WO2023204653A1 - Collimation-less dual mode radiation imager - Google Patents

Collimation-less dual mode radiation imager Download PDF

Info

Publication number
WO2023204653A1
WO2023204653A1 PCT/KR2023/005434 KR2023005434W WO2023204653A1 WO 2023204653 A1 WO2023204653 A1 WO 2023204653A1 KR 2023005434 W KR2023005434 W KR 2023005434W WO 2023204653 A1 WO2023204653 A1 WO 2023204653A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
reaction
semiconductor
imaging technique
source
Prior art date
Application number
PCT/KR2023/005434
Other languages
French (fr)
Korean (ko)
Inventor
이원호
김영학
박지수
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023204653A1 publication Critical patent/WO2023204653A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/243Modular detectors, e.g. arrays formed from self contained units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras

Definitions

  • the present invention relates to non-focused, dual-mode radiation imaging equipment, and more specifically, to radiation imaging equipment that can simultaneously use non-focused radiation imaging and a Compton camera.
  • Gamma-ray imaging techniques are broadly classified into mechanical focusing and electrical focusing.
  • Mechanical focusing is a method of using a focuser made of high atomic number materials such as lead and tungsten, and in the industrial field, the arrangement of the shield is mathematically derived to improve sensitivity while maintaining high resolution like a needle hole focuser.
  • the encoded aperture concentrator method is used. The principle of this method is to determine the location of the source by decoding the measured data (shadowgram) based on the detector response according to the source location and concentrator pattern. It is very suitable for imaging low-energy gamma rays that are easily shielded by the concentrator. It is advantageous. However, in high-energy areas, a thick shielding material is required, which reduces portability, and there is a limitation in that the viewing angle is fundamentally limited by the concentrator.
  • Electric focusing also called Compton imaging
  • Compton imaging is a method of imaging a radiation source through scattering-absorption reactions within a detector without a separate focuser.
  • the scattering angle is calculated based on the position and energy information of the scattering and absorption reactions, and the Compton ring is back-projected to the point where the two scattering angles become equal on the source plane.
  • the point where the Compton rings overlap is identified as the source's location.
  • Existing Compton cameras consisted of a scattering section and an absorbing section and had a limited viewing angle, but recently, gamma rays incident from all directions can be imaged by measuring the scattering-absorption response within a single 3D position-sensitive detector. However, this method cannot be applied to gamma rays below 300 keV, where Compton scattering rarely occurs.
  • the present invention is intended to solve the problems of the prior art described above.
  • One aspect of the present invention is to detect the position of the semiconductor detector according to the position of the source obtained through the cathode, anode, and four side electrodes of the semiconductor detector arranged in a predetermined mosaic pattern.
  • the goal is to provide non-focused, dual-modality radiation imaging equipment that reconstructs images for a wide energy range based on response signals using non-focused imaging techniques, Compton imaging techniques, and fusion imaging techniques that combine them.
  • Radiation imaging equipment is formed in the shape of a square pillar, the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system, and includes a semiconductor element that reacts with radiation, and connected to one end of the semiconductor element
  • a plurality of semiconductor detectors each including a cathode, an anode connected to the other end of the semiconductor element, and four side electrodes each connected to a side of the semiconductor element, and the plurality of semiconductor detectors are connected to the XYZ a detection unit encoded and arranged in a predetermined mosaic pattern on the XY plane of the coordinate system; a signal measurement unit that measures response signals from the cathode, the anode, and the side electrode when the radiation is incident on the detection unit; and an image processing unit that generates an image of the source emitting the radiation based on the response signal measured by the signal measurement unit.
  • the radiation imaging equipment may further include a frame for fixing a plurality of semiconductor detectors so that the plurality of semiconductor detectors are encoded and arranged in a predetermined mosaic pattern.
  • the image processing unit calculates reaction positions within a plurality of the semiconductor detectors that reacted with the incident radiation, and determines the radiation source for each preset reaction position within the semiconductor detector.
  • a non-focused imaging technique that obtains location information of the source in comparison with pixel information on the source surface in a spherical coordinate system, and a scattering reaction caused by the radiation incident on any one of the plurality of semiconductor detectors. Based on the scattering response signal for the scattering reaction and the absorption response signal for the absorption reaction occurring in the other semiconductor detector by the radiation scattered by the scattering reaction, a plurality of the semiconductors in which the scattering reaction and the absorption reaction occurred.
  • a Compton imaging technique that calculates the response position within the detector and obtains location information of the source
  • a fusion imaging technique that obtains location information of the source by fusing the non-focused imaging technique and the Compton imaging technique.
  • the video image is generated according to any one imaging technique, and the volume area of each semiconductor device is divided and voxelized into a plurality of voxels arranged along the X, Y, and Z axes of the XYZ coordinate system, and According to the reaction signal measured by the signal measurement unit, reaction photons can be distributed to the voxel of each semiconductor device to calculate the reaction position based on the voxel.
  • the image processing unit uses the non-focused imaging technique to detect the radiation when the energy band of the radiation is greater than 600 keV.
  • the video image can be generated by the Compton imaging technique, and when the energy band of the radiation is 250 to 600 keV, the video image can be generated by the fusion imaging technique.
  • the non-focused imaging technique calculates the response position in the Z-axis direction based on the ratio of response signal magnitudes measured from the anode and the cathode. can do.
  • the non-focused imaging technique applies the center of gravity method based on the size of the response signal measured from the side electrode, The reaction position in each of the X-axis and Y-axis directions can be calculated.
  • the fusion imaging technique can generate the image according to the following [Equation 1] based on MLEM (maximum likelihood expectation maximization).
  • ⁇ j n , ⁇ j n +1 are the estimates of the source surface pixel j (j is a natural number greater than 1) after the n, n+1 (n is a natural number greater than 1) th iteration, M is the total number of source surface pixels, Y i a is the number of response photons measured in voxel i (i is a natural number greater than 1) of the semiconductor detector in the non-focused imaging technique, N is the total number of response photons measured in the semiconductor detector in the non-focused imaging technique, C i,j a is the probability that a photon generated from source plane pixel j will be measured at voxel i of the semiconductor detector in the non-focused imaging technique, and Y i' b is measured as event i'(i' is a natural number greater than 1) in the Compton imaging technique.
  • N' The number of response photons, N', is the type of event i' in the Compton imaging technique, and C i ', j b are the probability that a photon generated from the source plane pixel j is measured as event i' in the Compton imaging technique.
  • a large-area detector can be constructed, has excellent energy and spatial resolution, and can image radiation in the entire energy range.
  • it is advantageous for imaging low-energy gamma rays, which have large attenuation depending on the penetration depth of the gamma rays, making imaging possible in energy regions where imaging using the Compton imaging technique was impossible.
  • Figure 1 is a diagram schematically showing the configuration of a non-focused dual-mode radiation imaging equipment according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the arrangement of the semiconductor detector shown in FIG. 1.
  • 3 to 6 are diagrams illustrating an arrangement pattern of a semiconductor detector according to an embodiment of the present invention.
  • Figure 7 is a diagram explaining the source surface and pixels.
  • FIG. 8 shows the anode and cathode signal sizes depending on the depth of the semiconductor detector shown in FIG. 1.
  • FIG. 9 shows the waveform of an induced signal of an electrode according to electron movement inside the semiconductor detector shown in FIG. 1.
  • Figure 10 is a photograph showing the non-focused dual-mode radiation imaging equipment used in the experimental example.
  • Figures 11 to 15 show the results of reconstructing 57 Co at various positions using a non-focused imaging technique in experimental examples.
  • 16 to 22 are images generated according to the non-focused imaging technique, Compton imaging technique, and fusion imaging technique for each energy when the source is located in front of the semiconductor detector in the experimental example.
  • Figure 23 is a graph showing quantitative indices evaluated according to energy when the source is located in front of the semiconductor detector in the experimental example.
  • Figure 24 shows the results of reconstruction of 57 Co, 133 Ba, and 137 Cs at various positions in an experimental example using a fusion imaging technique.
  • Figure 1 is a diagram schematically showing the configuration of a non-focused dual-mode radiation imaging equipment according to an embodiment of the present invention
  • Figure 2 is a diagram showing the arrangement of the semiconductor detector shown in Figure 1
  • Figures 3 to 3 6 is a diagram illustrating an arrangement pattern of a semiconductor detector according to an embodiment of the present invention.
  • the radiation imaging equipment is formed in the shape of a square pillar, the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system, and reacts with radiation.
  • a detection unit (100) comprising a plurality of semiconductor detectors (10) each having four side electrodes (17), and in which the plurality of semiconductor detectors (10) are encoded and arranged in a predetermined mosaic pattern on the XY plane of the XYZ coordinate system.
  • the signal measurement unit 200 measures the response signal from the cathode 13, the anode 15, and the side electrode 17, and the signal measurement unit 200 measures It includes an image processing unit 300 that generates an image of a source emitting radiation based on a response signal.
  • the present invention relates to radiation imaging equipment that can simultaneously use non-focused radiation imaging and a Compton camera.
  • Radiation imaging methods are divided into mechanical focusing using a concentrator and electrical focusing called control imaging.
  • the mechanical focusing method requires a thick shield in high energy areas, making it less portable, and the viewing angle is fundamentally limited by the concentrator.
  • the radiation imaging equipment includes a detection unit 100, a signal measurement unit 200, and an image processing unit 300.
  • the detection unit 100 includes a plurality of semiconductor detectors 10 that detect radiation.
  • the semiconductor detector 10 is a device that detects radiation using a semiconductor and includes a semiconductor element 11, a cathode 13, an anode 15, and a side electrode 17.
  • the semiconductor element 11 is an element that reacts with incident radiation.
  • the semiconductor element 11 is formed in the shape of a square pillar, and the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system.
  • An insulator may be disposed on the side of the semiconductor device 11.
  • photons that react with the semiconductor device 11 are referred to as reaction photons.
  • This semiconductor element 11 is made of a semiconductor such as CdTe, CdZnTe (CZT) crystal, etc. There is no particular limitation on its type, and any semiconductor can be used as long as it can react with radiation and output a reaction signal. .
  • the cathode (13) is connected to one end of the semiconductor element (11), and the anode (15) is connected to the other end of the semiconductor element (11).
  • the side electrodes 17 are disposed on the side surfaces of the semiconductor device 11. Since the semiconductor device 11 is formed in the shape of a square pillar, the side electrodes 17 are connected one to each of the four sides. That is, the side electrodes 17 are placed on each of the two sides (X1 and X2) of the semiconductor elements 11 disposed on the One side electrode 17 is also disposed on each of the two sides (Y1 and Y2).
  • the cathode 13, anode 15, and side electrode 17 When radiation reacts within the semiconductor element 11, the cathode 13, anode 15, and side electrode 17 output a reaction signal, that is, an electrical signal.
  • a reaction signal that is, an electrical signal.
  • the radiation may be gamma rays.
  • the detection unit 100 includes a plurality of semiconductor detectors 10, where the plurality of semiconductor detectors 10 are encoded and arranged in a predetermined mosaic pattern on the XY plane of the XYZ coordinate system.
  • the semiconductor detector 10 according to the present invention has a predetermined mosaic pattern arranged in a grid in the form of a 21 ⁇ 21 matrix.
  • the arrangement pattern of the semiconductor detector 10 does not necessarily have to be arranged as shown in FIG. 3, and may be arranged in various patterns, which will be described later.
  • the arrangement of the encoded semiconductor detector 10 the response of the semiconductor detector 10 varies depending on the position of the source emitting radiation, similar to the conventional mechanical focusing-based encoded aperture method. In other words, the distribution of reaction positions where reaction photons react within each semiconductor element 11 varies depending on the position of the source of radiation, and by calculating the position of the source through this distribution of reaction positions, an image for the source is created. can be created.
  • the pattern in which the semiconductor detectors 10 are arranged allows the direction of radiation incident from the source to be easily determined.
  • the response of the semiconductor detector 10 varies depending on the direction of the incident radiation. Since the incident direction of the radiation is clearly distinguished by the encoded pattern of the semiconductor detector 10, the response information of the semiconductor detector 10 can be used to more accurately identify the source. The location can be determined.
  • the semiconductor detector 10 has N (N is a natural number of 1 or more) rows and M (M is a natural number of 1 or more) columns in the form of an N ⁇ M matrix. Within the grid, they can be arranged in a reference pattern.
  • semiconductor detectors 10 are arranged one by one at the positions of the third and fourth columns ((5,3), (5,4)) of the fifth row to form a first reference pattern. It can be. Additionally, an extended pattern in which the first reference pattern is expanded may be formed by arranging the first reference pattern side by side along the row and/or column direction.
  • Figure 3 illustrates a case where the first reference pattern in a 5 ⁇ 5 matrix is expanded to a 9 ⁇ 9 matrix.
  • the four first reference patterns (indicated by dotted lines) are arranged side by side, they are expanded into a 10 ⁇ 10 matrix, which can be expanded into a 9 ⁇ 9 matrix by removing the outermost columns and rows.
  • a second reference pattern is formed in a grid in the form of a 7 ⁇ 7 matrix as shown in FIG. 4, and the second reference pattern is expanded in the form of a 13 ⁇ 13 matrix, or a grid in the form of a 11 ⁇ 11 matrix as shown in FIG. 5.
  • a third reference pattern is formed in the grid and the third reference pattern is expanded in the form of a 13 ⁇ 13 matrix, or a fourth reference pattern is formed in the grid in the form of a 13 ⁇ 13 matrix as shown in FIG. 6, and the third reference pattern is expanded in the form of a 25 ⁇ 25 matrix. 4
  • the reference pattern can be extended.
  • the semiconductor detector 10 may be arranged in various mosaic patterns, but the patterns are not necessarily limited to FIGS. 3 to 6.
  • the radiation imaging equipment may further include a frame (not shown).
  • the frame is a means of fixing the semiconductor detectors 10 so that the plurality of semiconductor detectors 10 can be arranged in a predetermined mosaic pattern.
  • the frame is provided with a plurality of hollow grids into which the semiconductor detectors 10 can be inserted, so that the semiconductor detectors 10 can be inserted and arranged in a predetermined pattern within the grids.
  • the signal measurement unit 200 measures response signals from the cathode 13, anode 15, and side electrode 17 of each semiconductor detector 10.
  • the response signal may be an electrical signal.
  • the signal measurement unit 200 includes a cathode 13 substrate electrically connected to the cathode 13 of each of the plurality of semiconductor detectors 10, and each anode ( It may include an anode 15 substrate electrically connected to 15) and a grid substrate electrically connected to each side electrode 17.
  • the image processing unit 300 may generate a video image of the source based on the response signal measured by the signal measurement unit 200.
  • This image processing unit 300 may be implemented as hardware that performs the image processing algorithm of the semiconductor detector 10.
  • FIG. 7 is a diagram explaining the source surface and pixels
  • FIG. 8 shows the anode and cathode signal sizes according to the depth of the semiconductor detector shown in FIG. 1
  • FIG. 9 shows the size of the anode and cathode signals according to electron movement inside the semiconductor detector shown in FIG. 1. Shows the induced signal waveform of the electrode.
  • the image processing unit 300 generates a video image by acquiring the location information of the source according to any one of the non-focused imaging technique, the Compton imaging technique, and the fusion imaging technique that combines the non-focused imaging technique and the Compton imaging technique. do.
  • the non-focused imaging technique when the energy band of radiation is less than 250 keV, the non-focused imaging technique is used, when the energy band of radiation is more than 600 keV, the Compton imaging technique is used, and when the energy band of radiation is between 250 and 600 keV, the fusion imaging technique is used.
  • a video image can be created by .
  • the source surface may be set to a spherical coordinate system as shown on the left side of FIG. 7.
  • a specific point P is expressed as a length r, ⁇ , which is the angle formed by the straight line connecting the origin and P with the Z-axis, and the angle ⁇ formed between the X-axis and the straight line projected from the origin and P onto the XY plane.
  • r refers to the distance between the source and the semiconductor detector 10
  • ⁇ and ⁇ refer to the direction in which the source is incident based on the semiconductor detector 10. Referring to the right side of FIG.
  • the spherical coordinate system is divided based on ⁇ and ⁇ .
  • is in the range of 0 to 180 degrees
  • has a range of 0 to 359 degrees
  • the non-focused imaging technique calculates the reaction positions within a plurality of semiconductor detectors (10) that reacted with the incident radiation, and compares them with pixel information on the source surface in a spherical coordinate system where the radiation source for each reaction position within the preset semiconductor detector (10) is located, You can obtain crew member location information.
  • the volume area of each semiconductor device 11 is divided and voxelized into a plurality of voxels arranged along the X-, Y-, and Z-axis directions of the XYZ coordinate system, and the signal measurement unit According to the reaction signal measured at 200, reaction photons can be distributed to the voxels of each semiconductor device 11. Accordingly, a response location based on a voxel can be calculated.
  • the reaction position of the reaction photon along the Z-axis direction can be calculated based on the ratio (C/A ratio) of the reaction signal magnitudes measured from the anode 15 and the cathode 13.
  • C/A ratio ratio of the reaction signal magnitudes measured from the anode 15 and the cathode 13.
  • the reaction occurring in the area between the anode 15 and the side electrode 17 is removed, and only the reaction occurring between the side electrode 17 and the cathode 13 is used, so that the cathode 13 signal and the anode 15 signal are used.
  • Response position information in the depth direction can be inferred through the ratio of .
  • the response position information in the depth direction is not necessarily obtained through the ratio of the signal sizes of the anode 15 and the cathode 13, and can also be calculated using drift time, etc.
  • the reaction position of the reaction photon along the X-axis and Y-axis can be generated based on the signal size of the side electrode 17.
  • Figure 9 which shows the waveforms of the induced signals of the electrodes according to the movement of electrons inside the semiconductor detector 10, the waveforms are the result of inverting the original signal.
  • the two electrodes since electrons generated by reaction with radiation move away from the cathode 13 and are collected at the anode 15, the two electrodes exhibit opposite polarities.
  • the side electrode 17 electrons approach but cannot be collected due to the insulator disposed between the semiconductor element 11 and the side electrode 17 and move to the anode 15, so the signal increases and then decreases.
  • a x1 is the negative step size of the side electrode ( 17 ) in the X1 direction
  • a x2 is the negative step size of the side electrode (17) in the is the negative step size of the side electrode (17) in the Y2 direction
  • the source surface is Location information can be obtained and video images can be generated.
  • the Compton imaging technique is a method of imaging using a Compton event, a reaction in which Compton scattering and photoelectric absorption occur continuously.
  • the location of the source can be determined by generating a Compton cone based on the reaction location and energy information of each scattering reaction and absorption reaction.
  • numerous radiations are emitted, and for each Compton event, the Compton cone varies depending on the combination of reaction position and energy, so multiple Compton cones are generated, and the number of Compton cones accumulated at each location is calculated as relative brightness.
  • a video image can be created.
  • a scattering reaction occurs due to radiation incident on one of the plurality of semiconductor detectors 10, and the radiation scattered by the scattering reaction causes An absorption reaction occurs in the semiconductor detector 10.
  • the signal measurement unit 200 measures the scattering response signal and absorption response signal according to the scattering reaction and absorption reaction
  • the image processing unit 300 obtains the location information of the source according to the Confton imaging technique based on the signal. And you can create a video image.
  • the reaction positions within the plurality of semiconductor detectors 10 where scattering and absorption reactions occur, as described above in the non-focused imaging technique voxelize the semiconductor device 11 and calculate the reaction positions based on the voxels.
  • reaction position along the axis direction is calculated based on the ratio (C/A ratio) of the reaction signal size measured from the anode 15 and the cathode 13, and the reaction along the X-axis and Y-axis
  • the photon reaction position can be calculated based on the signal size of the side electrode 17.
  • the fusion imaging technique fuses the non-focused imaging technique and the Compton imaging technique to obtain location information of the source and generate a video image.
  • the fusion imaging technique can generate an image according to the following [Equation 2] based on MLEM (maximum likelihood expectation maximization).
  • ⁇ j n , ⁇ j n +1 is the estimate of the line surface pixel j (j is a natural number of 1 or more) after n, n+1 (n is a natural number of 1 or more), M is the total number of line surface pixels, Y i a is the number of reaction photons measured in voxel i (i is a natural number of 1 or more) of the semiconductor detector 10 in the non-focused imaging technique, and N is the total reaction photons measured in the semiconductor detector 10 in the non-focused imaging technique.
  • C i,j a is the probability that a photon generated from source plane pixel j is measured at voxel i of the semiconductor detector 10 in the non-focused imaging technique
  • Y i' b is the event (event) i' in the Compton imaging technique.
  • i' is a natural number greater than or equal to 1
  • N' is the type of event i' in the Compton imaging technique
  • C i ', j b are the photons generated from source plane pixel j in the Compton imaging technique.
  • ' is the probability measured as ')
  • ⁇ j n , ⁇ j n +1 are the estimates of the source surface pixel j after the n, n+1th repetition, where ⁇ j means the estimate at a specific pixel j among all pixels, and the higher this estimate, the probability that there is a source. This means it is high.
  • the initial estimate must be a value between 0 and 1, and when this value is substituted into the equation, the next estimate is derived from that solution.
  • the accuracy of the estimate can be increased by repeating the process several times, but if it exceeds a certain level, performance deteriorates, such as amplification of noise in the image, so it is repeated an appropriate number of times.
  • Y i a means the number of responses measured at voxel location i of a specific semiconductor detector 10 when measuring an unknown source at a specific location, and i varies depending on the structure or voxel of the semiconductor detector 10. .
  • C i,j a is the response function of the semiconductor detector 10 and means the probability that the photon generated when the source is located at a specific pixel j of the source plane in the non-focused imaging technique is measured in voxel i of the semiconductor detector 10. do. It is derived through the distribution of reaction positions within the semiconductor detector 10 according to each position by placing the source in all possible positions within the spherical coordinate system. Since it is generally difficult to implement through experiment, computer simulation can be used. As the amount of data increases, a more accurate response function can be obtained.
  • Y i' b is the number of reaction photons measured as Compton event i' in the Compton imaging technique, and means the number of reactions measured as a specific event i' when measuring an unknown source at a specific location.
  • C i ', j b refers to the probability that a photon generated from pixel j of the source plane will be measured as event i' in the Compton imaging technique, that is, the probability of being measured as event i' when the source is located at a specific pixel j.
  • the list-mode method can be used to solve this problem. Because there are so many types of event i', the probability that the measured events are the same is very low, so it can be assumed that the measured data occurred uniformly once for all types of reactions. Therefore, all reaction types are replaced by the measured reaction types, and Y i' b is set to 1 only for the measured reactions, and the probability of occurrence of the reaction can be theoretically calculated by considering the Compton scattering angle and attenuation within the detector. there is.
  • FIG. 10 is a photograph showing the non-focused dual-mode radiation imaging equipment used in the experimental example, and the semiconductor detector was modeled as a 2 ⁇ 2 array type CZT detector.
  • the equipment is an array of four 6 mm ⁇ 6 mm ⁇ 19 mm CZT detectors using the VFG (virtual Frisch-grid) method, and the space between detectors is 6 mm.
  • Each detector is voxelized into 3 ⁇ 3 ⁇ 10, and the spatial resolution in the X, Y, and Z directions is 2, 2, and 1.9 mm, respectively.
  • the source plane was set as a sphere with a radius of 1 m from the center of the detector array, divided into 1 degree intervals and consisting of 181 ⁇ 360 pixels. 2% was reflected at 662 keV, the energy resolution measured through experiment, and two types of computer simulations were performed. The first is a computational simulation that obtains the system matrix of the non-focused imaging technique.
  • the system matrix denoted by C i,j a in [Equation 2] above refers to the detector response according to the source location, and a sufficient amount of data is required to reduce statistical errors.
  • the second is a computer simulation that acquires events to reconstruct the image, and the measurement time is set to 1 hour.
  • the source was located 1 m away from the center of the detector, and the performance was compared by reconstructing non-focused, Compton, and fused images based on the acquired data.
  • the computerized sources are 57 Co (122 keV), 133 Ba (356 keV), and 137 Cs (662 keV), and gamma rays of 150 to 300 keV, where the main reaction of gamma rays changes from photoelectric absorption to Compton scattering, were also measured. It has been done.
  • the structure of a widely commercialized CZT detector was also computer simulated to compare and analyze its performance.
  • the commercial instrument modeled is IDEAS' SRE-3021 instrument, which has a single CZT detector of 20 mm ⁇ 20 mm ⁇ 15 mm inside, and the measured energy resolution is approximately 2.1% at 662 keV.
  • This equipment has the same effect as the VFG method by using an 11 ⁇ 11 pixelated anode structure instead of the side electrode, and X, Y coordinates can be acquired through this pixel.
  • the pixel pitch is approximately 1.72 mm, and this value is reflected in the spatial resolution.
  • the Z coordinate can be calculated based on the anode and cathode signals, just like the previous VFG detector, and the spatial resolution was set to 1.5 mm. Other conditions were set the same.
  • Figures 11 to 15 show the results of reconstructing 57 Co at various positions using a non-focused imaging technique in experimental examples. Since the structure of a single CZT detector is closer to symmetry than an array detector, the radiation incident perpendicular to the detector surface, such as (180°, 0°) and (270°, 0°), appears circular. As a result, an angle occurs where the detector response characteristics depending on the direction become ambiguous, and the distribution of the radiation incident in the 45° direction is reconstructed to be very wide. On the other hand, array-type detectors have a non-circular source shape due to their asymmetrical structure, but the response characteristics according to direction are clearly distinguished, allowing the location to be determined relatively accurately. In conclusion, it is important for the detector to have an asymmetric structure according to the gamma ray incident direction, and the encoded array type is suitable for this.
  • Figures 16 to 22 are images generated according to the non-focused imaging technique, Compton imaging technique, and fusion imaging technique for each energy when the source is located in front of the semiconductor detector in the experimental example, and Figure 23 shows the image generated by the source in the experimental example. This is a graph showing quantitative indicators evaluated according to energy when placed in front of a semiconductor detector.
  • reaction number used for imaging decreases exponentially as energy increases in the non-focused method, whereas in the Compton method it increases up to 250 keV and then decreases thereafter.
  • the number of responses from non-focused images is overwhelmingly high, and fusion images have the largest number because they use the responses of both images.
  • Angular resolution is an indicator that evaluates the extent to which the distribution of the source is spread in the image. It is expressed as the full width at half maximum (FWHM) of the distribution around the highest point of the image, and the lower the value, the better.
  • the non-focused image increases exponentially as the energy increases, and the increase becomes gradual from 356 keV, but in reality, the distribution appears too wide from 300 keV or higher, making it impossible to accurately determine the location of the source.
  • Compton images showed very good performance in all energy bands except for results below 200 keV, where image reconstruction is difficult due to almost no Compton reaction, and decreased as energy increased, but increased slightly at 662 keV.
  • the fusion image showed values close to the middle of the two images and close to the good side, and showed values of approximately 10 to 20° in all energy bands.
  • the normalized standard deviation of the source portion represents the statistical fluctuation in the pixel corresponding to the reconstructed source, and the lower the value, the better.
  • the source portion is defined as pixels whose distance from the highest point in the image is smaller than the FWHM.
  • the non-focused image decreased as the energy increased and was almost saturated starting from 300 keV, but this was not because the image performance was good and the value was low, but because the source was not properly reconstructed.
  • the Compton image increased and became almost constant starting from 356 keV, and the fusion image showed constant values in almost all energy regions. This appears to have offset the changes in the two imaging techniques.
  • Figure-of-merit is an indicator that simultaneously considers efficiency and angular resolution and is defined as efficiency divided by FWHM 3 .
  • efficiency was replaced by number of reactions.
  • the FOM decreases very quickly and becomes lower than the Compton image starting at 250 keV.
  • the Compton image increases up to 356 keV and then tends to decrease at 662 keV due to decreased efficiency.
  • the fusion image shows the same value as the corresponding image, and is equal to or higher than the other two imaging techniques in all energy bands.
  • Figure 24 shows the results of reconstruction of 57 Co, 133 Ba, and 137 Cs at various positions in an experimental example using a fusion imaging technique.
  • Figure 24 shows a fused image reconstructed from sources located at various ( ⁇ , ⁇ ), and each row is the result of 57 Co, 133 Ba, and 137 Cs in that order. All results confirmed that the source was reconstructed in the correct position, and the difference between the source position determined through the highest point in the image and the actual position was very small, with an average and maximum value of 2.5° each.
  • the non-focused dual radiation imaging equipment is based on the response signal of the semiconductor detector for each position of the source obtained through the cathode, anode, and four side electrodes of the semiconductor detector arranged in a predetermined mosaic pattern. Since it is characterized by reconstructing images over a wide energy range according to imaging techniques, Compton imaging techniques, and fusion imaging techniques that combine them, its industrial applicability is recognized.

Abstract

The present invention relates to a radiation imager, and the radiation imager according to an embodiment of the present invention may reconfigure an image over a wide energy area according to collimation-less imaging, Compton imaging, fusion imaging in which the imaging modalities are fused on the basis of reaction signals for each radiation source position of a semiconductor detector, the reaction signals being acquired through a negative electrode, a positive electrode, and four side electrodes, which are arranged in a prescribed mosaic pattern, of the semiconductor detector.

Description

비집속식 이중 방식 방사선 영상화 장비Non-focused dual-mode radiation imaging equipment
본 발명은 비집속식 이중 방식 방사선 영상화 장비에 관한 것으로, 보다 상세하게는 비집속식 방사선 영상화와 컴프턴 카메라를 동시에 사용할 수 있는 방사선 영상화 장비에 관한 것이다.The present invention relates to non-focused, dual-mode radiation imaging equipment, and more specifically, to radiation imaging equipment that can simultaneously use non-focused radiation imaging and a Compton camera.
감마선 영상기법은 크게 기계적 집속과 전기적 집속으로 분류된다. 기계적 집속은 납, 텅스텐 등 고원자번호 물질로 이루어진 집속기를 사용하는 방식이며, 산업 분야에서는 일반적으로 바늘구멍 집속기와 같이 높은 분해능을 유지하면서도 동시에 민감도를 향상시키기 위해 수학적으로 차폐체의 배치가 도출된 부호화 구경 집속기 방식을 활용한다. 이 방법의 원리는 선원 위치 및 집속기 패턴에 따른 검출기 응답을 기반으로 측정된 데이터(shadowgram)을 해독(decoding)하여 선원의 위치를 파악하는 것으로, 집속기에 의해 쉽게 차폐되는 저에너지 감마선 영상화에 매우 유리하다. 하지만, 고에너지 영역에서는 두꺼운 차폐체가 요구되어 휴대성이 떨어지며, 근본적으로 집속기에 의해 시야각이 제한되는 한계점이 존재한다.Gamma-ray imaging techniques are broadly classified into mechanical focusing and electrical focusing. Mechanical focusing is a method of using a focuser made of high atomic number materials such as lead and tungsten, and in the industrial field, the arrangement of the shield is mathematically derived to improve sensitivity while maintaining high resolution like a needle hole focuser. The encoded aperture concentrator method is used. The principle of this method is to determine the location of the source by decoding the measured data (shadowgram) based on the detector response according to the source location and concentrator pattern. It is very suitable for imaging low-energy gamma rays that are easily shielded by the concentrator. It is advantageous. However, in high-energy areas, a thick shielding material is required, which reduces portability, and there is a limitation in that the viewing angle is fundamentally limited by the concentrator.
컴프턴 영상화라고도 불리는 전기적 집속은 별도의 집속기 없이 검출기 내 산란-흡수 반응을 통해 방사선원을 영상화하는 방식이다. 산란 및 흡수 반응의 위치 및 에너지 정보를 기반으로 산란각을 계산하고 선원면에서 두 산란각이 같아지는 지점에 컴프턴 링을 역투사하게 된다. 여러 유효 이벤트에 대해 해당 과정을 반복하여 컴프턴 링이 중첩되는 지점을 선원의 위치로 파악한다. 기존 컴프턴 카메라는 산란부와 흡수부로 구성되어 시야각이 제한되었지만, 최근에는 단일 3차원 위치 민감형 검출기 내에서 산란-흡수 반응을 측정하여 모든 방향에서 입사하는 감마선을 영상화할 수 있다. 하지만 이 방법은 컴프턴 산란이 거의 발생하지 않는 300 keV 미만의 감마선에는 적용할 수 없다. Electric focusing, also called Compton imaging, is a method of imaging a radiation source through scattering-absorption reactions within a detector without a separate focuser. The scattering angle is calculated based on the position and energy information of the scattering and absorption reactions, and the Compton ring is back-projected to the point where the two scattering angles become equal on the source plane. By repeating the process for several valid events, the point where the Compton rings overlap is identified as the source's location. Existing Compton cameras consisted of a scattering section and an absorbing section and had a limited viewing angle, but recently, gamma rays incident from all directions can be imaged by measuring the scattering-absorption response within a single 3D position-sensitive detector. However, this method cannot be applied to gamma rays below 300 keV, where Compton scattering rarely occurs.
이에 종래 감마선 영상기법의 문제를 해결하기 위한 방안이 절실히 요구되고 있다.Accordingly, there is an urgent need for a method to solve the problems of conventional gamma-ray imaging techniques.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 소정의 모자이크 패턴으로 배열된 반도체 검출기의 음극, 양극 및 4개의 옆전극을 통해 획득된 선원의 위치별 반도체 검출기의 반응신호를 기반으로 비집속식 영상기법, 컴프턴 영상기법, 이들을 융합한 융합 영상기법에 따라 넓은 에너지 영역에 대한 영상을 재구성하는 비집속식 이중 방식 방사선 영상화 장비를 제공하는 데 있다.The present invention is intended to solve the problems of the prior art described above. One aspect of the present invention is to detect the position of the semiconductor detector according to the position of the source obtained through the cathode, anode, and four side electrodes of the semiconductor detector arranged in a predetermined mosaic pattern. The goal is to provide non-focused, dual-modality radiation imaging equipment that reconstructs images for a wide energy range based on response signals using non-focused imaging techniques, Compton imaging techniques, and fusion imaging techniques that combine them.
본 발명의 실시예에 따른 방사선 영상화 장비는 사각기둥 형상으로 형성되고 일단에서 타단을 향하는 깊이 방향이 가상의 XYZ 좌표계의 Z축 방향을 따라 배치되고 방사선과 반응하는 반도체 소자, 상기 반도체 소자의 일단에 연결된 음극(cathode), 상기 반도체 소자의 타단에 연결된 양극(anode), 및 상기 반도체 소자의 측면에 각각 연결된 4개의 옆전극을 각각 구비하는 다수의 반도체 검출기를 포함하고, 다수의 상기 반도체 검출기가 상기 XYZ 좌표계의 XY 평면 상에 소정의 모자이크 패턴으로 부호화되어 배열되는 검출부; 상기 방사선이 상기 검출부에 입사될 때에, 상기 음극, 상기 양극 및 상기 옆전극으로부터 반응 신호를 측정하는 신호측정부; 및 상기 신호측정부에서 측정한 상기 반응 신호를 기반으로 상기 방사선을 방출하는 선원의 영상 이미지를 생성하는 영상처리부;를 포함한다.Radiation imaging equipment according to an embodiment of the present invention is formed in the shape of a square pillar, the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system, and includes a semiconductor element that reacts with radiation, and connected to one end of the semiconductor element A plurality of semiconductor detectors each including a cathode, an anode connected to the other end of the semiconductor element, and four side electrodes each connected to a side of the semiconductor element, and the plurality of semiconductor detectors are connected to the XYZ a detection unit encoded and arranged in a predetermined mosaic pattern on the XY plane of the coordinate system; a signal measurement unit that measures response signals from the cathode, the anode, and the side electrode when the radiation is incident on the detection unit; and an image processing unit that generates an image of the source emitting the radiation based on the response signal measured by the signal measurement unit.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 다수의 상기 반도체 검출기가 소정의 상기 모자이크 패턴으로 부호화되어 배열되도록, 다수의 상기 반도체 검출기를 고정하는 프레임;을 더 포함할 수 있다.Additionally, the radiation imaging equipment according to an embodiment of the present invention may further include a frame for fixing a plurality of semiconductor detectors so that the plurality of semiconductor detectors are encoded and arranged in a predetermined mosaic pattern.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 상기 영상처리부는, 입사된 상기 방사선과 반응한 다수의 상기 반도체 검출기 내 반응 위치를 산출하고, 기설정된 상기 반도체 검출기 내 반응 위치별 상기 선원이 위치하는 구형좌표계의 선원면 픽셀 정보와 대비하여, 상기 선원의 위치 정보를 획득하는 비집속식 영상기법, 다수의 상기 반도체 검출기 중 어느 하나의 상기 반도체 검출기에 입사된 상기 방사선에 의해 발생하는 산란 반응에 대한 산란 반응 신호, 및 상기 산란 반응에 의해 산란된 상기 방사선에 의해 다른 하나의 상기 반도체 검출기에서 발생하는 흡수 반응에 대한 흡수 반응 신호를 기반으로, 상기 산란 반응 및 상기 흡수 반응이 일어난 다수의 상기 반도체 검출기 내 반응 위치를 산출하고, 상기 선원의 위치 정보를 획득하는 컴프턴 영상기법, 및 상기 비집속식 영상기법과 상기 컴프턴 영상기법을 융합하여 상기 선원의 위치 정보를 획득하는 융합 영상기법, 중 어느 하나의 영상기법에 따라 상기 영상 이미지를 생성하되, 상기 XYZ 좌표계의 X축, Y축 및 Z축 방향을 따라 배열되는 다수의 복셀로, 각각의 상기 반도체 소자의 체적영역을 구획하여 복셀화하고, 상기 신호측정부에서 측정한 상기 반응 신호에 따라, 각각의 상기 반도체 소자의 상기 복셀에 반응 광자를 분포시켜 상기 복셀을 기반으로 하는 상기 반응 위치를 산출할 수 있다.Additionally, in the radiation imaging equipment according to an embodiment of the present invention, the image processing unit calculates reaction positions within a plurality of the semiconductor detectors that reacted with the incident radiation, and determines the radiation source for each preset reaction position within the semiconductor detector. A non-focused imaging technique that obtains location information of the source in comparison with pixel information on the source surface in a spherical coordinate system, and a scattering reaction caused by the radiation incident on any one of the plurality of semiconductor detectors. Based on the scattering response signal for the scattering reaction and the absorption response signal for the absorption reaction occurring in the other semiconductor detector by the radiation scattered by the scattering reaction, a plurality of the semiconductors in which the scattering reaction and the absorption reaction occurred. A Compton imaging technique that calculates the response position within the detector and obtains location information of the source, and a fusion imaging technique that obtains location information of the source by fusing the non-focused imaging technique and the Compton imaging technique. The video image is generated according to any one imaging technique, and the volume area of each semiconductor device is divided and voxelized into a plurality of voxels arranged along the X, Y, and Z axes of the XYZ coordinate system, and According to the reaction signal measured by the signal measurement unit, reaction photons can be distributed to the voxel of each semiconductor device to calculate the reaction position based on the voxel.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 상기 영상처리부는, 상기 방사선의 에너지 대역이 250 keV 미만일 때에는, 상기 비집속식 영상기법에 의하고, 상기 방사선의 에너지 대역이 600 keV 초과일 때에는, 상기 컴프턴 영상기법에 의하며, 상기 방사선의 에너지 대역이 250 ~ 600 keV일 때에는, 상기 융합 영상기법에 의하여, 상기 영상 이미지를 생성할 수 있다.Additionally, in the radiation imaging equipment according to an embodiment of the present invention, when the energy band of the radiation is less than 250 keV, the image processing unit uses the non-focused imaging technique to detect the radiation when the energy band of the radiation is greater than 600 keV. In this case, the video image can be generated by the Compton imaging technique, and when the energy band of the radiation is 250 to 600 keV, the video image can be generated by the fusion imaging technique.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 상기 비집속식 영상기법은, 상기 양극과 상기 음극으로부터 측정된 반응 신호 크기의 비를 기반으로, 상기 Z축 방향의 상기 반응 위치를 산출할 수 있다.Additionally, in the radiation imaging equipment according to an embodiment of the present invention, the non-focused imaging technique calculates the response position in the Z-axis direction based on the ratio of response signal magnitudes measured from the anode and the cathode. can do.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 상기 비집속식 영상기법은, 상기 옆전극으로부터 측정된 반응 신호 크기를 기반으로, 무게중심법(center of gravity method)을 적용하여, 상기 X축 및 상기 Y축 방향 각각의 상기 반응 위치를 산출할 수 있다.Additionally, in the radiation imaging equipment according to an embodiment of the present invention, the non-focused imaging technique applies the center of gravity method based on the size of the response signal measured from the side electrode, The reaction position in each of the X-axis and Y-axis directions can be calculated.
또한, 본 발명의 실시예에 따른 방사선 영상화 장비에 있어서, 상기 융합 영상기법은, MLEM (maximum likelihood expectation maximization) 기반의 하기 [수학식 1]에 따라 상기 영상 이미지를 생성할 수 있다.Additionally, in the radiation imaging equipment according to an embodiment of the present invention, the fusion imaging technique can generate the image according to the following [Equation 1] based on MLEM (maximum likelihood expectation maximization).
[수학식 1][Equation 1]
Figure PCTKR2023005434-appb-img-000001
Figure PCTKR2023005434-appb-img-000001
여기서, λj n, λj n +1 은 n, n+1 (n은 1 이상의 자연수) 번째 반복 후 선원면 픽셀 j (j는 1 이상의 자연수)의 추정치, M은 선원면 픽셀의 전체 개수, Yi a는 비집속식 영상기법에서 반도체 검출기의 복셀 i (i는 1 이상의 자연수)에서 측정된 반응 광자수, N은 비집속식 영상기법에서 반도체 검출기에서 측정된 전체 반응 광자수, Ci,j a는 비집속식 영상기법에서 선원면 픽셀 j에서 발생한 광자가 반도체 검출기의 복셀 i에서 측정될 확률, Yi' b는 컴프턴 영상기법에서 이벤트(event) i' (i'은 1 이상의 자연수)로써 측정된 반응 광자수, N'은 컴프턴 영상기법에서 이벤트 i'의 종류, Ci ', j b는 컴프턴 영상기법에서 선원면 픽셀 j에서 발생한 광자가 이벤트 i'로 측정될 확률임.Here, λ j n , λ j n +1 are the estimates of the source surface pixel j (j is a natural number greater than 1) after the n, n+1 (n is a natural number greater than 1) th iteration, M is the total number of source surface pixels, Y i a is the number of response photons measured in voxel i (i is a natural number greater than 1) of the semiconductor detector in the non-focused imaging technique, N is the total number of response photons measured in the semiconductor detector in the non-focused imaging technique, C i,j a is the probability that a photon generated from source plane pixel j will be measured at voxel i of the semiconductor detector in the non-focused imaging technique, and Y i' b is measured as event i'(i' is a natural number greater than 1) in the Compton imaging technique. The number of response photons, N', is the type of event i' in the Compton imaging technique, and C i ', j b are the probability that a photon generated from the source plane pixel j is measured as event i' in the Compton imaging technique.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in this specification and claims should not be construed in their usual, dictionary meaning, and the inventor may appropriately define the concept of the term in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it is.
본 발명에 따르면, 대면적 검출기를 구성할 수 있고, 우수한 에너지 및 공간 분해능을 가지며, 전에너지 영역의 방사선을 영상화할 수 있다. 특히, 감마선의 투과 깊이에 따라 감쇠가 큰 저에너지 감마선 영상화에 유리하여 컴프턴 영상기법에 의한 영상화가 불가능했던 에너지 영역에서의 영상화가 가능하다.According to the present invention, a large-area detector can be constructed, has excellent energy and spatial resolution, and can image radiation in the entire energy range. In particular, it is advantageous for imaging low-energy gamma rays, which have large attenuation depending on the penetration depth of the gamma rays, making imaging possible in energy regions where imaging using the Compton imaging technique was impossible.
또한, 별도의 집속기가 요구되지 않아 전방위(4π) 영상화가 가능하며 휴대성이 뛰어나다.In addition, because it does not require a separate focuser, omnidirectional (4π) imaging is possible and it is highly portable.
도 1은 본 발명의 실시예에 따른 비집속식 이중 방식 방사선 영상화 장비의 구성을 개략적으로 도시한 도면이다.Figure 1 is a diagram schematically showing the configuration of a non-focused dual-mode radiation imaging equipment according to an embodiment of the present invention.
도 2는 도 1에 도시된 반도체 검출기의 배열을 도시한 도면이다.FIG. 2 is a diagram showing the arrangement of the semiconductor detector shown in FIG. 1.
도 3 내지 도 6은 본 발명의 실시예에 따른 반도체 검출기의 배열 패턴을 예시적으로 도시한 도면이다.3 to 6 are diagrams illustrating an arrangement pattern of a semiconductor detector according to an embodiment of the present invention.
도 7은 선원면 및 픽셀을 설명하는 도면이다.Figure 7 is a diagram explaining the source surface and pixels.
도 8은 도 1에 도시된 반도체 검출기의 깊이에 따른 양극 및 음극 신호 크기를 나타낸다.FIG. 8 shows the anode and cathode signal sizes depending on the depth of the semiconductor detector shown in FIG. 1.
도 9는 도 1에 도시된 반도체 검출기 내부에서 전자 이동에 따른 전극의 유도 신호 파형을 나타낸다.FIG. 9 shows the waveform of an induced signal of an electrode according to electron movement inside the semiconductor detector shown in FIG. 1.
도 10은 실험예에 사용된 비집속식 이중 방식 방사선 영상화 장비를 나타내는 사진이다.Figure 10 is a photograph showing the non-focused dual-mode radiation imaging equipment used in the experimental example.
도 11 내지 도 15는 실험예에서 다양한 위치의 57Co을 비집속식 영상기법으로 재구성한 결과이다.Figures 11 to 15 show the results of reconstructing 57 Co at various positions using a non-focused imaging technique in experimental examples.
도 16 내지 도 22는 실험예에서 선원이 반도체 검출기의 정면에 위치할 때에 에너지별 비집속식 영상기법, 컴프턴 영상기법 및 융합 영상기법에 따라 생성된 이미지이다.16 to 22 are images generated according to the non-focused imaging technique, Compton imaging technique, and fusion imaging technique for each energy when the source is located in front of the semiconductor detector in the experimental example.
도 23은 실험예에서 선원이 반도체 검출기의 정면에 위치할 때에 에너지에 따라 평가된 정량 지표를 나타내는 그래프이다.Figure 23 is a graph showing quantitative indices evaluated according to energy when the source is located in front of the semiconductor detector in the experimental example.
도 24는 실험예에서 다양한 위치의 57Co, 133Ba, 137Cs을 융합 영상기법으로 재구성한 결과이다.Figure 24 shows the results of reconstruction of 57 Co, 133 Ba, and 137 Cs at various positions in an experimental example using a fusion imaging technique.
본 발명의 목적, 특정한 장점들 및 신규 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objectives, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments taken in conjunction with the accompanying drawings. In this specification, when adding reference numbers to components in each drawing, it should be noted that identical components are given the same number as much as possible even if they are shown in different drawings. Additionally, terms such as “first” and “second” are used to distinguish one component from another component, and the components are not limited by these terms. Hereinafter, in describing the present invention, detailed descriptions of related known technologies that may unnecessarily obscure the gist of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 실시예에 따른 비집속식 이중 방식 방사선 영상화 장비의 구성을 개략적으로 도시한 도면이고, 도 2는 도 1에 도시된 반도체 검출기의 배열을 도시한 도면이며, 도 3 내지 도 6은 본 발명의 실시예에 따른 반도체 검출기의 배열 패턴을 예시적으로 도시한 도면이다.Figure 1 is a diagram schematically showing the configuration of a non-focused dual-mode radiation imaging equipment according to an embodiment of the present invention, Figure 2 is a diagram showing the arrangement of the semiconductor detector shown in Figure 1, and Figures 3 to 3 6 is a diagram illustrating an arrangement pattern of a semiconductor detector according to an embodiment of the present invention.
도 1 내지 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 방사선 영상화 장비는 사각기둥 형상으로 형성되고 일단에서 타단을 향하는 깊이 방향이 가상의 XYZ 좌표계의 Z축 방향을 따라 배치되고 방사선과 반응하는 반도체 소자(11), 반도체 소자(11)의 일단에 연결된 음극(cathode, 13), 반도체 소자(11)의 타단에 연결된 양극(anode, 15), 및 반도체 소자(11)의 측면에 각각 연결된 4개의 옆전극(17)을 각각 구비하는 다수의 반도체 검출기(10)를 포함하고, 다수의 반도체 검출기(10)가 상기 XYZ 좌표계의 XY 평면 상에 소정의 모자이크 패턴으로 부호화되어 배열되는 검출부(100), 방사선이 검출부(100)에 입사될 때에, 음극(13), 양극(15) 및 옆전극(17)으로부터 반응 신호를 측정하는 신호측정부(200), 및 신호측정부(200)에서 측정한 반응 신호를 기반으로 방사선을 방출하는 선원의 영상 이미지를 생성하는 영상처리부(300)를 포함한다.As shown in Figures 1 and 2, the radiation imaging equipment according to an embodiment of the present invention is formed in the shape of a square pillar, the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system, and reacts with radiation. A semiconductor element 11, a cathode 13 connected to one end of the semiconductor element 11, an anode 15 connected to the other end of the semiconductor element 11, and a side surface of the semiconductor element 11, respectively. A detection unit (100) comprising a plurality of semiconductor detectors (10) each having four side electrodes (17), and in which the plurality of semiconductor detectors (10) are encoded and arranged in a predetermined mosaic pattern on the XY plane of the XYZ coordinate system. ), when radiation is incident on the detection unit 100, the signal measurement unit 200 measures the response signal from the cathode 13, the anode 15, and the side electrode 17, and the signal measurement unit 200 measures It includes an image processing unit 300 that generates an image of a source emitting radiation based on a response signal.
본 발명은 비집속식 방사선 영상화와 컴프턴 카메라를 동시에 사용할 수 있는 방사선 영상화 장비에 관한 것이다. 방사선 영상법은 집속기를 사용하는 기계적 집속과 컨프턴 영상화라고 불리는 전기적 집속으로 구분되는데, 기계적 집속 방식은 고에너지 영역에서는 두꺼운 차폐체가 요구되어 휴대성이 떨어지며, 근본적으로 집속기에 의해 시야각이 제한되는 한계점이 존재하고, 전기적 집속 방식은 컴프턴 산란이 거의 발생하지 않는 300 keV 미만의 에너지를 갖는 방사선에는 적용할 수 없는 문제가 있다. 이에 종래 방사선 영상법의 문제를 해결하기 위한 수단으로서 본 발명이 안출되었다.The present invention relates to radiation imaging equipment that can simultaneously use non-focused radiation imaging and a Compton camera. Radiation imaging methods are divided into mechanical focusing using a concentrator and electrical focusing called control imaging. The mechanical focusing method requires a thick shield in high energy areas, making it less portable, and the viewing angle is fundamentally limited by the concentrator. There are limitations and the electrical focusing method cannot be applied to radiation with an energy of less than 300 keV, in which Compton scattering rarely occurs. Accordingly, the present invention was developed as a means to solve the problems of conventional radiological imaging methods.
구체적으로, 본 발명의 실시예에 따른 방사선 영상화 장비는 검출부(100), 신호측정부(200), 및 영상처리부(300)를 포함한다.Specifically, the radiation imaging equipment according to an embodiment of the present invention includes a detection unit 100, a signal measurement unit 200, and an image processing unit 300.
검출부(100)는 방사선을 검출하는 다수의 반도체 검출기(10)를 포함한다. 반도체 검출기(10)는 반도체를 이용하여 방사선을 검출하는 기기로서, 반도체 소자(11), 음극(13), 양극(15) 및 옆전극(17)을 구비한다. The detection unit 100 includes a plurality of semiconductor detectors 10 that detect radiation. The semiconductor detector 10 is a device that detects radiation using a semiconductor and includes a semiconductor element 11, a cathode 13, an anode 15, and a side electrode 17.
반도체 소자(11)는 입사되는 방사선과 반응하는 소자이다. 반도체 소자(11)는 사각기둥 형상으로 형성되고, 일단에서 타단을 향하는 깊이 방향이 가상의 XYZ 좌표계의 Z축 방향을 따라 배치된다. 반도체 소자(11)의 측면에는 절연체가 배치될 수 있다. 방사선이 반도체 검출기(10)로 입사되면, 반도체 소자(11)의 내부에서 광자가 반응한다. 이하에서는 반도체 소자(11)와 반응하는 광자를 반응 광자라고 한다. 이러한 반도체 소자(11)는 CdTe, CdZnTe(CZT) 결정 등과 같은 반도체로 이루어지는데, 그 종류에 특별한 한정이 있는 것은 아니고, 방사선과 반응하여 반응 신호를 출력할 수 있는 반도체이기만 하면 어떤 것을 사용해도 무방하다. The semiconductor element 11 is an element that reacts with incident radiation. The semiconductor element 11 is formed in the shape of a square pillar, and the depth direction from one end to the other is arranged along the Z-axis direction of a virtual XYZ coordinate system. An insulator may be disposed on the side of the semiconductor device 11. When radiation is incident on the semiconductor detector 10, photons react inside the semiconductor element 11. Hereinafter, photons that react with the semiconductor device 11 are referred to as reaction photons. This semiconductor element 11 is made of a semiconductor such as CdTe, CdZnTe (CZT) crystal, etc. There is no particular limitation on its type, and any semiconductor can be used as long as it can react with radiation and output a reaction signal. .
음극(cathode, 13)은 반도체 소자(11)의 일단에 연결되고, 양극(anode, 15)은 반도체 소자(11)의 타단에 연결된다. 옆전극(17)은 반도체 소자(11)의 측면에 배치되는데, 반도체 소자(11)가 사각기둥 형상으로 형성되므로, 4개의 측면마다 하나씩 옆전극(17)이 연결된다. 즉, X축 상에 배치되어 서로 마주보는 반도체 소자(11)의 2 측면(X1 및 X2)에 각각 하나씩 옆전극(17)이, 또한 Y축 상에 배치되어 서로 마주보는 반도체 소자(11)의 2 측면(Y1 및 Y2)에도 각각 하나씩 옆전극(17)이 배치된다. The cathode (13) is connected to one end of the semiconductor element (11), and the anode (15) is connected to the other end of the semiconductor element (11). The side electrodes 17 are disposed on the side surfaces of the semiconductor device 11. Since the semiconductor device 11 is formed in the shape of a square pillar, the side electrodes 17 are connected one to each of the four sides. That is, the side electrodes 17 are placed on each of the two sides (X1 and X2) of the semiconductor elements 11 disposed on the One side electrode 17 is also disposed on each of the two sides (Y1 and Y2).
이러한 음극(13), 양극(15) 및 옆전극(17)은 방사선이 반도체 소자(11) 내에서 반응할 때에 반응 신호, 즉 전기적 신호를 출력한다. 이러한 반도체 검출기(10)에 따르면, 방사선의 광자에 의해 반응 신호가 발생할 때마다 문턱 에너지(threshold energy) 이상의 에너지를 갖는 광자를 계수(counting)할 수 있다. 여기서, 방사선은 감마선일 수 있다.When radiation reacts within the semiconductor element 11, the cathode 13, anode 15, and side electrode 17 output a reaction signal, that is, an electrical signal. According to this semiconductor detector 10, whenever a reaction signal is generated by a photon of radiation, photons with energy equal to or higher than the threshold energy can be counted. Here, the radiation may be gamma rays.
검출부(100)는 다수의 반도체 검출기(10)를 포함하는데, 여기서 다수의 반도체 검출기(10)는 XYZ 좌표계의 XY 평면 상에 소정의 모자이크 패턴으로 부호화되어 배열된다. 도 3을 참조하면, 본 발명에 따른 반도체 검출기(10)는 21×21 행렬 형태의 격자에 소정의 모자이크 패턴을 배열되어 있는 것을 알 수 있다. 다만, 반도체 검출기(10)의 배열 패턴이 반드시 도 3과 같이 배열되어야 하는 것은 아니고, 다양한 패턴으로 배열될 수 있으며, 이에 대해서는 후술한다. 부호화된 반도체 검출기(10)의 배열에 의하면, 종래 기계적 집속에 따른 부호화 구경 방식과 유사하게 방사선을 방출하는 선원의 위치에 따라 반도체 검출기(10)의 응답이 달라진다. 즉, 방사선의 선원의 위치에 따라 반응 광자가 각각의 반도체 소자(11) 내에서 반응하는 반응 위치 분포가 달라지고, 이러한 반응 위치 분포를 통해 선원의 위치를 산출함으로써, 그 선원에 대한 영상 이미지를 생성할 수 있다. The detection unit 100 includes a plurality of semiconductor detectors 10, where the plurality of semiconductor detectors 10 are encoded and arranged in a predetermined mosaic pattern on the XY plane of the XYZ coordinate system. Referring to FIG. 3, it can be seen that the semiconductor detector 10 according to the present invention has a predetermined mosaic pattern arranged in a grid in the form of a 21×21 matrix. However, the arrangement pattern of the semiconductor detector 10 does not necessarily have to be arranged as shown in FIG. 3, and may be arranged in various patterns, which will be described later. According to the arrangement of the encoded semiconductor detector 10, the response of the semiconductor detector 10 varies depending on the position of the source emitting radiation, similar to the conventional mechanical focusing-based encoded aperture method. In other words, the distribution of reaction positions where reaction photons react within each semiconductor element 11 varies depending on the position of the source of radiation, and by calculating the position of the source through this distribution of reaction positions, an image for the source is created. can be created.
반도체 검출기(10)가 배열되는 패턴은 선원으로부터 입사되는 방사선의 방향을 용이하게 파악할 수 있도록 한다. 입사되는 방사선의 방향에 따라 반도체 검출기(10)의 응답이 달라지는데, 방사선의 입사 방향이 부호화된 반도체 검출기(10)의 패턴에 의해 명확히 구별되므로, 반도체 검출기(10)의 반응 정보를 통해 보다 정확하게 선원의 위치를 파악할 수 있다.The pattern in which the semiconductor detectors 10 are arranged allows the direction of radiation incident from the source to be easily determined. The response of the semiconductor detector 10 varies depending on the direction of the incident radiation. Since the incident direction of the radiation is clearly distinguished by the encoded pattern of the semiconductor detector 10, the response information of the semiconductor detector 10 can be used to more accurately identify the source. The location can be determined.
반도체 검출기(10)가 배열되는 패턴에 대해 설명하면, 반도체 검출기(10)는 N(N은 1 이상의 자연수) 개의 행과 M(M은 1 이상의 자연수) 개의 열을 을 가지는 N×M 행렬 형태의 격자 내에서, 기준 패턴으로 배열될 수 있다. Explaining the pattern in which the semiconductor detector 10 is arranged, the semiconductor detector 10 has N (N is a natural number of 1 or more) rows and M (M is a natural number of 1 or more) columns in the form of an N × M matrix. Within the grid, they can be arranged in a reference pattern.
도 3을 참조로 설명하면, 5×5 행렬 형태의 격자에서, 제1 행의 모든 열((1,1) ~ (1,5)), 제2 행의 제3 및 제4열((2,3), (2,4)), 제3 행의 제2 및 제5열((3,2), (3,5)), 제4 행의 제2 및 제5열((4,2), (4,5)), 제5 행의 제3 및 제4 열((5,3), (5,4))의 위치에 하나씩 반도체 검출기(10)가 배열되어 제1 기준 패턴이 구성될 수 있다. 또한, 그 제1 기준 패턴을 행 및/또는 열 방향을 따라 나란하게 배열함으로써, 제1 기준 패턴이 확장된 확장 패턴을 형성할 수도 있다. 도 3에서는 5×5 행렬 내 제1 기준 패턴을 9×9 행렬로 확장하는 경우를 예시하고 있다. 여기서, 4 개의 제1 기준 패턴(점선 표시)이 나란하게 배치되면 10×10 행렬로 확장되는데, 최외곽 열 및 행을 제거하여 9×9 행렬로 확장할 수 있다.Referring to FIG. 3, in a grid in the form of a 5×5 matrix, all columns ((1,1) to (1,5)) of the first row, third and fourth columns of the second row ((2) ,3), (2,4)), 2nd and 5th columns of the 3rd row ((3,2), (3,5)), 2nd and 5th columns of the 4th row ((4,2) ), (4,5)), semiconductor detectors 10 are arranged one by one at the positions of the third and fourth columns ((5,3), (5,4)) of the fifth row to form a first reference pattern. It can be. Additionally, an extended pattern in which the first reference pattern is expanded may be formed by arranging the first reference pattern side by side along the row and/or column direction. Figure 3 illustrates a case where the first reference pattern in a 5×5 matrix is expanded to a 9×9 matrix. Here, when the four first reference patterns (indicated by dotted lines) are arranged side by side, they are expanded into a 10×10 matrix, which can be expanded into a 9×9 matrix by removing the outermost columns and rows.
이와 동일한 방식으로, 도 4와 같이 7×7 행렬 형태의 격자 내에 제2 기준 패턴이 형성되고, 13×13 행렬 형태로 제2 기준 패턴이 확장되거나, 도 5와 같이 11×11 행렬 형태의 격자 내에 제3 기준 패턴이 형성되고, 13×13 행렬 형태로 제3 기준 패턴이 확장되거나, 도 6과 같이 13×13 행렬 형태의 격자 내에 제4 기준 패턴이 형성되고, 25×25 행렬 형태로 제4 기준 패턴이 확장될 수 있다.In the same manner, a second reference pattern is formed in a grid in the form of a 7 × 7 matrix as shown in FIG. 4, and the second reference pattern is expanded in the form of a 13 × 13 matrix, or a grid in the form of a 11 × 11 matrix as shown in FIG. 5. A third reference pattern is formed in the grid and the third reference pattern is expanded in the form of a 13 × 13 matrix, or a fourth reference pattern is formed in the grid in the form of a 13 × 13 matrix as shown in FIG. 6, and the third reference pattern is expanded in the form of a 25 × 25 matrix. 4 The reference pattern can be extended.
이와 같이, 다양한 모자이크 패턴으로 반도체 검출기(10)가 배열될 수 있지만, 반드시 그 패턴이 도 3 내지 도 6에 한정되는 것은 아니다.In this way, the semiconductor detector 10 may be arranged in various mosaic patterns, but the patterns are not necessarily limited to FIGS. 3 to 6.
한편, 본 발명의 실시예에 따른 방사선 영상장비는 프레임(도시되지 않음)을 더 포함할 수 있다. 프레임은 다수의 반도체 검출기(10)가 소정의 모자이크 패턴으로 배열될 수 있도록, 반도체 검출기(10)를 고정하는 수단이다. 일례로, 프레임은 반도체 검출기(10)가 삽입될 수 있는 다수의 중공형 격자를 구비함으로써, 그 격자 내에 소정의 패턴으로 반도체 검출기(10)가 삽입되어 배열될 수 있다.Meanwhile, the radiation imaging equipment according to an embodiment of the present invention may further include a frame (not shown). The frame is a means of fixing the semiconductor detectors 10 so that the plurality of semiconductor detectors 10 can be arranged in a predetermined mosaic pattern. For example, the frame is provided with a plurality of hollow grids into which the semiconductor detectors 10 can be inserted, so that the semiconductor detectors 10 can be inserted and arranged in a predetermined pattern within the grids.
신호측정부(200)는 방사선이 검출부(100)에 입사될 때에, 각각의 반도체 검출기(10)의 음극(13), 양극(15), 및 옆전극(17)으로부터 반응 신호를 측정한다. 반응 신호는 전기적 신호일 수 있다. 신호측정부(200)는 다수의 반도체 검출기(10)로부터 반응 신호를 측정하기 위해서, 다수의 반도체 검출기(10) 각각의 음극(13)과 전기적으로 연결되는 음극(13) 기판, 각각의 양극(15)과 전기적으로 연결되는 양극(15) 기판, 및 각각의 옆전극(17)과 전기적으로 연결되는 그리드 기판을 포함할 수 있다.When radiation is incident on the detection unit 100, the signal measurement unit 200 measures response signals from the cathode 13, anode 15, and side electrode 17 of each semiconductor detector 10. The response signal may be an electrical signal. In order to measure the response signal from a plurality of semiconductor detectors 10, the signal measurement unit 200 includes a cathode 13 substrate electrically connected to the cathode 13 of each of the plurality of semiconductor detectors 10, and each anode ( It may include an anode 15 substrate electrically connected to 15) and a grid substrate electrically connected to each side electrode 17.
영상처리부(300)는 신호측정부(200)에서 측정한 반응 신호를 기반으로 선원의 영상 이미지를 생성할 수 있다. 이러한 영상처리부(300)는 반도체 검출기(10)의 영상처리 알고리즘을 수행하는 하드웨어로 구현될 수 있다.The image processing unit 300 may generate a video image of the source based on the response signal measured by the signal measurement unit 200. This image processing unit 300 may be implemented as hardware that performs the image processing algorithm of the semiconductor detector 10.
이하에서 영상처리부(300)의 영상 이미지 생성 동작에 대해 설명한다.Below, the video image generation operation of the image processing unit 300 will be described.
도 7은 선원면 및 픽셀을 설명하는 도면이고, 도 8은 도 1에 도시된 반도체 검출기의 깊이에 따른 양극 및 음극 신호 크기를 나타내며, 도 9는 도 1에 도시된 반도체 검출기 내부에서 전자 이동에 따른 전극의 유도 신호 파형을 나타낸다.FIG. 7 is a diagram explaining the source surface and pixels, FIG. 8 shows the anode and cathode signal sizes according to the depth of the semiconductor detector shown in FIG. 1, and FIG. 9 shows the size of the anode and cathode signals according to electron movement inside the semiconductor detector shown in FIG. 1. Shows the induced signal waveform of the electrode.
영상처리부(300)는 비집속식 영상기법, 컴프턴 영상기법, 및 비집속식 영상기법과 컴프턴 영상기법이 융합된 융합 영상기법 중 어느 하나에 따라 선원의 위치 정보를 획득하여 영상 이미지를 생성한다. 여기서, 방사선의 에너지 대역이 250 keV 미만일 때에는 비집속식 영상기법에 의하고, 방사선의 에너지 대역이 600 keV 초과일 때에는 컴프턴 영상기법에 의하며, 방사선의 에너지 대역이 250 ~ 600 keV일 때에는 융합 영상기법에 의하여 영상 이미지를 생성할 수 있다.The image processing unit 300 generates a video image by acquiring the location information of the source according to any one of the non-focused imaging technique, the Compton imaging technique, and the fusion imaging technique that combines the non-focused imaging technique and the Compton imaging technique. do. Here, when the energy band of radiation is less than 250 keV, the non-focused imaging technique is used, when the energy band of radiation is more than 600 keV, the Compton imaging technique is used, and when the energy band of radiation is between 250 and 600 keV, the fusion imaging technique is used. A video image can be created by .
도 7을 참고로 선원면 및 픽셀에 대해 먼저 설명하면, 선원면은 도 7의 왼쪽과 같이 구면좌표계로 설정될 수 있다. 해당 좌표계에서 특정 지점 P는 길이 r, 원점과 P를 이은 직선이 Z축과 이루는 각도인 φ, 원점과 P를 이은 직선을 XY 평면으로 투영시킨 직선과 X축이 이루는 각도 θ로 표현된다. 이를 방사선 영상에 대입하면, r은 선원과 반도체 검출기(10) 사이 거리, φ, θ는 반도체 검출기(10)를 기준으로 선원이 입사하는 방향을 의미한다. 도 7의 오른쪽을 참고로, 구면좌표계는 φ, θ를 기반으로 나눠지며, φ가 0 ~ 180도 범위일 때 θ는 0 ~ 359도 범위를 가지게 되며, 일정한 간격으로 픽셀을 나눌 수 있다. 예를 들어, 1도 간격으로 픽셀을 나누면, 선원면에는 총 181×360 = 65,160 개의 픽셀이 존재할 수 있다. First, the source surface and pixels will be described with reference to FIG. 7. The source surface may be set to a spherical coordinate system as shown on the left side of FIG. 7. In the coordinate system, a specific point P is expressed as a length r, ϕ, which is the angle formed by the straight line connecting the origin and P with the Z-axis, and the angle θ formed between the X-axis and the straight line projected from the origin and P onto the XY plane. Substituting this into the radiation image, r refers to the distance between the source and the semiconductor detector 10, and ϕ and θ refer to the direction in which the source is incident based on the semiconductor detector 10. Referring to the right side of FIG. 7, the spherical coordinate system is divided based on ϕ and θ. When ϕ is in the range of 0 to 180 degrees, θ has a range of 0 to 359 degrees, and pixels can be divided at regular intervals. For example, if pixels are divided into 1-degree intervals, there can be a total of 181 × 360 = 65,160 pixels in the line surface.
비집속식 영상기법은 입사된 방사선과 반응한 다수의 반도체 검출기(10) 내 반응 위치를 산출하고, 기설정된 반도체 검출기(10) 내 반응 위치별 선원이 위치하는 구형좌표계의 선원면 픽셀 정보와 대비하여, 선원의 위치 정보를 획득할 수 있다. 여기서, 반응 위치를 산출하기 위해서, XYZ 좌표계의 X축, Y축 및 Z축 방향을 따라 배열되는 다수의 복셀로, 각각의 반도체 소자(11)의 체적영역을 구획하여 복셀화하고, 신호측정부(200)에서 측정한 반응 신호에 따라, 각각의 반도체 소자(11)의 복셀에 반응 광자를 분포시킬 수 있다. 이에 따라, 복셀을 기반으로 하는 반응 위치가 산출될 수 있다.The non-focused imaging technique calculates the reaction positions within a plurality of semiconductor detectors (10) that reacted with the incident radiation, and compares them with pixel information on the source surface in a spherical coordinate system where the radiation source for each reaction position within the preset semiconductor detector (10) is located, You can obtain crew member location information. Here, in order to calculate the reaction position, the volume area of each semiconductor device 11 is divided and voxelized into a plurality of voxels arranged along the X-, Y-, and Z-axis directions of the XYZ coordinate system, and the signal measurement unit According to the reaction signal measured at 200, reaction photons can be distributed to the voxels of each semiconductor device 11. Accordingly, a response location based on a voxel can be calculated.
Z축 방향에 따른 반응 광자의 반응 위치는 양극(15)과 음극(13)으로부터 측정된 반응 신호 크기의 비(C/A ratio)를 기반으로 산출될 수 있다. 반응 위치별 양극(15) 신호 및 음극(13) 신호의 크기를 나타내는 도 8을 참고로, 양극(15)과 옆전극(virtual Frisch-grid, 17) 영역을 제외한 나머지 영역(옆전극(17)과 음극(13) 사이)에서 양극(15) 신호는 일정하게 유지되는 반면, 음극(13) 신호는 선형적으로 증가한다. 여기서, 양극(15)과 옆전극(17) 사이 영역에서 발생한 반응은 제거하고, 옆전극(17)과 음극(13) 사이에서 발생한 반응만 사용하여, 음극(13) 신호와 양극(15) 신호의 비를 통해 깊이 방향에 대한 반응 위치 정보를 유추할 수 있다. 다만, 깊이 방향에 대한 반응위치 정보가 반드시 양극(15)과 음극(13)의 신호 크기의 비를 통해서만 구할 수 있는 것은 아니고, Drift time 등을 이용해서도 산출할 수 있다. The reaction position of the reaction photon along the Z-axis direction can be calculated based on the ratio (C/A ratio) of the reaction signal magnitudes measured from the anode 15 and the cathode 13. With reference to FIG. 8 showing the magnitude of the anode (15) signal and the cathode (13) signal for each reaction location, the remaining area (side electrode (17)) excluding the anode (15) and side electrode (virtual Frisch-grid, 17) areas and cathode 13), the anode 15 signal remains constant, while the cathode 13 signal increases linearly. Here, the reaction occurring in the area between the anode 15 and the side electrode 17 is removed, and only the reaction occurring between the side electrode 17 and the cathode 13 is used, so that the cathode 13 signal and the anode 15 signal are used. Response position information in the depth direction can be inferred through the ratio of . However, the response position information in the depth direction is not necessarily obtained through the ratio of the signal sizes of the anode 15 and the cathode 13, and can also be calculated using drift time, etc.
X축, 및 Y축에 따른 반응 광자의 반응 위치는 옆전극(17)의 신호 크기를 기반으로 생성할 수 있다. 반도체 검출기(10) 내부에서 전자 이동에 따른 전극의 유도 신호 파형을 각각 나타내는 도 9에서 그 파형은 원신호를 반전한 결과이다. 도 9를 참고로, 방사선과의 반응에 의해 생성된 전자는 음극(13)으로부터 멀어지고 양극(15)에서 수집되기 때문에, 두 전극은 반대 극성을 보인다. 옆전극(17)의 경우, 전자가 가까워지다가 반도체 소자(11)와 옆전극(17) 사이에 배치된 절연체로 인해 수집되지 못하고 양극(15)으로 이동하므로 신호가 증가하다가 감소하는 형태를 보인다. 여기서, 신호가 증가하는 부분을 positive step, 신호가 감소하는 부분을 negative step이라고 한다. 이러한 negative step에 무게중심법(center of gravity method)을 적용하면, 아래 [수학식 1]과 같이 X축 및 Y축에 대한 반응 위치를 산출할 수 있다. The reaction position of the reaction photon along the X-axis and Y-axis can be generated based on the signal size of the side electrode 17. In Figure 9, which shows the waveforms of the induced signals of the electrodes according to the movement of electrons inside the semiconductor detector 10, the waveforms are the result of inverting the original signal. Referring to FIG. 9, since electrons generated by reaction with radiation move away from the cathode 13 and are collected at the anode 15, the two electrodes exhibit opposite polarities. In the case of the side electrode 17, electrons approach but cannot be collected due to the insulator disposed between the semiconductor element 11 and the side electrode 17 and move to the anode 15, so the signal increases and then decreases. Here, the part where the signal increases is called a positive step, and the part where the signal decreases is called a negative step. By applying the center of gravity method to this negative step, the response position on the X and Y axes can be calculated as shown in [Equation 1] below.
[수학식 1][Equation 1]
Figure PCTKR2023005434-appb-img-000002
Figure PCTKR2023005434-appb-img-000002
(여기서, Ax1는 X1 방향 옆전극(17)의 negative step 크기, Ax2는 X2 방향 옆전극(17)의 negative step 크기, Ay1는 Y1 방향 옆전극(17)의 negative step 크기, Ay2는 Y2 방향 옆전극(17)의 negative step 크기임)(Here, A x1 is the negative step size of the side electrode ( 17 ) in the X1 direction, A x2 is the negative step size of the side electrode (17) in the is the negative step size of the side electrode (17) in the Y2 direction)
반도체 소자(11)로부터 소정의 거리만큼 이격된 위치의 선원으로부터 방출되는 방사선은 반도체 소자(11) 내부에서 반응하는데, 이때 음극(13), 양극(15) 및 4개의 옆전극(17)을 통해 전기적 신호를 측정되고, 측정된 전기적 신호는 방사선이 반도체 소자(11) 내부에서 반응한 반응 광자수(count)에 대응되므로, 이를 통해 반응 광자의 위치 분포와 반응수를 산출할 수 있다.Radiation emitted from a source located a predetermined distance away from the semiconductor element 11 reacts inside the semiconductor element 11, at this time through the cathode 13, the anode 15, and the four side electrodes 17. Since the electrical signal is measured, and the measured electrical signal corresponds to the number (count) of reaction photons with which radiation reacted inside the semiconductor device 11, the position distribution and reaction number of reaction photons can be calculated through this.
여기서, 반도체 검출기(10) 내 반응 위치에 따른 선원이 위치하는 구형좌표계의 선원면 픽셀에 관한 정보는 기설정되어 있으므로, 산출된 반응 위치 분포와 기설정된 반응 위치 분포별 선원면 픽셀 정보를 대비함으로써, 선원의 위치 정보를 획득하고, 영상 이미지를 생성할 수 있다. Here, since the information about the source surface pixels in the spherical coordinate system where the source is located according to the reaction position in the semiconductor detector 10 is preset, by comparing the calculated response position distribution with the source surface pixel information for each preset response position distribution, the source surface is Location information can be obtained and video images can be generated.
컴프턴 영상기법은 컴프턴 산란과 광전흡수가 연속적으로 일어나는 반응, 즉 컴프턴 이벤트(event)를 이용하여 영상화는 방식이다. 즉, 산란 반응과 흡수 반응이 일어나는 각각의 반응 위치 및 에너지 정보를 기반으로 컴프턴 콘을 생성하여 선원의 위치를 결정할 수 있다. 실제 선원에서는 수많은 방사선이 방출되고, 컴프턴 이벤트마다 반응 위치 및 에너지의 조합에 따른 컴프턴 콘이 달라지므로 다수의 컴프턴 콘이 생성되고, 각 위치에서 누적되는 컴프턴 콘의 횟수를 상대적 밝기로 변환함으로써 영상 이미지를 생성할 수 있다.The Compton imaging technique is a method of imaging using a Compton event, a reaction in which Compton scattering and photoelectric absorption occur continuously. In other words, the location of the source can be determined by generating a Compton cone based on the reaction location and energy information of each scattering reaction and absorption reaction. In actual sources, numerous radiations are emitted, and for each Compton event, the Compton cone varies depending on the combination of reaction position and energy, so multiple Compton cones are generated, and the number of Compton cones accumulated at each location is calculated as relative brightness. By converting, a video image can be created.
본 발명에 따른 방사선 영상장비에서는, 다수의 반도체 검출기(10) 중 어느 하나의 반도체 검출기(10)에 입사된 방사선에 의해 발생하는 산란 반응이 일어나고, 그 산란 반응에 의해 산란된 방사선에 의해 다른 하나의 반도체 검출기(10)에서 흡수 반응이 일어난다. 여기서, 신호측정부(200)가 산란 반응 및 흡수 반응에 따른 산란 반응 신호 및 흡수 반응 신호를 측정하고, 영상처리부(300)가 그 신호를 기반으로 컨프턴 영상기법에 따라 선원의 위치 정보를 획득하고 영상 이미지를 생성할 수 있다. 이때, 산란 반응 및 흡수 반응이 일어나는 다수의 반도체 검출기(10) 내 반응 위치는, 비집속식 영상기법에서 전술한 바와 같이, 반도체 소자(11)를 복셀화하고, 그 복셀 기반으로 반응 위치를 산출할 수 있으며, 이때 축 방향에 따른 반응 위치는 양극(15)과 음극(13)으로부터 측정된 반응 신호 크기의 비(C/A ratio)를 기반으로 산출하고, X축, 및 Y축에 따른 반응 광자의 반응 위치는 옆전극(17)의 신호 크기를 기반으로 산출할 수 있다.In the radiation imaging equipment according to the present invention, a scattering reaction occurs due to radiation incident on one of the plurality of semiconductor detectors 10, and the radiation scattered by the scattering reaction causes An absorption reaction occurs in the semiconductor detector 10. Here, the signal measurement unit 200 measures the scattering response signal and absorption response signal according to the scattering reaction and absorption reaction, and the image processing unit 300 obtains the location information of the source according to the Confton imaging technique based on the signal. And you can create a video image. At this time, the reaction positions within the plurality of semiconductor detectors 10 where scattering and absorption reactions occur, as described above in the non-focused imaging technique, voxelize the semiconductor device 11 and calculate the reaction positions based on the voxels. In this case, the reaction position along the axis direction is calculated based on the ratio (C/A ratio) of the reaction signal size measured from the anode 15 and the cathode 13, and the reaction along the X-axis and Y-axis The photon reaction position can be calculated based on the signal size of the side electrode 17.
융합 영상기법은 비집속식 영상기법과 컴프턴 영상기법을 융합하여 선원의 위치 정보를 획득하여 영상 이미지를 생성한다. 여기서, 융합 영상기법은 MLEM (maximum likelihood expectation maximization) 기반의 하기 [수학식 2]에 따라 영상 이미지를 생성할 수 있다.The fusion imaging technique fuses the non-focused imaging technique and the Compton imaging technique to obtain location information of the source and generate a video image. Here, the fusion imaging technique can generate an image according to the following [Equation 2] based on MLEM (maximum likelihood expectation maximization).
[수학식 2][Equation 2]
Figure PCTKR2023005434-appb-img-000003
Figure PCTKR2023005434-appb-img-000003
(여기서, λj n, λj n +1 은 n, n+1 (n은 1 이상의 자연수) 번째 반복 후 선원면 픽셀 j (j는 1 이상의 자연수)의 추정치, M은 선원면 픽셀의 전체 개수, Yi a는 비집속식 영상기법에서 반도체 검출기(10)의 복셀 i (i는 1 이상의 자연수)에서 측정된 반응 광자수, N은 비집속식 영상기법에서 반도체 검출기(10)에서 측정된 전체 반응 광자수, Ci,j a는 비집속식 영상기법에서 선원면 픽셀 j에서 발생한 광자가 반도체 검출기(10)의 복셀 i에서 측정될 확률, Yi' b는 컴프턴 영상기법에서 이벤트(event) i' (i'은 1 이상의 자연수)로써 측정된 반응 광자수, N'은 컴프턴 영상기법에서 이벤트 i'의 종류, Ci ', j b는 컴프턴 영상기법에서 선원면 픽셀 j에서 발생한 광자가 이벤트 i'로 측정될 확률임)(Here, λ j n , λ j n +1 is the estimate of the line surface pixel j (j is a natural number of 1 or more) after n, n+1 (n is a natural number of 1 or more), M is the total number of line surface pixels, Y i a is the number of reaction photons measured in voxel i (i is a natural number of 1 or more) of the semiconductor detector 10 in the non-focused imaging technique, and N is the total reaction photons measured in the semiconductor detector 10 in the non-focused imaging technique. Number, C i,j a is the probability that a photon generated from source plane pixel j is measured at voxel i of the semiconductor detector 10 in the non-focused imaging technique, and Y i' b is the event (event) i' in the Compton imaging technique. (i' is a natural number greater than or equal to 1), which is the number of response photons measured, N' is the type of event i' in the Compton imaging technique, and C i ', j b are the photons generated from source plane pixel j in the Compton imaging technique. ' is the probability measured as ')
λj n, λj n +1 은 n, n+1번째 반복 후 선원면 픽셀 j의 추정치로서, λj는 전체 픽셀 중 특정 픽셀 j에서의 추정치를 의미하며, 이 추정치가 높을수록 선원이 있을 확률이 높다는 것을 의미한다. 초기 추정치는 0 ~ 1 사이 값을 입력해야 하며, 이 값을 식에 대입하면 그 해로써 다음 추정치가 도출된다. 해당 과정을 여러 번 반복함으로써 추정치의 정확도를 높일 수 있으나, 일정 이상이 되면 영상에서의 noise가 증폭되는 등 성능이 악화되기 때문에 적절한 횟수를 반복한다. 이 추정치를 2차원 행렬로 배열하면 방사선 영상을 획득할 수 있다.λ j n , λ j n +1 are the estimates of the source surface pixel j after the n, n+1th repetition, where λ j means the estimate at a specific pixel j among all pixels, and the higher this estimate, the probability that there is a source. This means it is high. The initial estimate must be a value between 0 and 1, and when this value is substituted into the equation, the next estimate is derived from that solution. The accuracy of the estimate can be increased by repeating the process several times, but if it exceeds a certain level, performance deteriorates, such as amplification of noise in the image, so it is repeated an appropriate number of times. By arranging these estimates in a two-dimensional matrix, a radiological image can be obtained.
Yi a는 특정 위치에 있는 미지의 선원을 측정할 때 특정 반도체 검출기(10)의 복셀 위치 i에서 측정된 반응 수를 의미하며, i는 반도체 검출기(10)의 구조나 복셀에 따라 그 수가 달라진다. 예를 들면, 반도체 검출기(10)가 2×2 행렬 형태로 배열되고, 개별 반도체 검출기(10)가 3×3×10 복셀로 나눠진 경우에 i는 3×3×10×4 = 360개가 된다. Y i a means the number of responses measured at voxel location i of a specific semiconductor detector 10 when measuring an unknown source at a specific location, and i varies depending on the structure or voxel of the semiconductor detector 10. . For example, when the semiconductor detectors 10 are arranged in a 2×2 matrix and the individual semiconductor detectors 10 are divided into 3×3×10 voxels, i is 3×3×10×4 = 360.
Ci,j a는 반도체 검출기(10)의 응답함수로써, 비집속식 영상기법에서 선원면의 특정 픽셀 j에 선원이 위치했을 때에 발생한 광자가 반도체 검출기(10)의 복셀 i에서 측정될 확률을 의미한다. 구면좌표계 내에 가능한 모든 위치에 선원을 두고 각 위치에 따른 반도체 검출기(10) 내 반응 위치 분포를 통해 도출되며, 일반적으로 실험을 통해 구현하기 어렵기 때문에 전산모사를 활용할 수 있다. 데이터 양이 많아질수록 더욱 정확한 응답함수를 획득할 수 있다.C i,j a is the response function of the semiconductor detector 10 and means the probability that the photon generated when the source is located at a specific pixel j of the source plane in the non-focused imaging technique is measured in voxel i of the semiconductor detector 10. do. It is derived through the distribution of reaction positions within the semiconductor detector 10 according to each position by placing the source in all possible positions within the spherical coordinate system. Since it is generally difficult to implement through experiment, computer simulation can be used. As the amount of data increases, a more accurate response function can be obtained.
Yi' b는 컴프턴 영상기법에서 컴프턴 이벤트(event) i'로써 측정된 반응 광자수로서, 특정 위치에 있는 미지의 선원을 측정할 때 특정 event i'로 측정되는 반응 수를 의미한다.Y i' b is the number of reaction photons measured as Compton event i' in the Compton imaging technique, and means the number of reactions measured as a specific event i' when measuring an unknown source at a specific location.
Ci ', j b는 컴프턴 영상기법에서 선원면 픽셀 j에서 발생한 광자가 이벤트 i'로 측정될 확률, 즉 선원이 특정 픽셀 j에 위치했을 때 event i'로 측정될 확률을 말한다. C i ', j b refers to the probability that a photon generated from pixel j of the source plane will be measured as event i' in the Compton imaging technique, that is, the probability of being measured as event i' when the source is located at a specific pixel j.
MLEM식에서 영상 재구성을 위해 발생 가능한 모든 event i'의 합이 요구되나, 반응 위치 및 산란 광자의 조합이 매우 다양하기 때문에 모든 반응에 대한 확률을 획득하기가 매우 어려우며, 이는 막대한 연산시간과 메모리를 요구한다. 따라서, 이를 해결하기 위해 list-mode 방식이 활용될 수 있다. event i'는 그 종류가 매우 많기 때문에 측정된 event끼리 같을 확률은 매우 낮아 측정 데이터는 모든 종류의 반응에 대해 균일하게 한번씩 발생했다고 가정할 수 있다. 따라서, 모든 반응 종류는 측정된 반응 종류로 대체되며, 측정된 반응에 대해서만 Yi' b를 1로 설정하고 그 반응의 발생 확률을 컴프턴 산란 각도 및 검출기내 감쇠 등을 고려하여 이론적으로 계산할 수 있다. In the MLEM equation, the sum of all possible events i' is required for image reconstruction, but since the combination of reaction positions and scattered photons is very diverse, it is very difficult to obtain probabilities for all reactions, which requires enormous computational time and memory. do. Therefore, the list-mode method can be used to solve this problem. Because there are so many types of event i', the probability that the measured events are the same is very low, so it can be assumed that the measured data occurred uniformly once for all types of reactions. Therefore, all reaction types are replaced by the measured reaction types, and Y i' b is set to 1 only for the measured reactions, and the probability of occurrence of the reaction can be theoretically calculated by considering the Compton scattering angle and attenuation within the detector. there is.
이하에서는 실험예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through experimental examples.
실험 방법: 전산모사 기반 실험Experiment method: computer simulation-based experiment
본 발명에서 제안한 방식의 유효성을 확인하기 위해 Geant4 Application for Emission Tomography(GATE) v7.0 전산모사 툴을 사용했으며, 모델링 조건은 다음과 같다. 도 10은 실험예에 사용된 비집속식 이중 방식 방사선 영상화 장비를 나타내는 사진으로, 반도체 검출기는 2 × 2 배열형 CZT 검출기를 모델링했다. 해당 장비는 VFG(virtual Frisch-grid) 방법이 적용된 6 mm × 6 mm × 19 mm CZT 검출기 4개가 배열된 형태이며, 검출기 사이 공간은 6 mm이다. To confirm the effectiveness of the method proposed in the present invention, the Geant4 Application for Emission Tomography (GATE) v7.0 computational simulation tool was used, and the modeling conditions were as follows. Figure 10 is a photograph showing the non-focused dual-mode radiation imaging equipment used in the experimental example, and the semiconductor detector was modeled as a 2 × 2 array type CZT detector. The equipment is an array of four 6 mm × 6 mm × 19 mm CZT detectors using the VFG (virtual Frisch-grid) method, and the space between detectors is 6 mm.
각 검출기는 3 × 3 × 10으로 복셀화되어 X, Y, Z 방향의 공간 분해능은 각각 2, 2, 1.9 mm이다. 선원면은 검출기 배열의 중심으로부터 1 m 반지름을 가진 구로 설정되었으며, 1도 간격으로 나눠져 181×360 픽셀로 구성된다. 실험을 통해 측정된 에너지 분해능인 662 keV에서 2%를 반영했으며, 두 종류의 전산모사가 수행되었다. 첫 번째는 비집속식 영상기법의 system matrix를 획득하는 전산모사이다. 위의 [수학식 2]에서 Ci,j a로 표기된 system matrix는 선원 위치에 따른 검출기 응답을 의미하며, 통계적 오차를 감소시키기 위해 충분한 양의 데이터가 요구된다. 따라서, 구 형태의 선원을 모델링하여 장시간 데이터를 획득했다. 두 번째는 영상을 재구성하기 위한 event를 획득하는 전산모사이며, 측정시간은 1시간으로 설정했다. 검출기 중심으로부터 1 m 떨어진 곳에 선원을 위치시켰으며, 획득된 데이터를 기반으로 비집속식, 컴프턴, 융합 영상을 재구성하여 성능을 비교했다. 전산모사 된 선원은 57Co(122 keV), 133Ba(356 keV), 137Cs (662 keV)이며, 감마선의 주된 반응이 광전흡수에서 컴프턴 산란으로 바뀌는 150 ~ 300 keV의 감마선도 추가로 측정되었다. Each detector is voxelized into 3 × 3 × 10, and the spatial resolution in the X, Y, and Z directions is 2, 2, and 1.9 mm, respectively. The source plane was set as a sphere with a radius of 1 m from the center of the detector array, divided into 1 degree intervals and consisting of 181 × 360 pixels. 2% was reflected at 662 keV, the energy resolution measured through experiment, and two types of computer simulations were performed. The first is a computational simulation that obtains the system matrix of the non-focused imaging technique. The system matrix denoted by C i,j a in [Equation 2] above refers to the detector response according to the source location, and a sufficient amount of data is required to reduce statistical errors. Therefore, long-term data were acquired by modeling a spherical source. The second is a computer simulation that acquires events to reconstruct the image, and the measurement time is set to 1 hour. The source was located 1 m away from the center of the detector, and the performance was compared by reconstructing non-focused, Compton, and fused images based on the acquired data. The computerized sources are 57 Co (122 keV), 133 Ba (356 keV), and 137 Cs (662 keV), and gamma rays of 150 to 300 keV, where the main reaction of gamma rays changes from photoelectric absorption to Compton scattering, were also measured. It has been done.
평가 1: 검출기 구조에 따른 결과Evaluation 1: Results according to detector structure
도 10의 배열형 검출기 구조와 함께 일반적으로 널리 상용화된 CZT 검출기의 구조 역시 전산모사하여 그 성능을 비교분석했다. 모델링된 상용 장비는 IDEAS사의 SRE-3021 장비로, 내부에 20 mm × 20 mm × 15 mm의 단일 CZT 검출기가 내장되어 있으며, 측정된 에너지 분해능은 662 keV에서 대략 2.1%이다. 해당 장비는 측면 전극을 대신하여 11 × 11로 픽셀화된 양극 구조를 사용하여 VFG 방법과 동일한 효과를 냈으며, 이 픽셀을 통해 X, Y 좌표를 획득할 수 있다. pixel pitch는 대략 1.72 mm이며, 해당 값을 공간 분해능으로 반영했다. Z 좌표는 앞선 VFG 검출기와 동일하게 양극과 음극의 신호를 기반으로 계산할 수 있으며, 공간 분해능을 1.5 mm로 설정했다. 그 외의 조건은 동일하게 설정했다.In addition to the array-type detector structure of Figure 10, the structure of a widely commercialized CZT detector was also computer simulated to compare and analyze its performance. The commercial instrument modeled is IDEAS' SRE-3021 instrument, which has a single CZT detector of 20 mm × 20 mm × 15 mm inside, and the measured energy resolution is approximately 2.1% at 662 keV. This equipment has the same effect as the VFG method by using an 11 × 11 pixelated anode structure instead of the side electrode, and X, Y coordinates can be acquired through this pixel. The pixel pitch is approximately 1.72 mm, and this value is reflected in the spatial resolution. The Z coordinate can be calculated based on the anode and cathode signals, just like the previous VFG detector, and the spatial resolution was set to 1.5 mm. Other conditions were set the same.
도 11 내지 도 15는 실험예에서 다양한 위치의 57Co을 비집속식 영상기법으로 재구성한 결과이다. 단일 CZT 검출기는 배열형 검출기에 비해 그 구조가 대칭형에 가깝기 때문에, (180°, 0°), (270°, 0°)와 같이 검출기면에 대해 수직으로 입사하는 선원은 원형으로 나타났으나, 그로 인해 방향에 따른 검출기 응답 특성이 모호해지는 각도가 발생하여 45° 방향으로 입사하는 선원은 그 분포가 매우 넓게 재구성된다. 반면, 배열형 검출기는 비대칭형 구조로 인해 선원 형태가 원형이 아니지만, 방향에 따른 응답 특성이 명확하게 구분되어 그 위치를 비교적 정확하게 파악할 수 있다. 결론적으로, 검출기는 감마선 입사방향에 따른 비대칭적인 구조를 가지는 것이 중요하며, 부호화된 배열형은 이에 적합하다. Figures 11 to 15 show the results of reconstructing 57 Co at various positions using a non-focused imaging technique in experimental examples. Since the structure of a single CZT detector is closer to symmetry than an array detector, the radiation incident perpendicular to the detector surface, such as (180°, 0°) and (270°, 0°), appears circular. As a result, an angle occurs where the detector response characteristics depending on the direction become ambiguous, and the distribution of the radiation incident in the 45° direction is reconstructed to be very wide. On the other hand, array-type detectors have a non-circular source shape due to their asymmetrical structure, but the response characteristics according to direction are clearly distinguished, allowing the location to be determined relatively accurately. In conclusion, it is important for the detector to have an asymmetric structure according to the gamma ray incident direction, and the encoded array type is suitable for this.
평가 2: 에너지별 결과Evaluation 2: Results by energy
도 16 내지 도 22는 실험예에서 선원이 반도체 검출기의 정면에 위치할 때에 에너지별 비집속식 영상기법, 컴프턴 영상기법 및 융합 영상기법에 따라 생성된 이미지이고, 도 23은 실험예에서 선원이 반도체 검출기의 정면에 위치할 때에 에너지에 따라 평가된 정량 지표를 나타내는 그래프이다.Figures 16 to 22 are images generated according to the non-focused imaging technique, Compton imaging technique, and fusion imaging technique for each energy when the source is located in front of the semiconductor detector in the experimental example, and Figure 23 shows the image generated by the source in the experimental example. This is a graph showing quantitative indicators evaluated according to energy when placed in front of a semiconductor detector.
(1) 영상 반응수(1) Number of video reactions
영상화에 사용된 반응수는 비집속식 방식에서 에너지가 증가함에 따라 지수함수적으로 감소한 반면, 컴프턴 방식에서는 250 keV까지 증가하다가 그 이후부터 감소한다. 모든 에너지 대역에서 비집속식 영상의 반응수가 압도적으로 많으며, 융합 영상은 두 영상의 반응을 모두 사용하기 때문에 가장 많다.The reaction number used for imaging decreases exponentially as energy increases in the non-focused method, whereas in the Compton method it increases up to 250 keV and then decreases thereafter. In all energy bands, the number of responses from non-focused images is overwhelmingly high, and fusion images have the largest number because they use the responses of both images.
(2) 각도 분해능(2) Angular resolution
각도 분해능은 영상에서 선원의 분포가 퍼져있는 정도를 평가하는 지표이며, 영상의 최고점 주변 분포의 full width at half maximum(FWHM)으로 표기하고 그 값이 낮을수록 좋다. 비집속식 영상은 에너지가 증가함에 따라 지수함수적으로 증가하다가 356 keV부터는 그 증가가 완만해졌으나, 실질적으로 300 keV 이상부터는 분포가 너무 넓게 나타나 선원의 위치를 정확하게 파악할 수 없다. 컴프턴 영상은 컴프턴 반응이 거의 발생하지 않아 영상 재구성이 힘든 200 keV 미만의 결과를 제외한 모든 에너지 대역에서 매우 우수한 성능을 보였으며, 에너지가 증가함에 따라 감소하나 662 keV에서는 약간 증가했다. 융합 영상은 두 영상의 중간 정도에서 좋은 쪽에 가까운 값을 보이며, 모든 에너지 대역에서 대략 10 ~ 20° 정도의 값을 나타냈다.Angular resolution is an indicator that evaluates the extent to which the distribution of the source is spread in the image. It is expressed as the full width at half maximum (FWHM) of the distribution around the highest point of the image, and the lower the value, the better. The non-focused image increases exponentially as the energy increases, and the increase becomes gradual from 356 keV, but in reality, the distribution appears too wide from 300 keV or higher, making it impossible to accurately determine the location of the source. Compton images showed very good performance in all energy bands except for results below 200 keV, where image reconstruction is difficult due to almost no Compton reaction, and decreased as energy increased, but increased slightly at 662 keV. The fusion image showed values close to the middle of the two images and close to the good side, and showed values of approximately 10 to 20° in all energy bands.
(3) 선원 부분의 정규화된 표준편차(3) Normalized standard deviation of the source portion.
선원 부분의 정규화된 표준편차는 재구성된 선원에 해당하는 픽셀에서의 통계적 요동을 의미하며, 그 값이 낮을수록 좋다. 선원 부분은 영상에서 최고점을 중심으로 거리가 측정된 FWHM보다 작은 픽셀들로 정의된다. 비집속식 영상은 에너지가 증가함에 따라 감소했으며 300 keV부터는 거의 포화되었으나, 이는 영상의 성능이 좋아서 값이 낮은 것이 아닌 선원이 제대로 재구성되지 않았기 때문이다. 컴프턴 영상은 증가하다가 356 keV부터 거의 일정해졌으며, 융합영상은 거의 모든 에너지 영역에서 일정한 값을 나타냈다. 이는 두 영상기법의 변화가 상쇄된 것으로 보인다.The normalized standard deviation of the source portion represents the statistical fluctuation in the pixel corresponding to the reconstructed source, and the lower the value, the better. The source portion is defined as pixels whose distance from the highest point in the image is smaller than the FWHM. The non-focused image decreased as the energy increased and was almost saturated starting from 300 keV, but this was not because the image performance was good and the value was low, but because the source was not properly reconstructed. The Compton image increased and became almost constant starting from 356 keV, and the fusion image showed constant values in almost all energy regions. This appears to have offset the changes in the two imaging techniques.
(d) figure-of-merit(d) figure-of-merit
figure-of-merit(FOM)은 효율과 각도 분해능을 동시에 고려하는 지표로 효율을 FWHM3으로 나눈 값으로 정의된다. 본 실험에서는 효율을 반응수로 대체했다. 비집속식 영상은 FOM이 매우 빠르게 감소하며 250 keV를 기점으로 컴프턴 영상보다 낮아졌다. 컴프턴 영상은 356 keV까지 증가하다가 662 keV에서 효율 감소로 인해 같이 감소하는 경향을 보인다. 융합영상은 두 영상기법 중 한 쪽이 압도적으로 우세한 경우(122 keV나 662 keV)에는 해당하는 영상과 동일한 값을 나타내며, 모든 에너지 대역에서 다른 두 영상기법보다 같거나 높다. Figure-of-merit (FOM) is an indicator that simultaneously considers efficiency and angular resolution and is defined as efficiency divided by FWHM 3 . In this experiment, efficiency was replaced by number of reactions. In the non-focused image, the FOM decreases very quickly and becomes lower than the Compton image starting at 250 keV. The Compton image increases up to 356 keV and then tends to decrease at 662 keV due to decreased efficiency. When one of the two imaging techniques is overwhelmingly superior (122 keV or 662 keV), the fusion image shows the same value as the corresponding image, and is equal to or higher than the other two imaging techniques in all energy bands.
평가 3: 선원 위치별 결과Assessment 3: Results by crew location
도 24는 실험예에서 다양한 위치의 57Co, 133Ba, 137Cs을 융합 영상기법으로 재구성한 결과이다.Figure 24 shows the results of reconstruction of 57 Co, 133 Ba, and 137 Cs at various positions in an experimental example using a fusion imaging technique.
도 24는 다양한 (θ,φ)에 위치한 선원을 재구성한 융합 영상을 보여주며, 각 행은 순서대로 57Co, 133Ba, 137Cs의 결과이다. 모든 결과에서 선원이 올바른 위치에 재구성됨을 확인했으며, 영상에서의 최고점을 통해 판단된 선원 위치와 실제 위치의 차이는 평균과 최대값은 각각 2.5°로 오차가 매우 작았다.Figure 24 shows a fused image reconstructed from sources located at various (θ, ϕ), and each row is the result of 57 Co, 133 Ba, and 137 Cs in that order. All results confirmed that the source was reconstructed in the correct position, and the difference between the source position determined through the highest point in the image and the actual position was very small, with an average and maximum value of 2.5° each.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, this is for detailed explanation of the present invention, and the present invention is not limited thereto, and can be understood by those skilled in the art within the technical spirit of the present invention. It is clear that modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be made clear by the appended claims.
본 발명에 따른 비집속식 이중 방식 방사선 영상화 장비는 소정의 모자이크 패턴으로 배열된 반도체 검출기의 음극, 양극 및 4개의 옆전극을 통해 획득된 선원의 위치별 반도체 검출기의 반응신호를 기반으로 비집속식 영상기법, 컴프턴 영상기법, 이들을 융합한 융합 영상기법에 따라 넓은 에너지 영역에 대한 영상을 재구성하는 것을 특징으로 하므로, 산업상 이용가능성이 인정된다.The non-focused dual radiation imaging equipment according to the present invention is based on the response signal of the semiconductor detector for each position of the source obtained through the cathode, anode, and four side electrodes of the semiconductor detector arranged in a predetermined mosaic pattern. Since it is characterized by reconstructing images over a wide energy range according to imaging techniques, Compton imaging techniques, and fusion imaging techniques that combine them, its industrial applicability is recognized.

Claims (7)

  1. 사각기둥 형상으로 형성되고 일단에서 타단을 향하는 깊이 방향이 가상의 XYZ 좌표계의 Z축 방향을 따라 배치되고 방사선과 반응하는 반도체 소자, 상기 반도체 소자의 일단에 연결된 음극(cathode), 상기 반도체 소자의 타단에 연결된 양극(anode), 및 상기 반도체 소자의 측면에 각각 연결된 4개의 옆전극을 각각 구비하는 다수의 반도체 검출기를 포함하고, 다수의 상기 반도체 검출기가 상기 XYZ 좌표계의 XY 평면 상에 소정의 모자이크 패턴으로 부호화되어 배열되는 검출부;A semiconductor element formed in the shape of a square pillar and the depth direction from one end to the other end is disposed along the Z-axis direction of a virtual XYZ coordinate system and reacts with radiation, a cathode connected to one end of the semiconductor element, and It includes a plurality of semiconductor detectors each having a connected anode and four side electrodes each connected to a side of the semiconductor element, wherein the plurality of semiconductor detectors are arranged in a predetermined mosaic pattern on the XY plane of the XYZ coordinate system. A detection unit that is encoded and arranged;
    상기 방사선이 상기 검출부에 입사될 때에, 상기 음극, 상기 양극 및 상기 옆전극으로부터 반응 신호를 측정하는 신호측정부; 및a signal measurement unit that measures response signals from the cathode, the anode, and the side electrode when the radiation is incident on the detection unit; and
    상기 신호측정부에서 측정한 상기 반응 신호를 기반으로 상기 방사선을 방출하는 선원의 영상 이미지를 생성하는 영상처리부;를 포함하는 방사선 영상화 장비.Radiation imaging equipment including; an image processing unit that generates an image of the source emitting the radiation based on the response signal measured by the signal measurement unit.
  2. 청구항 1에 있어서,In claim 1,
    다수의 상기 반도체 검출기가 소정의 상기 모자이크 패턴으로 부호화되어 배열되도록, 다수의 상기 반도체 검출기를 고정하는 프레임;을 더 포함하는 방사선 영상화 장비.Radiation imaging equipment further comprising a frame for fixing a plurality of semiconductor detectors so that the plurality of semiconductor detectors are encoded and arranged in a predetermined mosaic pattern.
  3. 청구항 1에 있어서,In claim 1,
    상기 영상처리부는,The image processing unit,
    입사된 상기 방사선과 반응한 다수의 상기 반도체 검출기 내 반응 위치를 산출하고, 기설정된 상기 반도체 검출기 내 반응 위치별 상기 선원이 위치하는 구형좌표계의 선원면 픽셀 정보와 대비하여, 상기 선원의 위치 정보를 획득하는 비집속식 영상기법,Calculate reaction positions within the plurality of semiconductor detectors that reacted with the incident radiation, and obtain location information of the source by comparing it with pixel information on the source surface of a spherical coordinate system where the source is located for each preset reaction position within the semiconductor detector. Non-focused imaging techniques,
    다수의 상기 반도체 검출기 중 어느 하나의 상기 반도체 검출기에 입사된 상기 방사선에 의해 발생하는 산란 반응에 대한 산란 반응 신호, 및 상기 산란 반응에 의해 산란된 상기 방사선에 의해 다른 하나의 상기 반도체 검출기에서 발생하는 흡수 반응에 대한 흡수 반응 신호를 기반으로, 상기 산란 반응 및 상기 흡수 반응이 일어난 다수의 상기 반도체 검출기 내 반응 위치를 산출하고, 상기 선원의 위치 정보를 획득하는 컴프턴 영상기법, 및A scattering response signal for a scattering reaction generated by the radiation incident on one of the plurality of semiconductor detectors, and a scattering response signal generated in the other semiconductor detector by the radiation scattered by the scattering reaction. Based on the absorption reaction signal for the absorption reaction, the Compton imaging technique calculates reaction positions within the plurality of semiconductor detectors where the scattering reaction and the absorption reaction occur, and obtains location information of the source, and
    상기 비집속식 영상기법과 상기 컴프턴 영상기법을 융합하여 상기 선원의 위치 정보를 획득하는 융합 영상기법, 중 어느 하나의 영상기법에 따라 상기 영상 이미지를 생성하되, The video image is generated according to any one of the following imaging techniques: a fusion imaging technique that obtains location information of the source by fusing the non-focused imaging technique and the Compton imaging technique,
    상기 XYZ 좌표계의 X축, Y축 및 Z축 방향을 따라 배열되는 다수의 복셀로, 각각의 상기 반도체 소자의 체적영역을 구획하여 복셀화하고,The volume area of each semiconductor device is divided into voxels with a plurality of voxels arranged along the X-, Y-, and Z-axes of the XYZ coordinate system,
    상기 신호측정부에서 측정한 상기 반응 신호에 따라, 각각의 상기 반도체 소자의 상기 복셀에 반응 광자를 분포시켜 상기 복셀을 기반으로 하는 상기 반응 위치를 산출하는 방사선 영상장비.Radiation imaging equipment for calculating the reaction position based on the voxel by distributing reaction photons to the voxel of each semiconductor device according to the reaction signal measured by the signal measurement unit.
  4. 청구항 3에 있어서,In claim 3,
    상기 영상처리부는,The image processing unit,
    상기 방사선의 에너지 대역이 250 keV 미만일 때에는, 상기 비집속식 영상기법에 의하고,When the energy band of the radiation is less than 250 keV, using the non-focused imaging technique,
    상기 방사선의 에너지 대역이 600 keV 초과일 때에는, 상기 컴프턴 영상기법에 의하며,When the energy band of the radiation exceeds 600 keV, the Compton imaging technique is used,
    상기 방사선의 에너지 대역이 250 ~ 600 keV일 때에는, 상기 융합 영상기법에 의하여, 상기 영상 이미지를 생성하는 방사선 영상장비.Radiation imaging equipment that generates the video image by the fusion imaging technique when the energy band of the radiation is 250 to 600 keV.
  5. 청구항 3에 있어서,In claim 3,
    상기 양극과 상기 음극으로부터 측정된 반응 신호 크기의 비를 기반으로, 상기 Z축 방향의 상기 반응 위치를 산출하는 방사선 영상장비.Radiation imaging equipment that calculates the response position in the Z-axis direction based on the ratio of response signal magnitudes measured from the anode and the cathode.
  6. 청구항 3에 있어서,In claim 3,
    상기 옆전극으로부터 측정된 반응 신호 크기를 기반으로, 무게중심법(center of gravity method)을 적용하여, 상기 X축 및 상기 Y축 방향 각각의 상기 반응 위치를 산출하는 방사선 영상장비.Radiation imaging equipment that calculates the response positions in each of the X-axis and Y-axis directions by applying a center of gravity method, based on the size of the response signal measured from the side electrode.
  7. 청구항 3에 있어서,In claim 3,
    상기 융합 영상기법은,The fusion imaging technique is,
    MLEM (maximum likelihood expectation maximization) 기반의 하기 [수학식 1]에 따라 상기 영상 이미지를 생성하는 방사선 영상장비.Radiation imaging equipment that generates the video image according to the following [Equation 1] based on MLEM (maximum likelihood expectation maximization).
    [수학식 1][Equation 1]
    Figure PCTKR2023005434-appb-img-000004
    Figure PCTKR2023005434-appb-img-000004
    여기서, here,
    λj n, λj n +1 은 n, n+1 (n은 1 이상의 자연수) 번째 반복 후 선원면 픽셀 j (j는 1 이상의 자연수)의 추정치,λ j n , λ j n +1 is the estimate of line surface pixel j (j is a natural number greater than 1) after the n, n+1 (n is a natural number greater than 1) th iteration,
    M은 선원면 픽셀의 전체 개수,M is the total number of line surface pixels,
    Yi a는 비집속식 영상기법에서 반도체 검출기의 복셀 i (i는 1 이상의 자연수)에서 측정된 반응 광자수,Y i a is the number of response photons measured in voxel i (i is a natural number greater than or equal to 1) of the semiconductor detector in the non-focused imaging technique,
    N은 비집속식 영상기법에서 반도체 검출기에서 측정된 전체 반응 광자수,N is the total number of response photons measured at the semiconductor detector in the non-focused imaging technique,
    Ci,j a는 비집속식 영상기법에서 선원면 픽셀 j에서 발생한 광자가 반도체 검출기의 복셀 i에서 측정될 확률,C i,j a is the probability that a photon generated from source plane pixel j in a non-focused imaging technique will be measured at voxel i of the semiconductor detector,
    Yi' b는 컴프턴 영상기법에서 이벤트(event) i' (i'은 1 이상의 자연수)로써 측정된 반응 광자수,Y i' b is the number of response photons measured as event i'(i' is a natural number greater than 1) in the Compton imaging technique,
    N'은 컴프턴 영상기법에서 이벤트 i'의 종류,N' is the type of event i' in Compton imaging technique,
    Ci ', j b는 컴프턴 영상기법에서 선원면 픽셀 j에서 발생한 광자가 이벤트 i'로 측정될 확률임.C i ', j b is the probability that a photon generated from source plane pixel j will be measured as event i' in the Compton imaging technique.
PCT/KR2023/005434 2022-04-21 2023-04-21 Collimation-less dual mode radiation imager WO2023204653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0049263 2022-04-21
KR20220049263 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023204653A1 true WO2023204653A1 (en) 2023-10-26

Family

ID=88420276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005434 WO2023204653A1 (en) 2022-04-21 2023-04-21 Collimation-less dual mode radiation imager

Country Status (2)

Country Link
KR (1) KR20230150225A (en)
WO (1) WO2023204653A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208057A (en) * 2003-12-26 2005-08-04 Institute Of Physical & Chemical Research Gamma ray detector and gamma ray imaging device
US20080042070A1 (en) * 2004-09-30 2008-02-21 Levin Craig S Semiconductor Crystal High Resolution Imager
US20140231657A1 (en) * 2011-07-01 2014-08-21 Brookhaven Science Associates, Llc Radiation detector device for rejecting and excluding incomplete charge collection events
US20180256121A1 (en) * 2017-03-08 2018-09-13 Prismatic Sensors Ab Increased spatial resolution for photon-counting edge-on x-ray detectors
KR102123562B1 (en) * 2018-11-26 2020-06-16 제주대학교 산학협력단 System for processing 3-dimensional visualization of radiation source distribution using coded-apertures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272251B1 (en) 2011-10-12 2013-06-13 서울대학교산학협력단 Cpmpton camera and method for reconstructing image for resolution recovery thereof
KR102409778B1 (en) 2021-08-18 2022-06-16 한전케이피에스 주식회사 Inspection apparatus using detection of radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208057A (en) * 2003-12-26 2005-08-04 Institute Of Physical & Chemical Research Gamma ray detector and gamma ray imaging device
US20080042070A1 (en) * 2004-09-30 2008-02-21 Levin Craig S Semiconductor Crystal High Resolution Imager
US20140231657A1 (en) * 2011-07-01 2014-08-21 Brookhaven Science Associates, Llc Radiation detector device for rejecting and excluding incomplete charge collection events
US20180256121A1 (en) * 2017-03-08 2018-09-13 Prismatic Sensors Ab Increased spatial resolution for photon-counting edge-on x-ray detectors
KR102123562B1 (en) * 2018-11-26 2020-06-16 제주대학교 산학협력단 System for processing 3-dimensional visualization of radiation source distribution using coded-apertures

Also Published As

Publication number Publication date
KR20230150225A (en) 2023-10-30

Similar Documents

Publication Publication Date Title
US5567944A (en) Compton camera for in vivo medical imaging of radiopharmaceuticals
US7615757B2 (en) Semiconductor radiological detector and semiconductor radiological imaging apparatus
WO2002012918A2 (en) Spect gamma camera
WO2017122514A1 (en) Radiation imaging apparatus
Clarkson et al. The design and performance of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers
WO2017018363A1 (en) Radiation measuring device and radiation measuring method
US20120256094A1 (en) Dual-particle imaging system for standoff snm detection in high-background-radiation environments
Liu et al. Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector
JP2005208057A (en) Gamma ray detector and gamma ray imaging device
WO2023204653A1 (en) Collimation-less dual mode radiation imager
Curtis et al. The construction and operation of a hybrid gas-silicon detector for studies of cluster breakup reactions
He et al. Portable wide-angle/spl gamma/-ray vision systems
WO2021075646A1 (en) Compton imaging apparatus and single photon emission and positron emission tomography system comprising same
Lee et al. A Dual Modality Gamma Camera Using ${\rm LaCl} _ {3}({\rm Ce}) $ Scintillator
Lee et al. Portable active collimation imager using URA patterned scintillator
JP4371723B2 (en) γ-ray activity distribution imaging method and γ-ray activity distribution imaging apparatus
O'Neill et al. The TIGRE desktop prototype results for 511 and 900 keV gamma rays
Goldwurm et al. Laboratory images with HURA coded apertures
Charalambous et al. Aberrations in gamma-ray imaging systems
Lee et al. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions
Mathew Construction and evaluation of a high-resolution silicon microstrip tracking detector, and, utilization to determine interaction vertices
CN108333620B (en) Detection device and positioning method of medium-low energy ray source
Foudray et al. Positioning annihilation photon interactions in a thin LSO crystal sheet with a position-sensitive avalanche photodiode
WO2022010199A1 (en) Collimator for detecting radiation and radiation detection device using same
KR20230076728A (en) Method for correcting interaction position in radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792227

Country of ref document: EP

Kind code of ref document: A1