WO2023205911A1 - Sistema inteligente de apertura de pasajes con lanza térmica - Google Patents

Sistema inteligente de apertura de pasajes con lanza térmica Download PDF

Info

Publication number
WO2023205911A1
WO2023205911A1 PCT/CL2022/050043 CL2022050043W WO2023205911A1 WO 2023205911 A1 WO2023205911 A1 WO 2023205911A1 CL 2022050043 W CL2022050043 W CL 2022050043W WO 2023205911 A1 WO2023205911 A1 WO 2023205911A1
Authority
WO
WIPO (PCT)
Prior art keywords
lance
thermal lance
thermal
active
oven
Prior art date
Application number
PCT/CL2022/050043
Other languages
English (en)
French (fr)
Inventor
Joaquín Pablo ALDUNATE VARELA
Antonio Andrés UMAÑA RODRÍGUEZ
Darwin Andres MORALES MORA
Original Assignee
Trefimet S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trefimet S.A. filed Critical Trefimet S.A.
Priority to PCT/CL2022/050043 priority Critical patent/WO2023205911A1/es
Publication of WO2023205911A1 publication Critical patent/WO2023205911A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • An intelligent system for opening smelting furnace passages with thermal lances, which autonomously controls and adjusts the variables of this process, to obtain the maximum efficiency that can be achieved in each opening operation, optimizing the performance of the thermal lances. , controlling and adjusting the oxygen flow, thrust force, inclination, oxygen pressure, speed and other variables needed at each moment, in order to obtain the shortest opening times without damaging the passage in addition to capturing information. from the interior of the furnace or reactor through the thermal lance and process it to determine and send signals that correct anomalies that will cause subsequent deficiencies in the general operation of the furnace, thus obtaining maximum productivity in these smelting processes.
  • opening passages in furnaces or smelting reactors using thermal lances is a mandatory operation that is carried out from 1 to 30 or more times per day.
  • the volumes of metals processed in the furnaces and reactors are large, so each minute has a high economic value. It is then desirable that the ovens maintain high production rates without interruptions.
  • the control of the casting process is complex, mainly because there is no timely and accurate information on the internal state variables of the process. The lack of timely and accurate information results in suboptimal operation of the furnaces and, therefore, in productive and economic losses that accumulate over time.
  • the passage opening stage is the only one in which external tools enter the furnace and enter in contact with the raw materials inside. Consequently, it is the ideal stage for capturing variables.
  • a thermal lance is a consumable tool that generates high flows of thermal energy used to cut or melt drill materials of any type.
  • the thermal energy of these lances comes from the reaction of the material that makes them up with the oxygen provided through them.
  • steel with a high iron content is used because it reacts in a solid state, a characteristic that, unlike materials that react in a liquid state, allows the concentration of energy at the end of the thermal lance, which guarantees that even Without being able to see the ignition end of the lance, through the force that it causes against the material to be melted, the greatest energy available to the thermal lance is being transmitted.
  • the first records of opening passages in furnaces or foundry reactors with steel tubes date back to the year 1900.
  • the tubes were used as a means of transport for fuel gases. This configuration allows the release of high levels of energy.
  • the main source of heat generated was not the combustion of the gas but rather the material of the tubes, the iron.
  • the tubes were adapted and evolved to increase the iron content, giving rise to what is known today as thermal lances, a tube filled with a bundle of wires held together through pressings, bends and other shapes that allow
  • the flow of oxygen necessary for the combustion of these and the tube, and on the other prevents the wires from being thrown outwards as a result of the pressure exerted by the oxygen.
  • thermal lances based on pressed wires suffer from early openings or cracks in the outer tube, a phenomenon that occurs during their operation in spaces confined areas such as passage openings. Oxygen leaks prematurely through the cracks, making the reaction of the wires and tubes difficult after this. This problem was solved by replacing wires with tubular inserts, ensuring the arrival of oxygen to the ignition end of the lance.
  • Another deficiency of traditional thermal lances corresponds to their uneven consumption. Therefore, the direction of energy input from the tip of the spear is uneven and random. Detailed analyzes of the consumption of the spears showed differences in temperature between inserts as the main cause of disparity.
  • the lance consumes its length within the passage, giving the sensation that the drilling is progressing, but the decrease in distance between the initial end of the lance and the entrance of the passage is due to to the progress of the drilling and the wear of the lance, in different proportions for each operation.
  • the actual drilling progress is an indicator of efficiency and therefore its measurement and detection of deviations makes it possible to elucidate problems and/or opportunities for improvement.
  • Thermal lance thrust force Relevant variable for adjusting the forward speed and performance of the thermal lance. Deviations or disturbances in this variable may reflect problems in the opening process and/or help in obtaining viscosity indicators. Additionally, it allows us to estimate whether or not the lance is in contact with the material to be melted, a necessary condition to maximize the transfer of energy from the lance to the material.
  • the drilling profile The use of an incorrect thermal lance for a specific process or one operated improperly produces irregular and not straight drillings. These deviations can deteriorate and damage unwanted parts of the passage, thus incurring onerous maintenance or reconstruction both due to its cost and the decrease or stoppage of productivity of the furnace or reactor. Knowing the drilling profile then allows us to detect inappropriate operations and/or early detect incremental damage to the passages.
  • This patent discloses a system for changing oxygen tubes for opening blast furnaces that also couples the tubes and therefore contains oxygen sensors, necessary to carry out this operation. It could be understood that this invention precedes the invention of this report, so it is necessary to clarify that KR 2020030053723 only improves the time of changing and coupling lances, but is not focused on achieving efficient openings through maximum efficiency of the thermal lance by controlling the influential parameters such as the oxygen flow, the intensity of the force applied to the lance, the inclination of the lance, the changes in the operation according to the condition of the material to be bled and others. Nor does he consider the spear as a transmitter of information to correct the opening operation, the less consider correcting the oven operation.
  • WO 2019/124,931 describes a method and apparatus for preventively controlling and adjusting the stability in the operation of a blast furnace, using various operational data and sensor data generated by the blast furnace.
  • An algorithm is explicitly said to contain reference values, which are compared with sensor values to take actions.
  • Temperature and image sensors are incorporated into the oven itself. Although it proposes to improve the operation of a blast furnace, the information is captured through sensors placed in the structure of the furnace, not directly from the molten material that is in the furnace, as proposed in the invention of this memory that obtains the information directly. of the material through the thermal lance that is continuously being introduced into the oven.
  • WO 2019/124,931 propose an efficient intelligent opening system through the maximum efficiency of the thermal lance by controlling influential parameters such as oxygen flow, the intensity of the force applied to the lance, the inclination of the lance, the changes of the operation according to the condition of the material to be bled and others.
  • An intelligent system for opening passages with thermal lances for furnaces or reactors of pyrometallurgical processes is proposed, which autonomously controls and adjusts the variables of the opening process, to obtain the maximum efficiency that can be achieved, in addition to capturing information from the interior of the furnace.
  • each thermal lance assembly in turn comprises: a lance holder, by which the thermal lance is connected to the oxygen network, contains electrical connections and a variety of sensors such as pressure, temperature, inclination, force, acceleration and others to capture or detect deviations that affect the efficiency of the opening of the passage, the production efficiency and the integrity of the structure of the furnace or reactor; a thermal lance, through which an oxidizing gas circulates, with at least one passageway of oxidizing gas inside, through which mechanical pulses and waves and/or electromagnetic pulses and waves also circulate that determine measurements and characteristics of the materials in the different depths of the passage and even inside the oven;
  • a plurality of sensors which can be installed in a spear holder or in the system, which comprises one or more of a group of sensors:
  • a plurality of actuators comprising one or more of a group of actuators:
  • an automatic thermal lance assembly change/selection device comprising: a plurality of thermal lance assembly positions, one of which is defined as active, and the rest, as inactive; a precision drive system, which forces the position of one or more lances between a plurality of positions, and
  • a central controller comprising:
  • a memory that includes a plurality of references, which are chosen from a group of references: a plurality of optimal operating condition thresholds within the oven; • stagnation gas pressure for each type of thermal lance;
  • the central controller sends to the active thermal lance assembly one or more commands to one or more of the plurality of actuators, wherein the one or more commands are chosen from the group of commands:
  • the thermal lance ignition means activates the means to force the evacuation of the molten material; wherein, when the pressure of the combustion gas exceeds the stagnation gas pressure of the active thermal lance, the means are activated to force the evacuation of the molten material; wherein, when the unwanted high thermal resistance elements sensor of the active thermal lance assembly detects the appearance of an element that matches the one or more unwanted high thermal resistance elements, or a mixture thereof, for the active thermal lance , the central controller sends the thermal lance change command, containing a selected thermal lance type, to the automatic thermal lance assembly selection/change device, wherein the automatic thermal lance assembly change/selection device moves active thermal lance assembly to a new free inactive position, and the automatic thermal lance assembly switching/selection device moves an inactive thermal lance assembly containing the selected type of thermal lance, to the active position; wherein when one or more of the oven operating parameters are outside the corresponding optimal operating condition thresholds within the oven, the system sends the signal to the oven operating parameter adjustment means to adjust the one
  • the combustion gas mentioned is oxygen.
  • information capture means allows and is capable of providing feedback on any type of operation command.
  • automatic monitoring of the complete furnace such as the dosage of raw materials, fluxes and complementary materials, expected time for next opening, detection of accretions inside the furnace with its profile and dimensions to define actions to take to work in that condition or plan maintenance, detection of the optimal moment to begin the opening.
  • the planning and execution of actions is determined from the measurement of characteristics of the molten material obtained through attenuations and flight times of reflections or refractions of mechanical and/or electromagnetic waves, which are captured through sensors that capture data at through the thermal lance.
  • the data captured is processed through algorithms and generates objective, precise and timely information;
  • this system has means both to determine and modify the position and orientation vector of the active thermal lance (that is, to manipulate the position in space of the lance as desired), the lance can be taken and connected automatically, for which a precision motor system with feedback from sensors is used that allows its position and orientation to be estimated at all times. Additionally, the system has cameras and algorithms that process the videos they generate to identify and determine the position and orientation of key structures such as the entrance hole of the passage and the lance.
  • the means for determining the position and orientation vector of the active thermal lance are a plurality of video cameras; where the videos provided by the plurality of cameras are processed by the central controller, which identifies the position and orientation of the active thermal lance from key structures. These key structures are sometimes the center of the passage entrance hole and the center of the lance.
  • the means for determining the position and orientation vector of the active thermal lance further comprise an inclinometer.
  • the aforementioned group of references also includes:
  • the central controller sends a signal to the means for modifying the position and orientation vector of the active thermal lance.
  • the system measures the actual progress of the drilling. To achieve this, the system also includes:
  • the sensor group also includes:
  • active thermal lance length meter located at the initial end of the lance, which emits a train of pulses to the final end and returning to its origin; where the actual progress of the drilling is the subtraction between the length of the active thermal lance and the visible distance between the origin of the active thermal lance and the entrance of the passage.
  • the aforementioned group of references also includes:
  • the sensor group also includes:
  • the central controller calculates the axial force component exerted by the tip of the active thermal lance, where, if the axial force component exerted by the tip of the active thermal lance exceeds the optimal axial thrust force of the lance thermal lance, the system sends a signal to the means to modify the position and orientation vector of the active thermal lance of the active thermal lance assembly, which decreases the thrust force.
  • the system has an inductive and automatic thermal lance ignition system.
  • the thermal lance ignition means are composed of an inductive system, which locates its main coil integrally with the structure of the drive system and can be located in two positions. The first one above the axial forward axis of the lances, where it rests when it is not being used and the other on the axial axis from where it transmits energy to the tip of the lance.
  • the coil is covered with material with low thermal conductivity, which protects it during the ignition and opening process, and high magnetic permeability, to favor the transfer of energy to the lance during the ignition process.
  • the Inductive heating systems are designed with a short distance between the main coil and the power electronics to avoid energy losses, electromagnetic radiation and path deformations that affect the inductance of the coil.
  • the coil is distanced and separated from the power source to provide protection to the latter against the high temperatures present in operation.
  • infrared temperature sensors that allow the temperature at the tip of the lance to be determined online.
  • the oxygen flow is activated which initiates its ignition. This event also serves to stop the supply of energy from the coil to the lance.
  • the on and off control of the coil based on temperature measurement in the lance allows the use of higher power lighters and therefore shortens ignition times.
  • an ignition mechanism based on the elapsed energy input time is subject to disturbances and variations that can either result in temperatures that are insufficient for ignition or excessive to the point of melting the material, both unwanted and harmful effects that increase the total opening time and reduces the useful life of the materials respectively.
  • the infrared sensor also allows determining if the lance has been turned on correctly, this situation is complemented by the pressure variation measured at the start of the lance, which, as a result of consumption additional oxygen used in combustion is decreased. The above is valid thanks to the constant flow control that the system allows. In case of ignition failure, the lance temperature drops due to the flow of oxygen and pressure is restored. The system detects the fault and restarts the ignition process automatically.
  • One of the advantages is that, as the ignition equipment is integrated into the equipment, in the axial line of advance of the lance and not apart, it allows eliminating the round trip to an ignition equipment on the side of the passage, with This saves time and safety, ensuring quick ignition of the lance.
  • the viscosity of the material inside the oven is determined, which will indicate the ability of the material to flow.
  • system further comprises:
  • the system also comprises means for arcing the active thermal lance, by means of a secondary drive system, complementary to the main drive system.
  • arching means are made up of attachment points and articulated in such a way that they allow the spear to be arched during the opening process in a controlled manner.
  • the arching of the spear added to a third support provided by the floor of the passage, allows the tip of the spear to arch upwards and/or to the sides. This property is of special interest and relevance in smelting furnaces where the level of accretions is above the maximum level of the passage.
  • the two support points of the secondary motor system also allow the generation of a controlled oscillation of the tip of the horizontal and/or vertical lance, fan type, circular of different diameters or in a growing spiral. decreasing. These movements are important for the effective and safe cleaning of the passage, when it has already been opened.
  • the means for arching the thermal lance are constituted by articulated fastening points.
  • the system of the invention can also comprise an information visualization system, which allows any type of report to be produced that serves as a management indicator and that facilitates control decision making.
  • one or more of the thermal lances has at least four combustion gas passage ducts inside.
  • the group of actuators further comprises:
  • an oxidizing gas distributor which distributes the total flow of the oxidizing gas between each duct within the thermal lance, where the flow delivered to each duct corresponds to the stoichiometric flow for the thicknesses to react, obtaining magnetite (Fe2O3) as a product of the combustion.
  • each pin of the distributor To determine the geometry and dimensions of each pin of the distributor, it is necessary to determine the thickness to react of each duct of the lance, then the stoichiometric oxygen flow required for 100% of the thickness to react at a consumption rate is calculated. of thermal lance of lm/min obtaining magnetite (Fe 2 O 3 ) as a product of combustion, then the thickness of oxygen that will react is calculated using the equation that defines the viscous sublayer, with this thickness the total flow that has to be calculated is calculated. carry each duct to react 100% of the corresponding thickness.
  • the design of each pin must leave an oxygen passage area according to the portion of the total flow of the lance so that the correct flow passes through each duct.
  • each gas distributor consists of a device with a diameter slightly larger than the thermal lance that, in its cross section, contains pin-type projections or pistons of different geometries and heights, where the position of its barycenters or individual centroids They coincide with the barycenters of the thermal lance ducts, thus they are introduced into each thermal lance duct that requires restricting the flow of oxygen to prevent them from being greater than necessary, thus increasing the flow in the ducts of more restricted areas. , achieving 100% reaction of each duct and therefore an even consumption of the lance.
  • the automatic change of the thermal lances is done through the information that is captured through the thermal lance and that in each operation it performs, through an algorithm predicts the behavior that the oven would have. in the future.
  • the predictions are contrasted with information provided by post-hoc physicochemical analyzes to generate an error vector.
  • the error vector is used to correct the predictive algorithm and therefore its future predictions.
  • the system autonomously defines the ideal moment for the next opening.
  • the automatic thermal lance assembly change/selection device allows a new lance to be automatically and quickly connected behind the one currently in use, thus avoiding the need to remove the current lance from the passage and repeat the process. ignition of the new lance. Since the connection time of a new lance is fast and the current lance is still at ignition temperature after completing the connection process, when the oxygen flow is reestablished, the lance, now extended, continues its ignition regularly. This operation allows a reduction in total opening time, complete use of the thermal lance and an increase in efficiency, given by the reduction in heat lost between changing lances. Additionally, this loading mechanism allows the use of shorter and therefore more robust lances, of interest in applications that must be carried out in small spaces and where precision and opening speed are of value.
  • the thermal lance automatic connection and disconnection device comprises a precision drive system with sensor feedback that allows its position and orientation to be estimated at all times. Additionally, the system has cameras and algorithms that process the videos they generate to identify and determine the position and orientation of key structures such as the entrance hole of the passage and the lance. In addition, the system with a support system that allows you to stiffen and force the exact position.
  • the system of the invention also comprises a camera that captures the transverse profile of the selected thermal lance, where, based on that profile, it selects a type of oxygen distributor for the thermal lance and connects said distributor to the lance. active thermal. In this way, the system allows the axial alignment and angular orientation of the distributor so that it fits the lance in use.
  • the sensor of the thrust force of the thermal lance towards said oven is a piezoelectric sensor.
  • the axial force component exerted by its tip is calculated. This component influences the quality and efficiency of drilling.
  • the orientation is determined from an inclinometer attached to the lance.
  • the stagnation sensor for the evacuation of molten materials which could send pulses of high flows of oxygen, air, vibrations or others that force the molten material to flow is chosen from a group of:
  • the piezometers, cameras, accelerometers, inclinometers, and wave emitters are arranged and programmed to detect any variable that affects the efficiency, safety and integrity of the oven.
  • the system is constantly measuring and adjusting the oxygen flow of the lance for the highest performance at each moment of the operation, determined by the geometric configuration of the lance. thermal and the oxygen distributor and the real progress that the drilling is making. All information is captured: the input variables, the opening condition variables and the results such as advance and total lance consumption. The system will use information from past openings, including the current one, to recalculate input variables, including strength, to achieve the best results against different conditions
  • the invention presented solves the need for controlled, adequate and repeatable passage opening operations of high efficiency and quality, as well as the reduction of human risk inherent to them.
  • the solution is achieved by automating the process, which in turn is possible thanks to the capture of internal state variables of the oven.
  • the information captured is valuable, not only for the control and optimal operation of the opening of passages, but also for the foundry process in general.
  • Information is captured using techniques that, among other innovations, use thermal lances not only as heat sources, but also as a measuring instrument. The use of these techniques, to the best of the inventors' knowledge, is unknown in the context of opening passages in smelting furnaces.
  • Inappropriate thermal lance selection The normal tendency of the pyrometallurgical industry is to define a single thermal lance to open the passages in any circumstance, but the conditions of the passage change due to the effect of raw materials, condition of the kiln, releases of materials, etc. This means that, for the same process, there are different thermal lance requirements.
  • the present invention solves this problem by collecting data received from the same operation through different types of sensors and/or others entered manually. The data is processed to determine the level of energy and associated lance that allows the particular drilling to be carried out.
  • the system described in the invention includes an oxygen distributor or equalizer that compensates and corrects flow differences in the ducts. Its design is customized for each thermal lance profile.
  • the invention comprises plungers or pins that obstruct and restrict the flow of oxygen in ducts that require it. They are designed in such a way as to ensure that each duct receives optimal flow, restricting more ducts of larger area and less or not at all those ducts of smaller area. As a result, all the oxygen that reaches the lance is distributed and equalized in a balanced way according to the needs of each duct.
  • the system described in the invention contemplates a drive system, which controls the trajectory and speed of advance based on measurements of applied force and its reactions such as speed and acceleration of advance.
  • Adequate oxygen flow Each thermal lance needs a certain oxygen flow to achieve its best performance. Excesses or deficits of flow noticeably affect its performance. During operation there are several factors that produce flow deviations: increase in flow as the thermal lance is consumed and shortened; excess oxygen adjustment by operators motivated by the erroneous belief that more flow and noise is consistent with more power produced by the lance; pressure variations in the oxygen supply network produced by simultaneous consumption in different parts of the network or by a decrease in the flow of oxygen generated at the source; disturbances in the outlet pressure resulting from obstructions and or variations in the force applied to the lance.
  • the adequate flow varies during the execution of the opening, adjusting to the energy requirements of different substages.
  • operators are limited to using a fixed flow level.
  • the system of the invention contemplates pressure sensors, oxygen flow sensors and flow regulation means (such as a proportional valve), connected to a controller.
  • the controller that allows you to compensate and follow a specific flow program, which allows the adaptation of the lance's energy requirements for each substage of the opening process.
  • Tilting of the lance if the thermal lance deviates its direction with respect to the axis of the passage, in addition to delaying the opening of the oven, it attacks and causes damage to the structure of the oven. In particular, in refractory material and/or passage cooling ducts, producing high-risk explosions that disable the furnace for long periods of time.
  • the system of the invention combining the information from an inertial measurement unit (IMU) sensor, the force applied to the lance and indicators of angles, position and deformation obtained through the processing of images captured by cameras that monitor the opening process , estimates the relative position of the lance with respect to the axis of the passage in real time.
  • IMU inertial measurement unit
  • This information feeds a robotic motor system that allows the correction of deviations and even the automatic programming and execution of predefined spatial trajectories.
  • the images in the cameras also allow generating an estimator of the spatial position of the passage entrance, damage done to the passage and/or impurities that require final substage cleaning of the opening.
  • Evacuation of materials As the drilling progresses, the evacuation of the molten material is essential so that the already open part remains open and prevents the thermal lance from getting stuck and therefore the opening. As the molten material moves towards the exit of the passage, it begins to cool and its viscosity increases. Proper evacuation requires that the viscosity of the molten material be below a critical level. Above this value, the material stops evacuating and after a long time, the lance gets stuck. The operator must pause the opening, remove and insert the lance several times and then resume the process. This pause and review of the passage implies losses of time and material that increase with its frequency of occurrence. The invention solves jamming problems through two actions: preventive and reactive.
  • Both actions are based on the measurement of variables such as pressure and oxygen flow, force applied to the lance and the acceleration it experiences. Additionally, temperature, fluidity and flow attributes of the evacuated material are also estimated, obtained through image sequence processing. Images are obtained from multispectral cameras with appropriate lenses and filters to avoid saturation and maximize sensitivity to the spectrum range of interest. Specifically, that given by the wavelengths irradiated by the molten material at the different temperatures possible for the process.
  • the preventive action controls the viscosity of the evacuated material to a reference value.
  • the control is carried out by adjusting the energy contribution of the lance to the material, increasing or decreasing the consumption rate through the force applied to the lance and the flow of injected oxygen.
  • the reactive action is activated when the preventive action is unable to maintain a low viscosity and it approaches the critical level.
  • the reactive action activates a train of pulses of oxygen flow.
  • the pulses are high flow and short duration. The increase in relative flow increases the pressure inside the passage, favoring the evacuation of material. The short duration of the pulses prevents the remaining material due to excess flow from cooling once the viscous material has been evacuated.
  • the reactive action stops once an output flow with viscosity below the critical threshold has been re-established or if a maximum time has elapsed. If the maximum time is reached, the lance is removed and enters the passage repeatedly automatically, emulating the manual operation used in these scenarios.
  • Oven operating condition On some occasions, due to reasons of raw materials, oven condition, formulations or other situations, chemical, physical and thermal imbalances occur, which lead to situations that complicate the task of opening passages, evacuating the product and different conditions of the different passages that a furnace can contain (from 1 to 8 or more), which makes it complex to open and make an efficient process.
  • the temperature inside the oven is a parameter of interest for the general control of the process.
  • composition of thermal lances is known and for all practical purposes constant. While, in the case of the molten material, its composition varies, depending on the original mineralogy of the mixture entering the furnace, the casting process and other process variables such as the oxygen supply and mixture injection speed.
  • the mechanical resonance frequency of the lance and cast medium assembly depends on both the temperature of the assembly and its geometry. Regarding the geometry, the most relevant parameter corresponds to the length of the thermal lance.
  • the resonance frequency is determined by a train of mechanical pulses generated by a piezoelectric integral with the thermal lance. The train pulses are separated by a period of time whose inverse corresponds to the test frequency. The oscillating response of the assembly to the stimulus is captured through the piezoelectric itself. Both the amplitude of the response and its main spectral components are recorded. This process is repeated for a wide range of frequencies within which the resonance frequency of the set lives.
  • the resonance frequency of the set is estimated as that which generates a response of greater amplitude and whose spectral response is concentrated to a greater degree at the resonance frequency, which in this case also corresponds to the stimulus and response frequency.
  • the time of flight between the emission of a pulse and the arrival of its echo is used in conjunction with the information on the speed of sound travel in constituent metals of the lance to determine the length of the lance. It should be noted that the speed also depends on the temperature, therefore, it is necessary to adjust it based on the temperature estimate made previously.
  • estimators already determined for viscosity, lance length and resonance frequency are used as inputs to a regression model to obtain a second temperature estimator, independent of the one obtained through resistive attenuation.
  • the average temperature of the ensemble is one and, therefore, the difference between temperature estimators corresponds to estimation errors.
  • a weighted average of the individual estimators is considered as the definitive estimator.
  • the difference between the final estimator and each estimate is also recorded within the measurement vector as an error.
  • the implementation of these algorithms uses, but is not limited to, generative adversarial neural networks.
  • real temperature measurements of the molten medium are used. obtained using parametric probes and/or multispectral reference cameras.
  • the average temperature of the lance and melt medium it is possible to determine the portion of energy lost in the electromagnetic signal refracted from the lance into the molten material and therefore generate estimators of electrical and magnetic characteristics, among which impedance is included. characteristic, but is not limited to this. Based on these characteristics, it is possible to determine online concentrations of different compounds of interest for precise and timely control of the casting process as a whole.
  • the properties found at a spatial point inside the kiln are not necessarily the same as those found at other locations in the kiln. Therefore, as the lance advances into the furnace, spatial profiles of properties are generated along the path followed by it. These profiles obtained by lances introduced into different passages of the oven, which may or may not be supported by external sensors, allow estimating a continuous distribution of variations of said properties inside the oven.
  • thermal lance is also part of this estimate as another transceiver.
  • Defective thermal lances To obtain maximum efficiency from a thermal lance, it is essential that each duct containing the thermal lance be completely clear from one end to the other. To ensure clearance, the invention measures the flow and pressure of oxygen supplied to estimate a level of obstruction. The level of obstruction is compared with reference values for the operating condition of the site. If obstructions above an acceptable level are detected, the invention performs a lance change. The invention records both the flow, pressure and level of in-line obstruction as support for warranty claims for defective lances.
  • the invention contemplates said system and specializes in providing operation information for opening passages and relevant variables derived from it.
  • This system also allows integration with other sources of operational information such as failure or damage records in passages and general furnace productivity. Based on the constant crossing and processing of incoming information, the system allows the extraction of probable causes of failures and the generation of recommendations and/or corrective actions for each case.
  • the opening operation and its direct supervision is high risk for operators due to the proximity to sources of high thermal energy, such as thermal lance and molten metals in evacuation, as well as exposure to gases. toxic. Furthermore, the opening is carried out in confined and closed places that intensify the risks and limit evacuation options in the presence of adverse events.
  • Late furnace operation correction given that the casting processes from when the raw materials are dosed at the entrance of the furnace until the material comes out take considerably long times from one hour to 10 or more hours.
  • This system is capable of obtaining information through the thermal lance and processing it to determine operation corrections in advance, thus reducing production losses due to furnace instability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Un sistema inteligente de apertura de pasajes con lanzas térmicas para hornos o reactores de procesos pirometalúrgicos, que controla y ajusta autónomamente las variables del proceso de apertura, para obtener la máxima eficiencia que se pueda lograr, además de captar información del interior del horno o reactor a través de la lanza térmica y procesarla para determinar y enviar señales que corrijan anomalías que causaran deficiencias posteriores en la operación general del horno.

Description

SISTEMA INTELIGENTE DE APERTURA DE PASAJES CON LANZA TÉRMICA
CAMPO DE LA INVENCIÓN
Se proporciona un sistema inteligente para la apertura de pasajes de hornos de fundición con lanzas térmicas, que controla y ajusta autónomamente las variables de este proceso, para obtener la máxima eficiencia que se pueda lograr en cada operación de apertura optimizando el rendimiento de las lanzas térmicas, controlando y ajustando el flujo de oxigeno, la fuerza de empuje, la inclinación, la presión del oxigeno, la velocidad y otras variables que se necesita en cada instante, para asi obtener los menores tiempos de apertura sin dañar el pasaje además de captar información del interior del horno o reactor a través de la lanza térmica y procesarla para determinar y enviar señales que corrijan anomalías que causaran deficiencias posteriores en la operación general del horno obteniendo asi la máxima productividad a estos procesos de fundición.
ÁREA DE LA TÉCNICA
En la industria pirometalúrgica, la apertura de pasajes de hornos o reactores de fundición utilizando lanzas térmicas es una operación obligada que se realiza desde 1 hasta 30 o más veces por dia. Los volúmenes de metales procesados en los hornos y reactores son de gran envergadura por lo que, cada minuto tiene un alto valor económico. Es deseable entonces que los hornos mantengan altas tasas de producción sin interrupciones. Sin embargo, el control del proceso de fundición es complejo, principalmente porque no se cuenta con información oportuna y precisa de las variables de estado internas del proceso. La falta de información oportuna y precisa resulta en una operación subóptima de los hornos y, por tanto, en perdidas productivas y económicas que se acumulan en el tiempo. Cabe destacar que la etapa de apertura de pasajes es la única en la que herramientas externas hacen ingreso al horno y entran en contacto con las materias primas en su interior. En consecuencia, es la etapa idónea para la captura de variables.
Una lanza térmica es una herramienta consumible que genera altos flujos de energía térmica que se utilizan para cortar o perforar por fusión materiales de cualquier tipo. La energía térmica de estas lanzas proviene de la reacción del material que las conforman con el oxigeno aportado a través de ellas. Comúnmente, se utiliza acero de alto contenido de hierro debido a que éste reacciona en estado sólido, característica que, a diferencia de materiales que reaccionan en estado liquido, permite la concentración de la energía en el extremo de la lanza térmica lo que garantiza que aun sin poder ver el extremo de ignición de la lanza, a través de la fuerza que provoca ésta contra el material a fundir, se está transmitiendo la mayor energía que dispone la lanza térmica.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA
Los primeros registros de apertura de pasajes de hornos o reactores de fundición con tubos de acero se remontan al año 1900. Los tubos eran utilizados como medio de transporte para gases combustibles. Esta configuración permite la liberación de altos niveles de energía. Al poco andar se determinó que no era la combustión del gas sino del material de los tubos la principal fuente de calor generado, el hierro. Asi, en la década de 1920 los tubos se adaptaron y evolucionaron para aumentar el contenido de hierro dando origen a lo que hoy se conoce como lanzas térmicas, tubo relleno con un paquete de alambres sujetos a través de prensados, dobleces y otras formas que permiten por una parte el flujo de oxigeno necesario para la combustión de estos y del tubo, y por otro, impide que los alambres salgan arrojados hacia el exterior producto de la presión ejercida por el oxigeno. Ahora bien, las lanzas térmicas basadas en alambres prensados sufren de aperturas o fisuras tempranas del tubo exterior, fenómeno que ocurre durante su operación en espacios confinados tales como aperturas de pasajes. Por las fisuras se fuga el oxigeno prematuramente, dificultando la reacción de alambres y tubos posterior a ésta. Este problema fue resuelto reemplazando alambres por insertos tubulares, asegurando la llegada de oxigeno al extremo de ignición de la lanza. Otra deficiencia de las lanzas térmicas tradicionales corresponde a su consumo dispar. Por tanto, la dirección de aporte de energía desde la punta de la lanza es no parejo y aleatorio. Análisis detallados del consumo de las lanzas evidenciaron diferencias de temperatura entre insertos como principal causa de disparidad. Mediante el desarrollo de insertos con retención continua, donde los insertos y tubos están siempre en contacto a lo largo de la lanza, permiten eliminar diferencias térmicas y con esto asegurar una combustión pareja de la lanza (Trefimet, con la lanza descrita en la patente chilena CL 51189). Lanzas térmicas con insertos tubulares y retención continua ofrecen una mejor eficiencia térmica respecto de sus predecesoras y un haz de aporte de calor concentrado y controlado que apunta hacia la dirección de avance de la lanza.
Aunque las mejoras recientes logradas en lanzas térmicas son un avance en la dirección correcta, el aprovechamiento de su máxima capacidad depende, en gran medida, de cómo son operadas. La operación óptima de apertura de pasajes demanda un control preciso de variables de operación tales como el flujo de oxigeno que pasa por la lanza térmica, la trayectoria de la lanza térmica, la velocidad de avance y la fuerza de empuje aplicada a la lanza térmica. Más aún, estas variables dependen de condiciones del pasaje y del horno que varían en el espacio y tiempo. Por tanto, dichas condiciones deben ser medidas en tiempo real para ajustar las variables de operación. Actualmente, las aperturas se realizan de forma manual por operadores, con poco o nada de información. La falta de información obliga a los operadores a trabajar a ciegas y desarrollar sus propias heurísticas y modos operación que, en el mejor de los casos, resultan en desempeños subóptimos del horno, pero también es posible y ocurre frecuentemente que ocurran daños de las estructuras internas de horno. En particular, el daño en material refractario y ductos de refrigeración, producido a su vez por desviaciones de trayectoria de apertura apropiada, es un problema frecuente, de alto riesgo humano, costo económico y aún sin solución definitiva. Y la necesidad de información no sólo se limita a la etapa de apertura de pasajes, sino que al proceso completo de fundición. En particular, la condición del material en proceso al interior del horno juega un rol fundamental en el proceso de control del proceso que maximiza su capacidad productiva. En concreto, la información de la condición al interior del horno permite ajustar las dosificaciones de materias primeas e insumos, el caudal del material entrante, el aporte de energía de fundición y determinación de instantes de apertura de forma óptima.
Ahora bien, la obtención de información de la condición del pasaje e interior del horno es compleja, debido a las altas temperaturas ahí desarrolladas, que impiden su captura mediante sensores existentes. En este contexto, la apertura de pasajes que es una actividad repetitiva en los procesos de fundición cobra especial importancia, ya que solo aquí ocurre un frecuente contacto entre elementos externos y el material fundido que contiene el horno o reactor a través de la lanza térmica que en si misma es un combustible que para cumplir su función, obligadamente se consume. De existir los dispositivos adecuados, esta es la etapa idónea para obtener información oportuna y precisa de variables internas tales como:
• La temperatura real del material que está en la zona de evacuación del horno pronta a evacuar. • La presión del metal dentro del horno, indicador del grado de fundición del material al interior del horno.
• La viscosidad del material que, en conjunto con la presión, permite dilucidar rápidamente la causa de una mala o nula evacuación de material.
• La composición del material
• Medición del avance real de la perforación: la lanza va consumiendo su largo dentro del pasaje, dando la sensación de que se está avanzando en la perforación, pero la disminución de distancia entre el extremo inicial de la lanza y la entrada del pasaje se debe al avance de la perforación y al desgaste de la lanza, en distintas proporciones para cada operación. El avance real de perforación es un indicador de eficiencia y por tanto su medición y detección de desviaciones permite dilucidar problemas y/o oportunidades de mejora.
• Fuerza de empuje de la lanza térmica: Variable relevante para el ajuste de velocidad de avance y el rendimiento de la lanza térmica. Desviaciones o perturbaciones en esta variable pueden reflejar problemas en el proceso de apertura y/o ayudar en la obtención de indicadores de viscosidad. Adicionalmente, permite estimar si la lanza está o no en contacto con el material a fundir, condición necesaria para maximizar la transferencia de energía de la lanza al material.
• El perfil de la perforación: El uso de una lanza térmica incorrecta para un proceso especifico o bien operadas de forma inadecuada produce perforaciones irregulares y no rectas. Estas desviaciones, pueden llegar a deteriorar y dañar partes no deseadas del pasaje, incurriendo asi en mantenciones o reconstrucciones onerosas tanto por su costo y la disminución o detención de productividad del horno o reactor. Conocer el perfil de perforación, permite entonces detectar operaciones inadecuadas y/o detectar de forma temprana daños incrementales en los pasajes.
Si se busca información de existencia de sistemas y/o dispositivos se encuentran algunos intentos de mejoras en la eficiencia de aperturas de pasajes y captación de información del material fundido dentro del horno, esto demuestra la necesidad e interés de la industria en resolver esta necesidad. sin embargo, nada de lo existente resiste las altas temperaturas del proceso ni maximiza la eficiencia de la apertura controlando las variables de la operación de la lanza térmica ni tampoco la utilización de ésta como medio de comunicación desde el interior del horno. Como ejemplo se presentan algunos documentos que, aunque no van en la misma linea de este sistema de apertura inteligente si tienen como objetivo obtener algún tipo de información o de mejora de rendimiento parcial.
Documentos de la técnica existentes:
KR 2020030053723
Esta patente divulga un sistema de cambio de tubos de oxigeno para apertura de alto hornos que además acopla los tubos y para ello contiene sensores de oxigeno, necesarios para hacer esta operación. Podria entenderse que esta invención antecede la invención de esta memoria por lo que es necesario aclarar que KR 2020030053723 solamente mejora el tiempo de cambio y acople de lanzas, pero no está enfocada para lograr aperturas eficientes a través de la máxima eficiencia de la lanza térmica controlando los parámetros influyentes como el flujo de oxigeno, la intensidad de la fuerza aplicada a la lanza, la inclinación de la lanza, los cambios de la operación según la condición del material a sangrar y otros. Tampoco considera la lanza como transmisor de información para corregir la operación de apertura, menos considera corregir la operación del horno.
WO 2019/124,931 describe un método y aparato para controlar y ajustar preventivamente la estabilidad en la operación de un alto horno, utilizando diversos datos operativos y datos de sensores generados por el alto horno. Se dice explícitamente que un algoritmo contiene valores de referencia, los que se comparan con valores de los sensores para tomar acciones. Se incorporan sensores de temperatura y de imágenes en el horno mismo. Aunque plantea mejorar la operación de un alto horno la información la capta a través de sensores puestos en la estructura del horno, no directamente desde el material fundido que está en el horno, como se plantea en la invención de esta memoria que obtiene la información directamente del material a través de la lanza térmica que continuamente se está introduciendo en el horno. Tampoco WO 2019/124,931 plantea un sistema de apertura inteligente eficiente a través de la máxima eficiencia de la lanza térmica controlando los parámetros influyentes como el flujo de oxigeno, la intensidad de la fuerza aplicada a la lanza, la inclinación de la lanza, los cambios de la operación según la condición del material a sangrar y otros.
DESCRIPCIÓN DE LA INVENCIÓN
Se propone un sistema inteligente de apertura de pasajes con lanzas térmicas para hornos o reactores de procesos pirometalúrgicos, que controla y ajusta autónomamente las variables del proceso de apertura, para obtener la máxima eficiencia que se pueda lograr, además de captar información del interior del horno o reactor a través de la lanza térmica y procesarla para determinar y enviar señales que corrijan anomalías que causaran deficiencias posteriores en la operación general del horno, que comprende: uno o más conjuntos de lanza térmica, en donde cada conjunto de lanza térmica a su vez comprende: un portalanzas, por el cual se conecta la lanza térmica a la red de oxigeno contiene conexiones eléctricas y una diversidad de sensores como por ejemplo de presión, de temperatura, de inclinación, de fuerza, de aceleración y otros para captar o detectar desviaciones que afecten la eficiencia de la apertura del pasaje, la eficiencia de producción y la integridad de la estructura del horno o reactor; una lanza térmica, por la cual circula un gas comburente, con al menos un ducto de paso de gas comburente en su interior, por donde además circulan pulsos y ondas mecánicas y/o pulsos y ondas electromagnéticas que determinan mediciones y características de los materiales en las distintas profundidades del pasaje e incluso dentro del horno;
❖ una pluralidad de sensores, que pueden ir instalados en un portalanzas o en el sistema, que comprende uno o más de entre un grupo de sensores:
• una pluralidad de sensores de la presión del gas comburente,
• una pluralidad de sensores de flujo del gas comburente;
• sensores de elementos de alta resistencia térmica indeseados;
> una pluralidad de emisores, que comprende uno o más de entre un grupo de emisores:
• una pluralidad de emisores de ondas mecánicas;
• una pluralidad de emisores de ondas electromagnéticas;
• una pluralidad de pulsos mecánicos; • una pluralidad de pulsos electromagnéticos;
> una pluralidad de actuadores, que comprende uno o más de entre un grupo de actuadores:
• medios de encendido de lanza térmica;
• medios de regulación del flujo total de gas comburente;
• medios para forzar la evacuación de los materiales fundidos, que obligan a los materiales fundidos a fluir; un dispositivo automático de cambio/selección de conjunto de lanza térmica, que comprende: una pluralidad de posiciones de conjuntos de lanza térmica, de las cuales una se define como activa, y el resto, como inactivas; un sistema motriz de precisión, que fuerza la posición de una o más lanzas entre una pluralidad de posiciones, y
♦♦♦ un sistema de soporte, que rigidiza una lanza térmica en su nueva posición;
> medios para determinar el vector de posición y orientación de la lanza térmica activa; medios para modificar el vector de posición y orientación de la lanza térmica activa;
> medios de ajuste de los parámetros de operación del horno; medios de captación de información de los parámetros de operación del horno;
> un controlador central que comprende:
♦♦♦ una memoria que incluye una pluralidad de referencias, que se eligen de entre un grupo de referencias: una pluralidad de umbrales óptimos de condición de operación dentro del horno; • presión de gas de estancamiento para cada tipo de lanza térmica;
• presión minima de operación del gas comburente para cada tipo de lanza térmica;
• presencia de uno o más elementos de alta resistencia térmica indeseados, o una mezcla de ellos, para cada tipo de lanza térmica;
♦♦♦ un procesador, que compara cada referencia con:
• un valor de entrada proporcionado por uno de entre la pluralidad de sensores; o
• una combinación de valores de entrada proporcionado por uno o más de entre la pluralidad de sensores; en donde, el controlador central envia al conjunto de lanza térmica activa uno o más comandos a uno o más de entre la pluralidad de actuadores, en donde el uno o más comandos se eligen de entre el grupo de comandos:
• avanzar el conjunto de lanza térmica activa;
• retroceder el conjunto de lanza térmica activa;
• aumentar la fuerza de empuje del conjunto de lanza térmica activa;
• disminuir la fuerza de empuje del conjunto de lanza térmica activa;
• aumentar el flujo total de gas comburente;
• disminuir el flujo total de gas comburente;
• activar los medios de encendido de lanza térmica; activar los medios para forzar la evacuación del material fundido; en donde, cuando la presión del gas comburente sobrepasa la presión de gas de estancamiento de la lanza térmica activa, se activan los medios para forzar la evacuación del material fundido; en donde, cuando el sensor de elementos de alta resistencia térmica indeseados del conjunto de lanza térmica activo detecta la aparición de un elemento que coincide con el uno o más elementos de alta resistencia térmica indeseados, o una mezcla de ellos, para la lanza térmica activa, el controlador central envía el comando de cambio de lanza térmica, que contiene un tipo de lanza térmica seleccionado, al dispositivo automático de cambio/selección de conjunto de lanza térmica, en donde el dispositivo automático de cambio/selección de conjunto de lanza térmica mueve conjunto de lanza térmica activo hacia una nueva posición inactiva libre, y el dispositivo automático de cambio/selección de conjunto de lanza térmica mueve un conjunto de lanza térmica inactivo que contiene el tipo de lanza térmica seleccionado, a la posición activa; en donde cuando uno o más de los parámetros de operación del horno están fuera de los umbrales óptimos de condición de operación dentro del horno correspondientes, el sistema envía la señal a los medios de ajuste de los parámetros de operación del horno para ajustar el uno o más de los parámetros de operación del horno correspondientes.
Generalmente, el gas comburente mencionado es oxígeno.
Generalmente, al hablar de los parámetros de operación del horno, se entiende que se comprende al menos:
• dosificación de materias primas y aditivos
• energía aportada a la operación
• temperatura de operación
• tasa de fusión.
En este sentido, a través de medios de captación de información, permite y es capaz de retroalimentar cualquier tipo de comando de operación automática del horno completo como por ejemplo la dosificación de materias primas, fundentes y materiales complementarios, tiempo esperado para próxima apertura, detección de acreciones dentro del horno con su perfil y dimensiones para definir acciones a tomar para trabajar en esa condición o planificar mantención, detección del momento óptimo para comenzar la apertura. La planificación y ejecución de acciones se determina a partir de la medición de características del material fundido obtenida a través de atenuaciones y tiempos de vuelo de reflexiones o refracciones de ondas mecánicas y/o electromagnéticas, que se capturan a través de sensores que captan datos a través de la lanza térmica. Los datos capturados son procesados a través de algoritmos y generan información objetiva, precisa y oportuna;
Por ejemplo, a través del control de flujo de oxigeno y fuerza de empuje axial permite ajustar la tasa de calor proporcionada por la lanza térmica, permitiendo asi un ajuste a las condiciones de operación de forma tal de evitar daños en estructuras del pasaje.
Gracias a que este sistema posee medios tanto para determinar, como para modificar, el vector de posición y orientación de la lanza térmica activa (esto es, manipular a gusto la posición en el espacio de la lanza), se puede tomar la lanza y conectarla automáticamente, para lo cual se utiliza un sistema motriz de precisión con realimentación de sensores que permite estimar su posición y orientación en todo momento. Adicionalmente, el sistema cuenta con cámaras y algoritmos que procesan los videos que generan para identificar y determinar posición y orientación de estructuras clave tales como orificio de entrada del pasaje y de la lanza. Además, el sistema con un sistema de soporte que permiten rigidizar y forzar la posición exacta En ciertas modalidades del sistema, los medios para determinar el vector de posición y orientación de la lanza térmica activa son una pluralidad de cámaras de video; en donde los videos proporcionados por la pluralidad de cámaras son procesados por el controlador central, que identifica la posición y orientación de la lanza térmica activa a partir de estructuras clave. Estas estructuras clave, en ocasiones, son el centro del orificio de entrada del pasaje y el centro de la lanza.
En ciertas modalidades del sistema, los medios para determinar el vector de posición y orientación de la lanza térmica activa comprenden además un inclinómetro.
En ciertas modalidades del sistema, el grupo de referencias mencionado comprende, además:
• desviación máxima del vector de inclinación del eje de la lanza, con respecto al vector del eje del pasaje de apertura; en donde, cuando la desviación del vector de inclinación, con respecto al vector del eje del pasaje de apertura, supera la desviación máxima del vector de inclinación del eje de la lanza, con respecto al vector del eje del pasaje de apertura, como medidos por los medios para determinar el vector de posición y orientación de la lanza térmica, el controlador central envia una señal a los medios para modificar el vector de posición y orientación de la lanza térmica activa.
En ciertas modalidades del sistema, el sistema mide el avance real de la perforación. Para lograr esto, el sistema comprende, además:
• un sensor óptico, que calcula la distancia visible entre el origen de la lanza térmica activa y la entrada del pasaje; en donde el grupo de sensores comprende, además:
• medidor de longitud de la lanza térmica activa, ubicado en el extremo inicial de la lanza, que emite un tren de pulsos hasta el extremo final y que vuelve a su origen; en donde el avance real de la perforación es la resta entre la longitud de la lanza térmica activa y distancia visible entre el origen de la lanza térmica activa y la entrada del pasaje.
En ciertas modalidades del sistema, el grupo de referencias mencionado comprende, además:
• fuerza de empuje axial óptima de la lanza térmica hacia dicho horno; el grupo de sensores comprende, además:
• sensor de la fuerza de empuje de la lanza térmica hacia dicho horno; en donde, el controlador central calcula la componente de fuerza axial ejercida por la punta de la lanza térmica activa, en donde, si la componente de fuerza axial ejercida por la punta de la lanza térmica activa supera la fuerza de empuje axial óptima de la lanza térmica, el sistema envia una señal a los medios para modificar el vector de posición y orientación de la lanza térmica activa del conjunto de lanza térmica activa, que disminuye la fuerza de empuje.
En ciertas modalidades de la invención, el sistema posee un sistema de encendido de lanzas térmicas inductivo y automático.
En ciertas modalidades de la invención, los medios de encendido de lanza térmica se componen de un sistema inductivo, que ubica su bobina principal de forma solidaria a la estructura del sistema motriz y puede ubicarse en dos posiciones. La primera de ella por sobre el eje axial de avance de las lanzas, donde reposa cuando no está siendo utilizada y la otra en el eje axial desde donde transmite energía hacia la punta de la lanza. La bobina se recubre con material de baja conductividad térmica, que la protege durante el proceso de encendido y apertura, y de alta permeabilidad magnética, para favorecer la transferencia de energía hacia la lanza en el proceso de encendido. Tradicionalmente, los sistemas de calefacción inductivos se diseñan con una distancia corta entre la bobina principal y la electrónica de potencia para evitar pérdidas de energía, radiación electromagnética y deformaciones en el trayecto que afecten la inductancia de la bobina.
En este sistema la bobina se encuentra distanciada y separada de la fuente de potencia para otorgar protección a esta última frente a las altas temperaturas presentes en la operación.
En el sistema de la invención, se cuenta también con uno o más sensores de temperatura infrarrojo que permiten determinar en linea la temperatura en la punta de la lanza. Cuando la punta supera un umbral de temperatura comprendido entre 800 y 900°C, se activa el flujo de oxigeno lo cual da inicio a su ignición. Este evento sirve también para detener el aporte de energía de la bobina a la lanza.
Cabe destacar que el control de encendido y apagado de la bobina a partir de medición de temperatura en la lanza permite la utilización de encendedores de mayor potencia y por tanto acortar tiempos de encendido. En contraste, un mecanismo de encendido a partir del tiempo de aporte de energía transcurrido está sujeto a perturbaciones y variaciones que o bien pueden resultar en temperaturas insuficientes para la ignición o bien excesivas al punto de fundir el material, ambos efectos indeseados y dañinos que aumentan el tiempo total de apertura y disminuye la vida útil de los materiales respectivamente El sensor infrarrojo permite determinar también si la lanza se ha encendido correctamente, esta situación se complementa con la variación de presión medida al inicio de la lanza, la cual, producto del consumo adicional de oxigeno utilizado en la combustión, se ve disminuida. Lo anterior es válido gracias al control de flujo constante que permite el sistema. En caso de falla en el encendido, la temperatura de la lanza cae producto del flujo de oxigeno y la presión se restaura. El sistema detecta la falla y reinicia el proceso de encendido de forma automática.
Una de las ventajas es que, como el equipo de ignición se encuentra integrado al equipo, en linea axial de avance de la lanza y no aparte, se permite eliminar el trayecto de ida y vuelta hasta un equipo de encendido al costado del pasaje, con esto se gana tiempo y seguridad, asegurando un encendido rápido de la lanza
En ciertas modalidades del sistema, con la medición de fuerza, el desplazamiento y el acelerómetro se determina la viscosidad del material que se encuentra dentro del horno lo que indicará la capacidad de fluir del material.
En ciertas modalidades del sistema, el sistema comprende, además:
• una pluralidad de sensores en la parte superior de dicho horno o reactor;
• una pluralidad de sensores en la periferia de dicho horno o reactor. En otras modalidades de la invención, el sistema además comprende medios para arquear la lanza térmica activa, por medio de un sistema motriz segundario, complementario al sistema motriz principal. Estos medios para arquear están constituidos por puntos de sujeción y articulados de tal forma que permiten arquear la lanza durante el proceso de apertura de forma controlada. Con la lanza ya introducida en el pasaje, el arqueamiento de la lanza sumado a un tercer apoyo proporcionado por el piso del pasaje, permiten el arqueamiento hacia arriba y/o hacia los lados de la punta de la lanza. Esta propiedad es de especial interés y relevancia en hornos de fundición donde el nivel de acreciones esté por sobre el nivel máximo del pasaje. De forma similar los dos puntos de apoyo del sistema motriz segundario permiten también generar una oscilación controlada de la punta de la lanza horizontal y/o vertical, tipo abanico, circular de distintos diámetros o en espiral creciente y decreciente. Estos movimientos son de importancia para la limpieza efectiva y segura del pasaje, cuando este ya ha sido abierto.
Ejemplarmente, además, los medios para arquear la lanza térmica están constituidos por puntos de sujeción, articulados.
El sistema de la invención puede además comprender un sistema de visualización de información, que permite sacar cualquier tipo de reporte que sirve como indicador de gestión y que facilita la toma de decisiones de control.
En ciertas modalidades del sistema, una o más de las lanzas térmicas tiene al menos cuatro ductos de paso de gas comburente en su interior.
En ciertas modalidades del sistema, el grupo de actuadores comprende además:
• un distribuidor de gas comburente, que distribuye el flujo total del gas comburente entre cada ducto dentro la lanza térmica, en donde el flujo entregado a cada ducto corresponde al flujo estequiométrico para que reaccionen los espesores, obteniendo magnetita (Fe2O3) como producto de la combustión.
Para determinar la geometría y las dimensiones de cada pin del distribuidor es necesario determinar el espesor a reaccionar de cada ducto de la lanza, luego se calcula el flujo de oxigeno estequiométrico que se requiere para que reaccione el 100% del espesor a una tasa de consumo de lanza térmica de lm/min obteniendo magnetita (Fe2O3) como producto de la combustión, después se calcula el espesor de oxigeno que reaccionará mediante la ecuación que define la subcapa viscosa, con este espesor se calcula el flujo total que tiene que llevar cada ducto para hacer reaccionar el 100% del espesor correspondiente. El diseño de cada pin tiene que dejar un área de paso de oxigeno acorde a la porción del flujo total de la lanza para que por cada ducto pase el flujo correcto. En ciertas modalidades del sistema, cada distribuidor de gas consiste en un dispositivo de diámetro levemente mayor a la lanza térmica que, en su sección transversal contiene resaltes tipo pines o émbolos de distintas geometrías y alturas, en donde la posición de sus baricentros o centroides individuales coinciden con los baricentros de los ductos de la lanza térmica., asi se introducen en cada ducto de la lanza térmica que requiere restringir el flujo de oxigeno para evitar que sean mayores a los necesarios, asi aumenta el flujo en los ductos de áreas más restringidas, logrando que reaccione el 100% de cada ducto y por tanto un consumo parejo de la lanza.
En el sistema de la invención, el cambio automático de las lanzas térmicas se hace a través de la información que se capta a través de la lanza térmica y que en cada operación que realiza, a través de un algoritmo predice el comportamiento que tendría el horno en el futuro. Las predicciones se contrastan con información que arrojan análisis fisicoquimicos a posteriori para generar un vector de error. El vector de error se utiliza para corregir el algoritmo predictive y por tanto sus predicciones futuras. A partir del conocimiento del estado de evolución del horno, el sistema define autónomamente el momento ideal de la siguiente apertura.
Particularmente, el dispositivo automático de cambio/selección de conjunto de lanza térmica permite conectar automáticamente una nueva lanza detrás de aquella que actualmente se encuentre en uso de forma automática y rápida, evitando asi la necesidad de extraer la lanza actual del pasaje y repetir el proceso de encendido de la lanza nueva. Dado que el tiempo de conexión de una nueva lanza es rápido y la lanza actual se encuentra aún a temperatura de ignición tras finalizar el proceso de conectado, al reestablecerse el flujo de oxigeno, la lanza, ahora extendida, continua su ignición de forma regular. Esta operación permite una reducción de tiempo total de apertura, una utilización completa de la lanza térmica y un aumento en la eficiencia, dado por la disminución de calor perdido entre cambio de lanzas. Adicionalmente, este mecanismo de carga permite la utilización de lanzas más cortas y por tanto más robustas, de interés en aplicaciones que deban desarrollarse en espacios reducidos y donde la precisión y velocidad de apertura sean de valor.
El dispositivo de conexión y desconexión automática de lanza térmica comprende un sistema motriz de precisión con realimentación de sensores que permite estimar su posición y orientación en todo momento. Adicionalmente, el sistema cuenta con cámaras y algoritmos que procesan los videos que generan para identificar y determinar posición y orientación de estructuras clave tales como orificio de entrada del pasaje y de la lanza. Además, el sistema con un sistema de soporte que permiten rigidizar y forzar la posición exacta.
En algunas modalidades, el sistema de la invención comprende además una cámara que capta el perfil transversal de la lanza térmica seleccionada, en donde, en base a ese perfil selecciona un tipo de distribuidor de oxigeno para la lanza térmica y conecta dicho distribuidor a la lanza térmica activa. De esta forma, El sistema permite el alineamiento axial y orientación angular del distribuidor de tal forma que se ajuste a la lanza en uso.
En algunas modalidades del sistema el sensor de la fuerza de empuje de la lanza térmica hacia dicho horno es un sensor piezoeléctrico. Con la fuerza aplicada y la orientación de la lanza se calcula la componente de fuerza axial ejercida por su punta. Esta componente influye en la calidad y la eficiencia de la perforación. La orientación se determina a partir de un inclinómetro solidario a la lanza.
Ejemplarmente, el sensor de estancamiento de evacuación de materiales fundidos, que podria enviar pulsos de altos flujos de oxigeno, aire, vibraciones u otros que obliguen a fluir al material fundido se elige de entre un grupo de:
• piezómetro u otro que detecte variaciones de presión
• cámara que miden la intensidad de la luz del material que se está evacuando,
• acelerómetro que miden diferencias de aceleración en el empuje,
• inclinómetro que miden la inclinación de la lanza.
Toda la información que se determina a partir de la medición de características obtenida a través de atenuaciones y tiempos de vuelo de reflexiones o refracciones de ondas mecánicas y/o electromagnéticas, que se capturan a través de sensores que captan datos a través de la lanza térmica, son procesados a través de algoritmos en un procesador que genera información y las respalda en bases de datos. La información es constantemente comparada con la disponible en la base de datos prediciendo condiciones y determinando acciones especificas para corregir desviaciones respecto del resultado optimo que se busca. La ejecución de las acciones es comandada directamente por el mismo procesador para que se modifiquen los parámetros de operación necesarios para la corrección
Todas las señales son comparadas con otros perfiles históricos y determinará si el patrón observado se corresponde con una disminución de flujo del material en evacuación. los piezómetros, cámaras, acelerómetros, inclinómetros, emisores de onda están dispuestos y programados para detectar cualquier variable que afecte la eficiencia, la seguridad y la integridad del horno.
El sistema está midiendo y ajustando constantemente el flujo de oxigeno de la lanza para el mayor rendimiento de ésta en cada instante de la operación, lo determina con la configuración geométrica de la lanza térmica y el distribuidor de oxigeno y el avance real que está teniendo la perforación. Toda la información es capturada: las variables de entrada, las de condición de la apertura y las de resultados tales como avance y consumo de lanza total. El sistema utilizará la información de aperturas pasadas, incluida la actual, para recalcular las variables de entrada, incluida la fuerza, que permitan lograr los mejores resultados frente a distintas condiciones
Problema técnico que resuelve la invención:
La invención presentada resuelve la necesidad de operaciones de apertura de pasajes controladas, adecuadas y repetidles de alta eficiencia y calidad, asi como también la disminución de riesgo humano inherente a éstas. La solución se logra mediante la automatización del proceso, el que a su vez es posible gracias a la captura de variables de estado internas del horno. Por su parte, la información capturada es de valor, no solo para el control y operación óptimo de la apertura de pasajes, sino que del proceso de fundición en general. La captura de información se realiza mediante técnicas que, entre otras novedades, utiliza lanzas térmicas no solo como fuentes de calor, sino que también como instrumento de medición. El uso de estas técnicas, hasta donde alcanza el conocimiento de los inventores, es desconocido en el contexto de apertura de pasajes de hornos de fundición.
A continuación, se detallan varias razones de baja eficiencia, mala operación, poco control y desinformación respecto de las aperturas de pasajes, que conducen a disminuir la capacidad de producción en hornos de fusión y/o reactores, asi como también se presenta cómo esta invención resuelve dichas dificultades.
Selección de lanza térmica inadecuada: La tendencia normal de la industria pirometalúrgica es definir una sola lanza térmica para abrir los pasajes en cualquier circunstancia, pero las condiciones del pasaje van cambiando por efecto de materias primas, condición del horno, desprendimientos de materiales etc. Esto hace que, para un mismo proceso, se tengan requerimientos de lanzas térmicas distintas. La presente invención resuelve esta problemática recolectando datos que recibe de la misma operación a través de distintos tipos de sensores y/o otros ingresados manualmente. Los datos son procesados para determinar el nivel de energía y lanza asociada que permita ejecutar la perforación en particular.
Diferencias de sección transversal de ductos de lanza térmica: Por limitaciones en la construcción de lanzas térmicas, los ductos al interior de ésta poseen áreas de sección diferentes. Esta diferencia resulta en una distribución de flujo de oxígeno desigual entre ductos. El flujo es mayor en ductos de mayor área y menor en aquellos de menor área.
Cabe destacar que existe un flujo óptimo que permite reaccione el acero circundante al ducto, y éste depende de su geometría. Desviaciones respecto de este flujo disminuyen la eficiencia térmica total de la lanza. Un exceso de flujo es también perjudicial, porque resta calor de la lanza y del material en proceso de fundición, además de potenciar una quema dispareja de los ductos de la lanza.
El sistema descrito en la invención contempla un distribuidor o ecualizador de oxígeno que compensa y corrige las diferencias de flujo en los ductos. Su diseño se personaliza para cada perfil de lanza térmica.
En una modalidad preferente, la invención comprende émbolos o pines que obstruyen y restringen el flujo de oxígeno en ductos que así lo requieran. Se diseñan de forma tal que se asegure que cada ducto reciba un flujo óptimo, restringiendo más ductos de mayor área y menos o nada aquellos ductos de menor área. Como resultado, todo el oxigeno que llega a la lanza se distribuye y ecualiza equilibradamente según la necesidad de cada ducto.
Distancia de punta de lanza a material: es muy común que los operadores alejen y acerquen el extremo de ignición de las lanzas respecto del material que están perforando, esto hace que la transferencia de calor de la lanza térmica al material a fundir sea deficiente. La energía que recibe el material a fundir disminuye proporcionalmente con el cuadrado de la distancia entre ambos.
Para evitar esta perdida, el sistema descrito en la invención contempla un sistema motriz, que controla la trayectoria y velocidad de avance a partir de mediciones de fuerza aplicada y sus reacciones como velocidad y aceleración de avance.
Flujo de oxígeno adecuado: Cada lanza térmica necesita un flujo de oxígeno determinado para que lograr su mejor rendimiento. Excesos o déficit de flujo, afectan notoriamente su rendimiento. Durante la operación existen diversos factores que producen desviaciones del flujo: aumento de flujo a medida que la lanza térmica se consume y acorta; ajuste de oxigeno en exceso por parte de operadores motivados por la creencia errónea de que más flujo y ruido se condice con más potencia producida por la lanza; variaciones de presión en la red de suministro de oxígeno producida por simultaneidad de consumo en distintas partes de la red o bien por disminución de flujo generado de oxígeno en la fuente; perturbaciones en la presión de salida producto de obstrucciones y o variaciones en la fuerza aplicada sobre la lanza. Adicionalmente, y dado que la potencia de la lanza puede modularse ajustando el flujo de oxígeno, el flujo adecuado varía durante la ejecución de la apertura, ajustándose a los requerimientos energéticos distintas subetapas. Sin embargo, en ausencia de mecanismos de ajuste y medición, los operadores se limitan a utilizar un nivel de flujo fijo.
El sistema de la invención contempla sensores de presión, sensores de flujo de oxigeno y medios de regulación de flujo (tal como una válvula proporcional), conectados estos a un controlador.
El controlador que permite compensar y seguir un programa de flujo determinado, que permite la adaptación de requerimientos energéticos de la lanza para cada subetapa del proceso de apertura.
Inclinación de la lanza: si la lanza térmica desvia su dirección respecto del eje del pasaje, además de demorar la apertura del horno, ataca y produce daños en la estructura del horno. En particular, en material refractario y/o ductos de refrigeración del pasaje, produciendo explosiones de alto riesgo que inhabilitan al horno por tiempos prolongados.
El sistema de la invención, combinando la información de un sensor unidad de medición inercial (IMU), la fuerza aplicada sobre la lanza e indicadores de ángulos, posición y deformación obtenidos a través del procesamiento de imágenes capturadas por cámaras que supervisan el proceso de apertura, estima la posición relativa de la lanza respecto del eje del pasaje en tiempo real. Esta información alimenta a un sistema motriz robotizado que permite la corrección de desviaciones e incluso la programación y ejecución automática de trayectorias espaciales predefinidas. Las imágenes en las cámaras permiten también generar un estimador de posición espacial de la entrada del pasaje, daños realizados en el pasaje y/o impurezas que requieran de limpieza subetapa final de la apertura. Evacuación de materiales: A medida que avanza la perforación, la evacuación del material fundido es fundamental para que la parte ya abierta se mantenga abierta y evitar que se atasque la lanza térmica y por tanto la apertura. En la medida que el material fundido avanza hacia la salida del pasaje, comienza a enfriarse y su viscosidad aumenta. Una evacuación apropiada requiere que la viscosidad del material fundido esté bajo un nivel critico. Sobre este valor, el material deja de evacuar y de transcurrir mucho tiempo, la lanza se atasca. El operador, deber pausar la apertura, retirar e ingresar la lanza varias veces para luego retomar el proceso. Esta pausa y repaso del pasaje implica pérdidas de tiempo y material que incrementan con su frecuencia de ocurrencia. La invención resuelve problemas de atascamiento mediante dos acciones: preventiva y reactiva.
Ambas acciones se basan en la medición de variables como presión y flujo de oxigeno, fuerza aplicada sobre la lanza y la aceleración que esta experimenta. Adicionalmente, también se estiman atributos de temperatura, fluidez y caudal del material evacuado, obtenidos a través del procesamiento de secuencia de imágenes. Las imágenes se obtienen de cámaras multiespectrales con lentes y filtros apropiados para evitar la saturación y maximizar la sensibilidad al rango de espectro de interés. En concreto, aquél dado por las longitudes de onda irradiadas por el material fundido a las distintas temperaturas posibles para el proceso.
Por su parte, la acción preventiva controla la viscosidad del material evacuado a un valor de referencia. El control se realiza ajustando el aporte energético de la lanza al material, incrementando o disminuyendo la tasa de consumo mediante la fuerza aplicada sobre la lanza el flujo de oxigeno inyectado. La acción reactiva se activa cuando la acción preventiva es incapaz de mantener una viscosidad baja y ésta se acerca al nivel critico. La acción reactiva activa un tren de pulsos de flujo de oxigeno. Los pulsos son de alto flujo y corta duración. El aumento de flujo relativo aumenta la presión al interior del pasaje favoreciendo la evacuación de material. La corta duración de los pulsos evita que una vez evacuado el material viscoso, se enfrie el material remanente producto del exceso de flujo. La acción reactiva se detiene una vez se ha logrado reestablecer un flujo de salida con viscosidad bajo el umbral critico o bien si ha transcurrido un tiempo máximo. En caso de cumplirse el tiempo máximo, la lanza se retira e ingresa al pasaje en reiteradas ocasiones de forma automática emulando la operación manual utilizada en estos escenarios.
Condición de operación del horno: En algunas ocasiones por razones de materias primas, condición del horno, formulaciones u otras situaciones se producen desequilibrios químicos, físicos y térmicos, que conllevan a situaciones que complejizan la faena de apertura de pasajes, la evacuación del producto y diferentes condiciones de los distintos pasajes que puede contener un horno (desde 1 a 8 o más), lo que hace que sea complejo abrir y hacer un proceso eficiente. En particular, la temperatura al interior del horno es un parámetro de interés para el control general del proceso.
Mediante la inyección de pulsos electromagnéticos en la lanza, y a electrónica de procesamiento de alta velocidad, se inyectan señales discretas, pulsantes y oscilatorias de tal forma que es posible determinar tanto el tiempo de vuelo de estas señales a través de la lanza, asi como también la atenuación y distorsión que experimenta en su recorrido. La atenuación de la señal electromagnética se debe en gran medida a la resistencia del conjunto lanza y medio fundido y en menor medida a perdidas en energía en señal refractada y no reflejada. A su vez la resistencia del conjunto depende de la temperatura a la que se encuentra el material fundido. Es esta relación la que permite utilizar la atenuación de la señal como un indicador de temperatura promedio del conjunto. Las perdidas por señales refractadas dependen de la diferencia de impedancia característica entre lanza y material fundido. Cada una determinada en definitiva por las propiedades eléctricas y magnéticas dada por la mezcla de materiales que las componen. La composición de las lanzas térmicas es conocida y para todos los efectos prácticos constante. Mientras que, en el caso del material fundido, su composición varia, dependiendo de la mineralogía original de la mezcla entrante al horno, del proceso de fundición y de otras variables del proceso tales como el aporte de oxigeno y velocidad de inyección de mezcla.
Por otra parte, la frecuencia de resonancia mecánica del conjunto lanza y medio fundido, depende tanto de la temperatura del conjunto como de la geometría de éste. Respecto de la geometría, el parámetro más relevante corresponde al largo de la lanza térmica. La frecuencia de resonancia se determina mediante un tren de pulsos mecánicos generados por un piezoeléctrico solidario a la lanza térmica. Los pulsos del tren se encuentran separados en un periodo de tiempo cuyo inverso se corresponde con la frecuencia de prueba. La respuesta oscilante del conjunto al estimulo se captura a través del mismo piezoeléctrico. Se registran tanto la amplitud de la respuesta como sus componentes espectrales principales. Este proceso se repite para un rango amplio de frecuencias dentro del cual vive la frecuencia de resonancia del conjunto. La frecuencia de resonancia del conjunto se estima como aquella que genere una respuesta de mayor amplitud y cuya respuesta espectral esté concentrada en mayor grado a la frecuencia de resonancia, que para este caso se corresponde también con la frecuencia de estimulo y respuesta. Estimada la frecuencia de resonancia, se inyectan señales pulsantes distantes en el tiempo dejando espacio para la escucha de sus ecos correspondientes. Los ecos mecánicos corresponden a reflexiones de la señal inyectada producidos por cambios de impedancia que la señal encuentra en su trayecto. El cambio desde un trayecto sólido, la lanza, a uno liquido o viscoso, medio fundido, da lugar a una refracción y reflexión de la señal. La señal reflejada es capturada por el piezoeléctrico y transformada en señales eléctricas para su procesamiento. El tiempo de vuelo entre la emisión de un pulso y la llegada de su eco, se utiliza en conjunto con la información de velocidad de desplazamiento del sonido en metales constituyentes de la lanza para determinar el largo de la lanza. Cabe destacar que la velocidad depende también de la temperatura, por tanto, es necesario ajustarla a partir de la estimación de temperatura realizada anteriormente.
Finalmente, se utilizan estimadores ya determinados para viscosidad, largo de lanza y frecuencia de resonancia como entradas a un modelo de regresión para obtener un segundo estimador de temperatura, independiente del obtenido mediante atenuación resistiva.
Ahora bien, la temperatura promedio del conjunto es una y, por tanto, la diferencia entre estimadores de temperatura corresponde a errores de estimación. Se considera como estimador definitivo un promedio ponderado de los estimadores individuales. La diferencia entre el estimador definitivo y cada estimación se registra también dentro del vector de mediciones como un error.
La implementación de estos algoritmos utiliza, pero no se limita únicamente a estas, redes neuronales adversarias generativas. Para su calibración se utilizan medidas reales de temperatura del medio fundido obtenidas mediante sondas paramétricas y/o cámaras multiespectrales de referencia.
Una vez determinada la temperatura promedio de la lanza y medio fundido, es posible determinar la porción de energía perdida en señal electromagnética refractada desde la lanza hacia el material fundido y por tanto generar estimadores de características eléctricas y magnéticas, entre las cuales se incluye la impedancia característica, pero no se limita a ésta. A partir de estas características, es posible determinar concentraciones en linea de distintos compuestos de interés para un control preciso y oportuno del proceso de fundición en su conjunto.
Cabe destacar que las propiedades encontradas en un punto espacial al interior del horno no necesariamente son las mismas encontradas en otras localidades del horno. Por tanto y en la medida que la lanza avanza al interior del horno, se generan perfiles espaciales de propiedades a lo largo de la trayectoria seguida por ésta. Estos perfiles obtenidos por lanzas introducidos en distintos pasajes del horno, los cuales pueden o no ser apoyados por sensores externos, permiten estimar una distribución continua de variaciones de dichas propiedades al interior de horno.
De forma complementaria, es posible robustecer y ampliar las mediciones realizadas por las lanzas térmicas, con transceptores de señales mecánicas y/o electromagnéticas ubicados en la superficie exterior del horno y/o al interior de éste, bajo ladrillos refractarios. En el caso de encontrarse por el interior del horno, las comunicaciones hacia el exterior se realizan de forma cableada o bien mediante transceptor ultrasónico solidario a la superficie del horno. A partir de propiedades observadas en señales que atraviesan el medio fundido y espacio sobre éste, tales como atenuación, distorsiones, reflexiones y refracciones, cambios en propiedades de resonancia acústica, velocidad de desplazamiento de ondas mecánicas entre otras, asi como también, mediante mediciones directa de temperatura de ladrillo y/o superficie del horno, se determinan propiedades distribuidas en el espacio tales como distribución de altura de medio fundido, de cambio de fase escoria/mata y/o mata/sedimento, de temperatura. Cabe destacar que la lanza térmica forma parte también de esta estimación como un transceptor más.
Lanzas térmicas defectuosas: Para obtener la máxima eficiencia de una lanza térmica, es fundamental que cada ducto que contiene la lanza térmica esté totalmente despejado de un extremo a otro. Para asegurar el despeje, la invención mide el flujo y presión de oxigeno aportado para estimar un nivel de obstrucción. El nivel de obstrucción se compara con valores de referencia para la condición de operación del lugar. En caso de detectarse obstrucciones por sobre un nivel aceptable, la invención realiza un cambio de lanza. La invención registra tanto el flujo, presión y nivel de obstrucción en linea como respaldo para el reclamo de garantía por lanzas defectuosas.
Falta de información y de control en las aperturas de pasajes: Generalmente, las fundiciones no conocen las condiciones ni parámetros de operación de apertura de pasajes adecuados para aumentar la productividad global del proceso de fundición. La apertura de pasajes, al ser una operación obligada, periódica y de vital importancia, y dado que es la única instancia del proceso en que se introduce un elemento externo dentro del horno y por tanto donde se puede obtener información del material fundido por contacto directo, permite una recolección continua y frecuente de información. Esta información bien puede utilizarse para el incremento de eficiencia de los hornos y reactores, y por tanto de la productividad global del proceso. Ahora bien, dado el alto volumen de información del proceso de fundición y la capacidad humana, aunque elevada en muchos casos posee con un límite máximo, es necesario y deseable que la información se presente de forma objetiva, simple y oportuna, que en definitiva facilite la toma de decisiones. La invención contempla dicho sistema y se especializa en proporcionar información de operación de apertura de pasajes y variables relevantes derivadas a partir de éste. Este sistema permite también la integración con otras fuentes de información operacional tales como registro de fallas o daños en pasajes y productividad general del horno. A partir del cruce y procesamiento constante de información entrante, el sistema permite la extracción de causas probables de fallas y generación de recomendaciones y/o acciones correctivas para cada caso.
Operación aislada con poco acceso de control e información La operación de apertura y su supervisión directa es de alto riesgo para operadores debido a la cercanía con fuentes de alta energía térmica, tales como lanza térmica y metales fundidos en evacuación, como a la exposición a gases tóxicos. Más aún, la apertura se realiza en lugares confinados y cerrados que intensifican los riesgos y limitan las opciones de evacuación en presencia de eventos adversos.
La coordinación de instantes y duración de apertura de pasajes, así como un registro preciso y oportuno de variables de interés es en sí complejo, susceptible a fallas y errores producto de falta de disponibilidad instantánea de personal y/o de incertidumbres y variabilidad inherente a las comunicaciones y realización de acciones humanas. Por otra parte, la generación manual de información requiere en alguna parte del proceso de su digital!zación para ser alimentada a los sistemas de control. Responsabilidad que recae muchas veces en supervisores del proceso y que demanda tiempo que bien podría utilizarse en actividades que permitan aumentar su productividad. La invención permite tanto la captura y digitalización de variables del proceso de apertura de forma remota y automatizada, liberando el tiempo utilizado por operadores y supervisores en dicha tarea. La captura de información precisa y oportuna es relevante es de valor no solo instantáneo, sino que también para la generación de una base de datos que permita una comprensión más acabada del horno y sus desbalances. Esta comprensión permite a su vez el desarrollo de estrategias de control más avanzadas resultantes en aumentos de productividad operacional. Adicionalmente, mediante el accionamiento y control remoto de la operación de apertura, permite el control de instantes y duración del proceso de apertura de forma precisa y remota. Permite entonces que operadores gestionen y supervisen la apertura de uno o más pasajes a distancia de forma simultánea, eliminando los riesgos asociados.
Corrección de operación de horno Tardia: dado que los procesos de fundición desde que se dosifican las materias primas a la entrada del horno hasta que sale el material toman tiempos considerablemente altos desde una hora hasta 10 o más horas. Este sistema es capaz de obtener información a través de la lanza térmica y procesarla para determinar con antelación las correcciones de operación disminuyendo asi las bajas de producción por inestabilidad del horno.

Claims

1. Un sistema inteligente de apertura de pasajes con lanzas térmicas para hornos o reactores de procesos pirometalúrgicos, que controla y ajusta autónomamente las variables del proceso de apertura, para obtener la máxima eficiencia que se pueda lograr, además de captar información del interior del horno o reactor a través de la lanza térmica y procesarla para determinar y enviar señales que corrijan anomalías que causaran deficiencias posteriores en la operación general del horno, que comprende:
> uno o más conjuntos de lanza térmica, en donde cada conjunto de lanza térmica a su vez comprende:
❖ un portalanzas, por el cual se conecta la lanza térmica a la red de oxigeno contiene conexiones eléctricas y una diversidad de sensores como por ejemplo de presión, de temperatura, de inclinación, de fuerza, de aceleración y otros para captar o detectar desviaciones que afecten la eficiencia de la apertura del pasaje, la eficiencia de producción y la integridad de la estructura del horno o reactor;
❖ una lanza térmica, por la cual circula un gas comburente, con al menos un ducto de paso de gas comburente en su interior, por donde además circulan pulsos y ondas mecánicas y/o pulsos y ondas electromagnéticas que determinan mediciones y características de los materiales en las distintas profundidades del pasaje e incluso dentro del horno;
> una pluralidad de sensores, que pueden ir instalados en un portalanzas o en el sistema, que comprende uno o más de entre un grupo de sensores: • una pluralidad de sensores de la presión del gas comburente,
• una pluralidad de sensores de flujo del gas comburente;
• sensores de elementos de alta resistencia térmica indeseados;
> una pluralidad de emisores, que comprende uno o más de entre un grupo de emisores:
• una pluralidad de emisores de ondas mecánicas;
• una pluralidad de emisores de ondas electromagnéticas;
• una pluralidad de pulsos mecánicos;
• una pluralidad de pulsos electromagnéticos;
> una pluralidad de actuadores, que comprende uno o más de entre un grupo de actuadores:
• medios de encendido de lanza térmica;
• medios de regulación del flujo total de gas comburente, para que la lanza térmica reciba siempre el flujo que la hace eficiente;
• medios para forzar la evacuación de los materiales fundidos, que obligan a los materiales fundidos a fluir;
> un dispositivo automático de cambio/selección de conjunto de lanza térmica, que comprende:
❖ una pluralidad de posiciones de conjuntos de lanza térmica, de las cuales una se define como activa, y el resto, como inactivas;
❖ un sistema motriz de precisión, que fuerza la posición de una o más lanzas entre una pluralidad de posiciones, y
❖ un sistema de soporte, que rigidiza una lanza térmica en su nueva posición; > medios para determinar el vector de posición y orientación de la lanza térmica activa;
> medios para modificar el vector de posición y orientación de la lanza térmica activa;
> medios de ajuste de los parámetros de operación del horno;
> medios de captación de información de los parámetros de operación del horno;
> un controlador central que comprende:
❖ una memoria que incluye una pluralidad de referencias, que se eligen de entre un grupo de referencias:
• una pluralidad de umbrales óptimos de condición de operación dentro del horno;
• presión de gas de estancamiento para cada tipo de lanza térmica;
• presión minima de operación del gas comburente para cada tipo de lanza térmica;
• presencia de uno o más elementos de alta resistencia térmica indeseados, o una mezcla de ellos, para cada tipo de lanza térmica;
❖ un procesador, que compara cada referencia con:
• un valor de entrada proporcionado por uno de entre la pluralidad de sensores; o
• una combinación de valores de entrada proporcionado por uno o más de entre la pluralidad de sensores; en donde, el controlador central envía al conjunto de lanza térmica activa uno o más comandos a uno o más de entre la pluralidad de actuadores, en donde el uno o más comandos se eligen de entre el grupo de comandos: • avanzar el conjunto de lanza térmica activa;
• retroceder el conjunto de lanza térmica activa;
• aumentar la fuerza de empuje del conjunto de lanza térmica activa;
• disminuir la fuerza de empuje del conjunto de lanza térmica activa;
• aumentar el flujo total de gas comburente;
• disminuir el flujo total de gas comburente;
• activar los medios de encendido de lanza térmica;
• activar los medios para forzar la evacuación del material fundido; en donde, cuando la presión del gas comburente sobrepasa la presión de gas de estancamiento de la lanza térmica activa, se activan los medios para forzar la evacuación del material fundido; en donde, cuando el sensor de elementos de alta resistencia térmica indeseados del conjunto de lanza térmica activo detecta la aparición de un elemento que coincide con el uno o más elementos de alta resistencia térmica indeseados, o una mezcla de ellos, para la lanza térmica activa, el controlador central envía el comando de cambio de lanza térmica, que contiene un tipo de lanza térmica seleccionado, al dispositivo automático de cambio/selección de conjunto de lanza térmica, en donde el dispositivo automático de cambio/selección de conjunto de lanza térmica mueve conjunto de lanza térmica activo hacia una nueva posición inactiva libre, y el dispositivo automático de cambio/selección de conjunto de lanza térmica mueve un conjunto de lanza térmica inactivo que contiene el tipo de lanza térmica seleccionado, a la posición activa; en donde cuando uno o más de los parámetros de operación del horno están fuera de los umbrales óptimos de condición de operación dentro del horno correspondientes, el sistema envia la señal a los medios de ajuste de los parámetros de operación del horno para ajustar el uno o más de los parámetros de operación del horno correspondientes.
2. Un sistema según cualquiera de las reivindicaciones anteriores, en donde los parámetros de operación del horno comprenden:
• dosificación de materias primas y aditivos
• energía aportada a la operación
• temperatura de operación
• tasa de fusión.
3. Un sistema según la reivindicación 1, en donde: el grupo de referencias incluye, además:
• umbral de temperatura de ignición de la punta de la lanza térmica; el grupo de sensores comprende, además:
• sensor de temperatura de la punta de la lanza térmica; en donde, cuando la punta de la lanza térmica supera el umbral de temperatura de ignición de la punta de la lanza térmica, los medios de regulación del flujo total de gas comburente permiten el flujo de gas comburente y encienden los medios de encendido de la lanza térmica activa.
4. Un sistema según cualquiera de las reivindicaciones anteriores, en donde: el grupo de referencias incluye, además:
• desviación máxima del vector de inclinación del eje de la lanza, con respecto al vector del eje del pasaje de apertura; en donde, cuando la desviación del vector de inclinación, con respecto al vector del eje del pasaje de apertura, supera la desviación máxima del vector de inclinación del eje de la lanza, con respecto al vector del eje del pasaje de apertura, como medidos por los medios para determinar el vector de posición y orientación de la lanza térmica, el controlador central envía una señal a los medios para modificar el vector de posición y orientación de la lanza térmica activa.
5. Un sistema según cualquiera de las reivindicaciones anteriores, en donde además comprende:
• un sensor óptico, que calcula la distancia visible entre el origen de la lanza térmica activa y la entrada del pasaje; en donde el grupo de sensores comprende, además:
• medidor de longitud de la lanza térmica activa, ubicado en el extremo inicial de la lanza, que emite un tren de pulsos hasta el extremo final y que vuelve a su origen; en donde el avance real de la perforación es la resta entre la longitud de la lanza térmica activa y distancia visible entre el origen de la lanza térmica activa y la entrada del pasaje.
6. Un sistema según cualquiera de las reivindicaciones anteriores, en donde: el grupo de referencias incluye, además:
• fuerza de empuje axial óptima de la lanza térmica hacia el horno; el grupo de sensores comprende, además:
• sensor de la fuerza de empuje de la lanza térmica hacia el horno; en donde, el controlador central calcula la componente de fuerza axial ejercida por la punta de la lanza térmica activa, en donde, si la componente de fuerza axial ejercida por la punta de la lanza térmica activa supera la fuerza de empuje axial óptima de la lanza térmica, el sistema envía una señal a los medios para modificar el vector de posición y orientación de la lanza térmica activa del conjunto de lanza térmica activa, que disminuye la fuerza de empuje.
7. Un sistema según las reivindicaciones anteriores, en donde con la medición de fuerza, el desplazamiento y el acelerómetro se determina la viscosidad del material que se encuentra dentro del horno lo que indicará la capacidad de fluir del material.
8. Un sistema según la reivindicación 1, en donde además comprende:
• una pluralidad de sensores en la parte superior de dicho horno o reactor;
• una pluralidad de sensores en la periferia de dicho horno o reactor.
9. Un sistema según la reivindicación anterior, en donde además comprende: medios para arquear la lanza térmica activa.
10. Un sistema según cualquiera de las reivindicaciones anteriores, que comprende además un sistema de visualización de información.
11. Un sistema según las reivindicaciones 8 a 9, en donde los medios para arquear la lanza térmica están constituidos por puntos de sujeción articulados.
12. Un sistema según las reivindicaciones 2 a 10, en donde los medios para determinar el vector de posición y orientación de la lanza térmica activa son una pluralidad de cámaras de video; en donde los videos proporcionados por la pluralidad de cámaras son procesados por el controlador central, que identifica la posición y orientación de la lanza térmica activa a partir de estructuras clave.
13. Un sistema según la reivindicación anterior, en donde las estructuras clave son el centro del orificio de entrada del pasaje y el centro de la lanza.
14. Un sistema según las reivindicaciones 2 a 12, en donde los medios para determinar el vector de posición y orientación de la lanza térmica activa comprenden además un inclinómetro.
15. Un sistema según cualquiera de las reivindicaciones anteriores, en donde una o más de las lanzas térmicas tiene al menos cuatro ductos de paso de gas comburente en su interior.
16. Un sistema según la reivindicación 14, en donde el grupo de actuadores comprende, además:
• un distribuidor de gas comburente, que distribuye el flujo total del gas comburente entre cada ducto dentro la lanza térmica, en donde el flujo entregado a cada ducto corresponde al flujo estequiométrico para que reaccionen los espesores, obteniendo magnetita (Fe2O3) como producto de la combustión.
17. Un sistema según las reivindicaciones 14 a 15, en donde cada distribuidor de gas consiste en un dispositivo de diámetro levemente mayor a la lanza térmica que, en su sección transversal contiene resaltes tipo pines o émbolos de distintas geometrías y alturas, en donde la posición de sus baricentros o centroides individuales coinciden con los baricentros de los ductos de la lanza térmica.
18. Un sistema según cualquiera de las reivindicaciones anteriores, en donde; el dispositivo automático de cambio/selección de conjunto de lanza térmica comprende además:
• una cámara que capta el perfil transversal de la lanza térmica seleccionada, en donde, en base a ese perfil selecciona un tipo de distribuidor para la lanza térmica y conecta dicho distribuidor a la lanza térmica activa.
19. Un sistema según cualquiera de las reivindicaciones anteriores, en donde el sensor de la fuerza de empuje de la lanza térmica hacia dicho horno es un sensor piezoeléctrico.
20. Un sistema según cualquiera de las reivindicaciones anteriores, en donde cada sensor de estancamiento de evacuación de materiales fundidos se elige de entre un grupo de:
• piezómetro u otro que detecte variaciones de presión;
• cámara que miden la intensidad de la luz del material que se está evacuando;
• acelerómetro que miden diferencias de aceleración en el empuje;
• inclinómetro que miden la inclinación de la lanza.
21. Un sistema según las reivindicaciones 6 a 19, en donde el sensor de temperatura de la punta de la lanza térmica es un sensor infrarrojo.
22. Un sistema según las reivindicaciones 6 a 20, en donde el umbral de temperatura de ignición de la punta de la lanza térmica está comprendido entre 800 y 900°C.
23. Un sistema según cualquiera de las reivindicaciones anteriores, en donde el gas comburente es oxigeno.
PCT/CL2022/050043 2022-04-27 2022-04-27 Sistema inteligente de apertura de pasajes con lanza térmica WO2023205911A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050043 WO2023205911A1 (es) 2022-04-27 2022-04-27 Sistema inteligente de apertura de pasajes con lanza térmica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050043 WO2023205911A1 (es) 2022-04-27 2022-04-27 Sistema inteligente de apertura de pasajes con lanza térmica

Publications (1)

Publication Number Publication Date
WO2023205911A1 true WO2023205911A1 (es) 2023-11-02

Family

ID=88516524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050043 WO2023205911A1 (es) 2022-04-27 2022-04-27 Sistema inteligente de apertura de pasajes con lanza térmica

Country Status (1)

Country Link
WO (1) WO2023205911A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701518A (en) * 1969-10-03 1972-10-31 Berry Metal Co Oxygen lance control arrangement for basic oxygen furnace
JPH11140528A (ja) * 1997-11-04 1999-05-25 Kobe Steel Ltd 溶融鉄処理炉におけるスロッピングの予知方法
DE102004061944A1 (de) * 2004-12-22 2006-07-06 Polysius Ag Verfahren und Vorrichtung zur Behandlung einer Schmelze oder Schlacke
WO2016103196A1 (en) * 2014-12-24 2016-06-30 Outotec (Finland) Oy A system and method for collecting and analysing data relating to an operating condition in a top-submerged lancing injector reactor system
WO2020086708A1 (en) * 2018-10-23 2020-04-30 Skynexss Llc Methods for controlling the position of furnace lances

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701518A (en) * 1969-10-03 1972-10-31 Berry Metal Co Oxygen lance control arrangement for basic oxygen furnace
JPH11140528A (ja) * 1997-11-04 1999-05-25 Kobe Steel Ltd 溶融鉄処理炉におけるスロッピングの予知方法
DE102004061944A1 (de) * 2004-12-22 2006-07-06 Polysius Ag Verfahren und Vorrichtung zur Behandlung einer Schmelze oder Schlacke
WO2016103196A1 (en) * 2014-12-24 2016-06-30 Outotec (Finland) Oy A system and method for collecting and analysing data relating to an operating condition in a top-submerged lancing injector reactor system
WO2020086708A1 (en) * 2018-10-23 2020-04-30 Skynexss Llc Methods for controlling the position of furnace lances

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIHARU IIDA,** KANJI EMOTO,*** MASAKATSU OGAWA,*** YASUO MASUDA,**** MASAYUKI ONISHI*** AND HIROSUKE YAMADA***: "Fully Automated Blowing Technique for Basic Oxygen Steelmaking Fumace", TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, IRON AND STEEL INSTITUTE OF JAPAN, JP, vol. 24, no. 7, 1 January 1984 (1984-01-01), JP , pages 540 - 546, XP008159881, ISSN: 0021-1583, DOI: 10.2355/isijinternational1966.24.540 *

Similar Documents

Publication Publication Date Title
ES2973469T3 (es) Sistema de control para horno
US8919149B2 (en) Glass melting method, system, and apparatus
KR101314288B1 (ko) 코크스로 탄화실용 레벨측정 장치
JP5250646B2 (ja) 溶鉱炉の装入レベルの常駐測定システム
TW562866B (en) Temperature measuring apparatus and method for molten metal
JP6602238B2 (ja) 竪型炉における溶融物レベルの推定方法
CN111809015B (zh) 基于转炉容积模型的转炉自动出钢方法及转炉系统
WO2023205911A1 (es) Sistema inteligente de apertura de pasajes con lanza térmica
CN103884400B (zh) 一种铁水罐铁水深度的测量方法及测量装置
CN107110605A (zh) 收集和分析与顶部浸没式喷射注射器反应器系统操作状况有关的数据的系统和方法
KR101538145B1 (ko) 고로 철피 관리 시스템
ITUB20159279A1 (it) Metodo ed apparecchiatura per l'ispezione o l'osservazione operativa di spazi pericolosi, inospitali o spazi con condizioni ambientali ostili
BR112017006451B1 (pt) Método e dispositivo para determinar o tempo de ignição em um processo de fabricação de aço a oxigênio
JP2006112966A (ja) 高炉内装入物の表面形状測定方法および測定装置
JP2018185253A (ja) 転炉耐火物プロフィール測定装置及び転炉耐火物プロフィール測定方法
KR101499945B1 (ko) 전기로 조업에서 산소랜스와 용강간 거리 제어방법
ES2900126T3 (es) Método y aparato para controlar la operación y la posición de un conjunto de lanza y tobera en un baño de metal fundido en un recipiente
KR101262200B1 (ko) 가열로 내벽 진단 장치
JP2023541859A (ja) 炉を監視及び制御するシステム及び方法
CN111328349B (zh) 将工艺流体注入到具有注入器状态测试的竖炉中
KR101277901B1 (ko) 고로 풍구 점검 장치
JP4954688B2 (ja) コークス炉炭化室の炉壁変位測定システム、及びコークス炉炭化室の炉壁変位測定方法
CN113096341B (zh) 硫化矿石自燃监控预警装置及方法
KR102042698B1 (ko) 슬래그 배출량 측정장치 및 그 방법
TWI481722B (zh) 高爐爐下部透液性之判斷方法與判斷系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938772

Country of ref document: EP

Kind code of ref document: A1