WO2023203901A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2023203901A1
WO2023203901A1 PCT/JP2023/008562 JP2023008562W WO2023203901A1 WO 2023203901 A1 WO2023203901 A1 WO 2023203901A1 JP 2023008562 W JP2023008562 W JP 2023008562W WO 2023203901 A1 WO2023203901 A1 WO 2023203901A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
module
electric vehicle
voltage
Prior art date
Application number
PCT/JP2023/008562
Other languages
French (fr)
Japanese (ja)
Inventor
アブダラ マハムド アブドルナビ サイド
隆晴 竹下
達之 大橋
Original Assignee
株式会社エフ・シー・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフ・シー・シー filed Critical 株式会社エフ・シー・シー
Publication of WO2023203901A1 publication Critical patent/WO2023203901A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to an electric vehicle equipped with a motor and a power storage device capable of supplying energy to the motor.
  • the motor can be driven by supplying energy to the inverter at arbitrary timing from each of the battery having high capacity characteristics and the capacitor having high output characteristics.
  • the battery (first power storage device) and the capacitor (second power storage device) can share energy supply and drive the motor, for example, when the motor runs at low rotation speed. If the DC voltage required by the inverter is lower than the voltage of the power storage device with the lower voltage among the first power storage device and the second power storage device (usually the second power storage device with a smaller capacity), the DC voltage of the inverter should be adjusted appropriately. The problem is that it cannot be controlled.
  • the present invention has been made in view of the above circumstances, and when the first power storage device and the second power storage device share energy supply and power the motor, the DC voltage of the inverter is transferred to the first power storage device and the second power storage device.
  • An object of the present invention is to provide an electric vehicle that can control the voltage to be lower than the voltage of the power storage device with the lower voltage among the two power storage devices.
  • the invention according to claim 1 provides a motor capable of power running, an inverter capable of converting direct current to alternating current, a first power storage device having high capacity type characteristics, and a second power storage device having high output type characteristics.
  • an electric vehicle comprising: a first power converter having a function of stepping down the output voltage of the first power storage device; and a second power converter having a function of stepping down the output voltage of the second power storage device.
  • a first module connected to the first power storage device and the first power converter, a second module connected to the second power storage device and the second power converter, and the first module connected in series.
  • the second module is connected to the inverter, and when the motor is running, the voltages of the first module and the second module are controlled and the voltages of the first module and the second module are controlled. It is characterized by supplying energy to an inverter.
  • the invention according to claim 2 is the electric vehicle according to claim 1, wherein the motor is capable of power running and regeneration, and during regeneration, the motor controls the voltage of the first module and the second module while controlling the voltage of the first module and the second module. It is characterized in that energy is recovered in the first module and the second module.
  • the invention according to claim 3 is characterized in that, in the electric vehicle according to claim 1, a reactor is connected in series between the first module and the second module.
  • the invention according to claim 4 is the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is running, the connection switch is connected.
  • the first module and the second module supply energy to the inverter while controlling the voltage of the first module.
  • the invention as set forth in claim 5 provides the electric vehicle as set forth in claim 1, further comprising a connection switch that forms a circuit that connects the second power storage device and ground, and that connects the second power storage device to the ground based on the temperature of the first power storage device.
  • the temperature state of the first power storage device can be determined, and when the temperature of the first power storage device is equal to or higher than a predetermined value while the motor is running, the connection switch is set to the connected state, and the connection switch is set to the connected state, and the inverter is connected from the second module to the first power storage device. It is characterized by supplying energy to.
  • the invention as set forth in claim 6 provides the electric vehicle as set forth in claim 2, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and that the second power storage device is connected to the ground based on the temperature of the first power storage device.
  • the temperature state of the first power storage device can be determined, and when the temperature of the first power storage device is equal to or higher than a predetermined value during regeneration of the motor, the connection switch is set to the connected state and energy is transferred to the second module. It is characterized by regeneration.
  • the invention according to claim 7 provides the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is stopped, the connection switch is connected.
  • the present invention is characterized in that the first module supplies energy to the second module while controlling the voltage or current of the first module.
  • the invention according to claim 8 is the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is stopped, the connection switch is connected.
  • the present invention is characterized in that the second module supplies energy to the first module while controlling the voltage or current of the first module.
  • the invention according to claim 9 is characterized in that, in the electric vehicle according to claim 1, a reactor is connected in series between the first module or the second module and the inverter.
  • the invention according to claim 10 is the electric vehicle according to claim 1, in which the first module and the second module are arranged so that the current of the first power storage device becomes equal to or less than a predetermined value when the motor is powered. It is characterized by controlling the voltage.
  • the invention according to claim 11 is the electric vehicle according to claim 10, wherein the temperature state of the first power storage device can be determined based on the temperature of the first power storage device, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device. The higher the value, the lower the predetermined value of the current of the first power storage device is set.
  • the invention according to claim 12 is characterized in that, in the electric vehicle according to claim 1, when controlling the voltage of the second module, the voltage of the second module is controlled according to the voltage of the second power storage device. shall be.
  • the invention according to claim 13 is the electric vehicle according to claim 1, when controlling the voltages of the first module and the second module, the voltage of either one of the first module and the second module is controlled.
  • the present invention is characterized in that the duty cycle of the first power converter and the second power converter is set longer than when the power converter is used.
  • the invention according to claim 14 is the electric vehicle according to claim 13, when controlling the voltages of the first module and the second module, the voltage boosting period during the duty cycle of the first power converter and the voltage boosting period during the duty cycle of the first power converter
  • the present invention is characterized in that control is performed so that the overlapping period with the voltage boosting period during the duty cycle of the two power converters is reduced.
  • the invention according to claim 15 is the electric vehicle according to claim 1, wherein the first power storage device has a higher voltage type characteristic than the second power storage device.
  • the invention according to claim 16 is characterized in that in the electric vehicle according to claim 1, the amount of energy when the first power storage device is fully charged is greater than the amount of energy when the second power storage device is fully charged. .
  • the invention according to claim 17 is the electric vehicle according to claim 1, wherein the first power storage device is a replaceable cassette-type power storage device.
  • the invention according to claim 18 is the electric vehicle according to claim 1, wherein the first power storage device includes a high capacity lithium ion battery or a high capacity nickel metal hydride battery, and the second power storage device comprises a high power lithium ion battery. , a high-output nickel-metal hydride battery, a lithium ion capacitor, or an electric double layer capacitor.
  • the first module connected to the first power storage device and the first power converter
  • the second module connected to the second power storage device and the second power converter
  • the first module connected in series.
  • the first module and the second module each include a circuit connected to the inverter, and when the motor is running, the inverter is connected to the first module and the second module while controlling the voltages of the first module and the second module. Therefore, when the first power storage device and the second power storage device share the energy supply and power the motor, the DC voltage of the inverter is transferred to the power storage device with the lower voltage between the first power storage device and the second power storage device.
  • the device voltage can be controlled below.
  • a schematic diagram showing an electric vehicle according to an embodiment of the present invention A circuit diagram showing the power conversion device of the electric vehicle Conceptual diagram showing the power conversion device of the electric vehicle Schematic diagram showing the control relationship of the electric vehicle Time chart showing power control of the electric vehicle Flowchart showing the overall power control of the electric vehicle Graph showing the required characteristics of the electric vehicle (vehicle requirements for drive wheels) Graph showing the required characteristics of the electric vehicle (drive wheel motor requirements) Graph showing the required characteristics of the electric vehicle (vehicle requirements for driven wheels) Graph showing the required characteristics of the electric vehicle (brake requirement of driven wheels) Flowchart showing request processing control for power control of the electric vehicle Graph showing the driver request table (Table 1) of the electric vehicle Graph showing the driver request table (Table 2) for the electric vehicle Graph showing the driver request table (Table 3) for the electric vehicle Graph showing the driver request table (Table 4) of the electric vehicle Graph showing the driver request table (Table 5) of the electric vehicle Graph showing the driver request table (Table 6) for the electric vehicle Flowchart showing
  • the electric vehicle according to the present embodiment is a saddle-riding vehicle such as a motorcycle that can be driven by the driving force of a motor, and as shown in FIGS. 3a, 3b), the first power storage device 4, the second power storage device 5, the accelerator operating means 6, the mechanical brake operating means 7, the regenerative brake operating means 8, the first power converter 10, and the second power converter 10. It mainly includes a power converter 11, a reactor 12, an ECU 13, a start switch 14, and a monitor 15.
  • the motor 1 (Motor) consists of an electromagnetic motor for obtaining driving force by supplying energy, and as shown in FIGS. It can be electrically connected to the second module M2, and power running and regeneration are possible.
  • the inverter 2 (DC-AC Inverter) is capable of converting direct current to alternating current.
  • the inverter 2 (DC-AC Inverter) converts the direct current of the first power storage device 4 and the second power storage device 5 into alternating current to drive the motor. It is said that it can be supplied to 1.
  • the mechanical brake consists of a braking device capable of braking by releasing energy, such as a disc brake or a drum brake, and includes a driving wheel mechanical brake 3a which releases the kinetic energy of the driving wheel Ta for braking, and a driving wheel mechanical brake 3a which releases the kinetic energy of the driven wheel Tb to perform braking.
  • the driven wheel mechanical brake 3b is configured to release and brake.
  • the driving wheel mechanical brake 3a and the driven wheel mechanical brake 3b are connected to a mechanical brake operating means 7 via a brake actuator 9.
  • the mechanical brake operating means 7 includes a component (in this embodiment, an operating lever attached to the right end of the handlebar) that can control the mechanical brake (driven wheel mechanical brake 3b) and adjust the braking torque.
  • the mechanical brake control unit 18 (see FIG. 4) operates the brake actuator 9 in accordance with the amount of operation, and is configured to operate the driven wheel mechanical brake 3b.
  • the accelerator operating means 6 consists of a component (in this embodiment, an accelerator grip attached to the right end of the handlebar) that can control the motor 1 to adjust the drive torque of the drive wheel Ta, and is shown in FIG.
  • the inverter control unit 16 estimates the torque demand according to the operation amount and operates the motor 1, thereby obtaining a desired driving force.
  • the inverter control section 16 is one of the control sections formed in the ECU 13.
  • the power storage device is capable of supplying energy to the motor 1, and in this embodiment is configured to include a first power storage device 4 and a second power storage device 5.
  • the first power storage device 4 is composed of a storage battery having high capacity characteristics, and as shown in FIG. 30, for example, a high capacity lithium ion battery or a high capacity nickel metal hydride battery can be used.
  • the second power storage device 5 is made of a storage battery having high output characteristics, and as shown in FIG. can be used.
  • the first power storage device 4 has higher voltage characteristics than the second power storage device 5, and the amount of energy when the first power storage device 4 is fully charged is equal to the amount of energy when the second power storage device 5 is fully charged. It is said that the amount of energy is greater than that of time.
  • the first power storage device 4 according to the present embodiment is a cassette-type power storage device that can be removed from the vehicle and replaced, and depending on the power storage state of the first power storage device 4, the first power storage device 4 can be in a fully charged state or It is said to be replaceable.
  • the regenerative brake operating means 8 controls the motor 1 to adjust the braking torque of the drive wheels Ta, and is a component (in this embodiment) that can recover energy to the power storage devices (the first power storage device 4 and the second power storage device 5).
  • the brake lever consists of an operating lever attached to the left end of the handlebar, and is configured to regenerate the motor 1 according to the amount of operation of the lever, thereby obtaining a desired braking force. Through such regeneration of the motor 1, energy can be recovered to the first power storage device 4 and the second power storage device 5.
  • the first power converter 10 has a function to step down the voltage when the motor 1 is running (when supplying energy to the motor 1) and a function to step up the voltage when the motor 1 is regenerating (when energy is recovered from the motor 1). In this embodiment, it has a function of lowering the output voltage of the first power storage device 4, and constitutes the first module M1 as shown in FIGS. 2 and 3.
  • the first module M1 is configured by connecting a first power storage device 4 and a first power converter 10, as shown in FIGS. 2 and 3.
  • the first power converter 10 is configured with two semiconductor switching elements (MOSFET) 10a and 10b having switches S1 and S2 and a diode as a rectifier, and a downstream side
  • the reactor 12 (coil) is electrically connected to the reactor 12 (coil).
  • the voltage in the first module M1 can be controlled by high-speed switching (duty control) of the switches S1 and S2 of the semiconductor switching elements 10a and 10b.
  • the second power converter 11 has a function to step down the voltage when the motor 1 is running (when supplying energy to the motor 1) and a function to step up the voltage when the motor 1 is regenerating (when energy is recovered from the motor 1). In this embodiment, it has a function of lowering the output voltage of the second power storage device 5, and constitutes a second module M2 as shown in FIGS. 2 and 3.
  • the second module M2 is configured by connecting a second power storage device 5 and a second power converter 11, as shown in FIGS. 2 and 3.
  • the second power converter 11 is configured with two semiconductor switching elements (MOSFETs) 11a and 11b having switches S3 and S4 and a diode as a rectifier, and has an upstream side
  • the reactor 12 (coil) is electrically connected to the reactor 12 (coil).
  • the voltage in the second module M2 can be controlled by high-speed switching (duty control) of the switches S3 and S4 of the semiconductor switching elements 11a and 11b.
  • the first module M1 and the second module M2 connected in series have a circuit connected to the inverter 2, and a reactor is connected between the first module M1 and the second module M2. 12 are connected in series.
  • the present embodiment is configured to include a connection switch SR1 that forms a circuit that connects the second power storage device 5 and the ground (ground connection), and the motor 1 is At this time, the connection switch SR1 is set in the connected state so that energy can be supplied from the first module M1 and the second module M2 to the inverter 2 while controlling the voltage of the first module M1.
  • capacitors Ca, Cb, and Cc for stabilization are connected to the circuit according to this embodiment.
  • the ECU 13 is for controlling the motor 1 etc. according to the driver's input requests, and as shown in FIG. 4, has an inverter control section 16, a circuit control section 17, and a mechanical brake control section 18. It is connected to the inverter 2 , the first power converter 10 , the second power converter 11 , the first power storage device 4 , the second power storage device 5 , and the brake actuator 9 . Further, it includes a voltage detection sensor 4a that can detect the voltage of the first power storage device 4, a temperature detection sensor 4b that can detect the temperature of the first power storage device 4, and a temperature detection sensor 4b that can detect the voltage of the second power storage device 5. It is equipped with a voltage detection sensor 5a.
  • the voltage detection sensor 4a, the temperature detection sensor 4b, and the voltage detection sensor 5a are electrically connected to the circuit control unit 17, and the voltage detected by the voltage detection sensor 4a and the voltage detection sensor 5a causes the first power storage device 4 to and the storage state of the second power storage device 5 can be determined, and the temperature of the first power storage device 4 can be detected by the temperature detection sensor 4b.
  • the power storage state of the first power storage device 4 is shown in FIG. 28, and the power storage state of the second power storage device 5 is shown in FIG. 29, respectively.
  • the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value during power running of the motor 1,
  • the configuration is such that the connection switch SR1 is in a connected state and energy is supplied from the second module M2 to the inverter 2. Further, during regeneration of the motor 1, if the temperature of the first power storage device 4 is equal to or higher than a predetermined value, the connection switch SR1 is brought into a connected state, and the second module M2 is configured to regenerate energy.
  • connection switch SR1 when the motor 1 is stopped, the connection switch SR1 is brought into a connected state, and energy can be supplied from the first module M1 to the second module M2 while controlling the voltage or current of the first module M1. . Furthermore, when the motor 1 is stopped, the connection switch SR1 is brought into a connected state, and energy can be supplied from the second module M2 to the first module M1 while controlling the voltage or current of the first module M1. .
  • the start switch 14 is an operation switch that enables the vehicle to run, and after operating the start switch 14, by operating the accelerator operating means 6, the motor 1 is activated to enable the vehicle to run.
  • the monitor 15 consists of an auxiliary device such as a liquid crystal monitor attached to the vehicle, and is capable of displaying, for example, the vehicle status (speed, power storage status, presence or absence of a failure, etc.), a map of the navigation system, etc.
  • a detection means 19 consisting of a sensor that detects the rotation speed of the motor 1 is provided, and the rotation speed of the motor 1 detected by the detection means 19 is a predetermined value.
  • the regenerative brake is configured to generate a predetermined braking torque according to the operation amount of the regenerative brake operating means 8. Furthermore, during regeneration of the motor 1, the maximum value of the predetermined braking torque is set to the rated torque of the motor 1.
  • the mechanical brake (driving wheel mechanical brake 3a) according to the operation amount of the regenerative brake operation means 8. ing.
  • the mechanical brake (driving wheel mechanical brake 3a) is configured to generate braking torque in accordance with the amount of operation of the regenerative brake operation means 8. .
  • the first module M1 and the It is configured to control the voltage of the second module M2.
  • the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and as shown in FIGS. The configuration is such that the higher the temperature, the lower the predetermined value of the current of the first power storage device 4 is set.
  • the voltage of the second module M2 is controlled according to the voltage of the second power storage device 5.
  • the duty cycle T of the first power converter 10 and the second power converter 11 is set longer. Furthermore, in this embodiment, when controlling the voltages of the first module M1 and the second module M2, as shown in FIG.
  • the overlapping period with the voltage boosting period during the duty cycle of the voltage converter 11 is controlled to be reduced (suppressing the overlapping period).
  • FIG. 5 shows changes in each parameter when the accelerator operating means 6 and the regenerative brake operating means 8 are operated after the start switch 14 is turned on in the electric vehicle according to the above embodiment.
  • FCCNO function circuit control number
  • control (main control) of the electric vehicle will be explained based on the flowchart of FIG. 6.
  • S1 it is determined whether or not the start switch 14 is turned on.
  • the power storage state (Soc1) of the first power storage device 4 is set to a predetermined lower limit value (FIG. 28) in S2. Reference) It is determined whether the value is larger than the specified value.
  • request processing (S3), motor control (S4), and mechanical brake control (S5) are sequentially performed.
  • FIGS. 7 to 10 The relationship between the driving torque and braking torque at the driving wheel Ta and the vehicle speed is as shown in FIG. 7, and the relationship between the motor torque at the driving wheel Ta and the rotation speed ( ⁇ ) of the motor 1 is as shown in FIG. It is said to have such characteristics.
  • the driving torque when driving at high speed, the driving torque has a gradually decreasing relationship with the vehicle speed, whereas the braking torque has a constant relationship.
  • the positive side (upper half) of the vertical axis indicates the driving torque according to the operation amount of the accelerator operating means 6, and the negative side (lower half) of the vertical axis indicates the driving torque according to the operation amount of the accelerator operating means 8. It shows the braking torque according to the amount of operation.
  • the symbol Tm1 in the figure indicates the rated torque of the motor 1.
  • Fig. 10 show the characteristics of the driven wheel Tb, the characteristics (braking torque) are only on the negative side (lower half) of the vertical axis. only is shown.
  • S1 it is determined whether the system is normal or not based on the presence or absence of a failure signal. If it is determined that there is no failure signal, in S2 it is determined whether or not the accelerator operation means 6 is operated (the accelerator operation amount Ap is less than 0). If it is determined that the accelerator operating means 6 has been operated, the process proceeds to S5, where the motor torque (Tm ) is calculated.
  • the process proceeds to S9, where the mechanical braking torque (Tbmr) corresponding to the operation amount of the regenerative brake operating means 8 is calculated based on the table 5 shown in FIG.
  • the mechanical braking torque (Tbmf) corresponding to the operation amount of the mechanical brake operating means 7 is calculated based on the table 6 shown in FIG. Note that the mechanical braking torque (Tbmr) calculated in S9 is used as the braking torque for the driving wheel Ta, and the mechanical braking torque (Tbmf) calculated in S13 is used as the braking torque for the driven wheel Tb.
  • the process advances to S6, and the regenerative brake operating means 8 is adjusted based on the table 2 shown in FIG.
  • Motor torque (Tm) is calculated according to the operation amount.
  • the process proceeds to S10, where the mechanical braking torque (Tbmr) corresponding to the operation amount of the regenerative brake operating means 8 is calculated based on the table 4 shown in FIG. will be exposed.
  • S1 it is determined whether the system is normal or not based on the presence or absence of a failure signal. If it is determined that there is no failure signal, in S2 it is determined whether or not the accelerator operation means 6 is operated (the accelerator operation amount Ap is less than 0). When it is determined that the accelerator operation means 6 is operated, the state of power storage (Soc2) of the second power storage device 5 is larger than the predetermined lower limit value (see FIG. 29) in S3. It is determined whether or not.
  • the process proceeds to S21, where the FCC is set to 10, and if it is determined in S2 that the accelerator operating means 6 is not operated, the regeneration of the motor 1 is performed in S11. It is determined whether or not it is possible.
  • S11 that regeneration of the motor 1 is possible
  • the process proceeds to S23 and the determined FCC is maintained; if it is determined that there is a mode change, the process proceeds to S24 and the FCCNO is set to 11. After that, the duty ratios (K1, K2) in the first module M1 and the second module M2 are calculated in S25, and then the circuit control according to the FCCNO (see FIGS. 19a and 19b) is performed in S26. , the mode (FCC) currently determined for processing is stored in the FCCO in S27, and inverter control is performed in S28.
  • K1 indicates the duty ratio in the first module M1
  • K1 ON time of switch S1/(ON time of switch S1+OFF time of switch S1)
  • K2 ON time of switch S3/(ON time of switch S3+OFF time of switch S3).
  • the circuit control in S26 is performed based on the control tables shown in FIGS. 19a and 19b.
  • the content of control using this control table will be explained below.
  • the switch S3 of the semiconductor switch elements 11a and 11b is turned off (off state) and the switch S4 is turned on (on state).
  • the connection switch SR1 is placed in a cutoff state (off state).
  • the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with a period of 2T) during motor power running, and the semiconductor The switches S3 and S4 of the switch elements 11a and 11b are subjected to duty control (duty control with a period of 2T) when the motor is running.
  • the connection switch SR1 is placed in a cutoff state (off state).
  • the second module M2 is in the operating state and the first module M1 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the motor It is in a cutoff state (off state) during power running. At this time, the connection switch SR1 is brought into a connected state (on state).
  • the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b and the switches S3 and S4 of the semiconductor switch elements 11a and 11b perform duty control during motor regeneration. (Duty control with period 2T). At this time, the connection switch SR1 is placed in a cutoff state (off state).
  • the second module M2 is in the operating state and the first module M1 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the motor It is in a cutoff state (off state) during regeneration. At this time, the connection switch SR1 is brought into a connected state (on state).
  • the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with period T) when the motor is stopped, and the semiconductor
  • the switch S3 of the switch elements 11a and 11b is in a cutoff state (off state), and the switch S4 is in a connected state (on state).
  • the connection switch SR1 is brought into a connected state (on state).
  • the first module M1 and the second module M2 are in an inactive state, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b and the semiconductor switch elements 11a and 11b are in a cutoff state (off state) when the motor is stopped. It is said that At this time, the connection switch SR1 is placed in a cutoff state (off state).
  • the switches S1 and S2 of the semiconductor switching elements 10a and 10b are subjected to duty control (duty control with period T) at the time of switching, and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the cutoff state (off). state).
  • the first module M1 and the second module M2 connected in series are provided with a circuit connected to the inverter 2, and when the motor 1 is powered, the first module M1 and the second module M2 are connected in series. Since energy is supplied from the first module M1 and the second module M2 to the inverter 2 while controlling the voltage of the second module M2, the voltages of the two modules can be controlled separately.
  • the DC voltage (Vinv) of the inverter 2 is divided between the first power storage device 4 and the second power storage device 5.
  • the voltage can be controlled to be lower than the voltage of a power storage device with a low voltage.
  • the DC voltage (Vinv) of the inverter 2 can be expressed as K1*Vdc1+K2*Vdc2, and the first Since the voltage of the power storage device 4 (Vdc1) and the voltage of the second power storage device 5 (Vdc2) can be controlled to any voltage equal to or higher than 0V, the DC voltage (Vinv) of the inverter 2 can be controlled to the voltage of the first power storage device 5. 4 and the second power storage device 5, the voltage can be controlled to be lower than the voltage of the power storage device with the lower voltage.
  • the motor 1 is capable of power running and regeneration, and during regeneration, the first module M1 and the second module M2 recover energy while controlling the voltages of the first module M1 and the second module M2.
  • the voltages of the two modules can be controlled separately. Therefore, when the first power storage device 4 and the second power storage device 5 share energy recovery and regenerate the motor 1, the DC voltage (Vinv) of the inverter 2 is divided into the voltage (Vdc1) of the first power storage device 4 and the second power storage device 4. It can be controlled to any voltage equal to or higher than 0V, which is the sum of the voltage (Vdc2) of power storage device 5.
  • a connection switch SR1 is provided that forms a circuit connecting the second power storage device 5 and the ground, and when the motor 1 is running, the connection switch SR1 is brought into a connected state and the voltage of the first module M1 is controlled.
  • the current of the first power storage device 4 can be set arbitrarily when the motor 1 is running.
  • the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value when the motor 1 is running, , the connection switch SR1 is brought into the connected state and energy is supplied from the second module M2 to the inverter 2, so that a rise in temperature of the first power storage device 4 can be suppressed.
  • the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value during regeneration of the motor 1, Since the connection switch SR1 is brought into the connected state and energy is regenerated in the second module M2, a rise in temperature of the first power storage device 4 can be suppressed.
  • connection switch SR1 when the motor 1 is stopped, the connection switch SR1 is connected, and energy is supplied from the first module M1 to the second module M2 while controlling the voltage or current of the first module M1.
  • the second power storage device 5 can be charged at the same time, and it is possible to prevent the second module M2 from running out of energy when the vehicle is running.
  • the connection switch SR1 when the motor 1 is stopped, the connection switch SR1 is connected, and energy is supplied from the second module M2 to the first module M1 while controlling the voltage or current of the first module M1.
  • the first power storage device 4 can be charged when the vehicle is stopped, and it is possible to prevent the first module M1 from running out of energy when the vehicle is running.
  • the voltages of the first module M1 and the second module M2 are controlled so that the current of the first power storage device 4 is below a predetermined value, so the temperature of the first power storage device 4 is high. The more the temperature rise of the first power storage device 4 can be suppressed. Further, the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and as shown in FIGS. 24 and 25, the higher the temperature of the first power storage device 4, the Since the predetermined value of the current of the first power storage device 4 is set low, it is possible to reliably prevent the current of the first power storage device 4 from exceeding the predetermined value (tolerable value).
  • the voltage of the second module M2 is controlled according to the voltage of the second power storage device 5, so even if the voltage of the second power storage device 5 fluctuates, the voltage of the second module M2 Voltage fluctuations of the two modules M2 can be prevented. Furthermore, when controlling the voltage of the first module M1 and the second module M2, compared to controlling the voltage of either the first module M1 or the second module M2, the voltage of the first power converter 10 and the second module M2 is By setting the duty cycle of the power converter 11 to be long, it is possible to reduce the number of times the semiconductor switch element is turned on and off per unit time when controlling the voltages of the first module M1 and the second module M2.
  • the voltage boosting period during the duty cycle of the first power converter 10 and the voltage boosting period during the duty cycle of the second power converter 11 overlap.
  • fluctuations in the DC voltage (Vinv) of the inverter 2 can be reduced.
  • the output voltage of the first power storage device 4 can be reduced to supply energy to the second power storage device 5. Furthermore, since the amount of energy when the first power storage device 4 is fully charged is greater than the amount of energy when the second power storage device 5 is fully charged, energy can be smoothly supplied from the first power storage device 4 to the second power storage device 5. be able to. Furthermore, since the first power storage device 4 is a replaceable cassette-type power storage device, the first power storage device 4 can be replaced in a short time when necessary, and energy can be transferred from the first power storage device 4 to the second power storage device 5. Can be stably supplied.
  • the reactor 12 is connected in series between the second module M2 and the inverter 2. It's okay. Further, as shown in FIG. 33, a reactor 12 may be connected in series between the first module M1 and the inverter 2. In either case, as in the previous embodiment, the reactor 12 of the first module M1 and the second module M2 can be shared, so the number of parts can be reduced.
  • the semiconductor switching elements 10a, 10b and the semiconductor switching elements 11a, 11b may be other types of switches, or separately required switches may be added.
  • the semiconductor switching element may be an IGBT instead of a MOSFET.
  • the present invention may be applied to vehicles that are not equipped with the monitor 15, or to three-wheeled vehicles or four-wheeled vehicles such as buggies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is an electric vehicle capable of controlling the DC voltage of an inverter so as to be below the voltage of the power storage device which has the lower voltage among a first power storage device and a second power storage device, when the first and second power storage devices jointly supply energy and power a motor. An electric vehicle equipped with a first module M1 in which a first power storage device 4 and a first power converter 10 are connected, a second module M2 in which a second power storage device 5 and a second power converter 11 are connected, and a circuit in which the first module M1 and the second module M2 which are connected in series are connected to an inverter 2, wherein energy is supplied to the inverter 2 from the first module M1 and the second module M2 while controlling the voltage of the first module M1 and the second module M2 when the motor 1 is being powered.

Description

電動車両electric vehicle
 本発明は、モータと当該モータにエネルギ供給可能な蓄電装置とを具備した電動車両に関するものである。 The present invention relates to an electric vehicle equipped with a motor and a power storage device capable of supplying energy to the motor.
 力行及び回生可能なモータと当該モータにエネルギ供給可能な蓄電装置とを具備し、モータの駆動力で推力を得るとともに、駆動輪の制動トルクを調整して蓄電装置にエネルギを回収可能な電動車両として、例えば特許文献1に記載されたものが挙げられる。かかる電動車両によれば、高容量型の特性を有するバッテリ及び高出力型の特性を有するキャパシタのそれぞれから任意タイミングでインバータにエネルギを供給してモータを駆動することができる。 An electric vehicle equipped with a motor capable of power running and regeneration and a power storage device capable of supplying energy to the motor, and capable of obtaining thrust from the driving force of the motor and recovering energy to the power storage device by adjusting the braking torque of the drive wheels. For example, the one described in Patent Document 1 can be mentioned. According to such an electric vehicle, the motor can be driven by supplying energy to the inverter at arbitrary timing from each of the battery having high capacity characteristics and the capacitor having high output characteristics.
特開2018-166367号公報Japanese Patent Application Publication No. 2018-166367
 しかしながら、上記従来技術においては、バッテリ(第1蓄電装置)及びキャパシタ(第2蓄電装置)が分担してエネルギ供給を行いモータを駆動させることができるものの、例えばモータが低回転で力行する時、インバータで必要とされる直流電圧が第1蓄電装置及び第2蓄電装置のうち電圧の低い蓄電装置(通常は容量が小さい第2蓄電装置)の電圧未満である場合、インバータの直流電圧を適切に制御することができないという問題がある。 However, in the above conventional technology, although the battery (first power storage device) and the capacitor (second power storage device) can share energy supply and drive the motor, for example, when the motor runs at low rotation speed, If the DC voltage required by the inverter is lower than the voltage of the power storage device with the lower voltage among the first power storage device and the second power storage device (usually the second power storage device with a smaller capacity), the DC voltage of the inverter should be adjusted appropriately. The problem is that it cannot be controlled.
 本発明は、このような事情に鑑みてなされたもので、第1蓄電装置及び第2蓄電装置が分担してエネルギ供給を行いモータを力行させるとき、インバータの直流電圧を第1蓄電装置及び第2蓄電装置のうち電圧の低い蓄電装置の電圧未満に制御することができる電動車両を提供することにある。 The present invention has been made in view of the above circumstances, and when the first power storage device and the second power storage device share energy supply and power the motor, the DC voltage of the inverter is transferred to the first power storage device and the second power storage device. An object of the present invention is to provide an electric vehicle that can control the voltage to be lower than the voltage of the power storage device with the lower voltage among the two power storage devices.
 請求項1記載の発明は、力行可能なモータと、直流電流から交流電流に変換可能なインバータと、高容量型の特性を有する第1蓄電装置と、高出力型の特性を有する第2蓄電装置と、前記第1蓄電装置の出力電圧を降圧する機能を有する第1電力変換器と、前記第2蓄電装置の出力電圧を降圧する機能を有する第2電力変換器とを有する電動車両であって、前記第1蓄電装置及び第1電力変換器が接続された第1モジュールと、前記第2蓄電装置及び第2電力変換器が接続された第2モジュールと、直列に接続された前記第1モジュールと前記第2モジュールとが前記インバータに接続された回路とを具備し、前記モータの力行時において、前記第1モジュール及び第2モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールから前記インバータにエネルギを供給することを特徴とする。 The invention according to claim 1 provides a motor capable of power running, an inverter capable of converting direct current to alternating current, a first power storage device having high capacity type characteristics, and a second power storage device having high output type characteristics. an electric vehicle comprising: a first power converter having a function of stepping down the output voltage of the first power storage device; and a second power converter having a function of stepping down the output voltage of the second power storage device. , a first module connected to the first power storage device and the first power converter, a second module connected to the second power storage device and the second power converter, and the first module connected in series. and a circuit in which the second module is connected to the inverter, and when the motor is running, the voltages of the first module and the second module are controlled and the voltages of the first module and the second module are controlled. It is characterized by supplying energy to an inverter.
 請求項2記載の発明は、請求項1記載の電動車両において、前記モータは、力行及び回生可能とされるとともに、回生時において、前記第1モジュール及び第2モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールでエネルギを回収することを特徴とする。 The invention according to claim 2 is the electric vehicle according to claim 1, wherein the motor is capable of power running and regeneration, and during regeneration, the motor controls the voltage of the first module and the second module while controlling the voltage of the first module and the second module. It is characterized in that energy is recovered in the first module and the second module.
 請求項3記載の発明は、請求項1記載の電動車両において、前記第1モジュールと第2モジュールとの間にリアクトルが直列に接続されたことを特徴とする。 The invention according to claim 3 is characterized in that, in the electric vehicle according to claim 1, a reactor is connected in series between the first module and the second module.
 請求項4記載の発明は、請求項1記載の電動車両において、前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの力行時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールから前記インバータにエネルギを供給することを特徴とする。 The invention according to claim 4 is the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is running, the connection switch is connected. The first module and the second module supply energy to the inverter while controlling the voltage of the first module.
 請求項5記載の発明は、請求項1記載の電動車両において、前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの力行時において、前記第1蓄電装置の温度が所定値以上の場合、前記接続スイッチを接続状態とし、前記第2モジュールから前記インバータにエネルギを供給することを特徴とする。 The invention as set forth in claim 5 provides the electric vehicle as set forth in claim 1, further comprising a connection switch that forms a circuit that connects the second power storage device and ground, and that connects the second power storage device to the ground based on the temperature of the first power storage device. The temperature state of the first power storage device can be determined, and when the temperature of the first power storage device is equal to or higher than a predetermined value while the motor is running, the connection switch is set to the connected state, and the connection switch is set to the connected state, and the inverter is connected from the second module to the first power storage device. It is characterized by supplying energy to.
 請求項6記載の発明は、請求項2記載の電動車両において、前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの回生時において、前記第1蓄電装置の温度が所定値以上の場合、前記接続スイッチを接続状態とし、前記第2モジュールでエネルギを回生することを特徴とする。 The invention as set forth in claim 6 provides the electric vehicle as set forth in claim 2, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and that the second power storage device is connected to the ground based on the temperature of the first power storage device. The temperature state of the first power storage device can be determined, and when the temperature of the first power storage device is equal to or higher than a predetermined value during regeneration of the motor, the connection switch is set to the connected state and energy is transferred to the second module. It is characterized by regeneration.
 請求項7記載の発明は、請求項1記載の電動車両において、前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの停止時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧又は電流を制御しつつ当該第1モジュールから前記第2モジュールにエネルギを供給することを特徴とする。 The invention according to claim 7 provides the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is stopped, the connection switch is connected. The present invention is characterized in that the first module supplies energy to the second module while controlling the voltage or current of the first module.
 請求項8記載の発明は、請求項1記載の電動車両において、前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの停止時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧又は電流を制御しつつ当該第2モジュールから前記第1モジュールにエネルギを供給することを特徴とする。 The invention according to claim 8 is the electric vehicle according to claim 1, further comprising a connection switch forming a circuit connecting the second power storage device and ground, and when the motor is stopped, the connection switch is connected. The present invention is characterized in that the second module supplies energy to the first module while controlling the voltage or current of the first module.
 請求項9記載の発明は、請求項1記載の電動車両において、前記第1モジュールまたは前記第2モジュールと前記インバータとの間にリアクトルが直列に接続されたことを特徴とする。 The invention according to claim 9 is characterized in that, in the electric vehicle according to claim 1, a reactor is connected in series between the first module or the second module and the inverter.
 請求項10記載の発明は、請求項1記載の電動車両において、前記モータの力行時において、前記第1蓄電装置の電流が所定値以下になるように、前記第1モジュール及び前記第2モジュールの電圧を制御することを特徴とする。 The invention according to claim 10 is the electric vehicle according to claim 1, in which the first module and the second module are arranged so that the current of the first power storage device becomes equal to or less than a predetermined value when the motor is powered. It is characterized by controlling the voltage.
 請求項11記載の発明は、請求項10記載の電動車両において、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記第1蓄電装置の温度が高いほど、前記第1蓄電装置の電流の所定値を低く設定することを特徴とする。 The invention according to claim 11 is the electric vehicle according to claim 10, wherein the temperature state of the first power storage device can be determined based on the temperature of the first power storage device, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device. The higher the value, the lower the predetermined value of the current of the first power storage device is set.
 請求項12記載の発明は、請求項1記載の電動車両において、前記第2モジュールの電圧を制御する時、当該第2蓄電装置の電圧に応じて前記第2モジュールの電圧を制御することを特徴とする。 The invention according to claim 12 is characterized in that, in the electric vehicle according to claim 1, when controlling the voltage of the second module, the voltage of the second module is controlled according to the voltage of the second power storage device. shall be.
 請求項13記載の発明は、請求項1記載の電動車両において、前記第1モジュール及び前記第2モジュールの電圧を制御する時、前記第1モジュール及び前記第2モジュールの何れか一方の電圧を制御する時に比べて、前記第1電力変換器及び第2電力変換器のデューティ周期を長く設定することを特徴とする。 The invention according to claim 13 is the electric vehicle according to claim 1, when controlling the voltages of the first module and the second module, the voltage of either one of the first module and the second module is controlled. The present invention is characterized in that the duty cycle of the first power converter and the second power converter is set longer than when the power converter is used.
 請求項14記載の発明は、請求項13記載の電動車両において、前記第1モジュール及び前記第2モジュールの電圧を制御する時、前記第1電力変換器のデューティ周期中の電圧昇圧期間と前記第2電力変換器のデューティ周期中の電圧昇圧期間との重複期間が低減するように制御することを特徴とする。 The invention according to claim 14 is the electric vehicle according to claim 13, when controlling the voltages of the first module and the second module, the voltage boosting period during the duty cycle of the first power converter and the voltage boosting period during the duty cycle of the first power converter The present invention is characterized in that control is performed so that the overlapping period with the voltage boosting period during the duty cycle of the two power converters is reduced.
 請求項15記載の発明は、請求項1記載の電動車両において、前記第1蓄電装置は、前記第2蓄電装置より高電圧型の特性を有することを特徴とする。 The invention according to claim 15 is the electric vehicle according to claim 1, wherein the first power storage device has a higher voltage type characteristic than the second power storage device.
 請求項16記載の発明は、請求項1記載の電動車両において、前記第1蓄電装置の満充電時のエネルギ量は、前記第2蓄電装置の満充電時のエネルギ量より多いことを特徴とする。 The invention according to claim 16 is characterized in that in the electric vehicle according to claim 1, the amount of energy when the first power storage device is fully charged is greater than the amount of energy when the second power storage device is fully charged. .
 請求項17記載の発明は、請求項1記載の電動車両において、前記第1蓄電装置は、交換可能なカセット型の蓄電装置から成ることを特徴とする。 The invention according to claim 17 is the electric vehicle according to claim 1, wherein the first power storage device is a replaceable cassette-type power storage device.
 請求項18記載の発明は、請求項1記載の電動車両において、前記第1蓄電装置は、高容量リチウムイオン電池又は高容量ニッケル水素電池から成り、前記第2蓄電装置は、高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかであることを特徴とする。 The invention according to claim 18 is the electric vehicle according to claim 1, wherein the first power storage device includes a high capacity lithium ion battery or a high capacity nickel metal hydride battery, and the second power storage device comprises a high power lithium ion battery. , a high-output nickel-metal hydride battery, a lithium ion capacitor, or an electric double layer capacitor.
 本発明によれば、第1蓄電装置及び第1電力変換器が接続された第1モジュールと、第2蓄電装置及び第2電力変換器が接続された第2モジュールと、直列に接続された前記第1モジュールと前記第2モジュールとが前記インバータに接続された回路とを具備し、モータの力行時において、第1モジュール及び第2モジュールの電圧を制御しつつ第1モジュール及び第2モジュールからインバータにエネルギを供給するので、第1蓄電装置及び第2蓄電装置が分担してエネルギ供給を行いモータを力行させるとき、インバータの直流電圧を第1蓄電装置及び第2蓄電装置のうち電圧の低い蓄電装置の電圧未満に制御することができる。 According to the present invention, the first module connected to the first power storage device and the first power converter, the second module connected to the second power storage device and the second power converter, and the first module connected in series. The first module and the second module each include a circuit connected to the inverter, and when the motor is running, the inverter is connected to the first module and the second module while controlling the voltages of the first module and the second module. Therefore, when the first power storage device and the second power storage device share the energy supply and power the motor, the DC voltage of the inverter is transferred to the power storage device with the lower voltage between the first power storage device and the second power storage device. The device voltage can be controlled below.
本発明の実施形態に係る電動車両を示す模式図A schematic diagram showing an electric vehicle according to an embodiment of the present invention 同電動車両の電力変換装置を示す回路図A circuit diagram showing the power conversion device of the electric vehicle 同電動車両の電力変換装置を示す概念図Conceptual diagram showing the power conversion device of the electric vehicle 同電動車両の制御関係を示す概略図Schematic diagram showing the control relationship of the electric vehicle 同電動車両の電力制御を示すタイムチャートTime chart showing power control of the electric vehicle 同電動車両の電力制御の全体を示すフローチャートFlowchart showing the overall power control of the electric vehicle 同電動車両の要求特性(駆動輪の車両要求)を示すグラフGraph showing the required characteristics of the electric vehicle (vehicle requirements for drive wheels) 同電動車両の要求特性(駆動輪のモータ要求)を示すグラフGraph showing the required characteristics of the electric vehicle (drive wheel motor requirements) 同電動車両の要求特性(従動輪の車両要求)を示すグラフGraph showing the required characteristics of the electric vehicle (vehicle requirements for driven wheels) 同電動車両の要求特性(従動輪のブレーキ要求)を示すグラフGraph showing the required characteristics of the electric vehicle (brake requirement of driven wheels) 同電動車両の電力制御の要求処理制御を示すフローチャートFlowchart showing request processing control for power control of the electric vehicle 同電動車両の運転者要求テーブル(テーブル1)を示すグラフGraph showing the driver request table (Table 1) of the electric vehicle 同電動車両の運転者要求テーブル(テーブル2)を示すグラフGraph showing the driver request table (Table 2) for the electric vehicle 同電動車両の運転者要求テーブル(テーブル3)を示すグラフGraph showing the driver request table (Table 3) for the electric vehicle 同電動車両の運転者要求テーブル(テーブル4)を示すグラフGraph showing the driver request table (Table 4) of the electric vehicle 同電動車両の運転者要求テーブル(テーブル5)を示すグラフGraph showing the driver request table (Table 5) of the electric vehicle 同電動車両の運転者要求テーブル(テーブル6)を示すグラフGraph showing the driver request table (Table 6) for the electric vehicle 同電動車両の電力制御のモータ制御を示すフローチャートFlowchart showing motor control for power control of the electric vehicle 同電動車両の電力制御のモータ制御を示すフローチャートFlowchart showing motor control for power control of the electric vehicle 同電動車両の電力制御のモータ制御を示すフローチャートFlowchart showing motor control for power control of the electric vehicle 同電動車両の電力変換回路制御を示す表Table showing power conversion circuit control of the electric vehicle 同電動車両の電力変換回路制御を示す表Table showing power conversion circuit control of the electric vehicle 同電動車両の電圧要求テーブル(テーブルA)を示すグラフGraph showing the voltage requirement table (table A) of the electric vehicle 同電動車両の電圧要求テーブル(テーブルB)を示すグラフGraph showing the voltage requirement table (table B) of the electric vehicle 同電動車両の電圧要求テーブル(テーブルC)を示すグラフGraph showing the voltage requirement table (Table C) of the electric vehicle 同電動車両における係数K1、K2の算出工程を示すフローチャートFlowchart showing the calculation process of coefficients K1 and K2 in the electric vehicle 同電動車両における第1蓄電装置の温度、電流及び係数K1、K2の変化を示すグラフGraph showing changes in temperature, current, and coefficients K1 and K2 of the first power storage device in the electric vehicle 同電動車両における第1蓄電装置の電流と温度との関係を示すグラフGraph showing the relationship between the current and temperature of the first power storage device in the electric vehicle 同電動車両における第2蓄電装置の電圧と係数K2との関係を示すグラフGraph showing the relationship between the voltage of the second power storage device and coefficient K2 in the electric vehicle 同電動車両における第1電力変換器及び第2電力変換器によるデューティ制御を示すグラフGraph showing duty control by the first power converter and the second power converter in the electric vehicle 同電動車両の第1蓄電装置の蓄電状態を示すグラフGraph showing the power storage state of the first power storage device of the electric vehicle 同電動車両の第2蓄電装置の蓄電状態を示すグラフGraph showing the power storage state of the second power storage device of the electric vehicle 同電動車両の蓄電装置の組み合わせを示す表Table showing combinations of power storage devices for the electric vehicle 本発明の他の実施形態に係る電動車両の電力変換装置を示す回路図A circuit diagram showing a power conversion device for an electric vehicle according to another embodiment of the present invention 同電動車両の電力変換装置を示す概念図Conceptual diagram showing the power conversion device of the electric vehicle 本発明のさらに他の実施形態に係る電動車両の電力変換装置を示す概念図A conceptual diagram showing a power conversion device for an electric vehicle according to still another embodiment of the present invention
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 本実施形態に係る電動車両は、モータの駆動力により走行可能な自動二輪車等の鞍乗り型車両から成るもので、図1~4に示すように、モータ1と、インバータ2と、メカブレーキ(3a、3b)と、第1蓄電装置4と、第2蓄電装置5と、アクセル操作手段6と、メカブレーキ操作手段7と、回生ブレーキ操作手段8と、第1電力変換器10と、第2電力変換器11と、リアクトル12と、ECU13と、スタートスイッチ14と、モニタ15とを主に具備している。
Embodiments of the present invention will be specifically described below with reference to the drawings.
The electric vehicle according to the present embodiment is a saddle-riding vehicle such as a motorcycle that can be driven by the driving force of a motor, and as shown in FIGS. 3a, 3b), the first power storage device 4, the second power storage device 5, the accelerator operating means 6, the mechanical brake operating means 7, the regenerative brake operating means 8, the first power converter 10, and the second power converter 10. It mainly includes a power converter 11, a reactor 12, an ECU 13, a start switch 14, and a monitor 15.
 モータ1(Motor)は、エネルギ供給により駆動力を得るための電磁モータから成り、図2、3に示すように、インバータ2を介して第2蓄電装置5及び第2電力変換器11を有する第2モジュールM2と電気的に接続可能とされ、力行及び回生可能とされている。インバータ2(DC-AC Inverter)は、直流電流から交流電流に変換可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5の直流電流を交流電流に変換してモータ1に供給可能とされている。 The motor 1 (Motor) consists of an electromagnetic motor for obtaining driving force by supplying energy, and as shown in FIGS. It can be electrically connected to the second module M2, and power running and regeneration are possible. The inverter 2 (DC-AC Inverter) is capable of converting direct current to alternating current. In this embodiment, the inverter 2 (DC-AC Inverter) converts the direct current of the first power storage device 4 and the second power storage device 5 into alternating current to drive the motor. It is said that it can be supplied to 1.
 メカブレーキは、ディスクブレーキやドラムブレーキ等のエネルギを放出して制動可能な制動装置から成り、駆動輪Taの運動エネルギを放出して制動する駆動輪メカブレーキ3aと、従動輪Tbの運動エネルギを放出して制動する従動輪メカブレーキ3bとを有して構成されている。これら駆動輪メカブレーキ3a及び従動輪メカブレーキ3bは、ブレーキアクチュエータ9を介してメカブレーキ操作手段7と接続されている。 The mechanical brake consists of a braking device capable of braking by releasing energy, such as a disc brake or a drum brake, and includes a driving wheel mechanical brake 3a which releases the kinetic energy of the driving wheel Ta for braking, and a driving wheel mechanical brake 3a which releases the kinetic energy of the driven wheel Tb to perform braking. The driven wheel mechanical brake 3b is configured to release and brake. The driving wheel mechanical brake 3a and the driven wheel mechanical brake 3b are connected to a mechanical brake operating means 7 via a brake actuator 9.
 かかるメカブレーキ操作手段7は、メカブレーキ(従動輪メカブレーキ3b)を制御して制動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられた操作レバー)から成り、その操作量に応じてメカブレーキ制御部18(図4参照)がブレーキアクチュエータ9を作動させ、従動輪メカブレーキ3bを動作させ得るよう構成されている。 The mechanical brake operating means 7 includes a component (in this embodiment, an operating lever attached to the right end of the handlebar) that can control the mechanical brake (driven wheel mechanical brake 3b) and adjust the braking torque. , the mechanical brake control unit 18 (see FIG. 4) operates the brake actuator 9 in accordance with the amount of operation, and is configured to operate the driven wheel mechanical brake 3b.
 アクセル操作手段6は、モータ1を制御して駆動輪Taの駆動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられたアクセルグリップ)から成り、図4に示すように、その操作量に応じてインバータ制御部16によりトルク要求を推定してモータ1を作動させることにより、所望の駆動力を得るよう構成されている。なお、インバータ制御部16は、ECU13に形成された制御部の一つである。 The accelerator operating means 6 consists of a component (in this embodiment, an accelerator grip attached to the right end of the handlebar) that can control the motor 1 to adjust the drive torque of the drive wheel Ta, and is shown in FIG. Thus, the inverter control unit 16 estimates the torque demand according to the operation amount and operates the motor 1, thereby obtaining a desired driving force. Note that the inverter control section 16 is one of the control sections formed in the ECU 13.
 蓄電装置は、モータ1にエネルギを供給可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5を有して構成されている。第1蓄電装置4は、高容量型の特性を有する蓄電池から成り、図30に示すように、例えば高容量リチウムイオン電池又は高容量ニッケル水素電池を使用することができる。第2蓄電装置5は、高出力型の特性を有する蓄電池から成り、図30に示すように、例えば高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかを使用することができる。 The power storage device is capable of supplying energy to the motor 1, and in this embodiment is configured to include a first power storage device 4 and a second power storage device 5. The first power storage device 4 is composed of a storage battery having high capacity characteristics, and as shown in FIG. 30, for example, a high capacity lithium ion battery or a high capacity nickel metal hydride battery can be used. The second power storage device 5 is made of a storage battery having high output characteristics, and as shown in FIG. can be used.
 より具体的には、第1蓄電装置4は、第2蓄電装置5より高電圧型の特性を有するとともに、第1蓄電装置4の満充電時のエネルギ量は、第2蓄電装置5の満充電時のエネルギ量より多いものとされている。また、本実施形態に係る第1蓄電装置4は、車両から取り外して交換可能なカセット型の蓄電装置から成り、第1蓄電装置4の蓄電状態に応じて満充電状態の第1蓄電装置4と交換可能とされている。 More specifically, the first power storage device 4 has higher voltage characteristics than the second power storage device 5, and the amount of energy when the first power storage device 4 is fully charged is equal to the amount of energy when the second power storage device 5 is fully charged. It is said that the amount of energy is greater than that of time. Further, the first power storage device 4 according to the present embodiment is a cassette-type power storage device that can be removed from the vehicle and replaced, and depending on the power storage state of the first power storage device 4, the first power storage device 4 can be in a fully charged state or It is said to be replaceable.
 回生ブレーキ操作手段8は、モータ1を制御して、駆動輪Taの制動トルクを調整し、蓄電装置(第1蓄電装置4及び第2蓄電装置5)にエネルギを回収可能な部品(本実施形態においては、ハンドルバーの左側端部に取り付けられた操作レバー)から成り、その操作量に応じてモータ1の回生を行わせて所望の制動力が得られるよう構成されている。かかるモータ1の回生により、第1蓄電装置4及び第2蓄電装置5にエネルギを回収することができる。 The regenerative brake operating means 8 controls the motor 1 to adjust the braking torque of the drive wheels Ta, and is a component (in this embodiment) that can recover energy to the power storage devices (the first power storage device 4 and the second power storage device 5). In this example, the brake lever consists of an operating lever attached to the left end of the handlebar, and is configured to regenerate the motor 1 according to the amount of operation of the lever, thereby obtaining a desired braking force. Through such regeneration of the motor 1, energy can be recovered to the first power storage device 4 and the second power storage device 5.
 第1電力変換器10は、モータ1の力行時(モータ1へのエネルギ供給時)に電圧を降圧する機能とモータ1の回生時(モータ1からのエネルギ回収時)に電圧を昇圧する機能を有し、本実施形態においては、第1蓄電装置4の出力電圧を降圧する機能を有するもので、図2、3に示すように、第1モジュールM1を構成する。かかる第1モジュールM1は、図2、3に示すように、第1蓄電装置4及び第1電力変換器10が接続されて構成されている。 The first power converter 10 has a function to step down the voltage when the motor 1 is running (when supplying energy to the motor 1) and a function to step up the voltage when the motor 1 is regenerating (when energy is recovered from the motor 1). In this embodiment, it has a function of lowering the output voltage of the first power storage device 4, and constitutes the first module M1 as shown in FIGS. 2 and 3. The first module M1 is configured by connecting a first power storage device 4 and a first power converter 10, as shown in FIGS. 2 and 3.
 また、第1電力変換器10は、図2に示すように、スイッチS1、S2及び整流器としてのダイオードを有する2つの半導体スイッチ素子(MOSFET)10a、10bを有して構成されるとともに、下流側のリアクトル12(コイル)と電気的に接続されている。そして、半導体スイッチ素子10a、10bのスイッチS1、S2を高速スイッチング(duty制御)することにより、第1モジュールM1における電圧を制御可能とされている。 Further, as shown in FIG. 2, the first power converter 10 is configured with two semiconductor switching elements (MOSFET) 10a and 10b having switches S1 and S2 and a diode as a rectifier, and a downstream side The reactor 12 (coil) is electrically connected to the reactor 12 (coil). The voltage in the first module M1 can be controlled by high-speed switching (duty control) of the switches S1 and S2 of the semiconductor switching elements 10a and 10b.
 第2電力変換器11は、モータ1の力行時(モータ1へのエネルギ供給時)に電圧を降圧する機能とモータ1の回生時(モータ1からのエネルギ回収時)に電圧を昇圧する機能を有し、本実施形態においては、第2蓄電装置5の出力電圧を降圧する機能を有するもので、図2、3に示すように、第2モジュールM2を構成する。かかる第2モジュールM2は、図2、3に示すように、第2蓄電装置5及び第2電力変換器11が接続されて構成されている。 The second power converter 11 has a function to step down the voltage when the motor 1 is running (when supplying energy to the motor 1) and a function to step up the voltage when the motor 1 is regenerating (when energy is recovered from the motor 1). In this embodiment, it has a function of lowering the output voltage of the second power storage device 5, and constitutes a second module M2 as shown in FIGS. 2 and 3. The second module M2 is configured by connecting a second power storage device 5 and a second power converter 11, as shown in FIGS. 2 and 3.
 また、第2電力変換器11は、図2に示すように、スイッチS3、S4及び整流器としてのダイオードを有する2つの半導体スイッチ素子(MOSFET)11a、11bを有して構成されるとともに、上流側のリアクトル12(コイル)と電気的に接続されている。そして、半導体スイッチ素子11a、11bのスイッチS3、S4を高速スイッチング(duty制御)することにより、第2モジュールM2における電圧を制御可能とされている。 Further, as shown in FIG. 2, the second power converter 11 is configured with two semiconductor switching elements (MOSFETs) 11a and 11b having switches S3 and S4 and a diode as a rectifier, and has an upstream side The reactor 12 (coil) is electrically connected to the reactor 12 (coil). The voltage in the second module M2 can be controlled by high-speed switching (duty control) of the switches S3 and S4 of the semiconductor switching elements 11a and 11b.
 ここで、本実施形態においては、直列に接続された第1モジュールM1と第2モジュールM2とがインバータ2に接続された回路を有するとともに、第1モジュールM1と第2モジュールM2との間にリアクトル12が直列に接続されている。これにより、モータ1の力行時において、第1モジュールM1及び第2モジュールM2の電圧を制御しつつ第1モジュールM1及び第2モジュールM2からインバータ2にエネルギを供給するとともに、モータ1の回生時において、第1モジュールM1及び第2モジュールM2の電圧を制御しつつ第1モジュールM1及び第2モジュールM2でエネルギを回収することができる。 Here, in this embodiment, the first module M1 and the second module M2 connected in series have a circuit connected to the inverter 2, and a reactor is connected between the first module M1 and the second module M2. 12 are connected in series. Thereby, when the motor 1 is running, energy is supplied from the first module M1 and the second module M2 to the inverter 2 while controlling the voltages of the first module M1 and the second module M2, and when the motor 1 is regenerating, the voltage of the first module M1 and the second module M2 is controlled. , energy can be recovered by the first module M1 and the second module M2 while controlling the voltages of the first module M1 and the second module M2.
 さらに、本実施形態においては、図2に示すように、第2蓄電装置5とグラウンドとを接続(グラウンド接続)する回路を形成する接続スイッチSR1を具備して構成されており、モータ1の力行時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧を制御しつつ第1モジュールM1及び第2モジュールM2からインバータ2にエネルギを供給し得るようになっている。なお、本実施形態に係る回路には、安定化のためのコンデンサCa、Cb、Ccが接続されている。 Furthermore, as shown in FIG. 2, the present embodiment is configured to include a connection switch SR1 that forms a circuit that connects the second power storage device 5 and the ground (ground connection), and the motor 1 is At this time, the connection switch SR1 is set in the connected state so that energy can be supplied from the first module M1 and the second module M2 to the inverter 2 while controlling the voltage of the first module M1. Note that capacitors Ca, Cb, and Cc for stabilization are connected to the circuit according to this embodiment.
 ECU13は、入力された運転者の要求に応じてモータ1等を制御するためのもので、図4に示すように、インバータ制御部16、回路制御部17及びメカブレーキ制御部18を有するとともに、インバータ2、第1電力変換器10、第2電力変換器11、第1蓄電装置4、第2蓄電装置5及びブレーキアクチュエータ9と接続されている。また、第1蓄電装置4の電圧を検出可能な電圧検出センサ4a及び当該第1蓄電装置4の温度を検出可能な温度検出センサ4bを具備するとともに、第2蓄電装置5の電圧を検出可能な電圧検出センサ5aを具備している。 The ECU 13 is for controlling the motor 1 etc. according to the driver's input requests, and as shown in FIG. 4, has an inverter control section 16, a circuit control section 17, and a mechanical brake control section 18. It is connected to the inverter 2 , the first power converter 10 , the second power converter 11 , the first power storage device 4 , the second power storage device 5 , and the brake actuator 9 . Further, it includes a voltage detection sensor 4a that can detect the voltage of the first power storage device 4, a temperature detection sensor 4b that can detect the temperature of the first power storage device 4, and a temperature detection sensor 4b that can detect the voltage of the second power storage device 5. It is equipped with a voltage detection sensor 5a.
 しかるに、電圧検出センサ4a、温度検出センサ4b及び電圧検出センサ5aが回路制御部17と電気的に接続されており、電圧検出センサ4a及び電圧検出センサ5aで検出される電圧によって第1蓄電装置4及び第2蓄電装置5の蓄電状態をそれぞれ判断可能とされるとともに、温度検出センサ4bによって第1蓄電装置4の温度を検出可能とされている。なお、第1蓄電装置4の蓄電状態を図28、第2蓄電装置5の蓄電状態を図29にそれぞれ示している。 However, the voltage detection sensor 4a, the temperature detection sensor 4b, and the voltage detection sensor 5a are electrically connected to the circuit control unit 17, and the voltage detected by the voltage detection sensor 4a and the voltage detection sensor 5a causes the first power storage device 4 to and the storage state of the second power storage device 5 can be determined, and the temperature of the first power storage device 4 can be detected by the temperature detection sensor 4b. Note that the power storage state of the first power storage device 4 is shown in FIG. 28, and the power storage state of the second power storage device 5 is shown in FIG. 29, respectively.
 そして、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、モータ1の力行時において、第1蓄電装置4の温度が所定値以上の場合、接続スイッチSR1を接続状態とし、第2モジュールM2からインバータ2にエネルギを供給するよう構成されている。また、モータ1の回生時において、第1蓄電装置4の温度が所定値以上の場合、接続スイッチSR1を接続状態とし、第2モジュールM2でエネルギを回生するよう構成されている。 The temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value during power running of the motor 1, The configuration is such that the connection switch SR1 is in a connected state and energy is supplied from the second module M2 to the inverter 2. Further, during regeneration of the motor 1, if the temperature of the first power storage device 4 is equal to or higher than a predetermined value, the connection switch SR1 is brought into a connected state, and the second module M2 is configured to regenerate energy.
 さらに、モータ1の停止時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧又は電流を制御しつつ当該第1モジュールM1から第2モジュールM2にエネルギを供給し得るよう構成されている。またさらに、モータ1の停止時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧又は電流を制御しつつ第2モジュールM2から第1モジュールM1にエネルギを供給し得るよう構成されている。 Further, when the motor 1 is stopped, the connection switch SR1 is brought into a connected state, and energy can be supplied from the first module M1 to the second module M2 while controlling the voltage or current of the first module M1. . Furthermore, when the motor 1 is stopped, the connection switch SR1 is brought into a connected state, and energy can be supplied from the second module M2 to the first module M1 while controlling the voltage or current of the first module M1. .
 スタートスイッチ14は、車両の走行を可能にする操作スイッチから成り、かかるスタートスイッチ14を操作した後、アクセル操作手段6を操作することにより、モータ1を作動させて走行し得るようになっている。モニタ15は、車両に取り付けられた液晶モニタ等の補助装置から成り、例えば車両の状態(速度、蓄電状態又は故障の有無等)やナビゲーションシステムの地図等を表示させ得るようになっている。 The start switch 14 is an operation switch that enables the vehicle to run, and after operating the start switch 14, by operating the accelerator operating means 6, the motor 1 is activated to enable the vehicle to run. . The monitor 15 consists of an auxiliary device such as a liquid crystal monitor attached to the vehicle, and is capable of displaying, for example, the vehicle status (speed, power storage status, presence or absence of a failure, etc.), a map of the navigation system, etc.
 さらに、本実施形態においては、図4に示すように、モータ1の回転数を検知するセンサから成る検知手段19を具備しており、検知手段19で検知されたモータ1の回転数が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じた所定制動トルクを回生ブレーキにより発生するよう構成されている。また、モータ1の回生時、その所定制動トルクの最大値は、モータ1の定格トルクとされている。 Furthermore, in this embodiment, as shown in FIG. 4, a detection means 19 consisting of a sensor that detects the rotation speed of the motor 1 is provided, and the rotation speed of the motor 1 detected by the detection means 19 is a predetermined value. In the above case, the regenerative brake is configured to generate a predetermined braking torque according to the operation amount of the regenerative brake operating means 8. Furthermore, during regeneration of the motor 1, the maximum value of the predetermined braking torque is set to the rated torque of the motor 1.
 しかるに、検知手段19で検知されたモータ1の回転数が所定値未満のとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるようになっている。加えて、第1蓄電装置4の充電量が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じて、メカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるよう構成されている。 However, when the rotation speed of the motor 1 detected by the detection means 19 is less than a predetermined value, braking torque is generated by the mechanical brake (driving wheel mechanical brake 3a) according to the operation amount of the regenerative brake operation means 8. ing. In addition, when the amount of charge in the first power storage device 4 is equal to or higher than a predetermined value, the mechanical brake (driving wheel mechanical brake 3a) is configured to generate braking torque in accordance with the amount of operation of the regenerative brake operation means 8. .
 またさらに、本実施形態においては、図24、25に示すように、モータ1の力行時において、第1蓄電装置4の電流が所定値(許容値)以下になるように、第1モジュールM1及び第2モジュールM2の電圧を制御するよう構成されている。また、既述のように、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、図24、25に示すように、第1蓄電装置4の温度が高いほど、第1蓄電装置4の電流の所定値を低く設定するよう構成されている。加えて、図26に示すように、第2モジュールM2の電圧を制御する時、第2蓄電装置5の電圧に応じて第2モジュールM2の電圧を制御するよう構成されている。 Furthermore, in this embodiment, as shown in FIGS. 24 and 25, the first module M1 and the It is configured to control the voltage of the second module M2. Further, as described above, the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and as shown in FIGS. The configuration is such that the higher the temperature, the lower the predetermined value of the current of the first power storage device 4 is set. In addition, as shown in FIG. 26, when controlling the voltage of the second module M2, the voltage of the second module M2 is controlled according to the voltage of the second power storage device 5.
 さらに、本実施形態においては、第1モジュールM1及び第2モジュールM2の電圧を制御する時、図27に示すように、第1モジュールM1及び第2モジュールM2の何れか一方の電圧を制御する時に比べて、第1電力変換器10及び第2電力変換器11のデューティ周期Tを長く設定するようになっている。また、本実施形態においては、第1モジュールM1及び第2モジュールM2の電圧を制御する時、図27に示すように、第1電力変換器10のデューティ周期中の電圧昇圧期間と第2電力変換器11のデューティ周期中の電圧昇圧期間との重複期間が低減(重複期間を抑制)するように制御されている。 Furthermore, in this embodiment, when controlling the voltage of the first module M1 and the second module M2, as shown in FIG. In comparison, the duty cycle T of the first power converter 10 and the second power converter 11 is set longer. Furthermore, in this embodiment, when controlling the voltages of the first module M1 and the second module M2, as shown in FIG. The overlapping period with the voltage boosting period during the duty cycle of the voltage converter 11 is controlled to be reduced (suppressing the overlapping period).
 図5は、上記実施形態に係る電動車両において、スタートスイッチ14をオンした後、アクセル操作手段6及び回生ブレーキ操作手段8の操作を行った場合の各パラメータの変化を示している。なお、同図の表における「FCCNO」(function circuit control number)は、図4、18、19で示される「FCCNO」と対応するものである。 FIG. 5 shows changes in each parameter when the accelerator operating means 6 and the regenerative brake operating means 8 are operated after the start switch 14 is turned on in the electric vehicle according to the above embodiment. Note that "FCCNO" (function circuit control number) in the table of the figure corresponds to "FCCNO" shown in FIGS. 4, 18, and 19.
 次に、本実施形態に係る電動車両の制御(メイン制御)について、図6のフローチャートに基づいて説明する。
 先ず、S1にてスタートスイッチ14がオンしたか否か判定され、スタートスイッチ14がオンしたと判断されると、S2にて第1蓄電装置4の蓄電状態(Soc1)が所定下限値(図28参照)より大きいか否か判定される。そして、蓄電状態(Soc1)が所定下限値より大きいと判断されると、要求処理(S3)、モータ制御(S4)及びメカブレーキ制御(S5)が順次行われることとなる。
Next, control (main control) of the electric vehicle according to this embodiment will be explained based on the flowchart of FIG. 6.
First, in S1 it is determined whether or not the start switch 14 is turned on. When it is determined that the start switch 14 is turned on, the power storage state (Soc1) of the first power storage device 4 is set to a predetermined lower limit value (FIG. 28) in S2. Reference) It is determined whether the value is larger than the specified value. When it is determined that the power storage state (Soc1) is larger than the predetermined lower limit value, request processing (S3), motor control (S4), and mechanical brake control (S5) are sequentially performed.
 次に、本実施形態に係る電動車両の要求特性について、図7~10に基づいて説明する。
 駆動輪Taにおける駆動トルク及び制動トルクと車速との関係は、図7に示すような特性とされ、駆動輪Taにおけるモータトルクとモータ1の回転数(ω)との関係は、図8に示すような特性とされる。特に、図7において、高速走行の場合、駆動トルクが車速に対して漸減関係にあるのに対し、制動トルクは一定関係となっている。なお、図8においては、縦軸のプラス側(上半分)がアクセル操作手段6の操作量に応じた駆動トルクを示しており、縦軸のマイナス側(下半分)が回生ブレーキ操作手段8の操作量に応じた制動トルクを示している。同図中の符号Tm1は、モータ1の定格トルクを示している。
Next, the required characteristics of the electric vehicle according to this embodiment will be explained based on FIGS. 7 to 10.
The relationship between the driving torque and braking torque at the driving wheel Ta and the vehicle speed is as shown in FIG. 7, and the relationship between the motor torque at the driving wheel Ta and the rotation speed (ω) of the motor 1 is as shown in FIG. It is said to have such characteristics. In particular, in FIG. 7, when driving at high speed, the driving torque has a gradually decreasing relationship with the vehicle speed, whereas the braking torque has a constant relationship. In FIG. 8, the positive side (upper half) of the vertical axis indicates the driving torque according to the operation amount of the accelerator operating means 6, and the negative side (lower half) of the vertical axis indicates the driving torque according to the operation amount of the accelerator operating means 8. It shows the braking torque according to the amount of operation. The symbol Tm1 in the figure indicates the rated torque of the motor 1.
 また、従動輪Tbにおける制動トルクと車速との関係は、図9に示すような特性とされ、従動輪Tbにおける制動トルク(メカ制動トルク(Tbmf)とモータ1の回転数(ω)との関係は、図10に示すような特性とされる。なお、図9、10においては、従動輪Tbの特性を示すものであるため、縦軸のマイナス側(下半分)のみの特性(制動トルク)のみが示されている。 The relationship between the braking torque at the driven wheel Tb and the vehicle speed is as shown in FIG. is assumed to have the characteristics as shown in Fig. 10. Since Figs. 9 and 10 show the characteristics of the driven wheel Tb, the characteristics (braking torque) are only on the negative side (lower half) of the vertical axis. only is shown.
 次に、本実施形態に係る電動車両の制御(要求処理制御)について、図11のフローチャートに基づいて説明する。
 先ず、S1にて故障信号の有無に基づいてシステムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定され、アクセル操作手段6の操作があると判断されると、S5に進み、図12に示すテーブル1に基づいてアクセル操作手段6の操作量に応じたモータトルク(Tm)が算出される。
Next, control of the electric vehicle (request processing control) according to the present embodiment will be explained based on the flowchart of FIG. 11.
First, in S1 it is determined whether the system is normal or not based on the presence or absence of a failure signal. If it is determined that there is no failure signal, in S2 it is determined whether or not the accelerator operation means 6 is operated (the accelerator operation amount Ap is less than 0). If it is determined that the accelerator operating means 6 has been operated, the process proceeds to S5, where the motor torque (Tm ) is calculated.
 そして、S5の算出の後、S9に進み、図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、S13に進み、図17に示すテーブル6に基づいてメカブレーキ操作手段7の操作量に応じたメカ制動トルク(Tbmf)が算出される。なお、S9で算出されたメカ制動トルク(Tbmr)は、駆動輪Taの制動トルクとされるとともに、S13で算出されたメカ制動トルク(Tbmf)は、従動輪Tbの制動トルクとされる。 After the calculation in S5, the process proceeds to S9, where the mechanical braking torque (Tbmr) corresponding to the operation amount of the regenerative brake operating means 8 is calculated based on the table 5 shown in FIG. The mechanical braking torque (Tbmf) corresponding to the operation amount of the mechanical brake operating means 7 is calculated based on the table 6 shown in FIG. Note that the mechanical braking torque (Tbmr) calculated in S9 is used as the braking torque for the driving wheel Ta, and the mechanical braking torque (Tbmf) calculated in S13 is used as the braking torque for the driven wheel Tb.
 また、S2にてアクセル操作手段の操作がないと判断されると、S3にてモータ1の回生が可能か否か判定される。かかる判定は、第1蓄電装置4の蓄電状態(Soc1)が所定上限値以下(図28参照)であり、且つ、モータの回転数がω1(図8参照)以上である場合、モータ1の回生が可能であると判断されるものである。そして、モータ1の回生が可能であると判断されると、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図29参照)より大きいか否か判定される。 Furthermore, if it is determined in S2 that there is no operation of the accelerator operating means, it is determined in S3 whether or not regeneration of the motor 1 is possible. This determination is made when the power storage state (Soc1) of the first power storage device 4 is below the predetermined upper limit value (see FIG. 28) and the rotation speed of the motor is ω1 (see FIG. 8) or more, the regeneration of the motor 1 is performed. It is determined that this is possible. When it is determined that regeneration of the motor 1 is possible, it is determined in S4 whether the power storage state (Soc2) of the second power storage device 5 is larger than a predetermined upper limit value (see FIG. 29).
 S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図29参照)より大きいと判断されると、S6に進み、図13に示すテーブル2に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル2に基づくモータトルク(Tm)の算出においては、モータ1の回転数が図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S6の算出後、S10に進み、図15に示すテーブル4に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、既述のS13が順次行われることとなる。 If it is determined in S4 that the power storage state (Soc2) of the second power storage device 5 is larger than the predetermined upper limit value (see FIG. 29), the process advances to S6, and the regenerative brake operating means 8 is adjusted based on the table 2 shown in FIG. Motor torque (Tm) is calculated according to the operation amount. Here, in calculating the motor torque (Tm) based on Table 2, if the rotation speed of the motor 1 is below the predetermined rotation speed (ω2) shown in FIG. ) correction is made. After the calculation in S6, the process proceeds to S10, where the mechanical braking torque (Tbmr) corresponding to the operation amount of the regenerative brake operating means 8 is calculated based on the table 4 shown in FIG. will be exposed.
 さらに、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(図29参照)より大きくないと判断されると、S7に進み、図14に示すテーブル3に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル3に基づくモータトルク(Tm)の算出においては、テーブル2と同様、モータ1の回転数が図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S7の算出後、S11にてメカ制動トルク(Tbmr)が0に設定された後、既述のS13が行われることとなる。 Furthermore, if it is determined in S4 that the power storage state (Soc2) of the second power storage device 5 is not larger than the predetermined upper limit value (see FIG. 29), the process proceeds to S7, and the regenerative brake operation is performed based on the table 3 shown in FIG. A motor torque (Tm) corresponding to the operation amount of the means 8 is calculated. Here, when calculating the motor torque (Tm) based on Table 3, as in Table 2, if the rotation speed of the motor 1 is equal to or lower than the predetermined rotation speed (ω2) shown in FIG. 8, Tm=Tm(ω−ω1) A correction of /(ω2−ω1) is performed. Note that after the calculation in S7, the mechanical braking torque (Tbmr) is set to 0 in S11, and then S13 described above is performed.
 一方、S1にて故障信号があると判断された場合やS3にて回生可能でないと判断された場合、S8に進み、モータトルク(Tm)=0に設定された後、S12に進み、図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出される。これにより、システムに故障があると判断されたときや回生可能でないと判断されたとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させることができる。なお、S12の算出後、既述のS13が行われることとなる。 On the other hand, if it is determined in S1 that there is a failure signal or if it is determined that regeneration is not possible in S3, the process advances to S8, where the motor torque (Tm) is set to 0, and then the process advances to S12, as shown in FIG. Mechanical braking torque (Tbmr) according to the operation amount of the regenerative brake operation means 8 is calculated based on Table 5 shown in FIG. As a result, when it is determined that there is a failure in the system or that regeneration is not possible, braking torque is generated by the mechanical brake (driving wheel mechanical brake 3a) according to the amount of operation of the regenerative brake operating means 8. I can do it. Note that after the calculation in S12, the previously described S13 will be performed.
 次に、本実施形態に係る電動車両の制御(モータ制御)について、図18a~18cのフローチャートに基づいて説明する。
 先ず、S1にて故障信号の有無に基づいてシステムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定されるとともに、アクセル操作手段6の操作があると判断されると、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図29参照)より大きいか否か判定される。
Next, the control (motor control) of the electric vehicle according to this embodiment will be explained based on the flowcharts of FIGS. 18a to 18c.
First, in S1 it is determined whether the system is normal or not based on the presence or absence of a failure signal. If it is determined that there is no failure signal, in S2 it is determined whether or not the accelerator operation means 6 is operated (the accelerator operation amount Ap is less than 0). When it is determined that the accelerator operation means 6 is operated, the state of power storage (Soc2) of the second power storage device 5 is larger than the predetermined lower limit value (see FIG. 29) in S3. It is determined whether or not.
 そして、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図29参照)より大きくないと判断されると、S7に進み、FCC(function circuit control)=1とするとともに、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(図29参照)より大きいと判断されると、S4に進み、第1蓄電装置4の温度が所定値より低いか否か判定される。 If it is determined in S3 that the power storage state (Soc2) of the second power storage device 5 is not larger than the predetermined lower limit value (see FIG. 29), the process proceeds to S7, where FCC (function circuit control) is set to 1, and If it is determined in S3 that the power storage state (Soc2) of the second power storage device 5 is larger than the predetermined lower limit value (see FIG. 29), the process proceeds to S4, and it is determined whether the temperature of the first power storage device 4 is lower than the predetermined value. It will be judged.
 S4の判定の結果、第1蓄電装置4の温度が所定値より低くない(所定値以上)と判断されると、S10に進み、FCC=4とするとともに、S4にて第1蓄電装置4の温度が所定値より低いと判断されると、S5に進み、モータ1の回転数(ω)がω2より小さいか否か判定される。 As a result of the determination in S4, if it is determined that the temperature of the first power storage device 4 is not lower than the predetermined value (or higher than the predetermined value), the process proceeds to S10, where FCC=4 is set, and the temperature of the first power storage device 4 is set in S4. If it is determined that the temperature is lower than the predetermined value, the process proceeds to S5, where it is determined whether the rotation speed (ω) of the motor 1 is smaller than ω2.
 そして、S5にてモータ1の回転数(ω)がω2より小さくないと判定されると、S8に進み、FCC=2とするとともに、S5にてモータ1の回転数(ω)がω2より小さいと判定されると、S6に進み、アクセル操作量Apが所定値より大きいか否か判定される。S6にてアクセル操作量Apが所定値より大きくないと判定されると、S8に進み、FCC=2とするとともに、S6にてアクセル操作量Apが所定値より大きいと判定されると、S9に進み、FCC=3とする。 If it is determined in S5 that the rotation speed (ω) of the motor 1 is not smaller than ω2, the process proceeds to S8, where FCC is set to 2, and in S5 the rotation speed (ω) of the motor 1 is smaller than ω2. If it is determined that this is the case, the process proceeds to S6, and it is determined whether or not the accelerator operation amount Ap is larger than a predetermined value. If it is determined in S6 that the accelerator operation amount Ap is not greater than the predetermined value, the process proceeds to S8, where FCC is set to 2, and if it is determined in S6 that the accelerator operation amount Ap is greater than the predetermined value, the process proceeds to S9. Proceed and set FCC=3.
 一方、S1にて故障信号があると判断された場合、S21に進み、FCC=10とするとともに、S2にてアクセル操作手段6の操作がないと判断されると、S11にてモータ1の回生が可能か否か判定される。そして、S11にてモータ1の回生が可能であると判断されると、S12に進み、第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きいか否か判定され、第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きいと判断されると、S16に進み、FCC=5とする。 On the other hand, if it is determined in S1 that there is a failure signal, the process proceeds to S21, where the FCC is set to 10, and if it is determined in S2 that the accelerator operating means 6 is not operated, the regeneration of the motor 1 is performed in S11. It is determined whether or not it is possible. When it is determined in S11 that regeneration of the motor 1 is possible, the process proceeds to S12, where it is determined whether the power storage state (Soc2) of the second power storage device 5 is larger than a predetermined upper limit value, and the second power storage device If it is determined that the power storage state (Soc2) of No. 5 is larger than the predetermined upper limit value, the process proceeds to S16, where FCC=5.
 また、S12にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きくないと判断されると、S13に進み、第1蓄電装置4の温度が所定値より小さいか否か判定される。S13にて第1蓄電装置4の温度が所定値より小さいと判断されると、S17に進み、FCC=6とするとともに、第1蓄電装置4の温度が所定値より小さくないと判断されると、S18に進み、FCC=7とする。 Further, if it is determined in S12 that the power storage state (Soc2) of the second power storage device 5 is not greater than the predetermined upper limit value, the process proceeds to S13, where it is determined whether the temperature of the first power storage device 4 is lower than a predetermined value. Ru. If it is determined in S13 that the temperature of the first power storage device 4 is smaller than the predetermined value, the process proceeds to S17, where the FCC is set to 6, and if it is determined that the temperature of the first power storage device 4 is not smaller than the predetermined value. , proceed to S18 and set FCC=7.
 一方、S11にてモータ1の回生が可能でないと判断されると、S14に進み、第2蓄電装置5の蓄電状態(Soc2)が充電判定値以下か否か判定され、充電判定値以下であると判断されると、S19に進み、FCC=8とする。また、S14にて第2蓄電装置5の蓄電状態(Soc2)が充電判定値以下でないと判断されると、S15に進み、第1蓄電装置4の蓄電状態(Soc1)が充電判定値以下か否か判定される。 On the other hand, if it is determined in S11 that regeneration of the motor 1 is not possible, the process proceeds to S14, where it is determined whether or not the power storage state (Soc2) of the second power storage device 5 is equal to or lower than the charge determination value. If it is determined that this is the case, the process proceeds to S19, where FCC=8 is set. Further, if it is determined in S14 that the power storage state (Soc2) of the second power storage device 5 is not equal to or lower than the charge determination value, the process proceeds to S15, and whether or not the power storage state (Soc1) of the first power storage device 4 is equal to or lower than the charge determination value is determined. It is determined whether
 そして、S15にて第1蓄電装置4の蓄電状態(Soc1)が充電判定値以下であると判断されると、S20に進み、FCC=9とするとともに、S15にて第1蓄電装置4の蓄電状態(Soc1)が充電判定値以下でないと判断されると、S21に進み、FCC=10とする。上記の如くモード(FCC)が決定した後、S22にて前回処理で決定したモード(FCCO)に対し、今回処理で決定したモード(FCC)の変更有無について判定される。 When it is determined in S15 that the power storage state (Soc1) of the first power storage device 4 is equal to or less than the charging determination value, the process proceeds to S20, where the FCC is set to 9, and the power storage state (Soc1) of the first power storage device 4 is set in S15. If it is determined that the state (Soc1) is not equal to or lower than the charging determination value, the process proceeds to S21, where FCC=10 is set. After the mode (FCC) is determined as described above, it is determined in S22 whether or not the mode (FCC) determined in this process is changed from the mode (FCCO) determined in the previous process.
 S22にてモード変更がないと判断された場合、S23に進み、決定されたFCCを維持するとともに、モード変更があると判断された場合、S24に進み、FCCNO=11とする。その後、S25にて第1モジュールM1及び第2モジュールM2におけるデューティ比(K1、K2)が算出された後、S26にてFCCNOに応じた回路制御(図19a、19b参照)が行われ、続いて、S27にて今回処理決定されたモード(FCC)をFCCOに記憶し、S28にてインバータ制御が行われる。 If it is determined in S22 that there is no mode change, the process proceeds to S23 and the determined FCC is maintained; if it is determined that there is a mode change, the process proceeds to S24 and the FCCNO is set to 11. After that, the duty ratios (K1, K2) in the first module M1 and the second module M2 are calculated in S25, and then the circuit control according to the FCCNO (see FIGS. 19a and 19b) is performed in S26. , the mode (FCC) currently determined for processing is stored in the FCCO in S27, and inverter control is performed in S28.
 しかるに、K1は、第1モジュールM1におけるデューティ比を示すもので、K1=スイッチS1のオン時間/(スイッチS1のオン時間+スイッチS1のオフ時間)とされるとともに、K2は、第2モジュールM2におけるデューティ比を示すもので、K2=スイッチS3のオン時間/(スイッチS3のオン時間+スイッチS3のオフ時間)とされる。また、第1蓄電装置4における電圧をVdc1及び電流をIdc1とし、第2蓄電装置5における電圧をVdc2及び電流をIdc2とするとともに、インバータ2における電圧をVinv及び電流をIinvとして説明する。 However, K1 indicates the duty ratio in the first module M1, and K1=ON time of switch S1/(ON time of switch S1+OFF time of switch S1), and K2 indicates the duty ratio in the second module M2. K2=ON time of switch S3/(ON time of switch S3+OFF time of switch S3). Further, the description will be made assuming that the voltage in the first power storage device 4 is Vdc1 and the current is Idc1, the voltage in the second power storage device 5 is Vdc2 and the current is Idc2, and the voltage in the inverter 2 is Vinv and the current is Iinv.
 ここで、S25のデューティ比(K1、K2)の算出方法について、図23のフローチャートに基づいて説明する。
 先ず、S1にてK2=0とし、S2にてK1=Vinv/Vdcなる演算式を実行してK1を求める。そして、S3にてIdc1cmd=ABS(Iinv)*Vinv/Vdc1(「ABS(Iinv)」は「Iinv」の絶対値)なる演算式を実行してIdc1cmdを求めた後、S4に進み、図25のテーブルに基づいてIdc1maxを算出する。
Here, the method of calculating the duty ratio (K1, K2) in S25 will be explained based on the flowchart of FIG. 23.
First, in S1, K2=0 is set, and in S2, the arithmetic expression K1=Vinv/Vdc is executed to obtain K1. Then, in S3, the calculation formula Idc1cmd=ABS(Iinv)*Vinv/Vdc1 ("ABS(Iinv)" is the absolute value of "Iinv") is executed to obtain Idc1cmd, and then the process proceeds to S4, as shown in FIG. Calculate Idc1max based on the table.
 その後、S5にてIdc1cmdがIdc1maxより大きいか否か判定し、Idc1cmdがIdc1maxより大きいと判断された場合、S6に進み、FCCNO=2又は6であるか否か判定される。FCCNO=2又は6であると判断された場合、S10にてK2が算出(K2=Vdc1*(Idc1cmd-Idc1max)/(Vdc2*Iinv)なる演算式にて算出)されるとともに、S11にてK1が算出(K1=(Vinv-Vdc2*Idc2/Iinv)/Vdcなる演算式にて算出)される。 After that, in S5, it is determined whether Idc1cmd is larger than Idc1max, and if it is determined that Idc1cmd is larger than Idc1max, the process proceeds to S6, and it is determined whether FCCNO=2 or 6. If it is determined that FCCNO=2 or 6, K2 is calculated in S10 (calculated using the formula K2=Vdc1*(Idc1cmd-Idc1max)/(Vdc2*Iinv)), and K1 is calculated in S11. is calculated (calculated using the formula K1=(Vinv-Vdc2*Idc2/Iinv)/Vdc).
 また、S6にてFCCNO=2又は6でないと判断された場合、S7にてFCCNO=3であるか否か判定され、FCCNO=3であると判断された場合、S12にてK1が算出(K1=Vdc2/Vdc1なる演算式にて算出)される。一方、S5にてIdc1cmdがIdc1maxより大きくないと判断された場合、及びS7にてFCCNO=3でないと判断された場合、S8に進み、FCCNO=8であるか否か判定され、FCCNO=8であると判断された場合、S13にてK1が算出(K1=Vdc2(充電所定値)/Vdc1なる演算式にて算出)される。 Furthermore, if it is determined in S6 that FCCNO is not 2 or 6, it is determined in S7 whether FCCNO is 3, and if it is determined that FCCNO is 3, K1 is calculated in S12 (K1 =Vdc2/Vdc1). On the other hand, if it is determined in S5 that Idc1cmd is not greater than Idc1max, and if it is determined in S7 that FCCNO is not 3, the process proceeds to S8, where it is determined whether FCCNO=8 or not. If it is determined that there is, K1 is calculated in S13 (calculated using the formula: K1=Vdc2 (predetermined charging value)/Vdc1).
 さらに、S8=FCCNOが8でないと判断された場合、S9に進み、FCCNO=9であるか否か判定され、FCCNO=9であると判断された場合、S14にてK1が算出(K1=Vdc2/Vdc1(充電所定値)なる演算式にて算出)されるとともに、FCCNO=9でないと判断された場合、一連の算出工程を終了する。 Further, if it is determined that S8=FCCNO is not 8, the process proceeds to S9, and it is determined whether FCCNO=9. If it is determined that FCCNO=9, K1 is calculated in S14 (K1=Vdc2 /Vdc1 (charging predetermined value)), and if it is determined that FCCNO is not 9, the series of calculation steps ends.
 さらに、S26の回路制御は、図19a、19bに示す制御表に基づいて行われる。かかる制御表による制御内容について以下に説明する。
 FCCNO=1のとき、第1モジュールM1が作動状態及び第2モジュールM2が非作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ力行時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3が遮断状態(オフ状態)及びスイッチS4が接続状態(オン状態)とされる。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=1のとき、インバータ2の直流電圧制御は、図20に示すテーブルAに基づいて行われる。
Furthermore, the circuit control in S26 is performed based on the control tables shown in FIGS. 19a and 19b. The content of control using this control table will be explained below.
When FCCNO=1, the first module M1 is in the operating state and the second module M2 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b are subjected to duty control (duty control with period T) during motor power running. At the same time, the switch S3 of the semiconductor switch elements 11a and 11b is turned off (off state) and the switch S4 is turned on (on state). At this time, the connection switch SR1 is placed in a cutoff state (off state). When FCCNO=1, the DC voltage control of the inverter 2 is performed based on table A shown in FIG.
 かかるテーブルAによれば、PWM制御(pulse width modulation:パルス幅変調)でインバータ2の直流電圧制御が行われることを前提として、図20に示すように、インバータ2の直流電圧をモータ1の回転数(ω)に応じて制御可能とされる。なお、後述するテーブルB~Cについても、PWM制御でインバータ2の直流電圧制御が行われることを前提としている。 According to Table A, on the premise that the DC voltage of the inverter 2 is controlled by PWM control (pulse width modulation), the DC voltage of the inverter 2 is controlled by the rotation of the motor 1, as shown in FIG. It is possible to control according to the number (ω). Note that Tables B to C, which will be described later, are also based on the assumption that the DC voltage of the inverter 2 is controlled by PWM control.
 FCCNO=2のとき、第1モジュールM1及び第2モジュールM2が作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ力行時にDuty制御(周期2TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3、S4がモータ力行時にDuty制御(周期2TのDuty制御)される。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=2のとき、インバータ2の直流電圧制御は、図20に示すテーブルAに基づいて行われる。 When FCCNO=2, the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with a period of 2T) during motor power running, and the semiconductor The switches S3 and S4 of the switch elements 11a and 11b are subjected to duty control (duty control with a period of 2T) when the motor is running. At this time, the connection switch SR1 is placed in a cutoff state (off state). When FCCNO=2, the DC voltage control of the inverter 2 is performed based on table A shown in FIG.
 FCCNO=3のとき、第1モジュールM1及び第2モジュールM2が作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ力行時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3が遮断状態(オフ状態)及びスイッチS4が接続状態(オン状態)とされる。このとき、接続スイッチSR1は接続状態(オン状態)とされる。そして、FCCNO=3のとき、インバータ2の直流電圧制御は、図22に示すテーブルCに基づいて行われる。 When FCCNO=3, the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with period T) during motor power running, and the semiconductor The switch S3 of the switch elements 11a and 11b is in a cutoff state (off state), and the switch S4 is in a connected state (on state). At this time, the connection switch SR1 is brought into a connected state (on state). When FCCNO=3, the DC voltage control of the inverter 2 is performed based on Table C shown in FIG.
 FCCNO=4のとき、第2モジュールM2が作動状態及び第1モジュールM1が非作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2及び半導体スイッチ素子11a、11bのスイッチS3、S4がモータ力行時に遮断状態(オフ状態)とされる。このとき、接続スイッチSR1は接続状態(オン状態)とされる。そして、FCCNO=4のとき、インバータ2の直流電圧制御は、図22に示すテーブルCに基づいて行われる。 When FCCNO=4, the second module M2 is in the operating state and the first module M1 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the motor It is in a cutoff state (off state) during power running. At this time, the connection switch SR1 is brought into a connected state (on state). When FCCNO=4, the DC voltage control of the inverter 2 is performed based on Table C shown in FIG.
 FCCNO=5のとき、第1モジュールM1が作動状態及び第2モジュールM2が非作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ回生時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3が遮断状態(オフ状態)、第2スイッチS4が接続状態(オン状態)とされる。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=5のとき、インバータ2の直流電圧制御は、図21に示すテーブルBに基づいて行われる。 When FCCNO=5, the first module M1 is in the operating state and the second module M2 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b are subjected to duty control (duty control with period T) during motor regeneration. At the same time, the switch S3 of the semiconductor switching elements 11a and 11b is turned off (off state), and the second switch S4 is turned on (on state). At this time, the connection switch SR1 is placed in a cutoff state (off state). When FCCNO=5, the DC voltage control of the inverter 2 is performed based on Table B shown in FIG. 21.
 FCCNO=6のとき、第1モジュールM1及び第2モジュールM2が作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2及び半導体スイッチ素子11a、11bのスイッチS3、S4がモータ回生時にDuty制御(周期2TのDuty制御)される。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=6のとき、インバータ2の直流電圧制御は、図21に示すテーブルBに基づいて行われる。 When FCCNO=6, the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b and the switches S3 and S4 of the semiconductor switch elements 11a and 11b perform duty control during motor regeneration. (Duty control with period 2T). At this time, the connection switch SR1 is placed in a cutoff state (off state). When FCCNO=6, the DC voltage control of the inverter 2 is performed based on Table B shown in FIG. 21.
 FCCNO=7のとき、第2モジュールM2が作動状態及び第1モジュールM1が非作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2及び半導体スイッチ素子11a、11bのスイッチS3、S4がモータ回生時に遮断状態(オフ状態)とされる。このとき、接続スイッチSR1は接続状態(オン状態)とされる。そして、FCCNO=7のとき、インバータ2の直流電圧制御は、図22に示すテーブルCに基づいて行われる。 When FCCNO=7, the second module M2 is in the operating state and the first module M1 is in the inactive state, and the switches S1 and S2 of the semiconductor switching elements 10a and 10b and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the motor It is in a cutoff state (off state) during regeneration. At this time, the connection switch SR1 is brought into a connected state (on state). When FCCNO=7, the DC voltage control of the inverter 2 is performed based on Table C shown in FIG.
 FCCNO=8のとき、第1モジュールM1及び第2モジュールM2が作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ停止時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3が遮断状態(オフ状態)及びスイッチS4が接続状態(オン状態)とされる。このとき、接続スイッチSR1は接続状態(オン状態)とされる。そして、FCCNO=8のとき、インバータ2の直流電圧制御は、図22に示すテーブルCに基づいて行われる。 When FCCNO=8, the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with period T) when the motor is stopped, and the semiconductor The switch S3 of the switch elements 11a and 11b is in a cutoff state (off state), and the switch S4 is in a connected state (on state). At this time, the connection switch SR1 is brought into a connected state (on state). When FCCNO=8, the DC voltage control of the inverter 2 is performed based on Table C shown in FIG.
 FCCNO=9のとき、第1モジュールM1及び第2モジュールM2が作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2がモータ停止時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3が遮断状態(オフ状態)及びスイッチS4が接続状態(オン状態)とされる。このとき、接続スイッチSR1は接続状態(オン状態)とされる。そして、FCCNO=9のとき、インバータ2の直流電圧制御は、図22に示すテーブルCに基づいて行われる。 When FCCNO=9, the first module M1 and the second module M2 are activated, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b are subjected to duty control (duty control with period T) when the motor is stopped, and the semiconductor The switch S3 of the switch elements 11a and 11b is in a cutoff state (off state), and the switch S4 is in a connected state (on state). At this time, the connection switch SR1 is brought into a connected state (on state). When FCCNO=9, the DC voltage control of the inverter 2 is performed based on Table C shown in FIG. 22.
 FCCNO=10のとき、第1モジュールM1及び第2モジュールM2が非作動状態とされ、半導体スイッチ素子10a、10bのスイッチS1、S2及び半導体スイッチ素子11a、11bがモータ停止時に遮断状態(オフ状態)とされる。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=10のとき、インバータ2の直流電圧制御は行われない。 When FCCNO=10, the first module M1 and the second module M2 are in an inactive state, and the switches S1 and S2 of the semiconductor switch elements 10a and 10b and the semiconductor switch elements 11a and 11b are in a cutoff state (off state) when the motor is stopped. It is said that At this time, the connection switch SR1 is placed in a cutoff state (off state). When FCCNO=10, the DC voltage control of the inverter 2 is not performed.
 FCCNO=11のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が切替時にDuty制御(周期TのDuty制御)されるとともに、半導体スイッチ素子11a、11bのスイッチS3及びスイッチS4が遮断状態(オフ状態)とされる。このとき、接続スイッチSR1は遮断状態(オフ状態)とされる。そして、FCCNO=11のとき、インバータ2の直流電圧制御は行われない。 When FCCNO=11, the switches S1 and S2 of the semiconductor switching elements 10a and 10b are subjected to duty control (duty control with period T) at the time of switching, and the switches S3 and S4 of the semiconductor switching elements 11a and 11b are in the cutoff state (off). state). At this time, the connection switch SR1 is placed in a cutoff state (off state). Then, when FCCNO=11, the DC voltage control of the inverter 2 is not performed.
 上記実施形態に係る電動車両によれば、直列に接続された第1モジュールM1と第2モジュールM2とがインバータ2に接続された回路を具備し、モータ1の力行時において、第1モジュールM1及び第2モジュールM2の電圧を制御しつつ第1モジュールM1及び第2モジュールM2からインバータ2にエネルギを供給するので、2つのモジュールの電圧を別々に制御することができる。 According to the electric vehicle according to the above embodiment, the first module M1 and the second module M2 connected in series are provided with a circuit connected to the inverter 2, and when the motor 1 is powered, the first module M1 and the second module M2 are connected in series. Since energy is supplied from the first module M1 and the second module M2 to the inverter 2 while controlling the voltage of the second module M2, the voltages of the two modules can be controlled separately.
 したがって、第1蓄電装置4及び第2蓄電装置5が分担してエネルギ供給を行いモータ1を力行させるとき、インバータ2の直流電圧(Vinv)を第1蓄電装置4及び第2蓄電装置5のうち電圧の低い蓄電装置の電圧未満に制御することができる。すなわち、直列に接続された第1モジュールM1と第2モジュールM2とがインバータ2に接続されることにより、インバータ2の直流電圧(Vinv)は、K1*Vdc1+K2*Vdc2で表すことができ、第1蓄電装置4の電圧(Vdc1)と第2蓄電装置5の電圧(Vdc2)とを加算した0V以上の任意の電圧に制御することができるので、インバータ2の直流電圧(Vinv)を第1蓄電装置4及び第2蓄電装置5のうち電圧の低い蓄電装置の電圧未満に制御することができるのである。 Therefore, when the first power storage device 4 and the second power storage device 5 share energy supply and power the motor 1, the DC voltage (Vinv) of the inverter 2 is divided between the first power storage device 4 and the second power storage device 5. The voltage can be controlled to be lower than the voltage of a power storage device with a low voltage. That is, by connecting the first module M1 and the second module M2 connected in series to the inverter 2, the DC voltage (Vinv) of the inverter 2 can be expressed as K1*Vdc1+K2*Vdc2, and the first Since the voltage of the power storage device 4 (Vdc1) and the voltage of the second power storage device 5 (Vdc2) can be controlled to any voltage equal to or higher than 0V, the DC voltage (Vinv) of the inverter 2 can be controlled to the voltage of the first power storage device 5. 4 and the second power storage device 5, the voltage can be controlled to be lower than the voltage of the power storage device with the lower voltage.
 また、モータ1は、力行及び回生可能とされるとともに、回生時において、第1モジュールM1及び第2モジュールM2の電圧を制御しつつ第1モジュールM1及び第2モジュールM2でエネルギを回収するので、2つのモジュールの電圧を別々に制御することができる。したがって、第1蓄電装置4及び第2蓄電装置5が分担してエネルギ回収を行いモータ1を回生させるとき、インバータ2の直流電圧(Vinv)を第1蓄電装置4の電圧(Vdc1)と第2蓄電装置5の電圧(Vdc2)とを加算した0V以上の任意の電圧に制御することができる。 Furthermore, the motor 1 is capable of power running and regeneration, and during regeneration, the first module M1 and the second module M2 recover energy while controlling the voltages of the first module M1 and the second module M2. The voltages of the two modules can be controlled separately. Therefore, when the first power storage device 4 and the second power storage device 5 share energy recovery and regenerate the motor 1, the DC voltage (Vinv) of the inverter 2 is divided into the voltage (Vdc1) of the first power storage device 4 and the second power storage device 4. It can be controlled to any voltage equal to or higher than 0V, which is the sum of the voltage (Vdc2) of power storage device 5.
 さらに、第1モジュールM1と第2モジュールM2との間にリアクトル12が直列に接続されたので、第1モジュールM1及び第2モジュールM2のリアクトル12を共用することができ、部品点数を削減することができる。またさらに、第2蓄電装置5とグラウンドとを接続する回路を形成する接続スイッチSR1を具備し、モータ1の力行時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧を制御しつつ第1モジュールM1及び第2モジュールM2からインバータ2にエネルギを供給するので、第1モジュールM1及び第2モジュールM2からインバータ2に対して並列にエネルギを供給することができ(Iinv=Idc1+Idc2、Idc1=f(K1))、モータ1の力行時に第1蓄電装置4の電流を任意に設定することができる。 Furthermore, since the reactor 12 is connected in series between the first module M1 and the second module M2, the reactor 12 of the first module M1 and the second module M2 can be shared, reducing the number of parts. I can do it. Furthermore, a connection switch SR1 is provided that forms a circuit connecting the second power storage device 5 and the ground, and when the motor 1 is running, the connection switch SR1 is brought into a connected state and the voltage of the first module M1 is controlled. Since energy is supplied to the inverter 2 from the first module M1 and the second module M2, energy can be supplied from the first module M1 and the second module M2 to the inverter 2 in parallel (Iinv=Idc1+Idc2, Idc1= f(K1)), the current of the first power storage device 4 can be set arbitrarily when the motor 1 is running.
 加えて、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、モータ1の力行時において、第1蓄電装置4の温度が所定値以上の場合、接続スイッチSR1を接続状態とし、第2モジュールM2からインバータ2にエネルギを供給するので、第1蓄電装置4の温度上昇を抑制することができる。また、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、モータ1の回生時において、第1蓄電装置4の温度が所定値以上の場合、接続スイッチSR1を接続状態とし、第2モジュールM2でエネルギを回生するので、第1蓄電装置4の温度上昇を抑制することができる。 In addition, the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value when the motor 1 is running, , the connection switch SR1 is brought into the connected state and energy is supplied from the second module M2 to the inverter 2, so that a rise in temperature of the first power storage device 4 can be suppressed. Further, the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and when the temperature of the first power storage device 4 is equal to or higher than a predetermined value during regeneration of the motor 1, Since the connection switch SR1 is brought into the connected state and energy is regenerated in the second module M2, a rise in temperature of the first power storage device 4 can be suppressed.
 さらに、モータ1の停止時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧又は電流を制御しつつ当該第1モジュールM1から第2モジュールM2にエネルギを供給するので、モータ1の停止時に第2蓄電装置5を充電することができ、車両走行時に第2モジュールM2のエネルギが不足してしまうのを抑制することができる。またさらに、モータ1の停止時において、接続スイッチSR1を接続状態とし、第1モジュールM1の電圧又は電流を制御しつつ当該第2モジュールM2から第1モジュールM1にエネルギを供給するので、モータ1の停止時に第1蓄電装置4を充電することができ、車両走行時に第1モジュールM1のエネルギが不足してしまうのを抑制することができる。 Furthermore, when the motor 1 is stopped, the connection switch SR1 is connected, and energy is supplied from the first module M1 to the second module M2 while controlling the voltage or current of the first module M1. The second power storage device 5 can be charged at the same time, and it is possible to prevent the second module M2 from running out of energy when the vehicle is running. Furthermore, when the motor 1 is stopped, the connection switch SR1 is connected, and energy is supplied from the second module M2 to the first module M1 while controlling the voltage or current of the first module M1. The first power storage device 4 can be charged when the vehicle is stopped, and it is possible to prevent the first module M1 from running out of energy when the vehicle is running.
 しかるに、モータ1の力行時において、第1蓄電装置4の電流が所定値以下になるように、第1モジュールM1及び第2モジュールM2の電圧を制御するので、第1蓄電装置4の温度が高いほど、第1蓄電装置4の温度上昇を抑制することができる。また、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、図24、25に示すように、第1蓄電装置4の温度が高いほど、第1蓄電装置4の電流の所定値を低く設定するので、第1蓄電装置4の電流が所定値(許容値)を超えてしまうのを確実に防止することができる。 However, during power running of the motor 1, the voltages of the first module M1 and the second module M2 are controlled so that the current of the first power storage device 4 is below a predetermined value, so the temperature of the first power storage device 4 is high. The more the temperature rise of the first power storage device 4 can be suppressed. Further, the temperature state of the first power storage device 4 can be determined based on the temperature of the first power storage device 4, and as shown in FIGS. 24 and 25, the higher the temperature of the first power storage device 4, the Since the predetermined value of the current of the first power storage device 4 is set low, it is possible to reliably prevent the current of the first power storage device 4 from exceeding the predetermined value (tolerable value).
 さらに、第2モジュールM2の電圧を制御する時、第2蓄電装置5の電圧に応じて第2モジュールM2の電圧を制御するので、第2蓄電装置5の電圧が変動した場合であっても第2モジュールM2の電圧の変動を防止することができる。またさらに、第1モジュールM1及び第2モジュールM2の電圧を制御する時、第1モジュールM1及び第2モジュールM2の何れか一方の電圧を制御する時に比べて、第1電力変換器10及び第2電力変換器11のデューティ周期を長く設定することにより、第1モジュールM1及び第2モジュールM2の電圧を制御するときの単位時間あたりの半導体スイッチ素子のオン・オフ回数を低減させることができる。 Furthermore, when controlling the voltage of the second module M2, the voltage of the second module M2 is controlled according to the voltage of the second power storage device 5, so even if the voltage of the second power storage device 5 fluctuates, the voltage of the second module M2 Voltage fluctuations of the two modules M2 can be prevented. Furthermore, when controlling the voltage of the first module M1 and the second module M2, compared to controlling the voltage of either the first module M1 or the second module M2, the voltage of the first power converter 10 and the second module M2 is By setting the duty cycle of the power converter 11 to be long, it is possible to reduce the number of times the semiconductor switch element is turned on and off per unit time when controlling the voltages of the first module M1 and the second module M2.
 また、第1モジュールM1及び第2モジュールM2の電圧を制御する時、第1電力変換器10のデューティ周期中の電圧昇圧期間と第2電力変換器11のデューティ周期中の電圧昇圧期間との重複期間が低減するように制御(位相がずれるように制御)することにより、インバータ2の直流電圧(Vinv)の変動を低減させることができる。 Furthermore, when controlling the voltages of the first module M1 and the second module M2, the voltage boosting period during the duty cycle of the first power converter 10 and the voltage boosting period during the duty cycle of the second power converter 11 overlap. By controlling to reduce the period (control to shift the phase), fluctuations in the DC voltage (Vinv) of the inverter 2 can be reduced.
 しかるに、第1蓄電装置4は、第2蓄電装置5より高電圧型の特性を有するので、第1蓄電装置4の出力電圧を降圧して第2蓄電装置5にエネルギを供給することができる。また、第1蓄電装置4の満充電時のエネルギ量は、第2蓄電装置5の満充電時のエネルギ量より多いので、第1蓄電装置4から第2蓄電装置5にエネルギを円滑に供給することができる。さらに、第1蓄電装置4は、交換可能なカセット型の蓄電装置から成るので、必要時に第1蓄電装置4を短時間で交換して、第1蓄電装置4から第2蓄電装置5にエネルギを安定して供給することができる。 However, since the first power storage device 4 has higher voltage characteristics than the second power storage device 5, the output voltage of the first power storage device 4 can be reduced to supply energy to the second power storage device 5. Furthermore, since the amount of energy when the first power storage device 4 is fully charged is greater than the amount of energy when the second power storage device 5 is fully charged, energy can be smoothly supplied from the first power storage device 4 to the second power storage device 5. be able to. Furthermore, since the first power storage device 4 is a replaceable cassette-type power storage device, the first power storage device 4 can be replaced in a short time when necessary, and energy can be transferred from the first power storage device 4 to the second power storage device 5. Can be stably supplied.
 以上、本実施形態について説明したが、本発明はこれに限定されず、図31、32に示すように、第2モジュールM2とインバータ2との間にリアクトル12が直列に接続されたものであってもよい。また、図33に示すように、第1モジュールM1とインバータ2との間にリアクトル12が直列に接続されたものであってもよい。どちらの場合も、先の実施形態と同様、第1モジュールM1と第2モジュールM2のリアクトル12を共用することができるので、部品点数を低減させることができる。 Although the present embodiment has been described above, the present invention is not limited thereto, and as shown in FIGS. 31 and 32, the reactor 12 is connected in series between the second module M2 and the inverter 2. It's okay. Further, as shown in FIG. 33, a reactor 12 may be connected in series between the first module M1 and the inverter 2. In either case, as in the previous embodiment, the reactor 12 of the first module M1 and the second module M2 can be shared, so the number of parts can be reduced.
 さらに他の実施形態として、例えば半導体スイッチ素子10a、10b及び半導体スイッチ素子11a、11bを他の形態のスイッチとしてもよく、別個必要とされるスイッチを追加してもよい。また、半導体スイッチ素子は、MOSFETに代えてIGBTとしてもよい。さらに、モニタ15を具備しないもの、或いはバギー等の3輪車両又は4輪車両に適用してもよい。 In still other embodiments, for example, the semiconductor switching elements 10a, 10b and the semiconductor switching elements 11a, 11b may be other types of switches, or separately required switches may be added. Further, the semiconductor switching element may be an IGBT instead of a MOSFET. Furthermore, the present invention may be applied to vehicles that are not equipped with the monitor 15, or to three-wheeled vehicles or four-wheeled vehicles such as buggies.
 第1蓄電装置及び第1電力変換器が接続された第1モジュールと、第2蓄電装置及び第2電力変換器が接続された第2モジュールと、直列に接続された第1モジュールと第2モジュールとがインバータに接続された回路とを具備し、モータの力行時において、第1モジュール及び第2モジュールの電圧を制御しつつ第1モジュール及び第2モジュールからインバータにエネルギを供給する電動車両であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。 A first module to which a first power storage device and a first power converter are connected, a second module to which a second power storage device and a second power converter are connected, and a first module and a second module connected in series. and a circuit connected to an inverter, and the electric vehicle supplies energy from the first module and the second module to the inverter while controlling the voltages of the first module and the second module when the motor is running. For example, it can be applied to items with different external shapes or items with other functions added.
1 モータ
2 インバータ
3a 駆動輪メカブレーキ
3b 従動輪メカブレーキ
4 第1蓄電装置
4a 電圧検出センサ
4b 温度検出センサ
5 第2蓄電装置
5a 電圧検出センサ
6 アクセル操作手段
7 メカブレーキ操作手段
8 回生ブレーキ操作手段
9 ブレーキアクチュエータ
10 第1電力変換器
10a、10b 半導体スイッチ素子(MOSFET)
11 第2電力変換器
11a、11b 半導体スイッチ素子(MOSFET)
12 リアクトル(コイル)
13 ECU
14 スタートスイッチ
15 モニタ
16 インバータ制御部
17 回路制御部
18 メカブレーキ制御部
19 検知手段
Ta 駆動輪
Tb 従動輪
Vdc1 第一蓄電装置(電池)電圧
Vdc2 第二蓄電装置(キャパシタ)電圧
Vinv インバータ直流電圧
V1 S2端子平均電圧
V2 S4端子平均電圧
M1 第1モジュール
M2 第2モジュール
SR1 接続スイッチ
Ca、Cb、Cc 平滑コンデンサ
1 Motor 2 Inverter 3a Drive wheel mechanical brake 3b Driven wheel mechanical brake 4 First power storage device 4a Voltage detection sensor 4b Temperature detection sensor 5 Second power storage device 5a Voltage detection sensor 6 Accelerator operation means 7 Mechanical brake operation means 8 Regenerative brake operation means 9 Brake actuator 10 First power converter 10a, 10b Semiconductor switch element (MOSFET)
11 Second power converter 11a, 11b semiconductor switch element (MOSFET)
12 Reactor (coil)
13 ECU
14 Start switch 15 Monitor 16 Inverter control section 17 Circuit control section 18 Mechanical brake control section 19 Detection means Ta Drive wheel Tb Driven wheel Vdc1 First power storage device (battery) voltage Vdc2 Second power storage device (capacitor) voltage Vinv Inverter DC voltage V1 S2 terminal average voltage V2 S4 terminal average voltage M1 1st module M2 2nd module SR1 Connection switch Ca, Cb, Cc Smoothing capacitor

Claims (18)

  1.  力行可能なモータと、
     直流電流から交流電流に変換可能なインバータと、
     高容量型の特性を有する第1蓄電装置と、
     高出力型の特性を有する第2蓄電装置と、
     前記第1蓄電装置の出力電圧を降圧する機能を有する第1電力変換器と、
     前記第2蓄電装置の出力電圧を降圧する機能を有する第2電力変換器と、
    を有する電動車両であって、
     前記第1蓄電装置及び第1電力変換器が接続された第1モジュールと、
     前記第2蓄電装置及び第2電力変換器が接続された第2モジュールと、
     直列に接続された前記第1モジュールと前記第2モジュールとが前記インバータに接続された回路と、
    を具備し、前記モータの力行時において、前記第1モジュール及び第2モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールから前記インバータにエネルギを供給することを特徴とする電動車両。
    A motor capable of power running;
    An inverter that can convert direct current to alternating current,
    a first power storage device having high capacity type characteristics;
    a second power storage device having high output characteristics;
    a first power converter having a function of reducing the output voltage of the first power storage device;
    a second power converter having a function of reducing the output voltage of the second power storage device;
    An electric vehicle having
    a first module to which the first power storage device and the first power converter are connected;
    a second module to which the second power storage device and the second power converter are connected;
    a circuit in which the first module and the second module connected in series are connected to the inverter;
    An electric vehicle, characterized in that when the motor is running, energy is supplied from the first module and the second module to the inverter while controlling the voltages of the first module and the second module.
  2.  前記モータは、力行及び回生可能とされるとともに、回生時において、前記第1モジュール及び第2モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールでエネルギを回収することを特徴とする請求項1記載の電動車両。 The motor is capable of power running and regeneration, and during regeneration, the first module and the second module recover energy while controlling the voltages of the first module and the second module. The electric vehicle described in Item 1.
  3.  前記第1モジュールと第2モジュールとの間にリアクトルが直列に接続されたことを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, further comprising a reactor connected in series between the first module and the second module.
  4.  前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの力行時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧を制御しつつ前記第1モジュール及び第2モジュールから前記インバータにエネルギを供給することを特徴とする請求項1記載の電動車両。 A connection switch forming a circuit connecting the second power storage device and ground is provided, and when the motor is running, the connection switch is in a connected state and the voltage of the first module is controlled while the first module is connected. The electric vehicle according to claim 1, wherein energy is supplied to the inverter from a second module.
  5.  前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの力行時において、前記第1蓄電装置の温度が所定値以上の場合、前記接続スイッチを接続状態とし、前記第2モジュールから前記インバータにエネルギを供給することを特徴とする請求項1記載の電動車両。 A connection switch forming a circuit connecting the second power storage device and ground is provided, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device. The electric vehicle according to claim 1, wherein during power running, if the temperature of the first power storage device is equal to or higher than a predetermined value, the connection switch is set to a connected state, and energy is supplied from the second module to the inverter. .
  6.  前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの回生時において、前記第1蓄電装置の温度が所定値以上の場合、前記接続スイッチを接続状態とし、前記第2モジュールでエネルギを回生することを特徴とする請求項2記載の電動車両。 A connection switch forming a circuit connecting the second power storage device and ground is provided, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device, and the temperature state of the first power storage device can be determined based on the temperature of the first power storage device. 3. The electric vehicle according to claim 2, wherein during regeneration, if the temperature of the first power storage device is equal to or higher than a predetermined value, the connection switch is brought into a connected state and the second module regenerates energy.
  7.  前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの停止時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧又は電流を制御しつつ当該第1モジュールから前記第2モジュールにエネルギを供給することを特徴とする請求項1記載の電動車両。 A connection switch forming a circuit connecting the second power storage device and ground is provided, and when the motor is stopped, the connection switch is brought into a connected state and the voltage or current of the first module is controlled while the second power storage device and the ground are connected. The electric vehicle according to claim 1, wherein energy is supplied from one module to the second module.
  8.  前記第2蓄電装置とグラウンドとを接続する回路を形成する接続スイッチを具備し、前記モータの停止時において、前記接続スイッチを接続状態とし、前記第1モジュールの電圧又は電流を制御しつつ当該第2モジュールから前記第1モジュールにエネルギを供給することを特徴とする請求項1記載の電動車両。 A connection switch forming a circuit connecting the second power storage device and ground is provided, and when the motor is stopped, the connection switch is brought into a connected state and the voltage or current of the first module is controlled while the second power storage device and the ground are connected. The electric vehicle according to claim 1, wherein energy is supplied from two modules to the first module.
  9.  前記第1モジュールまたは前記第2モジュールと前記インバータとの間にリアクトルが直列に接続されたことを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, further comprising a reactor connected in series between the first module or the second module and the inverter.
  10.  前記モータの力行時において、前記第1蓄電装置の電流が所定値以下になるように、前記第1モジュール及び前記第2モジュールの電圧を制御することを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, wherein the voltages of the first module and the second module are controlled so that the current of the first power storage device is equal to or less than a predetermined value when the motor is running.
  11.  前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記第1蓄電装置の温度が高いほど、前記第1蓄電装置の電流の所定値を低く設定することを特徴とする請求項10記載の電動車両。 The temperature state of the first power storage device can be determined based on the temperature of the first power storage device, and the higher the temperature of the first power storage device, the lower the predetermined value of the current of the first power storage device is set. The electric vehicle according to claim 10, characterized in that:
  12.  前記第2モジュールの電圧を制御する時、当該第2蓄電装置の電圧に応じて前記第2モジュールの電圧を制御することを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, wherein when controlling the voltage of the second module, the voltage of the second module is controlled according to the voltage of the second power storage device.
  13.  前記第1モジュール及び前記第2モジュールの電圧を制御する時、前記第1モジュール及び前記第2モジュールの何れか一方の電圧を制御する時に比べて、前記第1電力変換器及び第2電力変換器のデューティ周期を長く設定することを特徴とする請求項1記載の電動車両。 When controlling the voltage of the first module and the second module, the voltage of the first power converter and the second power converter is lower than when controlling the voltage of either the first module or the second module. The electric vehicle according to claim 1, wherein the duty cycle of the electric vehicle is set to be long.
  14.  前記第1モジュール及び前記第2モジュールの電圧を制御する時、前記第1電力変換器のデューティ周期中の電圧昇圧期間と前記第2電力変換器のデューティ周期中の電圧昇圧期間との重複期間が低減するように制御することを特徴とする請求項13記載の電動車両。 When controlling the voltages of the first module and the second module, there is an overlap period between a voltage boosting period during the duty cycle of the first power converter and a voltage boosting period during the duty cycle of the second power converter. The electric vehicle according to claim 13, wherein the electric vehicle is controlled to reduce the amount of electricity.
  15.  前記第1蓄電装置は、前記第2蓄電装置より高電圧型の特性を有することを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, wherein the first power storage device has higher voltage characteristics than the second power storage device.
  16.  前記第1蓄電装置の満充電時のエネルギ量は、前記第2蓄電装置の満充電時のエネルギ量より多いことを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, wherein the amount of energy when the first power storage device is fully charged is greater than the amount of energy when the second power storage device is fully charged.
  17.  前記第1蓄電装置は、交換可能なカセット型の蓄電装置から成ることを特徴とする請求項1記載の電動車両。 The electric vehicle according to claim 1, wherein the first power storage device is a replaceable cassette-type power storage device.
  18.  前記第1蓄電装置は、高容量リチウムイオン電池又は高容量ニッケル水素電池から成り、前記第2蓄電装置は、高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかであることを特徴とする請求項1記載の電動車両。 The first power storage device includes a high-capacity lithium ion battery or a high-capacity nickel-metal hydride battery, and the second power storage device includes a high-power lithium-ion battery, a high-power nickel-hydrogen battery, a lithium-ion capacitor, or an electric double layer capacitor. The electric vehicle according to claim 1, wherein the electric vehicle is:
PCT/JP2023/008562 2022-04-20 2023-03-07 Electric vehicle WO2023203901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069713A JP2023159787A (en) 2022-04-20 2022-04-20 electric vehicle
JP2022-069713 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023203901A1 true WO2023203901A1 (en) 2023-10-26

Family

ID=88419672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008562 WO2023203901A1 (en) 2022-04-20 2023-03-07 Electric vehicle

Country Status (3)

Country Link
JP (1) JP2023159787A (en)
TW (1) TW202408833A (en)
WO (1) WO2023203901A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280187A (en) * 2006-04-10 2007-10-25 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
JP2012516126A (en) * 2009-01-20 2012-07-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Series circuit of on-off controllers for transferring energy in battery systems
WO2018061400A1 (en) * 2016-09-30 2018-04-05 株式会社日立製作所 Combined power storage system
JP2021112123A (en) * 2020-01-15 2021-08-02 ソーラーエッジ テクノロジーズ リミテッド Power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280187A (en) * 2006-04-10 2007-10-25 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
JP2012516126A (en) * 2009-01-20 2012-07-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Series circuit of on-off controllers for transferring energy in battery systems
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
WO2018061400A1 (en) * 2016-09-30 2018-04-05 株式会社日立製作所 Combined power storage system
JP2021112123A (en) * 2020-01-15 2021-08-02 ソーラーエッジ テクノロジーズ リミテッド Power device

Also Published As

Publication number Publication date
JP2023159787A (en) 2023-11-01
TW202408833A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US8453770B2 (en) Dual motor drive and control system for an electric vehicle
JP5310959B2 (en) Vehicle charging device
JP4193704B2 (en) Power supply device and automobile equipped with the same
JP4490458B2 (en) Rotating electrical machine control device and vehicle drive device
US20220161663A1 (en) Motor Vehicle
CN105270194A (en) Electric drive vehicle
JP2009033830A (en) Controller and control method for electric system, program achieving the method, and recording medium recording the program
JP7095587B2 (en) Battery system, electric vehicle and its control method
US11654792B2 (en) Motor vehicle
JP2006288024A (en) Voltage converter and its control method
JP2009189152A (en) Power supply system, electric vehicle, method of controlling power supply system, and computer readable recording medium for recording program to make computer execute control method
JP2006014489A (en) Power converting device for electric vehicle
JP2009213288A (en) Power system, vehicle equipped with the same and method for controlling the power system
JP2007282357A (en) Power system for driving vehicle
JP2010215106A (en) Control system for hybrid vehicle
US11718201B2 (en) Motor vehicle
JP7479631B2 (en) Electric vehicles
WO2023203901A1 (en) Electric vehicle
WO2023033108A1 (en) Electric vehicle
JP7508044B2 (en) Electric vehicles
EP4397524A1 (en) Electric vehicle
JP2024094341A (en) Electric vehicles
JP2010136475A (en) Controller for power system, and vehicle equipped with it, and method of controlling the power system
JP2012125051A (en) Power supply control device of electric automobile
JP2010288414A (en) Power supply device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791556

Country of ref document: EP

Kind code of ref document: A1