Setup Request帧中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将EMLSR Support设置为1。EHT non-AP STA使用TDLS Setup Response进行响应时,在其中附带某种多链路元素(如基本多链路元素,或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将P2P Support置为1。
交互完成后,non-AP MLD可以宣告开启并使用EMLSR模式。
5)增强多链路能力信息交互示例5:
non-AP MLD和EHT non-AP STA能力信息交互的场景中,如图19所示,non-AP MLD在与EHT non-AP STA在某条链路建立P2P关系时,在其中附带增强多链路能力信息的交互,例如,通过TDLS建立时,non-AP MLD1在所发送的TDLS Setup Request帧中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将EMLSR Support设置为1。EHT non-AP STA使用TDLS Setup Response进行响应时,在其中附带某种多链路元素(如基本多链路元素、或者P2P变体多链路元素),其中带有EML Capabilities子字段,并将P2P Support置为0或者未附带多链路元素。
Non-AP MLD不得使用EMLSR模式。
考虑到对等设备之间在建立P2P通信关系时,可能并非会交互包含有基本多链路元素的帧,并且基本多链路元素中的部分信息在P2P传输时并不必要。示例性地,设计一种新型多链路元素(即上述提及的P2P变体多链路元素),通过多链路元素中的多链路控制(Multi-Link Control)字段的Type子字段与其他类型的多链路元素进行区分,多链路元素多链路控制字段的结构如图20所示,将如图20中加粗下划线所示的Type子字段设为某一保留值(如取值为3),Type子字段的定义如下表2中的加粗下划线所示:
Figure PCTCN2022089124-appb-000002
表2
其中,P2P变体的多链路元素的公共信息字段应包含EML能力子字段,P2P变体多链路元素的结构如图21所示,Type子字段如图21中加粗下划线所示。
第二方面,提供了一种EML操作模式宣告方法,具体包括如下内容:
一、宣告方法1:对等设备间直接使用现有机制(发送EML OMN帧以及收到同样的EML OMN帧)宣告EMLSR模式的改变
当某一方设备意图切换EML操作模式时(如关闭EMLSR模式),向所有的对端设备以P2P的方式直接发送EML OMN帧,并对该帧进行相应的设置,对端设备收到该EML OMN帧后,以P2P的方式向对端设备发送EML OMN进行反馈。
采用该方法的可能的交互流程如图22和图23所示,其中non-AP MLD1和non-AP MLD2分别工作在EMLSR模式,并均需要退出该模式。EML OMN帧的发送需要满足EMLSR模式的要求。
二、宣告方法2:AP主动向对等设备宣告EMLSR模式的改变
当某一方设备意图切换EML操作模式时(如关闭EMLSR模式),与AP MLD进行EML OMN帧交互然后按照规则进行切换。由AP MLD在合适的时间,使用新设计的对等MLD EML操作模式通告帧,向其他设备宣告该切换信息。其中,该合适的时间指:在P2P响应方设备的EML操作模式切换完成之后,通过触发式传输机会共享向P2P响应方设备进行P2P传输的流程之前的任意时间。其中,该对等MLD EML操作模式通告帧,可以为一种新设计的EHT Action帧,仅以单播方式发送,对等MLD EML操作模式通告帧的结构如表3所示,Peer MLD EML OM Info list字段如表3中加粗下划线所示。
Figure PCTCN2022089124-appb-000003
表3
其中Category以及EHT Action字段分别用以指示其属于EHT Action帧并且是所设计的对等MLD EML操作模式通告帧。
其中Peer MLD EML OM Info list结构如图24所示,其中Count为所携带的EML操作模式信息的数量,用MLD EML OM Info子字段表示。MLD EML OM Info字段中包含MLD Info子字段以及EML Control子字段。
MLD Info子字段用以指示某MLD的身份信息,如MLD的MAC地址和/或与AP MLD关联时被分配的AID,且可能的结构如图25、图26、图27所示。
EML Control字段用以指示Peer MLD EML OM Info list中对应non-AP MLD的EML操作模式,结构如图8所示。
需要指出的是,某MLD的EML操作模式信息被附带在本帧中的必要条件包括:1、该MLD与该帧的接收方MLD存在P2P业务需求,且AP MLD了解这一情况;2、该MLD进行过EMLSR操作模式切换。
在上述必要条件基础上,在AP MLD满足即将为该帧的接收方MLD共享TXOP进行P2P传输的条件下,可以将该MLD作为共享TXOP中的一个预期接收方,如下描述携带该操作模式信息可能的交互流程。
示例1:
如图28所示,non-AP MLD2和non-AP MLD3分别向AP MLD(如多条链路中的链路1)发送EML OMN帧,将EMLSR Mode子字段置为1,以宣告进入了EMLSR模式,AP MLD随即反馈相同的EML OMN帧,收到反馈帧后non-AP MLD 2、3可以完成对应操作模式的切换,开启EMLSR模式并退出节能模式进入活跃状态。之后AP在某时间使用所设计的Peer MLD EML OMN帧对non-AP MLD1进行对端设备EML操作模式切换的通告。
示例2:
如图29所示,non-AP MLD2和non-AP MLD3分别向AP MLD(如多条链路中的链路1)发送EML OMN帧,将EMLSR Mode子字段置为1,以宣告进入了EMLSR模式,将EMLSR Mode子字段置为0,以宣告进入了EMLSR模式,AP MLD随即反馈相同的EML OMN帧,收到反馈帧后non-AP MLD 2、3可以完成对应操作模式的切换,进入和退出EMLSR模式。之后AP在某时间使用所设计的Peer MLD EML OMN帧对non-AP MLD1进行对端设备EML操作模式切换的通告。
三、宣告方法3:AP被动向对等设备宣告EMLSR模式的改变
当某一方设备意图切换EML操作模式时(如关闭EMLSR模式),按照现有机制,与AP MLD进行EML OMN帧交互然后按照规则进行切换。
并且任意设备可以使用对等MLD EML操作模式请求帧向AP MLD申请告知其他设备的EML操作模式,AP MLD在收到该申请后,使用新设计的对等MLD EML操作模式通告帧,向其他设备宣告该切换信息。
该对等MLD EML操作模式请求帧与对等MLD EML操作模式通告帧为新设计的帧,有如下两种实现方法:
1)对等MLD EML操作模式请求帧与对等MLD EML操作模式通告帧的实现方法1,如下描述,二者可以使用不同类型的帧:
对等MLD EML操作模式请求帧,为一种新设计的EHT Action帧,仅以单播方式发送,对等MLD EML操作模式请求帧的结构如表4所示,Dialog Token和Peer MLD EML OM Info list字段,如表4中 加粗下划线所示。
Figure PCTCN2022089124-appb-000004
表4
其中Category以及EHT Action字段分别用以指示其属于EHT Action帧并且是所设计的对等MLD EML操作模式请求帧。
其中,Dialog Token字段是一个由发送该请求的non-AP MLD选择一个不为零的值,用以标识本次交互。
其中,Peer MLD EML OM Info list结构如图30所示,其中,Count为所携带的MLD Info子字段的数量,其中,所携带的MLD Info子字段所对应的MLD,代表向AP MLD请求宣告EML操作模式的对端non-AP MLD。
每个MLD Info子字段用以指示某MLD的身份信息,如MLD的MAC地址和/或与AP MLD关联时被分配的AID,且可能的结构如图25、图26、图27所示。
对等MLD EML操作模式通告帧,为一种新设计的EHT Action帧,仅以单播方式发送,对等MLD EML操作模式通告帧结构的如表5所示,Dialog Token和Peer MLD EML OM Info list字段,如表5中加粗下划线所示。
Figure PCTCN2022089124-appb-000005
表5
其中Category以及EHT Action字段分别用以指示其属于EHT Action帧并且是所设计的对等MLD EML操作模式通告帧。Dialog Token字段的值与该对等MLD EML操作模式宣告对应的对等MLD EML操作模式请求帧中的Dialog Token字段的值相同。需要指出的是,当Dialog Token的值为0时,代表该对等MLD EML操作模式宣告是未经non-AP MLD的请求,由AP MLD自主发送的。
其中Peer MLD EML OM Info list结构如图24所示,其中Count为所携带的MLD EML OM Info子字段的数量。
每个EML OM Info包含一个MLD Info子字段和一个EML Control子字段,MLD Info子字段用以指示某MLD的身份信息,如MLD的MAC地址和/或与AP MLD关联时被分配的AID,且可能的结构如图25、图26、图27所示。
EML Control字段,可以用以指示Peer MLD EML OM Info list中对应non-AP MLD的EML操作模式。
2)对等MLD EML操作模式请求帧与对等MLD EML操作模式通告帧的实现方法2,如下描述,这两个帧可以使用相同类型的帧,该帧的发送方向决定其解释方法。
对等MLD EML操作模式请求帧与对等MLD EML操作模式通告帧为一种新设计的EHT Action帧,仅以单播方式发送,对等MLD EML操作模式通告帧的结构如表6所示,Dialog Token和Peer MLD EML OM Info list字段,如表6中加粗下划线所示。
Figure PCTCN2022089124-appb-000006
表6
其中Category以及EHT Action字段分别用以指示其属于EHT Action帧并且是所设计的对等MLD EML操作模式请求/通告帧。
当该帧是由non-AP MLD向AP MLD发送时,该帧为对等MLD EML操作模式请求帧,用以向AP MLD请求该帧所包含的一个或多个non-AP MLD的EML操作模式,Dialog Token字段是发送该帧的non-AP MLD选择的一个不为零的值,用以标识该次请求;当该帧是由AP MLD向non-AP MLD发送时,该帧为对等MLD EML操作模式宣告帧,用以向non-AP MLD宣告一个或多个non-AP MLD的EML操作模式,Dialog Token字段的值与该对等MLD EML操作模式宣告对应的对等MLD EML操作模式请求帧中的Dialog Token字段的值相同。需要指出的是,当Dialog Token的值为0时,代表该对等MLD EML操作模式宣告是未经non-AP MLD的请求,由AP MLD自主发送的。
其中Peer MLD EML OM Info list的结构如图24所示,其中Count为所携带的MLD EML OM Info子字段的数量,
每个EML OM Info包含一个MLD Info子字段和一个EML Control子字段,MLD Info子字段用以指示某MLD的身份信息,如MLD的MAC地址和/或与AP MLD关联时被分配的AID,且可能的结构如图25、图26、图27所示。
当该帧是由non-AP设备发送的对等MLD EML操作模式请求帧时,EML Control字段不具有实际意义,可以不存在或设为保留值,当该帧时由AP设备发送的对等MLD EML操作模式宣告帧时,EML Control字段用以指示Peer MLD EML OM Info list中对应non-AP MLD的EML操作模式。如下描述采用该操作模式请求帧可能的交互流程。
示例1:
如图31所示,non-AP MLD2和non-AP MLD3分别向AP MLD(如多条链路中的链路1)发送EML OMN帧,将EMLSR Mode子字段置为1,以宣告进入了EMLSR模式,将EMLSR Mode子字段置为0,以宣告进入了EMLSR模式,AP MLD随即反馈相同的EML OMN帧,收到反馈帧后non-AP MLD 2、3可以完成对应操作模式的切换,开启和关闭EMLSR模式,并相应的退出和进入节能模式。non-AP MLD1在某时间使用所设计的Peer MLD EML OM Request帧向AP MLD请求non-AP MLD2、3的EML操作模式,收到请求后,AP MLD使用所设计的Peer MLD EML OMN帧对non-AP MLD1进行对端设备EML操作模式切换的宣告。
示例2:
如图32所示,non-AP MLD2和non-AP MLD3分别向AP MLD(如多条链路中的链路1)发送EML OMN帧,将EMLSR Mode子字段置为1,以宣告进入了EMLSR模式,将EMLSR Mode子字段置为0,以宣告进入了EMLSR模式,AP MLD随即反馈相同的EML OMN帧,收到反馈帧后non-AP MLD 2、3可以完成对应操作模式的切换,开启和关闭EMLSR模式,并相应的退出和进入节能模式。AP MLD在某时间直接使用所设计的Peer MLD EML OMN帧对non-AP MLD1进行对端设备EML操作模式切换的宣告,在Peer MLD EML OMN帧中,将Dialog Token字段设为0。
当其中有一方不支持EMLSR功能或在P2P中使用EML操作时,本方案后续将不会继续进行,此时将仅允许双方设备在一条链路上使用基础的空间流(如单空间流)进行帧的发送与接收。
第三方面,设计了EMLSR操作在P2P传输中使用的交互流程,具体包括如下内容:
需要指出都是,在本交互流程开始前,可以认为P2P发起方non-AP设备已经与AP进行了被称作“TXOP Request”的上述交互流程。通过该交互流程,AP已经从non-AP设备处获知其有P2P传输的需求,并获得了其P2P传输的响应方(或称接收方)信息,对此这里不做赘述。
一、实施方法1:P2P发起方non-AP MLD发送初始控制帧的EMLSR操作场景中,在本交互流程开始之前设备之间需要进行EML能力信息交互以及EML操作模式宣告,交互流程如图33所示,包括如下内容:
步骤1.对等non-AP MLD之间交互EML能力信息及EML操作模式宣告;
需要指出都是,使用本方案的设备可以通过包括但不限于本申请实施例上述第一方面和第二方面提供的各个示例进行EML能力信息的交互及EML操作模式宣告。
利用WLAN标准进行P2P通信的机制有很多,本示例不对具体的能力信息交互的形式及流程加以限制,一个示例中,进行TDLS建立时,在TDLS Discovery Response帧、TDLS Setup Request Action帧、TDLS Setup Response Action帧中,携带包含有EML能力信息字段的多链路元素(如基本多链路元素以及上述提及的P2P变体多链路元素)。
步骤2:AP MLD在某条链路(如链路1)上通过模式2的触发式TXOP共享机制将TXOP共享给P2P发起方non-AP MLD的附属STA(如STA11);
一些示例中,需要工作在EMLSR模式的non-AP MLD可以在其工作的EMLSR链路集合上均可以 接收并解析MU-RTS TXS帧。否则,如果P2P发起方non-AP MLD也工作在EMLSR模式下,则需要在MU-RTS TXS帧发送之前,通过现有机制触发P2P发起方non-AP MLD的EMLSR切换。
步骤3:EMLSR链路切换交互;
一些示例中,P2P发起方non-AP MLD的附属STA(如STA11)在通过触发式TXOP共享机制从AP处获取TXOP后(向AP响应CTS后),在该链路上以单空间流的形式向对等non-AP MLD在该链路上的附属STA(如STA21)发送EMLSR初始控制帧(如MU-RTS),并在其中进行相应的填充。
一些示例中,在发送初始控制帧时,P2P发起方non-AP MLD(non-AP MLD1)同时进行EMLSR链路切换,P2P响应方non-AP MLD(non-AP MLD2)根据现有机制进行切换,初始控制帧的填充时间长度需要保证两方EMLSR链路切换均可完成,一种自然的方法是填充时间选择两方所宣告能力信息的较大值,但考虑到实际实现中,P2P发起方可以较早的开启EMLSR链路切换,同时考虑到机制通用性,此处可以仅考虑满足P2P响应方non-AP MLD的切换时延需求即可。
一些示例中,P2P发起方non-AP MLD可以在接收并反馈AP MLD所发送的MU-RTS TXS所对应的时间段内和/或向P2P响应方设备发送初始控制帧及接收反馈的时间段内进行EMLSR链路切换。P2P发起方non-AP MLD需要保证在P2P响应方non-AP MLD的附属STA进行初始控制帧的响应之后具备立即开始多空间流传输的能力,即处于EMLSR单链路多空间流帧交换操作模式。
步骤4:帧交换。
一些示例中,P2P响应方non-AP MLD的附属STA(如STA21)完成链路切换后(向P2P发起方non-AP MLD的附属STA响应CTS),双方可以进行单链路多空间流帧交互。
一些示例中,如果P2P响应方non-AP MLD的附属STA(如STA21)并没有对初始控制帧进行反馈(如设置了NAV,或设备出现其他问题),则P2P发起方non-AP MLD不得进行后续的数据传输。
一些示例中,Non-AP MLD结束链路合并状态切换回侦听操作状态的时机遵循规定的现有机制,AP MLD在所分配的TXOP结束之后的对应EMLSR Transition Delay所指示的时间之后,认为对应的non-AP MLD结束了链路合并状态并返回了侦听操作模式。
二、实施方法2:使用MU-RTS TXS或MU-RTS的变体指示切换的场景中,需要指出的是,在TXOP Request流程中,P2P发起方non-AP MLD除了指示其所需的TXOP时间,还指示了其要进行P2P通信的目标接收方的地址信息,且该目标接收方与AP MLD处于关联状态,并交互了EML能力信息。不要求设备间进行EML能力信息交互以及EML操作模式宣告。
在本交互流程开始之前设备之间需要进行EML能力信息交互以及EML操作模式宣告,如图43所示,包括如下内容:
步骤1.AP触发式TXOP共享机制;
一些示例中,AP MLD在某条链路(如链路1)进行信道接入,获取TXOP后,发送TXOP共享模式子字段为2的MU-RTS TXS帧或MU-RTS的变体帧,将TXOP共享给P2P发起方non-AP MLD的附属STA(如STA11),同时也将该MU-RTS TXS帧发送给P2P发起方non-AP MLD所指示的P2P响应方non-AP MLD在该链路上工作的附属STA(如STA21)。
一些示例中,MU-RTS TXS是通过设置MU-RTS帧中的公共信息字段的GI and HE/EHT-LTF type/Triggered TXOP Sharing Mode子字段实现如图34、图35所示,之前的MU-RTS帧该字段为预留值,当该预留值设为0时,说明其不为MU-RTS TXS帧。
使用MU-RTS TXS触发帧的用户信息列表字段实现TXOP持续时间的指示以及接收方的指示,如图36、图37所示。其中AID12子字段用以指示需要处理该帧的设备的AID信息,RU allocation以及EHT结构中的PS160子字段用以指示所分配的资源块信息,Allocation Duration字段用以指示所分配的TXOP持续时间,以16微秒为单位。
一些示例中,可以采用选项1(Opt1)的方式,即:在不改变MU-RTS TXS,直接使用现有的MU-RTS TXS帧,并使用Allocation Duration=0指示接收方。
具体的,可以将RA设置为广播地址,并在用户信息列表中同时携带P2P发起方和P2P响应方的用户信息,P2P发起方仍然使用现有机制,不同之处在于,P2P响应方的Allocation Duration字段设置为0,以指示其为P2P响应方(未向其分配可用TXOP)。并指定双方设备在不同的RU(不同的20MHz子信道)中进行CTS的响应。
同时,并且根据关联时所交互的EML能力信息,对该帧进行填充,使得接收到该帧的non-AP MLD(non-AP MLD1和non-AP MLD2)拥有足够的时间进行切换。Opt1的一示例如图38所示:
一些示例中,还可以采用选项2(Opt2)的方式,该方式通过新的MU-RTS变体来实现。
具体的,如图39所示,将MU-RTS帧中,公共信息字段中用作保留的LDPC extra symbol segment字段,比如采用占用1比特的预留,从公共信息字段的B27开始到B27结束)解释为EML Triggered TXOP  sharing mode子字段,如图39中加粗下划线所示。
需要指出的是,在其他Trigger帧中,该字段仍然被解释为LDPC extra symbol segment,仅在MU-RTS类型的Trigger帧中,该字段解释为EML Triggered TXOP sharing mode。只需要在使用时将Triggered TXOP sharing mode设为2,EML Triggered TXOP sharing mode子字段设为1,代表该MU-RTS为本实施方法中使用的特殊的MU-RTS TXS,称为MU-RTS ETXS。
MU-RTS ETXS同时具备如下功能:触发本帧的接收方设备进行EMLSR链路切换,为P2P发起方共享TXOP进行P2P传输。
MU-RTS ETXS的User Info字段与提议的MU-RTS TXS的User Info字段格式相同,如图36、图37所示。不同之处在于,MU-RTS ETXS的User Info字段中,可以通过某种方式,指示该User Info所对应的设备为所分配的TXOP的接收方设备。比如,采用上述Opt1方式,可以将Allocation Duration设置为0用以实现上述功能;又如,采用上述Opt2方式,可以使用预留字段中的某一位来标识该User Info字段对应的设备是所分配的TXOP的拥有者(Holder)或响应者(Responder),其中TXOP的拥有者即为P2P传输的P2P发起方,TXOP的响应者为该TXOP传输中预期的接收方,也就是在User Info中使用Allocation Duration=0所指示的P2P传输的接收方。并且,被指示为TXOP Responder的设备,在完成EMLSR切换之后,不应立即返回侦听模式,必须保持该状态一段时间以接收以多空间流传输的P2P数据。例如,参照non-AP MLD使用EMLSR模式与AP MLD进行单链路多空间流帧交换中,判断帧交换结束返回侦听机制的方法,来决定何时返回侦听模式。
采用上述Opt2方式的一示例中,在User Info中使用新定义的字段标识P2P接收方,如图40所示,针对该新定义MU-RTS ETXS的User Info字段中的一位预留比特而言,以HE变体的User Info字段为例,如表7所示,将新定义的比特命名为P2P角色指示(P2P Role Indication),该字段等于0,代表该User Info所对应设备为所分配TXOP的拥有者(holder);该字段等于1,代表该User Info所对应设备为所分配TXOP的响应者(responder)。
Figure PCTCN2022089124-appb-000007
表7
为防止对于不可识别EML Triggered TXOP sharing mode子字段的设备造成错误解读,将不会在MU-RTS ETXS的User Info字段将不会包含不支持本方案的设备。
一些示例中,上述Opt1方式和上述Opt2方式,都可以支持使用一个帧为多个设备分配TXOP,TXOP分配取决于User Info的排列顺序。
具体的,对于Opt1方式,以一个Allocation Duration不为0的User Info开头,到下一个Allocation Duration不为0的User Info为止,其间所有的Allocation Duration为0的User Info都是第一段TXOP的潜在的Responder,下一段TXOP的开启时间在前一段TXOP结束时间之后。如User Info字段的Allocation Duration值分别为t1,0,t2,0,0,t3,0,则代表第一段TXOP从0时刻开始,到t1时刻,holder是设备1,responder是设备2,第二段TXOP从t1时刻开始,到t1+t2时刻,holder是设备3,responder是设备4和5,第三段TXOP从t1+t2时刻开始,到t1+t2+t3时刻,holder是设备6,responder是设备7。对应设备需要根据需要进行EMLSR模式的切换。基于该Opt1方式一次性的分配多个TXOP可能的扩展情况如图41所示。
具体的,对于Opt2方式,根据Direction的值成对的解读TXOP的起止时间。基于该Opt2方式一次性的分配多个TXOP可能的扩展情况如图42所示。
步骤2:non-AP MLD执行EMLSR链路切换;
一些示例中,需要工作在EMLSR模式的non-AP MLD可以接收与解析MU-RTS TXS帧。
一些示例中,当P2P响应方non-AP MLD的附属STA(STA21)收到AP MLD的附属AP所发送的 MU-RTS TXS或所设计的MU-RTS TXS的变体帧(MU-RTS ETXS)时,直接进行EMLSR链路切换,并保证在CTS响应发送完成后有能力在该链路(链路1)上进行单链路多空间流帧交换。
一些示例中,若双方同时为工作在EMLSR模式下的non-AP MLD,则当P2P发起方non-AP MLD1的附属STA11和P2P响应方non-AP MLD的附属STA21,共同收到AP MLD的附属AP所发送的MU-RTS TX或所设计的MU-RTS的变体帧时,直接进行EMLSR链路切换,并保证在CTS响应发送完成后有能力在该链路(链路1)上进行单链路多空间流帧交换。
步骤3:non-AP MLD的附属STA利用AP所共享的TXOP进行单链路多空间流帧交换。
一些示例中,Non-AP MLD结束链路合并状态切换回侦听操作状态的时机遵循规定的现有机制,即:AP MLD在所分配的TXOP结束之后的对应EMLSR Transition Delay所指示的时间之后,认为对应的non-AP MLD结束了链路合并状态并返回了侦听操作模式。
三、实施方法3:AP MLD分步指示EMLSR链路切换与触发式TXOP共享的场景中,在TXOP Request流程中,P2P发起方non-AP MLD除了指示其所需的TXOP时间,还指示了其要进行P2P通信的目标P2P响应方的地址信息,且该目标P2P响应方与AP MLD处于关联状态,并交互了EML能力信息。
在本交互流程开始之前设备之间需要进行EML能力信息交互以及EML操作模式宣告,如图45所示,包括如下内容:
步骤1:AP MLD指示双方设备进行EMLSR链路切换;
一些示例中,AP MLD在某条链路(如链路1)上竞争并获得TXOP之后,向P2P响应方non-AP MLD工作在该链路上的附属STA21发送初始控制帧(如MU-RTS),以指示两对等non-AP MLD进行EMLSR链路切换。
一些示例中,若双方同时为工作在EMLSR模式下的non-AP MLD,AP向P2P发起方non-AP MLD1的附属STA11和P2P响应方non-AP MLD的附属STA21,共同发送初始控制帧(如MU-RTS),以指示两对等non-AP MLD进行EMLSR链路切换。初始控制帧通过广播形式发送,并在对应的用户信息中指示反馈所使用的资源信息,并且填充的长度可以保证P2P发起方和P2P响应方non-AP MLD有足够的时间完成EMLSR链路切换。(现有机制可实现)
一些示例中,若在交互中,存在一方non-AP MLD并未对AP MLD所发送的初始控制帧进行响应,即初始帧交互并未完成,则AP MLD将认为不满足使用EMLSR通信的条件,后续的流程将不再进行。此时,已进行了EMLSR链路切换并处于链路合并状态的non-AP MLD,可以参照规定的现有机制,即:non-AP MLD使用EMLSR模式与AP MLD进行单链路多空间流帧交互之后,判断操作结束返回侦听机制的方法,来决定何时返回侦听模式。
步骤2:AP MLD的执行触发式TXOP共享流程;
一些示例中,可以使用现有Triggered TXOP Sharing流程
需要注意的是,由于MU-RTS TXS是发送给P2P发起方non-AP MLD的附属STA(STA11)的,根据现有的规则,P2P响应方non-AP MLD在完成后的一段时间内没有接收到指定类型的帧后,会执行逆向EMLSR链路切换,即从单链路多空间流帧交换操作模式切换回侦听操作模式。因此,需要增加额外的如下规则来防止该情况的出现:
1)规则1.收到初始控制帧(如MU-RTS)的设备完成切换后(从发送反馈之后开始计时)至少保持单链路多空间流帧交换操作状态一段时间,之后non-AP MLD使用EMLSR模式与AP MLD进行单链路多空间流帧交互之后,判断操作结束返回侦听机制的方法,来决定何时返回侦听模式,并完成相应的切换操作。
针对上述一段时间而言,该段时间为预留给AP向另一方设备进行Triggered TXOP Sharing机制的时间,可选的,该段时间可以为:以最低速率发送的MU-RTS TXS的时间+2*SIFS+以最低速率发送的CTS的时间。
实现方式1:将本规则1)作为EMLSR部分的预定规则,即所有的,建立了P2P关系的,并且处于EMLSR模式的设备,收到初始控制帧之后,均至少等待上述时间;
实现方式2:定义新的MU-RTS变体,用以区分不同的切换时间条件。
示例性的,如图44所示,使用MU-RTS帧中用作保留的Number of HE/EHT-LTF symbols子字段,用以表示该帧所指示进行的EMLSR链路切换所需要至少保持的时间,以32微秒为单位。
需要指出的是:在其他类型的Trigger帧中,该字段仍然解释为Number of HE/EHT-LTF symbols子字段,仅在Trigger帧为MU-RTS时,该字段解读为所设计的EMLSR hold duration子字段。
2)规则2.将MU-RTS TXS帧也发送给P2P响应方non-AP MLD的对应附属STA(如STA21),并要求其反馈CTS,具体实现方法与上述实施方法2中相关描述相同。
步骤3:non-AP MLD的附属STA利用AP所共享的TXOP进行单链路多空间流帧交换。
一些示例中,Non-AP MLD结束链路合并状态切换回侦听操作状态的时机遵循规定的现有机制,AP MLD在所分配的TXOP结束之后的对应EMLSR Transition Delay所指示的时间之后,认为对应的non-AP MLD结束了链路合并状态并返回了侦听操作模式。
对比上述本交互流程的三种实施方法可知:,实施方法1中,不需要对现有的EMLSR操作以及Triggered TXOP Sharing机制进行修改,仅增加了设备间交互EML能力信息以及进行EML操作模式宣告的方法;实施方法2中,要求在进行申请时指示接收方地址信息,并需要工作在EMLSR侦听模式的设备可以接收并解析MU-RTS TXS帧,并同时实现EMLSR链路切换以及Triggered TXOP Sharing,信令开销最小,不需要设备间交互EML能力信息以及进行EML操作模式宣告;实施方法3中,同样要求在进行申请时指示接收方地址信息,并需要修改机制以避免某设备提前返回EMLSR侦听状态,不需要设备间交互EML能力信息以及进行EML操作模式宣告。
综上所述,采用本申请实施例的上述各个实施方及各个示例,可以将EMLSR操作用于non-AP MLD之间的P2P传输,而且AP可以调度其BSS内的P2P传输。利用触发式TXOP共享来实现non-AP MLD之间使用EMLSR操作进行P2P传输的优势,引入该触发式TXOP共享的机制,可以使AP MLD对其BSS内的所有传输进行管理与调度,防止进行无效传输导致信道资源的浪费,工作在EMLSR模式的non-AP MLD都可以通过该触发式TXOP共享的机制进行P2P传输。
需要指出的是,上面这些示例可以结合上述本申请实施例中的各种可能性,此处不做赘述。
图46是根据本申请一实施例的第一设备4600的结构示意图。该设备可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
第一传输单元4610,用于与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备4600与该第二设备进行帧传输;其中,该第一设备4600及该第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。
在一种实施方式中,该设备还包括:第二传输单元,用于向第三设备申请传输机会TXOP;该第三设备用于共享TXOP给该第一设备4600和该第二设备进行该直连通信,在TXOP共享时间内统一调度该第一设备4600与该第二设备之间的帧传输。
在一种实施方式中,该第一传输单元4610,还用于该增强多链路操作为增强多链路单无线电EMLSR操作的情况下,在该第二设备具有的多条链路中的一条链路上与该第二设备进行单链路多空间流的帧交换。其中,该多条链路包括:多条EMLSR链路,除此之外,应用于EMLMR场景中,该多条链路还可以包括:多条EMLMR链路。
在一种实施方式中,该第一设备4600用于为工作在EMLSR模式的该第二设备提供服务;该第二设备用于支持该EMLSR操作并工作在EMLSR模式下。
在一种实施方式中,该第一设备4600用于为工作在EMLSR模式的该第二设备提供服务、和/或支持该EMLSR操作并工作在EMLSR模式下;该第二设备用于为工作在EMLSR模式的该第一设备4600提供服务、和/或支持该EMLSR操作并工作在EMLSR模式下。
在一种实施方式中,该设备还包括:交互单元,用于与该第二设备建立该直连通信时进行第一能力信息的交互,其中,第一能力为:支持EMLSR操作并能为工作于EMLSR模式的设备提供服务的能力或工作于EMLSR模式的能力。
在一种实施方式中,该第一能力信息携带在多链路元素中。
一些示例中,该多链路元素包括如下至少之一的方式:
方式1:该多链路元素为基本多链路元素的情况下,通过该基本多链路元素中的公共信息字段携带该第一能力信息;其中,第一能力信息的子字段包括:用于指示EMLSR模式的第一子字段、及用于指示在该直连通信中支持EMLSR操作的第二子字段;
方式2:该多链路元素为P2P变体多链路元素的情况下,通过该P2P变体多链路元素中的公共信息字段携带该第一能力信息;其中,该P2P变体多链路元素中还包括:携带第三子字段的多链路控制字段,该第三子字段用于指示多链路元素的类型。
在一种实施方式中,该设备还包括:第三传输单元,用于向该第三设备发送第一帧;在该第一帧中携带该第一能力信息的子字段,以使该第三设备获知该第一设备600支持EMLSR操作并能为工作于EMLSR模式的该第二设备提供服务。
在一种实施方式中,该设备还包括:第四传输单元,用于向该第二设备发送第一帧,在该第一帧中携带该第一能力信息的子字段,以使该第二设备获知该第一设备600支持EMLSR操作并能为工作于EMLSR模式的该第二设备提供服务。
在一种实施方式中,该设备还包括:第一接收单元,用于接收该第二设备反馈的第一响应帧,在该 第一响应帧中携带该第一能力信息的子字段。
在一种实施方式中,该第一设备4600,为工作在EMLSR模式的至少一个设备提供服务、和/或宣告开启EMLSR模式后工作在EMLSR模式下。
本申请实施例的第一设备4600能够实现前述的方法实施例中的第一设备的对应功能。该第一设备4600中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备4600中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图47是根据本申请一实施例的第二设备4700的结构示意图。该设备可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
第一切换单元4710,用于与用于执行上述任一设备的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
在一种实施方式中,该第二设备4700用于支持该增强多链路操作的模式切换;其中,该增强多链路操作为EMLSR操作。
在一种实施方式中,该切换单元,还用于:需要切换EMLSR模式的情况下,向该第一设备发送第二帧,在该第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,该控制字段包括该EMLSR模式子字段;接收该第一设备反馈的第二响应帧的情况下,完成该EMLSR模式的切换。
在一种实施方式中,该第一切换单元4710,还用于:需要切换EMLSR模式的情况下,向该第三设备发送第二帧,在该第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,该控制字段包括该EMLSR模式子字段;接收该第三设备反馈的第二响应帧的情况下,完成该EMLSR模式的切换。
在一种实施方式中,该第三设备用于在第一时间使用第三帧向与该第三设备关联且支持与该第二设备4700进行该直连通信的其他设备宣告切换信息。
在一种实施方式中,该第一时间为:完成该EMLSR模式切换后,且触发共享TXOP进行该直连通信之前的任意时间。
在一种实施方式中,该设备还包括:第五传输单元,用于在需要切换EMLSR模式的情况下,向该第三设备发送第四帧,请求该第三设备宣告与该第二设备4700进行该直连通信的其他设备的EML操作模式;其中,该第三设备用于响应该请求后使用第三帧向与该第三设备关联且支持与该第二设备4700进行该直连通信的其他设备宣告切换信息。
在一种实施方式中,该第三帧中携带第一信息;其中,该第一信息,包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
在一种实施方式中,该具备对等EML能力设备对应身份信息,包括:MAC地址、和/或与该第三设备关联时被分配的AID。
在一种实施方式中,该第四帧为与该第三帧不同类型的帧、或与该第三帧相同类型的帧。
在一种实施方式中,在该第四帧中携带用以指示当前帧属于具备对等EML能力设备的请求帧的字段。
在一种实施方式中,该第四帧携带用以指示当前帧属于具备对等EML能力设备的请求帧或通告帧的字段。
在一种实施方式中,该第四帧包括:第一值及第一信息;其中,该第一值用于标识本次EML能力信息的交互;其中,该第一信息包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
本申请实施例的第二设备4700能够实现前述的方法实施例中的第二设备的对应功能。该第二设备4700中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备4700中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图48是根据本申请一实施例的第一设备4800的结构示意图。该设备可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
第一通信单元4810,用于在第一设备4800附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;第六传输单元4820,用于根据该直连通信关系在该第一设备4800附属的第一STA与该第二设备附属的第二STA之间采用增强多链路操作进行帧传输;其中,该第一设备4800附属的第一STA以单链路单空间流的形式向该第二设备附属的第二STA发送第六帧。
在一种实施方式中,该第一设备4800附属的第一STA与该第二设备附属的第二STA工作在同一链路上。
在一种实施方式中,该设备还包括:第一请求单元,用于向该第三设备请求所需的TXOP时间;第二接收单元,用于接收该第三设备发送的第五帧,其中,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备800附属的第一STA。
在一种实施方式中,该设备还包括:第三接收单元,用于在各自工作的EMLSR链路集合上,该第一设备4800附属的第一STA和该第二设备附属的第二STA均能接收并解析该第五帧。
在一种实施方式中,该设备还包括:第二切换单元,用于在该第一设备4800附属的第一STA向该第二设备附属的第二STA发送该第六帧的同时,该第一设备800进行EMLSR链路切换。
在一种实施方式中,该设备还包括:第三切换单元,用于在该第一设备4800附属的第一STA接收并反馈该第五帧所对应的时间段内、和/或向该第二设备附属的第二STA发送该第六帧及接收第六帧反馈的时间段内,该第一设备4800进行EMLSR链路切换。
在一种实施方式中,在该第六帧中携带填充信息,该填充信息满足如下条件的至少之一:
该第二设备的切换时延需求;
该第一设备的切换时延需求;
该第二设备和该第一设备的切换时延需求。
在一种实施方式中,该设备还包括:第二请求单元,用于向该第三设备请求所需的TXOP时间、及指示第一身份信息;其中,该第一身份信息为第二设备附属的第二STA的身份信息,该第二设备附属的第二STA与该第三设备相关联并交互了彼此的EML能力信息。
在一种实施方式中,该设备还包括:第四接收单元,用于接收该第三设备发送的第五帧或第五帧的变体,其中,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备4800附属的第一STA及该第二设备附属的第二STA中的至少之一。
在一种实施方式中,该第五帧或该第五帧的变体,用于为该第一设备4800附属的第一STA和该第二设备附属的第二STA中的至少之一分配TXOP。
在一种实施方式中,该第五帧或第五帧的变体,包括用户信息列表字段;该用户信息列表字段用于向该第三设备请求所需的该TXOP时间。
在一种实施方式中,该用户信息列表字段包括:用于指示设备的第一指示子字段、用于指示直连通信双方角色的第二指示子字段、用于指示TXOP时间的第三指示子字段。
在一种实施方式中,该第三指示子字段为第二值,该第二值用于指示当前设备为与该第一设备4800附属的第一STA进行直连通信的响应方。
在一种实施方式中,该设备还包括:根据公共信息中第一预留字段及第一预留字段子字段的取值来确定该第五帧的变体。
在一种实施方式中,该设备还包括:第五接收单元,用于在各自工作的EMLSR链路集合上,该第一设备4800附属的第一STA和该第二设备附属的第二STA均能接收并解析该第五帧。
在一种实施方式中,该设备还包括:第四切换单元,用于在该第一设备4800附属的第一STA及该第二设备附属的第二STA中的至少之一在收到该第五帧或该第五帧的变体的情况下,该第一设备4800及该第二设备中的至少之一进行EMLSR链路切换。
在一种实施方式中,该设备还包括:第三请求单元,用于向该第三设备请求所需的TXOP时间、及指示第一身份信息;其中,该第一身份信息为第二设备附属的第二STA的身份信息,该第二设备附属的第二STA与该第三设备相关联并交互了彼此的EML能力信息。
在一种实施方式中,该设备还包括:第六接收单元,用于接收该第三设备发送的第五帧,该第三设备用于以TXOP分享模式2将该TXOP时间共享给该第一设备4800附属的第一STA及该第二设备附属的第二STA中的至少之一。
在一种实施方式中,该设备还包括:保持单元,用于在收到该第六帧的该第二设备附属的第二STA完成链路切换的情况下,在第二时间未达到前继续保持该单链路多空间流的状态。
在一种实施方式中,该第二时间,根据以最低速率发送的该第五帧时间、第五帧反馈时间、短帧间间隔SIFS得到。
在一种实施方式中,该设备还包括:触发单元,用于在该第五帧发送给该第二设备附属的第二STA的情况下,触发第五帧的反馈。
在一种实施方式中,该设备还包括:第一交换单元,用于在该第一设备4800及该第二设备中的至少之一完成EMLSR链路切换的情况下进行单链路多空间流的帧交换。
本申请实施例的第一设备4800能够实现前述的方法实施例中的第一设备的对应功能。该第一设备 4800中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备4800中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图49是根据本申请一实施例的第二设备4900的结构示意图。该设备可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
第二通信单元4910,用于在第一设备附属的第一STA与第二设备4900附属的第二STA之间建立直连通信关系;第七传输单元4920,用于根据该直连通信关系在该第一设备附属的第一STA与该第二设备4900附属的第二STA之间采用增强多链路操作进行帧传输;其中,该第二设备4900附属的第二STA接收第六帧,该第六帧由该第一设备附属的第一STA以单链路单空间流的形式发送。
在一种实施方式中,该第一设备附属的第一STA与该第二设备4900附属的第二STA工作在同一链路上。
在一种实施方式中,该设备还包括:第五切换单元,用于进行EMLSR链路切换。
在一种实施方式中,该设备还包括:第二交换单元,用于在该第二设备4900完成该EMLSR链路切换的情况下进行单链路多空间流的帧交换。
本申请实施例的第二设备4900能够实现前述的方法实施例中的第二设备的对应功能。该第二设备4900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备4900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图50是根据本申请实施例的通信设备5000示意性结构图。该通信设备5000包括处理器5010,处理器5010可以从存储器中调用并运行计算机程序,以使通信设备5000实现本申请实施例中的方法。
可选地,通信设备5000还可以包括存储器5020。其中,处理器5010可以从存储器5020中调用并运行计算机程序,以使通信设备5000实现本申请实施例中的方法。
其中,存储器5020可以是独立于处理器5010的一个单独的器件,也可以集成在处理器5010中。
可选地,通信设备5000还可以包括收发器5030,处理器5010可以控制该收发器5030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器5030可以包括发射机和接收机。收发器5030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备5000可为本申请实施例的第一设备,并且该通信设备5000可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备5000可为本申请实施例的第二设备,并且该通信设备5000可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图51是根据本申请实施例的芯片5100的示意性结构图。该芯片5100包括处理器5110,处理器5110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片5100还可以包括存储器5126。其中,处理器5110可以从存储器5126中调用并运行计算机程序,以实现本申请实施例中由第一设备或者第二设备执行的方法。
其中,存储器5126可以是独立于处理器5110的一个单独的器件,也可以集成在处理器5110中。
可选地,该芯片5100还可以包括输入接口5130。其中,处理器5110可以控制该输入接口5130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片5100还可以包括输出接口5140。其中,处理器5110可以控制该输出接口5140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。应用于第一设备和第二设备的芯片可以是相同的芯片或不同的芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图52是根据本申请实施例的通信系统5200的示意性框图。该通信系统5200包括第一设备5210和第二设备5220,其中,该第一设备5210可以包括:第一传输单元,用于与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在该第一设备与该第二设备进行帧传输;其中,该第一设备及该第二设备中的至少之一为:支持该增强多链路操作的设备或工作于该增强多链路操作的设备。该第二设备5220可以包括:第一切换单元,用于与用于执行上述任一设备的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (109)

  1. 一种通信方法,应用于第一设备,所述方法包括:
    所述第一设备与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在所述第一设备与所述第二设备进行帧传输;
    其中,所述第一设备及所述第二设备中的至少之一为:支持所述增强多链路操作的设备或工作于该增强多链路操作的设备。
  2. 根据权利要求1所述的方法,还包括:
    所述第一设备向第三设备申请传输机会TXOP;
    所述第三设备用于共享TXOP给所述第一设备和所述第二设备进行所述直连通信,在TXOP共享时间内统一调度所述第一设备与所述第二设备之间的帧传输。
  3. 根据权利要求1或2所述的方法,其中,所述采用增强多链路操作在所述第一设备与所述第二设备进行帧传输,包括:
    所述增强多链路操作为增强多链路单无线电EMLSR操作的情况下,所述第一设备在所述第二设备具有的多条链路中的一条链路上与所述第二设备进行单链路多空间流的帧交换。
  4. 根据权利要求3所述的方法,其中,所述多条链路包括:多条EMLSR链路。
  5. 根据权利要求3所述的方法,其中,所述第一设备用于为工作在EMLSR模式的所述第二设备提供服务;所述第二设备用于支持所述EMLSR操作并工作在EMLSR模式下。
  6. 根据权利要求3所述的方法,其中,所述第一设备用于为工作在EMLSR模式的所述第二设备提供服务、和/或支持所述EMLSR操作并工作在EMLSR模式下;
    所述第二设备用于为工作在EMLSR模式的所述第一设备提供服务、和/或支持所述EMLSR操作并工作在EMLSR模式下。
  7. 根据权利要求3-6中任一项所述的方法,还包括:
    所述第一设备与所述第二设备建立所述直连通信时进行第一能力信息的交互;其中,第一能力为:支持所述EMLSR操作并能为工作于所述EMLSR模式的设备提供服务的能力或工作于所述EMLSR模式的能力。
  8. 根据权利要求7所述的方法,其中,所述第一能力信息携带在多链路元素中。
  9. 根据权利要求8所述的方法,其中,所述多链路元素包括如下至少之一的方式:
    所述多链路元素为基本多链路元素的情况下,通过所述基本多链路元素中的公共信息字段携带所述第一能力信息;其中,第一能力信息的子字段包括:用于指示EMLSR模式的第一子字段、及用于指示在所述直连通信中支持EMLSR操作的第二子字段;或者,
    所述多链路元素为P2P变体多链路元素的情况下,通过所述P2P变体多链路元素中的公共信息字段携带所述第一能力信息;其中,所述P2P变体多链路元素中还包括:携带第三子字段的多链路控制字段,所述第三子字段用于指示多链路元素的类型。
  10. 根据权利要求9所述的方法,还包括:
    所述第一设备向所述第三设备发送第一帧;
    在所述第一帧中携带所述第一能力信息的子字段,以使所述第三设备获知所述第一设备支持EMLSR操作并能为工作于EMLSR模式的所述第二设备提供服务。
  11. 根据权利要求9所述的方法,还包括:
    所述第一设备向所述第二设备发送第一帧,在所述第一帧中携带所述第一能力信息的子字段,以使所述第二设备获知所述第一设备支持EMLSR操作并能为工作于EMLSR模式的所述第二设备提供服务。
  12. 根据权利要求11所述的方法,还包括:
    所述第一设备接收所述第二设备反馈的第一响应帧,在所述第一响应帧中携带所述第一能力信息的子字段。
  13. 根据权利要求10-12中任一项所述的方法,其中,所述第一设备,为工作在EMLSR模式的至少一个设备提供服务、和/或宣告开启EMLSR模式后工作在EMLSR模式下。
  14. 一种通信方法,应用于第二设备,所述方法包括:
    所述第二设备与用于执行如权利要求1-13中的任一方法的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
  15. 根据权利要求14所述的方法,其中,所述第二设备用于支持所述增强多链路操作的模式切换;
    其中,所述增强多链路操作为增强多链路单无线电EMLSR操作。
  16. 根据权利要求15所述的方法,其中,所述进行增强多链路操作的模式切换,包括:
    所述第二设备需要切换EMLSR模式的情况下,向所述第一设备发送第二帧,在所述第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,所述控制字段包括所述EMLSR模式子字段;
    所述第二设备接收所述第一设备反馈的第二响应帧的情况下,完成所述EMLSR模式的切换。
  17. 根据权利要求15所述的方法,其中,所述进行增强多链路操作的模式切换,包括:
    所述第二设备需要切换EMLSR模式的情况下,向第三设备发送第二帧,在所述第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,所述控制字段包括所述EMLSR模式子字段;
    所述第二设备接收所述第三设备反馈的第二响应帧的情况下,完成所述EMLSR模式的切换。
  18. 根据权利要求17所述的方法,其中,所述第三设备用于在第一时间使用第三帧向与所述第三设备关联且支持与所述第二设备进行所述直连通信的其他设备宣告切换信息。
  19. 根据权利要求18所述的方法,所述第一时间为:完成所述EMLSR模式切换后,且触发共享TXOP进行所述直连通信之前的任意时间。
  20. 根据权利要求15所述的方法,还包括:
    所述第二设备需要切换EMLSR模式的情况下,向所述第三设备发送第四帧,请求所述第三设备宣告与所述第二设备进行所述直连通信的其他设备的EML操作模式;
    其中,所述第三设备用于响应所述请求后使用第三帧向与所述第三设备关联且支持与所述第二设备进行所述直连通信的其他设备宣告切换信息。
  21. 根据权利要求20所述的方法,其中,所述第三帧中携带第一信息;
    其中,所述第一信息,包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
  22. 根据权利要求21所述的方法,其中,所述具备对等EML能力设备对应身份信息,包括:MAC地址、和/或与所述第三设备关联时被分配的AID。
  23. 根据权利要求20所述的方法,其中,所述第四帧为与所述第三帧不同类型的帧、或与所述第三帧相同类型的帧。
  24. 根据权利要求20所述的方法,其中,在所述第四帧中携带用以指示当前帧属于具备对等EML能力设备的请求帧的字段。
  25. 根据权利要求20所述的方法,其中,所述第四帧携带用以指示当前帧属于具备对等EML能力设备的请求帧或通告帧的字段。
  26. 根据权利要求24或25所述的方法,所述第四帧包括:第一值及第一信息;
    其中,所述第一值用于标识本次EML能力信息的交互;
    其中,所述第一信息包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
  27. 一种通信方法,应用于第一设备,所述方法包括:
    在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
    根据所述直连通信关系在所述第一设备附属的第一STA与所述第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
    其中,所述第一设备附属的第一STA以单链路单空间流的形式向所述第二设备附属的第二STA发送第六帧。
  28. 根据权利要求27所述的方法,其中,所述第一设备附属的第一STA与所述第二设备附属的第二STA工作在同一链路上。
  29. 根据权利要求27或28所述的方法,所述方法还包括:
    所述第一设备附属的第一STA向所述第三设备请求所需的TXOP时间;
    所述第一设备附属的第一STA接收所述第三设备发送的第五帧,其中,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA。
  30. 根据权利要求27所述的方法,还包括:
    所述第一设备附属的第一STA和所述第二设备附属的第二STA均能在各自工作的EMLSR链路集合上接收并解析第五帧。
  31. 根据权利要求29所述的方法,还包括:
    在所述第一设备附属的第一STA向所述第二设备附属的第二STA发送所述第六帧的同时,所述第一设备进行EMLSR链路切换。
  32. 根据权利要求29所述的方法,还包括:
    在所述第一设备附属的第一STA接收并反馈所述第五帧所对应的时间段内、和/或向所述第二设备附属的第二STA发送所述第六帧及接收第六帧反馈的时间段内,所述第一设备进行EMLSR链路切换。
  33. 根据权利要求27或28所述的方法,其中,在所述第六帧中携带填充信息,所述填充信息满足如下条件的至少之一:
    所述第二设备的切换时延需求;
    所述第一设备的切换时延需求;
    所述第二设备和所述第一设备的切换时延需求。
  34. 根据权利要求27或28所述的方法,还包括:
    所述第一设备附属的第一STA向所述第三设备请求所需的TXOP时间、及指示第一身份信息;其中,所述第一身份信息为第二设备附属的第二STA的身份信息,所述第二设备附属的第二STA与所述第三设备相关联并交互了彼此的EML能力信息。
  35. 根据权利要求34所述的方法,还包括:
    所述第一设备附属的第一STA接收所述第三设备发送的第五帧或第五帧的变体,其中,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一。
  36. 根据权利要求35所述的方法,其中,所述第五帧或所述第五帧的变体,用于为所述第一设备附属的第一STA和所述第二设备附属的第二STA中的至少之一分配TXOP。
  37. 根据权利要求35或36所述的方法,其中,所述第五帧或第五帧的变体,包括用户信息列表字段;所述用户信息列表字段用于向所述第三设备请求所需的所述TXOP时间。
  38. 根据权利要求37所述的方法,其中,所述用户信息列表字段包括:用于指示设备的第一指示子字段、用于指示直连通信双方角色的第二指示子字段、用于指示TXOP时间的第三指示子字段。
  39. 根据权利要求38所述的方法,其中,所述第三指示子字段为第二值,所述第二值用于指示当前设备为与所述第一设备附属的第一STA进行直连通信的响应方。
  40. 根据权利要求35-39中任一项所述的方法,还包括:
    根据公共信息中第一预留字段及第一预留字段子字段的取值来确定所述第五帧的变体。
  41. 根据权利要求35-40中任一项所述的方法,还包括:
    所述第一设备附属的第一STA和所述第二设备附属的第二STA均能在各自工作的EMLSR链路集合上接收并解析所述第五帧。
  42. 根据权利要求35-41中任一项所述的方法,还包括:
    在所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一在收到所述第五帧或所述第五帧的变体的情况下,所述第一设备及所述第二设备中的至少之一进行EMLSR链路切换。
  43. 根据权利要求27或28所述的方法,还包括:
    所述第一设备附属的第一STA向所述第三设备请求所需的TXOP时间、及指示第一身份信息;其中,所述第一身份信息为第二设备附属的第二STA的身份信息,所述第二设备附属的第二STA与所述第三设备相关联并交互了彼此的EML能力信息。
  44. 根据权利要求43所述的方法,还包括:
    所述第一设备附属的第一STA接收所述第三设备发送的第五帧,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一。
  45. 根据权利要求44所述的方法,还包括:
    在收到所述第六帧的所述第二设备附属的第二STA完成链路切换的情况下,在第二时间未达到前继续保持所述单链路多空间流的状态。
  46. 根据权利要求45所述的方法,其中,所述第二时间,根据以最低速率发送的所述第五帧时间、第五帧反馈时间、短帧间间隔SIFS得到。
  47. 根据权利要求46所述的方法,还包括:
    所述第五帧发送给所述第二设备附属的第二STA的情况下,触发第五帧的反馈。
  48. 根据权利要求45-47中任一项所述的方法,还包括:
    在所述第一设备及所述第二设备中的至少之一完成EMLSR链路切换的情况下进行单链路多空间流的帧交换。
  49. 一种通信方法,应用于第二设备,所述方法包括:
    在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
    根据所述直连通信关系在所述第一设备附属的第一STA与所述第二设备附属的第二STA之间采用 增强多链路操作进行帧传输;
    其中,所述第二设备附属的第二STA接收第六帧,所述第六帧由所述第一设备附属的第一STA以单链路单空间流的形式发送。
  50. 根据权利要求49所述的方法,其中,所述第一设备附属的第一STA与所述第二设备附属的第二STA工作在同一链路上。
  51. 根据权利要求49或50所述的方法,还包括:
    所述第二设备进行EMLSR链路切换。
  52. 根据权利要求51所述的方法,还包括:
    在所述第二设备完成所述EMLSR链路切换的情况下进行单链路多空间流的帧交换。
  53. 一种第一设备,所述设备包括:
    第一传输单元,用于与工作在相同链路上的第二设备建立直连通信的情况下,采用增强多链路操作在所述第一设备与所述第二设备进行帧传输;
    其中,所述第一设备及所述第二设备中的至少之一为:支持所述增强多链路操作的设备或工作于该增强多链路操作的设备。
  54. 根据权利要求53所述的设备,还包括:
    第二传输单元,用于向第三设备申请传输机会TXOP;
    所述第三设备用于共享TXOP给所述第一设备和所述第二设备进行所述直连通信,在TXOP共享时间内统一调度所述第一设备与所述第二设备之间的帧传输。
  55. 根据权利要求53或54所述的设备,其中,所述第一传输单元,还用于:
    所述增强多链路操作为增强多链路单无线电EMLSR操作的情况下,在所述第二设备具有的多条链路中的一条链路上与所述第二设备进行单链路多空间流的帧交换。
  56. 根据权利要求55所述的设备,其中,所述多条链路包括:多条EMLSR链路。
  57. 根据权利要求55所述的设备,其中,所述第一设备用于为工作在EMLSR模式的所述第二设备提供服务;所述第二设备用于支持所述EMLSR操作并工作在EMLSR模式下。
  58. 根据权利要求55所述的设备,其中,所述第一设备用于为工作在EMLSR模式的所述第二设备提供服务、和/或支持所述EMLSR操作并工作在EMLSR模式下;
    所述第二设备用于为工作在EMLSR模式的所述第一设备提供服务、和/或支持所述EMLSR操作并工作在EMLSR模式下。
  59. 根据权利要求55-58中任一项所述的设备,还包括:
    交互单元,用于与所述第二设备建立所述直连通信时进行第一能力信息的交互;其中,第一能力为:支持所述EMLSR操作并能为工作于所述EMLSR模式的设备提供服务的能力或工作于所述EMLSR模式的能力。
  60. 根据权利要求59所述的设备,其中,所述第一能力信息携带在多链路元素中。
  61. 根据权利要求60所述的设备,其中,所述多链路元素包括如下至少之一的方式:
    所述多链路元素为基本多链路元素的情况下,通过所述基本多链路元素中的公共信息字段携带所述第一能力信息;其中,第一能力信息的子字段包括:用于指示EMLSR模式的第一子字段、及用于指示在所述直连通信中支持EMLSR操作的第二子字段;或者,
    所述多链路元素为P2P变体多链路元素的情况下,通过所述P2P变体多链路元素中的公共信息字段携带所述第一能力信息;其中,所述P2P变体多链路元素中还包括:携带第三子字段的多链路控制字段,所述第三子字段用于指示多链路元素的类型。
  62. 根据权利要求60所述的设备,还包括:
    第三传输单元,用于向所述第三设备发送第一帧;在所述第一帧中携带所述第一能力信息的子字段,以使所述第三设备获知所述第一设备支持EMLSR操作并能为工作于EMLSR模式的所述第二设备提供服务。
  63. 根据权利要求60所述的设备,还包括:
    第四传输单元,用于向所述第二设备发送第一帧,在所述第一帧中携带所述第一能力信息的子字段,以使所述第二设备获知所述第一设备支持EMLSR操作并能为工作于EMLSR模式的所述第二设备提供服务。
  64. 根据权利要求63所述的设备,还包括:
    第一接收单元,用于接收所述第二设备反馈的第一响应帧,在所述第一响应帧中携带所述第一能力信息的子字段。
  65. 根据权利要求62-64中任一项所述的设备,其中,所述第一设备,为工作在EMLSR模式的至 少一个设备提供服务、和/或宣告开启EMLSR模式后工作在EMLSR模式下。
  66. 一种第二设备,所述设备包括:
    第一切换单元,用于与执行如权利要求1-13的第一设备在第一能力信息交互后进行增强多链路操作的模式切换。
  67. 根据权利要求66所述的设备,其中,所述第二设备用于支持所述增强多链路操作的模式切换;
    其中,所述增强多链路操作为增强多链路单无线电EMLSR操作。
  68. 根据权利要求67所述的设备,其中,所述切换单元,还用于:
    需要切换EMLSR模式的情况下,向所述第一设备发送第二帧,在所述第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,所述控制字段包括所述EMLSR模式子字段;
    接收所述第一设备反馈的第二响应帧的情况下,完成所述EMLSR模式的切换。
  69. 根据权利要求67所述的设备,其中,所述第一切换单元,还用于:
    需要切换EMLSR模式的情况下,向第三设备发送第二帧,在所述第二帧中携带控制字段,用以宣告EMLSR模式的切换;其中,所述控制字段包括所述EMLSR模式子字段;
    接收所述第三设备反馈的第二响应帧的情况下,完成所述EMLSR模式的切换。
  70. 根据权利要求69所述的设备,其中,所述第三设备用于在第一时间使用第三帧向与所述第三设备关联且支持与所述第二设备进行所述直连通信的其他设备宣告切换信息。
  71. 根据权利要求70所述的设备,所述第一时间为:完成所述EMLSR模式切换后,且触发共享TXOP进行所述直连通信之前的任意时间。
  72. 根据权利要求67所述的设备,还包括:
    第五传输单元,用于在需要切换EMLSR模式的情况下,向所述第三设备发送第四帧,请求所述第三设备宣告与所述第二设备进行所述直连通信的其他设备的EML操作模式;
    其中,所述第三设备用于响应所述请求后使用第三帧向与所述第三设备关联且支持与所述第二设备进行所述直连通信的其他设备宣告切换信息。
  73. 根据权利要求72所述的设备,其中,所述第三帧中携带第一信息;
    其中,所述第一信息,包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
  74. 根据权利要求73所述的设备,其中,所述具备对等EML能力设备对应身份信息,包括:MAC地址、和/或与所述第三设备关联时被分配的AID。
  75. 根据权利要求72所述的设备,其中,所述第四帧为与所述第三帧不同类型的帧、或与所述第三帧相同类型的帧。
  76. 根据权利要求72所述的设备,其中,在所述第四帧中携带用以指示当前帧属于具备对等EML能力设备的请求帧的字段。
  77. 根据权利要求72所述的设备,其中,所述第四帧携带用以指示当前帧属于具备对等EML能力设备的请求帧或通告帧的字段。
  78. 根据权利要求76或77所述的设备,所述第四帧包括:第一值及第一信息;
    其中,所述第一值用于标识本次EML能力信息的交互;
    其中,所述第一信息包括:用于指示具备对等EML能力设备对应身份信息的第四子字段、及用于指示具备对等EML能力设备对应EMLSR模式的第五子字段。
  79. 一种第一设备,所述设备包括:
    第一通信单元,用于在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
    第六传输单元,用于根据所述直连通信关系在所述第一设备附属的第一STA与所述第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
    其中,所述第一设备附属的第一STA以单链路单空间流的形式向所述第二设备附属的第二STA发送第六帧。
  80. 根据权利要求79所述的设备,其中,所述第一设备附属的第一STA与所述第二设备附属的第二STA工作在同一链路上。
  81. 根据权利要求79或80所述的设备,所述设备还包括:
    第一请求单元,用于向所述第三设备请求所需的TXOP时间;
    第二接收单元,用于接收所述第三设备发送的第五帧,其中,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA。
  82. 根据权利要求79所述的设备,还包括:
    第三接收单元,用于在各自工作的EMLSR链路集合上,所述第一设备附属的第一STA和所述第二设备附属的第二STA均能接收并解析第五帧。
  83. 根据权利要求81所述的设备,还包括:
    第二切换单元,用于在所述第一设备附属的第一STA向所述第二设备附属的第二STA发送所述第六帧的同时,所述第一设备进行EMLSR链路切换。
  84. 根据权利要求81所述的设备,还包括:
    第三切换单元,用于在所述第一设备附属的第一STA接收并反馈所述第五帧所对应的时间段内、和/或向所述第二设备附属的第二STA发送所述第六帧及接收第六帧反馈的时间段内,所述第一设备进行EMLSR链路切换。
  85. 根据权利要求79或80所述的设备,其中,在所述第六帧中携带填充信息,所述填充信息满足如下条件的至少之一:
    所述第二设备的切换时延需求;
    所述第一设备的切换时延需求;
    所述第二设备和所述第一设备的切换时延需求。
  86. 根据权利要求79或80所述的设备,还包括:
    第二请求单元,用于向所述第三设备请求所需的TXOP时间、及指示第一身份信息;
    其中,所述第一身份信息为第二设备附属的第二STA的身份信息,所述第二设备附属的第二STA与所述第三设备相关联并交互了彼此的EML能力信息。
  87. 根据权利要求86所述的设备,还包括:
    第四接收单元,用于接收所述第三设备发送的第五帧或第五帧的变体,其中,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一。
  88. 根据权利要求87所述的设备,其中,所述第五帧或所述第五帧的变体,用于为所述第一设备附属的第一STA和所述第二设备附属的第二STA中的至少之一分配TXOP。
  89. 根据权利要求87或88所述的设备,其中,所述第五帧或第五帧的变体,包括用户信息列表字段;所述用户信息列表字段用于向所述第三设备请求所需的所述TXOP时间。
  90. 根据权利要求89所述的设备,其中,所述用户信息列表字段包括:用于指示设备的第一指示子字段、用于指示直连通信双方角色的第二指示子字段、用于指示TXOP时间的第三指示子字段。
  91. 根据权利要求90所述的设备,其中,所述第三指示子字段为第二值,所述第二值用于指示当前设备为与所述第一设备附属的第一STA进行直连通信的响应方。
  92. 根据权利要求87-91中任一项所述的设备,还包括:
    根据公共信息中第一预留字段及第一预留字段子字段的取值来确定所述第五帧的变体。
  93. 根据权利要求87-92中任一项所述的设备,还包括:
    第五接收单元,用于在各自工作的EMLSR链路集合上,所述第一设备附属的第一STA和所述第二设备附属的第二STA均能接收并解析所述第五帧。
  94. 根据权利要求87-93中任一项所述的设备,还包括:
    第四切换单元,用于在所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一在收到所述第五帧或所述第五帧的变体的情况下,所述第一设备及所述第二设备中的至少之一进行EMLSR链路切换。
  95. 根据权利要求79或80所述的设备,还包括:
    第三请求单元,用于向所述第三设备请求所需的TXOP时间、及指示第一身份信息;其中,所述第一身份信息为第二设备附属的第二STA的身份信息,所述第二设备附属的第二STA与所述第三设备相关联并交互了彼此的EML能力信息。
  96. 根据权利要求95所述的设备,还包括:
    第六接收单元,用于接收所述第三设备发送的第五帧,所述第三设备用于以TXOP分享模式2将所述TXOP时间共享给所述第一设备附属的第一STA及所述第二设备附属的第二STA中的至少之一。
  97. 根据权利要求96所述的设备,还包括:
    保持单元,用于在收到所述第六帧的所述第二设备附属的第二STA完成链路切换的情况下,在第二时间未达到前继续保持所述单链路多空间流的状态。
  98. 根据权利要求97所述的设备,其中,所述第二时间,根据以最低速率发送的所述第五帧时间、第五帧反馈时间、短帧间间隔SIFS得到。
  99. 根据权利要求98所述的设备,还包括:
    触发单元,用于在所述第五帧发送给所述第二设备附属的第二STA的情况下,触发第五帧的反馈。
  100. 根据权利要求97-99中任一项所述的设备,还包括:
    第一交换单元,用于在所述第一设备及所述第二设备中的至少之一完成EMLSR链路切换的情况下进行单链路多空间流的帧交换。
  101. 一种第二设备,所述设备包括:
    第二通信单元,用于在第一设备附属的第一STA与第二设备附属的第二STA之间建立直连通信关系;
    第七传输单元,用于根据所述直连通信关系在所述第一设备附属的第一STA与所述第二设备附属的第二STA之间采用增强多链路操作进行帧传输;
    其中,所述第二设备附属的第二STA接收第六帧,所述第六帧由所述第一设备附属的第一STA以单链路单空间流的形式发送。
  102. 根据权利要求101所述的设备,其中,所述第一设备附属的第一STA与所述第二设备附属的第二STA工作在同一链路上。
  103. 根据权利要求101或102所述的设备,还包括:
    第五切换单元,用于进行EMLSR链路切换。
  104. 根据权利要求103所述的设备,还包括:
    第二交换单元,用于在所述第二设备完成所述EMLSR链路切换的情况下进行单链路多空间流的帧交换。
  105. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13、权利要求14至26、权利要求27至48以及权利要求49至52中任一项所述的方法。
  106. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至13、权利要求14至26、权利要求27至48以及权利要求49至52中任一项所述的方法。
  107. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13、权利要求14至26、权利要求27至48以及权利要求49至52中任一项所述的方法。
  108. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13、权利要求14至26、权利要求27至48以及权利要求49至52中任一项所述的方法。
  109. 一种通信系统,包括:
    第一设备,用于执行如权利要求1至13以及权利要求27至48中任一项所述的方法;
    第二设备,用于执行如权利要求14至26以及权利要求49至52中任一项所述的方法。
PCT/CN2022/089124 2022-04-25 2022-04-25 通信方法和设备 WO2023206045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089124 WO2023206045A1 (zh) 2022-04-25 2022-04-25 通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089124 WO2023206045A1 (zh) 2022-04-25 2022-04-25 通信方法和设备

Publications (1)

Publication Number Publication Date
WO2023206045A1 true WO2023206045A1 (zh) 2023-11-02

Family

ID=88516447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089124 WO2023206045A1 (zh) 2022-04-25 2022-04-25 通信方法和设备

Country Status (1)

Country Link
WO (1) WO2023206045A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144698A1 (en) * 2019-11-12 2021-05-13 Nxp Usa, Inc. Multi-Antenna Processing In Multi-Link Wireless Communication Systems
WO2021228085A1 (zh) * 2020-05-14 2021-11-18 华为技术有限公司 多链路通信方法及相关装置
CN113973400A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 建立直连链路、无线局域网帧发送的方法、装置及系统
US20220029736A1 (en) * 2020-07-22 2022-01-27 Nxp Usa, Inc. Operation of emlsr and emlmr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144698A1 (en) * 2019-11-12 2021-05-13 Nxp Usa, Inc. Multi-Antenna Processing In Multi-Link Wireless Communication Systems
WO2021228085A1 (zh) * 2020-05-14 2021-11-18 华为技术有限公司 多链路通信方法及相关装置
US20220029736A1 (en) * 2020-07-22 2022-01-27 Nxp Usa, Inc. Operation of emlsr and emlmr
CN113973400A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 建立直连链路、无线局域网帧发送的方法、装置及系统
WO2022017173A1 (zh) * 2020-07-24 2022-01-27 华为技术有限公司 建立直连链路、无线局域网帧发送的方法、装置及系统

Similar Documents

Publication Publication Date Title
US20220132423A1 (en) Power saving mechanisms for multi-link communications
US11737133B2 (en) QoS guarantee for high priority low latency service
KR101902407B1 (ko) Wi-fi(wireless fidelity) p2p(peer to peer) 통신을 위한 방법 및 이를 위한 장치
JP2023520065A (ja) リソース取得方法、リソーススケジューリング方法及び端末
US11350359B2 (en) Data transmission method, access point, and station
WO2020010880A1 (zh) 数据传输方法及相关装置
WO2019214733A1 (zh) 一种通信方法及装置
US20210307106A1 (en) Resource allocation method and device
WO2016187836A1 (zh) 信道接入方法、接入点及站点
WO2020140276A1 (zh) 数据传输方法、装置、计算机设备及系统
CN116033485B (zh) 无线组网的通讯方法及无线自组网络系统
WO2022067748A1 (en) Sidelink communications in wireless network
CN113133023B (zh) 通信方法、无线接入点、无线站点及无线局域网系统
US11963157B2 (en) Method and apparatus for using unlicensed band in communication system
WO2023206045A1 (zh) 通信方法和设备
US20230139168A1 (en) Multi-link restricted twt
US20100067506A1 (en) Wireless network
WO2023206579A1 (zh) 通信方法和设备
TWI826054B (zh) 業務優先級確定方法以及相關裝置
WO2022237646A1 (zh) 一种传输系统信息si的方法和装置
WO2023092487A1 (zh) 无线通信的方法和设备
TWI832377B (zh) 通信方法及相關裝置
WO2023010455A1 (zh) 无线通信的方法及设备
US20240063995A1 (en) Dynamic selection of triggered transmission opportunity sharing modes
US20240008114A1 (en) Techniques for channel access in wireless communications systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938902

Country of ref document: EP

Kind code of ref document: A1