WO2023203733A1 - Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device - Google Patents

Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2023203733A1
WO2023203733A1 PCT/JP2022/018491 JP2022018491W WO2023203733A1 WO 2023203733 A1 WO2023203733 A1 WO 2023203733A1 JP 2022018491 W JP2022018491 W JP 2022018491W WO 2023203733 A1 WO2023203733 A1 WO 2023203733A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical system
system unit
rotation
laser beam
Prior art date
Application number
PCT/JP2022/018491
Other languages
French (fr)
Japanese (ja)
Inventor
博也 田中
芳広 山口
直之 小林
Original Assignee
Jswアクティナシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアクティナシステム株式会社 filed Critical Jswアクティナシステム株式会社
Priority to PCT/JP2022/018491 priority Critical patent/WO2023203733A1/en
Publication of WO2023203733A1 publication Critical patent/WO2023203733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser irradiation apparatus, a laser irradiation method, and a semiconductor device manufacturing method.
  • Patent Document 1 discloses a laser annealing device using an excimer laser.
  • a conveying unit conveys the substrate while the floating unit levitates the substrate. Then, a line-shaped laser beam is irradiated onto the substrate being transported.
  • excimer laser light sources are expensive, it is difficult to reduce the cost of parts of the device. Therefore, it is desirable to use a light source other than an excimer laser light source.
  • Semiconductor lasers are inexpensive, but are continuous wave (CW) lasers. If the CW laser light is pulsed by a modulator, the output will be reduced. Therefore, many light sources are required, making it difficult to reduce costs.
  • a laser irradiation device includes a semiconductor laser light source that generates a laser beam with a wavelength of 250 nm or more and a wavelength of 500 nm or less, a rotation stage that rotates a semiconductor substrate, and a semiconductor laser beam on the rotation stage.
  • the apparatus includes an optical system unit that guides the laser beam to the substrate, and a moving mechanism that moves the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
  • the laser irradiation method includes the steps of (A1) generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source; (A3) moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotation direction of the rotation stage when viewed from above; We are prepared.
  • a method for manufacturing a semiconductor device includes (S1) using a semiconductor laser light source to generate laser light with a wavelength of 250 nm or more and 500 nm or less, and (S2) using an optical system unit to generate the laser light. (S3) moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above; , is equipped with.
  • a highly productive laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method can be provided.
  • FIG. 1 is a side view schematically showing a laser irradiation device according to a first embodiment
  • FIG. 1 is a top view schematically showing a laser irradiation device according to a first embodiment
  • FIG. 3 is a schematic diagram showing a spatial distribution of beams and an overlapping portion of laser light.
  • FIG. 3 is a side view schematically showing a laser irradiation device according to a second embodiment.
  • FIG. 3 is a top view schematically showing a laser irradiation device according to a second embodiment.
  • FIG. 7 is a side view schematically showing a laser irradiation device according to a third embodiment.
  • FIG. 7 is a top view schematically showing a laser irradiation device according to a third embodiment.
  • 1 is a cross-sectional view showing the configuration of a semiconductor device manufactured by a laser irradiation process.
  • Embodiment 1 The laser irradiation apparatus according to the present embodiment performs annealing treatment by irradiating an object to be processed (also referred to as a workpiece) with a laser beam.
  • a laser irradiation device performs activation processing on a semiconductor layer provided on a substrate by heating the substrate with laser light.
  • the object to be processed is a semiconductor substrate for forming a semiconductor device.
  • the semiconductor substrate is a silicon wafer or a compound semiconductor wafer.
  • power semiconductor devices such as vertical MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors) are formed on the semiconductor substrate.
  • the object to be processed is a semiconductor wafer on which chips of power semiconductor devices are formed.
  • the semiconductor substrate has a semiconductor layer (also referred to as an impurity injection layer) into which impurities are implanted.
  • the semiconductor layer can be activated by the laser irradiation device irradiating the semiconductor layer with laser light.
  • the method according to this embodiment is not limited to power semiconductors.
  • the method according to this embodiment can be applied to the activation of a semiconductor layer of a semiconductor chip such as an image sensor and its manufacturing method.
  • the laser irradiation device may be a device for performing dehydrogenation annealing treatment.
  • the dehydrogenation annealing process a film provided on the substrate is subjected to a dehydrogenation annealing process by heating the substrate with laser light.
  • the object to be processed is a film-coated substrate on which a silicon film is formed.
  • the laser irradiation device uses a blue semiconductor laser light source as a laser light source.
  • the laser irradiation device performs annealing treatment for activation by irradiating the object to be processed with blue laser light from a semiconductor laser light source.
  • the laser light is not limited to blue laser light, but may be laser light with a wavelength of 250 nm or more and 500 nm or less.
  • the laser irradiation device irradiates the object to be processed with blue laser light from a semiconductor laser light source. Thereby, activation treatment or dehydrogenation treatment can be performed.
  • the laser light is not limited to blue laser light, and may be laser light with a wavelength of 500 nm or less.
  • FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1.
  • FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1.
  • FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1.
  • FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1.
  • FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1.
  • FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1.
  • the Z direction is a vertical direction, and is a direction perpendicular to the main surface of the object 16 to be processed.
  • the X direction is the direction in which the optical system unit 30 moves. By moving the optical system unit 30, the irradiation position of the laser beam 15 changes in the X direction.
  • the Y direction is a direction perpendicular to the Z direction and the X direction.
  • the laser irradiation device 1 includes a chamber 10, an optical system unit 30, a laser light source 35, an optical fiber 36, an optical system stage 40, a linear motion mechanism 41, a guide mechanism 43, a pedestal 60, a rotation It includes a motor 61, a measuring device 70, and the like.
  • FIG. 1 shows a state in which the optical system unit 30 has been moved above the chamber 10
  • FIG. 2 shows a state in which the optical system unit 30 has been retracted from above the chamber 10.
  • the pedestal 60 supports the chamber 10, the optical system stage 40, and the like.
  • the chamber 10 is fixed on a pedestal 60.
  • the chamber 10 accommodates the object to be processed 16, the stage 11, and the like.
  • the stage 11 is connected to a rotary motor 61.
  • the rotary motor 61 is fixed to the pedestal 60.
  • Rotary motor 61 rotates stage 11 around rotation axis AX.
  • the rotation axis AX is parallel to the Z direction.
  • a suction plate 12 that suctions the object to be processed 16 is fixed on the stage 11.
  • the suction plate 12 includes, for example, a vacuum chuck or an electrostatic chuck, and suctions and holds the object 16 to be processed.
  • the object to be processed 16 is transferred into the chamber 10 and placed on the suction plate 12 .
  • the rotary motor 61 rotates the stage 11 with the suction plate 12 suctioning and holding the object 16 to be processed. As a result, the irradiation position of the laser beam 15 on the object to be processed 16 changes.
  • FIG. 2 As shown in FIG. 2, four suction plates 12 are attached to the stage 11. Therefore, four objects 16 to be processed are placed on the stage 11.
  • the plurality of objects to be processed 16 are arranged rotationally symmetrically about the rotation axis AX. Specifically, the centers of the four objects to be processed 16 are arranged on a circle centered on the rotation axis AX.
  • the plurality of objects 16 to be processed can be irradiated with laser light almost equally.
  • the four objects 16 to be processed are arranged at equal intervals of 90° in the rotational direction (circumferential direction) of the stage 11.
  • the number of objects to be processed 16 placed on the stage 11 is not limited to four. In other words, the stage 11 only needs to be able to hold one or more objects 16 to be processed.
  • the object to be processed 16 is a substantially circular semiconductor wafer. Note that an orientation flat, a notch, etc. may be formed in the semiconductor wafer.
  • the object to be processed 16 includes a substrate 16a and a semiconductor layer 16b formed on the substrate 16a.
  • the substrate 16a is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer (SiC, GaN). Of course, the material of the substrate 16a is not particularly limited.
  • the substrate 16a is opaque to light at the laser wavelength.
  • the semiconductor layer 16b is an impurity-implanted layer into which impurities such as phosphorus (P) and boron (B) are implanted.
  • impurities such as phosphorus (P) and boron (B) are implanted.
  • the laser irradiation device 1 serves as an annealing device for activating the semiconductor layer 16b.
  • the semiconductor layer 16b is shown in FIG. 1, other films or layers may be formed.
  • a thin film of copper or aluminum may be formed to serve as wiring or the like.
  • an insulating layer such as a silicon oxide film may be formed on the substrate 16a.
  • a window 14 is provided on the top surface of the chamber 10.
  • the window portion 14 is made of a transparent material such as glass or resin.
  • the laser beam 15 is transmitted through the window portion 14 .
  • the window portion 14 is formed into a rectangular shape whose longitudinal direction is in the X direction when viewed from above. That is, the window portion 14 is formed along the moving direction of the optical system stage 40, which will be described later. Further, the window portion 14 is arranged along the radial direction orthogonal to the rotation direction of the stage 11.
  • the optical system stage 40 supports the optical system unit 30. As shown in FIG. 1, the optical system stage 40 can hold the optical system unit 30 above the stage 11. Specifically, the optical system stage 40 is attached to a pedestal 60 via a guide mechanism 43.
  • the guide mechanism 43 includes a linear guide 43a and a slider 43b.
  • the linear guide 43a has a guide rail, a guide groove, etc. extending along the X direction.
  • the slider 43b slides in the X direction along the linear guide 43a.
  • the linear guide 43a is fixed to the frame 60.
  • the slider 43b is fixed to the optical system stage 40.
  • the linear guide 43a slidably holds the slider 43b.
  • a linear motion mechanism 41 is provided between the optical system stage 40 and the pedestal 60.
  • the linear motion mechanism 41 includes an actuator such as a linear motor.
  • the optical system stage 40 moves in the X direction as the linear motion mechanism 41 expands and contracts. That is, the optical system stage 40 is guided by the guide mechanism 43 and moves along the X direction. By moving the optical system stage 40, the position of the optical system unit 30 changes in the X direction.
  • the linear motion mechanism 41 drives the optical system stage 40, so that the optical system unit 30 moves in the X direction. Therefore, the linear motion mechanism 41 and the guide mechanism 43 serve as a moving mechanism for moving the optical system unit 30.
  • the moving mechanism for moving the optical system unit 30 is not limited to the above configuration, and a known method can be used.
  • the moving mechanism may include a ball screw, a cylinder, or the like.
  • a rack 38 for holding the laser light source 35 is provided separately from the pedestal 60.
  • the laser light source 35 is fixed to a rack 38.
  • the laser light source 35 generates laser light 15 for annealing the object 16 to be processed.
  • the laser light source 35 is a BLD (Blue Laser Diode) that generates blue laser light with a center wavelength of 450 nm. That is, the laser light source 35 is a blue semiconductor laser light source.
  • the laser beam 15 is a continuous wave (CW) laser beam.
  • the laser irradiation device 1 may modulate the laser beam 15 into pulsed laser beam using a modulator or the like.
  • the laser light source 35 is coupled to an optical fiber 36.
  • Laser light 15 is guided to optical system unit 30 via optical fiber 36.
  • one end of the optical fiber 36 is connected to the laser light source 35 via the optical connector 32.
  • the other end of the optical fiber 36 is connected to the optical system unit 30 via the optical connector 32.
  • the optical connector 32 is attached to the top surface of the optical system unit 30. Therefore, the laser beam 15 emitted from the optical connector 32 travels in the -Z direction.
  • the optical system unit 30 includes a housing 310, a lens 301, a lens 302, and a beam shaping section 307.
  • Lens 301, lens 302, and beam shaping section 307 are fixed to housing 310.
  • the optical system unit 30 may be provided with optical elements other than the lens 301, the lens 302, and the beam shaping section 307.
  • the laser light from the optical fiber 36 enters the beam shaping section 307.
  • a beam shaping section 307 shapes the spot shape of the laser beam 15.
  • the beam shaping section 307 has a beam shaping mechanism such as a slit.
  • the beam may be shaped by the arrangement of the output ends of the optical fibers 36.
  • the laser beam 15 may be a Gaussian beam or a top flat beam.
  • the spatial intensity distribution of the laser beam 15 on the object to be processed 16 is a Gaussian distribution.
  • the spatial intensity distribution of the laser beam 15 on the object to be processed 16 is a top flat distribution.
  • the beam shaping section 307 may include a beam homogenizer for making the spatial intensity distribution uniform.
  • the beam shaping section 307 may include a beam homogenizer for achieving a top flat distribution.
  • the beam homogenizer has an optical element such as a fly's eye lens.
  • the beam shaping unit 307 forms a top flat beam with a flat distribution along the X direction on the object to be processed 16.
  • the beam spot shape on the object to be processed 16 may be a line beam having a longitudinal direction and a transverse direction.
  • the spot shape on the object to be processed 16 can have the X direction as the longitudinal direction and the Y direction as the lateral direction.
  • the spot size in the longitudinal direction can be about 1 mm
  • the spot size in the X direction can be 0.2 mm.
  • the beam shaping unit 307 can shape the beam so that it becomes a top flat beam with a uniform intensity distribution in the X direction.
  • the beam shaping section 307 may shape a top flat beam with a uniform intensity distribution in the Y direction. Note that the beam spot shape and its spatial distribution on the object to be processed 16 will be described later.
  • the laser beam shaped by the beam shaping section 307 enters the lens 301.
  • Laser light 15 focused by lens 301 enters lens 302 .
  • the optical axes of the lenses 301 and 302 are parallel to the Z direction.
  • the object to be processed 16 is irradiated with laser light 15 from the lens 302 .
  • the lens 302 focuses the laser beam 15 onto the object to be processed 16 . Therefore, the laser beam 15 from the optical system unit 30 becomes a focused beam and is irradiated onto the object 16 to be processed.
  • Lens 302 may be a cylindrical lens. By doing so, the laser beam 15 can be made into a line beam that forms a line on the object 16 to be processed.
  • the lens 302 focuses the laser beam 15 onto the object to be processed 16 .
  • the optical system unit 30 is placed directly above the window section 14.
  • Laser light 15 from optical system unit 30 enters object to be processed 16 via window 14 .
  • the optical system unit 30 moves along the window section 14.
  • the optical system unit 30 irradiates the object to be processed 16 with laser light 15 from above.
  • the semiconductor layer 16b of the object to be processed 16 is annealed, and an activation process can be performed on the semiconductor layer 16b.
  • the stage 11 is a rotation stage having a rotation motor 61.
  • the stage 11 rotates around a rotation axis AX that is parallel to the Z axis. While the stage 11 is rotating, the optical system unit 30 moves in the X direction.
  • the direction in which the optical system unit 30 moves and the direction in which the stage 11 rotates intersect.
  • the moving direction of the optical system unit 30 is parallel to the radial direction of the stage 11.
  • the radial direction is a direction perpendicular to the rotation direction.
  • the entire object to be processed 16 can be irradiated with the laser beam 15 in a short time. Therefore, the object to be processed 16 can be irradiated with laser light at a high throughput, so productivity can be improved.
  • the position of the laser beam 15 changes in the circumferential direction.
  • the optical system unit 30 moves, the position of the laser beam 15 changes in the radial direction.
  • the trajectory on which the laser beam 15 is irradiated on the stage 11 is shown as an irradiation trajectory T1.
  • both ends of the irradiation position of the laser beam 15 in the X direction are shown as laser beams 15a and 15b.
  • the end of the irradiation position in the -X direction corresponds to the laser beam 15a
  • the end of the irradiation position in the +X direction corresponds to the laser beam 15b.
  • the laser beams 15a and 15b enter the object 16 through the window 14.
  • the optical system unit 30 moves the irradiation position of the laser beam 15 from the position indicated by the laser beam 15a to the position indicated by the laser beam 15b.
  • the irradiation position of the laser beam 15a is at one end of the object to be processed 16 on the side farthest from the rotation axis AX
  • the irradiation position of the laser beam 15b is at the other end of the object to be processed 16 on the side closest to the rotation axis AX.
  • the optical system unit 30 moves so that the irradiation position of the laser beam 15 changes from one end of the object to be processed 16 to the other end in the radial direction.
  • the movement range of the optical system unit 30 corresponds to the diameter of the object 16 to be processed. Thereby, the entire object to be processed 16 can be irradiated with the laser beam 15.
  • the optical system unit 30 moves in the X direction.
  • the optical system unit 30 moves from the outer peripheral end of the stage 11 toward the rotation axis AX.
  • the irradiation position of the laser beam 15 coincides with the position of the rotation axis AX.
  • the optical system unit 30 moves in the ⁇ X direction continuously or stepwise.
  • the locus of the laser beam 15 on the stage 11 becomes spiral. Therefore, the plurality of objects 16 to be processed can be uniformly irradiated with laser light.
  • the optical system unit 30 may reciprocate in the +X direction and the ⁇ X direction.
  • a measuring instrument 70 is provided on the +X side of the chamber 10.
  • the measuring device 70 has a photodetector such as a photodiode, and measures the beam profile of the laser beam 15. That is, the measuring instrument 70 measures the spatial distribution of the laser beam 15 in a cross section perpendicular to the optical axis, that is, in the XY plane.
  • the measuring instrument 70 has a plurality of pixels (photodetecting elements) arranged in a row or an array. It is preferable that the light receiving surface of the measuring instrument 70 be at the same height as the object to be processed 16. Thereby, the measuring instrument 70 can measure a beam profile equivalent to the beam profile on the object 16 to be processed.
  • the measuring device 70 has a plurality of pixels arranged along the X direction. Therefore, based on the measurement results of the measuring device 70, the uniformity of the laser beam spot in the longitudinal direction can be evaluated. In other words, the uniformity of the top flat distribution can be evaluated and a stable process becomes possible.
  • the measuring instrument 70 is placed outside the stage 11. Therefore, the measuring instrument 70 can measure the beam profile of the laser beam 15 before or after the laser irradiation process.
  • a blue semiconductor laser diode (BLD) is used as the laser light source 35.
  • Equipment costs can be suppressed.
  • BLD has low photon cost.
  • BLD has a long life, maintenance costs can be suppressed, and the laser irradiation device 1 with high productivity can be realized.
  • the laser beam 15 from the BLD has low coherence.
  • BLD beam homogenizer used in the beam shaping section 307 can be used.
  • a beam homogenizer uses a lens array or diffracted photons to split or superimpose beams to obtain a desired spatial distribution. Since the coherence is low, no interference fringes occur in the beam homogenizer.
  • BLD laser light does not generate speckles (interference fringes) even when guided through the optical fiber 36. Therefore, since laser light can be uniformly irradiated, a stable laser irradiation process can be realized. Therefore, it is possible to realize the laser irradiation device 1 with high productivity.
  • FIG. 3 is a schematic diagram for explaining the overlapping portion of the laser light in the top flat beam and the Gaussian beam.
  • spot 15-1 the spot of the laser beam on the first rotation of the stage 11 is shown as a spot 15-1
  • spot 15-2 the spot of the laser light on the second rotation of the stage 11 is shown as a spot 15-2.
  • Spot 15-2 has moved further to the ⁇ X side than spot 15-1.
  • the spots 15-1 and 15-2 on the object to be processed 16 are in the form of a line whose longitudinal direction is the X direction and whose transverse direction is the Y direction.
  • the region X1 where the laser light intensity I is uniform is long. Therefore, the proportion of overlapping portions between the first round and the second round can be reduced.
  • the length F1 of the overlapping portion can be shortened. In other words, since the moving distance of the stage 11 during one rotation can be increased, the moving speed of the optical system unit 30 can be increased.
  • the region X2 where the laser light intensity I is uniform is short. Therefore, the proportion of overlap between the first round and the second round becomes large. It is necessary to increase the length F2 of the overlapped portion. In other words, since the moving distance of the stage 11 during one rotation becomes short, it is difficult to increase the moving speed of the optical system unit 30.
  • the top flat beam even when almost the entire surface of the object to be processed 16 is irradiated with laser light, the number of times the beam spots are overlapped can be reduced. Thereby, the rotation speed and the movement speed can be increased, so that throughput can be improved and productivity can be improved.
  • the distance from the rotation axis AX to the irradiation position is the radius of rotation.
  • the rotation speed is constant, the irradiation time per unit length in the circumferential direction changes depending on the rotation radius. Therefore, it is preferable to change the moving speed of the optical system unit 30 depending on the position of the optical system unit 30 in the X direction. In other words, it is preferable that the smaller the radius of rotation, the faster the moving speed in the X direction.
  • the moving speed of the optical system unit 30 is the fastest at the irradiation position of the laser beam 15a, and the moving speed of the optical system unit 30 is the slowest at the irradiation position of the laser beam 15b. By doing so, the amount of laser light irradiation per unit area can be made uniform.
  • the optical system unit 30 continuously moves in the X direction while the stage 11 is rotating at a constant rotational speed (number of rotations).
  • the moving speed of the optical system unit 30 is made faster as it approaches the rotation axis AX.
  • the distance (rotation radius) from the rotation axis AX to the irradiation position is made to have a linear relationship with the moving speed.
  • the rotation speed of the stage 11 may be changed while the moving speed of the optical system unit 30 is kept constant.
  • the smaller the rotation radius the faster the rotation speed may be.
  • the object to be processed 16 is a semiconductor wafer with a diameter of 300 mm, and the radius of rotation changes within a range of 450 mm to 750 mm. That is, at the irradiation position of the laser beam 15a in FIG. 2, the radius of rotation is 450 mm, and at the position of the laser beam 15b, the radius of rotation is 750 mm. Further, the moving distance in the X direction in one round of the stage 11 is assumed to be 0.2 mm.
  • the rotation speed of the optical system unit 30 in the X direction is 20 m/sec
  • the rotation speed can be set to 4.24 rps
  • the rotation speed can be set to 7.07 rps.
  • the rotation speed of the optical system unit 30 in the X direction is 10 m/sec
  • the rotation speed when the rotation radius is 750 mm, the rotation speed can be 2.12 rps, and when the rotation radius is 450 mm, the rotation speed can be 3.54 rps.
  • the rotation speed and movement speed are not limited to the above two examples.
  • Blue wavelength light has a moderate penetration depth into silicon wafers.
  • a laser light source 35 generates laser light with a wavelength of 250 nm or more and 500 nm or less. By using laser light with a center wavelength of 250 nm to 500 nm, the semiconductor layer can be appropriately activated. By using laser light that penetrates deep into the semiconductor layer 16b, a deeper region can be activated. Furthermore, in this wavelength range, a continuous wave semiconductor laser light source can be used, so the device configuration can be simplified and costs can be reduced.
  • a laser beam with a wavelength of 450 nm has a penetration depth of 0.24 ⁇ m into a silicon film. Therefore, absorption of laser light in the semiconductor layer 16b can be suppressed, so that the laser light reaches a deep region of the semiconductor layer 16b. Therefore, it is suitable for manufacturing a semiconductor device in which a PN junction is formed in a deep region.
  • the laser irradiation device 1 is suitable for activating power semiconductor devices such as vertical MOSFETs and IGBTs.
  • the laser irradiation apparatus 1 is suitable for activation processing of a semiconductor device in which a PN junction is formed in a deep region of a semiconductor substrate. Semiconductor devices can be manufactured with high productivity. By using a semiconductor laser light source as the laser light source 35, it is possible to achieve a longer life than a solid-state laser.
  • the laser light source 35 is fixed to a rack 38 that is different from the pedestal 60. Therefore, the laser light source 35 can be easily replaced and maintained.
  • a modulator may be used to convert the laser light into pulsed light. Then, the object to be processed 16 may be irradiated with laser light at a timing when the object to be processed 16 is located directly under the window portion 14 . Thereby, it is possible to prevent the stage 11 from being irradiated with laser light at a time when the object to be processed 16 is not directly under the window section 14.
  • a measuring instrument 70 measures the profile of the laser beam.
  • the object to be processed 16 can be irradiated with laser light having a uniform spatial distribution. Since the object to be processed 16 can be stably irradiated with laser light, productivity can be improved.
  • FIG. 4 is a side view schematically showing the configuration of the laser irradiation device 1.
  • FIG. 5 is a top view schematically showing the configuration of the laser irradiation device 1.
  • the second embodiment differs from the first embodiment in the arrangement of the laser light source 35. Specifically, the laser light source 35 is fixed to the optical system stage 40.
  • the basic configuration other than the arrangement of the laser light source 35 is the same as that in Embodiment 1, so the description will be omitted as appropriate.
  • a laser light source 35 is installed on the optical system stage 40. Therefore, the laser light source 35 moves in the X direction together with the optical system stage 40. That is, the laser light source 35 is moved in the X direction by the movement of the linear motion mechanism 41. Even with such a configuration, the same effects as in the first embodiment can be obtained. Furthermore, the length of the optical fiber 36 can be shortened. Therefore, light loss in the optical fiber 36 can be reduced.
  • FIG. 6 is a side view schematically showing the configuration of the laser irradiation device 1.
  • FIG. 7 is a top view schematically showing the configuration of the laser irradiation device 1.
  • the optical fiber 36 is not provided between the laser light source 35 and the optical system unit 30.
  • the configuration of the optical system in the optical system unit 30 is different from the first and second embodiments. The basic configuration other than these is the same as that of Embodiments 1 and 2, so the description will be omitted as appropriate.
  • a laser light source 35 is fixed to an optical system stage 40 as in the second embodiment. Further, in the optical system unit 30, a mirror 303 is arranged between the lens 301 and the lens 302. The laser light source 35 moves in the X direction together with the optical system unit 30. That is, the laser light source 35 moves in the X direction together with the lens 301, mirror 303, lens 302, etc. The laser light source 35 causes the laser light 15 to travel in the -X direction and enter the lens 301.
  • the optical axis of the lens 301 is parallel to the X direction.
  • the lens 301 converts the laser beam 15 into a parallel light beam.
  • the laser beam 15 from the lens 301 is reflected by the mirror 303 and travels in the -Z direction.
  • Laser light 15 from mirror 303 enters lens 302 .
  • the lens 302 focuses the laser beam 15 onto the object to be processed 16 .
  • an optical fiber 36 is not provided between the laser light source 35 and the lens 301. Since the optical fiber 36 is not used, light loss can be suppressed.
  • the beam shaping section 307 shown in Embodiments 1 and 2 may be provided between the lens 301 and the laser light source 35. Further, in Embodiments 1 to 3, the beam shaping section 307 may be arranged at a position other than the stage before the lens 301. In other words, the position of the beam shaping section 307 is not particularly limited.
  • the laser light source 35 has been described as being fixed to the optical system stage 40, but the laser light source 35 may be fixed to the pedestal 60. That is, the laser light source 35 does not have to move in the X direction together with the optical system unit 30. In this case, in the third embodiment, it is preferable that the lens 301 converts the laser beam 15 into a parallel beam.
  • the laser irradiation method using the laser irradiation apparatus 1 described in Embodiments 1 to 3 includes, for example, the following steps 1 to 3.
  • Step 1 A step of generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source.
  • Step 2 A step of guiding the laser beam to a semiconductor substrate on a rotating stage by an optical system unit.
  • Step 3 Moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
  • the laser irradiation method according to this embodiment can be applied to a method for manufacturing semiconductor devices. Thereby, semiconductor devices can be manufactured with high productivity.
  • FIG. 8 is a cross-sectional view showing the stacked structure of the semiconductor device 600.
  • Semiconductor device 600 is a vertical MOSFET. Specifically, the semiconductor device 600 is a planar MOSFET, and the back side of the semiconductor substrate 605 is the drain, and the front side is the source and gate.
  • the semiconductor substrate 605 is a silicon substrate.
  • an n + layer 601, an n - layer 602, a p layer 603, and an n + layer 604 are formed in order from the back side of a semiconductor substrate 605. Furthermore, a gate electrode 610 and a source electrode 620 are formed on the surface of the semiconductor substrate 605. The gate electrode 610 and the source electrode 620 are thin films of metal such as copper or aluminum.
  • the semiconductor substrate 605 corresponds to the object to be processed 16 or the substrate 16a described above.
  • Impurities are implanted into the n + layer 601, the n ⁇ layer 602, the p layer 603, and the n + layer 604.
  • boron is implanted into the p layer 603 as a dopant.
  • Phosphorous is implanted as a dopant into the n + layer 601, the n ⁇ layer 602, and the n + layer 604.
  • the n + layer 601, the n ⁇ layer 602, the p layer 603, or the n + layer 604 corresponds to the semiconductor layer 16b.
  • the laser irradiation device 1 When the laser irradiation device 1 irradiates the semiconductor substrate 605 with laser light, one or more of the n + layer 601, the n ⁇ layer 602, the p layer 603, and the n + layer 604 can be activated. Laser light 15 is irradiated from the upper surface of semiconductor substrate 605 . By doing so, the n + layer 601, the n ⁇ layer 602, the p layer 603, or the n + layer 604 can be activated. Note that the order of the laser beam irradiation steps is not particularly limited.
  • the method according to the present embodiment is an irradiation method for activating a semiconductor layer of a semiconductor device, and includes a step of generating a laser beam with a wavelength of 250 nm or more and a wavelength of 500 nm or less, and using an optical system unit to generate the laser beam. and a step of changing a relative irradiation position of the laser beam to the semiconductor substrate.
  • the semiconductor layer can be activated appropriately.
  • This laser irradiation method is suitable for a method of manufacturing semiconductor devices. That is, the laser irradiation method is applied to an activation step in a semiconductor device manufacturing method.
  • Embodiments 1 to 3 can be used in appropriate combination. Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
  • Laser irradiation device 10 Chamber 11 Stage 12 Adsorption plate 14 Window 15 Laser light 16 Object to be processed 16a Substrate 16b Semiconductor layer 30 Optical system unit 32 Optical connector 35 Laser light source 36 Optical fiber 40 Optical system stage 41 Linear motion mechanism 43 Guide mechanism 43a Linear guide 43b Slider 60 Mount 70 Measuring instrument 301 Lens 302 Lens 303 Mirror 307 Beam shaping section 310 Housing 600 Semiconductor device 601 N + layer 602 N - layer 603 P layer 604 N + layer 610 Gate electrode 620 Source electrode 605 Semiconductor board

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser irradiation apparatus according to the present embodiment comprises: a semiconductor laser light source that generates laser light (15) having a wavelength of 250-500 nm; a rotating stage (11) that rotates a semiconductor substrate; an optical system unit (30) that guides the laser light (15) to the semiconductor substrate on the rotating stage; and a moving mechanism that moves the optical system unit (30) so as to change the irradiated position of the laser light (15) in a direction different from a rotating direction of the rotating stage in a top plan view.

Description

レーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法Laser irradiation device, laser irradiation method, and semiconductor device manufacturing method
 本発明はレーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法に関する。 The present invention relates to a laser irradiation apparatus, a laser irradiation method, and a semiconductor device manufacturing method.
 特許文献1には、エキシマレーザを用いたレーザアニール装置が開示されている。特許文献1では、浮上ユニットが基板を浮上した状態で、搬送ユニットが基板を搬送している。そして、ライン状のレーザ光が、搬送中の基板に照射される。 Patent Document 1 discloses a laser annealing device using an excimer laser. In Patent Document 1, a conveying unit conveys the substrate while the floating unit levitates the substrate. Then, a line-shaped laser beam is irradiated onto the substrate being transported.
特開2018-64048号JP2018-64048
 このようなエキシマレーザ光源は高価であるため、装置の部品コストを低減することが困難である。したがって、エキシマレーザ光源以外の光源を用いることが望まれる.半導体レーザは、安価であるが、連続発振(CW:Continuous Wave)レーザである。CWレーザ光を変調器でパルス化すると、出力が低下してしまう。よって、多くの光源が必要となり、低コスト化が困難になる。 Since such excimer laser light sources are expensive, it is difficult to reduce the cost of parts of the device. Therefore, it is desirable to use a light source other than an excimer laser light source. Semiconductor lasers are inexpensive, but are continuous wave (CW) lasers. If the CW laser light is pulsed by a modulator, the output will be reduced. Therefore, many light sources are required, making it difficult to reduce costs.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
 一実施の形態によれば、レーザ照射装置は、波長250nm以上波長500nm以下のレーザ光を発生する半導体レーザ光源と、半導体基板を回転する回転ステージと、前記レーザ光を前記回転ステージ上の前記半導体基板に導く光学系ユニットと、上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させる移動機構とを備えている。 According to one embodiment, a laser irradiation device includes a semiconductor laser light source that generates a laser beam with a wavelength of 250 nm or more and a wavelength of 500 nm or less, a rotation stage that rotates a semiconductor substrate, and a semiconductor laser beam on the rotation stage. The apparatus includes an optical system unit that guides the laser beam to the substrate, and a moving mechanism that moves the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
 一実施の形態によれば、レーザ照射方法は、(A1)半導体レーザ光源を用いて、波長250nm以上波長500nm以下のレーザ光を発生するステップと、(A2)光学系ユニットによって前記レーザ光を前記回転ステージ上の半導体基板に導くステップと、(A3)上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させるステップと、を備えている。 According to one embodiment, the laser irradiation method includes the steps of (A1) generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source; (A3) moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotation direction of the rotation stage when viewed from above; We are prepared.
 一実施の形態によれば、半導体デバイスの製造方法は、(S1)半導体レーザ光源を用いて、波長250nm以上波長500nm以下のレーザ光を発生するステップと、(S2)光学系ユニットによって前記レーザ光を前記回転ステージ上の半導体基板に導くステップと、(S3)上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させるステップと、を備えている。 According to one embodiment, a method for manufacturing a semiconductor device includes (S1) using a semiconductor laser light source to generate laser light with a wavelength of 250 nm or more and 500 nm or less, and (S2) using an optical system unit to generate the laser light. (S3) moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above; , is equipped with.
 前記一実施の形態によれば、生産性の高いレーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法を提供することができる。 According to the embodiment, a highly productive laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method can be provided.
実施の形態1にかかるレーザ照射装置を模式的に示す側面図である。1 is a side view schematically showing a laser irradiation device according to a first embodiment; FIG. 実施の形態1にかかるレーザ照射装置を模式的に示す上面図である。1 is a top view schematically showing a laser irradiation device according to a first embodiment; FIG. ビームの空間分布とレーザ光の重複部分を示す模式図である。FIG. 3 is a schematic diagram showing a spatial distribution of beams and an overlapping portion of laser light. 実施の形態2にかかるレーザ照射装置を模式的に示す側面図である。FIG. 3 is a side view schematically showing a laser irradiation device according to a second embodiment. 実施の形態2にかかるレーザ照射装置を模式的に示す上面図である。FIG. 3 is a top view schematically showing a laser irradiation device according to a second embodiment. 実施の形態3にかかるレーザ照射装置を模式的に示す側面図である。FIG. 7 is a side view schematically showing a laser irradiation device according to a third embodiment. 実施の形態3にかかるレーザ照射装置を模式的に示す上面図である。FIG. 7 is a top view schematically showing a laser irradiation device according to a third embodiment. レーザ照射プロセスにより製造される半導体装置の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a semiconductor device manufactured by a laser irradiation process.
実施の形態1
 本実施の形態にかかるレーザ照射装置は、被処理体(ワークともいう)にレーザ光を照射することでアニール処理を行う。レーザ照射装置は、レーザ光により基板を加熱することで、基板に設けられた半導体層に対して活性化処理を行う。被処理体は、半導体デバイスを形成するための半導体基板となっている。半導体基板はシリコンウェハや化合物半導体ウェハである。
Embodiment 1
The laser irradiation apparatus according to the present embodiment performs annealing treatment by irradiating an object to be processed (also referred to as a workpiece) with a laser beam. A laser irradiation device performs activation processing on a semiconductor layer provided on a substrate by heating the substrate with laser light. The object to be processed is a semiconductor substrate for forming a semiconductor device. The semiconductor substrate is a silicon wafer or a compound semiconductor wafer.
 例えば、半導体基板には、縦型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体デバイスが形成される。つまり、被処理体は、パワー半導体デバイスのチップが形成される半導体ウェハである。半導体基板は、不純物が注入された半導体層(不純物注入層ともいう)を有している。レーザ照射装置が半導体層にレーザ光を照射することで、半導体層を活性化することができる。また、本実施の形態にかかる方法は、パワー半導体に限られるものではない。例えば、本実施の形態にかかる方法は、イメージセンサなどの半導体チップの半導体層の活性化とその製造方法に適用することができる。 For example, power semiconductor devices such as vertical MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors) are formed on the semiconductor substrate. In other words, the object to be processed is a semiconductor wafer on which chips of power semiconductor devices are formed. The semiconductor substrate has a semiconductor layer (also referred to as an impurity injection layer) into which impurities are implanted. The semiconductor layer can be activated by the laser irradiation device irradiating the semiconductor layer with laser light. Furthermore, the method according to this embodiment is not limited to power semiconductors. For example, the method according to this embodiment can be applied to the activation of a semiconductor layer of a semiconductor chip such as an image sensor and its manufacturing method.
 あるいは、レーザ照射装置は、脱水素化アニール処理を行うための装置であってもよい。脱水素化アニール処理では、レーザ光により基板を加熱することで、基板に設けられた膜に対して脱水素化アニール処理を行う。例えば、被処理体は、シリコン膜が形成された膜付き基板となっている。 Alternatively, the laser irradiation device may be a device for performing dehydrogenation annealing treatment. In the dehydrogenation annealing process, a film provided on the substrate is subjected to a dehydrogenation annealing process by heating the substrate with laser light. For example, the object to be processed is a film-coated substrate on which a silicon film is formed.
 レーザ照射装置は、レーザ光源として、青色半導体レーザ光源を用いている。レーザ照射装置は、半導体レーザ光源からの青色レーザ光を被処理体に照射することで、活性化のためのアニール処理を行う。なお、レーザ光は青色レーザ光に限らず、波長250nm以上波長500nm以下のレーザ光とすることができる。レーザ照射装置は、半導体レーザ光源からの青色レーザ光を被処理体に照射する。これにより、活性化処理又は、脱水素処理を行うことができる。なお、レーザ光は青色レーザ光に限らず、波長500nm以下のレーザ光とすることができる。 The laser irradiation device uses a blue semiconductor laser light source as a laser light source. The laser irradiation device performs annealing treatment for activation by irradiating the object to be processed with blue laser light from a semiconductor laser light source. Note that the laser light is not limited to blue laser light, but may be laser light with a wavelength of 250 nm or more and 500 nm or less. The laser irradiation device irradiates the object to be processed with blue laser light from a semiconductor laser light source. Thereby, activation treatment or dehydrogenation treatment can be performed. Note that the laser light is not limited to blue laser light, and may be laser light with a wavelength of 500 nm or less.
 図1~図2を用いて、本実施の形態にかかるレーザ照射装置の構成について説明する。図1は、レーザ照射装置1の構成を模式的に示す側面図ある。図2は、レーザ照射装置1の構成を模式的に示す上面図である。 The configuration of the laser irradiation device according to this embodiment will be explained using FIGS. 1 and 2. FIG. 1 is a side view schematically showing the configuration of a laser irradiation device 1. As shown in FIG. FIG. 2 is a top view schematically showing the configuration of the laser irradiation device 1. As shown in FIG.
 なお、以下に示す図では、説明の簡略化のため、適宜、XYZ3次元直交座標系を示している。Z方向は鉛直上下方向であり、被処理体16の主面と直交する方向である。X方向は、光学系ユニット30の移動方向である。光学系ユニット30を移動することで、レーザ光15の照射位置がX方向に変化していく。Y方向は、Z方向、及びX方向と直交する方向である。 Note that in the figures shown below, an XYZ three-dimensional orthogonal coordinate system is appropriately shown for the sake of simplifying the explanation. The Z direction is a vertical direction, and is a direction perpendicular to the main surface of the object 16 to be processed. The X direction is the direction in which the optical system unit 30 moves. By moving the optical system unit 30, the irradiation position of the laser beam 15 changes in the X direction. The Y direction is a direction perpendicular to the Z direction and the X direction.
 図1~図2に示すように、レーザ照射装置1は、チャンバ10、光学系ユニット30、レーザ光源35、光ファイバ36,光学系ステージ40,直動機構41、ガイド機構43,架台60、回転モータ61、及び計測器70等を備えている。なお、図1では、光学系ユニット30が、チャンバ10の上方に移動した状態を示しており、図2では、光学系ユニット30がチャンバ10の上方から退避した状態を示している。 As shown in FIGS. 1 and 2, the laser irradiation device 1 includes a chamber 10, an optical system unit 30, a laser light source 35, an optical fiber 36, an optical system stage 40, a linear motion mechanism 41, a guide mechanism 43, a pedestal 60, a rotation It includes a motor 61, a measuring device 70, and the like. Note that FIG. 1 shows a state in which the optical system unit 30 has been moved above the chamber 10, and FIG. 2 shows a state in which the optical system unit 30 has been retracted from above the chamber 10.
 架台60はチャンバ10、及び光学系ステージ40などを支持している。チャンバ10は、架台60の上に固定されている。チャンバ10は被処理体16及びステージ11等を収容する。ステージ11は、回転モータ61に連結されている。回転モータ61は架台60に固定されている。回転モータ61は、ステージ11を回転軸AX周りに回転する。回転軸AXはZ方向と平行になっている。 The pedestal 60 supports the chamber 10, the optical system stage 40, and the like. The chamber 10 is fixed on a pedestal 60. The chamber 10 accommodates the object to be processed 16, the stage 11, and the like. The stage 11 is connected to a rotary motor 61. The rotary motor 61 is fixed to the pedestal 60. Rotary motor 61 rotates stage 11 around rotation axis AX. The rotation axis AX is parallel to the Z direction.
 ステージ11の上には、被処理体16を吸着する吸着板12が固定されている。吸着板12は、例えば、バキュームチャックや静電チャックを備えており、被処理体16を吸着保持する。被処理体16は、チャンバ10内に移載されて、吸着板12上に載置される。吸着板12が被処理体16を吸着保持した状態で、回転モータ61がステージ11を回転させる。これにより、被処理体16に対するレーザ光15の照射位置が変化する。 A suction plate 12 that suctions the object to be processed 16 is fixed on the stage 11. The suction plate 12 includes, for example, a vacuum chuck or an electrostatic chuck, and suctions and holds the object 16 to be processed. The object to be processed 16 is transferred into the chamber 10 and placed on the suction plate 12 . The rotary motor 61 rotates the stage 11 with the suction plate 12 suctioning and holding the object 16 to be processed. As a result, the irradiation position of the laser beam 15 on the object to be processed 16 changes.
 図2に示すように、ステージ11には、4つの吸着板12が取り付けられている。よって、ステージ11には、4枚の被処理体16が載置される。ステージ11の上に複数の被処理体16を配置することで、スループットが向上する。複数の被処理体16は、回転軸AXを中心として回転対称に配置されている。具体的には、4つの被処理体16の中心は、回転軸AXを中心とする円上に配置される。複数の被処理体16に対して、ほぼ均等にレーザ光を照射することができる。 As shown in FIG. 2, four suction plates 12 are attached to the stage 11. Therefore, four objects 16 to be processed are placed on the stage 11. By arranging a plurality of objects 16 to be processed on the stage 11, throughput is improved. The plurality of objects to be processed 16 are arranged rotationally symmetrically about the rotation axis AX. Specifically, the centers of the four objects to be processed 16 are arranged on a circle centered on the rotation axis AX. The plurality of objects 16 to be processed can be irradiated with laser light almost equally.
 なお、図2では、ステージ11の回転方向(周方向)において、4枚の被処理体16が90°毎の等間隔に配置されている。もちろん、ステージ11に載せられる被処理体16の数は4枚に限られるものではない。つまり、ステージ11は、1枚又は複数の被処理体16を保持できればよい。 Note that in FIG. 2, the four objects 16 to be processed are arranged at equal intervals of 90° in the rotational direction (circumferential direction) of the stage 11. Of course, the number of objects to be processed 16 placed on the stage 11 is not limited to four. In other words, the stage 11 only needs to be able to hold one or more objects 16 to be processed.
 被処理体16は実質的に円形の半導体ウェハとなっている。なお、半導体ウェハにはオリフラやノッチなどが形成されていてもよい。被処理体16は、基板16aと、基板16a上に形成された半導体層16bを備えている。基板16aはシリコンウェハや化合物半導体ウェハ(SiC,GaN)などの半導体基板である。もちろん、基板16aの材料は特に限定されるものではない。基板16aは、レーザ波長の光に対して不透明になっている。 The object to be processed 16 is a substantially circular semiconductor wafer. Note that an orientation flat, a notch, etc. may be formed in the semiconductor wafer. The object to be processed 16 includes a substrate 16a and a semiconductor layer 16b formed on the substrate 16a. The substrate 16a is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer (SiC, GaN). Of course, the material of the substrate 16a is not particularly limited. The substrate 16a is opaque to light at the laser wavelength.
 半導体層16bは、リン(P)やボロン(B)などの不純物が注入された不純物注入層である。半導体層16bにレーザ光15を照射してアニール処理することで、PN接合を活性化することができる。つまり、レーザ照射装置1は、半導体層16bの活性化用アニール装置となる。なお、図1では半導体層16bのみが示されているが、その他の膜や層が形成されていても良い。例えば、配線などとなる銅やアルミニウムの薄膜が形成されていてもよい。さらには、基板16aには、酸化シリコン膜などの絶縁層が形成されていてもよい。 The semiconductor layer 16b is an impurity-implanted layer into which impurities such as phosphorus (P) and boron (B) are implanted. By irradiating the semiconductor layer 16b with the laser beam 15 and annealing it, the PN junction can be activated. In other words, the laser irradiation device 1 serves as an annealing device for activating the semiconductor layer 16b. Note that although only the semiconductor layer 16b is shown in FIG. 1, other films or layers may be formed. For example, a thin film of copper or aluminum may be formed to serve as wiring or the like. Furthermore, an insulating layer such as a silicon oxide film may be formed on the substrate 16a.
 チャンバ10の上面には窓部14が設けられている。窓部14は、ガラス又は樹脂などの透明材料で形成されている。レーザ光15は窓部14を透過する。窓部14は、上面視において、X方向を長手方向とする矩形状に形成されている。つまり、窓部14は、後述する光学系ステージ40の移動方向に沿って形成されている。また、窓部14は、ステージ11の回転方向と直交する径方向に沿って配置されている。 A window 14 is provided on the top surface of the chamber 10. The window portion 14 is made of a transparent material such as glass or resin. The laser beam 15 is transmitted through the window portion 14 . The window portion 14 is formed into a rectangular shape whose longitudinal direction is in the X direction when viewed from above. That is, the window portion 14 is formed along the moving direction of the optical system stage 40, which will be described later. Further, the window portion 14 is arranged along the radial direction orthogonal to the rotation direction of the stage 11.
 光学系ステージ40は、光学系ユニット30を支持している。図1に示すように、光学系ステージ40は、光学系ユニット30をステージ11の上方で保持することができる。具体的には、光学系ステージ40は、ガイド機構43を介して架台60に取り付けられている。ガイド機構43はリニアガイド43aと、スライダ43bとを備えている。リニアガイド43aはX方向に沿って延びるガイドレールやガイド溝などを有している。スライダ43bは、リニアガイド43aに沿って、X方向にスライド移動する。リニアガイド43aは、架台60に固定されている。スライダ43bは光学系ステージ40に固定されている。リニアガイド43aは、スライダ43bをスライド可能に保持している。 The optical system stage 40 supports the optical system unit 30. As shown in FIG. 1, the optical system stage 40 can hold the optical system unit 30 above the stage 11. Specifically, the optical system stage 40 is attached to a pedestal 60 via a guide mechanism 43. The guide mechanism 43 includes a linear guide 43a and a slider 43b. The linear guide 43a has a guide rail, a guide groove, etc. extending along the X direction. The slider 43b slides in the X direction along the linear guide 43a. The linear guide 43a is fixed to the frame 60. The slider 43b is fixed to the optical system stage 40. The linear guide 43a slidably holds the slider 43b.
 さらに、光学系ステージ40と架台60との間には、直動機構41が設けられている。直動機構41はリニアモータなどのアクチュエータを備えている。直動機構41が伸縮することで光学系ステージ40がX方向に移動する。つまり、光学系ステージ40はガイド機構43でガイドされて、X方向に沿って移動する。光学系ステージ40が移動することで、X方向において、光学系ユニット30の位置が変化する。 Furthermore, a linear motion mechanism 41 is provided between the optical system stage 40 and the pedestal 60. The linear motion mechanism 41 includes an actuator such as a linear motor. The optical system stage 40 moves in the X direction as the linear motion mechanism 41 expands and contracts. That is, the optical system stage 40 is guided by the guide mechanism 43 and moves along the X direction. By moving the optical system stage 40, the position of the optical system unit 30 changes in the X direction.
 このように、直動機構41が光学系ステージ40を駆動することで、光学系ユニット30がX方向に移動する。よって、直動機構41及びガイド機構43が光学系ユニット30を移動させる移動機構となる。なお、光学系ユニット30を移動するための移動機構は、上記の構成に限られるものではなく、公知の手法を用いることができる。例えば、移動機構は、ボールねじやシリンダなどを有していてもよい。 In this way, the linear motion mechanism 41 drives the optical system stage 40, so that the optical system unit 30 moves in the X direction. Therefore, the linear motion mechanism 41 and the guide mechanism 43 serve as a moving mechanism for moving the optical system unit 30. Note that the moving mechanism for moving the optical system unit 30 is not limited to the above configuration, and a known method can be used. For example, the moving mechanism may include a ball screw, a cylinder, or the like.
 また、架台60と別にレーザ光源35を保持するラック38が設けられている。レーザ光源35は、ラック38に固定されている。レーザ光源35は、被処理体16をアニールするためのレーザ光15を発生する。レーザ光源35は、中心波長450nmの青色レーザ光を発生するBLD(Blue Laser Diode)である。つまり、レーザ光源35は青色半導体レーザ光源である。ここで、レーザ光15は連続発振のCW(Continuous Wave)レーザ光となっている。もちろん、レーザ照射装置1は、変調器などを用いて、レーザ光15をパルスレーザ光に変調しても良い。 Additionally, a rack 38 for holding the laser light source 35 is provided separately from the pedestal 60. The laser light source 35 is fixed to a rack 38. The laser light source 35 generates laser light 15 for annealing the object 16 to be processed. The laser light source 35 is a BLD (Blue Laser Diode) that generates blue laser light with a center wavelength of 450 nm. That is, the laser light source 35 is a blue semiconductor laser light source. Here, the laser beam 15 is a continuous wave (CW) laser beam. Of course, the laser irradiation device 1 may modulate the laser beam 15 into pulsed laser beam using a modulator or the like.
 レーザ光源35は、光ファイバ36に結合されている。レーザ光15は、光ファイバ36を介して、光学系ユニット30に導かれる。具体的には、光ファイバ36の一端が、光コネクタ32を介して、レーザ光源35に接続されている。光ファイバ36の他端は、光コネクタ32を介して、光学系ユニット30に接続されている。光コネクタ32は、光学系ユニット30の上面に取り付けられている。よって、光コネクタ32から出射したレーザ光15は、-Z方向に進む。 The laser light source 35 is coupled to an optical fiber 36. Laser light 15 is guided to optical system unit 30 via optical fiber 36. Specifically, one end of the optical fiber 36 is connected to the laser light source 35 via the optical connector 32. The other end of the optical fiber 36 is connected to the optical system unit 30 via the optical connector 32. The optical connector 32 is attached to the top surface of the optical system unit 30. Therefore, the laser beam 15 emitted from the optical connector 32 travels in the -Z direction.
 レーザ光源35からのレーザ光は、光ファイバ36を介して、光学系ユニット30に入射する。図1に示されるように、光学系ユニット30は、筐体310、レンズ301、レンズ302、及びビーム整形部307を備えている。レンズ301、レンズ302、及びビーム整形部307は筐体310に固定されている。もちろん、光学系ユニット30にはレンズ301、レンズ302、ビーム整形部307以外の光学素子が設けられていても良い。 Laser light from the laser light source 35 enters the optical system unit 30 via the optical fiber 36. As shown in FIG. 1, the optical system unit 30 includes a housing 310, a lens 301, a lens 302, and a beam shaping section 307. Lens 301, lens 302, and beam shaping section 307 are fixed to housing 310. Of course, the optical system unit 30 may be provided with optical elements other than the lens 301, the lens 302, and the beam shaping section 307.
 光ファイバ36からのレーザ光は、ビーム整形部307に入射する。ビーム整形部307が、レーザ光15のスポット形状を整形する。例えば、ビーム整形部307は、スリットなどのビーム整形機構を有している。あるいは、複数本の光ファイバ36を用いている場合、光ファイバ36の出射端の配置によりビームを整形してもよい。 The laser light from the optical fiber 36 enters the beam shaping section 307. A beam shaping section 307 shapes the spot shape of the laser beam 15. For example, the beam shaping section 307 has a beam shaping mechanism such as a slit. Alternatively, when a plurality of optical fibers 36 are used, the beam may be shaped by the arrangement of the output ends of the optical fibers 36.
 レーザ光15はガウスビームであってもよく、トップフラットビームであってもよい。ガウスビームでは、被処理体16におけるレーザ光15の空間強度分布がガウス分布となっている。トップフラットビームでは、被処理体16におけるレーザ光15の空間強度分布がトップフラット分布となっている。ビーム整形部307は空間強度分布を均一にするためのビームホモジナイザを有していてもよい。例えば、ビーム整形部307は、トップフラット分布とするためのビームホモジナイザを有していてもよい。ビームホモジナイザはフライアイレンズなどの光学素子を有している。 The laser beam 15 may be a Gaussian beam or a top flat beam. In the Gaussian beam, the spatial intensity distribution of the laser beam 15 on the object to be processed 16 is a Gaussian distribution. In the top flat beam, the spatial intensity distribution of the laser beam 15 on the object to be processed 16 is a top flat distribution. The beam shaping section 307 may include a beam homogenizer for making the spatial intensity distribution uniform. For example, the beam shaping section 307 may include a beam homogenizer for achieving a top flat distribution. The beam homogenizer has an optical element such as a fly's eye lens.
 例えば、ビーム整形部307は、被処理体16において、X方向に沿ってフラットな分布とするトップフラットビームを形成する。また、被処理体16におけるビームのスポット形状は、長手方向と短手方向を有するラインビームであってもよい。この場合、被処理体16におけるスポット形状は、X方向を長手方向とし、Y方向を短手方向とすることができる。例えば、長手方向におけるスポットの大きさは1mm程度で有り、X方向におけるスポットの大きさは0.2mmとすることができる。そして、ビーム整形部307は、X方向において強度分布が均一なトップフラットビームになるようにビームを整形することができる。もちろん、ビーム整形部307は、Y方向において、強度分布が均一なトップフラットビームを成型してもよい。なお、被処理体16におけるビームのスポット形状とその空間分布については後述する。 For example, the beam shaping unit 307 forms a top flat beam with a flat distribution along the X direction on the object to be processed 16. Further, the beam spot shape on the object to be processed 16 may be a line beam having a longitudinal direction and a transverse direction. In this case, the spot shape on the object to be processed 16 can have the X direction as the longitudinal direction and the Y direction as the lateral direction. For example, the spot size in the longitudinal direction can be about 1 mm, and the spot size in the X direction can be 0.2 mm. The beam shaping unit 307 can shape the beam so that it becomes a top flat beam with a uniform intensity distribution in the X direction. Of course, the beam shaping section 307 may shape a top flat beam with a uniform intensity distribution in the Y direction. Note that the beam spot shape and its spatial distribution on the object to be processed 16 will be described later.
 ビーム整形部307で整形されたレーザ光は、レンズ301に入射する。レンズ301で集光されたレーザ光15は、レンズ302に入射する。レンズ301及びレンズ302の光軸はZ方向と平行になっている。レンズ302からのレーザ光15が被処理体16に照射される。レンズ302は、レーザ光15を被処理体16に集光する。よって、光学系ユニット30からのレーザ光15は集束ビームとなって、被処理体16に照射される。レンズ302はシリンドリカルレンズとなっていてもよい。このようにすることで、レーザ光15が被処理体16においてライン状となるラインビームとすることができる。 The laser beam shaped by the beam shaping section 307 enters the lens 301. Laser light 15 focused by lens 301 enters lens 302 . The optical axes of the lenses 301 and 302 are parallel to the Z direction. The object to be processed 16 is irradiated with laser light 15 from the lens 302 . The lens 302 focuses the laser beam 15 onto the object to be processed 16 . Therefore, the laser beam 15 from the optical system unit 30 becomes a focused beam and is irradiated onto the object 16 to be processed. Lens 302 may be a cylindrical lens. By doing so, the laser beam 15 can be made into a line beam that forms a line on the object 16 to be processed.
 レンズ302は、レーザ光15を被処理体16に集光する。図1において、光学系ユニット30は、窓部14の真上に配置されている。光学系ユニット30からのレーザ光15は、窓部14を介して、被処理体16に入射する。光学系ユニット30は窓部14に沿って移動する。光学系ユニット30は、上方からレーザ光15を被処理体16に照射する。被処理体16の半導体層16bがアニールされ、半導体層16bに対して活性化処理を行うことができる。 The lens 302 focuses the laser beam 15 onto the object to be processed 16 . In FIG. 1, the optical system unit 30 is placed directly above the window section 14. Laser light 15 from optical system unit 30 enters object to be processed 16 via window 14 . The optical system unit 30 moves along the window section 14. The optical system unit 30 irradiates the object to be processed 16 with laser light 15 from above. The semiconductor layer 16b of the object to be processed 16 is annealed, and an activation process can be performed on the semiconductor layer 16b.
 ステージ11は、回転モータ61を有する回転ステージである。ステージ11は、Z軸と平行な回転軸AX周りに回転する。ステージ11の回転中に、光学系ユニット30は、X方向に移動する。上面視において、光学系ユニット30の移動方向と、ステージ11の回転方向が交差する方向となる。具体的には、光学系ユニット30の移動方向は、ステージ11の径方向と平行になっている。径方向は、回転方向と直交する方向である。このようにすることで、被処理体16の任意の位置にレーザ光を照射することができる。 The stage 11 is a rotation stage having a rotation motor 61. The stage 11 rotates around a rotation axis AX that is parallel to the Z axis. While the stage 11 is rotating, the optical system unit 30 moves in the X direction. When viewed from above, the direction in which the optical system unit 30 moves and the direction in which the stage 11 rotates intersect. Specifically, the moving direction of the optical system unit 30 is parallel to the radial direction of the stage 11. The radial direction is a direction perpendicular to the rotation direction. By doing so, it is possible to irradiate the laser beam to any position on the object 16 to be processed.
 ステージ11を用いて被処理体16を回転させることで、短時間で被処理体16の全体にレーザ光15を照射することができる。よって、高いスループットで被処理体16にレーザ光を照射することができるため、生産性を向上することができる。 By rotating the object to be processed 16 using the stage 11, the entire object to be processed 16 can be irradiated with the laser beam 15 in a short time. Therefore, the object to be processed 16 can be irradiated with laser light at a high throughput, so productivity can be improved.
 例えば、ステージ11の回転によって、レーザ光15の位置が周方向に変化する。光学系ユニット30の移動によって、レーザ光15の位置が径方向に変化する。図2では、ステージ11においてレーザ光15が照射される軌跡を照射軌跡T1として示している。 For example, as the stage 11 rotates, the position of the laser beam 15 changes in the circumferential direction. As the optical system unit 30 moves, the position of the laser beam 15 changes in the radial direction. In FIG. 2, the trajectory on which the laser beam 15 is irradiated on the stage 11 is shown as an irradiation trajectory T1.
 図2では、X方向におけるレーザ光15の照射位置の両端をレーザ光15a、15bとして示している。-X方向における照射位置の端がレーザ光15aに対応し、+X方向における照射位置の端がレーザ光15bに対応する。レーザ光15a、15bは窓部14を介して、被処理体16に入射する。 In FIG. 2, both ends of the irradiation position of the laser beam 15 in the X direction are shown as laser beams 15a and 15b. The end of the irradiation position in the -X direction corresponds to the laser beam 15a, and the end of the irradiation position in the +X direction corresponds to the laser beam 15b. The laser beams 15a and 15b enter the object 16 through the window 14.
 光学系ユニット30は、レーザ光15の照射位置をレーザ光15aに示す位置からレーザ光15bに示す位置に移動させていく。レーザ光15aの照射位置は、回転軸AXから最も離れた側での被処理体16の一端となり、レーザ光15bの照射位置は回転軸AXに最も近い側での被処理体16の他端となる。つまり、径方向においてレーザ光15の照射位置が被処理体16の一端から他端まで変化するように、光学系ユニット30が移動する。光学系ユニット30の移動範囲は、被処理体16の直径に対応する。これにより、被処理体16の全体にレーザ光15を照射することができる。 The optical system unit 30 moves the irradiation position of the laser beam 15 from the position indicated by the laser beam 15a to the position indicated by the laser beam 15b. The irradiation position of the laser beam 15a is at one end of the object to be processed 16 on the side farthest from the rotation axis AX, and the irradiation position of the laser beam 15b is at the other end of the object to be processed 16 on the side closest to the rotation axis AX. Become. That is, the optical system unit 30 moves so that the irradiation position of the laser beam 15 changes from one end of the object to be processed 16 to the other end in the radial direction. The movement range of the optical system unit 30 corresponds to the diameter of the object 16 to be processed. Thereby, the entire object to be processed 16 can be irradiated with the laser beam 15.
 例えば、ステージ11を一定の回転速度で回転させている間、光学系ユニット30がX方向に移動する。光学系ユニット30は、ステージ11の外周端側から回転軸AXに向かって移動していく。Y方向において、レーザ光15の照射位置は、回転軸AXの位置と一致している。ステージ11の回転中に、光学系ユニット30は連続的又は段階的に-X方向に移動する。これにより、ステージ11におけるレーザ光15の軌跡が渦巻き状になる。よって、複数の被処理体16に均等にレーザ光を照射することができる。また、被処理体16の回転中において、光学系ユニット30は+X方向と-X方向に往復移動してもよい。 For example, while the stage 11 is rotating at a constant rotation speed, the optical system unit 30 moves in the X direction. The optical system unit 30 moves from the outer peripheral end of the stage 11 toward the rotation axis AX. In the Y direction, the irradiation position of the laser beam 15 coincides with the position of the rotation axis AX. While the stage 11 is rotating, the optical system unit 30 moves in the −X direction continuously or stepwise. As a result, the locus of the laser beam 15 on the stage 11 becomes spiral. Therefore, the plurality of objects 16 to be processed can be uniformly irradiated with laser light. Furthermore, while the object to be processed 16 is rotating, the optical system unit 30 may reciprocate in the +X direction and the −X direction.
 さらに、チャンバ10の+X側には計測器70が設けられている。計測器70は、フォトダイオードなどの光検出器を有しており、レーザ光15のビームプロファイルを計測する。つまり、計測器70は光軸と直交する断面、つまりXY平面におけるレーザ光15の空間分布を測定する。例えば、計測器70は、1列又はアレイ状に配列された複数の画素(光検出素子)を有している。計測器70の受光面は、被処理体16と同じ高さにすることが好ましい。これにより、計測器70は、被処理体16上でのビームプロファイルと同等のビームプロファイルを計測することができる。 Further, a measuring instrument 70 is provided on the +X side of the chamber 10. The measuring device 70 has a photodetector such as a photodiode, and measures the beam profile of the laser beam 15. That is, the measuring instrument 70 measures the spatial distribution of the laser beam 15 in a cross section perpendicular to the optical axis, that is, in the XY plane. For example, the measuring instrument 70 has a plurality of pixels (photodetecting elements) arranged in a row or an array. It is preferable that the light receiving surface of the measuring instrument 70 be at the same height as the object to be processed 16. Thereby, the measuring instrument 70 can measure a beam profile equivalent to the beam profile on the object 16 to be processed.
 計測器70は、X方向に沿って配列された複数の画素を有している。よって、計測器70の測定結果に基づいて、レーザ光スポットの長手方向における均一性を評価することができる。つまり、トップフラット分布の均一性を評価することができ、安定したプロセスが可能となる。計測器70は、ステージ11の外側に配置されている。よって、レーザ照射プロセスの前又は後において、計測器70がレーザ光15のビームプロファイルを測定することができる。 The measuring device 70 has a plurality of pixels arranged along the X direction. Therefore, based on the measurement results of the measuring device 70, the uniformity of the laser beam spot in the longitudinal direction can be evaluated. In other words, the uniformity of the top flat distribution can be evaluated and a stable process becomes possible. The measuring instrument 70 is placed outside the stage 11. Therefore, the measuring instrument 70 can measure the beam profile of the laser beam 15 before or after the laser irradiation process.
 本実施の形態では、レーザ光源35として青色半導体レーザダイオード(BLD)を用いている。装置コストを抑制することができる。BLDはフォトンコストが安価である。さらに、波長変換素子などを不要とすることができる。これにより、高いエネルギー効率でプロセスを行うことができる。また、BLDは長寿命であるため、メンテナンスコストを抑制することができ、生産性の高いレーザ照射装置1を実現することができる。 In this embodiment, a blue semiconductor laser diode (BLD) is used as the laser light source 35. Equipment costs can be suppressed. BLD has low photon cost. Furthermore, it is possible to eliminate the need for a wavelength conversion element or the like. This allows the process to be performed with high energy efficiency. Moreover, since BLD has a long life, maintenance costs can be suppressed, and the laser irradiation device 1 with high productivity can be realized.
 BLDからのレーザ光15は可干渉性が低い。BLDを用いることで、トップフラット分布を有するトップフラットビームの生成が容易になる。トップフラットビームビームを生成する場合、ビーム整形部307に用いられたビームホモジナイザを用いることができる。ビームホモジナイザではレンズアレイや回折光子を用いて、ビームを分割、又は重ね合わせることで、所望の空間分布を得ることができる。可干渉性が低いため、ビームホモジナイザで干渉縞が発生しない。BLDのレーザ光は、光ファイバ36で導波した場合でもスペックル(干渉縞)が発生しない。よって、均一にレーザ光を照射することができるため、安定したレーザ照射プロセスを実現することができる。よって、生産性の高いレーザ照射装置1を実現することができる。 The laser beam 15 from the BLD has low coherence. By using BLD, it becomes easy to generate a top-flat beam having a top-flat distribution. When generating a top flat beam, the beam homogenizer used in the beam shaping section 307 can be used. A beam homogenizer uses a lens array or diffracted photons to split or superimpose beams to obtain a desired spatial distribution. Since the coherence is low, no interference fringes occur in the beam homogenizer. BLD laser light does not generate speckles (interference fringes) even when guided through the optical fiber 36. Therefore, since laser light can be uniformly irradiated, a stable laser irradiation process can be realized. Therefore, it is possible to realize the laser irradiation device 1 with high productivity.
 ビーム整形部307がレーザ光をトップフラットビームとすることで、レーザ光の重ね合わせ回数を減らすことができる。これにより、スループットを向上できるため、生産性を向上することができる。この点について、図3を用いて説明する。図3はトップフラットビームとガウスビームでのレーザ光の重複部分を説明するための模式図である。 By the beam shaping unit 307 converting the laser beam into a top flat beam, the number of times the laser beams are overlapped can be reduced. As a result, throughput can be improved, so productivity can be improved. This point will be explained using FIG. 3. FIG. 3 is a schematic diagram for explaining the overlapping portion of the laser light in the top flat beam and the Gaussian beam.
 図3では、ステージ11の1周目におけるレーザ光のスポットをスポット15-1とし、ステージ11の2周目におけるスポット15-2として示している。スポット15-2は、スポット15-1よりも-X側に移動している。また、被処理体16におけるスポット15-1、15-2は、X方向を長手方向、Y方向を短手方向とするライン状になっている。 In FIG. 3, the spot of the laser beam on the first rotation of the stage 11 is shown as a spot 15-1, and the spot of the laser light on the second rotation of the stage 11 is shown as a spot 15-2. Spot 15-2 has moved further to the −X side than spot 15-1. Further, the spots 15-1 and 15-2 on the object to be processed 16 are in the form of a line whose longitudinal direction is the X direction and whose transverse direction is the Y direction.
 トップフラットビームでは、レーザ光強度Iが均一な領域X1が長い。よって、1周目と2周目とでの重複部分の割合を小さくすることができる。重複部分の長さF1を短くすることができる。換言すると、ステージ11の1回転の間における移動距離を長くすることができるため、光学系ユニット30の移動速度を速くすることができる。 In the top flat beam, the region X1 where the laser light intensity I is uniform is long. Therefore, the proportion of overlapping portions between the first round and the second round can be reduced. The length F1 of the overlapping portion can be shortened. In other words, since the moving distance of the stage 11 during one rotation can be increased, the moving speed of the optical system unit 30 can be increased.
 一方、ガウスビームでは、レーザ光強度Iが均一な領域X2が短い。よって、1周目と2周目とでの重複部分の割合が大きくなってしまう。重複部分の長さF2を長くする必要がある。換言すると、ステージ11の1回転の間における移動距離が短くなってしまうため、光学系ユニット30の移動速度を速くすることが困難である。 On the other hand, in the Gaussian beam, the region X2 where the laser light intensity I is uniform is short. Therefore, the proportion of overlap between the first round and the second round becomes large. It is necessary to increase the length F2 of the overlapped portion. In other words, since the moving distance of the stage 11 during one rotation becomes short, it is difficult to increase the moving speed of the optical system unit 30.
 従って、トップフラットビームを用いることで、被処理体16のほぼ全面にレーザ光を照射する場合であっても、ビームスポットを重ねる回数を減らすことができる。これにより、回転速度、及び移動速度を高速にすることができるため、スループットを向上することができ、生産性を向上することができる。 Therefore, by using the top flat beam, even when almost the entire surface of the object to be processed 16 is irradiated with laser light, the number of times the beam spots are overlapped can be reduced. Thereby, the rotation speed and the movement speed can be increased, so that throughput can be improved and productivity can be improved.
 また、ステージ11上において、径方向の位置が回転軸AXに近いほど、円周が短くなる。回転軸AXから照射位置までの距離を回転半径とする。回転速度が一定であるとすると、回転半径に応じて、円周方向における単位長さ当たりの照射時間が変化する。したがって、光学系ユニット30のX方向位置に応じて、光学系ユニット30の移動速度を変えていくことが好ましい。つまり、回転半径が小さくなるほど、X方向の移動速度を速くしていくことが好ましい。例えば、レーザ光15aの照射位置で光学系ユニット30の移動速度が最も速くなり、レーザ光15bの照射位置で光学系ユニット30の移動速度が最も遅くなる。このようにすることで、単位面積当たりのレーザ光の照射量を均一にすることができる。 Furthermore, on the stage 11, the closer the radial position is to the rotation axis AX, the shorter the circumference becomes. The distance from the rotation axis AX to the irradiation position is the radius of rotation. Assuming that the rotation speed is constant, the irradiation time per unit length in the circumferential direction changes depending on the rotation radius. Therefore, it is preferable to change the moving speed of the optical system unit 30 depending on the position of the optical system unit 30 in the X direction. In other words, it is preferable that the smaller the radius of rotation, the faster the moving speed in the X direction. For example, the moving speed of the optical system unit 30 is the fastest at the irradiation position of the laser beam 15a, and the moving speed of the optical system unit 30 is the slowest at the irradiation position of the laser beam 15b. By doing so, the amount of laser light irradiation per unit area can be made uniform.
 一定の回転速度(回転数)でステージ11が回転している間に、光学系ユニット30がX方向に連続的に移動する場合について説明する。この場合、回転軸AXに近くなるほど、光学系ユニット30の移動速度が速くなるようにする。具体的には、回転軸AXからの照射位置までの距離(回転半径)が、移動速度と線形の関係になるようにする。このようにすることで、被処理体16の全体にレーザ光を均一に照射することができる。 A case will be described in which the optical system unit 30 continuously moves in the X direction while the stage 11 is rotating at a constant rotational speed (number of rotations). In this case, the moving speed of the optical system unit 30 is made faster as it approaches the rotation axis AX. Specifically, the distance (rotation radius) from the rotation axis AX to the irradiation position is made to have a linear relationship with the moving speed. By doing so, the entire object to be processed 16 can be uniformly irradiated with laser light.
 あるいは、光学系ユニット30の移動速度を一定として、ステージ11の回転速度を変えるようにしてもよい。つまり、回転半径が小さいほど、回転速度を速くしてもよい。 Alternatively, the rotation speed of the stage 11 may be changed while the moving speed of the optical system unit 30 is kept constant. In other words, the smaller the rotation radius, the faster the rotation speed may be.
 回転速度と移動速度の例について説明する。ここで、被処理体16が直径300mmの半導体ウェハであり、回転半径が450mm~750mmの範囲で変化するとして説明する。つまり、図2のレーザ光15aの照射位置では、回転半径が450mmとなっており、レーザ光15bの位置では、回転半径が750mmとなっているとする。また、ステージ11の1周でのX方向の移動距離を0.2mmとする。 An example of rotation speed and movement speed will be explained. Here, a description will be given assuming that the object to be processed 16 is a semiconductor wafer with a diameter of 300 mm, and the radius of rotation changes within a range of 450 mm to 750 mm. That is, at the irradiation position of the laser beam 15a in FIG. 2, the radius of rotation is 450 mm, and at the position of the laser beam 15b, the radius of rotation is 750 mm. Further, the moving distance in the X direction in one round of the stage 11 is assumed to be 0.2 mm.
 X方向における光学系ユニット30の移動速度が20m/secの場合、回転半径750mmでは、回転速度4.24rpsとし、回転半径が450mmでは、回転速度7.07rpsとすることができる。 When the moving speed of the optical system unit 30 in the X direction is 20 m/sec, when the rotation radius is 750 mm, the rotation speed can be set to 4.24 rps, and when the rotation radius is 450 mm, the rotation speed can be set to 7.07 rps.
 X方向における光学系ユニット30の移動速度が10m/secの場合、回転半径が750mmでは、回転速度2.12rpsとし、回転半径450mmでは、回転速度3.54rpsとすることができる。 When the moving speed of the optical system unit 30 in the X direction is 10 m/sec, when the rotation radius is 750 mm, the rotation speed can be 2.12 rps, and when the rotation radius is 450 mm, the rotation speed can be 3.54 rps.
 X方向における光学系ユニット30の移動速度が5m/secの場合、回転半径が750mmでは、回転速度1.06rpsとし、回転半径450mmでは、回転速度1.77rpsとすることができる。もちろん、回転速度や移動速度は上記の例二限られるものではない。 When the moving speed of the optical system unit 30 in the X direction is 5 m/sec, when the rotation radius is 750 mm, the rotation speed can be set to 1.06 rps, and when the rotation radius is 450 mm, the rotation speed can be set to 1.77 rps. Of course, the rotation speed and movement speed are not limited to the above two examples.
 青色の波長の光は、シリコンウェハへの浸透深さが適度である。レーザ光源35が波長250nm以上500nm以下のレーザ光を発生する。中心波長250nm~500nmのレーザ光を用いることで、半導体層を適切に活性化することができる。半導体層16bに対する浸透深さが深いレーザ光を用いることで、より深い領域まで活性化することができる。さらに、この波長範囲では、連続発振の半導体レーザ光源を用いることができるため、装置構成を簡素化、及び低コスト化することができる。 Blue wavelength light has a moderate penetration depth into silicon wafers. A laser light source 35 generates laser light with a wavelength of 250 nm or more and 500 nm or less. By using laser light with a center wavelength of 250 nm to 500 nm, the semiconductor layer can be appropriately activated. By using laser light that penetrates deep into the semiconductor layer 16b, a deeper region can be activated. Furthermore, in this wavelength range, a continuous wave semiconductor laser light source can be used, so the device configuration can be simplified and costs can be reduced.
 例えば、波長450nmのレーザ光は、シリコン膜に対する浸透深さが0.24μmとなっている。よって、半導体層16bにおけるレーザ光の吸収を抑えることができため、半導体層16bの深い領域にレーザ光が達する。よって、深い領域にPN接合が生成される半導体デバイスの製造に好適である。例えば、レーザ照射装置1は、縦型MOSFETやIGBT等のパワー半導体デバイスの活性化に好適である。レーザ照射装置1は、半導体基板の深い領域にPN接合が形成されている半導体デバイスに対する活性化処理に好適である。高い生産性で半導体デバイスを製造することができる。レーザ光源35として、半導体レーザ光源を用いることで、固体レーザに比べて、長寿命化を図ることができる。 For example, a laser beam with a wavelength of 450 nm has a penetration depth of 0.24 μm into a silicon film. Therefore, absorption of laser light in the semiconductor layer 16b can be suppressed, so that the laser light reaches a deep region of the semiconductor layer 16b. Therefore, it is suitable for manufacturing a semiconductor device in which a PN junction is formed in a deep region. For example, the laser irradiation device 1 is suitable for activating power semiconductor devices such as vertical MOSFETs and IGBTs. The laser irradiation apparatus 1 is suitable for activation processing of a semiconductor device in which a PN junction is formed in a deep region of a semiconductor substrate. Semiconductor devices can be manufactured with high productivity. By using a semiconductor laser light source as the laser light source 35, it is possible to achieve a longer life than a solid-state laser.
 本実施の形態では、レーザ光源35が架台60とは異なるラック38に固定されている。よって、レーザ光源35の交換、メンテナンスを容易に行うことができる。また、変調器を用いて、レーザ光をパルス光としてもよい。そして、窓部14の直下に被処理体16があるタイミングでレーザ光が被処理体16に照射されるようにしてもよい。これにより、被処理体16が窓部14の直下にないタイミングで、レーザ光がステージ11に照射されることを防ぐことができる。 In this embodiment, the laser light source 35 is fixed to a rack 38 that is different from the pedestal 60. Therefore, the laser light source 35 can be easily replaced and maintained. Alternatively, a modulator may be used to convert the laser light into pulsed light. Then, the object to be processed 16 may be irradiated with laser light at a timing when the object to be processed 16 is located directly under the window portion 14 . Thereby, it is possible to prevent the stage 11 from being irradiated with laser light at a time when the object to be processed 16 is not directly under the window section 14.
 また、計測器70がレーザ光のプロファイルを測定している。これにより、均一な空間分布のレーザ光を被処理体16に照射することができる。レーザ光を安定して被処理体16に照射することができるため、生産性を向上することができる。 Additionally, a measuring instrument 70 measures the profile of the laser beam. Thereby, the object to be processed 16 can be irradiated with laser light having a uniform spatial distribution. Since the object to be processed 16 can be stably irradiated with laser light, productivity can be improved.
実施の形態2
 実施の形態2にかかるレーザ照射装置1について、図4,及び図5を用いて説明する。図4は、レーザ照射装置1の構成を模式的に示す側面図である。図5は、レーザ照射装置1の構成を模式的に示す上面図である。実施の形態2では、レーザ光源35の配置が実施の形態1と異なっている。具体的には、レーザ光源35が光学系ステージ40に固定されている。レーザ光源35の配置以外の基本的な構成については、実施の形態1と同様であるため、適宜説明を省略する。
Embodiment 2
A laser irradiation device 1 according to a second embodiment will be explained using FIGS. 4 and 5. FIG. 4 is a side view schematically showing the configuration of the laser irradiation device 1. As shown in FIG. FIG. 5 is a top view schematically showing the configuration of the laser irradiation device 1. As shown in FIG. The second embodiment differs from the first embodiment in the arrangement of the laser light source 35. Specifically, the laser light source 35 is fixed to the optical system stage 40. The basic configuration other than the arrangement of the laser light source 35 is the same as that in Embodiment 1, so the description will be omitted as appropriate.
 レーザ光源35が光学系ステージ40に設置されている。よって、レーザ光源35は光学系ステージ40とともにX方向に移動する。つまり、レーザ光源35は、直動機構41に動作によってX方向に移動する。このような構成であっても実施の形態1と同様の効果を得ることができる。さらに、光ファイバ36の長さを短くすることができる。よって、光ファイバ36における光の損失を低減することができる。 A laser light source 35 is installed on the optical system stage 40. Therefore, the laser light source 35 moves in the X direction together with the optical system stage 40. That is, the laser light source 35 is moved in the X direction by the movement of the linear motion mechanism 41. Even with such a configuration, the same effects as in the first embodiment can be obtained. Furthermore, the length of the optical fiber 36 can be shortened. Therefore, light loss in the optical fiber 36 can be reduced.
実施の形態3
 実施の形態3にかかるレーザ照射装置1について、図6,及び図7を用いて説明する。図6は、レーザ照射装置1の構成を模式的に示す側面図である。図7は、レーザ照射装置1の構成を模式的に示す上面図である。実施の形態3では、レーザ光源35と光学系ユニット30と間に、光ファイバ36が設けられていない。また、光学系ユニット30における光学系の構成が実施の形態1、2と異なっている。これら以外の基本的な構成は、実施の形態1、2と同様であるため、適宜説明を省略する。
Embodiment 3
A laser irradiation device 1 according to a third embodiment will be explained using FIGS. 6 and 7. FIG. 6 is a side view schematically showing the configuration of the laser irradiation device 1. As shown in FIG. FIG. 7 is a top view schematically showing the configuration of the laser irradiation device 1. As shown in FIG. In the third embodiment, the optical fiber 36 is not provided between the laser light source 35 and the optical system unit 30. Furthermore, the configuration of the optical system in the optical system unit 30 is different from the first and second embodiments. The basic configuration other than these is the same as that of Embodiments 1 and 2, so the description will be omitted as appropriate.
 レーザ光源35が、実施の形態2と同様に、光学系ステージ40に固定されている。また、光学系ユニット30において、レンズ301とレンズ302との間にミラー303が配置されている。レーザ光源35は光学系ユニット30とともにX方向に移動する。つまり、レーザ光源35は、レンズ301、ミラー303,レンズ302等ともに、X方向に移動する。レーザ光源35はレーザ光15を-X方向に進んでいき、レンズ301に入射する。 A laser light source 35 is fixed to an optical system stage 40 as in the second embodiment. Further, in the optical system unit 30, a mirror 303 is arranged between the lens 301 and the lens 302. The laser light source 35 moves in the X direction together with the optical system unit 30. That is, the laser light source 35 moves in the X direction together with the lens 301, mirror 303, lens 302, etc. The laser light source 35 causes the laser light 15 to travel in the -X direction and enter the lens 301.
 レンズ301の光軸はX方向と平行になっている。レンズ301は、レーザ光15を平行光束とする。そして、レンズ301からのレーザ光15は、ミラー303で反射されて、-Z方向に進む。ミラー303からのレーザ光15はレンズ302に入射する。レンズ302は、レーザ光15を被処理体16に集光する。このようにすることで、実施の形態1,2と同様の効果を得ることができる。実施の形態1,2とは異なり、レーザ光源35とレンズ301と間には、光ファイバ36が設けられていない。光ファイバ36を用いていないため光の損失を抑制することができる。 The optical axis of the lens 301 is parallel to the X direction. The lens 301 converts the laser beam 15 into a parallel light beam. The laser beam 15 from the lens 301 is reflected by the mirror 303 and travels in the -Z direction. Laser light 15 from mirror 303 enters lens 302 . The lens 302 focuses the laser beam 15 onto the object to be processed 16 . By doing so, the same effects as in the first and second embodiments can be obtained. Unlike the first and second embodiments, an optical fiber 36 is not provided between the laser light source 35 and the lens 301. Since the optical fiber 36 is not used, light loss can be suppressed.
 なお、レンズ301とレーザ光源35との間には、実施の形態1,2で示したビーム整形部307が設けられいてもよい。また、実施の形態1~3において、ビーム整形部307はレンズ301の前段以外に配置されていてもよい。つまり、ビーム整形部307の位置は、特に限定されるものではない。 Note that the beam shaping section 307 shown in Embodiments 1 and 2 may be provided between the lens 301 and the laser light source 35. Further, in Embodiments 1 to 3, the beam shaping section 307 may be arranged at a position other than the stage before the lens 301. In other words, the position of the beam shaping section 307 is not particularly limited.
 実施の形態2,3において、レーザ光源35は光学系ステージ40に固定されているものとして説明したが、レーザ光源35は、架台60に固定されていてもよい。つまり、レーザ光源35は、光学系ユニット30とともにX方向に移動しなくてもよい。この場合、実施の形態3では、レンズ301により、レーザ光15を平行光束とすることが好ましい。 In the second and third embodiments, the laser light source 35 has been described as being fixed to the optical system stage 40, but the laser light source 35 may be fixed to the pedestal 60. That is, the laser light source 35 does not have to move in the X direction together with the optical system unit 30. In this case, in the third embodiment, it is preferable that the lens 301 converts the laser beam 15 into a parallel beam.
 実施の形態1~3に記載のレーザ照射装置1を用いたレーザ照射方法は、例えば、以下のステップ1~3を有している。
 (ステップ1)半導体レーザ光源を用いて、波長250nm以上波長500nm以下のレーザ光を発生するステップ。
 (ステップ2)光学系ユニットによって前記レーザ光を回転ステージ上の半導体基板に導くステップ。
 (ステップ3)上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させるステップ。
The laser irradiation method using the laser irradiation apparatus 1 described in Embodiments 1 to 3 includes, for example, the following steps 1 to 3.
(Step 1) A step of generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source.
(Step 2) A step of guiding the laser beam to a semiconductor substrate on a rotating stage by an optical system unit.
(Step 3) Moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
 本実施の形態にかかるレーザ照射方法は半導体デバイスの製造方法に適用可能である。これにより、半導体デバイスを高い生産性で製造することができる。 The laser irradiation method according to this embodiment can be applied to a method for manufacturing semiconductor devices. Thereby, semiconductor devices can be manufactured with high productivity.
(半導体デバイス)
 以下、本実施の形態にかかる製造方法で製造される半導体デバイスの一例について説明する。図8は、半導体デバイス600の積層構成を示す断面図である。半導体デバイス600は、縦型MOSFETである。具体的には、半導体デバイス600は、プレーナ型MOSFETとなっており、半導体基板605の裏面側がドレイン、表面側がソース及びゲートとなっている。半導体基板605はシリコン基板である。
(semiconductor device)
An example of a semiconductor device manufactured by the manufacturing method according to this embodiment will be described below. FIG. 8 is a cross-sectional view showing the stacked structure of the semiconductor device 600. Semiconductor device 600 is a vertical MOSFET. Specifically, the semiconductor device 600 is a planar MOSFET, and the back side of the semiconductor substrate 605 is the drain, and the front side is the source and gate. The semiconductor substrate 605 is a silicon substrate.
 半導体デバイス600には半導体基板605の裏面側から順にn層601、n層602、p層603、n層604が形成されている。さらに半導体基板605の表面には、ゲート電極610とソース電極620とが形成されている。ゲート電極610とソース電極620は、銅やアルミニウムなどの金属薄膜となっている。半導体基板605が上記の被処理体16または基板16aに対応する。 In the semiconductor device 600, an n + layer 601, an n - layer 602, a p layer 603, and an n + layer 604 are formed in order from the back side of a semiconductor substrate 605. Furthermore, a gate electrode 610 and a source electrode 620 are formed on the surface of the semiconductor substrate 605. The gate electrode 610 and the source electrode 620 are thin films of metal such as copper or aluminum. The semiconductor substrate 605 corresponds to the object to be processed 16 or the substrate 16a described above.
 n層601、n層602、p層603、n層604には不純物が注入されている。p層603は例えば、ドーパントとして、ホウ素が注入されている。n層601、n層602、n層604には、ドーパントとしてリンが注入されている。n層601、n層602、p層603、又はn層604が半導体層16bに対応している。 Impurities are implanted into the n + layer 601, the n layer 602, the p layer 603, and the n + layer 604. For example, boron is implanted into the p layer 603 as a dopant. Phosphorous is implanted as a dopant into the n + layer 601, the n layer 602, and the n + layer 604. The n + layer 601, the n layer 602, the p layer 603, or the n + layer 604 corresponds to the semiconductor layer 16b.
 レーザ照射装置1が半導体基板605にレーザ光を照射することで、n層601、n層602、p層603、n層604の1つ以上の層を活性化することができる。半導体基板605の上面からレーザ光15を照射する。このようにすることで、n層601、n層602、p層603、又はn層604を活性化することができる。なお、レーザ光を照射する工程の順番は特に限定されるものではない。 When the laser irradiation device 1 irradiates the semiconductor substrate 605 with laser light, one or more of the n + layer 601, the n layer 602, the p layer 603, and the n + layer 604 can be activated. Laser light 15 is irradiated from the upper surface of semiconductor substrate 605 . By doing so, the n + layer 601, the n layer 602, the p layer 603, or the n + layer 604 can be activated. Note that the order of the laser beam irradiation steps is not particularly limited.
 また、本実施の形態にかかる方法は、半導体デバイスの半導体層を活性化するための照射方法であって、波長250nm以上波長500nm以下のレーザ光を発生するステップと、光学系ユニットによって前記レーザ光を半導体基板に導くステップと、前記半導体基板に対する前記レーザ光の相対的な照射位置を変化させるステップと、を備えている。この方法により、適切に半導体層を活性化することができる。このレーザ照射方法は、半導体デバイスの製造方法に好適である。つまり、レーザ照射方法は、半導体デバイスの製造方法における活性化工程に適用される。 Further, the method according to the present embodiment is an irradiation method for activating a semiconductor layer of a semiconductor device, and includes a step of generating a laser beam with a wavelength of 250 nm or more and a wavelength of 500 nm or less, and using an optical system unit to generate the laser beam. and a step of changing a relative irradiation position of the laser beam to the semiconductor substrate. With this method, the semiconductor layer can be activated appropriately. This laser irradiation method is suitable for a method of manufacturing semiconductor devices. That is, the laser irradiation method is applied to an activation step in a semiconductor device manufacturing method.
 実施の形態1~3の一部又は全部は適宜組み合わせて使用することができる。なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Part or all of Embodiments 1 to 3 can be used in appropriate combination. Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
 1 レーザ照射装置
 10 チャンバ
 11 ステージ
 12 吸着板
 14 窓部
 15 レーザ光
 16 被処理体
 16a 基板
 16b 半導体層
 30 光学系ユニット
 32 光コネクタ
 35 レーザ光源
 36 光ファイバ
 40 光学系ステージ
 41 直動機構
 43 ガイド機構
 43a リニアガイド
 43b スライダ
 60 架台
 70 計測器
 301 レンズ
 302 レンズ
 303 ミラー
 307 ビーム整形部
 310 筐体
 600 半導体デバイス
 601 n
 602 n
 603 p層
 604 n
 610 ゲート電極
 620 ソース電極
 605 半導体基板
1 Laser irradiation device 10 Chamber 11 Stage 12 Adsorption plate 14 Window 15 Laser light 16 Object to be processed 16a Substrate 16b Semiconductor layer 30 Optical system unit 32 Optical connector 35 Laser light source 36 Optical fiber 40 Optical system stage 41 Linear motion mechanism 43 Guide mechanism 43a Linear guide 43b Slider 60 Mount 70 Measuring instrument 301 Lens 302 Lens 303 Mirror 307 Beam shaping section 310 Housing 600 Semiconductor device 601 N + layer 602 N - layer 603 P layer 604 N + layer 610 Gate electrode 620 Source electrode 605 Semiconductor board

Claims (21)

  1.  波長250nm以上波長500nm以下のレーザ光を発生する半導体レーザ光源と、
     半導体基板を回転する回転ステージと、
     前記レーザ光を前記回転ステージ上の前記半導体基板に導く光学系ユニットと、
     上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させる移動機構とを備えたレーザ照射装置。
    a semiconductor laser light source that generates laser light with a wavelength of 250 nm or more and 500 nm or less;
    a rotation stage that rotates the semiconductor substrate;
    an optical system unit that guides the laser beam to the semiconductor substrate on the rotation stage;
    A laser irradiation device comprising: a moving mechanism that moves the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
  2.  前記半導体基板上において前記レーザ光がトップフラット分布となるように前記レーザ光を整形するビーム整形部をさらに備えた請求項1に記載のレーザ照射装置。 The laser irradiation device according to claim 1, further comprising a beam shaping section that shapes the laser beam so that the laser beam has a top-flat distribution on the semiconductor substrate.
  3.  前記半導体基板上におけるレーザ光が、前記回転ステージの回転方向を短手方向とし、前記回転方向と直交する径方向を長手方向とするスポット形状とするように、前記レーザ光が整形されている請求項2に記載のレーザ照射装置。 The laser beam is shaped so that the laser beam on the semiconductor substrate has a spot shape whose width direction is the rotation direction of the rotary stage and whose length direction is a radial direction perpendicular to the rotation direction. The laser irradiation device according to item 2.
  4.  前記移動機構が前記回転ステージの回転方向と直交する径方向に沿って前記光学系ユニットを移動させ、
     前記回転ステージの回転軸に近くなるほど、前記光学系ユニットの移動速度が速くなる請求項1~3のいずれか1項に記載のレーザ照射装置。
    The moving mechanism moves the optical system unit along a radial direction perpendicular to the rotation direction of the rotation stage,
    The laser irradiation device according to any one of claims 1 to 3, wherein the moving speed of the optical system unit becomes faster as the optical system unit approaches the rotation axis of the rotation stage.
  5.  前記半導体レーザ光源からのレーザ光を前記光学系ユニットに導く光ファイバをさらに備えた請求項1~3のいずれか1項に記載のレーザ照射装置。 The laser irradiation device according to any one of claims 1 to 3, further comprising an optical fiber that guides laser light from the semiconductor laser light source to the optical system unit.
  6.  複数の前記半導体基板が前記回転ステージの回転軸に対して対称に配置されている請求項1~3のいずれか1項に記載のレーザ照射装置。 The laser irradiation device according to any one of claims 1 to 3, wherein the plurality of semiconductor substrates are arranged symmetrically with respect to the rotation axis of the rotation stage.
  7.  前記回転ステージの外側において、前記レーザ光のプロファイルを測定する計測器が設けられている請求項1~3のいずれか1項に記載のレーザ照射装置。 The laser irradiation device according to any one of claims 1 to 3, further comprising a measuring instrument for measuring the profile of the laser beam provided outside the rotation stage.
  8.  (A1)半導体レーザ光源を用いて、波長250nm以上波長500nm以下のレーザ光を発生するステップと、
     (A2)光学系ユニットによって前記レーザ光を回転ステージ上の半導体基板に導くステップと、
     (A3)上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させるステップと、を備えたレーザ照射方法。
    (A1) generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source;
    (A2) guiding the laser beam to a semiconductor substrate on a rotating stage by an optical system unit;
    (A3) A laser irradiation method comprising the step of moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
  9.  前記半導体基板上において前記レーザ光がトップフラット分布となるように、ビーム整形部が、前記レーザ光を整形する請求項8に記載のレーザ照射方法。 The laser irradiation method according to claim 8, wherein the beam shaping section shapes the laser beam so that the laser beam has a top-flat distribution on the semiconductor substrate.
  10.  前記半導体基板上におけるレーザ光が、前記回転ステージの回転方向を短手方向とし、前記回転方向と直交する径方向を長手方向とするスポット形状とするように、前記レーザ光が整形されている請求項9に記載のレーザ照射方法。 The laser beam is shaped so that the laser beam on the semiconductor substrate has a spot shape whose width direction is the rotation direction of the rotary stage and whose length direction is a radial direction perpendicular to the rotation direction. The laser irradiation method according to item 9.
  11.  (A3)のステップでは、前記回転ステージの回転方向と直交する径方向に沿って前記光学系ユニットを移動させ、
     前記回転ステージの回転軸に近くなるほど、前記光学系ユニットの移動速度が速くなる請求項8~10のいずれか1項に記載のレーザ照射方法。
    In step (A3), the optical system unit is moved along a radial direction perpendicular to the rotation direction of the rotation stage,
    The laser irradiation method according to any one of claims 8 to 10, wherein the moving speed of the optical system unit increases as it approaches the rotation axis of the rotation stage.
  12.  前記半導体レーザ光源からのレーザ光が光ファイバを介して前記光学系ユニットに導かれている請求項8~10のいずれか1項に記載のレーザ照射方法。 The laser irradiation method according to any one of claims 8 to 10, wherein the laser light from the semiconductor laser light source is guided to the optical system unit via an optical fiber.
  13.  複数の前記半導体基板が前記回転ステージの回転軸に対して対称に配置されている請求項8~10のいずれか1項に記載のレーザ照射方法。 The laser irradiation method according to any one of claims 8 to 10, wherein the plurality of semiconductor substrates are arranged symmetrically with respect to the rotation axis of the rotation stage.
  14.  前記回転ステージの外側において、計測器が、前記レーザ光のプロファイルを測定する請求項8~10のいずれか1項に記載のレーザ照射方法。 The laser irradiation method according to any one of claims 8 to 10, wherein a measuring instrument measures the profile of the laser beam outside the rotation stage.
  15.  (S1)半導体レーザ光源を用いて、波長250nm以上波長500nm以下のレーザ光を発生するステップと、
     (S2)光学系ユニットによって前記レーザ光を回転ステージ上の半導体基板に導くステップと、
     (S3)上面視において前記回転ステージの回転方向と異なる方向に前記レーザ光の照射位置を変更させるように、前記光学系ユニットを移動させるステップと、を備えた半導体デバイスの製造方法。
    (S1) generating laser light with a wavelength of 250 nm or more and 500 nm or less using a semiconductor laser light source;
    (S2) guiding the laser beam to a semiconductor substrate on a rotating stage by an optical system unit;
    (S3) A method for manufacturing a semiconductor device, comprising the step of moving the optical system unit so as to change the irradiation position of the laser beam in a direction different from the rotational direction of the rotation stage when viewed from above.
  16.  前記半導体基板上において前記レーザ光がトップフラット分布となるように、ビーム整形部が、前記レーザ光を整形する請求項15に記載の半導体デバイスの製造方法。 16. The method for manufacturing a semiconductor device according to claim 15, wherein the beam shaping section shapes the laser beam so that the laser beam has a top-flat distribution on the semiconductor substrate.
  17.  前記半導体基板上におけるレーザ光が、前記回転ステージの回転方向を短手方向とし、前記回転方向と直交する径方向を長手方向とするスポット形状とするように、前記レーザ光が整形されている請求項16に記載半導体デバイスの製造方法。 The laser beam is shaped so that the laser beam on the semiconductor substrate has a spot shape whose width direction is the rotation direction of the rotary stage and whose length direction is a radial direction perpendicular to the rotation direction. 17. A method for manufacturing a semiconductor device according to item 16.
  18.  (S3)のステップでは、前記回転ステージの回転方向と直交する径方向に沿って前記光学系ユニットを移動させ、
     前記回転ステージの回転軸に近くなるほど、前記光学系ユニットの移動速度が速くなる請求項15~17のいずれか1項に記載の半導体デバイスの製造方法。
    In the step (S3), the optical system unit is moved along a radial direction perpendicular to the rotation direction of the rotation stage,
    18. The method for manufacturing a semiconductor device according to claim 15, wherein the moving speed of the optical system unit increases as the optical system unit approaches the rotation axis of the rotation stage.
  19.  前記半導体レーザ光源からのレーザ光が光ファイバを介して前記光学系ユニットに導かれている請求項15~17のいずれか1項に記載の半導体デバイスの製造方法。 The method for manufacturing a semiconductor device according to any one of claims 15 to 17, wherein the laser light from the semiconductor laser light source is guided to the optical system unit via an optical fiber.
  20.  複数の前記半導体基板が前記回転ステージの回転軸に対して対称に配置されている請求項15~17のいずれか1項に記載の半導体デバイスの製造方法。 The method for manufacturing a semiconductor device according to any one of claims 15 to 17, wherein the plurality of semiconductor substrates are arranged symmetrically with respect to the rotation axis of the rotation stage.
  21.  前記回転ステージの外側において、計測器が、前記レーザ光のプロファイルを測定する請求項15~17のいずれか1項に記載の半導体デバイスの製造方法。 The method for manufacturing a semiconductor device according to any one of claims 15 to 17, wherein a measuring instrument measures the profile of the laser beam outside the rotation stage.
PCT/JP2022/018491 2022-04-21 2022-04-21 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device WO2023203733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018491 WO2023203733A1 (en) 2022-04-21 2022-04-21 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018491 WO2023203733A1 (en) 2022-04-21 2022-04-21 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2023203733A1 true WO2023203733A1 (en) 2023-10-26

Family

ID=88419614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018491 WO2023203733A1 (en) 2022-04-21 2022-04-21 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2023203733A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003882A (en) * 1998-06-16 2000-01-07 Japan Steel Works Ltd:The Method for laser beam irradiation and equipment thereof
JP2003332258A (en) * 2002-05-15 2003-11-21 Sony Corp Laser annealing device, semiconductor device and method of manufacturing semiconductor device
JP2005079269A (en) * 2003-08-29 2005-03-24 Fujitsu Ltd Forming method of polycrystalline semiconductor film, manufacturing method of semiconductor device, and semiconductor device manufacturing apparatus
JP2005244191A (en) * 2004-02-26 2005-09-08 Ultratech Inc Laser scanning apparatus and method for thermal treatment
JP2006005291A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Laser annealing device and method
JP2010036236A (en) * 2008-08-08 2010-02-18 Japan Steel Works Ltd:The Laser beam irradiation method and apparatus
JP2013074247A (en) * 2011-09-29 2013-04-22 Sumitomo Heavy Ind Ltd Laser annealing device, and laser annealing method
WO2017154597A1 (en) * 2016-03-09 2017-09-14 三菱電機株式会社 Heat treatment device, heat treatment method, laser annealing device, and laser annealing method
JP2019071373A (en) * 2017-10-11 2019-05-09 三菱電機株式会社 Heat treatment method and heat treatment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003882A (en) * 1998-06-16 2000-01-07 Japan Steel Works Ltd:The Method for laser beam irradiation and equipment thereof
JP2003332258A (en) * 2002-05-15 2003-11-21 Sony Corp Laser annealing device, semiconductor device and method of manufacturing semiconductor device
JP2005079269A (en) * 2003-08-29 2005-03-24 Fujitsu Ltd Forming method of polycrystalline semiconductor film, manufacturing method of semiconductor device, and semiconductor device manufacturing apparatus
JP2005244191A (en) * 2004-02-26 2005-09-08 Ultratech Inc Laser scanning apparatus and method for thermal treatment
JP2006005291A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Laser annealing device and method
JP2010036236A (en) * 2008-08-08 2010-02-18 Japan Steel Works Ltd:The Laser beam irradiation method and apparatus
JP2013074247A (en) * 2011-09-29 2013-04-22 Sumitomo Heavy Ind Ltd Laser annealing device, and laser annealing method
WO2017154597A1 (en) * 2016-03-09 2017-09-14 三菱電機株式会社 Heat treatment device, heat treatment method, laser annealing device, and laser annealing method
JP2019071373A (en) * 2017-10-11 2019-05-09 三菱電機株式会社 Heat treatment method and heat treatment apparatus

Similar Documents

Publication Publication Date Title
KR101574501B1 (en) Laser beam positioning system
CN1966198A (en) Laser beam processing machine
KR20150138827A (en) Method for manufacturing chip
JP2014104484A (en) Laser processing apparatus
JP2002141301A5 (en)
TWI657495B (en) Processing method of wafer
JP6585279B2 (en) Heat treatment apparatus, heat treatment method, laser annealing apparatus, and laser annealing method
KR102662458B1 (en) Laser machining apparatus
JP7321022B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
KR20140017426A (en) Laser machining apparatus
WO2023203733A1 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
TW201328811A (en) Splitting device, splitting method of processed object, and splitting method of substrate having optical element pattern
JP2019042749A (en) Laser processing device
TWI707393B (en) Laser processing device
JP6068882B2 (en) Laser processing equipment
JP5660880B2 (en) Laser annealing method
TW202231394A (en) Apparatus for generating a laser line on a working plane
WO2023095188A1 (en) Laser irradiation device, laser irradiation method, and method for manufacturing semiconductor device
WO2024116269A1 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2016096241A (en) Laser oscillation mechanism
JP2006005291A (en) Laser annealing device and method
CN109935532B (en) Laser heat treatment device and treatment method
JP2019071373A (en) Heat treatment method and heat treatment apparatus
JP2013022614A (en) Laser beam machining apparatus
WO2023062842A1 (en) Processing device, processing method, and substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938533

Country of ref document: EP

Kind code of ref document: A1