WO2023204026A1 - Method for producing water- and oil-repellent article, and method for improving water and oil removability in water- and oil-repellent article - Google Patents

Method for producing water- and oil-repellent article, and method for improving water and oil removability in water- and oil-repellent article Download PDF

Info

Publication number
WO2023204026A1
WO2023204026A1 PCT/JP2023/014040 JP2023014040W WO2023204026A1 WO 2023204026 A1 WO2023204026 A1 WO 2023204026A1 JP 2023014040 W JP2023014040 W JP 2023014040W WO 2023204026 A1 WO2023204026 A1 WO 2023204026A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
water
oil
formula
repellent
Prior art date
Application number
PCT/JP2023/014040
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 内田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023204026A1 publication Critical patent/WO2023204026A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a method for producing a water- and oil-repellent article comprising a base material, a surface layer having excellent water- and oil-repellency and abrasion resistance, and a base layer provided between the base material and the surface layer, and a water- and oil-repellent article.
  • This invention relates to a method for improving water and oil removability in articles.
  • touch panel display devices In recent years, with the advancement of IoT, automobiles, industrial equipment, etc. are becoming more electronic, and the incorporation of touch panel display devices, camera devices, and various other types of sensor devices is progressing rapidly. Touch panel displays often come into direct contact with fingers and are prone to dirt such as sebum. When cameras, sensors, and the like are used outdoors, adhesion of water droplets, dust, oil, and the like from rain to the device surface may become a problem. In order to make it difficult for water, oil, etc. to adhere, or to make it easier to remove adhering water, oil, etc., it is desired that the surface of such a device be made water- and oil-repellent.
  • Dynamic contact angles include the advancing contact angle ( ⁇ A ) and receding contact angle ( ⁇ R ) described in JIS R3257, and the smaller the difference between them ( ⁇ A ⁇ R ), the more the droplet moves. It is known that it is easy to use (Non-Patent Document 1). In other words, when ⁇ A ⁇ R is small, droplets can be easily removed and water and oil repellency can be said to be high.
  • Fluoropolyether group-containing compounds have very low surface free energy, so they have water and oil repellency, chemical resistance, lubricity, mold releasability, stain resistance, etc. Utilizing its properties, it is widely used industrially as water-, oil-, and stain-proofing agents for paper and textiles, lubricants for magnetic recording media, oil-proofing agents for precision equipment, mold release agents, cosmetics, and protective films. ing. However, its properties also mean that it is non-adhesive and non-adhesive to other substrates, and although it can be applied to the surface of the substrate, it is difficult to make the film adhere to it. .
  • silane coupling agents are well known as agents that bond organic compounds to the surface of substrates such as glass or cloth, and are widely used as coating agents for the surfaces of various substrates.
  • a silane coupling agent has an organic functional group and a reactive silyl group (generally a hydrolyzable silyl group such as an alkoxysilyl group) in one molecule. Hydrolyzable silyl groups cause a self-condensation reaction with moisture in the air to form a film. The coating becomes a durable and strong coating due to the hydrolyzable silyl group chemically and physically bonding to the surface of glass, metal, or the like.
  • Patent Documents 1 to 6 Japanese Patent No. 6260579, Japanese Patent No. 6828744, Japanese Patent No. 5761305). , Japanese Patent No. 6451279, Japanese Patent No. 6741074, Japanese Patent No. 6617853).
  • a cured coating (water- and oil-repellent layer (antifouling coating thin film) on the surface of a glass substrate surface treated with a composition containing a fluoropolyether group-containing polymer in which a hydrolyzable silyl group is introduced into the fluoropolyether group-containing compound. (also referred to as a layer)) has excellent abrasion resistance against steel wool and has high slip properties.
  • Patent Documents 7 to 13 International Publication No. 2014/097388, JP 2020-132498, JP 2020-090652, Patent No. 5655215) (Japanese Patent No. 6601492, Japanese Patent No. 5494656, International Publication No. 2019/035271).
  • the water- and oil-repellent layer which is the surface layer, can be produced by a dry method or a wet method, such as vacuum deposition, spray coating, or dip coating.
  • the silicon oxide serving as the base layer can be produced by a dry method such as electron beam evaporation, sputtering film formation, or chemical vapor deposition, or a wet method such as dip coating or spin coating.
  • the base layer is produced by a dry method, it is better to also produce the surface layer by a dry method.
  • the base layer is produced by a wet method, it is better to also produce the surface layer by a wet method. Although it was good, there were cases where the water and oil repellency was not sufficiently exhibited.
  • the following documents can be cited as prior art related to the present invention.
  • the present invention was made in view of the above circumstances, and includes a method for producing a water- and oil-repellent article having a water- and oil-repellent surface layer having excellent water- and oil-repellency and abrasion resistance on a base material, and a water- and oil-repellent article.
  • the object of the present invention is to provide a method for improving the removability of water and oil from articles.
  • the present inventors discovered a base material, a silicon oxide base layer formed on the outer surface of the base material, and a silicon oxide base layer formed on the outer surface of the silicon oxide base layer.
  • a base material a silicon oxide base layer formed on the outer surface of the base material
  • a silicon oxide base layer formed on the outer surface of the silicon oxide base layer a silicon oxide base layer formed on the outer surface of the silicon oxide base layer.
  • a fluoropolyether group with a specific structure which will be described later, is added as a water- and oil-repellent surface layer on a silicon oxide base layer formed by a dry method.
  • a layer containing a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof is formed by a wet method, water and oil repellency and abrasion It has been discovered that a water- and oil-repellent surface layer with excellent durability can be formed, and the present invention has been completed.
  • the present invention provides a method for manufacturing a water- and oil-repellent article having a water- and oil-repellent surface layer as described below, and a method for improving the removability of water and oil in a water- and oil-repellent article.
  • a water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer.
  • the water- and oil-repellent surface layer is mainly composed of a cured product of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof;
  • the fluoropolyether group-containing polymer having a degradable silyl group contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and contains silicon oxide.
  • a method for producing a water- and oil-repellent article wherein a base layer is formed by a dry method, and a water- and oil-repellent surface layer is formed by a wet method.
  • Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d -
  • d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ⁇ 150, the sum of p, q, r, s, t, and u is an integer of 1 ⁇ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is
  • R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.
  • Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
  • W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
  • T is a single bond or a divalent group
  • L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms
  • E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W
  • l is an integer from 0 to 20.
  • Rf is the same as above
  • a 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom
  • J is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
  • T has 2 to 2 carbon atoms and may contain a single bond or one or more bonds selected from the group consisting of a siloxane bond, a sylalkylene bond, a silyarylene bond, and a diorganosilylene group.
  • the water- and oil-repellent surface layer comprises one or more fluoropolyether group-containing polymers represented by the above formula (1), (4) or (7) and/or a partially hydrolyzed condensate thereof, and the following formula: (10) [In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ⁇ 150, the sum of p, q, r, s, t, and u is an integer of 1 ⁇ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with
  • a method for manufacturing the water- and oil-repellent article. [16] A water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer.
  • the water- and oil-repellent surface layer is mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof, and the surface layer has the hydrolyzable silyl group.
  • the fluoropolyether group-containing polymer contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and a silicon oxide base layer is formed by a dry method.
  • a method for improving the removability of water and oil in a water- and oil-repellent article characterized by forming a water- and oil-repellent surface layer by a wet method.
  • Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d -
  • d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ⁇ 150, the sum of p, q, r, s, t, and u is an integer of 1 ⁇ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is
  • R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.
  • Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
  • W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
  • T is a single bond or a divalent group
  • L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms
  • E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W
  • l is an integer from 0 to 20.
  • Rf is the same as above
  • a 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom
  • J is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
  • V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond
  • M is independently represented by the following formula (9). is a monovalent group shown, (In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.) e is 1 or 2.
  • a base material obtained by the production method of the present invention a silicon oxide base layer formed on the outer surface of the base material by a dry method, and a silicon oxide base layer formed on the outer surface of the silicon oxide base layer by a wet method.
  • a water- and oil-repellent article comprising a water- and oil-repellent surface layer mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof, Excellent water and oil repellency and abrasion durability.
  • the method for producing a water- and oil-repellent article of the present invention includes a base material, a silicon oxide underlayer formed on the outer surface of the base material, and a water-repellent repellent formed on the outer surface of the silicon oxide underlayer.
  • a method for producing a water- and oil-repellent article comprising an oil surface layer, the water- and oil-repellent surface layer comprising a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof.
  • the main component is a cured product
  • the fluoropolyether group-containing polymer having a hydrolyzable silyl group contains a fluoropolyether group-containing polymer with a specific structure
  • a silicon oxide base layer is formed by a dry method.
  • the water- and oil-repellent surface layer is formed by a wet method.
  • "mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof" means the sum of the components constituting the water- and oil-repellent surface layer.
  • the content of the cured product of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate is 50% by mass or more (50 to 100% by mass), preferably It means 70% by mass or more (70 to 100% by mass), more preferably 90% by mass or more (90 to 100% by mass).
  • the water- and oil-repellent article obtained by the manufacturing method of the present invention is composed of a base material, a silicon oxide base layer formed by a dry method, and a water- and oil-repellent surface layer formed by a wet method.
  • the water- and oil-repellent surface layer includes a fluoropolyether group-containing polymer having a specific structure of hydrolyzable silyl groups and/or a partially hydrolyzed polymer on the outer surface of a silicon oxide underlayer formed on a base material. It is formed by a surface treatment agent containing a condensate.
  • Glass, metal, or resin can be used as the base material.
  • glass include soda glass (also known as soda lime glass), crown glass, lead glass, borosilicate glass, crystallized glass, quartz glass, aluminosilicate glass (also known as aluminosilicate glass), Tempax, and Pyrex ( (registered trademark), Neoceram, etc., but are not limited to these.
  • soda glass also known as soda lime glass
  • crown glass also known as soda lime glass
  • lead glass borosilicate glass, crystallized glass
  • quartz glass also known as aluminosilicate glass
  • Tempax also known as aluminosilicate glass
  • Pyrex (registered trademark), Neoceram, etc.
  • the shape of the glass substrate may be plate-like, film-like, or other forms.
  • the metal examples include pure metals such as aluminum, titanium, chromium, iron, cobalt, zinc, nickel, and copper, stainless steel (for example, SUS304 mirror finish), alloys such as brass, Kovar, and Inconel, and zinc and nickel. Examples include, but are not limited to, those plated with chromium or the like.
  • the shape of the metal base material may be plate-like, rod-like, spherical, or other shapes.
  • the resin examples include polycarbonate resins, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamide (PA) resins, polyimide (PI) resins, and cellulose resins such as triacetyl cellulose.
  • Resins, styrene resins such as polystyrene (PS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, etc.
  • thermoplastic organic resins such as polyolefin resins such as polymers, norbornene resins, and (meth)acrylic resins.
  • the shape of the resin base material may be plate-like, film-like, or other forms.
  • the surface of the base material may be pretreated before forming the silicon oxide underlayer. By performing the pretreatment, good adhesion between the base material and the silicon oxide underlayer can be obtained, and high abrasion durability can be obtained.
  • the method for pre-treating the base material is not particularly limited as long as it is a method that can remove contaminants on the surface of the base material and make the surface of the base material hydrophilic.
  • Examples include alcohol cleaning treatment using alcohol such as ethanol and 2-propanol, alkaline cleaning treatment using alkaline cleaning agents, plasma cleaning treatment using oxygen or argon plasma, and radical cleaning treatment using OH radicals. These methods may be used in combination.
  • Alkaline cleaning treatment using an alkaline cleaning agent is preferred, and plasma cleaning treatment using plasma and radical cleaning treatment using OH radicals are more preferred. It is more preferable to perform a plasma cleaning treatment using plasma or a radical cleaning treatment using OH radicals following the alkaline cleaning treatment using an alkaline cleaning agent.
  • Hydrophilicity can be evaluated by the contact angle of water on the substrate, and is preferably 40° or less, more preferably 20° or less, and even more preferably 10° or less. Note that the water contact angle is measured in accordance with JIS R 3257:1999.
  • a functional layer may be formed between the base material and the silicon oxide underlayer.
  • the functional layer include an antireflection film layer and a hard coat layer. Note that when an antireflection film layer whose outermost layer is a silicon oxide film is formed as a functional layer, the outermost silicon oxide film can be used as a silicon oxide base layer.
  • the silicon oxide base layer is made of a silicon oxide film, and a dry method is adopted as a method for forming the silicon oxide film.
  • the dry method include physical vapor deposition (PVD) and chemical vapor deposition (CVD), of which physical vapor deposition (PVD) is preferred.
  • Wet coating methods include a method using silica nanoparticles, a sol-gel method using silicon alkoxide, and a method using silica glass conversion by reaction of polysilazane with moisture.
  • the base layer cannot exhibit sufficient water and oil repellency.
  • a resistance heating evaporation method, an electron beam evaporation method, a sputtering film formation method, etc. can be used.
  • electron beam evaporation method and sputtering film formation method can be suitably used.
  • Electron beam evaporation methods include a method in which granular or plate-shaped SiO 2 is irradiated with an electron beam to evaporate the SiO 2 and deposited on a substrate, and a method in which SiO 2 is deposited while irradiating the substrate with an ion beam. (ion beam assist method).
  • the pressure during film formation is preferably 1 x 10 -4 to 5 x 10 -1 Pa, and the film formation rate is preferably 0.01 to 2 nm/sec.
  • the temperature of the film-forming substrate is preferably 25 to 300°C.
  • Examples of sputtering film forming methods include reactive sputtering in which a Si target is sputtered, deposited on a base material, and oxidized on the base material to obtain silicon oxide.
  • Sputter sources include DC plasma, RF plasma, electron cyclotron resonance (ECR) plasma, and ion beam. Oxidation of Si can be performed by introducing oxygen gas or by irradiating oxygen plasma (radical assist method).
  • the pressure during film formation is preferably 1 ⁇ 10 -4 to 1 Pa.
  • the film formation rate is preferably 0.1 to 1 nm/sec.
  • the temperature of the film-forming substrate is preferably 25 to 300°C.
  • a thermal CVD method a CVD method assisted by a reactive species, a photoCVD method, etc. can be used.
  • the CVD method assisted by reactive species is a method in which a precursor is converted into silicon oxide by a chemical reaction of reactive species and deposited on a glass substrate. , radicals, etc. can be used.
  • methods for forming a silicon oxide film by a CVD method using plasma containing oxygen include methods described in Patent Documents 9 and 10 (Japanese Patent Application Laid-open No. 2020-090652, Japanese Patent No. 5655215).
  • a silicon compound is used as the silicon oxide precursor.
  • Examples include SiH 4 , Si 2 H 6 , tetraethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, and the like. Tetraethoxysilane, hexamethyldisiloxane, and hexamethyldisilazane are preferably used.
  • the CVD conditions for forming the silicon oxide film are appropriately set depending on the type of substrate and precursor used.
  • the substrate temperature is preferably 30°C or higher and lower than 150°C, more preferably 30 to 140°C.
  • the substrate temperature is preferably 30°C or more and less than 250°C, more preferably 30 to 150°C.
  • the thickness of the silicon oxide underlayer is preferably 3 to 150 nm, more preferably 3 to 50 nm. If the film thickness of the silicon oxide base layer is less than 3 nm, good adhesion with the water- and oil-repellent surface layer may not be obtained due to the presence of voids in the silicon oxide base layer, and if it exceeds 150 nm, oxidation may occur. Poor adhesion with the water- and oil-repellent surface layer may occur due to insufficient strength of the silicon base layer itself.
  • the film thickness of the silicon oxide underlayer can be measured by X-ray reflectometry (XRR) or cross-sectional observation using an electron microscope.
  • the surface of the silicon oxide base layer may be pretreated before forming the water- and oil-repellent surface layer.
  • the pretreatment provides good adhesion between the silicon oxide base layer and the water- and oil-repellent surface layer, resulting in high abrasion durability.
  • the method for pre-treating the silicon oxide base layer is not particularly limited as long as it is capable of removing contaminants on the surface of the silicon oxide base layer.
  • plasma cleaning treatment using oxygen plasma or argon plasma, radical cleaning treatment using OH radicals, etc. can be suitably used.
  • the water- and oil-repellent surface layer is mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof. It is formed using a surface treatment agent containing a fluoropolyether group-containing polymer having a degradable silyl group and/or a partially hydrolyzed condensate thereof.
  • Examples of the fluoropolyether group-containing polymer having a hydrolyzable silyl group include Japanese Patent No. 6260579, Japanese Patent No. 6828744, Japanese Patent No. 5761305, Japanese Patent No. 6451279, Japanese Patent No.
  • Patent Documents 1 to 6, 14 to 27 Compounds described in Japanese Patent Publication No. 2014-218639 and International Publication No. 2013/121984 (Patent Documents 1 to 6, 14 to 27) can be used.
  • the fluoropolyether group-containing polymer having a hydrolyzable silyl group will be explained in more detail.
  • the fluoropolyether group-containing polymer having a hydrolyzable silyl group has the following formula (11) at at least one, preferably 1 to 3 terminals in the molecule.
  • R is an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • X is independently a hydrolyzable group
  • a is 2 or 3.
  • It has at least 2, preferably 2 to 3 (that is, at least 2, preferably 2 to 9, more preferably 2 to 6 in the molecule) groups represented by (hydrolyzable silyl groups).
  • polyfluorocarbon compound represented by -(C b F 2b O) m - (wherein b is an integer of 1 to 6 independently for each unit, and m is an integer of 1 to 250) in the molecule.
  • b is an integer of 1 to 6 independently for each unit, and m is an integer of 1 to 250
  • it has an oxyalkylene structure.
  • X is a hydrolyzable group that may be different from each other.
  • examples of such X include alkoxy groups having 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, methoxymethoxy group, Alkoxy substituted alkoxy groups with 2 to 10 carbon atoms such as methoxyethoxy group, ethoxymethoxy group, ethoxyethoxy group, acyloxy groups with 2 to 10 carbon atoms such as acetoxy group, propionoxy group, vinyloxy group, allyloxy group, propenoxy group, isopropenoxy group
  • R is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, or a phenyl group, of which a methyl group and an ethyl group are preferred.
  • a is 2 or 3, and 3 is preferable from the viewpoint of reactivity and adhesion to the base material.
  • b is an integer of 1 to 6 independently for each unit, preferably an integer of 1 to 4
  • m is an integer of 1 to 4. It is an integer of 250, preferably an integer of 1 to 140.
  • repeating unit represented by -C b F 2b O- examples include units represented by the following formula. -CF 2 O-, -CF 2 CF 2 O-, -CF 2 CF 2 CF 2 O-, -CF( CF3 ) CF2O- , -CF 2 CF 2 CF 2 O-, -CF 2 CF 2 CF 2 CF 2 CF 2 O-, -C( CF3 ) 2O- Among these, repeating units represented by the following formula are particularly preferred. -CF 2 O-, -CF 2 CF 2 O-
  • polyfluorooxyalkylene structure may be composed of one type of the above repeating unit, or may be composed of a combination of two or more types.
  • one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7) are used as the fluoropolyether group-containing polymer having a hydrolyzable silyl group. It includes. In particular, all of the fluoropolyether group-containing polymers having hydrolyzable silyl groups are one or more fluoropolyether group-containing polymers represented by formulas (1), (4), and (7). preferable.
  • Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d -
  • d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ⁇ 150, the sum of p, q, r, s, t, and u is an integer of 1 ⁇ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is
  • Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
  • W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
  • T is a single bond or a divalent group
  • L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms
  • E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W
  • l is an integer from 0 to 20.
  • Rf is the same as above
  • a 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom
  • J is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
  • V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond
  • M is independently represented by the following formula (9). is a monovalent group shown, (In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.) e is 1 or 2.
  • Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O) t (C 6 F 12 O)
  • u -C d F 2d - is a group containing a divalent polyfluorooxyalkylene structure (perfluoropolyether structure), and d is independently 0 for each unit. It is an integer of ⁇ 5, preferably an integer of 0 ⁇ 2, and more preferably 0 or 1.
  • p, q, r, s, t and u are each independently an integer of 0 to 150, preferably an integer of 0 to 100, more preferably an integer of 0 to 60, p, q, r, The sum of s, t and u is an integer of 1 to 250, preferably an integer of 3 to 140, more preferably an integer of 7 to 70.
  • Each of these units may be linear or branched. Note that the repeating units shown in parentheses with p, q, r, s, t, and u may be randomly combined.
  • the divalent polyfluorooxyalkylene structure-containing group represented by Rf can be represented by the following structure.
  • p', q', r', s', t' and u' are each independently an integer of 1 to 150, and p', q', r', s', t' and u'
  • the total of these units is 12 to 250, and each of these units may be linear or branched.Also, p', q', r', s', t' and u' are attached. Each repeating unit shown in parentheses may be randomly bonded.
  • d' is an integer of 0 to 5 independently for each unit. Each of these units may be linear or branched. Also good.
  • a 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D (i.e. , -QZ (W) shown by the formula (2) described later (a monovalent group represented by ⁇ ), whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom
  • D i.e. , -QZ (W) shown by the formula (2) described later (a monovalent group represented by ⁇ ), whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom
  • the valent fluorine-containing hydrocarbon group is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
  • Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 1 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
  • a 1 -Rf-D, D is independently a monovalent group represented by the following formula (2).
  • Q is a single bond or a divalent organic group
  • Q other than a single bond is preferably an amide bond (for example, an unsubstituted amide bond, an N-methyl substituted amide bond, an N-phenyl (substituted amide bond), ether bond, ester bond, sulfide bond, urethane bond, siloxane bond, triazine bond, diorganosilylene group (e.g., dialkylsilylene group such as dimethylsilylene group), sylarylene bond (e.g., silphenylene bond) and an unsubstituted or substituted divalent carbon having 1 to 15 carbon atoms, preferably 2 to 15 carbon atoms, which may contain one or more bonds selected from the group consisting of silalkylene bonds (for example, silethylene bonds) It is a hydrogen group, more preferably an unsubstituted or fluorine-substituted divalent hydrocarbon group having 1 to
  • examples of divalent hydrocarbon groups include alkylene groups such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group, methylpropylene group), hexamethylene group, octamethylene group, etc. group, an arylene group such as a phenylene group, or a combination of two or more of these groups (alkylene/arylene group, etc.).
  • R 1 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, ethyl group, propyl group, butyl group, or an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
  • R 1 may be the same or different.
  • R 2 is an alkylene group having 1 to 4 carbon atoms such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), or 6 carbon atoms such as phenylene group. ⁇ 10 arylene groups.
  • Examples of Q other than such a single bond include the following groups.
  • the bond on the left side is bonded to Rf, and the bond on the right side is bonded to Z. (In the formula, t is an integer from 2 to 4.)
  • Z is a trivalent to octavalent group, preferably a trivalent to octavalent organopolysiloxane residue having a silicon atom, a nitrogen atom, and a siloxane bond. group, preferably 3 to 8 valent, preferably 3 or 4 selected from linear, branched or cyclic organopolysiloxane residues having 3 to 13 silicon atoms, more preferably 3 to 5 silicon atoms It is the basis of valence.
  • n is An integer of 2 to 6, preferably an integer of 2 to 4).
  • examples of trivalent to octavalent linear, branched or cyclic organopolysiloxane residues having siloxane bonds include those shown below.
  • R 1 is the same as above.
  • g is an integer of 3 to 12, preferably 3 or 4
  • h is an integer of 3 to 8, preferably 3 or 4
  • j is an integer of 0 to 8.
  • R 4 is independently R 1 or the following formula (a) (In the formula, R 1 is the same as above, j1 is an integer of 1 to 6, preferably 1, and the bond on the left side is bonded to Si.) is a group represented by, R 5 is independently a single bond or the following formula (b) (In the formula, R 2 and R 4 are the same as above, j2 is an integer of 0 to 6, preferably an integer of 0 to 3, and j3 is an integer of 0 to 6, preferably an integer of 0 to 2. (j2+j3 is an integer from 1 to 6, and each repeating unit shown in parentheses may be randomly bonded. The bond on the left bonds to Si.) It is a group represented by, and at least one of R 4 is represented by formula (a). ]
  • W is independently a monovalent hydrolyzable silyl group-containing group represented by the following formula (3). (In the formula, R, It is the basis.)
  • R, X, and a are the same as R, X, and a in the above formula (11), and the same ones as R, X, and a in the above formula (11) can be exemplified.
  • Y is a single bond or a divalent hydrocarbon group which may have one or more types selected from a fluorine atom, a silicon atom, and a siloxane bond;
  • the divalent hydrocarbon group which may have one or more types selected from atoms and siloxane bonds include an alkylene group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms containing a fluorine atom, Alkylene groups containing arylene groups having 6 to 8 carbon atoms (alkylene/arylene groups), divalent groups in which alkylene groups are bonded to each other via a sylalkylene structure or sylarylene structure, and 2 to 10 silicon atoms.
  • Y other than a single bond include those shown below.
  • fluoropolyether group-containing polymer represented by the above formula (1) examples include those shown below. (In the formula, A 1 and Rf are the same as above.)
  • a 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G (i.e. , a monovalent group represented by formula (5); -C(B)(W) 2 ), which has a CF 3 - or CF 2 H- terminal and may contain an oxygen atom.
  • the fluorine-containing hydrocarbon group is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
  • Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 2 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
  • a 2 -Rf-G, G is independently a monovalent group represented by the following formula (5).
  • W is the same as above, and the same W as exemplified in the above formula (2) can be exemplified.
  • examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms for S include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and octyl group, vinyl group, allyl group, etc. alkenyl groups, phenyl groups, aryl groups such as tolyl groups, aralkyl groups such as benzyl groups and phenylethyl groups, and alkyl groups having 1 to 3 carbon atoms and phenyl groups are preferred.
  • T is a single bond or a divalent group, preferably a single bond, a siloxane bond, a silalkylene bond (for example, a silethylene bond, a silpropylene bond, bond), sylarylene bond (e.g., silphenylene bond), and diorganosilylene group (e.g., dialkylsilylene group such as dimethylsilylene group, dialkoxysilylene group such as dimethoxysilylene group).
  • a siloxane bond for example, a silalkylene bond (for example, a silethylene bond, a silpropylene bond, bond), sylarylene bond (e.g., silphenylene bond), and diorganosilylene group (e.g., dialkylsilylene group such as dimethylsilylene group, dialkoxysilylene group such as dimethoxysilylene group).
  • divalent hydrocarbon groups include alkylene groups such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group, methylpropylene group), hexamethylene group, octamethylene group, etc. group, an arylene group such as a phenylene group, or a combination of two or more of these groups (alkylene/arylene group, etc.), with a propylene group being preferred.
  • T other than a single bond include those shown below.
  • the bond on the right side is bonded to L or E.
  • L is independently an alkylene group such as a methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group), etc. is a divalent hydrocarbon group having 1 to 4 carbon atoms, and each (LO) unit may have a single carbon number or a mixture of carbon atoms.
  • l is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 6.
  • E is an alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, propyl group, butyl group, or a carbon number 1 to 4 such as a phenyl group.
  • 6, or W W is the same as above, and examples thereof include those exemplified for W in formula (2) above.
  • Examples of the monovalent group represented by the above formula (6); -T-(LO) l -E include those shown below.
  • Examples of the monovalent group represented by the above formula (5); -C(B)(W) 2 (ie, G in formula (4)) include those shown below.
  • fluoropolyether group-containing polymer represented by the above formula (4) examples include those shown below. (In the formula, A 2 and Rf are the same as above.)
  • the monovalent fluorine-containing hydrocarbon group which may contain an oxygen atom is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
  • Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 3 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
  • a 3 -Rf-J J is independently a monovalent group represented by the following formula (8), and in J, the above W (monovalent hydrolyzable silyl group-containing group) It has two or more.
  • Y, S, and W are the same as above, and can be exemplified by the same things as those exemplified for Y in the above formula (3), S in the above, and W in the above formula (2), respectively.
  • f is an integer from 1 to 3.
  • Examples of the monovalent group represented by the above formula (9); -Y-C(S) 3-f (W) f (ie, M in formula (8)) include those shown below.
  • fluoropolyether group-containing polymer represented by the above formula (7) examples include those shown below. (In the formula, A 3 and Rf are the same as above.)
  • a surface containing a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof for forming a water- and oil-repellent surface layer In addition to the above-mentioned fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate of the polymer, the treatment agent further contains a hydrolyzable silyl group represented by the following formula (10).
  • a mixture i.e., a fluoropolyether group-containing polymer composition
  • a fluoropolyether group-containing polymer containing a fluoropolyether group-containing polymer and/or a partial (hydrolyzed) condensate thereof (hereinafter referred to as a polymer not containing a hydrolyzable silyl group).
  • the "partial (hydrolyzed) condensate” refers to a partial condensate or a partially hydrolyzed condensate.
  • a 4 is independently a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or -PO(OR 3 ) 2 ( R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. ]
  • a 4 is independently a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or -
  • the monovalent fluorine-containing hydrocarbon group which is PO(OR 3 ) 2 and which has a CF 3 - or CF 2 H- terminal and may contain an oxygen atom is an example of a monovalent fluorine-containing hydrocarbon group which is CF 3 - or CF 2 H- at the terminal and which may contain an oxygen atom.
  • Examples of the monovalent fluorine-containing hydrocarbon group which is 2 H- and may contain an oxygen atom are the same as those exemplified above.
  • R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and examples of the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and octyl group.
  • examples include alkyl groups such as vinyl groups, alkenyl groups such as vinyl groups and allyl groups, aryl groups such as phenyl groups and tolyl groups, aralkyl groups such as benzyl groups and phenylethyl groups, and R 3 is a hydrogen atom, a carbon An alkyl group of 1 to 3 and a phenyl group are preferred.
  • -OR 3 , -COOR 3 , -PO(OR 3 ) 2 of A 4 include -OH, -OCH 3 , -COOH, -COOCH 3 , -PO(OH) 2 , -OC 2 H 5 , -COOC 2H5 is an example.
  • Examples of the fluoropolyether group-containing polymer represented by the above formula (10) include those shown below. (In the formula, p", q", r", s", t" and u” are each independently an integer of 0 to 150, and p", q", r", s", t" and u" The total of (The repeating units shown in parentheses may be combined randomly.)
  • the surface treatment agent used to form the water- and oil-repellent surface layer is attached to the terminal of a molecular chain represented by the above formula (1), (4), or (7).
  • a fluoropolyether group-containing polymer mixture fluoropolyether group-containing polymer composition contained in a surface treatment agent
  • a mixture of a single-end type polymer and/or a both-end type polymer and a polymer that does not contain a hydrolyzable silyl group is particularly within the range where the water- and oil-repellent surface layer to be formed is mainly composed of the above-mentioned fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof.
  • a hydrolyzable silyl group is added to the entire fluoropolyether group-containing polymer composition consisting of a single-terminated polymer and/or a double-terminated polymer and a polymer that does not contain a hydrolyzable silyl group. It is desirable that the proportion of the polymer not contained is 0 to 30 mol%, particularly 0 to 10 mol%.
  • the number average molecular weight of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate, or the fluoropolyether group-containing polymer composition is 1,000 to 20,000.
  • the range is within the range. More preferably, the number average molecular weight is 2,000 to 10,000, particularly preferably 3,000 to 8,000.
  • the number average molecular weight can be calculated from the characteristic peak intensity ratio of 19 F-NMR analysis.
  • a fluoropolyether group-containing polymer and/or a partially hydrolyzed condensate thereof, or a fluoropolyether group-containing polymer composition can be obtained by rectification or molecular distillation.
  • a fluoropolyether group-containing polymer and/or a partially hydrolyzed condensate thereof, or a fluoropolyether group-containing polymer composition having a hydrolyzable silyl group having a number average molecular weight within the above range is a fluoropolyether group-containing polymer.
  • the fluorine compound used when synthesizing can also be prepared by using in advance a compound having the above number average molecular weight.
  • the surface treatment agent may optionally contain a hydrolysis condensation catalyst, such as an organic tin compound (dibutyltin dimethoxide, dibutyltin dilaurate, etc.), an organic titanium compound (tetra n-butyl titanate, etc.), or an organic acid (acetic acid, Methanesulfonic acid, fluorine-modified carboxylic acid, etc.), inorganic acids (hydrochloric acid, sulfuric acid, etc.) may be added.
  • acetic acid, tetra-n-butyl titanate, dibutyltin dilaurate, fluorine-modified carboxylic acid, and the like are particularly preferred.
  • the amount added is a catalytic amount, and is usually 0.01 to 5 parts by weight, particularly 0.1 parts by weight, per 100 parts by weight of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof. ⁇ 1 part by mass.
  • the surface treatment agent may contain a solvent.
  • the solvent is preferably a fluorine-modified aliphatic hydrocarbon solvent (perfluoroheptane, perfluorooctane, etc.), a fluorine-modified olefin solvent (methoxyperfluoroheptene, etc.), a fluorine-modified aromatic hydrocarbon solvent (m-xylene, etc.).
  • fluorine-modified ether solvents methyl perfluorobutyl ether, ethyl perfluorobutyl ether, perfluoro(2-butyltetrahydrofuran), etc.
  • fluorine-modified alkyl amines include solvents (perfluorotributylamine, perfluorotripentylamine, etc.), hydrocarbon solvents (petroleum benzene, mineral spirits, toluene, xylene, etc.), and ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.).
  • fluorine-modified solvents are preferable in terms of solubility and wettability, and in particular, 1,3-trifluoromethylbenzene, m-xylene hexafluoride, perfluoro(2- butyltetrahydrofuran), perfluorotributylamine, and ethyl perfluorobutyl ether are preferred.
  • Two or more of the above solvents may be mixed to uniformly dissolve the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate, or the fluoropolyether group-containing polymer composition. It is preferable that the The optimum concentration of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate to be dissolved in the solvent may be appropriately selected depending on the method of using the surface treatment agent, and is not limited. It's not something you can do. It is usually dissolved in an amount of 0.01 to 30% by weight, preferably 0.02 to 25% by weight, and more preferably 0.05 to 20% by weight.
  • a wet method such as a brush coating method, a dip coating method, or a spray coating method is adopted.
  • a spray coating method or a dip coating method it is preferable to use a spray coating method or a dip coating method.
  • a water- and oil-repellent surface layer formed by a dry method such as a vapor deposition process (physical vapor deposition (PVD) method or chemical vapor deposition (CVD) method) cannot exhibit sufficient water- and oil-repellency.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a curing treatment it is preferable to apply at 60 to 150°C, preferably 60 to 120°C, and a relative humidity of 95% or less for 30 minutes to 24 hours, preferably 30 minutes to 2 hours. .
  • the thickness of the water- and oil-repellent surface layer is usually 2 to 100 nm, preferably 3 to 20 nm. If the film thickness of the water- and oil-repellent surface layer is less than 2 nm, the coverage of the water- and oil-repellent surface layer may be low, resulting in poor water- and oil-repellency and durability. Oiliness and durability may decrease.
  • the thickness of the water- and oil-repellent surface layer can be measured by the above-mentioned XRR or spectroscopic ellipsometry.
  • the water- and oil-repellent surface layer has a receding contact angle ( ⁇ WR ) with respect to water of 101° or more, and that the water- and oil-repellent surface layer It is preferable that the receding contact angle ( ⁇ OR ) with respect to oleic acid is 64° or more.
  • the difference ( ⁇ W ) between the advancing contact angle ( ⁇ WA ) and the receding contact angle ( ⁇ WR ) of the water- and oil-repellent surface layer with respect to water is 20° or less, and the water- and oil-repellent surface layer
  • the difference ( ⁇ O ) between the advancing contact angle ( ⁇ OA ) and the receding contact angle ( ⁇ OR ) with respect to oleic acid is preferably 20° or less.
  • the removability of water and oil in the obtained water- and oil-repellent article can be improved.
  • the number average molecular weight is a value calculated from the characteristic peak intensity ratio of 19 F-NMR analysis.
  • the film thickness of the silicon oxide underlayer described above was obtained by X-ray reflectance measurement. That is, simulation fitting was performed on the measured profile to determine the film thickness.
  • the measurement conditions are shown below.
  • Measuring device SmartLab (manufactured by Rigaku)
  • X-ray source Rotating anticathode (Cu), output 45kV, 200mA
  • Input optical system Ge (111)
  • Solar slit 5.0°
  • Light receiving side RS1 0.1mm
  • RS2 0.1mm
  • Scanning conditions Scanning axis 2 ⁇ / ⁇ Scanning speed 0.2°/min Step width 0.002°
  • the oil-repellent surface layer was cured and fixed to obtain a base material having a 10 nm thick water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer.
  • the film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
  • a base material having a 10 nm thick water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained.
  • the film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
  • the film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
  • a base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 1, except that a silicon oxide base layer was formed by the following method.
  • a silicon oxide base layer was formed by the following method.
  • a substrate that had been subjected to alkaline cleaning and plasma cleaning in the same manner as in Comparative Example 1 was set in an electron beam evaporation apparatus (ACE-1350, manufactured by Synchron), and a silicon oxide film with a thickness of 10 nm was deposited using SiO 2 granules as the evaporation source. Formed geological strata. The formation conditions are shown below.
  • Vapor deposition source SiO 2 granules (2mm) Ultimate pressure (pressure during film formation): 1 ⁇ 10 -3 Pa Deposition rate (film forming rate): 1 nm/sec Film forming substrate temperature: 25°C The thickness of the silicon oxide base layer was obtained by X-ray reflectance measurement in the same manner as the thickness measurement of the silicon oxide base layer by dip coating of silica nanoparticles.
  • Example 1 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
  • Example 2 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
  • Example 3 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
  • Example 4 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
  • Example 5 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
  • Example 6 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
  • Example 7 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
  • Example 8 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
  • Example 9 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
  • Example 10 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 7, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 8, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 9, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 11 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 1, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 12 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 2, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 10, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 11, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 12, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 13, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 13 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 3, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 14 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 4, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 14, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 19, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 20, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 21, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 15 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 7, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 16 The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 8, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • the base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 22, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
  • Example 17 Soda lime glass (size: 100 mm x 50 mm x 0.7 mm (thickness)) was used as the base material, the following antireflection film was formed on the base material, and the outermost layer was used as a silicon oxide base layer.
  • a base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 3.
  • Example 18 A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 17, except that the water- and oil-repellent surface layer was formed in the same manner as in Example 4.
  • Example 19 A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 3.
  • Example 20 A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1.
  • a base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 4.
  • the number of abrasion cycles that maintain a water contact angle of 100° or more is defined as the number of cloth abrasion durability. If the cloth abrasion durability is 30,000 times or more, it is ⁇ (excellent), and if it is 20,000 times or more but less than 30,000 times, it is ⁇ (good). 10,000 times or more but less than 20,000 times is rated ⁇ (acceptable), and less than 10,000 times is rated ⁇ (impossible), as shown in Table 5.
  • the test environmental conditions are 25° C. and 40% relative humidity. Examples 11 to 18 and Comparative Examples 30 to 42 showed good cloth abrasion durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Laminated Bodies (AREA)

Abstract

A water- and oil-repellent article obtained by a production method according to the present invention comprises: a substrate; a silicon oxide underlayer formed on an outer surface of the substrate by a dry method; and a water- and oil-repellent surface layer which is mainly composed of a fluoropolyether group-containing polymer having a specific structure of a hydrolyzable silyl group and/or a partially hydrolyzed-condensed product thereof, and which is formed on the outer surface of the silicon oxide underlayer by a wet method. Said water- and oil-repellent article exhibits excellent water- and oil-repellency, and wear resistance.

Description

撥水撥油物品の製造方法及び撥水撥油物品における水及び油の除去性改善方法Method for manufacturing water- and oil-repellent articles and method for improving water and oil removability in water- and oil-repellent articles
 本発明は、基材と、撥水撥油性及び耐摩耗性に優れた表面層、基材と表面層との間に設けられる下地層からなる撥水撥油物品の製造方法及び撥水撥油物品における水及び油の除去性改善方法に関する。 The present invention relates to a method for producing a water- and oil-repellent article comprising a base material, a surface layer having excellent water- and oil-repellency and abrasion resistance, and a base layer provided between the base material and the surface layer, and a water- and oil-repellent article. This invention relates to a method for improving water and oil removability in articles.
 近年、IoT化の進行により自動車、産業用機器等の電子化が進み、タッチパネルディスプレイデバイスやカメラデバイス、その他にも様々な方式のセンサーデバイスの組み込みが急速に進んでいる。タッチパネルディスプレイは、指などが直接接触する機会が多く皮脂等の汚れが付きやすい。カメラやセンサー等においても例えば屋外使用の場合、雨由来の水滴や塵埃、油脂等のデバイス表面への付着が問題となる場合がある。水や油脂等を付着しにくくする、もしくは付着した水や油脂等を除去しやすくするため、このようなデバイス表面の撥水撥油化が望まれている。 In recent years, with the advancement of IoT, automobiles, industrial equipment, etc. are becoming more electronic, and the incorporation of touch panel display devices, camera devices, and various other types of sensor devices is progressing rapidly. Touch panel displays often come into direct contact with fingers and are prone to dirt such as sebum. When cameras, sensors, and the like are used outdoors, adhesion of water droplets, dust, oil, and the like from rain to the device surface may become a problem. In order to make it difficult for water, oil, etc. to adhere, or to make it easier to remove adhering water, oil, etc., it is desired that the surface of such a device be made water- and oil-repellent.
 撥水撥油性については、水や油の静的接触角の高さが指標として用いられているが、それ以外にも水や油の動的接触角も重要な指標である。動的接触角としては、JIS R3257に記載の前進接触角(θA)や後退接触角(θR)が挙げられ、それらの差(θA-θR)が小さい方が、液滴が動きやすいということが知られている(非特許文献1)。すなわちθA-θRが小さい場合に液滴が除去しやすく、撥水撥油性が高いと言える。 Regarding water and oil repellency, the height of the static contact angle of water or oil is used as an index, but the dynamic contact angle of water or oil is also an important index. Dynamic contact angles include the advancing contact angle (θ A ) and receding contact angle (θ R ) described in JIS R3257, and the smaller the difference between them (θ A −θ R ), the more the droplet moves. It is known that it is easy to use (Non-Patent Document 1). In other words, when θ A −θ R is small, droplets can be easily removed and water and oil repellency can be said to be high.
 フルオロポリエーテル基含有化合物は、その表面自由エネルギーが非常に小さいために、撥水撥油性、耐薬品性、潤滑性、離型性、防汚性などを有する。その性質を利用して、工業的には紙・繊維などの撥水撥油防汚剤、磁気記録媒体の滑剤、精密機器の防油剤、離型剤、化粧料、保護膜など、幅広く利用されている。しかし、その性質は同時に他の基材に対する非粘着性、非密着性であることを意味しており、基材表面に塗布することはできても、その被膜を密着させることは困難であった。 Fluoropolyether group-containing compounds have very low surface free energy, so they have water and oil repellency, chemical resistance, lubricity, mold releasability, stain resistance, etc. Utilizing its properties, it is widely used industrially as water-, oil-, and stain-proofing agents for paper and textiles, lubricants for magnetic recording media, oil-proofing agents for precision equipment, mold release agents, cosmetics, and protective films. ing. However, its properties also mean that it is non-adhesive and non-adhesive to other substrates, and although it can be applied to the surface of the substrate, it is difficult to make the film adhere to it. .
 一方、ガラスや布などの基材表面と有機化合物とを結合させるものとして、シランカップリング剤がよく知られており、各種基材表面のコーティング剤として幅広く利用されている。シランカップリング剤は、1分子中に有機官能基と反応性シリル基(一般にはアルコキシシリル基等の加水分解性シリル基)を有する。加水分解性シリル基が、空気中の水分などによって自己縮合反応を起こして被膜を形成する。該被膜は、加水分解性シリル基がガラスや金属などの表面と化学的・物理的に結合することにより耐久性を有する強固な被膜となる。 On the other hand, silane coupling agents are well known as agents that bond organic compounds to the surface of substrates such as glass or cloth, and are widely used as coating agents for the surfaces of various substrates. A silane coupling agent has an organic functional group and a reactive silyl group (generally a hydrolyzable silyl group such as an alkoxysilyl group) in one molecule. Hydrolyzable silyl groups cause a self-condensation reaction with moisture in the air to form a film. The coating becomes a durable and strong coating due to the hydrolyzable silyl group chemically and physically bonding to the surface of glass, metal, or the like.
 そこで、フルオロポリエーテル基含有化合物に加水分解性シリル基を導入したフルオロポリエーテル基含有ポリマーを用いることによって、基材表面に密着しやすく、かつ基材表面に、撥水撥油性、耐薬品性、潤滑性、離型性、防汚性等を有する被膜を形成しうる組成物が開示されている(特許文献1~6:特許第6260579号公報、特許第6828744号公報、特許第5761305号公報、特許第6451279号公報、特許第6741074号公報、特許第6617853号公報)。 Therefore, by using a fluoropolyether group-containing polymer in which a hydrolyzable silyl group is introduced into a fluoropolyether group-containing compound, it is possible to easily adhere to the substrate surface, and the substrate surface has water and oil repellency and chemical resistance. , compositions capable of forming a film having lubricity, mold release properties, antifouling properties, etc. are disclosed (Patent Documents 1 to 6: Japanese Patent No. 6260579, Japanese Patent No. 6828744, Japanese Patent No. 5761305). , Japanese Patent No. 6451279, Japanese Patent No. 6741074, Japanese Patent No. 6617853).
 該フルオロポリエーテル基含有化合物に加水分解性シリル基を導入したフルオロポリエーテル基含有ポリマーを含有する組成物で表面処理されたガラス基材表面等の硬化被膜(撥水撥油層(防汚コーティング薄膜層ともいう))は、スチールウールに対する摩耗耐久性に優れ、滑り性が高い。 A cured coating (water- and oil-repellent layer (antifouling coating thin film) on the surface of a glass substrate surface treated with a composition containing a fluoropolyether group-containing polymer in which a hydrolyzable silyl group is introduced into the fluoropolyether group-containing compound. (also referred to as a layer)) has excellent abrasion resistance against steel wool and has high slip properties.
 また、該撥水撥油層は使用時に指、衣服、スタイラスペン、清掃布、ワイパーゴム等による摩擦摩耗にさらされることにより撥水撥油性、汚れ防止性能が劣化するが、該撥水撥油層の耐久性確保のために酸化珪素の下地層が用いられてきた(特許文献7~13:国際公開第2014/097388号、特開2020-132498号公報、特開2020-090652号公報、特許第5655215号公報、特許第6601492号公報、特許第5494656号公報、国際公開第2019/035271号)。 In addition, when the water- and oil-repellent layer is exposed to friction and abrasion from fingers, clothing, stylus pens, cleaning cloths, wiper rubber, etc. during use, its water- and oil-repellency and stain-prevention performance deteriorate. A base layer of silicon oxide has been used to ensure durability (Patent Documents 7 to 13: International Publication No. 2014/097388, JP 2020-132498, JP 2020-090652, Patent No. 5655215) (Japanese Patent No. 6601492, Japanese Patent No. 5494656, International Publication No. 2019/035271).
 表面層である撥水撥油層は、真空蒸着、スプレーコーティング、ディップコーティング等、乾式方法でも湿式方法でも作製可能である。
 また、下地層となる酸化珪素は、電子ビーム蒸着、スパッタ成膜、化学気相蒸着法等の乾式方法や、ディップコーティング、スピンコーティング等の湿式方法により作製可能である。
The water- and oil-repellent layer, which is the surface layer, can be produced by a dry method or a wet method, such as vacuum deposition, spray coating, or dip coating.
Further, the silicon oxide serving as the base layer can be produced by a dry method such as electron beam evaporation, sputtering film formation, or chemical vapor deposition, or a wet method such as dip coating or spin coating.
 生産効率の観点からは下地層を乾式方法で作製する場合、表面層も乾式方法で作製するのがよく、同様に下地層を湿式方法で作製する場合は表面層も湿式方法で作製するのがよいが、撥水撥油性は十分に発揮されない場合があった。
 なお、本発明に関連する従来技術として、上述した文献と共に下記文献が挙げられる。
From the viewpoint of production efficiency, if the base layer is produced by a dry method, it is better to also produce the surface layer by a dry method.Similarly, if the base layer is produced by a wet method, it is better to also produce the surface layer by a wet method. Although it was good, there were cases where the water and oil repellency was not sufficiently exhibited.
In addition to the above-mentioned documents, the following documents can be cited as prior art related to the present invention.
特許第6260579号公報Patent No. 6260579 特許第6828744号公報Patent No. 6828744 特許第5761305号公報Patent No. 5761305 特許第6451279号公報Patent No. 6451279 特許第6741074号公報Patent No. 6741074 特許第6617853号公報Patent No. 6617853 国際公開第2014/097388号International Publication No. 2014/097388 特開2020-132498号公報Japanese Patent Application Publication No. 2020-132498 特開2020-090652号公報JP2020-090652A 特許第5655215号公報Patent No. 5655215 特許第6601492号公報Patent No. 6601492 特許第5494656号公報Patent No. 5494656 国際公開第2019/035271号International Publication No. 2019/035271 特開2011-116947号公報Japanese Patent Application Publication No. 2011-116947 特開2007-197425号公報Japanese Patent Application Publication No. 2007-197425 特開2007-297589号公報Japanese Patent Application Publication No. 2007-297589 特開2007-297543号公報Japanese Patent Application Publication No. 2007-297543 特開2008-088412号公報JP2008-088412A 特開2008-144144号公報Japanese Patent Application Publication No. 2008-144144 特開2010-031184号公報Japanese Patent Application Publication No. 2010-031184 特開2010-047516号公報Japanese Patent Application Publication No. 2010-047516 特開2011-178835号公報Japanese Patent Application Publication No. 2011-178835 特開2014-084405号公報Japanese Patent Application Publication No. 2014-084405 特開2014-105235号公報Japanese Patent Application Publication No. 2014-105235 特開2013-253228号公報JP2013-253228A 特開2014-218639号公報Japanese Patent Application Publication No. 2014-218639 国際公開第2013/121984号International Publication No. 2013/121984
 本発明は、上記事情に鑑みなされたもので、基材上に、撥水撥油性、耐摩耗性に優れた撥水撥油表面層を有する撥水撥油物品の製造方法及び撥水撥油物品における水及び油の除去性改善方法を提供することを目的とする。 The present invention was made in view of the above circumstances, and includes a method for producing a water- and oil-repellent article having a water- and oil-repellent surface layer having excellent water- and oil-repellency and abrasion resistance on a base material, and a water- and oil-repellent article. The object of the present invention is to provide a method for improving the removability of water and oil from articles.
 本発明者は、上記目的を解決すべく鋭意検討した結果、基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品の製造方法において、乾式方法によって形成された酸化珪素下地層上に、乾式方法により撥水撥油表面層を形成した場合に、十分な撥水撥油性が得られない場合があることを知見した。
 そこで、更なる検討を行った結果、上記撥水撥油物品の製造方法において、乾式方法によって形成された酸化珪素下地層上に、撥水撥油表面層として後述する特定構造のフルオロポリエーテル基含有ポリマーを含む加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とする層を湿式方法で形成した場合に、撥水撥油性、摩耗耐久性に優れた撥水撥油表面層を形成し得ることを見出し、本発明をなすに至った。
As a result of intensive studies to solve the above object, the present inventors discovered a base material, a silicon oxide base layer formed on the outer surface of the base material, and a silicon oxide base layer formed on the outer surface of the silicon oxide base layer. In the method for producing a water- and oil-repellent article comprising a water- and oil-repellent surface layer, when the water- and oil-repellent surface layer is formed by a dry method on a silicon oxide base layer formed by a dry method, It has been found that there are cases where it is not possible to obtain sufficient water and oil repellency.
Therefore, as a result of further studies, in the above method for manufacturing water- and oil-repellent articles, a fluoropolyether group with a specific structure, which will be described later, is added as a water- and oil-repellent surface layer on a silicon oxide base layer formed by a dry method. When a layer containing a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof is formed by a wet method, water and oil repellency and abrasion It has been discovered that a water- and oil-repellent surface layer with excellent durability can be formed, and the present invention has been completed.
 従って、本発明は、以下の撥水撥油表面層を有する撥水撥油物品の製造方法及び撥水撥油物品における水及び油の除去性改善方法を提供するものである。
〔1〕
 基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品の製造方法であって、撥水撥油表面層が加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものであり、該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーが下記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーを含むものであり、酸化珪素下地層を乾式方法によって形成するものであり、撥水撥油表面層を湿式方法によって形成するものである撥水撥油物品の製造方法。
Figure JPOXMLDOC01-appb-C000020
[式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はDであり、Dは独立に下記式(2)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000021
〔式中、Qは単結合又は2価の有機基であり、Zは3~8価の基であり、αは2~7の整数であり、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
Figure JPOXMLDOC01-appb-C000022
(式中、Rは炭素数1~4のアルキル基又はフェニル基であり、Xは独立に加水分解性基であり、aは2又は3であり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)〕]、
Figure JPOXMLDOC01-appb-C000023
[式中、Rfは上記と同じであり、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はGであり、Gは独立に下記式(5)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000024
〔式中、Wは上記と同じであり、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000025
(式中、Tは単結合又は2価の基であり、Lは独立に炭素数1~4の2価炭化水素基であり、Eは炭素数1~6の1価炭化水素基、又はWであり、lは0~20の整数である。)〕]、
Figure JPOXMLDOC01-appb-C000026
[式中、Rfは上記と同じであり、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJであり、Jは独立に下記式(8)で示される1価の基であり、J中にWを2個以上有する。
Figure JPOXMLDOC01-appb-C000027
〔式中、Sは上記と同じであり、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、Mは独立に下記式(9)で示される1価の基であり、
Figure JPOXMLDOC01-appb-C000028
(式中、Y、S及びWは上記と同じであり、fは1~3の整数である。)
eは1又は2である。〕]
〔2〕
 基材が、ガラス、金属、又は樹脂である〔1〕に記載の撥水撥油物品の製造方法。
〔3〕
 基材と酸化珪素下地層の間にハードコート層を形成するものである〔1〕又は〔2〕に記載の撥水撥油物品の製造方法。
〔4〕
 基材上に最外層が酸化珪素膜である反射防止膜層が形成され、該最外層の酸化珪素膜が前記酸化珪素下地層である〔1〕~〔3〕のいずれかに記載の撥水撥油物品の製造方法。
〔5〕
 前記式(2)において、Qが、アミド結合、エーテル結合、エステル結合、スルフィド結合、ウレタン結合、シロキサン結合、トリアジン結合、ジオルガノシリレン基、シルフェニレン結合及びシルアルキレン結合からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数1~15の非置換又は置換の2価炭化水素基であり、Zが、ケイ素原子、窒素原子、及びシロキサン結合を有する3~8価のオルガノポリシロキサン残基から選ばれる3~8価の基である〔1〕~〔4〕のいずれかに記載の撥水撥油物品の製造方法。
〔6〕
 前記式(6)において、Tが、単結合、又はシロキサン結合、シルアルキレン結合、シルアリーレン結合及びジオルガノシリレン基からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数2~20の2価炭化水素基、2価のシロキサン結合、シルアルキレン基もしくはジオルガノシリレン基である〔1〕~〔5〕のいずれかに記載の撥水撥油物品の製造方法。
〔7〕
 撥水撥油表面層が、前記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物と、下記式(10)
Figure JPOXMLDOC01-appb-C000029
[式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A4は独立に末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、-OR3、-COOR3又は-PO(OR32(R3は水素原子又は炭素数1~10の1価炭化水素基である。)である。]
で示されるフルオロポリエーテル基含有ポリマー及び/又はその部分(加水分解)縮合物との硬化物を含有するものである〔1〕~〔6〕のいずれかに記載の撥水撥油物品の製造方法。
〔8〕
 酸化珪素下地層の膜厚が3~150nmである〔1〕~〔7〕のいずれかに記載の撥水撥油物品の製造方法。
〔9〕
 酸化珪素下地層の形成方法が、抵抗加熱式蒸着法又は電子ビーム蒸着法である〔1〕~〔8〕のいずれかに記載の撥水撥油物品の製造方法。
〔10〕
 酸化珪素下地層の形成方法が、スパッタ成膜法である〔1〕~〔8〕のいずれかに記載の撥水撥油物品の製造方法。
〔11〕
 撥水撥油表面層の形成方法が、ディップコーティング法である〔1〕~〔10〕のいずれかに記載の撥水撥油物品の製造方法。
〔12〕
 撥水撥油表面層の形成方法が、スプレーコーティング法である〔1〕~〔10〕のいずれかに記載の撥水撥油物品の製造方法。
〔13〕
 基材をアルカリ洗浄及び/又はプラズマ洗浄により前処理するものである〔1〕~〔12〕のいずれかに記載の撥水撥油物品の製造方法。
〔14〕
 拡張/収縮法により求められる前記撥水撥油表面層の水に対する前進接触角と後退接触角の差分が20°以下であり、オレイン酸に対する前進接触角と後退接触角の差分が20°以下である〔1〕~〔13〕のいずれかに記載の撥水撥油物品の製造方法。
〔15〕
 拡張/収縮法により求められる前記撥水撥油表面層の水に対する後退接触角が101°以上であり、オレイン酸に対する後退接触角が64°以上である〔1〕~〔14〕のいずれかに記載の撥水撥油物品の製造方法。
〔16〕
 基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品において、撥水撥油表面層が加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものとし、該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーが下記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーを含むものとし、酸化珪素下地層を乾式方法によって形成し、撥水撥油表面層を湿式方法によって形成することを特徴とする撥水撥油物品における水及び油の除去性改善方法。
Figure JPOXMLDOC01-appb-C000030
[式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はDであり、Dは独立に下記式(2)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000031
〔式中、Qは単結合又は2価の有機基であり、Zは3~8価の基であり、αは2~7の整数であり、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
Figure JPOXMLDOC01-appb-C000032
(式中、Rは炭素数1~4のアルキル基又はフェニル基であり、Xは独立に加水分解性基であり、aは2又は3であり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)〕]、
Figure JPOXMLDOC01-appb-C000033
[式中、Rfは上記と同じであり、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はGであり、Gは独立に下記式(5)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000034
〔式中、Wは上記と同じであり、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000035
(式中、Tは単結合又は2価の基であり、Lは独立に炭素数1~4の2価炭化水素基であり、Eは炭素数1~6の1価炭化水素基、又はWであり、lは0~20の整数である。)〕]、
Figure JPOXMLDOC01-appb-C000036
[式中、Rfは上記と同じであり、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJであり、Jは独立に下記式(8)で示される1価の基であり、J中にWを2個以上有する。
Figure JPOXMLDOC01-appb-C000037
〔式中、Sは上記と同じであり、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、Mは独立に下記式(9)で示される1価の基であり、
Figure JPOXMLDOC01-appb-C000038
(式中、Y、S及びWは上記と同じであり、fは1~3の整数である。)
eは1又は2である。〕]
Accordingly, the present invention provides a method for manufacturing a water- and oil-repellent article having a water- and oil-repellent surface layer as described below, and a method for improving the removability of water and oil in a water- and oil-repellent article.
[1]
A water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer. , wherein the water- and oil-repellent surface layer is mainly composed of a cured product of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof; The fluoropolyether group-containing polymer having a degradable silyl group contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and contains silicon oxide. A method for producing a water- and oil-repellent article, wherein a base layer is formed by a dry method, and a water- and oil-repellent surface layer is formed by a wet method.
Figure JPOXMLDOC01-appb-C000020
[In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D, where D is independently a monovalent group represented by the following formula (2) It is the basis of
Figure JPOXMLDOC01-appb-C000021
[Wherein, Q is a single bond or a divalent organic group, Z is a trivalent to octavalent group, α is an integer from 2 to 7, and W is independently represented by the following formula (3) It is a monovalent hydrolyzable silyl group-containing group.
Figure JPOXMLDOC01-appb-C000022
(In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.)]
Figure JPOXMLDOC01-appb-C000023
[In the formula, Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000024
[In the formula, W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
Figure JPOXMLDOC01-appb-C000025
(In the formula, T is a single bond or a divalent group, L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms, E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W , and l is an integer from 0 to 20.)]],
Figure JPOXMLDOC01-appb-C000026
[In the formula, Rf is the same as above, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J, is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
Figure JPOXMLDOC01-appb-C000027
[In the formula, S is the same as above, V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and M is independently represented by the following formula (9). is a monovalent group shown,
Figure JPOXMLDOC01-appb-C000028
(In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.)
e is 1 or 2. 〕】
[2]
The method for producing a water- and oil-repellent article according to [1], wherein the base material is glass, metal, or resin.
[3]
The method for producing a water- and oil-repellent article according to [1] or [2], wherein a hard coat layer is formed between the base material and the silicon oxide base layer.
[4]
The water repellent according to any one of [1] to [3], wherein an antireflection film layer whose outermost layer is a silicon oxide film is formed on the base material, and the outermost silicon oxide film is the silicon oxide base layer. Method for manufacturing oil-repellent articles.
[5]
In the formula (2), Q is 1 selected from the group consisting of an amide bond, an ether bond, an ester bond, a sulfide bond, a urethane bond, a siloxane bond, a triazine bond, a diorganosilylene group, a silphenylene bond, and a sylalkylene bond. An unsubstituted or substituted divalent hydrocarbon group having 1 to 15 carbon atoms which may contain more than one type of bond, and Z is a trivalent to octavalent organopolymer having a silicon atom, a nitrogen atom, and a siloxane bond. The method for producing a water- and oil-repellent article according to any one of [1] to [4], which is a trivalent to octavalent group selected from siloxane residues.
[6]
In the formula (6), T has 2 to 2 carbon atoms and may contain a single bond or one or more bonds selected from the group consisting of a siloxane bond, a sylalkylene bond, a silyarylene bond, and a diorganosilylene group. The method for producing a water- and oil-repellent article according to any one of [1] to [5], which is a divalent hydrocarbon group, a divalent siloxane bond, a sylalkylene group, or a diorganosilylene group.
[7]
The water- and oil-repellent surface layer comprises one or more fluoropolyether group-containing polymers represented by the above formula (1), (4) or (7) and/or a partially hydrolyzed condensate thereof, and the following formula: (10)
Figure JPOXMLDOC01-appb-C000029
[In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 4 independently represents a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or -PO(OR 3 ) 2 (R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms). ]
Production of the water- and oil-repellent article according to any one of [1] to [6], which contains a cured product of the fluoropolyether group-containing polymer and/or its partial (hydrolyzed) condensate represented by Method.
[8]
The method for producing a water- and oil-repellent article according to any one of [1] to [7], wherein the silicon oxide underlayer has a thickness of 3 to 150 nm.
[9]
The method for producing a water- and oil-repellent article according to any one of [1] to [8], wherein the method for forming the silicon oxide base layer is a resistance heating vapor deposition method or an electron beam vapor deposition method.
[10]
The method for producing a water- and oil-repellent article according to any one of [1] to [8], wherein the method for forming the silicon oxide base layer is a sputtering film formation method.
[11]
The method for producing a water- and oil-repellent article according to any one of [1] to [10], wherein the method for forming the water- and oil-repellent surface layer is a dip coating method.
[12]
The method for producing a water- and oil-repellent article according to any one of [1] to [10], wherein the method for forming the water- and oil-repellent surface layer is a spray coating method.
[13]
The method for producing a water- and oil-repellent article according to any one of [1] to [12], wherein the base material is pretreated by alkaline cleaning and/or plasma cleaning.
[14]
The difference between the advancing contact angle and the receding contact angle with respect to water of the water- and oil-repellent surface layer determined by the expansion/contraction method is 20° or less, and the difference between the advancing contact angle and the receding contact angle with respect to oleic acid is 20° or less. The method for producing a water- and oil-repellent article according to any one of [1] to [13].
[15]
Any one of [1] to [14], wherein the water- and oil-repellent surface layer has a receding contact angle with water of 101° or more and a receding contact angle with oleic acid of 64° or more, as determined by the expansion/contraction method. A method for manufacturing the water- and oil-repellent article.
[16]
A water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer. The water- and oil-repellent surface layer is mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof, and the surface layer has the hydrolyzable silyl group. The fluoropolyether group-containing polymer contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and a silicon oxide base layer is formed by a dry method. A method for improving the removability of water and oil in a water- and oil-repellent article, characterized by forming a water- and oil-repellent surface layer by a wet method.
Figure JPOXMLDOC01-appb-C000030
[In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D, where D is independently a monovalent group represented by the following formula (2) It is the basis of
Figure JPOXMLDOC01-appb-C000031
[Wherein, Q is a single bond or a divalent organic group, Z is a trivalent to octavalent group, α is an integer from 2 to 7, and W is independently represented by the following formula (3) It is a monovalent hydrolyzable silyl group-containing group.
Figure JPOXMLDOC01-appb-C000032
(In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.)]
Figure JPOXMLDOC01-appb-C000033
[In the formula, Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000034
[In the formula, W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
Figure JPOXMLDOC01-appb-C000035
(In the formula, T is a single bond or a divalent group, L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms, E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W , and l is an integer from 0 to 20.)]],
Figure JPOXMLDOC01-appb-C000036
[In the formula, Rf is the same as above, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J, is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
Figure JPOXMLDOC01-appb-C000037
[In the formula, S is the same as above, V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and M is independently represented by the following formula (9). is a monovalent group shown,
Figure JPOXMLDOC01-appb-C000038
(In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.)
e is 1 or 2. 〕】
 本発明の製造方法により得られる、基材と、該基材の外表面上に乾式方法により形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に湿式方法により形成された特定構造の加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とする撥水撥油表面層とから構成された撥水撥油物品は、撥水撥油性、及び摩耗耐久性に優れる。 A base material obtained by the production method of the present invention, a silicon oxide base layer formed on the outer surface of the base material by a dry method, and a silicon oxide base layer formed on the outer surface of the silicon oxide base layer by a wet method. A water- and oil-repellent article comprising a water- and oil-repellent surface layer mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof, Excellent water and oil repellency and abrasion durability.
 本発明の撥水撥油物品の製造方法は、基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品の製造方法であって、撥水撥油表面層が加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものであり、該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーが特定構造のフルオロポリエーテル基含有ポリマーを含むものであり、酸化珪素下地層を乾式方法によって形成するものであり、撥水撥油表面層を湿式方法によって形成するものである。
 ここで、「加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とする」とは、撥水撥油表面層を構成する成分の合計質量に対して、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物の含有割合が50質量%以上(50~100質量%)であり、好ましくは70質量%以上(70~100質量%)であり、より好ましくは90質量%以上(90~100質量%)であることをいう。
The method for producing a water- and oil-repellent article of the present invention includes a base material, a silicon oxide underlayer formed on the outer surface of the base material, and a water-repellent repellent formed on the outer surface of the silicon oxide underlayer. A method for producing a water- and oil-repellent article comprising an oil surface layer, the water- and oil-repellent surface layer comprising a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof. The main component is a cured product, the fluoropolyether group-containing polymer having a hydrolyzable silyl group contains a fluoropolyether group-containing polymer with a specific structure, and a silicon oxide base layer is formed by a dry method. The water- and oil-repellent surface layer is formed by a wet method.
Here, "mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof" means the sum of the components constituting the water- and oil-repellent surface layer. Based on the mass, the content of the cured product of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate is 50% by mass or more (50 to 100% by mass), preferably It means 70% by mass or more (70 to 100% by mass), more preferably 90% by mass or more (90 to 100% by mass).
 本発明の製造方法によって得られる撥水撥油物品は、基材、乾式法により形成された酸化珪素下地層、及び湿式法により形成された撥水撥油表面層で構成される。特に該撥水撥油表面層は、基材上に形成された酸化珪素下地層の外表面上に、特定構造の加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物を含む表面処理剤により形成されたものである。 The water- and oil-repellent article obtained by the manufacturing method of the present invention is composed of a base material, a silicon oxide base layer formed by a dry method, and a water- and oil-repellent surface layer formed by a wet method. In particular, the water- and oil-repellent surface layer includes a fluoropolyether group-containing polymer having a specific structure of hydrolyzable silyl groups and/or a partially hydrolyzed polymer on the outer surface of a silicon oxide underlayer formed on a base material. It is formed by a surface treatment agent containing a condensate.
〔基材〕
 基材としては、ガラス、金属、又は樹脂を用いることができる。
 ガラスとしては、例えば、ソーダガラス(別名:ソーダライムガラス)、クラウンガラス、鉛ガラス、ホウケイ酸ガラス、結晶化ガラス、石英ガラス、アルミノシリケートガラス(別名:アルミノケイ酸塩ガラス)、テンパックス、パイレックス(登録商標)、ネオセラム等が挙げられるが、これらに限定されるものではない。なお、ガラスは、化学強化処理や物理強化処理されたものであってもよい。
 ガラス基材の形状は、板状、フィルム状またその他の形態であってよい。
〔Base material〕
Glass, metal, or resin can be used as the base material.
Examples of glass include soda glass (also known as soda lime glass), crown glass, lead glass, borosilicate glass, crystallized glass, quartz glass, aluminosilicate glass (also known as aluminosilicate glass), Tempax, and Pyrex ( (registered trademark), Neoceram, etc., but are not limited to these. Note that the glass may be chemically strengthened or physically strengthened.
The shape of the glass substrate may be plate-like, film-like, or other forms.
 前記金属としては、例えば、アルミニウム、チタン、クロム、鉄、コバルト、亜鉛、ニッケル、銅等の純金属や、ステンレス鋼(例えばSUS304鏡面仕上げ)、黄銅、コバール、インコネル等の合金や、亜鉛、ニッケル、クロム等のメッキ処理が施されたものが挙げられるが、これらに限定されるものではない。
 金属基材の形状は、板状、棒状、球状またその他の形態であってよい。
Examples of the metal include pure metals such as aluminum, titanium, chromium, iron, cobalt, zinc, nickel, and copper, stainless steel (for example, SUS304 mirror finish), alloys such as brass, Kovar, and Inconel, and zinc and nickel. Examples include, but are not limited to, those plated with chromium or the like.
The shape of the metal base material may be plate-like, rod-like, spherical, or other shapes.
 前記樹脂としては、例えば、ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、ポリアミド(PA)系樹脂、ポリイミド(PI)系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリスチレン(PS)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)等のスチレン系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン・プロピレン共重合体等のポリオレフィン系樹脂、ノルボルネン系樹脂、(メタ)アクリル系樹脂等の熱可塑性有機樹脂が挙げられるが、これらに限定されるものではない。
 樹脂基材の形状は板状、フィルム状またその他の形態であってよい。
Examples of the resin include polycarbonate resins, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamide (PA) resins, polyimide (PI) resins, and cellulose resins such as triacetyl cellulose. Resins, styrene resins such as polystyrene (PS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, etc. Examples include, but are not limited to, thermoplastic organic resins such as polyolefin resins such as polymers, norbornene resins, and (meth)acrylic resins.
The shape of the resin base material may be plate-like, film-like, or other forms.
 基材表面は、酸化珪素下地層形成前に前処理を行ってもよい。前処理を行うことにより基材と酸化珪素下地層の良好な密着が得られ、高い摩耗耐久性が得られる。 The surface of the base material may be pretreated before forming the silicon oxide underlayer. By performing the pretreatment, good adhesion between the base material and the silicon oxide underlayer can be obtained, and high abrasion durability can be obtained.
 基材の前処理の方法は、基材表面の汚染物を除去し、基材表面を親水化できる方法であれば特に限定されない。例えば、エタノール、2-プロパノール等のアルコールによるアルコール洗浄処理、アルカリ性洗浄剤によるアルカリ洗浄処理、酸素やアルゴンのプラズマによるプラズマ洗浄処理、OHラジカルによるラジカル洗浄処理などが挙げられる。これらの方法を組み合わせて用いてもよい。アルカリ性洗浄剤によるアルカリ洗浄処理が好ましく、プラズマによるプラズマ洗浄処理やOHラジカルによるラジカル洗浄処理がより好ましい。アルカリ性洗浄剤によるアルカリ洗浄処理に続いてプラズマによるプラズマ洗浄処理やOHラジカルによるラジカル洗浄処理を行うことが更に好ましい。 The method for pre-treating the base material is not particularly limited as long as it is a method that can remove contaminants on the surface of the base material and make the surface of the base material hydrophilic. Examples include alcohol cleaning treatment using alcohol such as ethanol and 2-propanol, alkaline cleaning treatment using alkaline cleaning agents, plasma cleaning treatment using oxygen or argon plasma, and radical cleaning treatment using OH radicals. These methods may be used in combination. Alkaline cleaning treatment using an alkaline cleaning agent is preferred, and plasma cleaning treatment using plasma and radical cleaning treatment using OH radicals are more preferred. It is more preferable to perform a plasma cleaning treatment using plasma or a radical cleaning treatment using OH radicals following the alkaline cleaning treatment using an alkaline cleaning agent.
 基材の前処理の効果は、基材表面の親水性の度合いにより確認される。親水性は基材上の水の接触角により評価でき、40°以下が好ましく、20°以下がより好ましく、10°以下が更に好ましい。なお、水の接触角はJIS R 3257:1999に準拠して測定される。 The effect of pre-treatment of the substrate is confirmed by the degree of hydrophilicity of the surface of the substrate. Hydrophilicity can be evaluated by the contact angle of water on the substrate, and is preferably 40° or less, more preferably 20° or less, and even more preferably 10° or less. Note that the water contact angle is measured in accordance with JIS R 3257:1999.
 本発明においては、基材と酸化珪素下地層の間に機能層を形成してもよい。機能層としては、例えば、反射防止膜層やハードコート層が挙げられる。
 なお、機能層として、最外層が酸化珪素膜である反射防止膜層を形成する場合、該最外層の酸化珪素膜を酸化珪素下地層とすることができる。
In the present invention, a functional layer may be formed between the base material and the silicon oxide underlayer. Examples of the functional layer include an antireflection film layer and a hard coat layer.
Note that when an antireflection film layer whose outermost layer is a silicon oxide film is formed as a functional layer, the outermost silicon oxide film can be used as a silicon oxide base layer.
〔酸化珪素下地層〕
 酸化珪素下地層は酸化珪素膜からなり、該酸化珪素膜の形成方法としては、乾式方法が採用される。乾式方法としては、物理気相蒸着(PVD)法や化学気相蒸着(CVD)法が挙げられ、これらのうち物理気相蒸着(PVD)法が好ましい。湿式塗布法としては、シリカナノ粒子を用いる方法や、珪素アルコキシドを用いるゾル-ゲル法、ポリシラザンの水分との反応によるシリカガラス転化による方法が挙げられるが、これらの湿式塗布法により形成された酸化珪素下地層では十分な撥水撥油性を発現することができない。
[Silicon oxide base layer]
The silicon oxide base layer is made of a silicon oxide film, and a dry method is adopted as a method for forming the silicon oxide film. Examples of the dry method include physical vapor deposition (PVD) and chemical vapor deposition (CVD), of which physical vapor deposition (PVD) is preferred. Wet coating methods include a method using silica nanoparticles, a sol-gel method using silicon alkoxide, and a method using silica glass conversion by reaction of polysilazane with moisture. The base layer cannot exhibit sufficient water and oil repellency.
 上記のPVD法としては、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタ成膜法等を用いることができる。本発明においては、平滑性及び密着性の高い被膜が得られるため、電子ビーム蒸着法、スパッタ成膜法を好適に用いることができる。 As the above-mentioned PVD method, a resistance heating evaporation method, an electron beam evaporation method, a sputtering film formation method, etc. can be used. In the present invention, since a film with high smoothness and adhesion can be obtained, electron beam evaporation method and sputtering film formation method can be suitably used.
 電子ビーム蒸着法としては、顆粒形状や板形状のSiO2に電子ビームを照射し、SiO2を蒸発させ基材に堆積する方法や、基材にイオンビームを照射しながらSiO2堆積を行う方法(イオンビームアシスト法)が挙げられる。成膜時圧力は1×10-4~5×10-1Paが好ましく、成膜レートは0.01~2nm/秒が好ましい。成膜基板温度は25~300℃が好ましい。 Electron beam evaporation methods include a method in which granular or plate-shaped SiO 2 is irradiated with an electron beam to evaporate the SiO 2 and deposited on a substrate, and a method in which SiO 2 is deposited while irradiating the substrate with an ion beam. (ion beam assist method). The pressure during film formation is preferably 1 x 10 -4 to 5 x 10 -1 Pa, and the film formation rate is preferably 0.01 to 2 nm/sec. The temperature of the film-forming substrate is preferably 25 to 300°C.
 スパッタ成膜法としては、Siターゲットをスパッタし基材に堆積させ基材上で酸化し酸化珪素を得る反応性スパッタが挙げられる。スパッタ源としてはDCプラズマ、RFプラズマ、電子サイクロトロン共鳴(ECR)プラズマ、イオンビームが挙げられる。Siの酸化は、酸素ガスの導入や、酸素プラズマ照射(ラジカルアシスト法)により行うことができる。成膜時圧力は1×10-4~1Paが好ましい。成膜レートは0.1~1nm/秒が好ましい。成膜基板温度は25~300℃が好ましい。 Examples of sputtering film forming methods include reactive sputtering in which a Si target is sputtered, deposited on a base material, and oxidized on the base material to obtain silicon oxide. Sputter sources include DC plasma, RF plasma, electron cyclotron resonance (ECR) plasma, and ion beam. Oxidation of Si can be performed by introducing oxygen gas or by irradiating oxygen plasma (radical assist method). The pressure during film formation is preferably 1×10 -4 to 1 Pa. The film formation rate is preferably 0.1 to 1 nm/sec. The temperature of the film-forming substrate is preferably 25 to 300°C.
 上記のCVD法としては、熱CVD法、反応種により支援されるCVD法、光CVD法等を用いることができる。 As the above CVD method, a thermal CVD method, a CVD method assisted by a reactive species, a photoCVD method, etc. can be used.
 反応種により支援されるCVD法とは、反応種の化学反応により前駆体が酸化珪素に変換されガラス基材上に堆積される方法で、反応種とは酸素を含むプラズマに含まれるイオン、電子、ラジカル等を用いることができる。例えば酸素を含むプラズマを利用したCVD法による酸化珪素膜の形成方法については特許文献9、10(特開2020-090652号公報、特許第5655215号公報)に記載の方法を挙げることができる。 The CVD method assisted by reactive species is a method in which a precursor is converted into silicon oxide by a chemical reaction of reactive species and deposited on a glass substrate. , radicals, etc. can be used. For example, methods for forming a silicon oxide film by a CVD method using plasma containing oxygen include methods described in Patent Documents 9 and 10 (Japanese Patent Application Laid-open No. 2020-090652, Japanese Patent No. 5655215).
 該酸化珪素の前駆体としては、珪素化合物が用いられる。例えば、SiH4、Si26、テトラエトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン等が挙げられる。テトラエトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザンが好適に用いられる。 A silicon compound is used as the silicon oxide precursor. Examples include SiH 4 , Si 2 H 6 , tetraethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, and the like. Tetraethoxysilane, hexamethyldisiloxane, and hexamethyldisilazane are preferably used.
 該酸化珪素膜形成時のCVD条件は用いる基材や前駆体の種類により適宜設定される。SiH4を前駆体に用いる場合の基材温度は30℃以上150℃未満が好ましく、30~140℃がより好ましく、テトラエトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザンを前駆体に用いる場合の基材温度は30℃以上250℃未満が好ましく、30~150℃がより好ましい。 The CVD conditions for forming the silicon oxide film are appropriately set depending on the type of substrate and precursor used. When SiH 4 is used as a precursor, the substrate temperature is preferably 30°C or higher and lower than 150°C, more preferably 30 to 140°C. The substrate temperature is preferably 30°C or more and less than 250°C, more preferably 30 to 150°C.
 上記の酸化珪素下地層の膜厚は、3~150nmであることが好ましく、3~50nmであることがより好ましい。酸化珪素下地層の膜厚が3nm未満では酸化珪素下地層内の空隙(ボイド)等の存在により撥水撥油表面層との良好な密着性が得られない場合があり、150nmを超えると酸化珪素下地層自体の強度不足による撥水撥油表面層との密着性不良が起こる場合がある。該酸化珪素下地層の膜厚は、X線反射率法(XRR:X-ray Reflectometry)や電子顕微鏡による断面観察により測定することができる。 The thickness of the silicon oxide underlayer is preferably 3 to 150 nm, more preferably 3 to 50 nm. If the film thickness of the silicon oxide base layer is less than 3 nm, good adhesion with the water- and oil-repellent surface layer may not be obtained due to the presence of voids in the silicon oxide base layer, and if it exceeds 150 nm, oxidation may occur. Poor adhesion with the water- and oil-repellent surface layer may occur due to insufficient strength of the silicon base layer itself. The film thickness of the silicon oxide underlayer can be measured by X-ray reflectometry (XRR) or cross-sectional observation using an electron microscope.
 該酸化珪素下地層表面は撥水撥油表面層の形成前に前処理を行ってよい。前処理により酸化珪素下地層と撥水撥油表面層の良好な密着が得られ、高い摩耗耐久性が得られる。 The surface of the silicon oxide base layer may be pretreated before forming the water- and oil-repellent surface layer. The pretreatment provides good adhesion between the silicon oxide base layer and the water- and oil-repellent surface layer, resulting in high abrasion durability.
 該酸化珪素下地層の前処理の方法は、酸化珪素下地層表面の汚染物を除去できる方法であれば特に限定されない。例えば、酸素プラズマやアルゴンプラズマによるプラズマ洗浄処理、OHラジカルによるラジカル洗浄処理などを好適に用いることができる。前処理を行う場合、特にはプラズマ洗浄処理を行うことが好ましい。 The method for pre-treating the silicon oxide base layer is not particularly limited as long as it is capable of removing contaminants on the surface of the silicon oxide base layer. For example, plasma cleaning treatment using oxygen plasma or argon plasma, radical cleaning treatment using OH radicals, etc. can be suitably used. When performing pretreatment, it is particularly preferable to perform plasma cleaning treatment.
〔撥水撥油表面層〕
 撥水撥油表面層は、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものであり、酸化珪素下地層の上に加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物を含有する表面処理剤を用いて形成される。該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーとしては、特許第6260579号公報、特許第6828744号公報、特許第5761305号公報、特許第6451279号公報、特許第6741074号公報、特許第6617853号公報、特開2011-116947号公報、特開2007-197425号公報、特開2007-297589号公報、特開2007-297543号公報、特開2008-088412号公報、特開2008-144144号公報、特開2010-031184号公報、特開2010-047516号公報、特開2011-178835号公報、特開2014-084405号公報、特開2014-105235号公報、特開2013-253228号公報、特開2014-218639号公報、国際公開第2013/121984号(特許文献1~6、14~27)に記載の化合物を使用することができる。
[Water- and oil-repellent surface layer]
The water- and oil-repellent surface layer is mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof. It is formed using a surface treatment agent containing a fluoropolyether group-containing polymer having a degradable silyl group and/or a partially hydrolyzed condensate thereof. Examples of the fluoropolyether group-containing polymer having a hydrolyzable silyl group include Japanese Patent No. 6260579, Japanese Patent No. 6828744, Japanese Patent No. 5761305, Japanese Patent No. 6451279, Japanese Patent No. 6741074, and Japanese Patent No. 6617853. No. 2011-116947, 2007-197425, 2007-297589, 2007-297543, 2008-088412, 2008-144144 , JP 2010-031184, JP 2010-047516, JP 2011-178835, JP 2014-084405, JP 2014-105235, JP 2013-253228, Compounds described in Japanese Patent Publication No. 2014-218639 and International Publication No. 2013/121984 (Patent Documents 1 to 6, 14 to 27) can be used.
 加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーに関して更に具体的に説明する。 The fluoropolyether group-containing polymer having a hydrolyzable silyl group will be explained in more detail.
 該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーは、分子中の少なくとも1個、好ましくは1~3個の末端に、下記式(11)
Figure JPOXMLDOC01-appb-C000039
(式中、Rは炭素数1~4のアルキル基又はフェニル基であり、Xは独立に加水分解性基であり、aは2又は3である。)
で示される基(加水分解性シリル基)を少なくとも2個、好ましくは2~3個(即ち、分子中に少なくとも2個、好ましくは2~9個、より好ましくは2~6個)有するものであり、分子中に-(Cb2bO)m-(式中、bは単位毎に独立に1~6の整数であり、mは1~250の整数である。)で示されるポリフルオロオキシアルキレン構造を有することが好ましい。
The fluoropolyether group-containing polymer having a hydrolyzable silyl group has the following formula (11) at at least one, preferably 1 to 3 terminals in the molecule.
Figure JPOXMLDOC01-appb-C000039
(In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, and a is 2 or 3.)
It has at least 2, preferably 2 to 3 (that is, at least 2, preferably 2 to 9, more preferably 2 to 6 in the molecule) groups represented by (hydrolyzable silyl groups). polyfluorocarbon compound represented by -(C b F 2b O) m - (wherein b is an integer of 1 to 6 independently for each unit, and m is an integer of 1 to 250) in the molecule. Preferably, it has an oxyalkylene structure.
 上記式(11)において、Xは互いに異なっていてよい加水分解性基である。このようなXとしては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基などの炭素数1~10のアルコキシ基、メトキシメトキシ基、メトキシエトキシ基、エトキシメトキシ基、エトキシエトキシ基などの炭素数2~10のアルコキシ置換アルコキシ基、アセトキシ基、プロピオノキシ基などの炭素数2~10のアシロキシ基、ビニルオキシ基、アリルオキシ基、プロペノキシ基、イソプロペノキシ基などの炭素数2~10のアルケニルオキシ基、クロル基、ブロモ基、ヨード基などのハロゲン基などが挙げられる。中でもメトキシ基、エトキシ基、イソプロペノキシ基、クロル基が好適である。 In the above formula (11), X is a hydrolyzable group that may be different from each other. Examples of such X include alkoxy groups having 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, methoxymethoxy group, Alkoxy substituted alkoxy groups with 2 to 10 carbon atoms such as methoxyethoxy group, ethoxymethoxy group, ethoxyethoxy group, acyloxy groups with 2 to 10 carbon atoms such as acetoxy group, propionoxy group, vinyloxy group, allyloxy group, propenoxy group, isopropenoxy group Examples include alkenyloxy groups having 2 to 10 carbon atoms, halogen groups such as chloro groups, bromo groups, and iodo groups. Among these, methoxy, ethoxy, isopropenoxy, and chloro groups are preferred.
 上記式(11)において、Rは、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~4のアルキル基又はフェニル基であり、中でもメチル基、エチル基が好適である。
 上記式(11)において、aは2又は3であり、反応性、基材に対する密着性の観点から、3が好ましい。
In the above formula (11), R is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, or a phenyl group, of which a methyl group and an ethyl group are preferred.
In the above formula (11), a is 2 or 3, and 3 is preferable from the viewpoint of reactivity and adhesion to the base material.
 上記式(11)における基としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
Examples of the group in the above formula (11) include those shown below.
Figure JPOXMLDOC01-appb-C000040
 また、上記-(Cb2bO)m-で示されるポリフルオロオキシアルキレン構造において、bは単位毎に独立に1~6の整数、好ましくは1~4の整数であり、mは1~250の整数、好ましくは1~140の整数である。 Furthermore, in the polyfluorooxyalkylene structure represented by -(C b F 2b O) m - above, b is an integer of 1 to 6 independently for each unit, preferably an integer of 1 to 4, and m is an integer of 1 to 4. It is an integer of 250, preferably an integer of 1 to 140.
 上記-Cb2bO-で示される繰り返し単位としては、例えば、下記式で示される単位等が挙げられる。
-CF2O-、
-CF2CF2O-、
-CF2CF2CF2O-、
-CF(CF3)CF2O-、
-CF2CF2CF2CF2O-、
-CF2CF2CF2CF2CF2CF2O-、
-C(CF32O-
 これらの中では、特に下記式で示される繰り返し単位が好適である。
-CF2O-、
-CF2CF2O-
Examples of the repeating unit represented by -C b F 2b O- include units represented by the following formula.
-CF 2 O-,
-CF 2 CF 2 O-,
-CF 2 CF 2 CF 2 O-,
-CF( CF3 ) CF2O- ,
-CF 2 CF 2 CF 2 CF 2 O-,
-CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 O-,
-C( CF3 ) 2O-
Among these, repeating units represented by the following formula are particularly preferred.
-CF 2 O-,
-CF 2 CF 2 O-
 なお、上記ポリフルオロオキシアルキレン構造は、上記繰り返し単位の1種で構成されていてもよいし、2種以上の組み合わせで構成されていてもよい。 Note that the polyfluorooxyalkylene structure may be composed of one type of the above repeating unit, or may be composed of a combination of two or more types.
 本発明においては、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーとして、下記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーを含むものである。特には加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーの全てが式(1)、(4)及び(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000041
[式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はDであり、Dは独立に下記式(2)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000042
〔式中、Qは単結合又は2価の有機基であり、Zは3~8価の基であり、αは2~7の整数であり、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
Figure JPOXMLDOC01-appb-C000043
(式中、R、X、aは上記と同じであり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)〕]、
Figure JPOXMLDOC01-appb-C000044
[式中、Rfは上記と同じであり、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はGであり、Gは独立に下記式(5)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000045
〔式中、Wは上記と同じであり、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000046
(式中、Tは単結合又は2価の基であり、Lは独立に炭素数1~4の2価炭化水素基であり、Eは炭素数1~6の1価炭化水素基、又はWであり、lは0~20の整数である。)〕]、
Figure JPOXMLDOC01-appb-C000047
[式中、Rfは上記と同じであり、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJであり、Jは独立に下記式(8)で示される1価の基であり、J中にWを2個以上有する。
Figure JPOXMLDOC01-appb-C000048
〔式中、Sは上記と同じであり、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、Mは独立に下記式(9)で示される1価の基であり、
Figure JPOXMLDOC01-appb-C000049
(式中、Y、S及びWは上記と同じであり、fは1~3の整数である。)
eは1又は2である。〕]
In the present invention, one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7) are used as the fluoropolyether group-containing polymer having a hydrolyzable silyl group. It includes. In particular, all of the fluoropolyether group-containing polymers having hydrolyzable silyl groups are one or more fluoropolyether group-containing polymers represented by formulas (1), (4), and (7). preferable.
Figure JPOXMLDOC01-appb-C000041
[In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D, where D is independently a monovalent group represented by the following formula (2) It is the basis of
Figure JPOXMLDOC01-appb-C000042
[Wherein, Q is a single bond or a divalent organic group, Z is a trivalent to octavalent group, α is an integer from 2 to 7, and W is independently represented by the following formula (3) It is a monovalent hydrolyzable silyl group-containing group.
Figure JPOXMLDOC01-appb-C000043
(In the formula, R, )]]
Figure JPOXMLDOC01-appb-C000044
[In the formula, Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000045
[In the formula, W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
Figure JPOXMLDOC01-appb-C000046
(In the formula, T is a single bond or a divalent group, L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms, E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W , and l is an integer from 0 to 20.)]],
Figure JPOXMLDOC01-appb-C000047
[In the formula, Rf is the same as above, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J, is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
Figure JPOXMLDOC01-appb-C000048
[In the formula, S is the same as above, V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and M is independently represented by the following formula (9). is a monovalent group shown,
Figure JPOXMLDOC01-appb-C000049
(In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.)
e is 1 or 2. 〕】
 まず、下記式(1)で示されるフルオロポリエーテル基含有ポリマーについて説明する。
Figure JPOXMLDOC01-appb-C000050
First, the fluoropolyether group-containing polymer represented by the following formula (1) will be explained.
Figure JPOXMLDOC01-appb-C000050
 上記式(1)において、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-で示される2価のポリフルオロオキシアルキレン構造(パーフルオロポリエーテル構造)含有基であり、dは単位毎に独立に0~5の整数であり、好ましくは0~2の整数であり、より好ましくは0又は1である。p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、好ましくは0~100の整数であり、より好ましくは0~60の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、好ましくは3~140の整数であり、より好ましくは7~70の整数である。これら各単位は直鎖状であっても分岐状であってもよい。なお、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。 In the above formula (1), Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O) t (C 6 F 12 O) u -C d F 2d - is a group containing a divalent polyfluorooxyalkylene structure (perfluoropolyether structure), and d is independently 0 for each unit. It is an integer of ~5, preferably an integer of 0~2, and more preferably 0 or 1. p, q, r, s, t and u are each independently an integer of 0 to 150, preferably an integer of 0 to 100, more preferably an integer of 0 to 60, p, q, r, The sum of s, t and u is an integer of 1 to 250, preferably an integer of 3 to 140, more preferably an integer of 7 to 70. Each of these units may be linear or branched. Note that the repeating units shown in parentheses with p, q, r, s, t, and u may be randomly combined.
 Rfの2価のポリフルオロオキシアルキレン構造含有基として、具体的には、下記構造で示すことができる。
Figure JPOXMLDOC01-appb-C000051
(式中、p’、q’、r’、s’、t’及びu’はそれぞれ独立に1~150の整数であり、p’、q’、r’、s’、t’及びu’の合計は12~250であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p’、q’、r’、s’、t’及びu’が付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。d’は単位毎に独立に0~5の整数である。これら各単位は直鎖状であっても分岐状であってもよい。)
Specifically, the divalent polyfluorooxyalkylene structure-containing group represented by Rf can be represented by the following structure.
Figure JPOXMLDOC01-appb-C000051
(In the formula, p', q', r', s', t' and u' are each independently an integer of 1 to 150, and p', q', r', s', t' and u' The total of these units is 12 to 250, and each of these units may be linear or branched.Also, p', q', r', s', t' and u' are attached. Each repeating unit shown in parentheses may be randomly bonded. d' is an integer of 0 to 5 independently for each unit. Each of these units may be linear or branched. Also good.)
 上記式(1);A1-Rf-Dにおいて、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はD(即ち、後述する式(2)で示される-Q-Z(W)αで示される1価の基)であり、末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、好ましくは炭素数1~6のフルオロアルキル基である。 In the above formula (1); A 1 -Rf-D, A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D (i.e. , -QZ (W) shown by the formula (2) described later (a monovalent group represented by α ), whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom The valent fluorine-containing hydrocarbon group is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
 このようなA1の末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、例えば下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000052
Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 1 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
Figure JPOXMLDOC01-appb-C000052
 上記式(1);A1-Rf-Dにおいて、Dは独立に下記式(2)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000053
In the above formula (1); A 1 -Rf-D, D is independently a monovalent group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000053
 上記式(2)において、Qは単結合又は2価の有機基であり、単結合以外のQとして、好ましくは、アミド結合(例えば、非置換アミド結合、N-メチル置換アミド結合、N-フェニル置換アミド結合)、エーテル結合、エステル結合、スルフィド結合、ウレタン結合、シロキサン結合、トリアジン結合、ジオルガノシリレン基(例えば、ジメチルシリレン基等のジアルキルシリレン基)、シルアリーレン結合(例えば、シルフェニレン結合)及びシルアルキレン結合(例えば、シルエチレン結合)からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数1~15、好ましくは炭素数2~15の非置換又は置換の2価炭化水素基であり、より好ましくは前記結合を含んでいてもよい非置換又はフッ素置換の炭素数1~12、特に好ましくは炭素数2~12の2価炭化水素基である。
 ここで、2価炭化水素基としては、メチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)、ブチレン基(テトラメチレン基、メチルプロピレン基)、ヘキサメチレン基、オクタメチレン基等のアルキレン基、フェニレン基等のアリーレン基、又はこれらの基の2種以上の組み合わせ(アルキレン・アリーレン基等)などが挙げられる。
In the above formula (2), Q is a single bond or a divalent organic group, and Q other than a single bond is preferably an amide bond (for example, an unsubstituted amide bond, an N-methyl substituted amide bond, an N-phenyl (substituted amide bond), ether bond, ester bond, sulfide bond, urethane bond, siloxane bond, triazine bond, diorganosilylene group (e.g., dialkylsilylene group such as dimethylsilylene group), sylarylene bond (e.g., silphenylene bond) and an unsubstituted or substituted divalent carbon having 1 to 15 carbon atoms, preferably 2 to 15 carbon atoms, which may contain one or more bonds selected from the group consisting of silalkylene bonds (for example, silethylene bonds) It is a hydrogen group, more preferably an unsubstituted or fluorine-substituted divalent hydrocarbon group having 1 to 12 carbon atoms, particularly preferably 2 to 12 carbon atoms, which may contain the above bond.
Here, examples of divalent hydrocarbon groups include alkylene groups such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group, methylpropylene group), hexamethylene group, octamethylene group, etc. group, an arylene group such as a phenylene group, or a combination of two or more of these groups (alkylene/arylene group, etc.).
 ここで、シルアルキレン結合、シルアリーレン結合としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000054
(式中、R1はメチル基、エチル基、プロピル基、ブチル基等の炭素数1~8、好ましくは炭素数1~4のアルキル基、フェニル基等の炭素数6~10のアリール基であり、R1は同一でも異なっていてもよい。R2はメチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)等の炭素数1~4のアルキレン基、フェニレン基等の炭素数6~10のアリーレン基である。)
Here, as the sylalkylene bond and the sylarylene bond, the following can be exemplified.
Figure JPOXMLDOC01-appb-C000054
(In the formula, R 1 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, ethyl group, propyl group, butyl group, or an aryl group having 6 to 10 carbon atoms, such as a phenyl group. R 1 may be the same or different. R 2 is an alkylene group having 1 to 4 carbon atoms such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), or 6 carbon atoms such as phenylene group. ~10 arylene groups.)
 このような単結合以外のQとしては、例えば下記の基が挙げられる。なお、下記の構造において、左側の結合手はRfと、右側の結合手はZと結合することが好ましい。
Figure JPOXMLDOC01-appb-C000055
(式中、tは2~4の整数である。)
Examples of Q other than such a single bond include the following groups. In addition, in the structure below, it is preferable that the bond on the left side is bonded to Rf, and the bond on the right side is bonded to Z.
Figure JPOXMLDOC01-appb-C000055
(In the formula, t is an integer from 2 to 4.)
 上記式(2);-Q-Z(W)αにおいて、Zは3~8価の基であり、好ましくは、ケイ素原子、窒素原子、及びシロキサン結合を有する3~8価のオルガノポリシロキサン残基、好ましくはケイ素原子数3~13個、より好ましくはケイ素原子数3~5個の直鎖状、分岐状もしくは環状のオルガノポリシロキサン残基から選ばれる3~8価、好ましくは3又は4価の基である。また、2個のケイ素原子がエチレン基等のアルキレン基で結合されたシルエチレン構造等のシルアルキレン構造、即ち、Si-(CH2n-Siを含んでいてもよい(前記式においてnは2~6の整数、好ましくは2~4の整数である。)。 In the above formula (2); -Q-Z(W) α , Z is a trivalent to octavalent group, preferably a trivalent to octavalent organopolysiloxane residue having a silicon atom, a nitrogen atom, and a siloxane bond. group, preferably 3 to 8 valent, preferably 3 or 4 selected from linear, branched or cyclic organopolysiloxane residues having 3 to 13 silicon atoms, more preferably 3 to 5 silicon atoms It is the basis of valence. Furthermore, it may contain a silalkylene structure such as a silethylene structure in which two silicon atoms are bonded by an alkylene group such as an ethylene group, that is, Si-(CH 2 ) n -Si (in the above formula, n is An integer of 2 to 6, preferably an integer of 2 to 4).
 また、シロキサン結合を有する3~8価の直鎖状、分岐状もしくは環状のオルガノポリシロキサン残基としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000056
(式中、R1は上記と同じである。gは3~12の整数、好ましくは3又は4であり、hは3~8の整数、好ましくは3又は4、jは0~8の整数、好ましくは0又は1で、h+jは3~13の整数、好ましくは3~5の整数であり、kは2又は3である。)
Figure JPOXMLDOC01-appb-C000057
[式中、R4は独立にR1又は下記式(a)
Figure JPOXMLDOC01-appb-C000058
(式中、R1は上記と同じであり、j1は1~6の整数、好ましくは1であり、左側の結合手がSiと結合する。)
で表される基であり、R5は独立に単結合又は下記式(b)
Figure JPOXMLDOC01-appb-C000059
(式中、R2、R4は上記と同じであり、j2は0~6の整数、好ましくは0~3の整数であり、j3は0~6の整数、好ましくは0~2の整数であり、j2+j3は1~6の整数であり、括弧内に示される各繰り返し単位はランダムに結合されていてよい。左側の結合手がSiと結合する。)
で表される基であり、R4の少なくとも1個は式(a)である。]
Furthermore, examples of trivalent to octavalent linear, branched or cyclic organopolysiloxane residues having siloxane bonds include those shown below.
Figure JPOXMLDOC01-appb-C000056
(In the formula, R 1 is the same as above. g is an integer of 3 to 12, preferably 3 or 4, h is an integer of 3 to 8, preferably 3 or 4, and j is an integer of 0 to 8. , preferably 0 or 1, h+j is an integer of 3 to 13, preferably 3 to 5, and k is 2 or 3.)
Figure JPOXMLDOC01-appb-C000057
[In the formula, R 4 is independently R 1 or the following formula (a)
Figure JPOXMLDOC01-appb-C000058
(In the formula, R 1 is the same as above, j1 is an integer of 1 to 6, preferably 1, and the bond on the left side is bonded to Si.)
is a group represented by, R 5 is independently a single bond or the following formula (b)
Figure JPOXMLDOC01-appb-C000059
(In the formula, R 2 and R 4 are the same as above, j2 is an integer of 0 to 6, preferably an integer of 0 to 3, and j3 is an integer of 0 to 6, preferably an integer of 0 to 2. (j2+j3 is an integer from 1 to 6, and each repeating unit shown in parentheses may be randomly bonded. The bond on the left bonds to Si.)
It is a group represented by, and at least one of R 4 is represented by formula (a). ]
 このようなZとしては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Examples of such Z include those shown below.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 上記式(2);-Q-Z(W)αにおいて、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
Figure JPOXMLDOC01-appb-C000064
(式中、R、X、aは上記と同じであり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)
In the above formula (2); -QZ(W) α , W is independently a monovalent hydrolyzable silyl group-containing group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000064
(In the formula, R, It is the basis.)
 上記式(3)において、R、X、aは上記式(11)のR、X、aと同じであり、上記式(11)のR、X、aと同様のものが例示できる。 In the above formula (3), R, X, and a are the same as R, X, and a in the above formula (11), and the same ones as R, X, and a in the above formula (11) can be exemplified.
 上記式(3)において、Yは、単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基であり、フッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基としては、炭素数1~10のアルキレン基、フッ素原子を含む炭素数1~10のアルキレン基、炭素数6~8のアリーレン基を含むアルキレン基(アルキレン・アリーレン基)、アルキレン基相互がシルアルキレン構造又はシルアリーレン構造を介して結合している2価の基、及びケイ素原子数2~10個の直鎖状又はケイ素原子数3~10個の分岐状もしくは環状の2価のオルガノポリシロキサン残基の結合手に炭素数2~10のアルキレン基が結合している2価の基からなる群より選ばれる基である。 In the above formula (3), Y is a single bond or a divalent hydrocarbon group which may have one or more types selected from a fluorine atom, a silicon atom, and a siloxane bond; Examples of the divalent hydrocarbon group which may have one or more types selected from atoms and siloxane bonds include an alkylene group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms containing a fluorine atom, Alkylene groups containing arylene groups having 6 to 8 carbon atoms (alkylene/arylene groups), divalent groups in which alkylene groups are bonded to each other via a sylalkylene structure or sylarylene structure, and 2 to 10 silicon atoms. A group consisting of a divalent group in which an alkylene group having 2 to 10 carbon atoms is bonded to the bond of a linear or branched or cyclic divalent organopolysiloxane residue having 3 to 10 silicon atoms. It is a group selected from
 単結合以外のYとして、具体的には、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000065
Specific examples of Y other than a single bond include those shown below.
Figure JPOXMLDOC01-appb-C000065
 上記式(3)における基としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000066
Examples of the group in the above formula (3) include those shown below.
Figure JPOXMLDOC01-appb-C000066
 上記式(2);-Q-Z(W)αにおいて、Wの数を示すαは2~7の整数、好ましくは2又は3である。 In the above formula (2); -QZ(W) α , α indicating the number of W is an integer of 2 to 7, preferably 2 or 3.
 上記式(2)における基;-Q-Z(W)α(即ち、式(1)のD)としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000067
Examples of the group in the above formula (2); -Q-Z(W) α (ie, D in formula (1)) include those shown below.
Figure JPOXMLDOC01-appb-C000067
 上記式(1)で示されるフルオロポリエーテル基含有ポリマーとしては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000068
(式中、A1、Rfは上記と同じである。)
Examples of the fluoropolyether group-containing polymer represented by the above formula (1) include those shown below.
Figure JPOXMLDOC01-appb-C000068
(In the formula, A 1 and Rf are the same as above.)
 次に、下記式(4)で示されるフルオロポリエーテル基含有ポリマーについて説明する。
Figure JPOXMLDOC01-appb-C000069
 上記式(4)において、Rfは上記と同じであり、上記式(1)のRfで例示したものと同様のものが例示できる。
Next, the fluoropolyether group-containing polymer represented by the following formula (4) will be explained.
Figure JPOXMLDOC01-appb-C000069
In the above formula (4), Rf is the same as above, and the same thing as exemplified as Rf in the above formula (1) can be exemplified.
 上記式(4);A2-Rf-Gにおいて、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はG(即ち、後述する式(5);-C(B)(W)2で示される1価の基)であり、末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、好ましくは炭素数1~6のフルオロアルキル基である。 In the above formula (4); A 2 -Rf-G, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G (i.e. , a monovalent group represented by formula (5); -C(B)(W) 2 ), which has a CF 3 - or CF 2 H- terminal and may contain an oxygen atom. The fluorine-containing hydrocarbon group is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
 このようなA2の末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、例えば下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000070
Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 2 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
Figure JPOXMLDOC01-appb-C000070
 上記式(4);A2-Rf-Gにおいて、Gは独立に下記式(5)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000071
 上記式(5)において、Wは上記と同じであり、上記式(2)のWで例示したものと同様のものが例示できる。
In the above formula (4); A 2 -Rf-G, G is independently a monovalent group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000071
In the above formula (5), W is the same as above, and the same W as exemplified in the above formula (2) can be exemplified.
 上記式(5);-C(B)(W)2において、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000072
In the above formula (5); -C(B)(W) 2 , B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or the following formula (6 ) is a monovalent group represented by
Figure JPOXMLDOC01-appb-C000072
 ここで、Sの炭素数1~10の1価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基などが挙げられ、炭素数1~3のアルキル基、フェニル基が好ましい。 Here, examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms for S include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and octyl group, vinyl group, allyl group, etc. alkenyl groups, phenyl groups, aryl groups such as tolyl groups, aralkyl groups such as benzyl groups and phenylethyl groups, and alkyl groups having 1 to 3 carbon atoms and phenyl groups are preferred.
 上記式(6);-T-(LO)l-Eにおいて、Tは単結合又は2価の基であり、好ましくは、単結合、又はシロキサン結合、シルアルキレン結合(例えばシルエチレン結合、シルプロピレン結合)、シルアリーレン結合(例えばシルフェニレン結合)及びジオルガノシリレン基(例えば、ジメチルシリレン基等のジアルキルシリレン基、ジメトキシシリレン基等のジアルコキシシリレン基)からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数2~20の2価炭化水素基、2価のシロキサン結合、シルアルキレン基もしくはジオルガノシリレン基である。
 ここで、2価炭化水素基としては、メチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)、ブチレン基(テトラメチレン基、メチルプロピレン基)、ヘキサメチレン基、オクタメチレン基等のアルキレン基、フェニレン基等のアリーレン基、又はこれらの基の2種以上の組み合わせ(アルキレン・アリーレン基等)などが挙げられ、プロピレン基が好ましい。
In the above formula (6); -T-(LO) l -E, T is a single bond or a divalent group, preferably a single bond, a siloxane bond, a silalkylene bond (for example, a silethylene bond, a silpropylene bond, bond), sylarylene bond (e.g., silphenylene bond), and diorganosilylene group (e.g., dialkylsilylene group such as dimethylsilylene group, dialkoxysilylene group such as dimethoxysilylene group). A divalent hydrocarbon group having 2 to 20 carbon atoms, a divalent siloxane bond, a silalkylene group, or a diorganosilylene group which may contain .
Here, examples of divalent hydrocarbon groups include alkylene groups such as methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group, methylpropylene group), hexamethylene group, octamethylene group, etc. group, an arylene group such as a phenylene group, or a combination of two or more of these groups (alkylene/arylene group, etc.), with a propylene group being preferred.
 単結合以外のTとして、具体的には、下記に示すものを例示することができる。なお、下記の構造において、右側の結合手がL又はEと結合することが好ましい。
Figure JPOXMLDOC01-appb-C000073
Specific examples of T other than a single bond include those shown below. In addition, in the structure below, it is preferable that the bond on the right side is bonded to L or E.
Figure JPOXMLDOC01-appb-C000073
 上記式(6);-T-(LO)l-Eにおいて、Lは独立にメチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)、ブチレン基(テトラメチレン基)等のアルキレン基などの炭素数1~4の2価炭化水素基であり、(LO)単位ごとに炭素数は単一でも混合されていてもよい。
 上記式(6);-T-(LO)l-Eにおいて、lは0~20の整数、好ましくは0~10の整数、より好ましくは0~6の整数である。なお、(LO)を有する場合、lは1以上、特に2以上であることが好ましい。
 上記式(6);-T-(LO)l-Eにおいて、Eは、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~4のアルキル基、フェニル基などの炭素数1~6の1価炭化水素基、又はWであり、Wは上記と同じであり、上記式(2)のWで例示したものと同様のものが例示できる。
In the above formula (6); -T-(LO) l -E, L is independently an alkylene group such as a methylene group, ethylene group, propylene group (trimethylene group, methylethylene group), butylene group (tetramethylene group), etc. is a divalent hydrocarbon group having 1 to 4 carbon atoms, and each (LO) unit may have a single carbon number or a mixture of carbon atoms.
In the above formula (6); -T-(LO) l -E, l is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 6. In addition, when it has (LO), it is preferable that l is 1 or more, especially 2 or more.
In the above formula (6); -T-(LO) l -E, E is an alkyl group having 1 to 4 carbon atoms such as a methyl group, ethyl group, propyl group, butyl group, or a carbon number 1 to 4 such as a phenyl group. 6, or W, W is the same as above, and examples thereof include those exemplified for W in formula (2) above.
 上記式(6);-T-(LO)l-Eで示される1価の基としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000074
Examples of the monovalent group represented by the above formula (6); -T-(LO) l -E include those shown below.
Figure JPOXMLDOC01-appb-C000074
 上記式(5);-C(B)(W)2で示される1価の基(即ち、式(4)のG)としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000075
Examples of the monovalent group represented by the above formula (5); -C(B)(W) 2 (ie, G in formula (4)) include those shown below.
Figure JPOXMLDOC01-appb-C000075
 上記式(4)で示されるフルオロポリエーテル基含有ポリマーとしては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000076
(式中、A2、Rfは上記と同じである。)
Examples of the fluoropolyether group-containing polymer represented by the above formula (4) include those shown below.
Figure JPOXMLDOC01-appb-C000076
(In the formula, A 2 and Rf are the same as above.)
 次に、下記式(7)で示されるフルオロポリエーテル基含有ポリマーについて説明する。
Figure JPOXMLDOC01-appb-C000077
 上記式(7)において、Rfは上記と同じであり、上記式(1)のRfで例示したものと同様のものが例示できる。
Next, the fluoropolyether group-containing polymer represented by the following formula (7) will be explained.
Figure JPOXMLDOC01-appb-C000077
In the above formula (7), Rf is the same as above, and the same thing as that exemplified for Rf in the above formula (1) can be exemplified.
 上記式(7);A3-Rf-Jにおいて、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJ(即ち、後述する式(8);-V-C(=O)N(S)2-e(M)eで示される1価の基)であり、末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、好ましくは炭素数1~6のフルオロアルキル基である。 In the above formula (7); A 3 -Rf-J, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J (i.e. , the formula (8) described below; -VC(=O)N(S) 2-e (M) a monovalent group represented by e ), and the terminal is CF 3 - or CF 2 H- The monovalent fluorine-containing hydrocarbon group which may contain an oxygen atom is preferably a fluoroalkyl group having 1 to 6 carbon atoms.
 このようなA3の末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、例えば下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000078
Examples of such a monovalent fluorine-containing hydrocarbon group in which the terminal of A 3 is CF 3 - or CF 2 H- and may contain an oxygen atom include the following groups.
Figure JPOXMLDOC01-appb-C000078
 上記式(7);A3-Rf-Jにおいて、Jは独立に下記式(8)で示される1価の基であり、J中に上記W(1価の加水分解性シリル基含有基)を2個以上有する。
Figure JPOXMLDOC01-appb-C000079
In the above formula (7); A 3 -Rf-J, J is independently a monovalent group represented by the following formula (8), and in J, the above W (monovalent hydrolyzable silyl group-containing group) It has two or more.
Figure JPOXMLDOC01-appb-C000079
 上記式(8)において、Sは上記と同じであり、上記のSで例示したものと同様のものが例示できる。 In the above formula (8), S is the same as above, and the same things as those exemplified for S above can be exemplified.
 上記式(8)において、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、単結合以外のVとして、具体的には、下記に示すものを例示することができる。なお、下記の構造において、右側の結合手が炭素原子(-C(=O)-)と結合することが好ましい。
Figure JPOXMLDOC01-appb-C000080
 上記式(8)において、eは1又は2であり、1であることが好ましい。
 上記式(8)において、Mは独立に下記式(9)で示される1価の基である。
Figure JPOXMLDOC01-appb-C000081
In the above formula (8), V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and specifically, V other than a single bond is as shown below. Can give examples. In the structure below, it is preferable that the bond on the right side bonds to a carbon atom (-C(=O)-).
Figure JPOXMLDOC01-appb-C000080
In the above formula (8), e is 1 or 2, preferably 1.
In the above formula (8), M is independently a monovalent group represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000081
 上記式(9)において、Y、S、Wは上記と同じであり、それぞれ上記式(3)のY、上記のS、上記式(2)のWで例示したものと同様のものが例示できる。
 上記式(9)において、fは1~3の整数である。
In the above formula (9), Y, S, and W are the same as above, and can be exemplified by the same things as those exemplified for Y in the above formula (3), S in the above, and W in the above formula (2), respectively. .
In the above formula (9), f is an integer from 1 to 3.
 上記式(9);-Y-C(S)3-f(W)fで示される1価の基(即ち、式(8)のM)としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000082
Examples of the monovalent group represented by the above formula (9); -Y-C(S) 3-f (W) f (ie, M in formula (8)) include those shown below.
Figure JPOXMLDOC01-appb-C000082
 上記式(8);-V-C(=O)N(S)2-e(M)eで示される1価の基としては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Examples of the monovalent group represented by the above formula (8); -VC(=O)N(S) 2-e (M) e include those shown below.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
 上記式(7)で示されるフルオロポリエーテル基含有ポリマーとしては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
(式中、A3、Rfは上記と同じである。)
Examples of the fluoropolyether group-containing polymer represented by the above formula (7) include those shown below.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
(In the formula, A 3 and Rf are the same as above.)
 本発明の撥水撥油物品の製造方法において、撥水撥油表面層を形成するための、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物を含む表面処理剤は、上述した加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又は該ポリマーの部分加水分解縮合物に加えて、更に、下記式(10)で示される加水分解性シリル基を含有しないフルオロポリエーテル基含有ポリマー及び/又はその部分(加水分解)縮合物(以下、加水分解性シリル基を含有しないポリマーという)を含有する混合物(即ち、フルオロポリエーテル基含有ポリマー組成物)であってもよい。なお、本発明において、「部分(加水分解)縮合物」とは、部分縮合物又は部分加水分解縮合物のことである。
Figure JPOXMLDOC01-appb-C000087
[式中、Rfは上記と同じであり、上記式(1)のRfで例示したものと同様のものが例示できる。A4は独立に末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、-OR3、-COOR3又は-PO(OR32(R3は水素原子又は炭素数1~10の1価炭化水素基である。)である。]
In the method for producing a water- and oil-repellent article of the present invention, a surface containing a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof for forming a water- and oil-repellent surface layer In addition to the above-mentioned fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate of the polymer, the treatment agent further contains a hydrolyzable silyl group represented by the following formula (10). A mixture (i.e., a fluoropolyether group-containing polymer composition) containing a fluoropolyether group-containing polymer and/or a partial (hydrolyzed) condensate thereof (hereinafter referred to as a polymer not containing a hydrolyzable silyl group). There may be. In the present invention, the "partial (hydrolyzed) condensate" refers to a partial condensate or a partially hydrolyzed condensate.
Figure JPOXMLDOC01-appb-C000087
[In the formula, Rf is the same as above, and the same thing as exemplified for Rf in the above formula (1) can be exemplified. A 4 is independently a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or -PO(OR 3 ) 2 ( R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. ]
 上記式(10)において、A4は独立に末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、-OR3、-COOR3又は-PO(OR32であり、末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基としては、A1の末端がCF3-又はCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基として例示したものと同様のものが例示できる。
 ここで、R3は水素原子又は炭素数1~10の1価炭化水素基であり、1価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基などが挙げられ、R3としては、水素原子、炭素数1~3のアルキル基、フェニル基が好ましい。
 A4の-OR3、-COOR3、-PO(OR32としては、-OH、-OCH3、-COOH、-COOCH3、-PO(OH)2、-OC25、-COOC25が例示できる。
In the above formula (10), A 4 is independently a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or - The monovalent fluorine-containing hydrocarbon group which is PO(OR 3 ) 2 and which has a CF 3 - or CF 2 H- terminal and may contain an oxygen atom is an example of a monovalent fluorine-containing hydrocarbon group which is CF 3 - or CF 2 H- at the terminal and which may contain an oxygen atom. Examples of the monovalent fluorine-containing hydrocarbon group which is 2 H- and may contain an oxygen atom are the same as those exemplified above.
Here, R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and examples of the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and octyl group. Examples include alkyl groups such as vinyl groups, alkenyl groups such as vinyl groups and allyl groups, aryl groups such as phenyl groups and tolyl groups, aralkyl groups such as benzyl groups and phenylethyl groups, and R 3 is a hydrogen atom, a carbon An alkyl group of 1 to 3 and a phenyl group are preferred.
-OR 3 , -COOR 3 , -PO(OR 3 ) 2 of A 4 include -OH, -OCH 3 , -COOH, -COOCH 3 , -PO(OH) 2 , -OC 2 H 5 , -COOC 2H5 is an example.
 上記式(10)で示されるフルオロポリエーテル基含有ポリマーとしては、下記に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000088
(式中、p”、q”、r”、s”、t”及びu”はそれぞれ独立に0~150の整数であり、p”、q”、r”、s”、t”及びu”の合計は12~250であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p”、q”、r”、s”、t”及びu”が付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)
Examples of the fluoropolyether group-containing polymer represented by the above formula (10) include those shown below.
Figure JPOXMLDOC01-appb-C000088
(In the formula, p", q", r", s", t" and u" are each independently an integer of 0 to 150, and p", q", r", s", t" and u" The total of (The repeating units shown in parentheses may be combined randomly.)
 本発明の撥水撥油物品の製造方法において、撥水撥油表面層の形成に用いられる表面処理剤は、上記式(1)、(4)又は(7)で示される分子鎖片末端に少なくとも2個の加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又は該ポリマーの部分加水分解縮合物(片末端型ポリマー)の少なくとも1種、又は上記式(1)、(4)又は(7)で示される分子鎖両末端にそれぞれ少なくとも2個の加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又は該ポリマーの部分加水分解縮合物(両末端型ポリマー)の少なくとも1種を含有するものであるか、該片末端型ポリマーの少なくとも1種と該両末端型ポリマーの少なくとも1種とを含有する混合物を含有するものであるか、あるいは、これらのいずれかに、更に上記加水分解性シリル基を含有しないポリマーを含有する混合物(フルオロポリエーテル基含有ポリマー組成物)を含むものである。 In the method for producing a water- and oil-repellent article of the present invention, the surface treatment agent used to form the water- and oil-repellent surface layer is attached to the terminal of a molecular chain represented by the above formula (1), (4), or (7). At least one type of fluoropolyether group-containing polymer having at least two hydrolyzable silyl groups and/or a partially hydrolyzed condensate (single-terminated polymer) of the polymer, or the above formula (1), (4), or At least one kind of fluoropolyether group-containing polymer having at least two hydrolyzable silyl groups at both ends of the molecular chain and/or a partially hydrolyzed condensate of the polymer (double-terminated polymer) represented by (7) or a mixture containing at least one of the one-terminated polymer and at least one of the double-terminated polymer, or any of these, and further the above-mentioned It includes a mixture (fluoropolyether group-containing polymer composition) containing a polymer that does not contain a hydrolyzable silyl group.
 表面処理剤中に含まれるフルオロポリエーテル基含有ポリマー混合物(フルオロポリエーテル基含有ポリマー組成物)において、片末端型ポリマー及び/又は両末端型ポリマーと加水分解性シリル基を含有しないポリマーとの混合比率は、形成される撥水撥油表面層が上記加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものとなる範囲において特に制限されるものでないが、通常、片末端型ポリマー及び/又は両末端型ポリマーと加水分解性シリル基を含有しないポリマーからなるフルオロポリエーテル基含有ポリマー組成物全体に対して加水分解性シリル基を含有しないポリマーが0~30モル%、特には0~10モル%の比率であることが望ましい。 In a fluoropolyether group-containing polymer mixture (fluoropolyether group-containing polymer composition) contained in a surface treatment agent, a mixture of a single-end type polymer and/or a both-end type polymer and a polymer that does not contain a hydrolyzable silyl group. The ratio is particularly within the range where the water- and oil-repellent surface layer to be formed is mainly composed of the above-mentioned fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof. Although not limited, usually, a hydrolyzable silyl group is added to the entire fluoropolyether group-containing polymer composition consisting of a single-terminated polymer and/or a double-terminated polymer and a polymer that does not contain a hydrolyzable silyl group. It is desirable that the proportion of the polymer not contained is 0 to 30 mol%, particularly 0 to 10 mol%.
 表面処理剤においては、上記加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物、あるいはフルオロポリエーテル基含有ポリマー組成物の数平均分子量が1,000~20,000の範囲であることが好ましい。より好ましくは該数平均分子量が2,000~10,000、特に好ましくは3,000~8,000である。なお、該数平均分子量は、19F-NMR分析の特性ピーク強度比率から算出することができる。 In the surface treatment agent, the number average molecular weight of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate, or the fluoropolyether group-containing polymer composition is 1,000 to 20,000. Preferably, the range is within the range. More preferably, the number average molecular weight is 2,000 to 10,000, particularly preferably 3,000 to 8,000. The number average molecular weight can be calculated from the characteristic peak intensity ratio of 19 F-NMR analysis.
 上記数平均分子量の範囲である加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物、あるいはフルオロポリエーテル基含有ポリマー組成物は、上記加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物、あるいはフルオロポリエーテル基含有ポリマー組成物を、精留又は分子蒸留することにより得ることができる。
 また、上記数平均分子量の範囲である加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物、あるいはフルオロポリエーテル基含有ポリマー組成物は、フルオロポリエーテル基含有ポリマーを合成する際に用いるフッ素化合物を、予め上記の数平均分子量となる化合物を使用することによっても調製できる。
A fluoropolyether group-containing polymer and/or a partially hydrolyzed condensate thereof, or a fluoropolyether group-containing polymer composition having a hydrolyzable silyl group having the above-mentioned number average molecular weight, has the above-mentioned hydrolyzable silyl group. A fluoropolyether group-containing polymer and/or a partially hydrolyzed condensate thereof, or a fluoropolyether group-containing polymer composition can be obtained by rectification or molecular distillation.
In addition, a fluoropolyether group-containing polymer and/or a partially hydrolyzed condensate thereof, or a fluoropolyether group-containing polymer composition having a hydrolyzable silyl group having a number average molecular weight within the above range is a fluoropolyether group-containing polymer. The fluorine compound used when synthesizing can also be prepared by using in advance a compound having the above number average molecular weight.
 表面処理剤には、必要に応じて、加水分解縮合触媒、例えば、有機錫化合物(ジブチル錫ジメトキシド、ジラウリン酸ジブチル錫など)、有機チタン化合物(テトラn-ブチルチタネートなど)、有機酸(酢酸、メタンスルホン酸、フッ素変性カルボン酸など)、無機酸(塩酸、硫酸など)を添加してもよい。これらの中では、特に酢酸、テトラn-ブチルチタネート、ジラウリン酸ジブチル錫、フッ素変性カルボン酸などが望ましい。添加量は触媒量であり、通常、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物100質量部に対して0.01~5質量部、特に0.1~1質量部である。 The surface treatment agent may optionally contain a hydrolysis condensation catalyst, such as an organic tin compound (dibutyltin dimethoxide, dibutyltin dilaurate, etc.), an organic titanium compound (tetra n-butyl titanate, etc.), or an organic acid (acetic acid, Methanesulfonic acid, fluorine-modified carboxylic acid, etc.), inorganic acids (hydrochloric acid, sulfuric acid, etc.) may be added. Among these, acetic acid, tetra-n-butyl titanate, dibutyltin dilaurate, fluorine-modified carboxylic acid, and the like are particularly preferred. The amount added is a catalytic amount, and is usually 0.01 to 5 parts by weight, particularly 0.1 parts by weight, per 100 parts by weight of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof. ~1 part by mass.
 また、表面処理剤は溶剤を含んでよい。溶剤は、好ましくはフッ素変性脂肪族炭化水素系溶剤(パーフルオロヘプタン、パーフルオロオクタンなど)、フッ素変性オレフィン系溶剤(メトキシパーフルオロヘプテンなど)、フッ素変性芳香族炭化水素系溶剤(m-キシレンヘキサフルオライド、ベンゾトリフルオライド、1,3-トリフルオロメチルベンゼンなど)、フッ素変性エーテル系溶剤(メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、パーフルオロ(2-ブチルテトラヒドロフラン)など)、フッ素変性アルキルアミン系溶剤(パーフルオロトリブチルアミン、パーフルオロトリペンチルアミンなど)、炭化水素系溶剤(石油ベンジン、ミネラルスピリッツ、トルエン、キシレンなど)、ケトン系溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)であるのがよい。中でも、溶解性、濡れ性などの点で、フッ素変性された溶剤(フッ素系溶剤という)が望ましく、特には、1,3-トリフルオロメチルベンゼン、m-キシレンヘキサフルオライド、パーフルオロ(2-ブチルテトラヒドロフラン)、パーフルオロトリブチルアミン、及びエチルパーフルオロブチルエーテルが好ましい。 Additionally, the surface treatment agent may contain a solvent. The solvent is preferably a fluorine-modified aliphatic hydrocarbon solvent (perfluoroheptane, perfluorooctane, etc.), a fluorine-modified olefin solvent (methoxyperfluoroheptene, etc.), a fluorine-modified aromatic hydrocarbon solvent (m-xylene, etc.). hexafluoride, benzotrifluoride, 1,3-trifluoromethylbenzene, etc.), fluorine-modified ether solvents (methyl perfluorobutyl ether, ethyl perfluorobutyl ether, perfluoro(2-butyltetrahydrofuran), etc.), fluorine-modified alkyl amines These include solvents (perfluorotributylamine, perfluorotripentylamine, etc.), hydrocarbon solvents (petroleum benzene, mineral spirits, toluene, xylene, etc.), and ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). good. Among them, fluorine-modified solvents (referred to as fluorine-based solvents) are preferable in terms of solubility and wettability, and in particular, 1,3-trifluoromethylbenzene, m-xylene hexafluoride, perfluoro(2- butyltetrahydrofuran), perfluorotributylamine, and ethyl perfluorobutyl ether are preferred.
 上記溶剤はその2種以上を混合してもよく、加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物、あるいはフルオロポリエーテル基含有ポリマー組成物を均一に溶解させるものであることが好ましい。なお、溶剤に溶解させる加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の最適濃度は、表面処理剤の使用方法に応じて適宜選択すればよく、制限されるものではない。通常は0.01~30質量%、好ましくは0.02~25質量%、更に好ましくは0.05~20質量%となるように溶解させる。 Two or more of the above solvents may be mixed to uniformly dissolve the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate, or the fluoropolyether group-containing polymer composition. It is preferable that the The optimum concentration of the fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or its partially hydrolyzed condensate to be dissolved in the solvent may be appropriately selected depending on the method of using the surface treatment agent, and is not limited. It's not something you can do. It is usually dissolved in an amount of 0.01 to 30% by weight, preferably 0.02 to 25% by weight, and more preferably 0.05 to 20% by weight.
 表面処理剤を用いた撥水撥油表面層の形成は、刷毛塗り法、ディップコーティング(浸漬)法、スプレーコーティング法等の湿式方法が採用される。これらの中でもスプレーコーティング法又はディップコーティング(浸漬)法で形成することが好ましい。蒸着処理(物理気相蒸着(PVD)法や化学気相蒸着(CVD)法)などの乾式方法により形成された撥水撥油表面層では十分な撥水撥油性を発現することができない。 For forming a water- and oil-repellent surface layer using a surface treatment agent, a wet method such as a brush coating method, a dip coating method, or a spray coating method is adopted. Among these, it is preferable to use a spray coating method or a dip coating method. A water- and oil-repellent surface layer formed by a dry method such as a vapor deposition process (physical vapor deposition (PVD) method or chemical vapor deposition (CVD) method) cannot exhibit sufficient water- and oil-repellency.
 撥水撥油表面層の形成後に硬化処理を行うことが好ましい。刷毛塗り法、ディップコーティング法、スプレーコーティング法の場合は、60~150℃、好ましくは60~120℃、95%以下の相対湿度にて30分~24時間、好ましくは30分~2時間が好ましい。 It is preferable to perform a curing treatment after forming the water- and oil-repellent surface layer. In the case of brush coating method, dip coating method, and spray coating method, it is preferable to apply at 60 to 150°C, preferably 60 to 120°C, and a relative humidity of 95% or less for 30 minutes to 24 hours, preferably 30 minutes to 2 hours. .
 撥水撥油表面層の膜厚は、通常2~100nmであり、3~20nmが好ましい。撥水撥油表面層の膜厚が2nm未満では撥水撥油表面層の被覆率が低くなり撥水撥油性や耐久性が低くなる場合があり、100nmを超えると硬化しにくくなり撥水撥油性や耐久性が低くなる場合がある。撥水撥油表面層の膜厚は、上述したXRRや、分光エリプソメトリーにより測定できる。 The thickness of the water- and oil-repellent surface layer is usually 2 to 100 nm, preferably 3 to 20 nm. If the film thickness of the water- and oil-repellent surface layer is less than 2 nm, the coverage of the water- and oil-repellent surface layer may be low, resulting in poor water- and oil-repellency and durability. Oiliness and durability may decrease. The thickness of the water- and oil-repellent surface layer can be measured by the above-mentioned XRR or spectroscopic ellipsometry.
 本発明の製造方法によって得られる撥水撥油物品は、前記撥水撥油表面層の水に対する後退接触角(θWR)が101°以上であることが好ましく、前記撥水撥油表面層のオレイン酸に対する後退接触角(θOR)が64°以上であることが好ましい。
 また、前記撥水撥油表面層の水に対する前進接触角(θWA)と後退接触角(θWR)の差分(ΔW)が20°以下であることが好ましく、前記撥水撥油表面層のオレイン酸に対する前進接触角(θOA)と後退接触角(θOR)の差分(ΔO)が20°以下であることが好ましい。水及びオレイン酸に対する前進接触角(θWA、θOA)と後退接触角(θWR、θOR)の差分(ΔW、ΔO)がいずれも20°以下であると転落性が良好となり、液滴が除去しやすくなるため、撥水撥油性が良好となる。
 なお、これら前進接触角(θWA、θOA)と後退接触角(θWR、θOR)及びそれらの差分(ΔW、ΔO)は、温度:25℃、相対湿度:40%において、接触角計Drop Master(協和界面科学社製)を用いて拡張/収縮法により求めることができる。
In the water- and oil-repellent article obtained by the production method of the present invention, it is preferable that the water- and oil-repellent surface layer has a receding contact angle (θ WR ) with respect to water of 101° or more, and that the water- and oil-repellent surface layer It is preferable that the receding contact angle (θ OR ) with respect to oleic acid is 64° or more.
Further, it is preferable that the difference (Δ W ) between the advancing contact angle (θ WA ) and the receding contact angle (θ WR ) of the water- and oil-repellent surface layer with respect to water is 20° or less, and the water- and oil-repellent surface layer The difference (Δ O ) between the advancing contact angle (θ OA ) and the receding contact angle (θ OR ) with respect to oleic acid is preferably 20° or less. When the difference (Δ W , Δ O ) between the advancing contact angles (θ WA , θ OA ) and the receding contact angles (θ WR , θ OR ) with respect to water and oleic acid are both 20° or less, the rolling properties are good; Since droplets are easier to remove, water and oil repellency is improved.
Note that these advancing contact angles (θ WA , θ OA ), receding contact angles (θ WR , θ OR ), and their differences (Δ W , Δ O ) are calculated at a temperature of 25°C and a relative humidity of 40%. It can be determined by the expansion/contraction method using the angle meter Drop Master (manufactured by Kyowa Interface Science Co., Ltd.).
 本発明の撥水撥油物品の製造方法によれば、得られる撥水撥油物品における水及び油の除去性を改善することができる。 According to the method for producing a water- and oil-repellent article of the present invention, the removability of water and oil in the obtained water- and oil-repellent article can be improved.
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記実施例によって限定されるものではない。なお、下記の例示において、数平均分子量は、19F-NMR分析の特性ピーク強度比率から算出した値である。 EXAMPLES Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples, but the present invention is not limited by the Examples below. In the following examples, the number average molecular weight is a value calculated from the characteristic peak intensity ratio of 19 F-NMR analysis.
[比較例1]
〔基材のアルカリ洗浄〕
 化学強化アルミノケイ酸塩ガラス(Corning社製、GORILLA、サイズ:100mm×50mm×0.7mm(厚さ))をアルカリ性洗浄液(横浜油脂製セミクリーンL.G.Lを5質量%に希釈した水溶液)に浸漬し、5分間超音波洗浄を行った。その後、イオン交換水に浸漬し、6分間超音波洗浄を行った。基材の水分を圧縮空気により吹き飛ばし乾燥させた。
[Comparative example 1]
[Alkali cleaning of base material]
Chemically strengthened aluminosilicate glass (GORILLA, manufactured by Corning, size: 100 mm x 50 mm x 0.7 mm (thickness)) was washed with an alkaline cleaning solution (an aqueous solution in which Semi-Clean L.G.L manufactured by Yokohama Oil and Fat was diluted to 5% by mass). and ultrasonic cleaning was performed for 5 minutes. Thereafter, it was immersed in ion-exchanged water and subjected to ultrasonic cleaning for 6 minutes. The moisture in the base material was blown off with compressed air and dried.
〔基材のプラズマ洗浄〕
 上記のアルカリ洗浄を行った基材表面を酸素アルゴン混合プラズマにより処理した。処理条件を以下に示す。
処理装置:PDC510(ヤマト科学製)
酸素ガス流量:10sccm(Standard Cubic CentiMeters)
アルゴンガス流量:100sccm
処理圧力:60Pa
rf供給電力:250W
処理時間:30秒
[Plasma cleaning of base material]
The surface of the base material that had been subjected to the alkali cleaning described above was treated with oxygen-argon mixed plasma. The processing conditions are shown below.
Processing device: PDC510 (manufactured by Yamato Scientific)
Oxygen gas flow rate: 10sccm (Standard Cubic CentiMeters)
Argon gas flow rate: 100sccm
Processing pressure: 60Pa
rf supply power: 250W
Processing time: 30 seconds
〔シリカナノ粒子のディップコーティングによる酸化珪素下地層の形成〕
 ディップコーター(DT-0303-S3、SDI製)に上記のアルカリ洗浄及びプラズマ洗浄を行った基材をセットし、シリカナノ粒子の水分散液を浸漬塗工し、膜厚4nmの酸化珪素下地層を形成した。形成条件を以下に示す。
シリカナノ粒子平均粒径:2nm
シリカナノ粒子濃度:0.1質量%
浸漬時間:30秒
引上げ速度:0.5mm/秒
乾燥条件:150℃、30分
[Formation of silicon oxide base layer by dip coating of silica nanoparticles]
The above-mentioned alkali-cleaned and plasma-cleaned base material was set in a dip coater (DT-0303-S3, manufactured by SDI), and an aqueous dispersion of silica nanoparticles was dip-coated to form a silicon oxide base layer with a thickness of 4 nm. Formed. The formation conditions are shown below.
Silica nanoparticle average particle size: 2nm
Silica nanoparticle concentration: 0.1% by mass
Immersion time: 30 seconds Pulling speed: 0.5 mm/second Drying conditions: 150°C, 30 minutes
 上記の酸化珪素下地層の膜厚は、X線反射率測定により得た。即ち、測定したプロファイルについてシミュレーションフィッティングを行い、膜厚を求めた。
 測定条件を以下に示す。
測定装置:SmartLab(リガク製)
X線源:回転対陰極(Cu)、出力45kV,200mA
入射光学系:Ge(111)非対称ビーム圧縮結晶
受光側ソラースリット:5.0°
スリット:入射側 IS=0.05mm
     受光側 RS1=0.1mm、RS2=0.1mm
走査条件:走査軸 2θ/ω
     走査速度 0.2°/分
     ステップ幅 0.002°
The film thickness of the silicon oxide underlayer described above was obtained by X-ray reflectance measurement. That is, simulation fitting was performed on the measured profile to determine the film thickness.
The measurement conditions are shown below.
Measuring device: SmartLab (manufactured by Rigaku)
X-ray source: Rotating anticathode (Cu), output 45kV, 200mA
Input optical system: Ge (111) asymmetric beam compression crystal Receiving side Solar slit: 5.0°
Slit: Incident side IS=0.05mm
Light receiving side RS1=0.1mm, RS2=0.1mm
Scanning conditions: Scanning axis 2θ/ω
Scanning speed 0.2°/min Step width 0.002°
〔ディップコーティングによる撥水撥油表面層の形成〕
 ディップコーター(DT-0303-S3、SDI製)に上記の酸化珪素下地層付き基材をセットし、下記のディップコーティング表面処理剤を用いて浸漬塗工し、膜厚10nmの撥水撥油表面層を形成した。形成条件を以下に示す。
浸漬時間:30秒
引上げ速度:3mm/秒
 上記のディップコーティング表面処理剤(フルオロポリエーテル基含有ポリマー)を塗布した基材を80℃、相対湿度80%の環境下で30分間放置し、撥水撥油表面層を硬化して定着させ、フルオロポリエーテル基含有ポリマーによる膜厚10nmの撥水撥油表面層を有する基材を得た。
 上記の撥水撥油表面層の膜厚は、蛍光X線測定装置((株)リガク製、商品名:蛍光エックス線計測装置Primini)で、フッ素元素由来の蛍光X線強度を定量し、検量線を用いて算出した。
[Formation of water- and oil-repellent surface layer by dip coating]
The above substrate with silicon oxide underlayer was set in a dip coater (DT-0303-S3, manufactured by SDI), and dip coating was performed using the dip coating surface treatment agent below to form a water- and oil-repellent surface with a film thickness of 10 nm. formed a layer. The formation conditions are shown below.
Immersion time: 30 seconds Pulling speed: 3 mm/second The base material coated with the above dip coating surface treatment agent (fluoropolyether group-containing polymer) was left for 30 minutes in an environment of 80°C and 80% relative humidity to make it water repellent. The oil-repellent surface layer was cured and fixed to obtain a base material having a 10 nm thick water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer.
The film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
〔ディップコーティング用表面処理剤の調製〕
 下記式で表される化合物(A)(数平均分子量4,000)をフッ素溶剤(3M社製NOVEC HFE-7200)に濃度が0.1質量%になるように溶解し、表面処理剤とした。
Figure JPOXMLDOC01-appb-C000089
(p/q=1.0、p+q=42)
[Preparation of surface treatment agent for dip coating]
Compound (A) represented by the following formula (number average molecular weight 4,000) was dissolved in a fluorine solvent (NOVEC HFE-7200 manufactured by 3M) to a concentration of 0.1% by mass, and used as a surface treatment agent. .
Figure JPOXMLDOC01-appb-C000089
(p/q=1.0, p+q=42)
[比較例2]
〔スプレーコーティングによる撥水撥油表面層の形成〕
 スプレーコーター(API-40RD、API製)に比較例1と同様の酸化珪素下地層付き基材をセットし、下記のスプレーコーティング表面処理剤を用いてスプレー塗工し、膜厚10nmの撥水撥油表面層を形成した。
 上記のスプレーコーティング表面処理剤(フルオロポリエーテル基含有ポリマー)を塗布した基材を80℃、相対湿度80%の環境下で30分間放置し、撥水撥油表面層を硬化して定着させ、フルオロポリエーテル基含有ポリマーによる膜厚10nmの撥水撥油表面層を有する基材を得た。
 上記の撥水撥油表面層の膜厚は、蛍光X線測定装置((株)リガク製、商品名:蛍光エックス線計測装置Primini)で、フッ素元素由来の蛍光X線強度を定量し、検量線を用いて算出した。
[Comparative example 2]
[Formation of water- and oil-repellent surface layer by spray coating]
A base material with a silicon oxide underlayer similar to that in Comparative Example 1 was set in a spray coater (API-40RD, manufactured by API), and spray coating was performed using the following spray coating surface treatment agent to form a water-repellent film with a thickness of 10 nm. An oil surface layer was formed.
The base material coated with the above spray coating surface treatment agent (fluoropolyether group-containing polymer) is left for 30 minutes in an environment of 80 ° C. and 80% relative humidity to harden and fix the water- and oil-repellent surface layer, A base material having a 10 nm thick water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained.
The film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
〔スプレーコーティング用表面処理剤の調製〕
 前記式の化合物(A)をフッ素溶剤(3M社製NOVEC HFE-7200)に濃度が0.1質量%になるように溶解し、表面処理剤とした。
[Preparation of surface treatment agent for spray coating]
Compound (A) of the above formula was dissolved in a fluorine solvent (NOVEC HFE-7200, manufactured by 3M Corporation) to a concentration of 0.1% by mass to prepare a surface treatment agent.
[比較例3]
〔真空蒸着による撥水撥油表面層の形成〕
 抵抗加熱型真空蒸着装置(VTR-350M、アルバック機工製)に比較例1と同様の酸化珪素下地層付き基材をセットし、抵抗加熱部に下記の表面処理剤を5μL滴下し、減圧した。容器内圧力が3×10-3Pa以下にまで減圧されたら、抵抗加熱を開始した。抵抗加熱部から約20cm離れた位置に設置された水晶振動子膜厚計における最大蒸発速度が1.0nm/秒になるように抵抗加熱に投入する電力を調整した。水晶振動子膜厚計における蒸発速度が0.1nm/秒まで減少してから100秒間は抵抗加熱を継続した。装置冷却のため、5分間待機後、大気開放を行い、フルオロポリエーテル基含有ポリマーが塗布された基材を得た。
 上記のフルオロポリエーテル基含有ポリマーを塗布したガラス基材を80℃、相対湿度80%の環境下で30分間放置し、撥水撥油表面層を硬化して定着させ、フルオロポリエーテル基含有ポリマーによる膜厚10nmの撥水撥油表面層を有するガラス基材を得た。
 上記の撥水撥油表面層の膜厚は、蛍光X線測定装置((株)リガク製、商品名:蛍光エックス線計測装置Primini)で、フッ素元素由来の蛍光X線強度を定量し、検量線を用いて算出した。
[Comparative example 3]
[Formation of water- and oil-repellent surface layer by vacuum deposition]
A substrate with a silicon oxide underlayer similar to that in Comparative Example 1 was set in a resistance heating type vacuum evaporation apparatus (VTR-350M, manufactured by ULVAC Kiko), and 5 μL of the following surface treatment agent was dropped into the resistance heating part, and the pressure was reduced. When the pressure inside the container was reduced to 3×10 −3 Pa or less, resistance heating was started. The electric power input to the resistance heating was adjusted so that the maximum evaporation rate was 1.0 nm/sec in a crystal resonator film thickness meter installed at a position approximately 20 cm away from the resistance heating section. Resistance heating was continued for 100 seconds after the evaporation rate measured by the quartz crystal film thickness meter decreased to 0.1 nm/sec. After waiting for 5 minutes to cool the device, it was opened to the atmosphere to obtain a substrate coated with a fluoropolyether group-containing polymer.
The glass substrate coated with the above fluoropolyether group-containing polymer is left for 30 minutes in an environment of 80°C and 80% relative humidity to harden and fix the water- and oil-repellent surface layer, and the fluoropolyether group-containing polymer A glass base material having a water- and oil-repellent surface layer with a film thickness of 10 nm was obtained.
The film thickness of the above water- and oil-repellent surface layer was determined by quantifying the intensity of fluorescent X-rays derived from elemental fluorine using a fluorescent X-ray measuring device (manufactured by Rigaku Co., Ltd., product name: Fluorescent X-ray measuring device Primini), and using a calibration curve. Calculated using
〔真空蒸着用表面処理剤の調製〕
 前記式の化合物(A)をフッ素溶剤(3M社製NOVEC HFE-7200)に濃度が20質量%になるように溶解し、表面処理剤とした。
[Preparation of surface treatment agent for vacuum deposition]
Compound (A) of the above formula was dissolved in a fluorine solvent (NOVEC HFE-7200, manufactured by 3M Company) to a concentration of 20% by mass to prepare a surface treatment agent.
[比較例4]
 以下の手法により酸化珪素下地層を形成した以外は、比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
〔電子ビーム蒸着による酸化珪素下地層の形成〕
 電子ビーム蒸着装置(ACE-1350、シンクロン製)に比較例1と同じ手順のアルカリ洗浄及びプラズマ洗浄を行った基材をセットし、SiO2顆粒を蒸着源に用いて膜厚10nmの酸化珪素下地層を形成した。形成条件を以下に示す。
蒸着源:SiO2顆粒(2mm)
到達圧力(成膜時圧力):1×10-3Pa
堆積レート(成膜レート):1nm/秒
成膜基板温度:25℃
 上記の酸化珪素下地層の膜厚は、上記シリカナノ粒子のディップコーティングによる酸化珪素下地層の膜厚測定と同様に、X線反射率測定により得た。
[Comparative example 4]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 1, except that a silicon oxide base layer was formed by the following method.
[Formation of silicon oxide base layer by electron beam evaporation]
A substrate that had been subjected to alkaline cleaning and plasma cleaning in the same manner as in Comparative Example 1 was set in an electron beam evaporation apparatus (ACE-1350, manufactured by Synchron), and a silicon oxide film with a thickness of 10 nm was deposited using SiO 2 granules as the evaporation source. Formed geological strata. The formation conditions are shown below.
Vapor deposition source: SiO 2 granules (2mm)
Ultimate pressure (pressure during film formation): 1×10 -3 Pa
Deposition rate (film forming rate): 1 nm/sec Film forming substrate temperature: 25°C
The thickness of the silicon oxide base layer was obtained by X-ray reflectance measurement in the same manner as the thickness measurement of the silicon oxide base layer by dip coating of silica nanoparticles.
[比較例5]
 酸化珪素下地層は比較例4と同様の手順で形成し、撥水撥油表面層は比較例2と同様の手順で形成し、フルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 5]
The silicon oxide base layer was formed in the same manner as in Comparative Example 4, and the water- and oil-repellent surface layer was formed in the same manner as in Comparative Example 2. I got the material.
[比較例6]
 酸化珪素下地層は比較例4と同様の手順で形成し、撥水撥油表面層は比較例3と同様の手順で形成し、フルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 6]
The silicon oxide base layer was formed in the same manner as in Comparative Example 4, and the water- and oil-repellent surface layer was formed in the same manner as in Comparative Example 3. I got the material.
[比較例7]
 下記式に示す化合物(B)(数平均分子量4,000)を用いて表面処理剤を調製した以外は比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000090
(p/q=1.0、p+q=42)
[Comparative Example 7]
A water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was prepared in the same manner as in Comparative Example 1, except that a surface treatment agent was prepared using compound (B) shown in the following formula (number average molecular weight 4,000). A base material was obtained.
Figure JPOXMLDOC01-appb-C000090
(p/q=1.0, p+q=42)
[比較例8]
 前記式に示す化合物(B)を用いて表面処理剤を調製した以外は比較例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 8]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 2, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
[比較例9]
 前記式に示す化合物(B)を用いて表面処理剤を調製した以外は比較例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 9]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 3, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
[実施例1]
 前記式に示す化合物(B)を用いて表面処理剤を調製した以外は比較例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 1]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
[実施例2]
 前記式に示す化合物(B)を用いて表面処理剤を調製した以外は比較例5と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 2]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
[比較例10]
 前記式に示す化合物(B)を用いて表面処理剤を調製した以外は比較例6と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 10]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 6, except that a surface treatment agent was prepared using the compound (B) shown in the above formula.
[比較例11]
 下記式に示す化合物(C)(数平均分子量4,000)を用いて表面処理剤を調製した以外は比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000091
(p/q=1.0、p+q=42)
[Comparative Example 11]
A water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was prepared in the same manner as in Comparative Example 1 except that a surface treatment agent was prepared using compound (C) shown in the following formula (number average molecular weight 4,000). A base material was obtained.
Figure JPOXMLDOC01-appb-C000091
(p/q=1.0, p+q=42)
[比較例12]
 前記式に示す化合物(C)を用いて表面処理剤を調製した以外は比較例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 12]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 2, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
[比較例13]
 前記式に示す化合物(C)を用いて表面処理剤を調製した以外は比較例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 13]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 3, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
[実施例3]
 前記式に示す化合物(C)を用いて表面処理剤を調製した以外は比較例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 3]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
[実施例4]
 前記式に示す化合物(C)を用いて表面処理剤を調製した以外は比較例5と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 4]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
[比較例14]
 前記式に示す化合物(C)を用いて表面処理剤を調製した以外は比較例6と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 14]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 6, except that a surface treatment agent was prepared using the compound (C) shown in the above formula.
[比較例15]
 下記式に示す化合物(D)(数平均分子量4,000)を用いて表面処理剤を調製した以外は比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000092
(p/q=1.0、p+q=42)
[Comparative Example 15]
A water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was prepared in the same manner as in Comparative Example 1 except that a surface treatment agent was prepared using compound (D) shown in the following formula (number average molecular weight 4,000). A base material was obtained.
Figure JPOXMLDOC01-appb-C000092
(p/q=1.0, p+q=42)
[比較例16]
 前記式に示す化合物(D)を用いて表面処理剤を調製した以外は比較例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 16]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 2, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
[比較例17]
 前記式に示す化合物(D)を用いて表面処理剤を調製した以外は比較例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 17]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 3, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
[実施例5]
 前記式に示す化合物(D)を用いて表面処理剤を調製した以外は比較例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 5]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
[実施例6]
 前記式に示す化合物(D)を用いて表面処理剤を調製した以外は比較例5と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 6]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
[比較例18]
 前記式に示す化合物(D)を用いて表面処理剤を調製した以外は比較例6と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 18]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 6, except that a surface treatment agent was prepared using the compound (D) shown in the above formula.
[比較例19]
 下記式に示す化合物(E)(数平均分子量6,000)を用いて表面処理剤を調製した以外は比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000093
(p/q=0.94、p+q=63)
[Comparative Example 19]
A water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was prepared in the same manner as in Comparative Example 1 except that a surface treatment agent was prepared using compound (E) shown in the following formula (number average molecular weight 6,000). A base material was obtained.
Figure JPOXMLDOC01-appb-C000093
(p/q=0.94, p+q=63)
[比較例20]
 前記式に示す化合物(E)を用いて表面処理剤を調製した以外は比較例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 20]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 2, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
[比較例21]
 前記式に示す化合物(E)を用いて表面処理剤を調製した以外は比較例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 21]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 3, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
[実施例7]
 前記式に示す化合物(E)を用いて表面処理剤を調製した以外は比較例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 7]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
[実施例8]
 前記式に示す化合物(E)を用いて表面処理剤を調製した以外は比較例5と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 8]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
[比較例22]
 前記式に示す化合物(E)を用いて表面処理剤を調製した以外は比較例6と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 22]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 6, except that a surface treatment agent was prepared using the compound (E) shown in the above formula.
[比較例23]
 下記式に示す化合物(F)(数平均分子量6,000)を用いて表面処理剤を調製した以外は比較例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000094
(p/q=0.94、p+q=63)
[Comparative example 23]
A water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was prepared in the same manner as in Comparative Example 1 except that a surface treatment agent was prepared using the compound (F) shown in the following formula (number average molecular weight 6,000). A base material was obtained.
Figure JPOXMLDOC01-appb-C000094
(p/q=0.94, p+q=63)
[比較例24]
 前記式に示す化合物(F)を用いて表面処理剤を調製した以外は比較例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 24]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 2, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
[比較例25]
 前記式に示す化合物(F)を用いて表面処理剤を調製した以外は比較例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 25]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 3, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
[実施例9]
 前記式に示す化合物(F)を用いて表面処理剤を調製した以外は比較例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 9]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 4, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
[実施例10]
 前記式に示す化合物(F)を用いて表面処理剤を調製した以外は比較例5と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 10]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 5, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
[比較例26]
 前記式に示す化合物(F)を用いて表面処理剤を調製した以外は比較例6と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 26]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 6, except that a surface treatment agent was prepared using the compound (F) shown in the above formula.
[比較例27]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例7と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 27]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 7, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例28]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例8と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 28]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 8, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例29]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例9と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 29]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 9, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例11]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例1と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 11]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 1, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例12]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例2と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 12]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 2, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例30]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例10と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 30]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 10, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例31]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例11と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 31]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 11, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例32]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例12と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 32]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 12, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例33]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例13と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 33]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 13, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例13]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 13]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 3, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例14]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 14]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 4, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例34]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例14と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 34]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 14, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例35]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例19と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 35]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 19, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例36]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例20と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 36]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 20, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例37]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例21と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 37]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 21, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例15]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例7と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 15]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 7, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例16]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例8と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 16]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Example 8, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[比較例38]
 基材を鏡面研磨したSUS304(サイズ:100mm×50mm×1.0mm(厚さ))にし、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例22と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 38]
The base material was mirror-polished SUS304 (size: 100 mm x 50 mm x 1.0 mm (thickness)), and fluorocarbon was washed in the same manner as in Comparative Example 22, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a polyether group-containing polymer was obtained.
[実施例17]
 ソーダライムガラス(サイズ:100mm×50mm×0.7mm(厚さ))を基材として用い、該基材に下記の反射防止膜を形成し、最外層を酸化珪素下地層として用いた以外は実施例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
〔スパッタ成膜による反射防止膜の形成〕
 スパッタ成膜装置(RAS-1100B、シンクロン製)に比較例1と同じ手順のアルカリ洗浄及びプラズマ洗浄を行った基材をセットし、Siターゲット、Nbターゲットを用いて以下の膜厚構成の反射防止膜を形成した。形成条件を以下に示す。
[Siターゲット]
RFスパッタ源電力:8kW
酸素プラズマ源電力:3kW
成膜時圧力:0.2Pa
成膜レート:0.4nm/秒
成膜基板温度:25℃
[Nbターゲット]
RFスパッタ供給電力:5kW
酸素プラズマ源電力:3.5kW
成膜時圧力:0.2Pa
成膜レート:0.4nm/秒
成膜基板温度:25℃
基材/Nb25:15nm厚/SiO2:40nm厚/Nb25:120nm厚/SiO2:90nm厚
 なお、反射防止膜の最外層のSiO2:90nm厚を酸化珪素下地層とした。
 上記の反射防止膜の膜厚は、断面試料の透過型電子顕微鏡観察により得た。
[Example 17]
Soda lime glass (size: 100 mm x 50 mm x 0.7 mm (thickness)) was used as the base material, the following antireflection film was formed on the base material, and the outermost layer was used as a silicon oxide base layer. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 3.
[Formation of anti-reflection film by sputtering film formation]
A base material that had been subjected to alkaline cleaning and plasma cleaning in the same manner as in Comparative Example 1 was set in a sputtering film forming apparatus (RAS-1100B, manufactured by Synchron), and an antireflection coating with the following film thickness configuration was performed using a Si target and a Nb target. A film was formed. The formation conditions are shown below.
[Si target]
RF sputter source power: 8kW
Oxygen plasma source power: 3kW
Pressure during film formation: 0.2Pa
Film forming rate: 0.4 nm/sec Film forming substrate temperature: 25°C
[Nb target]
RF sputter supply power: 5kW
Oxygen plasma source power: 3.5kW
Pressure during film formation: 0.2Pa
Film forming rate: 0.4 nm/sec Film forming substrate temperature: 25°C
Base material / Nb 2 O 5 : 15 nm thick / SiO 2 : 40 nm thick / Nb 2 O 5 : 120 nm thick / SiO 2 : 90 nm thick The outermost layer of the anti-reflection film, SiO 2 : 90 nm thick, is the silicon oxide base layer. did.
The above film thickness of the antireflection film was obtained by observing a cross-sectional sample with a transmission electron microscope.
[実施例18]
 撥水撥油表面層を実施例4と同様の手順で形成した以外は、実施例17と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 18]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 17, except that the water- and oil-repellent surface layer was formed in the same manner as in Example 4.
[比較例39]
 撥水撥油表面層を比較例14と同様の手順で形成した以外は、実施例17と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 39]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 17, except that the water- and oil-repellent surface layer was formed in the same manner as in Comparative Example 14.
[比較例40]
 基材に下地層を形成せず、実施例17と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 40]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 17 without forming a base layer on the base material.
[比較例41]
 基材に下地層を形成せず、実施例18と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 41]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 18 without forming a base layer on the base material.
[比較例42]
 基材に下地層を形成せず、比較例39と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 42]
A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 39 without forming a base layer on the base material.
[比較例43]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例11と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative Example 43]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 11.
[比較例44]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例12と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 44]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 12.
[比較例45]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例13と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 45]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 13.
[実施例19]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例3と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 19]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 3.
[実施例20]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は実施例4と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Example 20]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Example 4.
[比較例46]
 基材にシリコーンハードコートポリカーボネート(HC/PC)板(100mm×50mm×3mm(厚さ))(Sabic製LEXAN MARGARD)を用い、比較例1と同じ手順でアルカリ洗浄及びプラズマ洗浄を行った以外は比較例14と同様の手順でフルオロポリエーテル基含有ポリマーによる撥水撥油表面層を有する基材を得た。
[Comparative example 46]
A silicone hard coat polycarbonate (HC/PC) plate (100 mm x 50 mm x 3 mm (thickness)) (LEXAN MARGARD manufactured by Sabic) was used as the base material, except that alkaline cleaning and plasma cleaning were performed in the same manner as in Comparative Example 1. A base material having a water- and oil-repellent surface layer made of a fluoropolyether group-containing polymer was obtained in the same manner as in Comparative Example 14.
水接触角の評価
 上記にて作製した酸化珪素下地層と撥水撥油表面層を有する基材及び撥水撥油表面層を有する基材について、接触角計Drop Master(協和界面科学社製)を用いて、撥水撥油表面層の水に対する接触角(静的接触角)を測定した(液滴:2μl、温度:25℃、相対湿度:40%)。測定結果を表4、表5、表6に示した。
 実施例、比較例共に初期の水接触角は112°以上が得られ、良好な撥水性を示した。
Evaluation of water contact angle For the base material having a silicon oxide base layer and a water- and oil-repellent surface layer prepared above, and the base material having a water- and oil-repellent surface layer, a contact angle meter Drop Master (manufactured by Kyowa Interface Science Co., Ltd.) was used. The contact angle (static contact angle) of the water- and oil-repellent surface layer with respect to water was measured using (droplet: 2 μl, temperature: 25° C., relative humidity: 40%). The measurement results are shown in Tables 4, 5, and 6.
In both Examples and Comparative Examples, initial water contact angles of 112° or more were obtained, indicating good water repellency.
水の動的接触角(前進接触角、後退接触角)の評価
 上記にて作製した酸化珪素下地層と撥水撥油表面層を有する基材及び撥水撥油表面層を有する基材について、接触角計Drop Master(協和界面科学社製)を用いて、拡張/収縮法により、撥水撥油表面層の水に対する前進接触角(θWA)と後退接触角(θWR)を測定した(温度:25℃、相対湿度:40%)。θWA、θWR及びそれらの差分(ΔW)を表4、表5、表6に示した。
 実施例1~20、比較例2、3、8、10においては、ΔWが20°以下の低い値を示した。
Evaluation of dynamic contact angle of water (advancing contact angle, receding contact angle) Regarding the base material having the silicon oxide base layer and the water- and oil-repellent surface layer and the water- and oil-repellent surface layer prepared above, The advancing contact angle (θ WA ) and receding contact angle (θ WR ) of the water- and oil-repellent surface layer with respect to water were measured by the expansion/contraction method using a contact angle meter Drop Master (manufactured by Kyowa Interface Science Co., Ltd.) ( Temperature: 25°C, relative humidity: 40%). θ WA , θ WR and their difference (Δ W ) are shown in Tables 4, 5, and 6.
In Examples 1 to 20 and Comparative Examples 2, 3, 8, and 10, ΔW showed a low value of 20° or less.
油の動的接触角(前進接触角、後退接触角)の評価
 上記にて作製した酸化珪素下地層と撥水撥油表面層を有する基材及び撥水撥油表面層を有する基材について、接触角計Drop Master(協和界面科学社製)を用いて、拡張/収縮法により、撥水撥油表面層のオレイン酸に対する前進接触角(θOA)と後退接触角(θOR)を測定した(温度:25℃、相対湿度:40%)。θOA、θOR及びそれらの差分(ΔO)を表4、表5、表6に示した。
 実施例1~20、比較例1~6、14、34においては、ΔOが20°以下の低い値を示した。
Evaluation of dynamic contact angle of oil (advancing contact angle, receding contact angle) Regarding the base material having the silicon oxide base layer and the water- and oil-repellent surface layer prepared above, and the base material having the water- and oil-repellent surface layer, Using a contact angle meter Drop Master (manufactured by Kyowa Interface Science), the advancing contact angle (θ OA ) and receding contact angle (θ OR ) of the water- and oil-repellent surface layer with respect to oleic acid were measured by the expansion/contraction method. (Temperature: 25°C, relative humidity: 40%). θ OA , θ OR and their difference (Δ O ) are shown in Tables 4, 5, and 6.
In Examples 1 to 20 and Comparative Examples 1 to 6, 14, and 34, Δ O showed a low value of 20° or less.
スチールウール摩耗耐久性の評価
 上記にて作製した酸化珪素下地層と撥水撥油表面層を有する化学強化アルミノケイ酸塩ガラス基材について、往復摩耗試験機(Type40、新東科学製)を用いて、以下の条件で試験した。
擦り材:スチールウール(#0000、Bonstar)
荷重:1kgf
往復距離:40mm
往復速度:60往復毎分
総摩擦往復回数:15,000回
 摩擦往復回数2,500回毎に摩擦摩耗部分の水接触角を計測した。水接触角100°以上を保つ摩耗往復回数をスチールウール摩耗耐久回数とし、スチールウール摩耗耐久回数が15,000回以上を◎(優)、10,000回以上15,000回未満を○(良)、5,000回以上10,000回未満を△(可)、5,000回未満を×(不可)とし、表4に示した。試験環境条件は25℃、相対湿度40%である。
 実施例1~10、比較例9、10、13、14、17~26は良好なスチールウール摩耗耐久性を示した。
Evaluation of steel wool abrasion durability The chemically strengthened aluminosilicate glass substrate having a silicon oxide base layer and a water- and oil-repellent surface layer prepared above was tested using a reciprocating abrasion tester (Type 40, manufactured by Shinto Kagaku). , was tested under the following conditions.
Rubbing material: Steel wool (#0000, Bonstar)
Load: 1kgf
Round trip distance: 40mm
Reciprocation speed: 60 reciprocations per minute Total number of friction reciprocations: 15,000 times The water contact angle of the frictionally worn portion was measured every 2,500 friction reciprocations. The number of abrasion cycles that maintain a water contact angle of 100° or more is defined as the steel wool abrasion durability number. 15,000 or more times is ◎ (excellent), and 10,000 or more but less than 15,000 times is ○ (good). ), 5,000 times or more but less than 10,000 times is rated Δ (acceptable), and less than 5,000 times is rated × (impossible), as shown in Table 4. The test environmental conditions are 25° C. and 40% relative humidity.
Examples 1 to 10 and Comparative Examples 9, 10, 13, 14, and 17 to 26 exhibited good steel wool abrasion durability.
布摩耗耐久性の評価
 上記にて作製した酸化珪素下地層と撥水撥油表面層を有するSUS304基材、酸化珪素下地層と撥水撥油表面層を有するソーダライムガラス基材及び撥水撥油表面層を有するソーダライムガラス基材について、往復摩耗試験機(Type40、新東科学製)を用いて、以下の条件で試験した。
擦り材:不織布(ベンコットM-3II、旭化成製)
荷重:1kgf
往復距離:40mm
往復速度:60往復毎分
総摩擦往復回数:30,000回
 摩擦往復回数2,500回毎に摩擦摩耗部分の水接触角を計測した。水接触角100°以上を保つ摩耗往復回数を布摩耗耐久回数とし、布摩耗耐久回数が30,000回以上を◎(優)、20,000回以上30,000回未満を○(良)、10,000回以上20,000回未満を△(可)、10,000回未満を×(不可)とし、表5に示した。試験環境条件は25℃、相対湿度40%である。
 実施例11~18、比較例30~42は良好な布摩耗耐久性を示した。
Evaluation of cloth abrasion durability SUS304 base material having a silicon oxide base layer and a water- and oil-repellent surface layer prepared above, soda lime glass base material having a silicon oxide base layer and a water- and oil-repellent surface layer, and water-repellent A soda lime glass substrate having an oil surface layer was tested under the following conditions using a reciprocating abrasion tester (Type 40, manufactured by Shinto Kagaku).
Rubbing material: Non-woven fabric (Bemcot M-3II, manufactured by Asahi Kasei)
Load: 1kgf
Round trip distance: 40mm
Reciprocating speed: 60 reciprocations per minute Total number of friction reciprocations: 30,000 times The water contact angle of the frictionally worn portion was measured every 2,500 friction reciprocations. The number of abrasion cycles that maintain a water contact angle of 100° or more is defined as the number of cloth abrasion durability.If the cloth abrasion durability is 30,000 times or more, it is ◎ (excellent), and if it is 20,000 times or more but less than 30,000 times, it is ○ (good). 10,000 times or more but less than 20,000 times is rated Δ (acceptable), and less than 10,000 times is rated × (impossible), as shown in Table 5. The test environmental conditions are 25° C. and 40% relative humidity.
Examples 11 to 18 and Comparative Examples 30 to 42 showed good cloth abrasion durability.
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100

Claims (16)

  1.  基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品の製造方法であって、撥水撥油表面層が加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものであり、該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーが下記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーを含むものであり、酸化珪素下地層を乾式方法によって形成するものであり、撥水撥油表面層を湿式方法によって形成するものである撥水撥油物品の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はDであり、Dは独立に下記式(2)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Qは単結合又は2価の有機基であり、Zは3~8価の基であり、αは2~7の整数であり、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは炭素数1~4のアルキル基又はフェニル基であり、Xは独立に加水分解性基であり、aは2又は3であり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)〕]、
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rfは上記と同じであり、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はGであり、Gは独立に下記式(5)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000005
    〔式中、Wは上記と同じであり、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Tは単結合又は2価の基であり、Lは独立に炭素数1~4の2価炭化水素基であり、Eは炭素数1~6の1価炭化水素基、又はWであり、lは0~20の整数である。)〕]、
    Figure JPOXMLDOC01-appb-C000007
    [式中、Rfは上記と同じであり、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJであり、Jは独立に下記式(8)で示される1価の基であり、J中にWを2個以上有する。
    Figure JPOXMLDOC01-appb-C000008
    〔式中、Sは上記と同じであり、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、Mは独立に下記式(9)で示される1価の基であり、
    Figure JPOXMLDOC01-appb-C000009
    (式中、Y、S及びWは上記と同じであり、fは1~3の整数である。)
    eは1又は2である。〕]
    A water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer. , wherein the water- and oil-repellent surface layer is mainly composed of a cured product of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a partially hydrolyzed condensate thereof; The fluoropolyether group-containing polymer having a degradable silyl group contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and contains silicon oxide. A method for producing a water- and oil-repellent article, wherein a base layer is formed by a dry method, and a water- and oil-repellent surface layer is formed by a wet method.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D, where D is independently a monovalent group represented by the following formula (2) It is the basis of
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, Q is a single bond or a divalent organic group, Z is a trivalent to octavalent group, α is an integer from 2 to 7, and W is independently represented by the following formula (3) It is a monovalent hydrolyzable silyl group-containing group.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.)]
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, T is a single bond or a divalent group, L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms, E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W , and l is an integer from 0 to 20.)]],
    Figure JPOXMLDOC01-appb-C000007
    [In the formula, Rf is the same as above, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J, is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
    Figure JPOXMLDOC01-appb-C000008
    [In the formula, S is the same as above, V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and M is independently represented by the following formula (9). is a monovalent group shown,
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.)
    e is 1 or 2. 〕】
  2.  基材が、ガラス、金属、又は樹脂である請求項1に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to claim 1, wherein the base material is glass, metal, or resin.
  3.  基材と酸化珪素下地層の間にハードコート層を形成するものである請求項1に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to claim 1, wherein a hard coat layer is formed between the base material and the silicon oxide underlayer.
  4.  基材上に最外層が酸化珪素膜である反射防止膜層が形成され、該最外層の酸化珪素膜が前記酸化珪素下地層である請求項1に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to claim 1, wherein an antireflection film layer whose outermost layer is a silicon oxide film is formed on the base material, and the outermost silicon oxide film is the silicon oxide base layer.
  5.  前記式(2)において、Qが、アミド結合、エーテル結合、エステル結合、スルフィド結合、ウレタン結合、シロキサン結合、トリアジン結合、ジオルガノシリレン基、シルフェニレン結合及びシルアルキレン結合からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数1~15の非置換又は置換の2価炭化水素基であり、Zが、ケイ素原子、窒素原子、及びシロキサン結合を有する3~8価のオルガノポリシロキサン残基から選ばれる3~8価の基である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 In the formula (2), Q is 1 selected from the group consisting of an amide bond, an ether bond, an ester bond, a sulfide bond, a urethane bond, a siloxane bond, a triazine bond, a diorganosilylene group, a silphenylene bond, and a sylalkylene bond. An unsubstituted or substituted divalent hydrocarbon group having 1 to 15 carbon atoms which may contain more than one type of bond, and Z is a trivalent to octavalent organopolymer having a silicon atom, a nitrogen atom, and a siloxane bond. The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, which is a trivalent to octavalent group selected from siloxane residues.
  6.  前記式(6)において、Tが、単結合、又はシロキサン結合、シルアルキレン結合、シルアリーレン結合及びジオルガノシリレン基からなる群より選ばれる1種以上の結合を含んでいてもよい炭素数2~20の2価炭化水素基、2価のシロキサン結合、シルアルキレン基もしくはジオルガノシリレン基である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 In the formula (6), T has 2 to 2 carbon atoms and may contain a single bond or one or more bonds selected from the group consisting of a siloxane bond, a sylalkylene bond, a silyarylene bond, and a diorganosilylene group. The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, which is a divalent hydrocarbon group, a divalent siloxane bond, a silalkylene group, or a diorganosilylene group.
  7.  撥水撥油表面層が、前記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物と、下記式(10)
    Figure JPOXMLDOC01-appb-C000010
    [式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A4は独立に末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、-OR3、-COOR3又は-PO(OR32(R3は水素原子又は炭素数1~10の1価炭化水素基である。)である。]
    で示されるフルオロポリエーテル基含有ポリマー及び/又はその部分(加水分解)縮合物との硬化物を含有するものである請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。
    The water- and oil-repellent surface layer comprises one or more fluoropolyether group-containing polymers represented by the above formula (1), (4) or (7) and/or a partially hydrolyzed condensate thereof, and the following formula: (10)
    Figure JPOXMLDOC01-appb-C000010
    [In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 4 independently represents a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and which may contain an oxygen atom, -OR 3 , -COOR 3 or -PO(OR 3 ) 2 (R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms). ]
    The production of the water- and oil-repellent article according to any one of claims 1 to 4, which contains a cured product with a fluoropolyether group-containing polymer and/or a partial (hydrolyzed) condensate thereof represented by Method.
  8.  酸化珪素下地層の膜厚が3~150nmである請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the silicon oxide underlayer has a thickness of 3 to 150 nm.
  9.  酸化珪素下地層の形成方法が、抵抗加熱式蒸着法又は電子ビーム蒸着法である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the method for forming the silicon oxide base layer is a resistance heating evaporation method or an electron beam evaporation method.
  10.  酸化珪素下地層の形成方法が、スパッタ成膜法である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the method for forming the silicon oxide underlayer is a sputtering film formation method.
  11.  撥水撥油表面層の形成方法が、ディップコーティング法である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the method for forming the water- and oil-repellent surface layer is a dip coating method.
  12.  撥水撥油表面層の形成方法が、スプレーコーティング法である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the method for forming the water- and oil-repellent surface layer is a spray coating method.
  13.  基材をアルカリ洗浄及び/又はプラズマ洗浄により前処理するものである請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The method for producing a water- and oil-repellent article according to any one of claims 1 to 4, wherein the base material is pretreated by alkaline cleaning and/or plasma cleaning.
  14.  拡張/収縮法により求められる前記撥水撥油表面層の水に対する前進接触角と後退接触角の差分が20°以下であり、オレイン酸に対する前進接触角と後退接触角の差分が20°以下である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The difference between the advancing contact angle and the receding contact angle with respect to water of the water- and oil-repellent surface layer determined by the expansion/contraction method is 20° or less, and the difference between the advancing contact angle and the receding contact angle with respect to oleic acid is 20° or less. A method for producing a water- and oil-repellent article according to any one of claims 1 to 4.
  15.  拡張/収縮法により求められる前記撥水撥油表面層の水に対する後退接触角が101°以上であり、オレイン酸に対する後退接触角が64°以上である請求項1~4のいずれか1項に記載の撥水撥油物品の製造方法。 The water- and oil-repellent surface layer has a receding contact angle with respect to water of 101° or more and a receding contact angle with respect to oleic acid of 64° or more as determined by an expansion/contraction method, according to any one of claims 1 to 4. A method for manufacturing the water- and oil-repellent article.
  16.  基材と、該基材の外表面上に形成された酸化珪素下地層と、該酸化珪素下地層の外表面上に形成された撥水撥油表面層とから構成される撥水撥油物品において、撥水撥油表面層が加水分解性シリル基を有するフルオロポリエーテル基含有ポリマー及び/又はその部分加水分解縮合物の硬化物を主成分とするものとし、該加水分解性シリル基を有するフルオロポリエーテル基含有ポリマーが下記式(1)、(4)又は(7)で示される1種又は2種以上のフルオロポリエーテル基含有ポリマーを含むものとし、酸化珪素下地層を乾式方法によって形成し、撥水撥油表面層を湿式方法によって形成することを特徴とする撥水撥油物品における水及び油の除去性改善方法。
    Figure JPOXMLDOC01-appb-C000011
    [式中、Rfは-Cd2d-O-(CF2O)p(C24O)q(C36O)r(C48O)s(C510O)t(C612O)u-Cd2d-(但し、dは単位毎に独立に0~5の整数であり、p、q、r、s、t及びuはそれぞれ独立に0~150の整数であり、p、q、r、s、t及びuの和は1~250の整数であり、これら各単位は直鎖状であっても分岐状であってもよい。また、p、q、r、s、t及びuが付された括弧内に示される各繰り返し単位はランダムに結合されていてよい。)で示される2価のポリフルオロオキシアルキレン構造含有基であり、A1は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はDであり、Dは独立に下記式(2)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000012
    〔式中、Qは単結合又は2価の有機基であり、Zは3~8価の基であり、αは2~7の整数であり、Wは独立に下記式(3)で示される1価の加水分解性シリル基含有基である。
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは炭素数1~4のアルキル基又はフェニル基であり、Xは独立に加水分解性基であり、aは2又は3であり、Yは単結合、又はフッ素原子、ケイ素原子及びシロキサン結合から選ばれる1種もしくは2種以上を有していてもよい2価炭化水素基である。)〕]、
    Figure JPOXMLDOC01-appb-C000014
    [式中、Rfは上記と同じであり、A2は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はGであり、Gは独立に下記式(5)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000015
    〔式中、Wは上記と同じであり、Bは水素原子、又は-OSであり、Sは水素原子、炭素数1~10の1価炭化水素基、又は下記式(6)で示される1価の基である。
    Figure JPOXMLDOC01-appb-C000016
    (式中、Tは単結合又は2価の基であり、Lは独立に炭素数1~4の2価炭化水素基であり、Eは炭素数1~6の1価炭化水素基、又はWであり、lは0~20の整数である。)〕]、
    Figure JPOXMLDOC01-appb-C000017
    [式中、Rfは上記と同じであり、A3は末端がCF3-もしくはCF2H-であり酸素原子を含んでいてもよい1価のフッ素含有炭化水素基、又はJであり、Jは独立に下記式(8)で示される1価の基であり、J中にWを2個以上有する。
    Figure JPOXMLDOC01-appb-C000018
    〔式中、Sは上記と同じであり、Vは単結合又はエーテル結合を有していてもよい炭素数2~15の2価炭化水素基であり、Mは独立に下記式(9)で示される1価の基であり、
    Figure JPOXMLDOC01-appb-C000019
    (式中、Y、S及びWは上記と同じであり、fは1~3の整数である。)
    eは1又は2である。〕]
    A water- and oil-repellent article comprising a base material, a silicon oxide base layer formed on the outer surface of the base material, and a water- and oil-repellent surface layer formed on the outer surface of the silicon oxide base layer. The water- and oil-repellent surface layer is mainly composed of a fluoropolyether group-containing polymer having a hydrolyzable silyl group and/or a cured product of a partially hydrolyzed condensate thereof, and the surface layer has the hydrolyzable silyl group. The fluoropolyether group-containing polymer contains one or more fluoropolyether group-containing polymers represented by the following formula (1), (4), or (7), and a silicon oxide base layer is formed by a dry method. A method for improving the removability of water and oil in a water- and oil-repellent article, characterized by forming a water- and oil-repellent surface layer by a wet method.
    Figure JPOXMLDOC01-appb-C000011
    [In the formula, Rf is -C d F 2d -O-(CF 2 O) p (C 2 F 4 O) q (C 3 F 6 O) r (C 4 F 8 O) s (C 5 F 10 O ) t (C 6 F 12 O) u - C d F 2d - (However, d is an integer from 0 to 5 independently for each unit, and p, q, r, s, t and u are each independently 0 is an integer of ~150, the sum of p, q, r, s, t, and u is an integer of 1 ~ 250, and each of these units may be linear or branched.Also, Each repeating unit shown in parentheses with p, q, r, s, t, and u may be randomly bonded.) is a divalent polyfluorooxyalkylene structure-containing group, and A 1 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or D, where D is independently a monovalent group represented by the following formula (2) It is the basis of
    Figure JPOXMLDOC01-appb-C000012
    [Wherein, Q is a single bond or a divalent organic group, Z is a trivalent to octavalent group, α is an integer from 2 to 7, and W is independently represented by the following formula (3) It is a monovalent hydrolyzable silyl group-containing group.
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is independently a hydrolyzable group, a is 2 or 3, and Y is a single bond, a fluorine atom, a silicon atom and a divalent hydrocarbon group which may have one or more types selected from siloxane bonds.)]
    Figure JPOXMLDOC01-appb-C000014
    [In the formula, Rf is the same as above, A 2 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or G, are independently monovalent groups represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000015
    [In the formula, W is the same as above, B is a hydrogen atom or -OS, and S is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or 1 represented by the following formula (6) It is the basis of valence.
    Figure JPOXMLDOC01-appb-C000016
    (In the formula, T is a single bond or a divalent group, L is independently a divalent hydrocarbon group having 1 to 4 carbon atoms, E is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or W , and l is an integer from 0 to 20.)]],
    Figure JPOXMLDOC01-appb-C000017
    [In the formula, Rf is the same as above, A 3 is a monovalent fluorine-containing hydrocarbon group whose terminal is CF 3 - or CF 2 H- and may contain an oxygen atom, or J, is independently a monovalent group represented by the following formula (8), and has two or more Ws in J.
    Figure JPOXMLDOC01-appb-C000018
    [In the formula, S is the same as above, V is a divalent hydrocarbon group having 2 to 15 carbon atoms which may have a single bond or an ether bond, and M is independently represented by the following formula (9). is a monovalent group shown,
    Figure JPOXMLDOC01-appb-C000019
    (In the formula, Y, S and W are the same as above, and f is an integer from 1 to 3.)
    e is 1 or 2. 〕】
PCT/JP2023/014040 2022-04-19 2023-04-05 Method for producing water- and oil-repellent article, and method for improving water and oil removability in water- and oil-repellent article WO2023204026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069123 2022-04-19
JP2022-069123 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023204026A1 true WO2023204026A1 (en) 2023-10-26

Family

ID=88419800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014040 WO2023204026A1 (en) 2022-04-19 2023-04-05 Method for producing water- and oil-repellent article, and method for improving water and oil removability in water- and oil-repellent article

Country Status (2)

Country Link
TW (1) TW202402703A (en)
WO (1) WO2023204026A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285038A (en) * 1991-03-14 1992-10-09 Tokai Rika Co Ltd Water-repellent film for glass
JP2004175094A (en) * 2002-10-02 2004-06-24 Teijin Chem Ltd Polymer resin laminated body, its manufacturing method and window material for vehicle
WO2007111465A1 (en) * 2006-03-27 2007-10-04 Essilor International (Compagnie Generale D'optique) Edging process of lens using transparent coating layer for protecting lens
WO2020230618A1 (en) * 2019-05-14 2020-11-19 信越化学工業株式会社 Water repellent and oil repellent member, and method for producing water repellent and oil repellent member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285038A (en) * 1991-03-14 1992-10-09 Tokai Rika Co Ltd Water-repellent film for glass
JP2004175094A (en) * 2002-10-02 2004-06-24 Teijin Chem Ltd Polymer resin laminated body, its manufacturing method and window material for vehicle
WO2007111465A1 (en) * 2006-03-27 2007-10-04 Essilor International (Compagnie Generale D'optique) Edging process of lens using transparent coating layer for protecting lens
WO2020230618A1 (en) * 2019-05-14 2020-11-19 信越化学工業株式会社 Water repellent and oil repellent member, and method for producing water repellent and oil repellent member

Also Published As

Publication number Publication date
TW202402703A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5814209B2 (en) Coating agent composition, surface treatment agent containing the composition, and article surface-treated with the surface treatment agent
KR101853139B1 (en) Polymer composition containing fluoroxyalkylene group, surface treatment agent comprising said composition, and articles treated with said surface treatment agent
KR101861383B1 (en) Polymer composition containing fluoroxyalkylene group, surface treatment agent comprising said composition, and article and optical article treated with said surface treatment agent
JP5235026B2 (en) Fluorooxyalkylene group-containing polymer composition, surface treatment agent containing the composition, and article surface-treated with the surface treatment agent
KR102441819B1 (en) Water/oil-repellent treatment agent having heat resistance, method of preparation, and treated article
TW201439221A (en) Perfluoropolyether-modified polysilazane, making method, surface treating agent, and treated article
WO2019039226A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating solution, article, and production method thereof
TWI782016B (en) Fluorine-containing coating agent composition and surface treatment agent and articles containing the same
JP2013018743A (en) Fluorooxyalkylene group-containing polymer modified silane, surface treatment agent containing the silane, and article surface-treated with the surface treatment agent
TW201835291A (en) Fluorine-containing ether composition, coating liquid, and article
JPWO2019163282A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and its manufacturing method
WO2020071330A1 (en) Fluorine-containing ether composition, coating liquid, article and method for producing same
KR20200040786A (en) Water repellent member and method for manufacturing water repellent member
KR20140045885A (en) Surface treatment method and surface-treated article
WO2020100760A1 (en) Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer
WO2023013476A1 (en) Article having water- and oil-repellent surface layer
WO2023204026A1 (en) Method for producing water- and oil-repellent article, and method for improving water and oil removability in water- and oil-repellent article
CN113874334B (en) Transparent substrate with antifouling layer
WO2020137990A1 (en) Vapor deposition material, method for manufacturing substrate having underlayer thereon, and method for manufacturing substrate having water-repellent and oil-repellent layer thereon
WO2020137993A1 (en) Vapor deposition material, method for producing substrate with base layer, and method for producing substrate with water and oil-repellent layer
WO2023013477A1 (en) Article having water- and oil-repellent surface layer
US20230257528A1 (en) Surface treating composition
WO2024053354A1 (en) Fluorine-containing composition, surface treatment agent, and article
WO2023022038A1 (en) Surface-treated article, and method for improving uvc resistance of water-repellent article
WO2024075578A1 (en) Fluoropolyether group-containing polymer composition, coating agent, article, and method for modifying surface of article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791677

Country of ref document: EP

Kind code of ref document: A1