WO2023204031A1 - 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置 - Google Patents

積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置 Download PDF

Info

Publication number
WO2023204031A1
WO2023204031A1 PCT/JP2023/014151 JP2023014151W WO2023204031A1 WO 2023204031 A1 WO2023204031 A1 WO 2023204031A1 JP 2023014151 W JP2023014151 W JP 2023014151W WO 2023204031 A1 WO2023204031 A1 WO 2023204031A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
defect size
laminate
quality control
allowable
Prior art date
Application number
PCT/JP2023/014151
Other languages
English (en)
French (fr)
Inventor
翔太 椿
保人 片岡
碩 黄
諭史 近口
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2023204031A1 publication Critical patent/WO2023204031A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a quality control method for a layered product, a quality control device for a layered product, a program, a welding control device, and a welding device.
  • Metal additive manufacturing technology is known as one of the metal processing technologies called additive manufacturing.
  • This metal additive manufacturing technology makes it possible to manufacture three-dimensional additive-molded objects by stacking sliced two-dimensional layers one by one based on three-dimensional data such as 3D-CAD. Additionally, during the production of a laminate-produced product, the modeled shape can be measured using a sensor, and the printing conditions for the next layer to be formed can be adjusted based on the measurement results to improve the quality of the laminate-produced product. It is being said.
  • defects may occur due to poor fusion of metals during the process of repeating metal deposition. These defects include harmful defects that have a fatal impact on quality, and harmless defects that do not particularly affect the required specifications of the layered product. Criteria for determining whether a defect is harmful or harmless are usually set according to quality assurance or control standards. Regarding this standard, it is better to specify it before printing rather than clarifying it by conducting various tests after actually printing, and it becomes easier to formulate a good printing plan.
  • Patent Document 1 a position of insufficient melting is specified based on sensor values that detect the shape and size of an actual melting spot, and when the specified position is in a load supporting area or a critical load area, It was determined that a defect had occurred, and quality evaluation was not performed at the modeling planning stage.
  • the present invention aims to provide a quality control method for additively manufactured products, a quality control device for additively manufactured products, a program, a welding control device, and a welding device that can predict the quality of the additively manufactured products at the stage of modeling planning before manufacturing. do.
  • the present invention consists of the following configuration.
  • a quality control method for a layered product formed by repeatedly stacking beads made by melting and solidifying filler material in a layered manner based on a predetermined modeling plan comprising: Obtaining the limit value of the stress intensity factor of the layered product, Determining an allowable defect size of a defect included in the laminate-produced product using a range of variation in load stress that the laminate-produced product is assumed to have in its design, and condition values including the limit value; A predicted value of the defect size of a defect that may occur in the layered product when manufacturing the layered product based on the manufacturing plan, or a predicted value of the defect size of a defect that occurs in a test specimen produced based on the manufacturing plan.
  • a defect size setting unit that sets one of the actual measured values as a defect size
  • a determination unit that compares the defect size and the allowable defect size to determine quality of the bead or the layered product
  • a quality control device for additively manufactured products including: (4) The quality control device for the layered product described in (3), a control unit that controls continuation or stop of arc welding according to the result of the quality determination output from the quality control device;
  • a welding control device comprising: (5) The welding control device according to (4), A welding robot that performs arc welding, Welding equipment equipped with
  • the quality of a layered product can be predicted at the modeling planning stage before manufacturing.
  • FIG. 1 is an overall configuration diagram of a welding device.
  • FIG. 2 is a schematic functional block diagram of the control information generation device.
  • FIG. 3 is a flowchart showing the procedure of the control information generation method.
  • FIG. 4 is a graph schematically showing the relationship between crack growth rate and stress intensity factor range.
  • FIG. 5 is an explanatory diagram showing the state of stacking of beads in a laminate-molded product in a cross-sectional shape.
  • FIG. 6 is a cross-sectional view schematically showing one narrow portion when beads are arranged in a staggered manner.
  • FIG. 7A is a schematic cross-sectional view showing how a narrowed portion having a defect is remelted.
  • FIG. 7B is a schematic cross-sectional view showing the narrow portion of FIG. 7A after repair.
  • FIG. 8A is a schematic cross-sectional view showing mechanical removal of a narrow portion defect.
  • FIG. 8B is a schematic cross-sectional view showing the narrow portion of FIG. 8A after
  • FIG. 1 is an overall configuration diagram of the welding system.
  • Welding system 100 includes a welding device 110 and a welding control device 120.
  • the welding control device 120 includes a control section 11 and a quality control device 130.
  • the welding apparatus 110 includes a welding robot 13 , a robot drive section 15 , a filler metal supply section 17 , a welding power supply section 19 , and a shape detection section 21 . These welding robot 13, robot drive section 15, filler material supply section 17, welding power source section 19, and shape detection section 21 are each connected to the control section 11. Furthermore, a machining section 30 to which a tool 29 such as a drill or a milling tool (details of which will be described later) can be attached is connected to the control section 11, and performs desired machining such as cutting according to commands from the control section 11. is now possible. The machining section 30 and the welding device 110 also function as a defect repair section, which will be described later.
  • the welding robot 13 is an articulated robot, and a welding torch 27 is attached to its tip shaft.
  • the robot drive section 15 outputs a command to drive the welding robot 13, and arbitrarily sets the position and orientation of the welding torch 27 three-dimensionally within the degree of freedom of the robot arm. Furthermore, a continuously supplied filler metal (welding wire) M is supported at the tip of the welding torch 27 .
  • the welding torch 27 is a gas metal arc welding torch that has a shield nozzle (not shown) and is supplied with shield gas from the shield nozzle.
  • the arc welding method may be a consumable electrode type such as covered arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and it may be a The selection will be made accordingly.
  • a consumable electrode type a contact tip is arranged inside the shield nozzle, and the filler material M to which melting current is supplied is held in the contact tip.
  • the welding torch 27 holds the filler metal M and generates an arc from the tip of the filler metal M in a shielding gas atmosphere.
  • the filler material supply section 17 includes a reel 17a around which the filler material M is wound.
  • the filler metal M is sent from the filler metal supply section 17 to a feeding mechanism (not shown) attached to a robot arm or the like, and is fed to the welding torch 27 while being fed in forward and reverse directions by the feeding mechanism as necessary. be provided.
  • any commercially available welding wire can be used.
  • Welding wire can be used.
  • filler metals M such as aluminum, aluminum alloys, nickel, and nickel-based alloys depending on the required properties.
  • the welding power supply section 19 supplies the welding torch 27 with welding current and welding voltage for generating an arc from the tip of the torch.
  • the shape detection unit 21 is provided at or near the tip axis of the welding robot 13, and uses the vicinity of the tip of the welding torch 27 as a measurement area.
  • the shape detection section 21 may be another detection means provided at a different position from the welding torch 27.
  • the shape detection unit 21 of this configuration is moved together with the welding torch 27 by the drive of the welding robot 13, and measures the shape of the bead B and the portion that will become the base when the bead B is formed.
  • a laser sensor that acquires reflected light of an irradiated laser beam as height information can be used.
  • other detection means such as a camera for three-dimensional shape measurement may be used.
  • a modeling program corresponding to the layered product to be manufactured is transmitted from the control unit 11 to the robot drive unit 15.
  • the modeling program is composed of a large number of instruction codes, and is created based on an appropriate algorithm according to various conditions such as shape data (CAD data, etc.), material, heat input, etc. of the layered object.
  • the robot drive section 15 executes the received modeling program, drives the welding robot 13, filler material supply section 17, welding power supply section 19, etc., and forms the bead B along the trajectory set in the modeling program. . That is, the robot drive unit 15 drives the welding robot 13 to move the welding torch 27 along the trajectory (bead forming trajectory) of the welding torch 27 set in the modeling program. At the same time, the filler material supply section 17 and the welding power supply section 19 are driven according to the set welding conditions, and the filler material M at the tip of the welding torch 27 is melted and solidified by the arc. As a result, a bead B is formed on the base plate P along the trajectory of the welding torch 27. Then, a bead layer consisting of a plurality of beads B is formed, and the next bead layer is laminated on top of this bead layer, thereby forming a laminate product W having a desired three-dimensional shape.
  • the welding control device 120 is composed of a computer device including a processor such as a CPU, a memory such as a ROM and a RAM, and a storage unit such as an HD (hard disk drive) or an SSD (solid state drive). Ru. Each component of the welding control device 120 described above operates according to instructions from the CPU and performs its respective functions. Further, the welding control device 120 may be arranged separately from the welding device 110 and connected to the welding device 110 from a remote location via a communication means such as a network.
  • a communication means such as a network.
  • the control unit 11 constituting the welding control device 120 centrally controls the robot drive unit 15, filler metal supply unit 17, welding power supply unit 19, and shape detection unit 21 shown in FIG.
  • the control unit 11 executes a drive program prepared in advance or a drive program created under desired conditions to drive each part of the welding robot 13 and the like. In this way, the welding torch 27 is moved according to the drive program and a plurality of layers of beads B are laminated on the base plate P based on the created modeling plan, thereby forming a multilayered layered product W.
  • FIG. 2 is a schematic functional block diagram of the quality control device 130.
  • the quality control device 130 monitors the presence or absence of defects that occur in a laminate-produced product and the size of the defect when the welding device 110 melts and solidifies the filler metal M to form a laminate-produced product by stacking a plurality of beads in a layered manner. is predicted to determine the quality of the laminate-produced product.
  • the shaping program that is, shaping plan
  • the shaping plan for driving each part of the welding device 110 is modified as necessary based on a predetermined shaping plan.
  • the quality control device 130 generates control information for updating such a modeling plan, and outputs the control information to the control unit 11.
  • the quality control device 130 includes a limit value acquisition section 31, an allowable defect size setting section 33, a defect size setting section 35, and a determining section 37, each of which will be described in detail later.
  • the quality control device 130 may include a repair instruction section 39, the details of which will be described later.
  • the quality control apparatus 130 which is composed of a computer device, is designed to perform the above-described functions by executing a program prepared in advance.
  • the quality control device 130 controls the quality of a laminate-molded article (or bead) formed by repeatedly layering beads B made by melting and solidifying filler material M, based on a predetermined modeling plan.
  • the steps of this quality control method generally include the following steps (1) to (4).
  • the allowable defect size setting unit 33 determines the allowable defect size of defects included in the laminate-manufactured object using the range of variation in load stress assumed in the design of the laminate-manufactured object and condition values including the above-mentioned limit values.
  • the defect size setting unit 35 determines a predicted value of the defect size of a defect that may occur in a layered product when manufacturing a layered product based on a manufacturing plan, or a defect size that may occur in a test specimen manufactured based on a manufacturing plan.
  • the determining unit 37 compares the defect size and the allowable defect size to determine the quality of the bead or the layered product.
  • FIG. 3 is a flowchart showing the steps of the quality control method.
  • a lower limit stress intensity factor range which is the limit value of the stress intensity factor of the layered product to be manufactured, is obtained (step S1: hereinafter referred to as S1).
  • the material is selected at the product design stage, and the stress intensity factor K of the material may be determined experimentally by, for example, fatigue tests on test specimens, stress analysis of crack growth, etc. It may be determined by, or furthermore, it may be determined by machine learning or the like.
  • FIG. 4 is a graph schematically showing the relationship between the crack growth rate (da/dn) and the stress intensity factor range ⁇ K.
  • the stress intensity factor range ⁇ K in general, when the stress intensity factor range ⁇ K is reduced, the crack growth rate (da/dn) suddenly decreases, and crack growth is observed when the stress intensity factor range ⁇ K is ⁇ K th . It disappears.
  • This ⁇ K th is called the lower limit stress intensity factor range. In a region smaller than the lower limit stress intensity factor range ⁇ K th , cracks do not grow even when a load is applied.
  • This test piece is prepared by preparing a block test piece with various conditions such as the additively manufactured product to be manufactured, the material of the filler metal M, welding conditions, etc., and cutting out the part containing defects from the prepared block test piece. It may be prepared by
  • the allowable defect size of defects included in the layered product is determined (S2).
  • the allowable defect size is determined using conditional values including the stress variation range ⁇ of the load stress and the lower limit stress intensity factor range ⁇ K th that are assumed in the design of the laminate-molded product.
  • F is a dimensionless constant that varies depending on the crack size ratio and the load type.
  • Equation (1) it can be said that the lower limit stress intensity factor range ⁇ K th and the stress variation range ⁇ of the applied stress have a corresponding relationship as shown in equation (2). Therefore, the allowable defect (crack) size a 0 is calculated from equation (2).
  • the allowable defect size a 0 may be calculated for each type.
  • the allowable defect size a 0 may be calculated from the fracture strength when the maximum value K max of the stress intensity factor reaches the fracture toughness value K IC of the material. K max at this time takes the form of equation (3). ⁇ max is the maximum value of the applied stress.
  • the allowable defect size a 0 can be determined by calculation without actually measuring, so quality control can be performed more easily.
  • the defect here may include not only voids formed inside the laminate-molded article but also cracks and dents that occur on the surface of the laminate-molded article. Furthermore, the voids or cracks may contain oxides, inclusions, etc. derived from components of the modeling material.
  • KIC is a value obtained according to a standardized test and evaluation method, and for example, a value based on ASTM standard E399 is used for comparison.
  • a predicted value of the size of a defect occurring during modeling or an actual value of the size of the defect is acquired (S3).
  • a method for predicting the size of defects that occur during modeling for example, a method using machine learning can be used. Specifically, we investigated the relationship between the welding conditions used in additive manufacturing (welding speed, filler metal feeding speed, bead spacing, target position, etc.) and the defect size that occurs in samples produced under these welding conditions. Then, an estimated model representing the relationship between the two is generated.
  • this learned estimation model By using this learned estimation model to determine the defect size corresponding to the welding conditions actually used, it is possible to predict the defect size that is likely to occur before actual modeling.
  • the learning of this estimation model may use actual measured values obtained by actually producing test specimens for each welding condition and observing defects, or may use analytical values obtained by calculation using an analytical method such as FEM.
  • the estimation model is a model that has learned the relationship between the bead shape of the bead constituting the layered product observed during manufacturing and the defect size that occurs, instead of or in addition to the welding conditions. It's okay.
  • the defect size can be predicted taking into account the effects of narrow areas formed by the bead.
  • the bead shape here may be a shape predicted from the trajectory of the welding torch 27 determined in the modeling plan, or may be an actually measured bead shape obtained by scanning the laser sensor of the shape detection section 21.
  • a known method can be used to obtain the estimated model through the learning described above. Examples include decision trees, linear regression, random forests, support vector machines, Gaussian process regression, neural networks, and the like. Although the defect size prediction may be calculated for all passes forming the layered product at once, a more detailed study is possible if the prediction is performed for each pass.
  • known detection means for example, ultrasonic flaw detection, non-destructive testing methods such as CT and inspection can be used. Thereby, it is possible to detect the defect size of a defect formed in a test specimen (for example, inside stacked beads or between beads) produced based on a modeling plan.
  • the predicted value or actual value of the defect is determined and set as the defect size aexp . If the predicted value is set to the defect size aexp , the modeling plan, which will be described later, can be updated easily by calculation. Further, by setting the actual measurement value as the defect size aexp , accurate defect evaluation can be performed in accordance with the state of the actually formed bead, and the modeling plan can be updated more appropriately. Note that when both the predicted value and the measured value are obtained, either one may be adopted depending on the purpose of quality control, or each value may be averaged.
  • the set defect size a exp is compared with the allowable defect size a 0 to judge the quality of the bead or the layered product (S4). In this pass/fail judgment, if the defect size a exp is smaller than the allowable defect size a 0 (a exp ⁇ a 0 ), the quality of the formed bead or laminate-molded object is judged as good; If the defect size a is less than 0 , it is determined to be defective.
  • the molding conditions or the molding plan are modified to increase the allowable defect size a 0 or to decrease the defect size a exp .
  • a repair plan whose details will be described later may be inserted (S5).
  • the direction of the bead line (bead formation trajectory) may be changed.
  • the modeling plan may be modified by changing to a material with higher toughness.
  • the direction of the principal stress of the load acting on the laminate-manufactured object can be calculated by a method such as stress analysis based on the load conditions in which the main loads, etc. are assumed at the design stage of the laminate-manufactured object. I can do it.
  • the welding current and welding voltage may be adjusted so that the heat input to the bead becomes high, and various conditions such as the welding speed may be changed. Furthermore, the trajectory of the welding torch in the modeling plan may be changed.
  • FIG. 5 is an explanatory diagram showing the state of stacking of beads in a laminate-molded product in a cross-sectional shape.
  • the narrow part (trough) 41 formed between adjacent beads B prevents the formation of voids or foreign matter. Defects are likely to occur. Further, since the narrow portions 41 are arranged at the same position in the bead layer in the direction in which the beads B are arranged, there is a possibility that defects may be connected in the stacking direction. Therefore, it is preferable to arrange the beads B in a staggered manner with respect to the stacking direction to suppress the height of defects extending in the stacking direction.
  • FIG. 6 is a cross-sectional view schematically showing one narrow portion 41 when beads are arranged in a staggered manner.
  • the beads B are arranged in a staggered manner with respect to the stacking direction, new beads B are formed directly above the narrow portion 41 between the beads B in the lower layer. Therefore, in the narrow portion 41, remelting occurs due to the formation of a new bead B, the cavity disappears, and the foreign matter is removed. This makes it difficult for defects to occur in the layered product.
  • step S5 when the welding conditions are corrected, the process returns to step S3 in which the defect size corresponding to the corrected welding conditions is predicted or actually measured. Moreover, in step S5, when modifying the modeling plan, the process returns to step S1 to obtain the lower limit stress intensity factor range ⁇ K th corresponding to the modified modeling plan.
  • the above steps S1 to S4 and S5 are repeated for all passes (S6), and the defect size determination for all passes is completed.
  • the defect size a exp is sufficiently larger than the allowable defect size a 0
  • the defect size a exp is more than a specific threshold such as 5% or more, 10% or more, 30% or more of the allowable defect size a 0.
  • a specific threshold such as 5% or more, 10% or more, 30% or more of the allowable defect size a 0.
  • the defect size is set from either the predicted value of the defect obtained from the manufacturing plan or the actual value of the defect of the test specimen manufactured based on the manufacturing plan, and
  • the allowable defect size is determined from condition values including the variation range of the applied stress and the lower limit stress intensity factor range or the limit value of the stress intensity factor such as the fracture toughness value.
  • the obtained allowable defect size and the above defect size are compared to determine whether the quality of the layered product produced using the modeling plan is good or bad. Therefore, the quality of the layered product can be predicted from the modeling planning stage before printing. Further, since the allowable defect size is determined from the characteristics of the limit value of the stress intensity factor, the allowable defect size serving as a criterion can be appropriately set according to the material properties, and the accuracy of pass/fail judgment can be improved.
  • the allowable defect size may be determined for each type of defect shape.
  • various types of defects can be handled, such as blowhole defects and elongated defects along the bead line direction.
  • the lower limit stress intensity factor range or fracture toughness value to be set may be determined depending on the surface roughness of the formed bead. In this case, it is possible to specify allowable defect dimensions that take into consideration the case where a surface that cannot be cut remains after modeling. Note that the surface roughness here refers to the roughness defined in JIS B 0601:1994 or JIS B 0031:1994.
  • the step of modifying the manufacturing conditions of the laminate-produced product may be performed before the production of the laminate-produced product, or during the time between passes between the beads to be formed during the production of the laminate-produced product. . In that case, modification of manufacturing conditions can be completed before modeling starts or before stacking the next bead, and beads can be formed under the modified manufacturing conditions. Therefore, the predicted defect size can be reduced or the occurrence of defects itself can be suppressed.
  • the criteria for determining whether a defect is harmful or harmless is specified before modeling, it will be easier to determine the influence of the defect during modeling in conjunction with the shape detection information from the shape detection unit 21. Furthermore, if the standards are specified, it can be expected that the degree of freedom in designing the modeling plan will be improved without giving excessive consideration to quality.
  • the above-mentioned comparison between the defect size a exp and the allowable defect size a 0 may be performed every time bead formation along the path set in the modeling plan is completed, but it may be performed in the middle of the path, It may be possible to perform continuous processing in real time. In this case, it is possible to contribute to shortening the takt time, and also to obtain the results of determining the quality of defects that occur at an early stage, and to start dealing with defects that are determined to be defective at an early stage.
  • the repair instruction section 39 shown in FIG. 2 outputs a repair instruction signal to the control section 11 shown in FIG. 1 to execute the repair.
  • the control unit 11 drives the welding robot 13, the machining unit 30, etc. according to the input repair instruction signal, and performs repair work on the laminate-molded article W that is in the middle of being formed. Examples of this repair work include a method in which the defect is remelted by heating, and a method in which the defect is mechanically removed and then filled with molten metal.
  • FIG. 7A is a schematic cross-sectional view showing how the defective narrow portion 41 is remelted.
  • FIG. 7B is a schematic cross-sectional view showing the narrow portion 41 of FIG. 7A after repair. As shown in FIG. 7A, if a defect occurs in the narrow part 41 between adjacent beads B and the defect is determined to be larger than the allowable defect size by the quality control method described above, this defect will be removed. Carry out repair work to repair.
  • the repair instruction section 39 outputs a repair instruction signal to the control section 11.
  • the control unit 11 drives each part of the welding device 110 based on the input repair instruction signal.
  • the welding device 110 functions as a defect repair section, the welding torch 27 is placed at the defect position, and an arc is generated from the tip of the torch.
  • an arc is generated from a TIG electrode.
  • the narrow portion 41 is remelted by the heat input by the arc, and the void existing in the narrow portion 41 is filled with molten metal. Also, the foreign matter present is discharged from the narrow portion 41 by the molten metal. As a result, as shown in FIG. 7B, defects are removed between adjacent beads B, and smooth bead connection surfaces are formed on their surfaces. In this way, defects that occur are removed simply by melting the bead again. Further, after removing the defect, it is sufficient to simply continue laminating the layers, so that the repair work does not become complicated.
  • the filler metal M may be fed to supply molten metal as necessary.
  • the filler metal M first hit the narrow part 41 with an arc using only the TIG electrode, and then introduce the filler metal M. This will ensure good melting without the arc being blocked by the filler metal M. This is preferable because a pond can be obtained.
  • gouging may be performed by sending compressed air together with the arc, whereby the defective portion can be removed as if gouged out. Further, the defective portion may be removed by performing gouging using a plasma arc.
  • FIG. 8A is a schematic cross-sectional view showing how a defect in the narrow portion 41 is mechanically removed.
  • FIG. 8B is a schematic cross-sectional view showing the narrow portion of FIG. 8A after repair.
  • the defect position is identified as in the case shown in FIG. 7A, and the repair instruction section 39 outputs a repair instruction signal to the control section 11.
  • the control unit 11 drives the machining unit 30 and the welding device 110 according to the input repair instruction signal.
  • the machining section 30 and the welding device 110 function as a defect repair section and remove the defect at the defect position.
  • the machining section 30 is driven by a repair command from the control section 11 to place the tool 29 in the narrow section 41 .
  • the narrow portion 41 is cut using the tool 29 to form the hollow portion 43.
  • the machining section 30 is retracted from the narrow section 41, and the welding torch 27 is moved to the position of the cavity section 43.
  • an arc is generated from the tip of the torch, and the cavity 43 is filled with molten metal 45 in which the filler metal M is melted.
  • a bead layer from which defects are removed is formed as in FIG. 7B.
  • the above-described arc welding for remelting and arc welding for filling the cavity 43 may be performed by welding using the welding robot 13 or by manual welding. Further, as for the welding conditions, a pulse mode is preferable because it allows deep penetration in a short time, but other modes may be used depending on the thickness.
  • the repair instruction unit 39 may output a repair instruction signal for performing the repair before manufacturing the laminate-molded product or during the bead pass time during the manufacturing of the laminate-molded product. According to this, defects can be repaired while bead formation is stopped. Therefore, modification of the manufacturing conditions can be completed before the start of modeling or before the next bead is stacked, and the predicted defect size can be reduced or the occurrence of defects itself can be suppressed.
  • the present invention is not limited to the embodiments described above, and those skilled in the art can modify and apply them based on the mutual combination of the configurations of the embodiments, the description of the specification, and well-known techniques. It is also contemplated by the present invention to do so, and is within the scope for which protection is sought.
  • a quality control method for a layered product formed by repeatedly stacking beads made by melting and solidifying filler material in a layered manner based on a predetermined modeling plan comprising: Obtaining the limit value of the stress intensity factor of the layered product, Determining an allowable defect size of a defect included in the laminate-produced product using a range of variation in load stress that the laminate-produced product is assumed to have in its design, and condition values including the limit value; A predicted value of the defect size of a defect that may occur in the layered product when manufacturing the layered product based on the manufacturing plan, or a predicted value of the defect size of a defect that occurs in a test specimen produced based on the manufacturing plan.
  • the defect size is set from either the predicted value of defects obtained from the manufacturing plan or the actual value of defects of the test specimen produced based on the manufacturing plan, and
  • the allowable defect size is determined from the condition values including the variation range of the applied stress and the limit value of the stress intensity factor.
  • the obtained allowable defect size and the above defect size are compared to determine whether the quality of the layered product produced using the modeling plan is good or bad. Therefore, the quality of the layered product can be predicted from the modeling planning stage before printing. Further, since the allowable defect size is determined from the characteristics of the limit value of the stress intensity factor, the allowable defect size serving as a criterion can be appropriately set according to the material properties, and the accuracy of pass/fail judgment can be improved.
  • the quality control method for a layered product according to (1) wherein the limit value is either a lower limit stress intensity factor or a fracture toughness value of the layered product.
  • the allowable defect size can be determined from the lower limit stress intensity factor or fracture toughness value.
  • the method further includes the step of comparing the defect size and the allowable defect size, and correcting the manufacturing conditions of the additively manufactured article if the defect size is larger than the allowable defect size.
  • the quality control method for a laminate-molded product according to any one of the above. According to this method for controlling the quality of a layered product, modification of manufacturing conditions can be completed before the start of modeling or before stacking the next bead, and beads can be formed under the modified manufacturing conditions. Therefore, the predicted defect size can be reduced or the occurrence of defects itself can be suppressed.
  • a program that causes a computer to execute the steps of a quality control method for a layered product formed by repeatedly stacking beads made by melting and solidifying filler material in a layered manner based on a predetermined modeling plan comprising: to the computer, a step of obtaining a limit value of a stress intensity factor of the layered product; A step of determining an allowable defect size of a defect included in the laminate-manufactured object using a variation range of load stress assumed in the design of the laminate-manufactured object and condition values including the limit value; A predicted value of the defect size of a defect that may occur in the layered product when manufacturing the layered product based on the manufacturing plan, or a predicted value of the defect size of a defect that occurs in a test specimen produced based on the manufacturing plan.
  • a procedure for setting one of the actual measured values as the defect dimension A program for executing a procedure of comparing the defect size and the allowable defect size to determine the quality of the bead or the layered product.
  • the defect size is set from either the predicted value of the defect obtained from the manufacturing plan or the actual value of the defect of the test specimen fabricated based on the manufacturing plan, and the variation range of the applied stress of the additively manufactured object is set. , and the condition values including the limit value of the stress intensity factor.
  • the obtained allowable defect size and the above defect size are compared to determine whether the quality of the layered product produced using the modeling plan is good or bad. Therefore, the quality of the layered product can be predicted from the modeling planning stage before printing. Further, since the allowable defect size is determined from the characteristics of the limit value of the stress intensity factor, the allowable defect size serving as a criterion can be appropriately set according to the material properties, and the accuracy of pass/fail judgment can be improved.
  • a quality control device for a laminate-molded product comprising: a determination unit that compares the defect size and the allowable defect size to determine the quality of the bead or the laminate-molded product.
  • the defect size is set from either the predicted value of defects obtained from the manufacturing plan or the actual value of defects of the test specimen produced based on the manufacturing plan, and
  • the allowable defect size is determined from the condition values including the variation range of the applied stress and the limit value of the stress intensity factor. The obtained allowable defect size and the above defect size are compared to determine whether the quality of the layered product produced using the modeling plan is good or bad.
  • the quality of the layered product can be predicted from the modeling planning stage before printing. Further, since the allowable defect size is determined from the characteristics of the limit value of the stress intensity factor, the allowable defect size serving as a criterion can be appropriately set according to the material properties, and the accuracy of pass/fail judgment can be improved.
  • a welding control device comprising: a control section that controls continuation or stop of arc welding according to the result of the quality determination outputted from the quality control device. According to this welding control device, by temporarily stopping arc welding when it is found that a defect has occurred, unnecessary modeling can be prevented.
  • the welding control device according to (13), A welding device that includes a welding robot that performs arc welding. According to this welding device, arc welding that is less likely to cause defects can be realized.
  • a defect repair unit that repairs the defect occurring in the layered product; Comparing the defect size and the allowable defect size, and if the defect size is larger than the allowable defect size, outputting a repair instruction signal to the defect repair unit to repair a portion where the defect size becomes larger.
  • the repair instruction unit causes the defect repair unit to repair the defect before manufacturing the laminate-produced product or during the inter-pass time of the bead during the production of the laminate-produced product.
  • Control part 13 Welding robot 15 Robot drive part 17 Filler metal supply part 17a Reel 19 Welding power supply part 21 Shape detection part 27 Welding torch 29 Tool 30 Machining part 31 Limit value acquisition part 33 Allowable defect size setting part 35 Defect size setting part Part 37 Judgment part 39 Repair instruction part 41 Narrow part 43 Cavity part 45 Molten metal 100 Welding system 110 Welding device 120 Welding control device 130 Quality control device a Defect size a 0 allowable defect size a exp defect size B Bead K Stress intensity factor M Filler metal P Base plate W Laminate manufactured object ⁇ K Stress intensity factor range ⁇ K th lower limit stress intensity factor range (limit value)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

積層造形物の品質管理方法は、積層造形物の応力拡大係数の限界値を取得する工程と、積層造形物が設計上想定される負荷応力の変動範囲、及び限界値を含む条件値を用いて、積層造形物に含まれる欠陥の許容欠陥寸法を求める工程と、造形計画に基づいて積層造形物を製造する際に積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する工程と、欠陥寸法と許容欠陥寸法とを比較して、ビード又は積層造形物の品質を良否判定する工程と、を含む。

Description

積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置
 本発明は、積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置に関する。
 アディティブマニュファクチャリング(Additive Manufacturing)と呼ばれる金属加工技術の一つとして、金属積層造形技術が知られている。この金属積層造形技術では、3D-CAD等の三次元データをもとにして、スライスされた二次元の層を一層ずつ積み重ねることにより、三次元の積層造形物の製造を可能にする。また、積層造形物の製造途中で、造形された形状をセンサにより計測し、その計測結果に応じて次に形成する層等に対する造形条件を調整して、積層造形物の品質を高めることも行われている。
 このような積層造形物の品質管理において、造形途中にセンサで計測されるデータを、負荷情報と力流情報とに対応させ、センサによる計測値を品質に対する影響の観点で分類、判定する技術が特許文献1に開示されている。
日本国特開2019-194031号公報
 ところで、上記した金属積層造形においては、金属の堆積を繰り返す過程で金属の融合不良などによる欠陥が生じることがある。この欠陥には、品質上致命的な影響を与える有害な欠陥と、積層造形物の要求仕様に対して特に影響を及ぼさない無害な欠陥とがある。欠陥が有害か無害かの判定基準は、通常、品質保証又は管理の基準に応じて設定される。この基準については、実際に造形した後に各種試験を実施して明確化するよりも、造形前に特定されている方が好ましく、良好な造形計画が立てやすくなる。
 しかしながら、製造前の造形計画の段階から積層造形物の品質を予見することは難しい。特許文献1では、実際の溶融スポットの形状と大きさを検出したセンサ値に基づいて、溶融不足の位置を特定し、特定された位置が、負荷支持領域又はクリティカルな負荷領域に存在する場合に欠陥が生じたと判定しており、造形計画の段階では品質評価がなされていない。
 そこで本発明は、製造前の造形計画の段階で積層造形物の品質を予見できる積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置の提供を目的とする。
 本発明は、下記の構成からなる。
(1) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法であって、
 前記積層造形物の応力拡大係数の限界値を取得し、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求め、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定し、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する、
積層造形物の品質管理方法。
(2) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法の手順をコンピュータに実行させるプログラムであって、
 コンピュータに、
 前記積層造形物の応力拡大係数の限界値を取得する手順と、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める手順と、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する手順と、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する手順と、
を実行させるためのプログラム。
(3) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理装置であって、
 前記積層造形物の応力拡大係数の限界値を取得する限界値取得部と、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める許容欠陥寸法設定部と、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する欠陥寸法設定部と、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する判定部と、
を含む積層造形物の品質管理装置。
(4) (3)に記載の積層造形物の品質管理装置と、
 前記品質管理装置から出力された前記良否判定の結果に応じてアーク溶接の続行又は停止を制御する制御部と、
を備える溶接制御装置。
(5) (4)に記載の溶接制御装置と、
 アーク溶接を行う溶接ロボットと、
を備える溶接装置。
 本発明によれば、製造前の造形計画の段階で積層造形物の品質を予見できる。
図1は、溶接装置の全体構成図である。 図2は、制御情報生成装置の概略的な機能ブロック図である。 図3は、制御情報生成方法の手順を示すフローチャートである。 図4は、き裂進展速度と応力拡大係数範囲との関係を模式的に示すグラフである。 図5は、積層造形物のビードの積層の様子を断面形状で示す説明図である。 図6は、千鳥状にビードを配置した場合の一つの狭隘部を模式的に示す断面図である。 図7Aは、欠陥を有する狭隘部を再溶融させる様子を示す概略断面図である。 図7Bは、図7Aの狭隘部の補修後の様子を示す概略断面図である。 図8Aは、狭隘部の欠陥を機械的に除去する様子を示す概略断面図である。 図8Bは、図8Aの狭隘部の補修後の様子を示す概略断面図である。
 以下、本発明の構成例について、図面を参照して詳細に説明する。ここでは、溶加材を溶融及び凝固させたビードを積層して三次元形状の積層造形物を製造する溶接装置に適用する例を説明するが、これに限らず、隅肉溶接、突き合わせ溶接等の一般的な溶接についても本発明の適用が可能である。
<溶接システム>
 図1は、溶接システムの全体構成図である。
 溶接システム100は、溶接装置110と、溶接制御装置120とを備える。溶接制御装置120は、制御部11と、品質管理装置130とを有している。
(溶接装置)
 まず、溶接装置110の構成を説明する。
 溶接装置110は、溶接ロボット13と、ロボット駆動部15と、溶加材供給部17と、溶接電源部19と、形状検出部21とを備える。これらの溶接ロボット13、ロボット駆動部15、溶加材供給部17、溶接電源部19及び形状検出部21は、それぞれ制御部11に接続されている。また、制御部11には、詳細を後述するドリル、フライス工具等のツール29が装着可能な機械加工部30が接続され、制御部11からの指令に応じて、切削加工等の所望の機械加工が可能になっている。機械加工部30と溶接装置110は、後述する欠陥補修部としても機能する。
 溶接ロボット13は、多関節ロボットであり、その先端軸に溶接トーチ27が装着されている。ロボット駆動部15は、溶接ロボット13を駆動する指令を出力し、溶接トーチ27の位置及び姿勢をロボットアームの自由度の範囲で三次元的に任意に設定する。また、溶接トーチ27の先端には、連続供給される溶加材(溶接ワイヤ)Mが支持される。
 溶接トーチ27は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給されるガスメタルアーク溶接用のトーチである。アーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物(溶接構造物)に応じて適宜選定される。例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。溶接トーチ27は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。
 溶加材供給部17は、溶加材Mが巻回されたリール17aを備える。溶加材Mは、溶加材供給部17からロボットアーム等に取り付けられた繰り出し機構(不図示)に送られ、必要に応じて繰り出し機構により正逆方向に送給されながら溶接トーチ27へ送給される。
 溶加材Mとしては、あらゆる市販の溶接ワイヤを使用できる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定される溶接ワイヤが使用可能である。さらに、求められる特性に応じてアルミニウム、アルミニウム合金、ニッケル、ニッケル基合金等の溶加材Mの使用も可能である。
 溶接電源部19は、トーチ先端からアークを発生させるための溶接電流及び溶接電圧を溶接トーチ27に供給する。
 形状検出部21は、溶接ロボット13の先端軸又は先端軸の近傍に設けられ、溶接トーチ27の先端付近を計測領域とする。形状検出部21は、溶接トーチ27とは別位置に設けた他の検出手段であってもよい。
 本構成の形状検出部21は、溶接ロボット13の駆動によって溶接トーチ27とともに移動され、ビードB及びビードBを形成する際の下地となる部分の形状を計測する。この形状検出部21としては、例えば、照射したレーザ光の反射光を高さ情報として取得するレーザセンサを使用できる。また、形状検出部21として、三次元形状計測用のカメラ等、他の検出手段を利用してもよい。
 上記構成の溶接装置110においては、ロボット駆動部15に、作製しようとする積層造形物に応じた造形プログラムが制御部11から送信されてくる。造形プログラムは、多数の命令コードにより構成され、積層造形物の形状データ(CADデータ等)、材質、入熱量等の諸条件に応じて、適宜なアルゴリズムに基づいて作成される。
 ロボット駆動部15は、受信した造形プログラムを実行して、溶接ロボット13、溶加材供給部17及び溶接電源部19等を駆動し、造形プログラムに設定された軌道に沿ってビードBを形成する。つまり、ロボット駆動部15は、溶接ロボット13を駆動して、造形プログラムに設定された溶接トーチ27の軌道(ビード形成軌道)に沿って溶接トーチ27を移動させる。これとともに、設定された溶接条件に応じて溶加材供給部17及び溶接電源部19を駆動して、溶接トーチ27の先端の溶加材Mをアークによって溶融、凝固させる。これにより、ベースプレートP上に、溶接トーチ27の軌道に沿ってビードBが形成される。そして、複数のビードBからなるビード層が形成され、このビード層の上に次層のビード層が積層される等して、所望の三次元形状の積層造形物Wが造形される。
 溶接制御装置120は、図示を省略するが、CPU等のプロセッサと、ROM、RAM等のメモリと、HD(ハードディスクドライブ)、SSD(ソリッドステートドライブ)等の記憶部とを含むコンピュータデバイスにより構成される。上記した溶接制御装置120の各構成要素は、それぞれCPUの指令によって動作して、それぞれの機能を発揮する。また、溶接制御装置120は、溶接装置110と離隔して配置され、ネットワーク等の通信手段を介して遠隔地から溶接装置110に接続される構成であってもよい。
 溶接制御装置120を構成する制御部11は、図1に示すロボット駆動部15、溶加材供給部17、溶接電源部19及び形状検出部21を統括して制御する。制御部11は、予め用意された駆動プログラム、又は所望の条件で作成した駆動プログラムを実行して、溶接ロボット13等の各部を駆動する。このようにして駆動プログラムに応じて溶接トーチ27を移動させ、作成した造形計画に基づいてベースプレートP上に複数層のビードBを積層することで、多層構造の積層造形物Wが造形される。
<品質管理装置>
 図2は、品質管理装置130の概略的な機能ブロック図である。
 品質管理装置130は、溶接装置110によって溶加材Mを溶融及び凝固させて形成する複数のビードを層状に重ねて積層造形物を造形する際に、積層造形物に生じる欠陥の有無及び欠陥寸法を予測して、積層造形物の良否判定を行う。また、欠陥の大きさに応じて、予め定めた造形計画に基づいて溶接装置110の各部を駆動するための造形プログラム(即ち、造形計画)を必要に応じて修正する。例えば、予め定めた造形計画どおりにビードを形成すると、ビード高さが不均一になったり、ビード内部に未溶着部分(欠陥)が発生したりすることを、造形計画を変更・調整することで未然に防止する。品質管理装置130は、このような造形計画を更新するための制御情報を生成し、その制御情報を制御部11に出力する。この品質管理装置130は、それぞれ詳細を後述する限界値取得部31と、許容欠陥寸法設定部33と、欠陥寸法設定部35と、判定部37とを含んで構成される。また、品質管理装置130は、詳細を後述する補修指示部39を有していてもよい。コンピュータデバイスで構成される品質管理装置130は、予め用意されたプログラムを実行することで、上記した機能を発揮するようになっている。
<品質管理方法の手順>
 次に、上記構成の品質管理装置130の各部の動作について説明する。
 品質管理装置130は、予め定めた造形計画に基づいて、溶加材Mを溶融及び凝固させたビードBを層状に繰り返し重ねて形成した積層造形物(又はビード)の品質を管理する。
 この品質管理方法の手順には、概略的に次の(1)~(4)の工程が含まれる。
(1)限界値取得部31が、積層造形物に要求される応力拡大係数の下限界応力拡大係数範囲又は破壊靱性値等の応力拡大係数の限界値を取得する工程。
(2)許容欠陥寸法設定部33が、積層造形物が設計上想定される負荷応力の変動範囲、及び上記の限界値を含む条件値を用いて、積層造形物に含まれる欠陥の許容欠陥寸法を求める工程。
(3)欠陥寸法設定部35が、造形計画に基づいて積層造形物を製造する際に積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する工程。
(4)判定部37が、欠陥寸法と許容欠陥寸法とを比較して、ビード又は積層造形物の品質を良否判定する工程。
 上記の各工程について、図3を参照して説明する。
 図3は、品質管理方法の手順を示すフローチャートである。
 まず、作製する積層造形物の応力拡大係数の限界値である下限界応力拡大係数範囲を取得する(ステップS1:以降S1という。)。積層造形物は、製品設計段階でその材料が選択されており、その材料の応力拡大係数Kは、例えば、試験体の疲労試験等により実験的に求めてもよく、き裂進展の応力解析等により求めてもよく、さらには、機械学習等により求めてもよい。
 図4は、き裂進展速度(da/dn)と応力拡大係数範囲ΔKとの関係を模式的に示すグラフである。
 図4に示すように、一般に、応力拡大係数範囲ΔKを小さくすると、き裂進展速度(da/dn)が急に小さくなり、応力拡大係数範囲ΔKがΔKthのところでき裂の進展が観測されなくなる。このΔKthは下限界応力拡大係数範囲とよばれる。下限界応力拡大係数範囲ΔKthより小さい領域では、荷重を負荷してもき裂が進展することがない。
 下限界応力拡大係数範囲ΔKthについては、積層造形物から形成した試験体を疲労き裂進展試験に供して得られる値を使用してもよく、過去の造形実績等から予測される値を使用してもよい。この試験体は、作製予定の積層造形物、溶加材Mの材質、溶接条件、等の各種条件を揃えてブロック試験体を作製し、作製したブロック試験体から欠陥を含有する部分を切り出す等して準備したものであってもよい。
 次に、積層造形物に含まれる欠陥の許容欠陥寸法を求める(S2)。許容欠陥寸法は、積層造形物が設計上想定される負荷応力の応力変動範囲Δσ、及び下限界応力拡大係数範囲ΔKthを含む条件値を用いて求める。
 応力拡大係数Kと欠陥(き裂)寸法aとの関係は、(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Fは、き裂寸法比、荷重の負荷形式に異存する無次元化定数である。
 (1)式によれば、下限界応力拡大係数範囲ΔKthと負荷応力の応力変動範囲Δσとは(2)式の対応関係にあるといえる。そこで、(2)式から許容欠陥(き裂)寸法aを算出する。
Figure JPOXMLDOC01-appb-M000002
 積層造形物に作用する応力の種類や破壊の形態、想定される欠陥形状が複数存在する場合には、その種類ごとに許容欠陥寸法aを算出してもよい。例えば、応力拡大係数の最大値Kmaxが材料の破壊靱性値KICに達する場合の破壊強度から許容欠陥寸法aを算出してもよい。このときのKmaxは(3)式の形をとる。σmaxは負荷される応力の最大値とする。(3)式の場合は、材料の破壊靭性値KICが既知であることを条件に、許容欠陥寸法aを実測することなく演算により決定できるため、品質管理をより簡単に実施できる。
Figure JPOXMLDOC01-appb-M000003
 なお、ここでいう欠陥とは、積層造形物の内部に形成される空隙のほか、積層造形物の表面に生じるき裂、窪みを含んでもよい。さらに、空隙内、又はき裂内に、造形材料の成分に由来する酸化物や介在物等を含んでもよい。なお、KICは規格化された試験評価方法に則って取得された値であって、例えばASTM規格E399に準拠した値を比較に使用する。
 次に、造形中に生じる欠陥寸法の予測値、又は欠陥寸法の実測値を取得する(S3)。
 まず、造形中に生じる欠陥寸法を予測する方法としては、例えば、機械学習を用いた手法を利用できる。具体的には、積層造形にて使用する溶接条件(溶接速度、溶加材の送給速度、ビード間隔、狙い位置等)と、この溶接条件で作製されるサンプルに生じる欠陥寸法との関係を学習し、これにより、双方の関係を表す推定モデルを生成する。
 この学習された推定モデルを用いて、実際に使用する溶接条件に対応する欠陥寸法を求めることで、実際の造形前に、発生すると考えられる欠陥寸法を予測できる。この推定モデルの学習は、実際に溶接条件毎に試験体を作製して欠陥を観察した実測値を用いてもよく、FEM等の解析手法による演算で求めた解析値を用いてもよい。
 また、推定モデルは、溶接条件に代えて又は溶接条件に加えて、造形中に観察される積層造形物を構成するビードのビード形状と、発生する欠陥寸法との関係を学習させたモデルであってもよい。その場合、ビードが形成する狭隘部等の影響を考慮した欠陥寸法を予測できる。ここでいうビード形状は、造形計画で定めた溶接トーチ27の軌道から予測される形状でもよく、形状検出部21のレーザセンサを走査して得られる実測されたビード形状でもよい。
 上記した学習により推定モデルを得る方法としては、公知の手法を利用できる。例えば、決定木、線形回帰、ランダムフォレスト、サポートベクターマシン、ガウス過程回帰、ニューラルネットワーク等が挙げられる。欠陥寸法の予測は、積層造形物を形成する全パスについて一括して求めてもよいが、パス毎に行った方が緻密な検討が可能となる。
 次に、欠陥寸法の実測値を取得する方法としては、公知の検出手段、例えば、超音波探傷、CTや検査等の非破壊検査方法を利用できる。これにより、造形計画に基づいて作製された試験体(例えば、積層されたビードの内部、又はビード同士の間)に形成された欠陥の欠陥寸法を検出できる。
 上記のように、欠陥の予測値又は実測値を求め、これを欠陥寸法aexpに設定する。予測値を欠陥寸法aexpに設定すれば、後述する造形計画の更新を演算により簡単に行える。また、実測値を欠陥寸法aexpに設定すれば、実際に形成したビードの状態に即した正確な欠陥評価が行え、造形計画の更新をより適正に行える。なお、予測値と実測値との双方を求めた場合には、品質管理の目的に応じて何れか一方を採用してもよく、各値を平均化してもよい。
 次に、設定された欠陥寸法aexpと、許容欠陥寸法aとを比較して、ビード又は積層造形物の品質を良否判定する(S4)。
 この良否判定では、欠陥寸法aexpが、許容欠陥寸法aよりも小さい場合(aexp<a)に、形成したビード又は積層造形物の品質を良判定し、欠陥寸法aexpが、許容欠陥寸法a未満の場合に不良判定する。
 そして、欠陥寸法aexpが許容欠陥寸法aよりも大きい場合は、許容欠陥寸法aを大きくするか、欠陥寸法aexpを小さくするために造形条件を修正、又は造形計画を修正する。更に、詳細を後述する補修計画の挿入を行ってもよい(S5)。
 例えば、許容欠陥寸法aを大きくするために、ビードを形成する方向と、積層造形物に負荷が想定される主応力の方向との交差角が小さくなるよう、造形計画のビード線方向(ビード形成軌道)を変更してもよい。また、材質の変更が可能な場合には、靱性の高い材料に変更して、造形計画を修正してもよい。ここで、積層造形物に作用する負荷の主応力方向は、積層造形物の設計段階にて主要な負荷荷重等が想定された荷重条件に基づいて、応力解析等の手法により、演算で求めることができる。
 また、欠陥寸法aexpを小さくするために、ビードの入熱量が高くなるよう、溶接電流、溶接電圧を調整してもよく、溶接速度等の各種の条件を変更してもよい。さらに、造形計画の溶接トーチの軌道を変更してもよい。
 図5は、積層造形物のビードの積層の様子を断面形状で示す説明図である。
 ビードBを積層する際、上層のビードBを下層のビードBの直上に形成する場合には、隣接するビードB同士の間に形成される狭隘部(谷部)41よって、空隙又は異物等の欠陥が生じ易い。また、狭隘部41がビード層内におけるビードBの並び方向に関して、同じ位置に配置されるため、欠陥が積層方向に繋がってしまうおそれもある。そこで、ビードBの配置を積層方向に対して千鳥状にして、積層方向に延びる欠陥の高さを抑えることが好ましい。
 図6は、千鳥状にビードを配置した場合の一つの狭隘部41を模式的に示す断面図である。
 ビードBを積層方向に対して千鳥状に配置した場合、下層のビードB同士の間の狭隘部41の直上に新たにビードBが形成される。そのため、狭隘部41では新たなビードBの形成によって再溶融が生じ、空洞が消滅して異物が除去される。これにより、積層造形物に欠陥が生じにくくなる。
 ステップS5において、溶接条件を修正する場合には、修正後の溶接条件に対応する欠陥寸法を予測又は実測するステップS3に戻る。また、ステップS5において、造形計画を修正する場合には、修正後の造形計画に対応する下限界応力拡大係数範囲ΔKthを取得するステップS1に戻る。
 以上のステップS1~S4,S5の手順を全パスについて繰り返し(S6)、全パスについての欠陥寸法の良否判定を完了させる。
 この良否判定には、欠陥寸法aexpと許容欠陥寸法aとの大小関係のみならず、双方の差分の情報を用いてもよい。例えば、欠陥寸法aexpが許容欠陥寸法aより十分に大きい場合、例えば、欠陥寸法aexpが、許容欠陥寸法aの5%以上、10%以上、30%以上、等の特定の閾値以上である場合に、修正幅を大きくできる造形計画を修正し、特定の閾値未満の範囲を超えた場合に、溶接条件のみを修正することであってもよい。その場合、修正の程度に応じた適切な調整が可能となり、効率よく欠陥寸法を縮小できる。
 このように本品質管理方法によれば、造形計画から求めた欠陥の予測値、又は造形計画に基づいて作製した試験体の欠陥の実測値のいずれかから欠陥寸法を設定し、積層造形物の負荷応力の変動範囲、及び下限界応力拡大係数範囲又は破壊靱性値等の応力拡大係数の限界値を含む条件値から許容欠陥寸法を求める。求めた許容欠陥寸法と上記の欠陥寸法とを比較して、その造形計画で造形した場合の積層造形物の品質の良否を判定する。このため、造形前の造形計画の段階から積層造形物の品質を予見できる。また、許容欠陥寸法を応力拡大係数の限界値の特性から求めるため、判定基準となる許容欠陥寸法を材料特性に応じて適切に設定でき、良否判定の正確性を向上できる。
 そして、許容欠陥寸法は、欠陥の形状種ごとに求めてもよい。その場合、ブローホール欠陥、ビード線方向に沿った細長い欠陥等、様々な欠陥の種類に対応できる。
 また、実際に形成されたビードの形状を測定、その測定結果を考慮して欠陥寸法を設定することで、より精密な予測が可能となり、良否判定の正確性を向上できる。
 さらに、設定する下限界応力拡大係数範囲又は破壊靱性値を、形成されたビードの表面粗さに応じて決定してもよい。その場合、造形後に切削しきれない表面が残る場合も考慮した許容欠陥寸法を特定できる。なお、ここでいう表面粗さとは、JIS B 0601:1994、又はJIS B 0031:1994で規定される粗さを指す。
 また、欠陥寸法の予測処理に、機械学習して得られる推定モデルを用いることで、学習データさえ用意しておけば様々な造形ケースに対応した欠陥寸法の予測値を抽出できる。
 許容欠陥寸法と欠陥寸法とを比較して欠陥寸法の方が大きい場合には、積層造形物のビード形成を一旦停止してもよい。これにより、無駄に造形を進めることがなくなり、欠陥の修復の煩雑化を未然に防止できる。また、積層造形物の製造条件を修正する工程は、積層造形物の製造前、又は積層造形物の製造中であって形成するビードとビードとの間のパス間時間中に実施してもよい。その場合、造形開始前又は次のビードの積層前に製造条件の修正を完了でき、修正した製造条件でビード形成できる。よって、予測される欠陥寸法を縮小、又は欠陥の発生自体が抑制可能となる。
 欠陥の有害又は無害を判定する基準が造形前に特定されていれば、形状検出部21からの形状検出情報と連携して、欠陥の影響を造形中に判断しやすくなる。また、基準が特定されていれば、品質へ過剰配慮することなく造形計画の設計自由度の向上が期待できる。
 また、上記した欠陥寸法aexpと許容欠陥寸法aとの比較は、造形計画に設定されたパスに沿ったビード形成を終了する度に行ってもよいが、パスの途中で実施して、リアルタイムで連続処理することであってもよい。その場合、タクトタイムの短縮に寄与できるとともに、発生する欠陥の良否判定結果が早期に得られ、不良判定された欠陥の対処を早期に開始できる。
<積層造形物の補修>
 上記した品質管理方法の手順は、造形計画に基づいて製造される積層造形物が、強度に支障を来す寸法の欠陥が生じるか否かを、造形前に予測して、これにより、作業者に通知したり、造形を一旦停止させたりすることに供されるが、問題となる欠陥が予測される場合には、その欠陥を補修することがより好ましい。
 欠陥を補修するには、図2に示す補修指示部39が、図1に示す制御部11に補修指示信号を出力して補修を実行させる。制御部11は、入力された補修指示信号に応じて溶接ロボット13、機械加工部30等を駆動して、造形途中の積層造形物Wの補修作業を実施する。この補修作業としては、加熱により欠陥を再溶融させる方法と、機械的に欠陥を除去した後、溶融金属で埋める方法とが挙げられる。
 図7Aは、欠陥を有する狭隘部41を再溶融させる様子を示す概略断面図である。図7Bは、図7Aの狭隘部41の補修後の様子を示す概略断面図である。
 図7Aに示すように、互いに隣接するビードB同士の間の狭隘部41に欠陥が生じて、その欠陥が上記の品質管理方法により許容欠陥寸法より大きいと判定された場合には、この欠陥を補修するための補修作業を実施する。
 欠陥を除去するには、まず、許容欠陥寸法よりも大きい欠陥寸法の位置を欠陥位置と特定し、この欠陥位置のビードを、熱エネルギーを供する熱源により再溶融させる。具体的には、補修指示部39が制御部11に補修指示信号を出力する。制御部11は、入力された補修指示信号に怖じて溶接装置110の各部を駆動する。この制御部11からの指令により、溶接装置110は欠陥補修部として機能して、溶接トーチ27が欠陥位置に配置され、トーチ先端からアークが発生される。TIG溶接の場合には、TIG電極からアークを発生させる。これにより、アークによる入熱により狭隘部41が再溶融し、狭隘部41に存在した空隙が溶融金属によって埋められる。また、存在した異物が溶融金属によって狭隘部41から排出される。その結果、図7Bに示すように、互いに隣接するビードB同士の間は、欠陥が取り除かれ、その表面には滑らかなビード接続面が形成される。このように、発生した欠陥が再びビードを溶融させるだけで除去される。また、欠陥の除去後に、そのまま積層を続行するだけで済み、補修作業が繁雑にならない。
 狭隘部41が深い場合等、必要に応じて溶加材Mを送給して溶融金属を供給してもよい。溶加材Mを送給する場合には、最初にTIG電極のみで狭隘部41にアークを当て、その後に溶加材Mを投入すると、溶加材Mによりアークが遮られることなく良好な溶融池が得られるので好ましい。また、アークに併せて圧縮空気を送り込んでガウジングを行ってもよく、これにより欠陥部位を抉り取るように除去できる。また、プラズマアークを利用したガウジングを実施して欠陥部位を除去してもよい。
 また、機械的に欠陥を除去することもできる。
 図8Aは、狭隘部41の欠陥を機械的に除去する様子を示す概略断面図である。図8Bは、図8Aの狭隘部の補修後の様子を示す概略断面図である。
 まず、図7Aに示す場合と同様に欠陥位置を特定し、補修指示部39が制御部11に補修指示信号を出力する。制御部11は、入力された補修指示信号に応じて機械加工部30と溶接装置110とを駆動する。この制御部11からの指令により、機械加工部30と溶接装置110は欠陥補修部として機能して、欠陥位置の欠陥を除去する。具体的には、制御部11からの補修指令により機械加工部30が駆動して、狭隘部41にツール29を配置する。そして、狭隘部41をツール29により切削加工して、空洞部43を形成する。次に、機械加工部30が狭隘部41から待避し、溶接トーチ27が空洞部43の位置に移動する。そして、トーチ先端からアークを発生させ、溶加材Mが溶融した溶融金属45を空洞部43に充填する。これにより、図7Bと同様に欠陥が除去されたビード層が形成される。
 このように、発生した欠陥を機械的に除去した後、溶融金属45で空洞部43を埋めることで、欠陥、異物のない積層造形物を容易に造形できる。この場合、複雑な形状であっても、厚肉な構造であっても、補修作業が煩雑とならない。さらに、補修箇所が小さい範囲に限られるため、欠陥位置の周囲への影響が少なくて済む。また、ツール29としてドリルを用いる場合、ビードを深く切削できるため、欠陥発生後に積層がしばらく進行して欠陥位置が深くなった場合でも、容易に欠陥の補修が可能となる。なお、欠陥によっては、欠陥寸法が大きくなる部位を含むビードの一部を、切削加工により除去する補修だけにしてもよい。
 上記した再溶融させるアーク溶接、空洞部43を充填するアーク溶接は、溶接ロボット13を使用した溶接でもよく、手動による溶接でもよい。また、溶接条件としては、短時間で深い溶込みが得られるパルスモードが好ましいが、厚さによって他のモードを使い分けしてもよい。
 また、補修指示部39は、積層造形物の製造前、又は積層造形物の製造中におけるビードのパス間時間の間で、補修を実施させるための補修指示信号を出力してもよい。これによれば、ビード形成を停止している間に欠陥の補修を実施できる。よって、造形開始前又は次のビードの積層前に製造条件の修正を完了でき、予測される欠陥寸法を縮小、又は欠陥の発生自体が抑制可能となる。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
(1) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法であって、
 前記積層造形物の応力拡大係数の限界値を取得し、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求め、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定し、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する、
積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、造形計画から求めた欠陥の予測値、又は造形計画に基づいて作製した試験体の欠陥の実測値のいずれかから欠陥寸法を設定し、積層造形物の負荷応力の変動範囲、及び応力拡大係数の限界値を含む条件値から許容欠陥寸法を求める。求めた許容欠陥寸法と上記の欠陥寸法とを比較して、その造形計画で造形した場合の積層造形物の品質の良否を判定する。このため、造形前の造形計画の段階から積層造形物の品質を予見できる。また、許容欠陥寸法を応力拡大係数の限界値の特性から求めるため、判定基準となる許容欠陥寸法を材料特性に応じて適切に設定でき、良否判定の正確性を向上できる。
(2) 前記限界値は、前記積層造形物の下限界応力拡大係数又は破壊靱性値のいずれかである、(1)に記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、下限界応力拡大係数又は破壊靱性値から許容欠陥寸法を決定できる。
(3) 前記許容欠陥寸法を、前記欠陥の形状種ごとに設定する、(1)又は(2)に記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、ブローホール欠陥、ビード線方向に沿った細長い欠陥等、様々な欠陥の種類に対応した品質管理が行える。
(4) 前記許容欠陥寸法を、前記積層造形物の応力拡大係数の最大値が破壊靭性値に達する場合の破壊強度から設定する、(1)又は(2)に記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、材料の破壊靭性値が既知であることで、許容欠陥寸法を実測することなく演算により決定できるため、品質管理をより簡単に実施できる。
(5) 前記予測値を、前記造形計画と前記ビードの形状を測定した結果とに基づいて設定する、(1)~(4)のいずれか1つに記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、ビード形状を考慮して欠陥寸法を予測することで、より精密な予測が可能となる。
(6) 前記限界値を、前記ビードの表面粗さに応じて決定する、(1)~(5)のいずれか1つに記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、造形後に切削しきれない表面が残る場合も考慮した許容欠陥寸法を特定できる。
(7) 前記予測値を、前記積層造形物の製造条件、前記ビードの形状の少なくとも一方と、前記欠陥寸法との関係を機械学習して得られる推定モデルを用いて予測する、(1)~(6)のいずれか1つに記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、学習データさえ用意しておけば様々な造形ケースに対応した欠陥寸法の予測値を抽出できるようになる。
(8) 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記欠陥寸法が前記許容欠陥寸法よりも大きい場合に、前記積層造形物の製造条件を修正する工程をさらに含む、(1)~(7)のいずれか1つに記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、造形開始前又は次のビードの積層前に製造条件の修正を完了でき、修正した製造条件でビード形成できる。よって、予測される欠陥寸法を縮小、又は欠陥の発生自体が抑制可能となる。
(9) 前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
 前記欠陥位置の前記ビードを、熱エネルギーを供する熱源により再溶融させる工程と、をさらに含む、(8)に記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、再溶融により欠陥を消滅できる。
(10) 前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
 前記欠陥位置を含むビードの一部を切削加工により除去する工程をさらに含む、(8)に記載の積層造形物の品質管理方法。
 この積層造形物の品質管理方法によれば、切削加工により欠陥が機械的に除去されるため、異物、欠陥のない積層造形物を容易に造形できる。
(11) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法の手順をコンピュータに実行させるプログラムであって、
 コンピュータに、
 前記積層造形物の応力拡大係数の限界値を取得する手順と、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める手順と、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する手順と、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する手順と、を実行させるためのプログラム。
 このプログラムによれば、造形計画から求めた欠陥の予測値、又は造形計画に基づいて作製した試験体の欠陥の実測値のいずれかから欠陥寸法を設定し、積層造形物の負荷応力の変動範囲、及び応力拡大係数の限界値を含む条件値から許容欠陥寸法を求める。求めた許容欠陥寸法と上記の欠陥寸法とを比較して、その造形計画で造形した場合の積層造形物の品質の良否を判定する。このため、造形前の造形計画の段階から積層造形物の品質を予見できる。また、許容欠陥寸法を応力拡大係数の限界値の特性から求めるため、判定基準となる許容欠陥寸法を材料特性に応じて適切に設定でき、良否判定の正確性を向上できる。
(12) 予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理装置であって、
 前記積層造形物の応力拡大係数の限界値を取得する限界値取得部と、
 前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める許容欠陥寸法設定部と、
 前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する欠陥寸法設定部と、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する判定部と、を含む積層造形物の品質管理装置。
 この積層造形物の品質管理装置によれば、造形計画から求めた欠陥の予測値、又は造形計画に基づいて作製した試験体の欠陥の実測値のいずれかから欠陥寸法を設定し、積層造形物の負荷応力の変動範囲、及び応力拡大係数の限界値を含む条件値から許容欠陥寸法を求める。求めた許容欠陥寸法と上記の欠陥寸法とを比較して、その造形計画で造形した場合の積層造形物の品質の良否を判定する。このため、造形前の造形計画の段階から積層造形物の品質を予見できる。また、許容欠陥寸法を応力拡大係数の限界値の特性から求めるため、判定基準となる許容欠陥寸法を材料特性に応じて適切に設定でき、良否判定の正確性を向上できる。
(13) (12)に記載の積層造形物の品質管理装置と、
 前記品質管理装置から出力された前記良否判定の結果に応じてアーク溶接の続行又は停止を制御する制御部と、を備える溶接制御装置。
 この溶接制御装置によれば、欠陥の発生が判明した場合にアーク溶接を一旦停止させることで、無駄な造形を未然に防止できる。
(14) (13)に記載の溶接制御装置と、
 アーク溶接を行う溶接ロボットと、を備える溶接装置。
 この溶接装置によれば、欠陥の生じにくいアーク溶接を実現できる。
(15) 前記積層造形物に生じた前記欠陥を補修する欠陥補修部と、
 前記欠陥寸法と前記許容欠陥寸法とを比較して、前記欠陥寸法が前記許容欠陥寸法よりも大きい場合に、当該欠陥寸法が大きくなる部位を補修するための補修指示信号を前記欠陥補修部に出力する補修指示部と、をさらに含む(14)に記載の溶接装置。
 この溶接装置によれば、許容欠陥寸法より大きい欠陥が生じた場合に、この欠陥を補修するための補修指示信号が欠陥補修部に出力される。これにより、欠陥補修部は適切なタイミングで補修を実施できる。
(16) 前記補修指示部は、前記積層造形物の製造前、又は前記積層造形物の製造中における前記ビードのパス間時間の間で、前記欠陥補修部に前記欠陥を補修させる、(15)に記載の溶接装置。
 この溶接装置によれば、ビード形成を停止している間に欠陥の補修を実施できる。よって、造形開始前又は次のビードの積層前に製造条件の修正を完了でき、予測される欠陥寸法を縮小、又は欠陥の発生自体が抑制可能となる。
(17) 前記欠陥補修部は、前記欠陥寸法が大きくなる部位を熱源により再溶融させる、(15)又は(16)に記載の溶接装置。
 この溶接装置によれば、再溶融により効率よく欠陥を消滅できる。
(18) 前記欠陥補修部は、前記欠陥寸法が大きくなる部位を含むビードの一部を、切削加工により除去する、(15)又は(16)に記載の溶接装置。
 この溶接装置によれば、切削加工により機械的に欠陥が除去された後、空洞部が溶融金属で充填されるため、異物、欠陥のない積層造形物を容易に造形できる。
 なお、本出願は、2022年4月20日出願の日本特許出願(特願2022-069534)に基づくものであり、その内容は本出願の中に参照として援用される。
 11 制御部
 13 溶接ロボット
 15 ロボット駆動部
 17 溶加材供給部
 17a リール
 19 溶接電源部
 21 形状検出部
 27 溶接トーチ
 29 ツール
 30 機械加工部
 31 限界値取得部
 33 許容欠陥寸法設定部
 35 欠陥寸法設定部
 37 判定部
 39 補修指示部
 41 狭隘部
 43 空洞部
 45 溶融金属
100 溶接システム
110 溶接装置
120 溶接制御装置
130 品質管理装置
 a 欠陥寸法
 a 許容欠陥寸法
 aexp 欠陥寸法
 B ビード
 K 応力拡大係数
 M 溶加材
 P ベースプレート
 W 積層造形物
 ΔK 応力拡大係数範囲
 ΔKth 下限界応力拡大係数範囲(限界値)

Claims (27)

  1.  予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法であって、
     前記積層造形物の応力拡大係数の限界値を取得し、
     前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求め、
     前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定し、
     前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する、
    積層造形物の品質管理方法。
  2.  前記限界値は、前記積層造形物の下限界応力拡大係数又は破壊靱性値のいずれかである、
    請求項1に記載の積層造形物の品質管理方法。
  3.  前記許容欠陥寸法を、前記欠陥の形状種ごとに設定する、
    請求項1に記載の積層造形物の品質管理方法。
  4.  前記許容欠陥寸法を、前記欠陥の形状種ごとに設定する、
    請求項2に記載の積層造形物の品質管理方法。
  5.  前記許容欠陥寸法を、前記積層造形物の応力拡大係数の最大値が破壊靭性値に達する場合の破壊強度から設定する、
    請求項1に記載の積層造形物の品質管理方法。
  6.  前記許容欠陥寸法を、前記積層造形物の応力拡大係数の最大値が破壊靭性値に達する場合の破壊強度から設定する、
    請求項2に記載の積層造形物の品質管理方法。
  7.  前記予測値を、前記造形計画と前記ビードの形状を測定した結果とに基づいて設定する、
    請求項1に記載の積層造形物の品質管理方法。
  8.  前記予測値を、前記造形計画と前記ビードの形状を測定した結果とに基づいて設定する、
    請求項4に記載の積層造形物の品質管理方法。
  9.  前記限界値を、前記ビードの表面粗さに応じて決定する、
    請求項1~8のいずれか1項に記載の積層造形物の品質管理方法。
  10.  前記予測値を、前記積層造形物の製造条件、前記ビードの形状の少なくとも一方と、前記欠陥寸法との関係を機械学習して得られる推定モデルを用いて予測する、
    請求項1~8のいずれか1項に記載の積層造形物の品質管理方法。
  11.  前記予測値を、前記積層造形物の製造条件、前記ビードの形状の少なくとも一方と、前記欠陥寸法との関係を機械学習して得られる推定モデルを用いて予測する、
    請求項9に記載の積層造形物の品質管理方法。
  12.  前記欠陥寸法と前記許容欠陥寸法とを比較して、前記欠陥寸法が前記許容欠陥寸法よりも大きい場合に、前記積層造形物の製造条件を修正する工程をさらに含む、
    請求項1~8のいずれか1項に記載の積層造形物の品質管理方法。
  13.  前記欠陥寸法と前記許容欠陥寸法とを比較して、前記欠陥寸法が前記許容欠陥寸法よりも大きい場合に、前記積層造形物の製造条件を修正する工程をさらに含む、
    請求項9に記載の積層造形物の品質管理方法。
  14.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置の前記ビードを、熱エネルギーを供する熱源により再溶融させる工程と、
    をさらに含む、請求項12に記載の積層造形物の品質管理方法。
  15.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置の前記ビードを、熱エネルギーを供する熱源により再溶融させる工程と、
    をさらに含む、請求項13に記載の積層造形物の品質管理方法。
  16.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置を含むビードの一部を切削加工により除去する工程をさらに含む、請求項12に記載の積層造形物の品質管理方法。
  17.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置を含むビードの一部を切削加工により除去する工程をさらに含む、請求項13に記載の積層造形物の品質管理方法。
  18.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置を含むビードの一部を切削加工により除去する工程をさらに含む、請求項14に記載の積層造形物の品質管理方法。
  19.  前記許容欠陥寸法よりも大きい前記欠陥寸法の位置を欠陥位置と特定し、
     前記欠陥位置を含むビードの一部を切削加工により除去する工程をさらに含む、請求項15に記載の積層造形物の品質管理方法。
  20.  予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理方法の手順をコンピュータに実行させるプログラムであって、
     コンピュータに、
     前記積層造形物の応力拡大係数の限界値を取得する手順と、
     前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める手順と、
     前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する手順と、
     前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する手順と、
    を実行させるためのプログラム。
  21.  予め定めた造形計画に基づいて、溶加材を溶融及び凝固させたビードを層状に繰り返し重ねて形成する積層造形物の品質管理装置であって、
     前記積層造形物の応力拡大係数の限界値を取得する限界値取得部と、
     前記積層造形物が設計上想定される負荷応力の変動範囲、及び前記限界値を含む条件値を用いて、前記積層造形物に含まれる欠陥の許容欠陥寸法を求める許容欠陥寸法設定部と、
     前記造形計画に基づいて前記積層造形物を製造する際に前記積層造形物に生じ得る欠陥の欠陥寸法の予測値、又は前記造形計画に基づいて作製された試験体に生じた欠陥の欠陥寸法の実測値のうち、いずれか一方を欠陥寸法に設定する欠陥寸法設定部と、
     前記欠陥寸法と前記許容欠陥寸法とを比較して、前記ビード又は前記積層造形物の品質を良否判定する判定部と、
    を含む積層造形物の品質管理装置。
  22.  請求項21に記載の積層造形物の品質管理装置と、
     前記品質管理装置から出力された前記良否判定の結果に応じてアーク溶接の続行又は停止を制御する制御部と、
    を備える溶接制御装置。
  23.  請求項22に記載の溶接制御装置と、
     アーク溶接を行う溶接ロボットと、
    を備える溶接装置。
  24.  前記積層造形物に生じた前記欠陥を補修する欠陥補修部と、
     前記欠陥寸法と前記許容欠陥寸法とを比較して、前記欠陥寸法が前記許容欠陥寸法よりも大きい場合に、当該欠陥寸法が大きくなる部位を補修するための補修指示信号を前記欠陥補修部に出力する補修指示部と、
    をさらに含む請求項23に記載の溶接装置。
  25.  前記補修指示部は、前記積層造形物の製造前、又は前記積層造形物の製造中における前記ビードのパス間時間の間で、前記欠陥補修部に前記欠陥を補修させる、
    請求項24に記載の溶接装置。
  26.  前記欠陥補修部は、前記欠陥寸法が大きくなる部位を熱源により再溶融させる、
    請求項24又は25に記載の溶接装置。
  27.  前記欠陥補修部は、前記欠陥寸法が大きくなる部位を含むビードの一部を、切削加工により除去する、
    請求項24又は25に記載の溶接装置。
PCT/JP2023/014151 2022-04-20 2023-04-05 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置 WO2023204031A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069534A JP2023159678A (ja) 2022-04-20 2022-04-20 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置
JP2022-069534 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023204031A1 true WO2023204031A1 (ja) 2023-10-26

Family

ID=88419765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014151 WO2023204031A1 (ja) 2022-04-20 2023-04-05 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置

Country Status (2)

Country Link
JP (1) JP2023159678A (ja)
WO (1) WO2023204031A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129618A1 (ja) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 溶接システム及びそれを用いたワークの溶接方法
JP2021009126A (ja) * 2019-07-03 2021-01-28 株式会社ジェイテクト 付加製造物の品質推定装置
WO2022019120A1 (ja) * 2020-07-20 2022-01-27 株式会社神戸製鋼所 欠陥発生予測方法、及び欠陥発生予測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129618A1 (ja) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 溶接システム及びそれを用いたワークの溶接方法
JP2021009126A (ja) * 2019-07-03 2021-01-28 株式会社ジェイテクト 付加製造物の品質推定装置
WO2022019120A1 (ja) * 2020-07-20 2022-01-27 株式会社神戸製鋼所 欠陥発生予測方法、及び欠陥発生予測装置

Also Published As

Publication number Publication date
JP2023159678A (ja) 2023-11-01

Similar Documents

Publication Publication Date Title
EP2941677B1 (en) Object production using an additive manufacturing process and quality assessment of the object
JP7316573B2 (ja) 溶接システム及びそれを用いたワークの溶接方法
US20230294215A1 (en) Defect occurrence prediction method, and defect occurrence prediction device
Shi et al. Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire
US20080028866A1 (en) Method for evaluating the fatigue strength of welded joints
Guo et al. Process-parameter interactions in ultra-narrow gap laser welding of high strength steels
EP3587006A1 (en) 3d-printing method and manufacturing device
JP2022034759A (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
Dewan et al. Influence of weld defects and postweld heat treatment of gas tungsten arc-welded AA-6061-T651 aluminum alloy
WO2023204031A1 (ja) 積層造形物の品質管理方法、積層造形物の品質管理装置、プログラム、溶接制御装置及び溶接装置
EP2752720A1 (en) Object production using an additive manufacturing process and quality assessment of the object
WO2023281963A1 (ja) 欠陥監視装置、欠陥監視方法、溶接支援システム及び溶接システム
WO2024090024A1 (ja) 造形支援情報生成方法及び造形支援情報生成装置、造形支援方法及び造形支援装置、並びにプログラム
Sabry et al. Study on underwater friction stir welded AA 2024-T3 pipes using machine learning algorithms
Klobčar et al. Thermo-mechanical cracking of a new and laser repair welded die casting die
JP2023061847A (ja) 溶接監視方法及び溶接監視装置、並びに積層造形方法及び積層造形装置
JP2022074401A (ja) 積層造形物の製造方法、積層造形物の製造システム、及び積層造形物の製造プログラム
WO2023153105A1 (ja) 学習装置、欠陥判定装置、学習方法、欠陥判定方法、溶接制御装置及び溶接装置
US20240091885A1 (en) Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
Mohd Said et al. Optimising MIG Weld Bead Geometry of Hot Rolled Carbon Steel Using Response Surface Method
Akbari Development of a robotized laser directed energy deposition system and process challenges
Poolperm et al. Experimental Investigation of Additive Manufacturing Using a Hot-Wire Plasma Welding Process on Titanium Parts. Materials 2021, 14, 1270
Achebo et al. Prediction of mild steel weld properties using artificial neural network and regression analysis
JP2019141854A (ja) 積層造形物の製造方法及び製造装置
Hassan Feasibility and optimization of dissimilar Laser welding components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791682

Country of ref document: EP

Kind code of ref document: A1