WO2023203785A1 - 端末及び通信方法 - Google Patents
端末及び通信方法 Download PDFInfo
- Publication number
- WO2023203785A1 WO2023203785A1 PCT/JP2022/018642 JP2022018642W WO2023203785A1 WO 2023203785 A1 WO2023203785 A1 WO 2023203785A1 JP 2022018642 W JP2022018642 W JP 2022018642W WO 2023203785 A1 WO2023203785 A1 WO 2023203785A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- signal
- wus
- information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 72
- 238000000034 method Methods 0.000 title claims description 29
- 230000005540 biological transmission Effects 0.000 claims abstract description 40
- 230000007958 sleep Effects 0.000 claims abstract description 35
- 230000004044 response Effects 0.000 claims abstract description 31
- 238000012544 monitoring process Methods 0.000 claims description 18
- 230000003213 activating effect Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 35
- 238000012545 processing Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 230000011664 signaling Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 5
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000006266 hibernation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 1
- 101150096622 Smr2 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to a terminal and a communication method.
- the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also known as 5G, New Radio (NR), or Next Generation (NG)) and the next generation called Beyond 5G, 5G Evolution, or 6G.
- 5G Fifth Generation
- NR New Radio
- NG Next Generation
- 6G 6th Generation
- 3GPP Release 16 introduces WUS (Wake Up Signal) so that terminals can monitor control signals with low power consumption. Note that power may be replaced with energy, and power saving may be replaced with power reduction, etc.
- Non-Patent Document 2 power saving of base stations is being considered (for example, Non-Patent Document 2). The details are a subject for future consideration.
- 3GPP TS 38.300 V17.0.0 (2022-03) “New SI: Study on network energy savings for NR”, RP-213554, 3GPP TSG RAN Meeting #94e, 3GPP, December 2021
- One aspect of the present disclosure is to provide a terminal and a communication method that can save power in a base station.
- a terminal includes a receiving unit that transmits a signal for activating or putting a base station to sleep, and then receiving a response signal regarding the activation or sleep, and transmitting an uplink signal based on the response signal. and a control unit that makes the decision.
- a terminal transmits a signal for activating or putting a base station to sleep
- a terminal receives a response signal regarding the activation or sleep, and transmits an uplink signal based on the response signal. Determine.
- FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment.
- FIG. 2 is a diagram showing an example of FR used in a wireless communication system.
- FIG. 2 is a diagram showing an example of a configuration of a radio frame, a subframe, and a slot used in a radio communication system.
- FIG. 2 is a diagram for explaining CDRX in Release 15 of 3GPP.
- FIG. 2 is a diagram for explaining WUS in Release 16 of 3GPP.
- FIG. 3 is a diagram showing an example of parameters related to RO settings.
- FIG. 3 is a diagram showing part of a table for RO settings.
- FIG. 3 is a diagram showing an example of parameters related to BFR settings.
- FIG. 3 is a diagram showing an example of a BSR event.
- FIG. 3 is a diagram illustrating an example of the operation of proposal 1-option 1.
- FIG. 3 is a diagram illustrating an operation example of proposal 1-option 2.
- FIG. 3 is a diagram illustrating parameters that define gNB CDRX.
- FIG. 3 is a diagram illustrating proposal 3-option 1.1.
- FIG. 3 is a diagram illustrating proposal 3-option 1.2.
- FIG. 1 is a block diagram showing an example of the configuration of a base station according to an embodiment.
- FIG. 2 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment.
- FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to an embodiment.
- 1 is a diagram showing an example of the configuration of a vehicle.
- FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to an embodiment.
- the wireless communication system 10 is a wireless communication system that complies with 5G NR, and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter also referred to as UE (User Equipment) 200). include.
- NG-RAN 20 Next Generation-Radio Access Network
- UE User Equipment
- the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
- the NG-RAN 20 includes a base station 100A (hereinafter also referred to as gNB 100A) and a base station 100B (hereinafter also referred to as gNB 100B). Note that when there is no need to distinguish between gNB 100A, gNB 100B, etc., they are collectively referred to as gNB or base station 100. Further, the number of gNBs and UEs is not limited to the example shown in FIG. 1.
- the NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNB (or ng-eNB), and is connected to a 5G-compliant core network (5GC, not shown).
- gNB or ng-eNB
- 5GC 5G-compliant core network
- gNB may be replaced with network (NW).
- the gNB 100A and gNB 100B are, for example, base stations that comply with 5G, and perform wireless communication with the UE 200 according to 5G.
- gNB 100A, gNB 100B, and UE 200 use multiple component carriers (CC: It may be compatible with carrier aggregation (CA) that uses a bundle of component carriers, dual connectivity (DC) that communicates between the UE and two NG-RAN nodes, and the like.
- CA carrier aggregation
- DC dual connectivity
- the wireless communication system 10 may support multiple frequency ranges (FR).
- FR frequency ranges
- FIG. 2 is a diagram showing an example of FR used in the wireless communication system 10.
- the wireless communication system 10 may support FR1 and FR2.
- the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
- FR1 sub-carrier spacing (SCS) of 15 kHz, 30 kHz, or 60 kHz is used, and a bandwidth (BW) of 5 to 100 MHz may be used.
- SCS sub-carrier spacing
- BW bandwidth
- FR2 is at a higher frequency than FR1, with an SCS of 60kHz or 120kHz (may include 240kHz), and a bandwidth (BW) of 50-400MHz may be used.
- SCS may be interpreted as numerology.
- the numerology is defined in 3GPP TS 38.300 and corresponds to one subcarrier spacing in the frequency domain.
- the wireless communication system 10 may support a frequency band higher than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be conveniently referred to as "FR2x".
- FR2x Such a high frequency band may be conveniently referred to as "FR2x”.
- CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
- DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
- FIG. 3 is a diagram showing a configuration example of a radio frame (system frame), subframe, and slot used in the radio communication system 10. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). However, SCS is not limited to the intervals (frequency) shown in FIG. 3. For example, 480kHz, 960kHz, etc. may be used as the SCS.
- the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, it may be 28 or 56 symbols, etc.). Furthermore, the number of slots per subframe may vary depending on the SCS.
- time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like.
- the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
- the gNB 100 transmits control information, configuration information, etc. for realizing power saving of the gNB 100 to the UE 200 as a downlink (DL) signal.
- DL downlink
- the gNB 100 receives control information for realizing power saving of the gNB 100, data signals, information regarding the processing capability of the UE 200 (terminal capability (information); for example, as an uplink (UL) signal; UE capability), etc.
- terminal capability information
- UL uplink
- Channels used for transmitting DL signals include, for example, data channels and control channels.
- the data channel may include a physical downlink shared channel (PDSCH)
- the control channel may include a physical downlink control channel (PDCCH).
- the gNB 100 transmits control information to the UE 200 using the PDCCH, and transmits a DL data signal using the PDSCH.
- PDSCH is an example of a downlink shared channel
- PDCCH is an example of a downlink control channel.
- PDCCH may be replaced with downlink control information (DCI), control information, etc. transmitted on PDCCH.
- DCI downlink control information
- Reference signals included in the DL signal include, for example, DMRS (Demodulation Reference Signal), PTRS (Phase Tracking Reference Signal), CSI-RS (Channel State Information-Reference Signal), SRS (Sounding Reference Signal), and location information. At least one PRS (Positioning Reference Signal) for use may be included.
- reference signals such as DMRS and PTRS are used to demodulate DL data signals and are transmitted using PDSCH.
- UE200 is a communication device with wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module.
- wireless communication function such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module.
- the UE 200 uses various communication services provided by the wireless communication system 10 by receiving a control signal or data signal from the gNB 100 via DL and transmitting the control signal or data signal to the gNB 100 via UL. Further, UE 200 receives various reference signals transmitted from gNB 100, and measures channel quality based on the reception results of the reference signals.
- the UE 200 receives control information, setting information, etc. for realizing power saving of the gNB 100 from the gNB 100 as a DL signal.
- the UE 200 transmits control information for realizing power saving of the gNB 100, data signals, terminal capability information of the UE 200, etc. to the gNB 100 as a UL signal.
- Channels used for transmitting UL signals include, for example, data channels and control channels.
- the data channel may include a physical uplink shared channel (PUSCH)
- the control channel may include a physical uplink control channel (PUCCH).
- the UE 200 transmits control information using the PUCCH and transmits a UL data signal using the PUSCH.
- PUSCH is an example of an uplink shared channel
- PUCCH is an example of an uplink control channel.
- a shared channel may be called a data channel.
- PUSCH or PUCCH may be replaced with uplink control information (UCI), control information, etc. transmitted on PUSCH or PUCCH.
- UCI uplink control information
- the reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRSRS, and PRS for location information.
- reference signals such as DMRS and PTRS are used to demodulate UL data signals and are transmitted using PUSCH.
- Techniques for power saving in terminals include, for example, discontinuous reception (DRX) and connected mode discontinuous reception (CDRX).
- DRX discontinuous reception
- CDRX connected mode discontinuous reception
- FIG. 4 is a diagram for explaining CDRX in 3GPP Release 15.
- the terminal In CDRX operation in 3GPP Release 15, the terminal is active during the DRX on-duration in the DRX cycle and monitors the PDCCH during the DRX on-duration.
- FIG. 5 is a diagram for explaining WUS in 3GPP Release 16.
- PDCCH-based WUS can instruct one or more terminals whether the terminal should monitor the PDCCH within the next DRX on period.
- DCI format 2_6 with CRC (Cyclic Redundancy Check) scrambled by PS-RNTI (Power Saving - Radio Network Temporary Identifier) is used as PDCCH-based WUS and is also called DCP (DCI with CRC scrambled by PS-RNTI).
- the WUS monitoring occasion is set by an offset from the DRX on period based on the terminal capability. If the WUS indicates "Not Active" (i.e., the device is not transmitting or receiving data), the device should skip monitoring during the DRX on period and immediately enter sleep mode. I can do it.
- a default terminal operation may be set in case PDCCH-based WUS is not detected due to, for example, a detection error.
- DCI format 2_6 includes a 1-bit Wake-up Indication indicating “active” or “inactive” (for example, 3GPP TS38.212 V16.9.0(2022-03) Sec .7.3.1.3.7). Note that active may be read as enabled, enabled, activated, etc., and inactive may be read as disabled, invalidated, sleep, etc.
- RACH configuration In connection with the transmission of the Physical Random Access Channel (PRACH), for example, 3GPP TS 38.211 V16.9.0 (2022-03) defines an RO setting (RACH Occasion configuration) for transmitting the PRACH.
- PRACH Physical Random Access Channel
- the terminal transmits upper layer signaling parameters (upper layer parameters), such as Radio Resource Control (RRC) and/or System Information Block (SIB), and Table 6.3 of 3GPP TS 38.211 V16.9.0 (2022-03).
- Upper layer parameters such as Radio Resource Control (RRC) and/or System Information Block (SIB), and Table 6.3 of 3GPP TS 38.211 V16.9.0 (2022-03).
- RRC Radio Resource Control
- SIB System Information Block
- FIG. 6 is a diagram showing an example of parameters related to RO settings (for details, see, for example, 3GPP TS38.331 V16.8.0 (2022-03) Sec.6.3.2).
- FIG. 7 is a diagram showing part of a table for RO settings (for example, see 3GPP TS38.211 V16.9.0 (2022-03) Table 6.3.3.2-2).
- the terminal refers to the "PRACH Configuration Index" in the table shown in FIG. 7 based on the parameter "prach-ConfigurationIndex" included in the RACH-ConfigGeneric information element (IE) shown in FIG. 6, for example.
- the terminal acquires various information corresponding to the "PRACH Configuration Index" of the table to be referenced, and determines resources (opportunities) in the time domain of the RO. For example, the terminal obtains information such as the subframe number for transmitting the PRACH preamble, the start symbol for starting transmission of the PRACH preamble, and the number of slots for transmitting the PRACH preamble, and determines resources in the time domain of the RO.
- the terminal determines resources (opportunities) in the frequency domain of the RO, for example, based on the parameters "msg1-FDM” and “msg1-FrequencyStart" included in the RACH-ConfigGeneric shown in FIG. 6. For example, the terminal determines the position and number (multiplexing number) of ROs in the frequency domain based on the parameters “msg1-FDM” and “msg1-FrequencyStart”.
- the random access preamble is transmitted only in the time resources given by the upper layer parameter "prach-ConfigurationIndex" according to table 6.3.3.2-2/3/4 of 3GPP TS 38.211. Also, the random access preamble depends on whether it is FR1 or FR2 and the spectrum type defined in 3GPP TS38.104 V16.11.0 (2022-03).
- PRACH frequency resources are expressed by the following equation (1).
- M in equation (1) is equal to the upper layer parameter "msg1-FDM".
- PRACH frequency resources nRA are numbered in ascending order from the lowest frequency within the initial uplink bandwidth part during initial access.
- PRACH frequency resources nRA are numbered in ascending order from the lowest frequency within the active uplink bandwidth part except during initial access.
- RACH can also be configured for Beam Failure Recovery (BFR).
- BFR Beam Failure Recovery
- RO is also set in BFR.
- FIG. 8 is a diagram showing an example of parameters related to BFR settings (for details, see, for example, 3GPP TS38.331 V16.8.0 (2022-03) Sec.6.3.2).
- the BeamFailureRecoveryConfig IE includes a parameter "ra-OccasionList".
- the terminal determines RO resources (opportunities) based on the parameter "ra-OccasionList" in the BFR procedure.
- BSR Buffer Status Report
- Non-Patent Document 2 power saving of base stations is being considered (for example, Non-Patent Document 2).
- base station-side and terminal-side techniques are being considered to improve network energy reduction from both base station transmission and reception perspectives.
- the potential support/feedback from the terminal and the potential terminal assistance information can be used to improve efficiency in one or more network energy reduction techniques in the time domain, frequency domain, spatial domain and power domain.
- Methods are being considered to implement operations dynamically and/or semi-statically and to achieve finer-grained adaptation of transmission and/or reception.
- g-WUS gNB Wake-up signal
- RACH based g-WUS RACH based g-WUS
- g-WUS is transmitted from the terminal to the base station.
- the base station dynamically enables/disables a receiving unit (RX unit) based on, for example, g-WUS.
- RX unit receiving unit
- the reception unit of the base station may mean an apparatus or device for receiving signals from a terminal, an apparatus or device for UL reception, etc. Furthermore, enabling the receiving unit of the base station may mean activating (waking up) the receiving unit of the base station from the sleep state (bringing it into the activated state), and disabling the receiving unit of the base station may mean putting the receiving unit of the base station to sleep from the awake state (sleep state, hibernation state, or hibernation state).
- PRACH may be used as g-WUS.
- Proposal 1 may be applied. In other words, proposal 1 may be applied to the base station during CDRX operation.
- the base station if the base station receives PRACH from the terminal during CDRX operation, it will wake up at the next CDRX opportunity (proposal 1 - option 1). For example, when the base station receives PRACH from the terminal during CDRX operation, it enables the receiving unit at the opportunity of CDRX after receiving PRACH.
- the base station when the base station receives PRACH from a terminal during CDRX operation, it sleeps at the next CDRX opportunity (proposal 1 - option 2). For example, when the base station receives PRACH from a terminal during CDRX operation, it disables the receiving unit at the opportunity of CDRX after receiving PRACH.
- next CDRX opportunity may be drx-onDurationTimer in the next drx-LongCycle.
- the next CDRX opportunity may be drx-onDurationTimer in the next drx-shortCycle.
- Parameters that define gNB CDRX (sometimes referred to as gNB CDRX parameters), such as drx-LongCycle, drx-shortCycle, and drx-onDurationTimer, are explained in FIG. 12.
- the base station receives a wake-up instruction from at least one terminal, it receives the UL channel when drx-onDurationTimer, drx-InactivityTimer, or drx-RetransmissionTimerUL is executed at the next CRX opportunity.
- the base station when it receives PRACH from at least one terminal, it receives the UL channel when drx-onDurationTimer, drx-InactivityTimer, or drx-RetransmissionTimerUL is executed at the next CRX opportunity.
- the terminal sends a PRACH in the RO for the base station to wake up at the next CDRX opportunity.
- the terminal determines the RO and transmits a PRACH such as a random access preamble (Msg1) using a method similar to that described in ⁇ RACH settings> above. Furthermore, the terminal determines the RO using a method similar to that described in ⁇ RACH configuration for BFR> above, and transmits a PRACH such as a random access preamble.
- the base station determines the RO at the terminal and determines the g-WUS reception opportunity (timing to receive g-WUS), for example, in the same manner as the terminal.
- the terminal transmits the UL channel only while the terminal instructs the base station to wake up.
- FIG. 10 is a diagram illustrating an example of the operation of proposal 1-option 1.
- the terminal does not transmit PRACH in the RO for g-WUS shown by arrow A10a in FIG. 10.
- the base station does not receive PRACH in the RO for g-WUS shown by arrow A10a.
- the base station does not receive PRACH in the RO for g-WUS shown by arrow A10a, it does not wake up in drx-onDuration shown by arrow A10b. In other words, the base station does not activate the receiving unit and does not monitor the UL channel (UL signal) during drx-onDuration shown by arrow A10b.
- the terminal transmits PRACH in the RO for g-WUS shown by arrow A10c in FIG. 10.
- the base station receives PRACH in the RO for g-WUS shown by arrow A10c.
- the base station When the base station receives PRACH in the RO for g-WUS shown by arrow A10c, it wakes up at drx-onDuration shown by arrow A10d. In other words, the base station activates the receiving unit and monitors the UL channel during drx-onDuration shown by arrow A10d.
- the base station can reduce power consumption.
- the base station If the base station receives an instruction to sleep from at least one terminal, it shall, at the next CRX opportunity, regardless of the gNB CDRX parameters (e.g., whether drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimerUL is executed) (regardless of whether or not), it does not receive UL channels.
- the gNB CDRX parameters e.g., whether drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimerUL is executed
- the base station receives a PRACH from at least one terminal, it will not receive the UL channel at the next CRX opportunity, regardless of the gNB CDRX parameters.
- the terminal sends a PRACH in the RO for the base station to sleep at the next CDRX opportunity.
- the terminal determines the RO and transmits a PRACH such as a random access preamble (Msg1) using a method similar to that described in ⁇ RACH settings> above. Furthermore, the terminal determines the RO using a method similar to that described in ⁇ RACH configuration for BFR> above, and transmits a PRACH such as a random access preamble.
- the base station determines the RO at the terminal and determines the g-WUS reception opportunity (timing to receive g-WUS), for example, in the same manner as the terminal.
- the terminal does not transmit the UL channel while the terminal instructs the base station to wake up.
- FIG. 11 is a diagram illustrating an example of the operation of proposal 1-option 2.
- the terminal does not transmit PRACH in the RO for g-WUS shown by arrow A11a in FIG. 11.
- the base station does not receive PRACH in the RO for g-WUS shown by arrow A11a.
- the base station If the base station does not receive PRACH in the RO for g-WUS shown by arrow A11a, it wakes up at drx-onDuration shown by arrow A11b. In other words, the base station activates the receiving unit and monitors the UL channel during drx-onDuration shown by arrow A11b.
- the terminal transmits PRACH in the RO for g-WUS shown by arrow A11c in FIG. 11.
- the base station receives PRACH in the RO for g-WUS shown by arrow A11c.
- the base station When the base station receives PRACH in the RO for g-WUS shown by arrow A11c, it does not wake up in the drx-onDuration shown by arrow A11d. In other words, the base station does not activate the receiving unit and does not monitor the UL channel during drx-onDuration shown by arrow A11d.
- the base station can reduce power consumption.
- a plurality of terminals may reside in a cell of a base station. That is, a plurality of terminals may belong to (exist) under a base station.
- All terminals located in the cell of the base station may transmit information on whether to wake up the base station. That is, all terminals located in the cell of the base station may transmit PRACH as g-WUS.
- Some terminals located in the cell of the base station may transmit information on whether to wake up the base station. That is, some terminals located in the cell of the base station may transmit PRACH as g-WUS.
- some terminals transmitting g-WUS may be determined by, for example, DCI. Some terminals that transmit g-WUS may be determined by, for example, RRC. Some terminals that transmit g-WUS may be determined by MAC CE, for example.
- the base station has determined whether to wake up or not based on the presence or absence of PRACH transmission from the terminal, the base station is not limited to this.
- the base station may make a decision whether to wake up or not based on information sent in the PRACH.
- a base station may make a decision whether to wake up or not based on one bit of information sent in PRACH.
- One bit of information may be included in the random access preamble, for example.
- the terminal and base station may switch between Proposal 1-Option 1 operation and Proposal 1-Option 2 operation.
- the terminal may switch between Proposal 1-Option 1 operation and Proposal 1-Option 2 operation, for example, using the DCI.
- the terminal may switch between Proposal 1-Option 1 operation and Proposal 1-Option 2 operation, for example, by RRC.
- the terminal may switch between Proposal 1-Option 1 operation and Proposal 1-Option 2 operation, for example, using the MAC CE.
- FIG. 12 is a diagram illustrating parameters defining gNB CDRX.
- a base station CDRX may be defined by multiple parameters listed below. Note that the unit of the parameter may be a symbol, slot, subframe, millisecond, second, or the like. The units may be different or the same for each parameter.
- ⁇ drx-onDurationTimer Duration at the start of the DRX cycle ⁇ drx-SlotOffset: Delay before starting drx-onDurationTimer ⁇ drx-InactivityTimer: Period during which the terminal performs uplink transmission after an uplink reception opportunity ⁇ drx- LongCycleStartOffset: Long DRX cycle (i.e.
- drx-LongCycle Short DRX cycle
- drx-ShortCycleTimer Period during which the base station follows a short DRX cycle
- ⁇ drx-RetransmissionTimerUL Maximum period until uplink retransmission grant is received
- ⁇ drx-HARQ-RTT-TimerUL Up Minimum period before link retransmission permission is expected
- the base station receives the uplink channel transmitted from the terminal when drx-onDurationTimer, drx-InactivityTimer, or drx-RetransmissionTimerUL is executed. Good too.
- the above parameters may be notified by an upper layer signal such as RRC, for example.
- the above parameters may be signaled by upper layer signals such as MAC CE.
- the above parameters may be notified by lower layer signals such as DCI.
- Proposal 2 describes PRACH configuration in g-WUS.
- RO/PRACH in g-WUS may be configured using time domain resources and frequency domain resources.
- RO RO time domain resource
- Example 1 of time domain resources of RO/PRACH (combination of table and upper layer) RO is determined by both the table and higher layer parameters.
- a table containing candidate RO start times and durations is defined by the specification index.
- One of the start time and period candidates is indicated by an index according to the RRC configuration, such as prach-ConfigurationIndex.
- the table includes the start time and period of the RO, and also includes an index associated with the start time and period of the RO.
- the table may be, for example, the same as or similar to Table 6.3.3.2-2/3/4 of 3GPP TS 38.211 V16.9.0 (2022-03).
- the index may be, for example, prach-ConfigurationIndex. prach-ConfigurationIndex may be a parameter included in "RACH-ConfigGeneric", for example.
- the terminal refers to the table and obtains the start time and period of the RO, for example, using the parameter "prach-ConfigurationIndex" notified by RRC signaling.
- the terminal determines resources in the time domain of the RO based on the acquired start time and duration of the RO.
- Example 2 of time domain resources of RO/PRACH (upper layer parameters only) RO is determined only by upper layer parameters without using a table.
- the start time and duration of the RO are set together or separately by one or more RRC parameters.
- a parameter (upper layer parameter) "StartandDuration” is prepared in which the start time and duration are indicated together.
- One parameter “StartandDuration” includes the start time and duration of the RO.
- the terminal determines the disclosure time and duration of the resource in the time domain of the RO from the received one parameter "StartandDuration".
- a parameter (upper layer parameter) "Start” and a parameter “Duration” are prepared in which a start time and a period are individually indicated.
- the parameter “Start” indicates the start time of the RO
- the parameter "Duration” indicates the duration of the RO.
- the terminal determines the start time of the resource in the time domain of the RO based on the parameter "Start” received from the base station, and determines the start time of the resource in the time domain of the RO based on the parameter "Duration" received from the base station. Determine the period of time.
- RO/PRACH time domain resource example 3 (new upper layer parameters)
- the upper layer parameters may be included in (or associated with) new PRACH-specific parameters for g-WUS.
- the upper layer parameter may be included in a g-WUS parameter (IE) such as "RACH-ConfigWUS".
- the parameter "RACH-ConfigWUS” may include the parameter "prach-ConfigurationIndex".
- the terminal may refer to the table described in “RO/PRACH time domain resource example 1” above based on the parameter “prach-ConfigurationIndex” included in the parameter “RACH-ConfigWUS” received from the base station. good.
- the parameter "RACH-ConfigWUS” may include a parameter indicating the start time and period of RO.
- the parameter “RACH-ConfigWUS” may include the parameter “StartandDuration” described in “Example 2 of RO/PRACH time domain resources” above.
- the parameter “RACH-ConfigWUS” may include the parameter “Start” and the parameter “Duration” described in “Example 2 of RO/PRACH time domain resource” above.
- ⁇ Example 4 of RO/PRACH time domain resources PRACH transmission timing for g-WUS
- PRACH transmission timing for g-WUS PRACH transmission timing for g-WUS
- PRACH is sent at each RO.
- the terminal transmits PRACH for each RO.
- PRACH is only sent when the UL channel is ready to be sent.
- the conditions of “preparation to be transmitted” may be the same as, for example, BSR reporting in 3GPP TS38.321 V16.8.0 (2022-03) Sec.5.4.5.
- the terminal transmits PRACH in the next available RO (for example, the RO after the event occurs).
- the next available RO may be the first symbol in the first slot of the RO. This allows the terminal to suppress communication delays. Note that the next available RO is not limited to the first symbol in the first slot of the RO. For example, the next available RO may be the second or subsequent symbols in the second or subsequent slots of the RO.
- g-WUS PRACH frequency domain resources are determined by the PRACH preamble and/or upper layer parameters.
- the bandwidth of each RO within one time slot is determined by the PRACH preamble.
- LRA 139
- the PRB of one RO is 12.
- LRA is, for example, a parameter that defines the length of the PRACH preamble.
- the number of ROs (multiplexing number) within one time slot is determined by upper layer parameters.
- the upper layer parameter is, for example, msg1-FDM.
- the starting frequency location is determined by upper layer parameters.
- the upper layer parameter is, for example, msg1-FrequencyStart.
- msg1-FrequencyStart indicates, for example, an offset from a certain PRB.
- Upper layer parameters may be included in (or associated with) new parameters dedicated to g-WUS PRACH.
- the upper layer parameter may be included in a g-WUS parameter (IE) such as "RACH-ConfigWUS".
- the parameter "RACH-ConfigWUS” may include the parameter “msg1-FDM” and the parameter “msg1-FrequencyStart.”
- the terminal may determine the frequency domain resource of the RO based on the parameter "msg1-FDM” and the parameter “msg1-FrequencyStart” included in the parameter "RACH-ConfigWUS" received from the base station.
- the parameter “RACH-ConfigWUS” may include a parameter “L RA ” that defines the length of the PRACH preamble.
- RA-RNTI may or may not be set by upper layer parameters.
- RA-RNTI is not configured by upper layer parameters.
- RA-RNTI may or may not be set by the RO-based MAC CE.
- the RA-RNTI may be determined based on equation (2) below (e.g., see 3GPP TS38.321 V16.8.0(2022-03) Sec.5.1.3) .
- PRACH-related settings such as powerRampingStep, preambleReceivedTargetPower, and preambleTransMax are configured with upper layer parameters.
- powerRampingStep indicates the step of ramping up the transmission power of the random access preamble.
- preambleReceivedTargetPower indicates the target received power of the random access preamble.
- preambleTransMax indicates the maximum number of times a random access preamble is transmitted.
- These parameters related to PRACH for g-WUS may be notified from the base station to the terminal by, for example, RRC signaling.
- these parameters may be notified in one or more of the parameters (IE) "RACH-ConfigGeneric", “RACH-ConfigCommon”, and the new parameter "RACH-ConfigCommon”.
- a priority may be set in PRACH for g-WUS.
- a priority random access procedure (see 3GPP TS38.321 V16.8.0 (2022-03) Sec.5.1.1) based on upper layer parameters may be applied.
- the prioritized PRACH has a power ramping step set for the prioritized PRACH.
- the parameters for setting the priority may be included in the new parameter “RACH-ConfigCommon”.
- Proposal 3 is a proposal regarding the RACH based g-WUS response (Msg2).
- Msg2 RACH based g-WUS response
- the base station transmits a response signal to the terminal.
- the base station transmits a Random Access Response (RAR) to the terminal.
- RAR Random Access Response
- proposal 3 the following options 1 and 2 are proposed.
- RA-RNTI Cell-RNTI
- MCS-C-RNTI Modulation Coding Scheme-C-RNTI
- ES-RNTI Energy Saving-RNTI
- Proposal 3 - Option 1 assumes that RA-RNTI is not provided (configured) (see "RA Radio Network Temporary Identifier (RA-RNTI)" in Proposal 2).
- a search space in which the terminal monitors RACH based g-WUS responses (sometimes referred to as g-WUS RAR) is set by upper layer parameters.
- the terminal may or may not monitor PDCCHs (DCI) other than g-WUS RAR in the configured search space.
- DCI PDCCHs
- the terminal may or may not assume that another search space set for monitoring the PDCCH is provided in the control resource set (CORESET) associated with the search space.
- CORESET control resource set
- g-WUS RAR monitoring opportunities are based on time windows.
- the time window is configured in upper layer parameters for g-WUS RAR reception.
- the terminal monitors g-WUS RAR in a time window (section) set by upper layer parameters.
- the time window may be, for example, X symbols and/or slots starting from Y.
- Y may be an ID of a dedicated slot and/or a dedicated symbol.
- Y may be, for example, n+Z slots and/or symbols.
- n is the slot in which the terminal transmits PRACH for g-WUS, and Z may be an integer value such as 4.
- the upper layer parameters may be new PRACH-specific parameters for RACH-ConfigCommon and g-WUS.
- FIG. 13 is a diagram explaining proposal 3-option 1.1.
- a dotted line frame 13a shown in FIG. 13 indicates the RO for g-WUS.
- the dotted frame 13b indicates the g-WUS RAR opportunity (time window) for monitoring the g-WUS RAR.
- the terminal monitors the g-WUS RAR from the base station in the g-WUS RAR opportunity shown in the dotted frame A13b.
- the g-WUS RAR opportunity shown in the dotted frame A13b is set by upper layer parameters such as RRC signaling, for example.
- the g-WUS RAR opportunity starts at Z symbols and/or slots from the last symbol and/or slot (eg, Y) of the RO.
- Z is an integer value such as 4, for example.
- the g-WUS RAR opportunity lasts for X symbols and/or slots. X, Y, and Z are notified to the terminal as upper layer parameters.
- Monitoring opportunities for g-WUS RAR are set by the above search space.
- the duration and/or periodicity and/or start time of the monitoring opportunity with an offset from the RACH based g-WUS (RO) may be provided (configured) by upper layer parameters of the g-WUS RAR search space.
- FIG. 14 is a diagram explaining proposal 3-option 1.2.
- a dotted line frame 14a shown in FIG. 13 indicates the RO for g-WUS.
- the dotted box 14b indicates g-WUS RAR opportunities for monitoring g-WUS RAR.
- the terminal monitors the g-WUS RAR from the base station in the g-WUS RAR opportunity shown in the dotted frame A14b.
- the g-WUS RAR opportunity shown in the dotted frame A14b is set by upper layer parameters such as RRC signaling, for example.
- the g-WUS RAR opportunity is set by the start time, period, and period of the monitoring opportunity by offset from the RACH based g-WUS (RO).
- the offset, period, and period from RACH based g-WUS (RO) are notified to the terminal by upper layer parameters of g-WUS RAR search space.
- the terminal shall be scrambled by one or more of C-RNTI, MCS-C-RNTI, and ES-RNTI in the g-WUS RAR occasion described in Proposal 3 - Option 1.1 and Proposal 3 - Option 1.2. attempt to receive the PDCCH.
- the terminal instructs the base station to wake up based on Proposal 1 - Option 1
- the terminal receives C-RNTI, MCS-C-RNTI, and ES-RNTI in the g-WUS RAR opportunity. If one or more PDCCHs are received, the base station identifies (determines) to wake up at the next CDRX opportunity. Then, the terminal transmits the UL channel at the next CDRX opportunity.
- the terminal may receive C-RNTI, MCS-C-RNTI, and ES-RNTI, the base station identifies not to wake up at the next CDRX opportunity. Then, the terminal does not transmit the UL channel at the next CDRX opportunity.
- the terminal does not transmit the UL channel if the base station does not wake up even though it has instructed the base station to wake up. As a result, unnecessary UL channel transmission by the terminal is omitted, and power consumption of the terminal is suppressed.
- the terminal instructs the base station to sleep based on Proposal 1 - Option 2
- the terminal transmits one of C-RNTI, MCS-C-RNTI, and ES-RNTI in g-WUS RAR opportunity. If a PDCCH scrambled by one or more is received, the base station identifies (determines) to sleep at the next CDRX opportunity. Then, the terminal does not transmit the UL channel at the next CDRX opportunity.
- the terminal instructs the base station to sleep based on Proposal 1 - Option 2
- the terminal transmits C-RNTI, MCS-C-RNTI, and If the PDCCH scrambled by one or more of the ES-RNTIs is not received, the base station identifies to wake up at the next CDRX opportunity.
- the terminal may not transmit the UL channel or may transmit the UL channel at the next CDRX opportunity.
- RAR is scrambled by RA-RNTI.
- Proposal 3 - Option 2 assumes that RA-RNTI is provided (configured).
- the search space in which the terminal monitors g-WUS RAR is the Type1-PDCCH CSS set configured by ra-SearchSpace of PDCCH-ConfigCommon. CSS stands for Common Search Space.
- a terminal detects a PDCCH that is masked using a different RNTI for each application in the CSS.
- g-WUS RAR monitoring opportunities are based on time windows.
- the time window is configured in upper layer parameters for g-WUS RAR reception.
- the terminal monitors g-WUS RAR in a time window (section) set by upper layer parameters.
- the time window may be, for example, X symbols and/or slots starting from Y (see, for example, FIG. 13).
- Y may be an ID of a dedicated slot and/or a dedicated symbol.
- Y may be, for example, n+Z slots and/or symbols.
- n is the slot in which the terminal transmits PRACH for g-WUS, and Z may be an integer value such as 4, for example.
- the upper layer parameters may be new PRACH-specific parameters for RACH-ConfigCommon and g-WUS.
- Monitoring opportunities for g-WUS RAR are set by the above search space.
- the duration and/or periodicity and/or start time of the monitoring opportunity with an offset from the RACH based g-WUS (RO) (see e.g. Figure 14) is provided (configured) by upper layer parameters of the g-WUS RAR search space. may be done.
- the terminal attempts to receive the PDCCH scrambled by RA-RNTI in the g-WUS RAR opportunity described in Proposal 3-Option 2.1 and Proposal 3-Option 2.2.
- the terminal instructs the base station to wake up based on Proposal 1 - Option 1, and receives a PDCCH scrambled by RA-RNTI in the g-WUS RAR opportunity, the terminal performs the following At the CDRX opportunity, the base station identifies (determines) to wake up. Then, the terminal transmits the UL channel at the next CDRX opportunity.
- the terminal instructs the base station to wake up based on Proposal 1-Option 1
- the terminal receives the PDCCH scrambled by RA-RNTI at the g-WUS RAR opportunity. If not, identify that the base station will not wake up at the next CDRX opportunity. Then, the terminal does not transmit the UL channel at the next CDRX opportunity.
- the terminal does not transmit the UL channel if the base station does not wake up even though it has instructed the base station to wake up. As a result, unnecessary UL channel transmission by the terminal is omitted, and power consumption of the terminal is suppressed.
- the terminal instructs the base station to sleep based on Proposal 1 - Option 2, and receives a PDCCH scrambled by RA-RNTI in the g-WUS RAR opportunity, the terminal transmits the next CDRX On the occasion of , the base station identifies (determines) to sleep. Then, the terminal does not transmit the UL channel at the next CDRX opportunity.
- the terminal may, for example, instruct the base station to sleep based on Proposal 1 - Option 2, and may receive the PDCCH scrambled by RA-RNTI in the g-WUS RAR opportunity. If not, identify that the base station will wake up at the next CDRX opportunity. The terminal may not transmit the UL channel or may transmit the UL channel at the next CDRX opportunity.
- Receiving units enabled and disabled by g-WUS may be configured for each port, panel, beam, or carrier.
- the terminal may report the following terminal capabilities to the base station as UE capabilities. ⁇ Whether to support RACH based g-WUS
- the base station may report the following base station capabilities to the terminal as gNB capability. ⁇ Whether to support RACH based g-WUS
- FIG. 15 is a block diagram showing an example of the configuration of base station 100 according to the embodiment.
- Base station 100 includes, for example, a transmitter 101, a receiver 102, and a controller 103.
- Base station 100 communicates with terminal 200 (see FIG. 16) wirelessly.
- the transmitter 101 transmits a downlink (DL) signal to the terminal 200.
- DL downlink
- the transmitter 101 transmits a DL signal under the control of the controller 103.
- the DL signal may include, for example, a downlink data signal and control information (for example, Downlink Control Information (DCI)). Further, the DL signal may include information indicating scheduling regarding signal transmission by the terminal 200 (for example, UL grant). Further, the DL signal may include upper layer control information (for example, Radio Resource Control (RRC) control information). Further, the DL signal may include a reference signal.
- DCI Downlink Control Information
- RRC Radio Resource Control
- RRC Radio Resource Control
- Channels used for transmitting DL signals include, for example, data channels and control channels.
- the data channel may include a PDSCH (Physical Downlink Shared Channel)
- the control channel may include a PDCCH (Physical Downlink Control Channel).
- base station 100 transmits control information to terminal 200 using PDCCH, and transmits a downlink data signal using PDSCH.
- reference signals included in the DL signal include demodulation reference signal (DMRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), and Sounding Reference Signal (SRS). ), and a Positioning Reference Signal (PRS) for position information.
- DMRS demodulation reference signal
- PTRS Phase Tracking Reference Signal
- CSI-RS Channel State Information-Reference Signal
- SRS Sounding Reference Signal
- PRS Positioning Reference Signal
- reference signals such as DMRS and PTRS are used for demodulating downlink data signals and are transmitted using PDSCH.
- the receiving unit 102 receives an uplink (UL) signal transmitted from the terminal 200.
- the receiving unit 102 receives a UL signal under the control of the control unit 103.
- the control unit 103 controls the communication operation of the base station 100, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
- control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
- control unit 103 determines the resources (or channels) used for transmitting and receiving DL signals based on the signal (for example, data and control information, etc.) received from the terminal 200 and/or the data and control information obtained from the upper layer. and/or allocate resources used for transmitting and receiving UL signals. Information regarding the allocated resources may be included in the control information transmitted to the terminal 200.
- the control unit 103 sets PUCCH resources as an example of resource allocation used for transmitting and receiving UL signals.
- Information regarding PUCCH settings such as PUCCH cell timing patterns (PUCCH setting information) may be notified to terminal 200 by RRC.
- the receiving unit 102 receives an access signal for the terminal 200 to access the base station 100.
- the control unit 103 activates or puts to sleep a receiving unit for receiving uplink signals based on the access signal received by the receiving unit 102.
- the access signal may be referred to as, for example, RACH, RACH signal, initial access signal, Msg1, or Msg1 signal.
- the upstream signal may be referred to as a UL channel or UL channel signal.
- the receiving unit may be included in the receiving section 102 (or may be part of the function of the receiving section 102).
- the receiving unit 102 may receive the access signal at a transmission opportunity when the terminal 200 can transmit the access signal.
- the transmission opportunity may be, for example, RO.
- control unit 103 When the control unit 103 receives an access signal, it may activate the receiving unit, and when it does not receive an access signal, it may put the receiving unit to sleep.
- the control unit 103 may put the receiving unit to sleep when receiving an access signal, and may activate the receiving unit when not receiving an access signal.
- the transmitting unit 101 transmits a response signal regarding activation or sleep to the terminal 200.
- Control section 103 determines whether to receive an uplink signal from terminal 200 based on the transmission of the response signal to terminal 200. For example, when the control unit 103 transmits a response signal to the terminal 200, the control unit 103 determines whether to receive an uplink signal from the terminal 200.
- the control unit 103 may transmit to the terminal 200 parameters for determining a reception opportunity for the terminal 200 to monitor reception of the response signal.
- the response signal reception opportunity may be, for example, a g-WUS RAR opportunity.
- control unit 103 When the control unit 103 receives a signal to activate the base station 100 (receiving unit) from the terminal 200, it may transmit a response signal to the terminal 200. The control unit 103 may transmit the response signal to the terminal 200 at a reception opportunity for the terminal 200 to monitor reception of the response signal.
- control unit 103 when the control unit 103 transmits the response signal to the terminal 200, the control unit 103 may receive an uplink signal from the terminal 200 at the next activation of the receiving unit.
- FIG. 16 is a block diagram showing an example of the configuration of terminal 200 according to the embodiment.
- Terminal 200 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203.
- Terminal 200 communicates with base station 100 wirelessly, for example.
- the receiving unit 201 receives the DL signal transmitted from the base station 100.
- the receiving unit 201 receives a DL signal under the control of the control unit 203.
- the transmitter 202 transmits the UL signal to the base station 100.
- the transmitter 202 transmits a UL signal under the control of the controller 203.
- the UL signal may include, for example, an uplink data signal and control information (for example, UCI).
- control information for example, UCI
- information regarding the processing capability of the terminal 200 eg, UE capability
- the UL signal may include a reference signal.
- Channels used for transmitting UL signals include, for example, data channels and control channels.
- the data channel includes PUSCH (Physical Uplink Shared Channel)
- the control channel includes PUCCH (Physical Uplink Control Channel).
- terminal 200 receives control information from base station 100 using PUCCH, and transmits an uplink data signal using PUSCH.
- the reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRS, and PRS.
- reference signals such as DMRS and PTRS are used for demodulating uplink data signals and are transmitted using an uplink channel (for example, PUSCH).
- the control unit 203 controls communication operations of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
- control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
- control unit 203 controls the transmission of information fed back to the base station 100.
- the information fed back to the base station 100 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). good.
- Information fed back to the base station 100 may be included in the UCI.
- the UCI is transmitted on PUCCH resources.
- the control unit 203 configures PUCCH resources based on configuration information received from the base station 100 (for example, configuration information such as a PUCCH cell timing pattern and/or DCI notified by RRC).
- the control unit 203 determines PUCCH resources to be used for transmitting information to be fed back to the base station 100.
- the transmitting section 202 transmits information to be fed back to the base station 100 in the PUCCH resource determined by the control section 203.
- channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above.
- channels used for transmitting DL signals and channels used for transmitting UL signals may include RACH (Random Access Channel) and PBCH (Physical Broadcast Channel).
- RACH may be used, for example, to transmit Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI).
- DCI Downlink Control Information
- RA-RNTI Random Access Radio Network Temporary Identifier
- control unit 203 decides to transmit an access signal for accessing the base station 100 in order to wake up or put the base station 100 to sleep. After transmitting the access signal, transmitting section 202 transmits an uplink signal to base station 100.
- the control unit 203 may decide to transmit the access signal under predetermined conditions. For example, the control unit 203 may decide to transmit the access signal based on the BSR report conditions.
- the control unit 203 may transmit the access signal at a transmission opportunity when the access signal can be transmitted.
- the control unit 203 When activating the base station 100, the control unit 203 transmits an access signal to the base station 100 at a transmission opportunity, and when putting the base station 100 to sleep, it does not need to transmit an access signal at the transmission opportunity.
- the receiving unit 201 receives a response signal regarding activation or sleep from the base station 100.
- the control unit 203 determines to transmit an uplink signal based on reception of the response signal.
- control unit 203 may determine a reception opportunity for monitoring reception of the response signal.
- control unit 203 If the control unit 203 receives a response signal at the reception opportunity after transmitting the signal for activating the base station 100, the control unit 203 transmits an uplink signal to the base station 100, and if it does not receive the response signal at the reception opportunity. , it is not necessary to transmit uplink signals.
- each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
- the functional block may be realized by combining software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
- a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
- a base station, a terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to the embodiment.
- the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the word “apparatus” can be read as a circuit, a device, a unit, etc.
- the hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
- Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
- the processor 1001 for example, operates an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
- CPU central processing unit
- control unit 103, control unit 203, etc. may be realized by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
- programs program codes
- the control unit 203 of the terminal 200 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may be realized in the same way.
- Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
- the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
- Memory 1002 may be called a register, cache, main memory, or the like.
- the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
- Storage 1003 may also be called an auxiliary storage device.
- the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the above-described transmitting section 101, receiving section 102, receiving section 201, transmitting section 202, etc. may be realized by the communication device 1004.
- the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
- the base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a part or all of each functional block may be realized by the hardware.
- processor 1001 may be implemented using at least one of these hardwares.
- the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
- RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- SUPER 3G IMT-Advanced
- 4G fourth generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG 6th generation mobile communication system
- xG 6th generation mobile communication system
- FRA Fluture Radio Access
- NR new Radio
- New radio access NX
- Future generation radio access FX
- W-CDMA registered trademark
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB Universal Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 UWB (Ultra-WideBand
- Bluetooth registered trademark
- other appropriate systems and the following extended, modified, created, and prescribed based on these. It may be applied to at least one generation system.
- a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
- ⁇ Base station operation> The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases.
- various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
- MME Mobility Management Entity
- S-GW Serving Mobility Management Entity
- ⁇ Input/output direction> Information etc. can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
- the input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
- Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
- Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
- software, instructions, information, etc. may be sent and received via a transmission medium.
- a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
- At least one of the channel and the symbol may be a signal.
- the signal may be a message.
- a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
- the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed.
- radio resources may be indicated by an index.
- Base Station In this disclosure, "Base Station (BS),""wireless base station,””fixedstation,” "NodeB,””eNodeB(eNB),”"gNodeB(gNB),”""""accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
- carrier “component carrier”, etc. may be used interchangeably.
- a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
- a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
- RRHs small indoor base stations
- Communication services may also be provided by a remote radio head).
- the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
- the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
- the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
- the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft.
- the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
- the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be replaced by a terminal.
- a terminal for example, regarding a configuration in which communication between a base station and a terminal is replaced with communication between multiple terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
- the terminal 200 may have the functions that the base station 100 described above has.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
- uplink channels, downlink channels, etc. may be replaced with side channels.
- a terminal in the present disclosure may be replaced by a base station.
- the base station 100 may have the functions that the terminal 200 described above has.
- FIG. 18 shows an example of the configuration of the vehicle 2001.
- the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
- Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
- the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
- the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
- the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
- the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
- Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
- the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
- the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
- the information service unit 12 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device (for example, display, speaker, LED lamp, touch panel, etc.).
- an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
- an output device for example, display, speaker, LED lamp, touch panel, etc.
- the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
- the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
- Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
- the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
- the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
- the communication module 2013 may be located either inside or outside the electronic control unit 2010.
- the external device may be, for example, a base station, a mobile station, or the like.
- the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
- the electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input.
- the PUSCH transmitted by the communication module 2013 may include information based on the above inputs.
- the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
- the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
- the communication module 2013 also stores various information received from external devices into a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
- determining may encompass a wide variety of operations.
- “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
- judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
- (accessing) may include considering something as a “judgment” or “decision.”
- judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
- judgment and “decision” may include regarding some action as having been “judged” or “determined.”
- judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
- connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
- the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
- two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
- the reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
- any reference to elements using the designations "first,””second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
- a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS subcarrier spacing
- TTI transmission time interval
- the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
- a slot may be a unit of time based on numerology.
- a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
- PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a Transmission Time Interval (TTI)
- TTI Transmission Time Interval
- multiple consecutive subframes may be called a TTI
- one slot or minislot may be called a TTI. It's okay.
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
- the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
- TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
- the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling.
- the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- long TTI for example, normal TTI, subframe, etc.
- short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
- the number of subcarriers included in an RB may be determined based on numerology.
- the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
- PRBs physical resource blocks
- SCGs sub-carrier groups
- REGs resource element groups
- PRB pairs RB pairs, etc. May be called.
- a resource block may be configured by one or more resource elements (REs).
- REs resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good.
- the common RB may be specified by an RB index based on a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be configured within one carrier for a UE.
- At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
- “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
- One aspect of the present disclosure is useful for wireless communication systems.
- Wireless Communication System 100 Base Station 200 Terminal 101, 202 Transmitting Unit 102, 201 Receiving Unit 103, 203 Control Unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
端末は、基地局を起動又はスリープさせる信号を送信した後、起動又はスリープに関する応答信号を受信する受信部と、応答信号に基づいて、上り信号の送信を決定する制御部と、を有する。
Description
本開示は、端末及び通信方法に関する。
3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)、又は、Next Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution又は6Gと呼ばれる次世代の仕様化も進めている。
5Gにおいては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば、非特許文献1)。
省電力に関して、3GPPのRelease 16では、端末が低消費電力で制御信号をモニタするために、WUS(Wake Up Signal)が導入されている。なお、電力はエネルギーで読み替えられてもよく、省電力は電力削減等で読み替えられてもよい。
3GPPのRelease 18では、基地局の省電力について検討されている(例えば、非特許文献2)。詳細については今後の検討課題となっている。
3GPP TS 38.300 V17.0.0 (2022-03)
"New SI: Study on network energy savings for NR", RP-213554, 3GPP TSG RAN Meeting #94e, 3GPP, 2021年12月
上記した通り、将来の無線通信システムでは、基地局の省電力について検討されているが、当該省電力に係る制御をどのように行うか、具体的な動作等について十分に検討されていない。
本開示の一態様は、基地局の省電力を図ることができる端末及び通信方法を提供することにある。
本開示の一態様に係る端末は、基地局を起動又はスリープさせる信号を送信した後、前記起動又は前記スリープに関する応答信号を受信する受信部と、前記応答信号に基づいて、上り信号の送信を決定する制御部と、を有する。
本開示の一態様に係る通信方法は、端末が、基地局を起動又はスリープさせる信号を送信した後、前記起動又は前記スリープに関する応答信号を受信し、前記応答信号に基づいて、上り信号の送信を決定する。
以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。
(実施の形態)
<無線通信システム>
図1は、実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、5G NRに従った無線通信システムであり、Next Generation-Radio Access Network20(以下、NG-RAN20)と、端末200(以下、UE(User Equipment)200とも記載する)と、を含む。
<無線通信システム>
図1は、実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、5G NRに従った無線通信システムであり、Next Generation-Radio Access Network20(以下、NG-RAN20)と、端末200(以下、UE(User Equipment)200とも記載する)と、を含む。
なお、無線通信システム10は、Beyond 5G、5G Evolution、又は6Gと呼ばれる方式に従った無線通信システムであってもよい。
NG-RAN20は、基地局100A(以下、gNB100Aとも記載する)及び基地局100B(以下、gNB100Bとも記載する)を含む。なお、gNB100A、gNB100B等のそれぞれを区別する必要がない場合には、gNB又は基地局100と総称される。また、gNB及びUEの数は、図1に示す例に限定されない。
NG-RAN20は、実際には複数のNG-RANノード、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、図示せず)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。また、以下において、gNBは、ネットワーク(NW)で読み替えられてもよい。
gNB100A及びgNB100Bは、一例として、5Gに従った基地局であり、5Gに従った無線通信をUE200と実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC:Component Carrier)を束ねて用いるキャリアアグリゲーション(CA:Carrier Aggregation)、及び、UEと2つのNG-RANノードそれぞれとの間において通信を行うデュアルコネクティビティ(DC:Dual Connectivity)等に対応してよい。
また、無線通信システム10は、複数の周波数レンジ(FR)に対応してよい。
図2は、無線通信システム10において用いられるFRの一例を示す図である。図2に示すように、無線通信システム10は、FR1及びFR2に対応してよい。各FRの周波数帯は、例えば、以下のとおりである。
・FR1:410MHz~7.125GHz
・FR2:24.25GHz~52.6GHz
・FR1:410MHz~7.125GHz
・FR2:24.25GHz~52.6GHz
FR1では、15kHz、30kHz、又は、60kHzのサブキャリア間隔(SCS:Sub-Carrier Spacing)が用いられ、5~100MHzの帯域幅(BW:Bandwidth)が用いられてもよい。FR2は、FR1よりも高周波数であり、60kHz又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
なお、SCSは、ニューメロロジー(numerology)と解釈されてもよい。ニューメロロジーは、3GPP TS 38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。
さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯に対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応してもよい。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。52.6GHzを超える帯域を用いる場合、より大きなSCSを有するCP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing)/DFT-S-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)を適用してもよい。
図3は、無線通信システム10において用いられる無線フレーム(システムフレーム)、サブフレーム及びスロットの構成例を示す図である。図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。ただし、SCSは、図3に示す間隔(周波数)に限定されない。例えば、SCSとして、480kHz、960kHz等が用いられてもよい。
また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28又は56シンボル等であってもよい)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間等と呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP:Bandwidth Part)等と呼ばれてもよい。
gNB100は、下りリンク(DL:Downlink)信号として、gNB100の省電力を実現するための制御情報、設定情報等をUE200へ送信する。
また、例えば、gNB100は、上りリンク(UL:Uplink)信号として、UE200から、gNB100の省電力を実現するための制御情報、データ信号、UE200の処理能力に関する情報(端末能力(情報);例えば、UE capability)等を受信する。
DL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)が含まれてよく、制御チャネルには、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)が含まれてよい。例えば、gNB100は、UE200に対して、PDCCHを用いて制御情報を送信し、PDSCHを用いてDLのデータ信号を送信する。なお、PDSCHは下りリンク共有チャネルの一例であり、PDCCHは下りリンク制御チャネルの一例である。PDCCHは、PDCCHにおいて送信される下りリンク制御情報(DCI:Downlink Control Information)、制御情報等で読み替えられてもよい。
DL信号に含まれる参照信号には、例えば、例えば、DMRS(Demodulation Reference Signal)、PTRS(Phase Tracking Reference Signal)、CSI-RS(Channel State Information - Reference Signal)、SRS(Sounding Reference Signal)及び位置情報用のPRS(Positioning Reference Signal)のうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、DLのデータ信号の復調に使用され、PDSCHを用いて送信される。
UE200は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の、無線通信機能を備えた通信装置である。
UE200は、DLで制御信号又はデータ信号をgNB100から受信し、ULで制御信号又はデータ信号をgNB100へ送信することで、無線通信システム10により提供される各種通信サービスを利用する。また、UE200は、gNB100から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。
例えば、UE200は、DL信号として、gNB100から、gNB100の省電力を実現するための制御情報、設定情報等を受信する。
また、例えば、UE200は、UL信号として、gNB100の省電力を実現するための制御情報、データ信号、UE200の端末能力情報等をgNB100へ送信する。
UL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)が含まれてよく、制御チャネルには、物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)が含まれてよい。例えば、UE200は、PUCCHを用いて制御情報を送信し、PUSCHを用いてULのデータ信号を送信する。なお、PUSCHは上りリンク共有チャネルの一例であり、PUCCHは上りリンク制御チャネルの一例である。共有チャネルはデータチャネルと呼ばれてもよい。なお、PUSCH又はPUCCHは、PUSCH又はPUCCHにおいて送信される上りリンク制御情報(UCI:Uplink Control Information)、制御情報等で読み替えられてもよい。
UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRSRS、及び、位置情報用のPRSのうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、ULのデータ信号の復調に使用され、PUSCHを用いて送信される。
<端末の省電力>
端末における省電力化の技術として、例えば、間欠受信(DRX:Discontinuous Reception)及び接続モードDRX(CDRX:Connected Mode Discontinuous Reception)がある。
端末における省電力化の技術として、例えば、間欠受信(DRX:Discontinuous Reception)及び接続モードDRX(CDRX:Connected Mode Discontinuous Reception)がある。
図4は、3GPPのRelease 15におけるCDRXについて説明するための図である。3GPPのRelease 15におけるCDRX動作では、端末は、DRXサイクル(DRX cycle)におけるDRXオン期間(DRX on-duration)でアクティブ(Active)であり、DRXオン期間内のPDCCHをモニタする。
図5は、3GPPのRelease 16におけるWUSについて説明するための図である。3GPPのRelease 16において、PDCCHベースのWUS(PDCCH-based WUS)は、端末が次のDRXオン期間内でPDCCHをモニタするかどうかを1つ以上の端末に指示することができる。
PS-RNTI(Power Saving - Radio Network Temporary Identifier)によってCRC(Cyclic Redundancy Check)がスクランブルされたDCIフォーマット2_6が、PDCCHベースのWUSとして使用され、DCP(DCI with CRC scrambled by PS-RNTI)とも呼ばれる。
WUSのモニタ機会(monitoring occasion)は、端末能力に基づくDRXオン期間からのオフセット(offset)によって設定される。WUSが「非アクティブ(Not Active)」を指示している場合(すなわち、端末にデータの送受信が無い場合)、端末は、DRXオン期間内のモニタをスキップして、スリープモードに直ちに移行することができる。
また、例えば検出ミス等によって、PDCCHベースのWUSが検出されない場合のために、デフォルトの端末動作が設定されてもよい。
DCIフォーマット2_6は、「アクティブ」又は「非アクティブ」を示す1ビットの起動指示(情報)(1-bit Wake-up Indication)を含む(例えば、3GPP TS38.212 V16.9.0(2022-03) Sec.7.3.1.3.7)。なお、アクティブは、有効、有効化、起動等で読み替えられてもよく、非アクティブは、無効、無効化、スリープ等で読み替えられてもよい。
<RACH設定(RACH configuration)>
Physical Random Access Channel(PRACH)の送信に関連して、例えば、3GPP TS 38.211 V16.9.0(2022-03)に、PRACHを送信するためのRO設定(RACH Occasion configuration)が規定されている。
Physical Random Access Channel(PRACH)の送信に関連して、例えば、3GPP TS 38.211 V16.9.0(2022-03)に、PRACHを送信するためのRO設定(RACH Occasion configuration)が規定されている。
端末は、例えば、Radio Resource Control(RRC)、及び/又は、System Information Block(SIB)といった上位レイヤシグナリングのパラメータ(上位レイヤパラメータ)と、3GPP TS 38.211 V16.9.0(2022-03)のTable 6.3.3.2-2/3/4とに基づいて、ROを設定する。なお、RO設定は、ランダムアクセス設定と称されてもよい。RACHは、PRACHと称されてもよい。
図6は、RO設定に関するパラメータ例を示した図である(詳細は、例えば、3GPP TS38.331 V16.8.0(2022-03) Sec.6.3.2を参照)。図7は、RO設定のためのテーブルの一部を示した図である(例えば、3GPP TS38.211 V16.9.0(2022-03) Table 6.3.3.2-2を参照)。
端末は、例えば、図6に示すRACH-ConfigGeneric information element(IE)に含まれるパラメータ“prach-ConfigurationIndex”に基づいて、図7に示すテーブルの“PRACH Configuration Index”を参照する。端末は、参照するテーブルの“PRACH Configuration Index”に対応する各種情報を取得し、ROの時間領域(time domain)におけるリソース(機会)を決定する。例えば、端末は、PRACHプリアンブルを送信するサブフレーム番号、PRACHプリアンブルの送信を開始する開始シンボル、及び、PRACHプリアンブルを送信するスロット数といった情報を取得し、ROの時間領域におけるリソースを決定する。
また、端末は、例えば、図6に示すRACH-ConfigGenericに含まれるパラメータ“msg1-FDM”及び“msg1-FrequencyStart”に基づいて、ROの周波数領域(frequency domain)におけるリソース(機会)を決定する。例えば、端末は、パラメータ“msg1-FDM”及び“msg1-FrequencyStart”に基づいて、周波数領域におけるROの位置及び数(多重数)を決定する。
ランダムアクセスプリアンブルは、3GPP TS 38.211のテーブル6.3.3.2-2/3/4に従って、上位レイヤパラメータ“prach-ConfigurationIndex”によって与えられる時間リソースにおいてのみ送信される。また、ランダムアクセスプリアンブルは、FR1又はFR2であるか、及び、3GPP TS38.104 V16.11.0 (2022-03)において規定されるスペクトラムタイプに依存する。
また、ランダムアクセスプリアンブルは、上位レイヤパラメータ“msg1-FrequencyStart”によって指定された周波数リソースでのみ送信される。PRACH周波数リソースは、次の式(1)で示される。
ここで、式(1)のMは、上位レイヤパラメータ“msg1-FDM”に等しい。PRACH周波数リソースnRAは、初期アクセス中の初期アップリンク帯域幅パート(initial uplink bandwidth part)内で、最も低い周波数から昇順で番号が振られる。PRACH周波数リソースnRAは、初期アクセス中以外では、アクティブなアップリンク帯域幅パート内で、最も低い周波数から昇順で番号が振られる。
<BFRのためのRACH設定(RACH configuration for BFR)>
無線システムでは、Beam Failure Recovery(BFR)においてもRACHが設定できる。別言すれば、BFRにおいても、ROが設定される。
無線システムでは、Beam Failure Recovery(BFR)においてもRACHが設定できる。別言すれば、BFRにおいても、ROが設定される。
図8は、BFR設定に関するパラメータ例を示した図である(詳細は、例えば、3GPP TS38.331 V16.8.0(2022-03) Sec.6.3.2を参照)。図8に示すように、BeamFailureRecoveryConfig IEには、パラメータ“ra-OccasionList”が含まれる。端末は、例えば、BFRのプロシージャにおいて、パラメータ“ra-OccasionList”に基づき、ROのリソース(機会)を決定する。
<BSR>
端末は、バッファ内のデータ量(基地局に送信するデータ量)に関する情報を、基地局に報告する(Buffer Status Report(BSR))。BSRは、例えば、図9に示すイベントが生じたとき、トリガされる。別言すれば、端末は、図9に示すイベントが生じたとき、BFRを基地局に送信する。なお、イベントは、例えば、3GPP TS38.321 V16.8.0(2022-03) Sec.5.4.5において規定される。
端末は、バッファ内のデータ量(基地局に送信するデータ量)に関する情報を、基地局に報告する(Buffer Status Report(BSR))。BSRは、例えば、図9に示すイベントが生じたとき、トリガされる。別言すれば、端末は、図9に示すイベントが生じたとき、BFRを基地局に送信する。なお、イベントは、例えば、3GPP TS38.321 V16.8.0(2022-03) Sec.5.4.5において規定される。
<基地局の省電力の議論状況>
上記した通り、3GPPのRelease 18では、基地局の省電力について検討されている(例えば、非特許文献2)。例えば、基地局の送信及び受信の両方の観点からネットワークエネルギー削減を向上させるための、基地局側及び端末側での技術が検討されている。
上記した通り、3GPPのRelease 18では、基地局の省電力について検討されている(例えば、非特許文献2)。例えば、基地局の送信及び受信の両方の観点からネットワークエネルギー削減を向上させるための、基地局側及び端末側での技術が検討されている。
例えば、端末からの潜在的なサポート/フィードバックと潜在的な端末支援情報とを用いて、時間ドメイン、周波数ドメイン、空間ドメイン及び電力ドメインでの1つ以上のネットワークエネルギー削減技術において、より効率的な動作を動的及び/又は半静的に実現し、送信及び/又は受信のより細かい粒度の適応を実現する方法が検討されている。
<検討>
現在、カーボンニュートラル及びSDGs(Sustainable Development Goals)を達成するために、基地局の消費電力を削減することの重要性が高まっている。また、5Gは、新しい機能及び性能向上を実現するが、基地局及び端末のエネルギー要件は厳しくなる。
現在、カーボンニュートラル及びSDGs(Sustainable Development Goals)を達成するために、基地局の消費電力を削減することの重要性が高まっている。また、5Gは、新しい機能及び性能向上を実現するが、基地局及び端末のエネルギー要件は厳しくなる。
上記の通り、端末については、省電力に関する標準化が進められているが、基地局の消費電力を削減する技術は標準化されていないという問題がある。
例えば、基地局における消費電力の削減に関して、どのように基地局の間欠受信を制御するのかといった具体的な内容については、規定がされていない。そこで本開示では、3つの提案を行う。
<提案1>
基地局がUL受信のために、ウェイクアップすべきか、スリープすべきかを示すメカニズムが、gNBウェイクアップ信号(gNB Wake-up signal:g-WUS又はgWUS)として導入される。本メカニズムは、RACH based g-WUSと称されてもよい。
基地局がUL受信のために、ウェイクアップすべきか、スリープすべきかを示すメカニズムが、gNBウェイクアップ信号(gNB Wake-up signal:g-WUS又はgWUS)として導入される。本メカニズムは、RACH based g-WUSと称されてもよい。
g-WUSは、端末から基地局に送信される。基地局は、例えば、g-WUSに基づいて、受信ユニット(RX unit)を動的に有効化/無効化する(enable/disable)。
なお、基地局の受信ユニットとは、端末からの信号を受信するための装置又はデバイス、UL受信のための装置又はデバイス等を意味してよい。また、基地局の受信ユニットを有効化するとは、基地局の受信ユニットをスリープ状態から起動(ウェイクアップ)させる(起動状態にする)ことを意味してよく、基地局の受信ユニットを無効化するとは、基地局の受信ユニットを起動状態からスリープさせる(スリープ状態、休止状態又は休眠状態にする)ことを意味してよい。
・g-WUSによる指示情報
基地局が、次のCDRXの機会(next CDRX occasion)にウェイクアップする必要があるかどうかは、PRACHによって示される。別言すれば、g-WUSとして、PRACHが用いられてもよい。
基地局が、次のCDRXの機会(next CDRX occasion)にウェイクアップする必要があるかどうかは、PRACHによって示される。別言すれば、g-WUSとして、PRACHが用いられてもよい。
基地局は、gNB CDRXがイネーブルされた場合、提案1が適用されてもよい。別言すれば、基地局は、CDRX動作中において、提案1が適用されてもよい。
例えば、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にウェイクアップする(提案1-オプション1)。例えば、基地局は、CDRX動作中において、端末からPRACHを受信した場合、PRACHを受信した後のCDRXの機会において、受信ユニットを有効化する。
また、例えば、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にスリープする(提案1-オプション2)。例えば、基地局は、CDRX動作中において、端末からPRACHを受信した場合、PRACHを受信した後のCDRXの機会において、受信ユニットを無効化する。
なお、次のCDRXの機会は、次のdrx-LongCycleにおけるdrx-onDurationTimerであってもよい。又は、次のCDRXの機会は、次のdrx-shortCycleにおけるdrx-onDurationTimerであってもよい。drx-LongCycle、drx-shortCycle、及び、drx-onDurationTimerといったgNB CDRXを定義するパラメータ(gNB CDRXパラメータと称することがある)については、図12において説明する。
<提案1-オプション1:ウェイクアップ指示>
上記したように、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にウェイクアップする。
上記したように、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にウェイクアップする。
基地局は、少なくとも1つの端末から、ウェイクアップの指示を受信した場合、次のCRXの機会において、drx-onDurationTimer又はdrx-InactivityTimer又はdrx-RetransmissionTimerULが実行されるときに、ULチャネルを受信する。
例えば、基地局は、少なくとも1つの端末から、PRACHを受信した場合、次のCRXの機会において、drx-onDurationTimer又はdrx-InactivityTimer又はdrx-RetransmissionTimerULが実行されるときに、ULチャネルを受信する。
・端末動作
端末は、基地局が次のCDRXの機会においてウェイクアップするために、ROにおいてPRACHを送信する。
端末は、基地局が次のCDRXの機会においてウェイクアップするために、ROにおいてPRACHを送信する。
例えば、端末は、上記の<RACH設定>で説明した方法と同様の方法で、ROを決定し、ランダムアクセスプリアンブル(Msg1)といったPRACHを送信する。また、端末は、上記の<BFRのためのRACH設定>で説明した方法と同様の方法で、ROを決定し、ランダムアクセスプリアンブルといったPRACHを送信する。基地局は、例えば、端末と同様の方法で、端末におけるROを決定し、g-WUSの受信機会(g-WUSを受信するタイミング)を決定する。
端末は、端末が基地局のウェイクアップを指示する間だけ、ULチャネルを送信する。
図10は、提案1-オプション1の動作例を説明する図である。例えば、端末は、図10の矢印A10aに示すg-WUSのためのROにおいて、PRACHを送信しない。基地局は、矢印A10aに示すg-WUSのためのROにおいて、PRACHを受信しない。
基地局は、矢印A10aに示すg-WUSのためのROにおいて、PRACHを受信しなかった場合、矢印A10bに示すdrx-onDurationにおいて、ウェイクアップしない。別言すれば、基地局は、矢印A10bに示すdrx-onDurationにおいて、受信ユニットを起動せず、ULチャネル(UL信号)をモニタしない。
例えば、端末は、図10の矢印A10cに示すg-WUSのためのROにおいて、PRACHを送信する。基地局は、矢印A10cに示すg-WUSのためのROにおいて、PRACHを受信する。
基地局は、矢印A10cに示すg-WUSのためのROにおいて、PRACHを受信した場合、矢印A10dに示すdrx-onDurationにおいて、ウェイクアップする。別言すれば、基地局は、矢印A10dに示すdrx-onDurationにおいて、受信ユニットを起動し、ULチャネルをモニタする。
以上の動作によって、基地局は、消費電力を削減できる。
<提案1-オプション2:スリープ指示>
上記したように、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にスリープする。
上記したように、基地局は、CDRX動作中において、端末からPRACHを受信した場合、次のCDRXの機会にスリープする。
基地局は、少なくとも1つの端末から、スリープの指示を受信した場合、次のCRXの機会において、gNB CDRXパラメータに関係なく(例えば、drx-onDurationTimer又はdrx-InactivityTimer又はdrx-RetransmissionTimerULが実行されるか否かに関係なく)、ULチャネルを受信しない。
例えば、基地局は、少なくとも1つの端末から、PRACHを受信した場合、次のCRXの機会において、gNB CDRXパラメータに関係なく、ULチャネルを受信しない。
・端末動作
端末は、基地局が次のCDRXの機会においてスリープするために、ROにおいてPRACHを送信する。
端末は、基地局が次のCDRXの機会においてスリープするために、ROにおいてPRACHを送信する。
例えば、端末は、上記の<RACH設定>で説明した方法と同様の方法で、ROを決定し、ランダムアクセスプリアンブル(Msg1)といったPRACHを送信する。また、端末は、上記の<BFRのためのRACH設定>で説明した方法と同様の方法で、ROを決定し、ランダムアクセスプリアンブルといったPRACHを送信する。基地局は、例えば、端末と同様の方法で、端末におけるROを決定し、g-WUSの受信機会(g-WUSを受信するタイミング)を決定する。
端末は、端末が基地局のウェイクアップを指示する間において、ULチャネルを送信しない。
図11は、提案1-オプション2の動作例を説明する図である。例えば、端末は、図11の矢印A11aに示すg-WUSのためのROにおいて、PRACHを送信しない。基地局は、矢印A11aに示すg-WUSのためのROにおいて、PRACHを受信しない。
基地局は、矢印A11aに示すg-WUSのためのROにおいて、PRACHを受信しなかった場合、矢印A11bに示すdrx-onDurationにおいて、ウェイクアップする。別言すれば、基地局は、矢印A11bに示すdrx-onDurationにおいて、受信ユニットを起動し、ULチャネルをモニタする。
例えば、端末は、図11の矢印A11cに示すg-WUSのためのROにおいて、PRACHを送信する。基地局は、矢印A11cに示すg-WUSのためのROにおいて、PRACHを受信する。
基地局は、矢印A11cに示すg-WUSのためのROにおいて、PRACHを受信した場合、矢印A11dに示すdrx-onDurationにおいて、ウェイクアップしない。別言すれば、基地局は、矢印A11dに示すdrx-onDurationにおいて、受信ユニットを起動せず、ULチャネルをモニタしない。
以上の動作によって、基地局は、消費電力を削減できる。
<提案1-オプション3>
基地局のセルには、例えば、複数の端末が在圏する場合がある。すなわち、基地局の配下に複数の端末が属する(存在)する場合がある。
基地局のセルには、例えば、複数の端末が在圏する場合がある。すなわち、基地局の配下に複数の端末が属する(存在)する場合がある。
<提案1-オプション3.1>
基地局のセルに在圏する全ての端末が、基地局をウェイクアップするか否かの情報を送信してもよい。すなわち、基地局のセルに在圏する全ての端末が、g-WUSとしてのPRACHを送信してもよい。
基地局のセルに在圏する全ての端末が、基地局をウェイクアップするか否かの情報を送信してもよい。すなわち、基地局のセルに在圏する全ての端末が、g-WUSとしてのPRACHを送信してもよい。
<提案1-オプション3.2>
基地局のセルに在圏する一部の端末が、基地局をウェイクアップするか否かの情報を送信してもよい。すなわち、基地局のセルに在圏する一部の端末が、g-WUSとしてのPRACHを送信してもよい。
基地局のセルに在圏する一部の端末が、基地局をウェイクアップするか否かの情報を送信してもよい。すなわち、基地局のセルに在圏する一部の端末が、g-WUSとしてのPRACHを送信してもよい。
基地局のセルに在圏する一部の端末が、g-WUSを送信する場合、g-WUSを送信する一部の端末は、例えば、DCIによって決定されてもよい。g-WUSを送信する一部の端末は、例えば、RRCによって決定されてもよい。g-WUSを送信する一部の端末は、例えば、MAC CEによって決定されてもよい。
<提案1-その他>
基地局は、端末からのPRACHの送信の有無に基づいて、ウェイクアップするか否かの決定を行ったが、これに限られない。例えば、基地局は、PRACHにおいて送信される情報に基づいて、ウェイクアップするか否かの決定を行ってもよい。例えば、基地局は、PRACHにおいて送信される1ビットの情報に基づいて、ウェイクアップするか否かの決定を行ってもよい。1ビットの情報は、例えば、ランダムアクセスプリアンブルに含まれてもよい。
基地局は、端末からのPRACHの送信の有無に基づいて、ウェイクアップするか否かの決定を行ったが、これに限られない。例えば、基地局は、PRACHにおいて送信される情報に基づいて、ウェイクアップするか否かの決定を行ってもよい。例えば、基地局は、PRACHにおいて送信される1ビットの情報に基づいて、ウェイクアップするか否かの決定を行ってもよい。1ビットの情報は、例えば、ランダムアクセスプリアンブルに含まれてもよい。
端末及び基地局は、提案1-オプション1の動作、及び、提案1-オプション2の動作を切り替えてもよい。端末は、例えば、DCIによって、提案1-オプション1の動作、及び、提案1-オプション2の動作を切り替えてもよい。端末は、例えば、RRCによって、提案1-オプション1の動作、及び、提案1-オプション2の動作を切り替えてもよい。端末は、例えば、MAC CEによって、提案1-オプション1の動作、及び、提案1-オプション2の動作を切り替えてもよい。
<gNB CDRXを定義するパラメータ>
図12は、gNB CDRXを定義するパラメータを説明する図である。基地局CDRXは、以下にリストされている複数のパラメータによって定義されてもよい。なお、パラメータの単位は、シンボル、スロット、サブフレーム、ミリ秒または秒などであってもよい。単位は、各パラメータの間で異なっていても同じでもよい。
図12は、gNB CDRXを定義するパラメータを説明する図である。基地局CDRXは、以下にリストされている複数のパラメータによって定義されてもよい。なお、パラメータの単位は、シンボル、スロット、サブフレーム、ミリ秒または秒などであってもよい。単位は、各パラメータの間で異なっていても同じでもよい。
・drx-onDurationTimer:DRXサイクルの開始時の期間
・drx-SlotOffset:drx-onDurationTimerを開始する前の遅延
・drx-InactivityTimer:アップリンク受信機会の後、端末がアップリンク送信を実行する期間
・drx-LongCycleStartOffset:長いDRXサイクルと短いDRXサイクルがいつ開始するかを定義する、長いDRXサイクル(すなわち、drx-LongCycle)及びdrx-StartOffset
・drx-ShortCycle:短いDRXサイクル
・drx-ShortCycleTimer:基地局が短いDRXサイクルに従う期間
・drx-RetransmissionTimerUL:アップリンク再送信の許可が受信されるまでの最大期間
・drx-HARQ-RTT-TimerUL:アップリンク再送信許可が期待されるまでの最小期間
・drx-SlotOffset:drx-onDurationTimerを開始する前の遅延
・drx-InactivityTimer:アップリンク受信機会の後、端末がアップリンク送信を実行する期間
・drx-LongCycleStartOffset:長いDRXサイクルと短いDRXサイクルがいつ開始するかを定義する、長いDRXサイクル(すなわち、drx-LongCycle)及びdrx-StartOffset
・drx-ShortCycle:短いDRXサイクル
・drx-ShortCycleTimer:基地局が短いDRXサイクルに従う期間
・drx-RetransmissionTimerUL:アップリンク再送信の許可が受信されるまでの最大期間
・drx-HARQ-RTT-TimerUL:アップリンク再送信許可が期待されるまでの最小期間
基地局の間欠受信が有効になっている場合、drx-onDurationTimer、drx-InactivityTimer、又は、drx-RetransmissionTimerULが実行されているときに、基地局は、端末から送信されたアップリンクチャネルを受信してもよい。
上記のパラメータは、例えば、RRCといった上位レイヤシグナルによって通知されてもよい。上記のパラメータは、例えば、MAC CEといった上位レイヤシグナルによって通知されてもよい。上記のパラメータは、例えば、DCIといった下位レイヤシグナルによって通知されてもよい。
<提案2>
提案2では、g-WUSにおけるPRACH設定(PRACH configuration)について説明する。g-WUSにおけるRO/PRACHは、時間領域リソースと周波数領域リソースとによって設定されてもよい。
提案2では、g-WUSにおけるPRACH設定(PRACH configuration)について説明する。g-WUSにおけるRO/PRACHは、時間領域リソースと周波数領域リソースとによって設定されてもよい。
・RO/PRACHの時間領域リソース
RO(ROの時間領域リソース)は、ROの開始時間(starting time)と期間(duration)とを含む特定のテーブルと、上位レイヤパラメータと、の両方又は一方によって決定される。
RO(ROの時間領域リソース)は、ROの開始時間(starting time)と期間(duration)とを含む特定のテーブルと、上位レイヤパラメータと、の両方又は一方によって決定される。
・・RO/PRACHの時間領域リソースの例1(テーブルと上位レイヤとのコンビネーション)
ROは、テーブルと、上位レイヤパラメータとの両方によって決定される。ROの開始時間と期間との候補を含むテーブルは、仕様(specification)のインデックスで定義される。開始時間と期間との候補の1つは、例えば、prach-ConfigurationIndexといったRRC設定によるインデックスで指示される。
ROは、テーブルと、上位レイヤパラメータとの両方によって決定される。ROの開始時間と期間との候補を含むテーブルは、仕様(specification)のインデックスで定義される。開始時間と期間との候補の1つは、例えば、prach-ConfigurationIndexといったRRC設定によるインデックスで指示される。
例えば、テーブルは、ROの開始時間と期間とを含み、また、ROの開始時間と期間とに対応付けられたインデックを含む。テーブルは、例えば、3GPP TS 38.211 V16.9.0(2022-03)のTable 6.3.3.2-2/3/4と同じ、又は、類似したものであってもよい。インデックは、例えば、prach-ConfigurationIndexであってもよい。prach-ConfigurationIndexは、例えば、“RACH-ConfigGeneric”に含まれるパラメータであってもよい。
端末は、例えば、RRCシグナリングによって通知されたパラメータ“prach-ConfigurationIndex”によって、テーブルを参照し、ROの開始時間と期間とを取得する。端末は、取得したROの開始時間と期間とに基づいて、ROの時間領域におけるリソースを決定する。
・・RO/PRACHの時間領域リソースの例2(上位レイヤパラメータのみ)
ROは、テーブルを用いずに、上位レイヤパラメータのみによって決定される。例えば、ROの開始時間と期間とは、1又は2以上のRRCパラメータによって、一緒に又は個別に設定される。
ROは、テーブルを用いずに、上位レイヤパラメータのみによって決定される。例えば、ROの開始時間と期間とは、1又は2以上のRRCパラメータによって、一緒に又は個別に設定される。
例えば、開始時間と期間とが一緒に示されるパラメータ(上位レイヤパラメータ)“StartandDuration”が用意される。1つのパラメータ“StartandDuration”には、ROの開始時間と期間とが含まれる。端末は、例えば、基地局から1つのパラメータ“StartandDuration”を受信すると、受信した1つのパラメータ“StartandDuration”から、ROの時間領域におけるリソースの、開示時間と期間とを決定する。
また、例えば、開始時間と期間とが個別に示されるパラメータ(上位レイヤパラメータ)“Start”と、パラメータ“Duration”とが用意される。パラメータ“Start”は、ROの開始時間を示し、パラメータ“Duration”は、ROの期間を示す。端末は、例えば、基地局から受信したパラメータ“Start”に基づいて、ROの時間領域におけるリソースの開始時間を決定し、基地局から受信したパラメータ“Duration”に基づいて、ROの時間領域におけるリソースの期間を決定する。
・・RO/PRACHの時間領域リソースの例3(新しい上位レイヤパラメータ)
上位レイヤパラメータは、g-WUSのPRACH専用の新しいパラメータに含められてもよい(関連付けられてもよい)。例えば、上位レイヤパラメータは、“RACH-ConfigWUS”といった、g-WUS用のパラメータ(IE)に含められてもよい。
上位レイヤパラメータは、g-WUSのPRACH専用の新しいパラメータに含められてもよい(関連付けられてもよい)。例えば、上位レイヤパラメータは、“RACH-ConfigWUS”といった、g-WUS用のパラメータ(IE)に含められてもよい。
より具体的には、パラメータ“RACH-ConfigWUS”に、パラメータ“prach-ConfigurationIndex”が含められてもよい。端末は、基地局から受信したパラメータ“RACH-ConfigWUS”に含まれるパラメータ“prach-ConfigurationIndex”に基づいて、上記の“RO/PRACHの時間領域リソースの例1”で説明したテーブルを参照してもよい。
また、パラメータ“RACH-ConfigWUS”に、ROの開始時間と期間とを示すパラメータが含まれてもよい。例えば、パラメータ“RACH-ConfigWUS”には、上記の“RO/PRACHの時間領域リソースの例2”で説明したパラメータ“StartandDuration”が含まれてもよい。また、パラメータ“RACH-ConfigWUS”には、上記の“RO/PRACHの時間領域リソースの例2”で説明したパラメータ“Start”と、パラメータ“Duration”とが含まれてもよい。
・・RO/PRACHの時間領域リソースの例4(g-WUSのためのPRACHの送信タイミング)
PRACHは、次のオプション1,2で説明するタイミングで送信されてもよい。
PRACHは、次のオプション1,2で説明するタイミングで送信されてもよい。
<提案2-オプション1>
PRACHは、各ROにおいて送信される。例えば、端末は、ROごとにPRACHを送信する。
PRACHは、各ROにおいて送信される。例えば、端末は、ROごとにPRACHを送信する。
<提案2-オプション2>
PRACHは、ULチャネルが送信される準備ができている場合のみ送信される。“送信される準備”の条件は、例えば、3GPP TS38.321 V16.8.0(2022-03) Sec.5.4.5におけるBSRレポーティングと同じであってもよい。
PRACHは、ULチャネルが送信される準備ができている場合のみ送信される。“送信される準備”の条件は、例えば、3GPP TS38.321 V16.8.0(2022-03) Sec.5.4.5におけるBSRレポーティングと同じであってもよい。
例えば、端末は、図9に示したイベントが生じたとき、次に利用可能なRO(例えば、イベントが生じた後のRO)において、PRACHを送信する。次に利用可能なROは、ROの最初のスロットにおける最初のシンボルであってもよい。これにより、端末は、通信遅延を抑制できる。なお、次に利用可能なROは、ROの最初のスロットにおける最初のシンボルに限られない。例えば、次に利用可能なROは、ROの2番目以降のスロットにおける2番目以降のシンボルであってもよい。
・RO/PRACHの周波数領域リソース
g-WUSのPRACHの周波数リソースは、PRACHプリアンブル及び/又は上位レイヤパラメータによって決定される。
g-WUSのPRACHの周波数リソースは、PRACHプリアンブル及び/又は上位レイヤパラメータによって決定される。
例えば、1つのタイムスロット内における各ROの帯域幅は、PRACHプリアンブルによって決定される。例えば、LRA=139の場合、1つのROのPRBは、12である。LRAは、例えば、PRACHプリアンブルの長さを規定するパラメータである。
例えば、1つのタイムスロット内におけるROの数(多重数)は、上位レイヤパラメータによって決定される。上位レイヤパラメータは、例えば、msg1-FDMである。
開始周波数位置(Starting frequency location)は、上位レイヤパラメータによって決定される。上位レイヤパラメータは、例えば、msg1-FrequencyStartである。msg1-FrequencyStartは、例えば、或るPRBからのオフセットを示す。
上位レイヤパラメータは、g-WUSのPRACH専用の新しいパラメータに含められてもよい(関連付けられてもよい)。例えば、上位レイヤパラメータは、“RACH-ConfigWUS”といった、g-WUS用のパラメータ(IE)に含められてもよい。
より具体的には、パラメータ“RACH-ConfigWUS”に、パラメータ“msg1-FDM”と、パラメータ“msg1-FrequencyStart”とが含められてもよい。端末は、基地局から受信したパラメータ“RACH-ConfigWUS”に含まれるパラメータ“msg1-FDM”と、パラメータ“msg1-FrequencyStart”とに基づいて、ROの周波数領域リソースを決定してもよい。また、パラメータ“RACH-ConfigWUS”には、PRACHプリアンブルの長さを規定するパラメータ“LRA”が含まれてもよい。
・RA Radio Network Temporary Identifier(RA-RNTI)
RA-RNTIは、上位レイヤパラメータによって設定されてもよいし、設定されなくてもよい。例えば、BFRにおいては、RA-RNTIは、上位レイヤパラメータによって設定されない。
RA-RNTIは、上位レイヤパラメータによって設定されてもよいし、設定されなくてもよい。例えば、BFRにおいては、RA-RNTIは、上位レイヤパラメータによって設定されない。
RA-RNTIは、ROに基づくMAC CEによって設定されてもよいし、設定されなくてもよい。RA-RNTIは、MAC CEによって設定される場合、下記の式(2)に基づいて決定されてもよい(例えば、3GPP TS38.321 V16.8.0(2022-03) Sec.5.1.3を参照)。
・g-WUSのためのPRACHにおけるその他設定
powerRampingStep、preambleReceivedTargetPower、及びpreambleTransMaxといった、その他のPRACH関連設定は、上位レイヤパラメータで設定される。powerRampingStepは、ランダムアクセスプリアンブルのランプアップされる送信電力のステップを示す。preambleReceivedTargetPowerは、ランダムアクセスプリアンブルの目標受信電力を示す。preambleTransMaxは、ランダムアクセスプリアンブルの最大送信回数を示す。
powerRampingStep、preambleReceivedTargetPower、及びpreambleTransMaxといった、その他のPRACH関連設定は、上位レイヤパラメータで設定される。powerRampingStepは、ランダムアクセスプリアンブルのランプアップされる送信電力のステップを示す。preambleReceivedTargetPowerは、ランダムアクセスプリアンブルの目標受信電力を示す。preambleTransMaxは、ランダムアクセスプリアンブルの最大送信回数を示す。
g-WUSのためのPRACHに関連するこれらのパラメータは、例えば、RRCシグナリングによって、基地局から端末に通知されてもよい。例えば、これらのパラメータは、パラメータ(IE)“RACH-ConfigGeneric”、“RACH-ConfigCommon”、及び、新しいパラメータ“RACH-ConfigCommon”のいずれか1つ又は複数において通知されてもよい。
g-WUSのためのPRACHに、優先度が設定されてもよい。優先度の設定は、上位レイヤパラメータによる優先ランダムアクセスプロシージャ(3GPP TS38.321 V16.8.0(2022-03) Sec.5.1.1を参照)が適用されてもよい。
例えば、PRACHに上位層パラメータ(優先度)が設定され、パワーランピングステップが設定されている場合、優先度が設定されたPRACH(prioritized PRACH)には、優先PRACHのために設定されたパワーランピングステップが適用される。優先度を設定するパラメータは、新しいパラメータ“RACH-ConfigCommon”に含まれてもよい。
<提案3>
提案3は、RACH based g-WUSの応答(Msg2)に関する提案である。基地局は、RACH based g-WUSを受信した場合、端末に応答信号を送信する。例えば、基地局は、Random Access Response(RAR)を端末送信する。提案3では、次のオプション1,2が提案される。
提案3は、RACH based g-WUSの応答(Msg2)に関する提案である。基地局は、RACH based g-WUSを受信した場合、端末に応答信号を送信する。例えば、基地局は、Random Access Response(RAR)を端末送信する。提案3では、次のオプション1,2が提案される。
<提案3-オプション1>
RARは、Cell-RNTI(C-RNTI)、Modulation Coding Scheme-C-RNTI(MCS-C-RNTI)、及び、新しいRNTIの1つ又は複数に基づいてスクランブルされる。新しいRNTIは、Energy Saving-RNTI(ES-RNTI)と称されてもよい。提案3-オプション1では、RA-RNTIが提供(設定)されないと想定する(提案2の“・RA Radio Network Temporary Identifier(RA-RNTI)”を参照)。
RARは、Cell-RNTI(C-RNTI)、Modulation Coding Scheme-C-RNTI(MCS-C-RNTI)、及び、新しいRNTIの1つ又は複数に基づいてスクランブルされる。新しいRNTIは、Energy Saving-RNTI(ES-RNTI)と称されてもよい。提案3-オプション1では、RA-RNTIが提供(設定)されないと想定する(提案2の“・RA Radio Network Temporary Identifier(RA-RNTI)”を参照)。
端末がRACH based g-WUSの応答(g-WUS RARと称することがある)を監視するサーチスペースが、上位レイヤパラメータによって設定される。端末は、設定されたサーチスペースにおいて、g-WUS RAR以外のPDCCH(DCI)を監視してもよいし、監視しなくてもよい。
端末は、サーチスペースに関連付けられたcontrol resource set(CORESET)において、PDCCHをモニタするための別のサーチスペースセットが提供されることを想定してもよいし、想定しなくてもよい。
g-WUS RARのモニタリング機会として、次のオプション1.1,1.2が提案される。
<提案3-オプション1.1>
g-WUS RARのモニタリング機会が、タイムウィンドウに基づく。タイムウィンドウは、g-WUS RAR受信のための上位レイヤパラメータで設定される。例えば、端末は、上位レイヤパラメータで設定されたタイムウィンドウ(区間)において、g-WUS RARをモニタする。
g-WUS RARのモニタリング機会が、タイムウィンドウに基づく。タイムウィンドウは、g-WUS RAR受信のための上位レイヤパラメータで設定される。例えば、端末は、上位レイヤパラメータで設定されたタイムウィンドウ(区間)において、g-WUS RARをモニタする。
タイムウィンドウは、例えば、Yから始まるXシンボル及び/又はスロットとしてもよい。ここで、Yは、専用スロット(dedicated slot)及び/又は専用シンボル(dedicated symbol)のIDであってもよい。Yは、例えば、n+Zスロット及び/又はシンボルであってもよい。nは、端末がg-WUSのためのPRACHを送信するスロットであり、Zは、4といった整数値であってもよい。上位レイヤパラメータは、RACH-ConfigCommon及びg-WUSのためのPRACH専用の新しいパラメータであってもよい。
図13は、提案3-オプション1.1を説明する図である。図13に示す点線枠13aは、g-WUSのためのROを示す。点線枠13bは、g-WUS RARをモニタするためのg-WUS RAR機会(タイムウィンドウ)を示す。
端末は、点線枠A13bに示すg-WUS RAR機会において、基地局からのg-WUS RARをモニタする。点線枠A13bに示すg-WUS RAR機会は、例えば、RRCシグナリングといった上位レイヤパラメータによって設定される。
例えば、g-WUS RAR機会は、ROの最後のシンボル及び/又スロット(例えばY)から、Zシンボル及び/又はスロットにおいて開始する。Zは、例えば、4といった整数値である。g-WUS RAR機会は、Xシンボル及び/又はスロットの間、続く。X、Y、Zは、上位レイヤパラメータとして、端末に通知される。
<提案3-オプション1.2>
g-WUS RARのモニタリング機会が、上記のサーチスペースによって設定される。RACH based g-WUS(RO)からのオフセットによる監視機会の期間及び/又は周期及び/又は開始時間は、g-WUS RARサーチスペースの上位レイヤパラメータによって提供(設定)されてもよい。
g-WUS RARのモニタリング機会が、上記のサーチスペースによって設定される。RACH based g-WUS(RO)からのオフセットによる監視機会の期間及び/又は周期及び/又は開始時間は、g-WUS RARサーチスペースの上位レイヤパラメータによって提供(設定)されてもよい。
図14は、提案3-オプション1.2を説明する図である。図13に示す点線枠14aは、g-WUSのためのROを示す。点線枠14bは、g-WUS RARをモニタするためのg-WUS RAR機会を示す。
端末は、点線枠A14bに示すg-WUS RAR機会において、基地局からのg-WUS RARをモニタする。点線枠A14bに示すg-WUS RAR機会は、例えば、RRCシグナリングといった上位レイヤパラメータによって設定される。
例えば、g-WUS RAR機会は、RACH based g-WUS(RO)からのオフセットによる監視機会の開始時間と、期間と、周期とによって設定される。RACH based g-WUS(RO)からのオフセット、期間、及び、周期は、g-WUS RARサーチスペースの上位レイヤパラメータによって、端末に通知される。
以上、g-WUS RARのモニタリング機会を説明した。
端末は、提案3-オプション1.1及び提案3-オプション1.2で説明したg-WUS RAR機会において、C-RNTI、MCS-C-RNTI、及びES-RNTIの1つ又は複数によってスクランブルされたPDCCHの受信を試みる。
端末は、例えば、提案1-オプション1に基づき、基地局に対し、ウェイクアップを指示した場合であって、g-WUS RAR機会において、C-RNTI、MCS-C-RNTI、及びES-RNTIの1つ又は複数によってスクランブルされたPDCCHを受信した場合、次のCDRXの機会において、基地局がウェイクアップすることを識別(決定)する。そして、端末は、次のCDRXの機会において、ULチャネルを送信する。
それ以外の場合、端末は、例えば、提案1-オプション1に基づき、基地局に対し、ウェイクアップを指示した場合であって、g-WUS RAR機会において、C-RNTI、MCS-C-RNTI、及びES-RNTIの1つ又は複数によってスクランブルされたPDCCHを受信しなかった場合、次のCDRXの機会において、基地局がウェイクアップしないことを識別する。そして、端末は、次のCDRXの機会において、ULチャネルを送信しない。
以上の動作により、端末は、基地局にウェイクアップを指示したにも関わらず、基地局がウェイクアップしない場合、ULチャネルを送信しない。これにより、端末の無駄なULチャネル送信が省略され、端末の消費電力が抑制される。
端末は、例えば、提案1-オプション2に基づき、基地局に対し、スリープを指示した場合であって、g-WUS RAR機会において、C-RNTI、MCS-C-RNTI、及びES-RNTIの1つ又は複数によってスクランブルされたPDCCHを受信した場合、次のCDRXの機会において、基地局がスリープすることを識別(決定)する。そして、端末は、次のCDRXの機会において、ULチャネルを送信しない。
それ以外の場合、端末は、例えば、提案1-オプション2に基づき、基地局に対し、スリープを指示した場合であって、g-WUS RAR機会において、C-RNTI、MCS-C-RNTI、及びES-RNTIの1つ又は複数によってスクランブルされたPDCCHを受信しなかった場合、次のCDRXの機会において、基地局がウェイクアップすることを識別する。端末は、次のCDRXの機会において、ULチャネルを送信しなくてもよいし、ULチャネルを送信してもよい。
<提案3-オプション2>
RARは、RA-RNTIによってスクランブルされる。提案3-オプション2では、RA-RNTIが提供(設定)されると想定する。
RARは、RA-RNTIによってスクランブルされる。提案3-オプション2では、RA-RNTIが提供(設定)されると想定する。
端末がg-WUS RARを監視するサーチスペースは、PDCCH-ConfigCommonのra-SearchSpaceによって設定されるType1-PDCCH CSSセットである。CSSは、Common Search Spaceの略である。
なお、NRでは、CSS用に、いくつかのタイプのサーチスペースが設定される。CSSは、用途(例えば、データ種別)毎に複数のタイプがある。端末は、CSSにおいて用途毎に異なるRNTIを用いてマスクされているPDCCHを検出する。
g-WUS RARのモニタリング機会として、次のオプション2.1,2.2が提案される。
<提案3-オプション2.1>
g-WUS RARのモニタリング機会が、タイムウィンドウに基づく。タイムウィンドウは、g-WUS RAR受信のための上位レイヤパラメータで設定される。例えば、端末は、上位レイヤパラメータで設定されたタイムウィンドウ(区間)において、g-WUS RARをモニタする。
g-WUS RARのモニタリング機会が、タイムウィンドウに基づく。タイムウィンドウは、g-WUS RAR受信のための上位レイヤパラメータで設定される。例えば、端末は、上位レイヤパラメータで設定されたタイムウィンドウ(区間)において、g-WUS RARをモニタする。
タイムウィンドウは、例えば、Yから始まるXシンボル及び/又はスロットとしてもよい(例えば、図13を参照)。ここで、Yは、専用スロット(dedicated slot)及び/又は専用シンボル(dedicated symbol)のIDであってもよい。Yは、例えば、n+Zスロット及び/又はシンボルであってもよい。nは、端末がg-WUSのためのPRACHを送信するスロットであり、Zは、例えば、4といった整数値であってもよい。上位レイヤパラメータは、RACH-ConfigCommon及びg-WUSのためのPRACH専用の新しいパラメータであってもよい。
<提案3-オプション2.2>
g-WUS RARのモニタリング機会が、上記のサーチスペースによって設定される。RACH based g-WUS(RO)からのオフセットによる監視機会の期間及び/又は周期及び/又は開始時間は(例えば、図14を参照)、g-WUS RARサーチスペースの上位レイヤパラメータによって提供(設定)されてもよい。
g-WUS RARのモニタリング機会が、上記のサーチスペースによって設定される。RACH based g-WUS(RO)からのオフセットによる監視機会の期間及び/又は周期及び/又は開始時間は(例えば、図14を参照)、g-WUS RARサーチスペースの上位レイヤパラメータによって提供(設定)されてもよい。
以上、g-WUS RARのモニタリング機会を説明した。
端末は、提案3-オプション2.1及び提案3-オプション2.2で説明したg-WUS RAR機会において、RA-RNTIによってスクランブルされたPDCCHの受信を試みる。
端末は、例えば、提案1-オプション1に基づき、基地局に対し、ウェイクアップを指示した場合であって、g-WUS RAR機会において、RA-RNTIによってスクランブルされたPDCCHを受信した場合、次のCDRXの機会において、基地局がウェイクアップすることを識別(決定)する。そして、端末は、次のCDRXの機会において、ULチャネルを送信する。
それ以外の場合、端末は、例えば、提案1-オプション1に基づき、基地局に対し、ウェイクアップを指示した場合であって、g-WUS RAR機会において、RA-RNTIによってスクランブルされたPDCCHを受信しなかった場合、次のCDRXの機会において、基地局がウェイクアップしないことを識別する。そして、端末は、次のCDRXの機会において、ULチャネルを送信しない。
以上の動作により、端末は、基地局にウェイクアップを指示したにも関わらず、基地局がウェイクアップしない場合、ULチャネルを送信しない。これにより、端末の無駄なULチャネル送信が省略され、端末の消費電力が抑制される。
端末は、例えば、提案1-オプション2に基づき、基地局に対し、スリープを指示した場合であって、g-WUS RAR機会において、RA-RNTIによってスクランブルされたPDCCHを受信した場合、次のCDRXの機会において、基地局がスリープすることを識別(決定)する。そして、端末は、次のCDRXの機会において、ULチャネルを送信しない。
それ以外の場合、端末は、例えば、提案1-オプション2に基づき、基地局に対し、スリープを指示した場合であって、g-WUS RAR機会において、RA-RNTIによってスクランブルされたPDCCHを受信しなかった場合、次のCDRXの機会において、基地局がウェイクアップすることを識別する。端末は、次のCDRXの機会において、ULチャネルを送信しなくてもよいし、ULチャネルを送信してもよい。
<変形例>
上記の各提案及び各オプションのいずれがサポートされるかは、RRCによる設定、MAC CE又はUCIによる指示、又は、端末能力に依存してもよい。サポートされる各提案及び各オプションは、1つであってもよいし、複数であってもよい。
上記の各提案及び各オプションのいずれがサポートされるかは、RRCによる設定、MAC CE又はUCIによる指示、又は、端末能力に依存してもよい。サポートされる各提案及び各オプションは、1つであってもよいし、複数であってもよい。
g-WUSによって有効化及び無効化される受信ユニットは、ポート、パネル、ビーム、又は、キャリアごとに設定されてもよい。
<端末能力>
端末は、以下の端末能力を、UE capabilityとして基地局に報告してもよい。
・RACH based g-WUSをサポートするか否か
端末は、以下の端末能力を、UE capabilityとして基地局に報告してもよい。
・RACH based g-WUSをサポートするか否か
基地局は、以下の基地局能力を、gNB capabilityとして端末に報告してもよい。
・RACH based g-WUSをサポートするか否か
・RACH based g-WUSをサポートするか否か
<基地局の構成>
図15は、実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局100は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局100は、端末200(図16参照)と無線によって通信する。
図15は、実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局100は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局100は、端末200(図16参照)と無線によって通信する。
送信部101は、下りリンク(downlink(DL))信号を端末200へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。
DL信号には、例えば、下りリンクのデータ信号、及び、制御情報(例えば、Downlink Control Information(DCI))が含まれてよい。また、DL信号には、端末200の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)が含まれてよい。また、DL信号には、上位レイヤの制御情報(例えば、Radio Resource Control(RRC)の制御情報)が含まれてもよい。また、DL信号には、参照信号が含まれてもよい。
DL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PDSCH(Physical Downlink Shared Channel)が含まれ、制御チャネルには、PDCCH(Physical Downlink Control Channel)が含まれてよい。例えば、基地局100は、端末200に対して、PDCCHを用いて、制御情報を送信し、PDSCHを用いて、下りリンクのデータ信号を送信する。
DL信号に含まれる参照信号には、例えば、復調用参照信号(Demodulation Reference Signal(DMRS))、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)のいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、下りリンクのデータ信号の復調のために使用され、PDSCHを用いて送信される。
受信部102は、端末200から送信された上りリンク(uplink(UL))信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。
制御部103は、送信部101の送信処理、及び、受信部102の受信処理を含む、基地局100の通信動作を制御する。
例えば、制御部103は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータ及び制御情報等を上位レイヤへ出力する。
例えば、制御部103は、端末200から受信した信号(例えば、データ及び制御情報等)及び/又は上位レイヤから取得したデータ及び制御情報等に基づいて、DL信号の送受信に用いるリソース(又はチャネル)及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末200に送信する制御情報に含まれてよい。
制御部103は、UL信号の送受信に用いるリソースの割り当ての一例として、PUCCHリソースを設定する。PUCCHセルタイミングパターン等のPUCCHの設定に関する情報(PUCCHの設定情報)は、RRCによって端末200に通知されてよい。
ここで、受信部102は、端末200が基地局100にアクセスするためのアクセス信号を受信する。制御部103は、受信部102が受信したアクセス信号に基づいて、上り信号を受信するための受信ユニットを起動又はスリープする。
なお、アクセス信号は、例えば、RACH、RACH信号、初期アクセス信号、Msg1、又は、Msg1信号と称されてもよい。上り信号は、ULチャネル、又は、ULチャネル信号と称されてもよい。受信ユニットは、受信部102に含まれてもよい(受信部102の機能の一部であってもよい)。
受信部102は、端末200がアクセス信号を送信することができる送信機会において、アクセス信号を受信してもよい。送信機会は、例えば、ROであってもよい。
制御部103は、アクセス信号を受信した場合、受信ユニットを起動し、アクセス信号を受信しなかった場合、受信ユニットをスリープしてもよい。
制御部103は、アクセス信号を受信した場合、受信ユニットをスリープし、アクセス信号を受信しなかった場合、受信ユニットを起動してもよい。
ここで、送信部101は、受信部102が基地局100を起動又はスリープさせる信号を端末200から受信した後、起動又はスリープに関する応答信号を、端末200に送信する。制御部103は、応答信号の端末200への送信に基づいて、端末200からの上り信号の受信を決定する。例えば、制御部103は、応答信号を端末200に送信した場合に、端末200からの上り信号の受信を決定する。
制御部103は、端末200が応答信号の受信を監視するための受信機会を決定するためのパラメータを、端末200に送信してもよい。応答信号の受信機会は、例えば、g-WUS RAR機会であってもよい。
制御部103は、端末200から、基地局100(受信ユニット)を起動させる信号を受信した場合、応答信号を端末200に送信してもよい。制御部103は、端末200が応答信号の受信を監視するための受信機会において、応答信号を端末200に送信してもよい。
また、制御部103は、応答信号を端末200に送信した場合、次の受信ユニットの起動において、端末200からの上り信号を受信してもよい。
<端末の構成>
図16は、実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末200は、例えば、基地局100と無線によって通信する。
図16は、実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末200は、例えば、基地局100と無線によって通信する。
受信部201は、基地局100から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。
送信部202は、UL信号を基地局100へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。
UL信号には、例えば、上りリンクのデータ信号、及び、制御情報(例えば、UCI)が含まれてよい。例えば、端末200の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてもよい。
UL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PUSCH(Physical Uplink Shared Channel)が含まれ、制御チャネルには、PUCCH(Physical Uplink Control Channel)が含まれる。例えば、端末200は、基地局100から、PUCCHを用いて、制御情報を受信し、PUSCHを用いて、上りリンクのデータ信号を送信する。
UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRS、及び、PRSのいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、上りリンクのデータ信号の復調のために使用され、上りリンクチャネル(例えば、PUSCH)を用いて送信される。
制御部203は、受信部201における受信処理、及び、送信部202における送信処理を含む、端末200の通信動作を制御する。
例えば、制御部203は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータ及び制御情報等を上位レイヤへ出力する。
例えば、制御部203は、基地局100へフィードバックする情報の送信を制御する。基地局100へフィードバックする情報は、例えば、HARQ-ACKを含んでもよいし、チャネル状態情(Channel. State Information(CSI))を含んでもよいし、スケジューリング要求(Scheduling Request(SR))を含んでもよい。基地局100へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCHのリソースにおいて送信される。
制御部203は、基地局100から受信した設定情報(例えば、RRCによって通知されたPUCCHセルタイミングパターン等の設定情報及び/又はDCI)に基づいて、PUCCHリソースを設定する。制御部203は、基地局100へフィードバックする情報の送信に使用するPUCCHリソースを決定する。送信部202は、制御部203の制御により、制御部203が決定したPUCCHリソースにおいて、基地局100へフィードバックする情報を送信する。
なお、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、RACH(Random Access Channel)及びPBCH(Physical Broadcast Channel)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI)の送信に用いられてよい。
ここで、制御部203は、基地局100を起動又はスリープさせるために、基地局100にアクセスするためのアクセス信号の送信を決定する。送信部202は、アクセス信号を送信した後、基地局100に上り信号を送信する。
制御部203は、所定の条件において、アクセス信号の送信を決定してもよい。例えば、制御部203は、BSRのレポート条件に基づいて、アクセス信号の送信を決定してもよい。
制御部203は、アクセス信号を送信することができる送信機会において、アクセス信号を送信してもよい。
制御部203は、基地局100を起動する場合、送信機会においてアクセス信号を基地局100に送信し、基地局100をスリープする場合、送信機会においてアクセス信号を送信しなくてもよい。
ここで、受信部201は、送信部202が基地局100を起動又はスリープさせる信号を送信した後、起動又はスリープに関する応答信号を、基地局100から受信する。制御部203は、応答信号の受信に基づいて、上り信号の送信を決定する。
制御部203は、基地局100から受信したパラメータに基づいて、応答信号の受信を監視するための受信機会を決定してもよい。
制御部203は、基地局100を起動させる信号を送信した後、受信機会において、応答信号を受信した場合、上り信号を基地局100に送信し、受信機会において、応答信号を受信しなかった場合、上り信号を送信しなくてもよい。
以上、本開示について説明した。なお、上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
<ハードウェア構成等>
上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103及び制御部203などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、端末200の制御部203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201、及び送信部202などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
<情報の通知、シグナリング>
情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<適用システム>
本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<処理手順等>
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<基地局の動作>
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<入出力の方向>
情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<入出力された情報等の扱い>
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<判定方法>
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<態様のバリエーション等>
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
<ソフトウェア>
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
<情報、信号>
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
<システム、ネットワーク>
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<パラメータ、チャネルの名称>
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
<基地局>
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
<移動局>
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
<基地局/移動局>
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の実施の形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。
図18に車両2001の構成例を示す。図18に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
情報サービス部12は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021~2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021~2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい
通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
<用語の意味、解釈>
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
<参照信号>
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<「に基づいて」の意味>
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<「第1の」、「第2の」>
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<手段>
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<オープン形式>
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
<最大送信電力>
本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<冠詞>
本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<「異なる」>
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示の一態様は、無線通信システムに有用である。
10 無線通信システム
100 基地局
200 端末
101,202 送信部
102、201 受信部
103,203 制御部
100 基地局
200 端末
101,202 送信部
102、201 受信部
103,203 制御部
Claims (5)
- 基地局を起動又はスリープさせる信号を送信した後、前記起動又は前記スリープに関する応答信号を受信する受信部と、
前記応答信号に基づいて、上り信号の送信を決定する制御部と、
を有する端末。 - 前記信号は、前記基地局にアクセスするためのアクセス信号である、
請求項1に記載の端末。 - 前記制御部は、前記基地局から受信したパラメータに基づいて、前記応答信号の受信を監視するための受信機会を決定する、
請求項1に記載の端末。 - 前記制御部は、前記基地局を起動させる信号を送信した後、前記受信機会において、前記応答信号を受信した場合、前記上り信号を送信し、前記応答信号を受信しなかった場合、前記上り信号を送信しない、
請求項3に記載の端末。 - 端末が、
基地局を起動又はスリープさせる信号を送信した後、前記起動又は前記スリープに関する応答信号を受信し、
前記応答信号に基づいて、上り信号の送信を決定する、
通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018642 WO2023203785A1 (ja) | 2022-04-22 | 2022-04-22 | 端末及び通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/018642 WO2023203785A1 (ja) | 2022-04-22 | 2022-04-22 | 端末及び通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023203785A1 true WO2023203785A1 (ja) | 2023-10-26 |
Family
ID=88419492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/018642 WO2023203785A1 (ja) | 2022-04-22 | 2022-04-22 | 端末及び通信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023203785A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099513A1 (ja) * | 2010-02-12 | 2011-08-18 | 三菱電機株式会社 | 移動体通信システム |
WO2021067921A1 (en) * | 2019-10-03 | 2021-04-08 | Ofinno, Llc | Discontinuous reception for a two-step random access procedure |
-
2022
- 2022-04-22 WO PCT/JP2022/018642 patent/WO2023203785A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099513A1 (ja) * | 2010-02-12 | 2011-08-18 | 三菱電機株式会社 | 移動体通信システム |
WO2021067921A1 (en) * | 2019-10-03 | 2021-04-08 | Ofinno, Llc | Discontinuous reception for a two-step random access procedure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023203785A1 (ja) | 端末及び通信方法 | |
WO2023203786A1 (ja) | 基地局及び通信方法 | |
WO2023203703A1 (ja) | 端末及び通信方法 | |
WO2023209832A1 (ja) | 端末及び通信方法 | |
WO2023209908A1 (ja) | 端末、及び基地局 | |
WO2023209907A1 (ja) | 端末、及び基地局 | |
WO2023223737A1 (ja) | 端末、基地局及び通信方法 | |
WO2023209906A1 (ja) | 端末、及び基地局 | |
WO2023157096A1 (ja) | 基地局、端末及び通信方法 | |
WO2023157095A1 (ja) | 端末、基地局及び通信方法 | |
WO2023157097A1 (ja) | 端末、基地局及び通信方法 | |
WO2023203623A1 (ja) | 端末、基地局及び通信方法 | |
WO2024053114A1 (ja) | 端末及び通信方法 | |
WO2023209831A1 (ja) | 端末及び基地局 | |
WO2023209829A1 (ja) | 端末及び基地局 | |
WO2023157194A1 (ja) | 基地局、端末及び通信方法 | |
WO2024043295A1 (ja) | 端末、基地局及び通信方法 | |
WO2024009510A1 (ja) | 端末、基地局及び通信方法 | |
WO2023242965A1 (ja) | 端末、基地局、及び通信方法 | |
WO2024057463A1 (ja) | 端末及び通信方法 | |
WO2024004109A1 (ja) | 端末及び通信方法 | |
WO2024218887A1 (ja) | 端末、基地局及び通信方法 | |
WO2024181487A1 (ja) | 端末、基地局、及び通信方法 | |
WO2024095491A1 (ja) | 端末、基地局及び通信方法 | |
WO2024043086A1 (ja) | 端末、基地局及び通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22938584 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024516063 Country of ref document: JP Kind code of ref document: A |